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Abstract—Gene expression and in vivo DNA binding data
provide important information for understanding gene regu-
latory networks: in vivo DNA binding data indicate genomic
regions where transcription factors are bound, and expression
data show the output resulting from this binding. Thus, there
must be functional relationships between these two types of
data. While visualization and data analysis tools exist for each
data type alone, there is a lack of tools that can easily explore
the relationship between them. We propose an approach
that uses the average expression driven by multiple of cis-
control regions to visually relate gene expression and in vivo
DNA binding data. We demonstrate the utility of this tool
with examples from the network controlling early Drosophila
development. The results obtained support the idea that the
level of occupancy of a transcription factor on DNA strongly
determines the degree to which the factor regulates a target
gene, and in some cases also controls whether the regulation
is positive or negative.
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I. INTRODUCTION

Although most cells in the animal carry identical genetic
information in DNA, cells in different tissues and at different
stages of development can have very different functions, as
the expression of genes is selectively activated or deactivated
in different cells at different times by transcription factors.
Understanding the complex regulatory networks that control
animal development and gene expression requires analysis of
the spatial and temporal expressions patterns of transcription
factors and their target genes.
One approach is to obtain data on the transcription output

pattern driven by each CCR in an animal or its developing
embryo using immunohistochemistry or in situ-hybridization
[1], [2]. Another approach is to infer regulatory relationships
between transcription factors and DNA on a genome-wide
scale in vivo by chromatin immunoprecipitation followed
by either microarray analysis (ChIP-chip) or sequencing
(ChIP-seq). Genomic regions, including cis-control regions
(CCRs), that are bound by a specific transcription factor
can be identified by these techniques, as can the degree
of factor occupancy on each region. CCRs are typically

bound by several transcription factors. Since gene expression
data are the output of gene transcription networks, there
must exist relationships between the expression patterns of
transcription factors, in vivo DNA binding data, and target
CCR expression data. We demonstrate a visualization tool
that helps the user visually relate gene expression and in
vivo DNA binding data to explore these relationships.

II. PREVIOUS WORK

Previous research efforts developed methods to record
spatial and temporal gene expression patterns in several
animals [1], [3]–[6]. However, to create a detailed model
of transcription networks, cellular resolution quantitative
data on gene expression in a whole embryo is needed.
To address this deficiency, researchers in the Berkeley
Drosophila Transcription Network Project (BDTNP) have
developed methods to measure gene expression over an
entire embryo blastoderm at cellular resolution based on
fluorescence microscopy. After collecting expression data for
different genes within different time cohorts from hundreds
of embryos, a model VirtualEmbryo was constructed using
registration techniques [2] to support quantitative computa-
tional analysis. PointCloudXplore, a visualization tool, was
developed to interactively explore and analyze these high-
resolution expression data [7]. MulteeSum [8] is a second
visualization tool devoted to VirtualEmbryo data, developed
for comparing VirtualEmbryos from different Drosophila
species. Visualization tools to explore three-dimensional
(3D) expression data sets also exist for other animal systems.
For example, the Allen Brain Atlas viewer [9] maps color-
encoded gene expression onto a 3D representation of a
mouse brain.
A genome browser is often used for co-visualizing in vivo

DNA binding and other data, such as DNA sequence and
annotations from different gene models, in track views [10],
[11]. There are also several tools for integrated analysis of in
vivo DNA binding data that can perform basic analysis tasks,
such as peak detection, false discovery rate computation,
motif analysis and so on [12]. However, most of these
analysis tools are designed for computationally intensive
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Figure 1. The expression surface of Krüppel (KR) and that of the average of a cohort of strongly bound CCRs (rank 1–10) shown in Unrolled View. In
this view, a cylindrical projection is used to map the entire embryo blastoderm to a plane and the expression is shown as a height field, where the height
represents the expression value. (a) shows KR in red and individual CCRs’ patterns in other colors. (b) shows KR and the averaged expression surface of
this cohort of CCRs in green. The average expression surface makes it easier to observe KR’s repressing role. (c) shows the average expression surface
of the cohort with strongest contributing CCR’s color in each cell. One can see that each color region maps to its corresponding CCR peak shown in (a).
The user can switch among these views freely to explore the data.

