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1 Introduction

As 3D volumetric images of the human body become an increasingly crucial
source of information for the diagnosis and treatment of a broad variety of
medical conditions, advanced techniques that allow clinicians to efficiently
and clearly visualize volumetric images become increasingly important. Inter-
action has proven to be a key concept in analysis of medical images because
static images of 3D data are prone to artifacts and misunderstanding of depth.
Furthermore, fading out clinically irrelevant aspects of the image while pre-
serving contextual anatomical landmarks helps medical doctors to focus on
important parts of the images without becoming disoriented. Our goal was to
develop a tool that unifies interactive manipulation and context preserving vi-
sualization of medical images with a special focus on diffusion tensor imaging
(DTI) data.

At each image voxel, DTI provides a 3× 3 tensor whose entries represent
the 3D statistical properties of water diffusion locally. Water motion that is
preferential to specific spatial directions suggests structural organization of the
underlying biological tissue; in particular, in the human brain, the naturally
occuring diffusion of water in the axon portion of neurons is predominantly
anisotropic along the longitudinal direction of the elongated, fiber-like axons
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[MMM+02]. This property has made DTI an emerging source of information
about the structural integrity of axons and axonal connectivity between brain
regions, both of which are thought to be disrupted in a broad range of medi-
cal disorders including multiple sclerosis, cerebrovascular disease, and autism
[Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].

To date, the predominant visualization techniques for tensor images are
based on pre-calculation of geometric primitives that represent tensor proper-
ties. Glyph rendering, for example, converts each tensor into an iconic shape
that is elongated to match the water diffusion properties implied by the tensor
entries, whereas line rendering reduces the tensor data to a discrete set of con-
tours that trace paths along the presumed locations of axon bundles — that
is, along directions of highly anisotropic water diffusion (see Delmarcelle et
al. [DH92, BL92].) However, computation of these geometric primitives can be
computationally expensive, renderings of them can be prone to visual clutter
and they are difficult to interactively modify to accentuate varying aspects
of the data in a session-specific way to meet the goals of specific users. To
circumvent the cluttering problem, clustering of streamlines has been intro-
duced, e.g., by Enders et al. [ESM+05], but in the same year, a user study
by Moberts et al. [MVvW05] revealed that clustering neural pathways is a
highly user–dependent topic and the additional computation time cannot be
neglected. Others presented techniques to interactively select lines depending
on different features, e.g., Blaas et al. [BBVP05], who try to maintain the con-
text by using high quality shading of rendered of lines, still these techniques
used precomputed lines. Kondratieva et al. [KKW05] reduced the computation
time by integrating particle lines on the GPU where a simple Euler approach
of order one is used for particle integration. Even on current GPUs the com-
putational power is limited and therefore only a limited number of lines can
be rendered which restricts the number of features that can be visualized.

Volume rendering, in contrast, has the potential to present entire images
without reducing them to static, discrete sets of geometric primitives. Recent
volume rendering techniques utilizing commodity graphics hardware support
interactive frame rates and provide a high degree of interactive manipulation.
However, the question of how to convert a volume of tensor-valued voxels into
color and opacity maps for volume rendering is not trivial. Previously, univari-
ate or tri-variate summary measures of the anisotropy of water diffusion at
each voxel were computed based on the tensor eigenvalues; the summary mea-
sures and direction of the major eigenvector were mapped to alpha channels
and color respectively. Lit Tensors, introduced by Kindlmann [KW99], define
another approach that employs shading to emphasize anisotropy. Empirical
evidence suggests that physicians become disoriented by direction-encoding
schemes that deviate from the traditional approach of assigning red, green, and
blue to three cardinal directions (compare Pajevic et al. [PP99]). Therefore,
we focus on improving other visualization parameters while keeping this well
known color coding. This facilitates fast switching between pseudo-colored
section planes and our volume rendering approach. Previous approaches to
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volume rendering as presented by Vilanova et al. [VZKL06] focus on set-
ting transparency depending on scalar values or modifying the shading using
directional information as presented by Kindlmann et al. in [KW99]. Both
approaches fail to fade out information that is currently not important to the
user, thus, we employ directional parameters in addition to those presented
previously to modify the opacity value of the transfer function.

Other approaches to the occlusion problem in volume rendering strive to
change the location or size of features in the volume to make them visible to
the user, see Correa et al. [CSC06] and Bruckner et al. [BG06]. Whereas these
techniques are capable of effectively uncovering important aspects of the data
and provide good illustrations of the findings, they may be inappropriate in
a clinical setting because the location and size of features in brain images
often relate directly to the presence or severity of medical disorders (com-
pare Simon et al. [SDB+05]) and, therefore, should be preserved. In contrast,
our method is inspired by Importance–Driven Volume Rendering by Viola et
al. [VKG04] in that we improve visibility of important sections of the image
while fading out irrelevant parts and preserving voxel location and size. Our
approach differs, however, in that it does not require pre-segmented models
and therefore can be applied to raw DTI and structural magnetic resonance
(MR) data without requiring a pre-processing step.

