
Interactive, Internet Delivery of Scientific Visualization via
Structured, Prerendered Imagery

Jerry Chen1, E. Wes Bethel2, Ilmi Yoon1

1San Francisco State University

2Lawrence Berkeley National Laboratory

ABSTRACT

In this paper, we explore leveraging industry-standard media formats to effectively deliver interactive, 3D scientific
visualization to a remote viewer. Our work is motivated by the need for remote visualization of time-varying, 3D data
produced by scientific simulations or experiments while taking several practical factors into account, including:
maximizing ease of use from the user's perspective, maximizing reuse of image frames, and taking advantage of
existing software infrastructure wherever possible. Visualization or graphics applications first generate images at some
number of view orientations for 3D scenes and temporal locations for time-varying scenes. We then encode the
resulting imagery into one of two industry-standard formats: QuickTime VR Object Movies or a combination of HTML
and JavaScript code implementing the client-side navigator. Using an industry-standard QuickTime player or web
browser, remote users may freely navigate through the pre-rendered images of time-varying, 3D visualization output.
Since the only inputs consist of image data, a viewpoint and time stamps, our approach is generally applicable to all
visualization and graphics rendering applications capable of generating image files in an ordered fashion. Our design is
a form of latency-tolerant remote visualization infrastructure where processing time for visualization, rendering and
content delivery is effectively decoupled from interactive exploration. Our approach trades off increased interactivity,
reduced load and effective reuse of coherent frames between multiple users (from the server's perspective) at the
expense of unconstrained exploration. This paper presents the system architecture along with an analysis and discussion
of its strengths and limitations.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems, Remote systems, Distributed/network
graphics.
Keywords: remote and distributed visualization, latency tolerant visualization, streaming media, interactive
techniques.

1. INTRODUCTION

The scientific community faces a well-recognized challenge - the need to perform data analysis and visualization on
data that is located "somewhere else." This situation occurs when large simulation results are placed on large storage
caches at computing centers, yet the scientist or analyst is located elsewhere [1,2]. In the general subject area of remote
and distributed visualization, there are several different approaches aimed at solving the fundamental problem of
facilitating interactive exploration of large, complex, multidimensional datasets from a remote location.

Figure 1 shows three possible ways to partition the visualization pipeline. The portions of each pipeline configuration in
blue are local to the user, while those in red are the remote from the user. In the top row, all of the simulation or
experiment data are sent to the remote client for analysis, visualization and rendering. In this configuration, pipeline
performance will be dominated by the cost of sending data across the network link. While this approach provides the
best performance in terms of local desktop interactivity, it presumes (1) that the data will fit on the local workstation,
and (2) the wait time for data to be moved to the workstation is not excessive. A fact of life we face is that scientific
simulations and experiments routinely generate multi-terabyte datasets, and neither of these presumptions applies.

Another pipeline partitioning is shown in the middle row in which data is stored at, read from and visualized on the
remote resource, and visualization results (predominantly geometry) are sent to the local client where they are rendered
and displayed. This approach has the advantage of providing excellent desktop interactivity once the visualization
results have moved across the network link. Additionally, this approach permits use of scalable visualization resources

on the remote site to accelerate processing, to
amortize the cost of I/O across many processors,
and so forth. It also presumes (1) that all the
visualization results will fit onto the desktop and (2)
visualization results are mostly geometry/surfaces
because non-geometry data (e.g., volumes of data)
requires network bandwidth proportional to the
original data size along with intensive computation
for rendering. In many instances, these assumptions
are not true.

In the pipeline configuration shown in the bottom
row, data is stored at, read from, visualized and
rendered on the remote resource. The resulting
images are sent to the viewer. Transmission of
rendered images can become a desirable approach if
the delivery of rendered images can support what
appears to be n-dimensional navigation, where the n
dimensions include time, space or any other
parameter that controls either the content or
presentation of the visualization.

The trend in the sciences is that data sizes grow at a
capacity. This trend is expected to continue for the f
projected ability to move “all the data” from the centr
We look to the third pipeline configuration – send ima
remote visualization from the increasing size of dat
leverage parallel computing, visualization an I/O inf
images as the fundamental exchange medium in rem
other pipeline configurations: (1) network bandwid
compression ratios for the images will be a function
client-side platforms, ranging from a high performance
is maximized, which reduces computational load
compatibility with visualization applications, since nea

An image-only remote visualization architecture presu
that gives the illusion of 3D/4D navigation, and (2
constrained navigation that will result by sampling a
paper techniques for implementing a two approaches
media formats that achieve the objective of 3D/4D n
human cognitive abilities: we observe that in man
visualization functionality to understand 3D shape a
visualization attributes.