tasks rather than user-interactive analyses, or they analyze
data for only one transcription factor at a time. They do not
allow quantitative comparison of results for many factors at
once directly within the tool, which is a serious limitation
as recent studies [13] show that many transcription factors
bind quantitatively to highly overlapping sets of thousands
of genomic regions in vivo. Regions occupied at high levels
by transcription factors are quite different in character from
those that are more poorly bound, with only the more highly
bound regions being functional CCRs. To address this lim-
itation, we previously developed a visualization framework
that combines a genome browser, a correlation table, scatter
plots, and parallel coordinates via brushing-and-linking, to
support quantitative analysis and exploration of data for
many transcription factors at once [14]. Building on our
previous tool to analyze in vivo DNA binding data, we have
now established a tool that integrates features of this tool
with PointCloudXplore to make use of the high-resolution
VirtualEmbryo gene expression data sets. We demonstrate
this novel integration and show its unique capability to relate
gene expression and in vivo DNA binding data.

III. SYSTEM DESIGN
We describe the data sets, the approach, and the visual-

ization components in our tool in this section.

A. Data Sets
We consider three types of the data sets obtained from

early Drosophila melanogaster embryos: mRNA expression
data of 15 transcription factors, mRNA expression data for
95 CCRs, and in vivo DNA binding data of 21 transcription
factors at the 95 CCRs. Expression data are in the form of a
VirtualEmbryo [2], which provides measured expression on
a per-cell basis. In the late blastoderm stage (stage-5), the
embryo consists of ∼6000 nuclei, and the VirtualEmbryo
specifies an individual expression value for each blastoderm
cell. The VirtualEmbryo data used here comprise of 6
time cohorts in stage-5. Expression values are normalized
between zero and one for each transcription factor and for

each CCR respectively. The in vivo DNA binding data are
also normalized between zero and one for each transcription
factor. All data below 1% false discovery rate (FDR) are set
to zero.

B. Approach
Determining the function of a transcription factor by

comparing its expression pattern with that of an individual
CCR is challenging. Consider Figure 1(a), where we observe
the expression surfaces of Krüppel (KR, shown in red) and a
number of its target CCRs (shown in, for example, magenta,
blue, or cyan). When looking at the average pattern of all
of the CCRs shown in Figure 1(a), it is apparent that KR
likely represses these CCRs (Figure 1(b)). Hence, using an
average pattern derived from multiple CCRs makes it easier
to understand a transcription factor’s role.
To test if the level at which a transcription factor occupies

a CCR is important for how transcription factor affects
expression output, we sort CCRs based on transcription
factor ChIP-chip scores, with lower ChIP scores being
ranked lower. We compute the average CCR expression
pattern for every group of n CCRs down the rank list, where
n is specified by the user and might typically be around ten.
During the averaging process, we also create a CCR map by
recording which CCR has the maximum expression value
in each cell and this information can be displayed on the
average expression surface using color (Figure 1(c)).

C. Visualization Components
The in vivo DNA binding table is the central graphical

user interface (GUI) and the starting point of our tool. The
user uses this GUI to load all expression and in vivo DNA
binding data. Figure 2 shows an example. The column labels
show the names of transcription factors and the row labels
indicate the names of each CCR. Each table cell shows the
normalized ChIP score of its corresponding transcription
factor at its corresponding CCR. Clicking on a column
label initiates a sorting process for the CCR names based
on that transcription factor’s ChIP scores. Double-clicking
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Figure 2. An example of the in vivo DNA binding table. (a) shows the
ordinary interface. Table rows (CCRs) are sorted by the ChIP-chip scores
of the transcription factor Giant (GT, surrounded by the blue box). We
compute averaged CCR patterns for every group of n CCRs (n = 10 in
this example) down the CCR list (surrounded by green boxes). (b) the color
map for the table. The background color of each table cell is mapped by
its normalized ChIP-chip score.

on the table label causes the display of the corresponding
expression pattern in Unrolled View.
We color-map each table cell’s background based on

its score. This color-mapping GUI helps the user discover
the binding strengths of different transcription factors at
different CCRs. For example, in Figure 2(a), Giant (GT, the
first column surrounded by the blue box) shows a very strong
binding at ChIPPCRM2 (the second row), while Hunchback
(HB, the second column) only has a weak binding to it.
The MultiView window consists of a grid of images that

share the same view point to allow the user to compare
multiple expression patterns easily. Each sub-window can
show an average CCR expression pattern for the transcrip-
tion factor in the results. The user can also choose to display
the transcription factor and/or the individual CCR expression
pattern in the same sub-window if they are available.