Whereas previous visualization techniques for tensor data are based on ma-
nipulation of simple scalar value based alpha functions either using fractional
anisotropy (FA) as single scalar value or Westin’s barycentric spherical, pla-
nar and linear anisotropy measures as, ap, al [WPG+97], we introduce transfer
functions that depend on more information of the tensor, especially its eigen-
vector directions. While local direction information does not have medical
importance as, e.g., neural fibers are defined as integral curves in a certain
volume, in many areas of the brain, neighboring fiber bundles have different
directions but their anisotropy values only change marginally. Kindlmann et
al. [KTW06] showed that FA ceases can be found after pre-processing the
data set but these methods cannot be easily transferred to volume rendering.
Nevertheless, these areas can be found easily by looking at the local change
of direction.

2 Volume Rendering

Simple volume rendering of DTI data is based on mapping the normalized
major eigenvector (x,y,z) to a color by setting RGB = (|x|, |y|, |z|) and using
FA or the barycentric system of linear, planar and spherical anisotropy to
define 1D or 2D opacity transfer functions [EHK+06, VZKL06]. Kindlmann
described another approach for volume rendering of diffusion tensor data. He
defined transparency based on FA values and added color and shading depend-
ing on other tensor properties such as direction and shape. Being inspired by
these basic approaches, our method emphasizes the directional features of the
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data set by using the default color mapping as it is used in the simple approach
and provides additional tools for selecting important features.

The major task for our application is reducing the occlusion problem. We
do this by allowing the user to interactively manipulate the transfer function
depending on the full tensor information. Previous methods represent the
isosurfaces of anisotropy values and do not take into account that medical
doctors are mostly interested in fiber bundles. Therefore, it should be possible
to select distinct bundles and hide others that occlude important parts of
the data set. While anisotropy measures and other tensor invariants have
proven to provide a good estimate of white matter boundaries, they do not
provide information concerning fiber bundle boundaries. However, in most
cases, changes of the directional tensor information provide this information.
Therefore, we propose to make use of this directional information in direct
volume rendering.

2.1 The Occlusion Problem

Since visualization maps information into two spatial dimensions, occlusion
is one of the major problems when handling volumetric data sets. Making
surfaces more transparent is one of the basic methods, that helps provide ad-
ditional information. The selection of good occlusion coefficients is a difficult
problem and painting too many semitransparent surfaces leads to visual clut-
ter produced by both mixture of color and additional geometry. We propose
an interactive selection of regions of interest by considering local fiber direc-
tion. In addition to the transfer function, one or more direction vectors are
used to select areas of interest—or areas that should not be shown at all.

Although the color value of the RGB color mapping scheme provides di-
rectional information, the map is not invertible, i.e., even neglecting orien-
tation, directions cannot be recomputed from the color value. In addition to
that, interpolation of eigenvalues and eigenvectors directions is not the same
as interpolating tensor values and recomputing eigenvalues and eigenvectors
afterwards [ZB02, Kin04]. Therefore we compute the eigenvalues and the re-
quired major eigenvector on the GPU using the non–iterative approach by
Hasan et al. [HBPA01]. Different criteria are used to select transparency val-
ues including:

• anisotropy values such as fractional anisotropy (FA), relative anisotropy
(RA), linear, planar and spherical anisotropy [WPG+97],

• local direction of major eigenvector, and
• a magic lens 6 that modifies the local transfer function [BSP+93].

We experimented with several functions for directional filtering and deter-
mined that the type of function itself is not critical. While hard drop–offs in

6 “Magic Lens” is a trademark of Xerox Cooperation
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transparency should be avoided, it is possible to use linear step functions as
well as smooth step functions, either the one provided by GLSL defined as

f(x) =

0 when x < 0
3x2 − 2x3 when 0 ≤ x ≤ 1
1 when x > 1

(1)

or higher–order ones like

f(x)


0 when x < 0
(126 + (−420 + (540 + (−315 + 70x)

∗x) ∗ x) ∗ x) ∗ x5 when 0 ≤ x ≤ 1
1 when x > 1

(2)

Filtering out single directions breaks the typical symmetry of DTI data
sets that is provided by the standard color coding, which produces unfamil-
iar looking images and interferes with the common way of comparing both
hemispheres of the brain. To maintain the same symmetric properties, as the
color coding does, one can compare all directions that have the same color
(which are up to eight vectors in general, four because of the independence
of eigenvector orientation.) To provide more information about the local di-
rection of fibers, the comparison has to be restricted to one direction on the
hemisphere. This can be done by defining the vector in one hemisphere and
mirroring it at a plane separating both hemispheres of the brain. Having com-
puted the normalized direction vector v and the normalized eigenvector e in
the hemisphere, the alpha value is modified by

α ∝ f(‖〈e, v〉‖). (3)

2.2 Preserving Context

It turns out that removing large parts of the image completely, i.e., making it
completely transparent, may confuse the user. Therefore, our system allows
one to select an opacity for “hidden” areas making them translucent, which
preserves the context by fading out uninteresting parts of the data only a bit
while still allowing the user to see more important parts that may lie behind
the uninteresting parts.