In Section Two, we review related work in remote v
approach, which includes an overall system arc
access/delivery mechanism. In Section Four, we presen
discussion about our approach, including limitations, a

2. RE

In the “move data to the user” pipeline configuration
networking to efficiently move bulk data from one lo
there is a downside to this approach: multiple copies o
Figure 1. Three possible partitionings of the
visualization pipeline. The portions of the figure in blue are
local to the user, while those in red are remote from the user.
 rate proportional to increases in processing power and storage
oreseeable future. The anticipated data growth rate exceeds the
al computing center to a remote location for interactive analysis.
ges – as a way to decouple network bandwidth requirements for

a to be visualized. In addition, such an approach allows us to
rastructure often present at central computing facilities. Using
ote visualization settings offers several distinct advantages over
th requirements are independent of data size, but realizable
 of image size and content; (2) support for a broad range of
 desktop to a PDA for field scientists; (3) reuse of image frames
on the back-end visualization infrastructure; (4) maximum

rly all produce images as output.

mes (1) it is feasible to deliver precomputed images in a fashion
) that adequate scientific insight may be obtained through the
 finite number of viewpoints. To answer (1), we present in this
 to assembling structured images using industry-standard digital
avigation over the Internet. The question raised in (2) is one of
y instances, users typically use only a subset of all possible
nd depth relationships or to browse time-varying data or other

isualization implementations. In Section Three, we describe our
hitecture, image preprocessing, media encoding and image
t the results of a performance analysis. Finally, we conclude with

long with suggestions for future work

LATED WORK

, Beck et al. have focused on data staging and efficient use of
cation to another [3]. In the present day of growing data sizes,
f an already large dataset are being made at intermediate staging

and remote caching depots. This approach is not tractable as datasets begin to range into the 100s of TB. The problem
gets amplified as more and more users on collaborative teams try to make additional copies of large datasets – there will
be additional and arguably unnecessary load placed onto storage and network systems.

Over the years, several different approaches have been used in the second pipeline configuration, where visualization
results – rather than bulk data or final images – are sent between the remote back-end server and the client. CEI’s
Ensight Gold, when run in “Server of Servers” mode, uses a similar parallel and pipelined decomposition to perform
visualization on a parallel machine, then sends results (geometry) to a remotely located client [4]. Web-based remote
visualization often generates VRML that is then sent to remote clients [5]. Visapult [6] uses a hybrid approach using
parallel-pipelined architecture to implement scalable, remote and distributed volume rendering. The Visapult approach
is “hybrid” because a combination of pre-rendered images and a “geometry lattice” are transmitted between the back-
end and client. The pre-rendered images are direct volume rendering for data subsets; they are not “final images.” These
images are used as textures that the client viewer then texture-maps onto the geometry lattice. Generally speaking, the
amount of data moved between the Visapult back-end and the client viewer is logarithmic with respect to size of the
source data. All these examples aim to maximize client-side rendering interactivity by sending visualization results for
retained-mode rendering. Once the initial data transfer occurs, desktop interactivity is completely divorced from
network performance characteristics. However, all these approaches will impose substantial demands on client-side
resources, including use of GPUs to accelerate rendering along with system memory to hold the geometry data
produced by visualization results. In many instances, the size of visualization output can be proportional to or larger
than the source data, such as when generating an isosurface of noisy data. Depending upon the specific client and the
specific network, such an approach may simply not be feasible due to the sheer amount of data produced by the
visualization algorithm.

Using images as the remote delivery medium has also been well explored in a number of different ways over the years.
An early effort here relied on remote Xlib capabilities, where a client application was run at the central facility but then
sent commands to the user’s local X Server. More recent work has focused on overcoming the limitations of remote
Xlib by providing access to remote desktops. VNC [7] uses a custom client viewer to intercept events on a client
workstation and send them to a VNC server, which is sometimes implemented as an X extension. VNC overcomes most
problems of remote Xlib, but does not support delivery of hardware-accelerated rendering: in direct rendering
configurations, OpenGL commands bypass the X server (and consequently VNC). SGI’s OpenGL Vizserver [8]
provides the ability for pixels produced by an Xlib or OpenGL application run on a server to be sent to a custom client
viewer. Both the VNC and Vizserver approaches intercept local input events on the client and send them to the remotely
running application. Both use image compression algorithms to accelerate delivery of results. To further enhance the
effect of image compression, other approaches utilize simple geometry created on the server side, transmitted and
rendered on the client side while the full data set and simple geometry both rendered on the server side and only the
image difference (usually high frequency portion) is transmitted to enhance the delivery of rendered images [9,10].
These approaches aim to reduce the bandwidth by utilizing desktop’s computing power. These approaches, however,
increase overhead at server side to compute both the high quality and low quality image and their differences.