IV. CASE STUDY
Early Drosophila embryo development is coordinated by

two groups of transcription factors that control patterning
along the anterior-posterior (A-P) and dorsal-ventral (D-V)
body axes, respectively. We have used our tool to explore
the activity of several A-P and D-V transcription factors.
The A-P patterning transcription factor Krüppel (KR) is

expressed as a stripe around the middle of the embryo.
Figure 3 shows the KR expression surface along with the
average patterns of three example cohorts of CCRs to which
KR binds to at strong, medium, and weak levels. It can
be seen that the CCRs that are strongly bound by KR
(Figure 3(a)) show pronounced A-P patterns, while weakly
bound CCRs (Figure 3(c)) show D-V patterns. Comparison
between the average patterns of strongly bound CCRs and
weakly bound CCRs suggest that KR represses the strongly
bound CCRs in the middle of the embryo, as there exists
a pronounced anti-correlation between KR expression and
that of the CCR cohort. The average expression patterns of

moderately bound CCR cohorts (Figure 3(b)) have a more
complex relationship with KR, which could indicate that
this transcription factor may activate some moderately bound
CCRs. The expression of weakly bound CCR cohorts (Fig-
ure 3(c)) shows no obvious correlation with KR expression
and thus the low levels of KR binding have likely no effect
in controlling these CCRs.
Figure 4 shows the expression surface of another A-P

patterning factor, Giant (GT), along with the averaged ex-
pression patterns of CCR cohorts to which GT shows strong,
medium, and weak binding. Like KR, GT may activate some
moderately bound CCRs (Figure 4(b)) and have no effect at
weakly bound CCRs (Figure 4(c)), whereas high levels of
GT binding likely repress transcription (Figure 4(a)).
We have also examined the relationship between DNA

occupancy levels and CCR output expression patterns for
the A-P regulators BCD and CAD and those of the D-V
regulators SNA and TWI, obtaining broadly similar results
to those seen for KR and GT (unpublished data).
The above examples provide new evidence that the level

of factor occupancy on a CCR, as measured by ChIP assay, is
an important determinant in how or whether the transcription
factor regulates the CCR. CCRs that are more highly bound
tend to be significantly regulated by the factor. CCRs that are
occupied at lower levels tend to either not be regulated by the
factor, regulated to a smaller degree, or, in the case of SNA,
GT and KR, perhaps regulated in a different direction (i.e.,
activated instead of repressed). This result supports earlier
biochemical and genetic evidence that transcription factors
show a quantitative continuum of binding and function
in vivo [13] and illustrates the importance of quantitative
analyses of both in vivo DNA binding and gene expression.

V. CONCLUSIONS

We have introduced an effective approach to visually
relate gene expression and in vivo DNA binding data: for
each transcription factor, CCRs are grouped by the level
of in vivo DNA occupancy of the transcription factor, and
for each cohort, the expression patterns are then averaged
to allow visual comparison with the expression pattern of
the transcription factor. Our tool allows the user to visually
explore the relationships among transcription factors and
CCRs easily based on in vivo DNA binding data. We have
provided several examples that illustrate the strength of this
method to visualize integrated data.
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Figure 3. The KR expression surface (red) and the averaged expression patterns of cohorts of CCRs ranked by the level of KR binding (green) shown
in an unrolled view (see Figure 1). (a): strongly bound CCRs (rank 1–10); (b): moderately bound CCRs (rank 31–40); and (c): weakly bound CCRs (rank
81–90). These images suggest that KR represses strongly bound CCRs, may activate some moderately bound CCRs, and has no strong effect at weakly
bound CCRs.
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Figure 4. The GT expression surface (red) and the averaged expression patterns of cohorts of CCRs ranked by the level of GT binding (green) shown
in an unrolled view (see Figure 1). (a): strongly bound CCRs (rank 1–10); (b): moderately bound CCRs (rank 41–50); and (c): weakly bound CCRs (rank
81–90). The images suggest that GT, like KR, represses strongly bound CCRs, may enhance some moderately bound CCRs, and has no strong effect at
weakly bound CCRs.
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