2.3 Combined Rendering of MRI and DT-MRI Data

The previous section focused on methods used for rendering DTI data. While
many neuroscientists are primarily interested in this type of data, scalar–
valued MRI images provide a higher resolution and make it easier to navigate
in the brain. In addition, Gyral structure of brain gray matter and thin, soft
structures like blood vessels can be seen in MRI scans while they do not show
up in most DTI data sets. Therefore, a combined visualization of DTI and
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MRI data is useful, especially for surgical planning. We integrate visualization
of conventional MRI and DTI data in our volume rendering approach in two
different ways:

• We add it to a single–pass volume rendering and define more complex
transfer functions based on both, local DTI and MRI data and

• implement a two–pass volume rendering approach to enforce importance–
driven volume rendering.

As we aim to restrict the diffusion tensor color map to the RGB model and
mapping, introduction of additional colors would be misleading. Most of the
information present in MRI data can be seen in simple grayscale slices of the
brain, which is the most common way of displaying them. Therefore, we use
volume rendering of the MRI data only to highlight boundaries of objects
by using a standard 2D grayscale transfer function for MRI data. Special
material attributes and gradient–based shading as done in most volume ren-
dering applications, see Bruckner et al. [BVG05], are applied to improve the
3D perception of the surfaces.

Fig. 1. Three components of the compositing step — from right to left: importance
mask, directional–colored DTI data, final compositing with MRI data.
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Fig. 2. Another view on Fig. 1.

2.4 Implementation

Our implementation is based on a standard GPU–based raycasting volume
renderer with 2D transfer functions and the 3D texture based approach as
described, e.g., by Engel et al. [EHK+06]. Gradient computation can be done
either on the GPU or on the CPU, depending on the available graphics board
or by the choice of the user. The transfer functions have been extended to
support either 2D transfer functions based on gradient magnitude and value
or 2D functions based on two scalar values, e.g., MRI signal and FA. To filter
the data by direction, we need additional information for the graphics board.
Modern graphics cards provide several ways for sending the data. For our
approach, we use the light information present in OpenGL as it is global in-
formation for the entire data set, which can be easily manipulated between
frames. Furthermore, it provides additional parameters, like the cut–off–angle,
and exponent that can be used for parameterization of the smooth step func-
tion. In medical imaging, usually, no more than two light sources are used
(e.g., one static light and one headlight); therefore, at least five light sources
are unused that are more than enough for definition of transfer functions.
While the 2D transfer function is based on a lookup–table, we evaluate the
tensor transfer function analytically on the GPU as it is not computationally
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extensive and can be manipulated without the need to exchange textures.
The major three steps, computing the stencil, computing the tensor volume
rendering, and computing the conventional MRI overlay, are shown in Figs 1
and 2.

The magic lens selection provides an interactive way to select the weight-
ing of MRI and DTI data in the final image. All computation is done on
the GPU. We use the lens to emphasize areas of interest in the DTI image
while providing the context of the Gyri using MRI. In contrast to Wang et
al. [WZMK05], we do not apply different transfer functions to one data set
but we select different transfer functions on different modalities to build a
combined image that provides all information needed by the user while the
geometry is not distorted. Application of this is shown in Figs 7–9. By using
these simplifications, the lens and the volume rendering of both data sets can
be painted in a single rendering pass which provides interactive frame rates
on a full screen application. The speed of the algorithm is independent of the
size of the lens. Furthermore, we experienced no change in the frame rate for
different sizes of DTI and MRI data sets.

3 Application and Results

We have applied our method to multiple data sets. Our main focus was to
determine what users can learn from interactive volume rendering that cannot
be seen using pseudo–colored slices or fiber tracking algorithms.

3.1 Quality Analysis for Fiber Tracking in the Gyri

Analysis of connectivity in the human brain is one of the major fields of re-
search related to DTI where the main interest is in understanding how the
brain works by analyzing the connectivity of different areas in the brain.
This abstract type of research finds its application in neuro–surgery. In tu-
mor surgery, the basic understanding of where neural fibers are situated and
which of them are more important than others is one of the most important
fields of research having major impact on quality and safety of brain surgeries.
Most of the time, neural fibers are visualized by displaying pre-computed line
structures that imply single lines with defined start and end points, which is
misleading since lines are often started and stopped based on other parame-
ters, for example, by FA. By using volume rendering for DTI data combined
with displaying the cortex extracted from MRI data, we can show how far a
reasonable tensor line tracking algorithm can proceed into the outer gyri.