An alternative approach not depicted in Figure 1 is one where image contents are reused; none of the above approaches
reuse images – each will regenerate a completely new image when needed. Image based rendering (IBR) refers to a set
of technologies that render a new frame from existing frames rather than from source data (geometry). Because the
input is an image or set of images, IBR’s computational complexity for incremental frames is independent from the
complexity or size of data sets and the quality of rendered images. IBR approaches are useful for the remote scientific
visualization because the total size of images that are required for rendering is much smaller than the size of the
scientific data. The notion of accelerating remote visualization via IBR techniques is not new. Image-based rendering
acceleration and compression (IBRAC) extracts temporal coherence between frames and server sends only the
difference between the frames. The approach maintains high image quality and achieves high compression ratio, but
server needs to be synchronized with client all the time and algorithm works only with iso-surface rendering [11].

Apple’s QuickTime VR [12] provides navigation or data exploration using pre-rendered images or photos. There are
two main kinds of QTVR: panorama and object movies. QTVR panorama movies permit a user to “pan the viewpoint”
through 360 degrees of rotation to look at the environment from a fixed point, and support a zoom-in and zoom-out
capability. A QTVR panorama movie consists of a single panoramic image, or image sequence in the case of time-

varying movies. They may also contain hyperlinks to other QTVR movies. QTVR object movies provide the ability to
look at an object from different angles, along with the ability to zoom-in and zoom-out. Unlike the panorama movie, a
single time step of a QTVR object movie consists of many images that represent the view of the scene from different
viewpoints. Time varying QTVR object movies contain a time sequence corresponding to each view. When a user
changes their viewpoint or plays the animation, the QuickTime player will find the image corresponding to the current
view and display it.

The work we present here leverages the QTVR Object Movie concept to implement “simulated” 3D, time varying
navigation of scientific visualization results. Images are first generated by a visualization application from a number of
prescribed viewpoints. These images are then encoded into QTVR Object Movie format, or into a structured image
collection contained by reference in a web page. In the case of the QTVR encoding, a standard QuickTime viewer
serves as the viewer on the client side. In the case of the structured image collection, the web browser downloads the
web page containing URLs to the structured image collection along with a small amount of JavaScript code that serves
to implement the interactive image navigation capability. This approach effectively decouples the cost of scientific
visualization rendering from the act of interactive exploration, but at the expense of unconstrained interaction. It
provides maximum reusability of frames as one single set of images – the QTVR object movie or the structured image
collection – is sent to all clients who request it. Likewise, due to image data being the source, the approach is widely
applicable to any visualization or rendering application that can generate image files in a prescribed manner.

3. IMPLEMENTATION

In the work we present here, we’re interested in alternatives to the traditional pipeline decompositions to better support
interactive, remote, 3D visualization. Specifically, we want to be able to support fully interactive, 3D visualization of
temporally varying data or visualization attributes using industry standard client-side viewers that are readily available
to anyone. We observe that in many instances, users require only a subset of all possible visualization functionality: to
understand 3D shape and depth relationships or to effectively browse temporally varying attributes. The approach we
take is to explore ways to deliver visualization and rendering results, i.e., images, in a way that provides the experience
of 3D, interactive exploration. We desire a delivery mechanism that strikes a balance between cost and functionality.
Sending images rather than data is a better approach in terms of easy usability (little or no client-side installation or
configuration is required) and scalability in terms of accommodating visualization results from ever-large data sources.
The experience of 3D interaction with a dynamic scene is achieved by displaying precomputed images from different

Data

Any
Visualization

System

Render

Set of rendered
images

Encoder

Set of encoded
Images

QTVR / JavaScript

HTTP
Web

Server

Clients
on the
WWW

With JS
or

QTVR player

INTERNET

server client

HTML with
JavaScript

QTVRQTVR

 Figure 2. MBender Architecture: Data flow and system components.

viewpoints and over time. These images may be generated by any visualization or rendering system, thus this approach
is widely applicable to a large number of potential uses. During interaction on the client side, the client viewer
application, whether it is a QTVR player or our custom JavaScript code, allows the user to navigate through space or
time represented by the structured image collection.

As shown in Figure Two, any visualization system can be used to generate the image sets that are then used as input to
an encoder step. The encoder produces either a QTVR Object Movie or a web page containing URLs to images on the
web server along with a small amount of JavaScript code that implements the client-side navigation capability. These
QTVR movies and JS media are requested by the client then delivered by a web server; no special server-side
configuration is required.

The QTVR Object Movie format is essentially a “solid file format:” it is a block of data that contains all the images that
comprise the entire movie. It can be thought of as a three-dimensional array of images, where rows correspond to views
from a different angles of azimuth, columns correspond to views from a different elevations, and the depth dimension
contains time varying images from a azimuth, elevation pair. Whereas QTVR panorama movies correspond to many
views from a given viewpoint, the QTVR Object Movie uses a reverse viewing concept. It contains multiple views of an
object fixed in space such that the multiple views correspond roughly to “orbiting about the object.” Both the QTVR
Object Movie and Panorama Movie player support a zoom-in/zoom-out capability on the client side. To create the
QTVR digital media, our encoder application will encode images into QTVR media format with proper headers and
metadata. Currently, QTVR does not leverage the “on-demand data transmission” feature – data is transmitted only
when demanded. As consequence, users must download the entire QTVR Object Movie before starting to navigate
through the scene. We found the QTVR Object Movie player presents a usable interface for navigation through 3D,
time varying scenes. There are some limitations with this approach, however. First, the entire QTVR Object Movie will
be loaded into memory. This approach is fine for small movies, but is intractable for large ones. Second, the QTVR
player doesn’t offer client-configurable controls to optimize use of resources like memory.

In contrast to the QTVR Object Movie approach, we implemented an alternative navigation and image cataloguing and
delivery mechanism. The “encoding” step here is to create an HTML page containing some metadata and JavaScript
code – a very compact representation since images are not downloaded until needed. During navigation, URLs for
images are dynamically constructed by the JavaScript code depending upon virtual viewpoint, temporal location and so
forth. Note that the client’s web browser – the execution environment for the JavaScript navigation code – will request
images when needed. Since the image URL is constructed programmatically, the HTML “media” our encoder produces
is quite compact. As viewpoints are updated with mouse movement, the JavaScript interface “feels like” (behaves like)
a virtual trackball. The JavaScript code transforms from mouse movement to select an image from a structured image
collection that corresponds to a particular viewpoint.

Since JavaScript offers a programmable environment for interacting with the browser, we use it to our advantage to
implement an image cache to limit relative resource consumption for a given session. Our implementation contains an
internal, tunable image cache containing JavaScript image objects. Since JavaScript is not able to directly measure
memory consumption, our tunable image cache limits the number of images that may be resident in JavaScript memory
at once. When images are small, the cache has a small memory footprint; when the images are large, the memory
footprint for the same number of images may become quite large. The JavaScript cache management code tracks
whether or not an image is in memory. If the needed image is not in cache memory, the JavaScript cache manager will
request it from the remote web server via the web browser. This approach has the added benefit of being able to take
advantage of the web browser’s own cache management infrastructure: before making a new HTTP request for an
image, the browser will first check its local disk cache to determine if the image needs to be requested from the remote
web server. Overall performance of the JavaScript approach is highly dependent upon web browser, which controls
memory management and the size of the available memory.

4. EVALUATION

To evaluate the performance of our approach, we conducted a number of different experiments that measure various
aspects of runtime performance. Overall performance is a function of many different factors, including: network
bandwidth and latency, degree of image compression (that is in turn dependent upon image content), the size of the

tunable JavaScript image cache, the pixel dimensions of the images being transferred, user interaction behavior, ambient
system load, and so forth. We limit our scope of study to focus on memory utilization and image download time to test
the premise that the tunable JavaScript image cache achieves good balance between interactive image display
performance while maintaining a modest memory footprint. We compare the memory footprint of the JavaScript
approach with that required by a QTVR Object Movie player when presented with identical image sequences. Our
testing environment is a Pentium 4, 2.4G Hz with 1.5 GB DDR memory. The wide-area network connection in our
experiment is residential broadband connection with 451KB/s of throughput and 15.5 milliseconds latency between the
client system and remote web server. To measure the memory consumption of QTVR Object Movie player, we generate
several movie files with diverse sizes and then monitor the memory consumed by the player when displaying each
movie.