An example on this strategy can be seen in Figs 3 and 4. It can be seen in
the transparent area between the outer shell and the visualized DTI data that
there is an area of about two to three millimeters in size where no tracking
can be performed by streamline algorithms due to ambiguity of the tensor
information at the interface between gray and white matter. Different transfer
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Fig. 3. Overview of gyri clipped by an almost axial clipping plane. (RGB color
coding of DTI and clipping of DTI data based on FA value of 0.3 as used in many
fiber–tracking algorithms.) A semi–transparent surface was extracted from the orig-
inal MRI data set visualizing the boundary of the brain.

functions can be applied to determine which values of FA, apparent diffusion
coefficient (ADC) and other tensor parameters can be used as threshold for
tractography. Even though there is ambiguity of orientation, the color provides
a hint of the behavior of fibers in the gyri. In this case, most fibers would be
oriented outwards. The small fibers connecting to the side walls of the gyri
cannot be found in the data set using reasonable thresholds. We believe that it
is important to transport that information showing the limits of tractography
algorithms to the user, to make him understand the images better. Displaying
the limits of algorithms leads to increased understanding and, therefore, better
confidence in the information that is actually shown.

3.2 Quality Analysis in the Inner Brain

While simple volume rendering provides good hints on how far fiber tracking
can advance into the gyri, we can use our algorithm to filter out parts of the
data to see what phenomena are occuring inside the brain. It can be seen in
the images shown in Fig. 6 that the pyramidal tract is “broken”. This is due
to a resolution problem leading to a strong influence of the corpus callosum
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Fig. 4. Close–up view of Fig. 3. The white matter in the gyri can be clearly seen.
Fiber tracking without additional information stops at the colored surface. The
surface color encodes the direction of fibers directly below the surface.

and the superior longitudinal fasciculus connecting the frontal and occipito–
temporal part of the brain in these voxels. Tracking fiber bundles in those
areas of the data set leads to false results, e.g., they follow the wrong bundles
in areas where too many fibers pass closely to each other.

It is an open problem whether there is a way to apply volume rendering to
higher–order tensor approaches that are usually used to avoid some of these
problems. Additional information of the tensor can be used to produce a better
angular structure of the tensors that makes it possible to follow different fiber
tracts in these regions [TRWW03, ?].

3.3 Detection and Analysis of Diseases

Many diseases of the human brain, among them Alzheimer’s disease and mul-
tiple sclerosis, are related to a change of connectivity in the brain. One special
disease is the Deletion 22q Syndrome, which is characterized by increased FA
and ADC in certain areas of the brain (cf. Simon et al. [SDB+05] and Chapter
5 by Cook et al.). These parameters can be easily displayed with our volume
rendering approach, providing a context–preserving visualization that helps
to easily locate the areas of change in the brain. Despite the fact that one can
obtain a good overview of this kind of data sets, 2D transfer functions that
base on ADC and FA and statistical values obtained from a larger pool of
subjects have to be implemented and will be subject to future research.
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4 Conclusions and Future Work

We have described a novel method that allows us to interactively explore
complex volumetric DTI data sets. The method has been applied to different
data sets, and two major applications have been highlighted where patterns
could be identified in less time than using conventional methods. We have
demonstrated that all proposed methods can be easily implemented in existing
medical visualization systems.
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Fig. 5. Original image and x–direction (left–right) removed from DTI data to allow
to produce a cleaner view of the singuli and the pyramidal tract. The lasting red
component is the corpus callosum as seen in the MRI data and is shown here to
provide context.
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Fig. 6. Pyramidal tract (blue) highlighted — other directions are faded out. The
pyramidal tract is broken in this data set by the influence of the corpus callosum
(red) and the green bundle passing by.

Fig. 7. Left: Top/frontal view on the prefrontal lobe of a healty subject. The cin-
gulum (green) and and the corpus callosum (red) are clearly visible. Right: Top left
view highligting the pre- and postcentral sulcus. The underlaying superior longitu-
dinal fasciculus (green) is also visible.
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Fig. 8. Left: Side view on the parietal and superior temporal lobe showing the
superior longitudinal fasciculus (green, middle of the loop) and the inferior fronto-
occipital fasciculus ( green, lower left of the lens ). Right: Dorsal view on medial
brain regions showing also the cingulum (green) and the corpus calossum with two
different shadings of the magic lens. Two different shading models of the lens are
shown.