 QuickTime
Player only stime.mov vrtime.mov isotime.mov

Digital Media Size 0 4151 49540 92820

Number of Frames 37x11 = 407 10x20x11 = 2200 20x37x11=8140

Initial Loading Time 1~2 sec 10.470 sec 122.187 sec 222.503 sec

FPS after all images are
loaded (400x300) About* 20 fps About* 20 fps About* 20 fps

FPS after all images are
loaded (1600x1200) About* 4~5 fps About* 4~5 fps About* 4~5 fps

Memory Consumption 19964 24792 69248 111488

Table 1. QTVR Object Movie player (Apple’s QuickTime Player 6.5.2) performance in terms of media download
rate, memory footprint (in KB) and frames-per-second (fps). (Note- About* indicates the fps is measured by the
number of frames divided by navigation time observed by user after the media is loaded into memory by the player.)

Table 1 shows the result of our experiment. We see that the QTVR player itself consumes about 19,964KB of memory.
After loading QTVR Object Movies of sizes 4,151KB, 49,540KB and 92,820KB, the QTVR player’s memory footprint
is approximately 24,792KB, 69,248KB and 111488KB respectively. On the client, the memory footprint size required
by the QTVR player when displaying the object movie is approximately equal to the size of the object movie. When we
are interacting with the QTVR player to navigate through the Object Movie, memory consumption remains about the
same as when not navigating. This result implies that the QTVR player stores all images comprising the QTVR Object
Movie in memory in their original compressed format. During playback, the QTVR player decompresses images on the
fly for every single view and time step during navigation. With current processor speeds, on-the-fly decompression is
performed at a rate suitable for interactive navigation. Figure 3a and 3b shows the memory consumption pattern of
QTVR in comparison of JavaScript media along with effective frame rate.

In terms of usability and navigability, the QTVR player offers the ability to zoom in or out of a particular view. This
type of interaction allows a user to examine a small region of the image at higher resolution for closer inspection of
detail. One drawback with the QTVR media encoding approach is that the zooming operation uses a fixed image
resolution. The result is that zoomed-in views are achieved by scaling an image. If the original image size is relatively
small, the zoomed-in views offer no greater detail than the original and visual quality drops. Figures 4a and 4b illustrate
the difference between zooming in on a low-resolution image and a high-resolution image. Using very high resolution
images help alleviate the visual fidelity problem during zoom-in operations, but doing so requires more time for
downloads as well as a substantially greater memory footprint at runtime. This behavior limits the capability for QTVR
Object Movies to deliver high resolution and high quantity images set.

Early in our development of the JavaScript implementation, we followed the same overall resource use pattern as
QTVR Object Movies. We preloaded all the images into browser’s memory when loading the page. The result was not

#of cached image 1 64 128 256 512 1024 2048
IE 400x300 22192 64592 87360 132448 222142 405476 769984
IE 1600x1200 34028 394792 755916 1465312 n/a n/a n/a
Mozilla 400x300 23544 43808 69460 114612 207116 389308 753084
Mozilla
1600x1200

23772 379064 740380 1446740 n/a n/a n/a

FireFox 400x300 23776 46548 68668 114748 206064 388644 752240
FireFox
1600x1200

23852 379196 740452 1452728 n/a n/a n/a

Initial Loading
Time

 <1~2 sec <1~2 sec <1~2 sec <1~2 sec <1~2 sec <1~2 sec <1~2 sec

First pass fps
(400x300)

About*
5~10 fps

About*
5~10 fps

About*
5~10 fps

About*
5~10 fps

About*
5~10 fps

About*
5~10 fps

About*
5~10 fps

First pass fps
(1600x1200)

About*2~4
fps

About*2~4
fps

About*2~4
fps

About*2~4
fps

About*2~4
fps

About*2~4
fps

About*2~4
fps

After first pass
fps

About*
>20 fps

About*
>20 fps

About*
>20 fps

About*
>20 fps

About*
>20 fps

About*
>20 fps

About*
>20 fps

Table 2. Performance of our JavaScript player – this table shows the memory consumption that results when caching
different numbers of images versus different browsers with different image resolutions. The versions of the browsers
are IE 6.0.2900, Mozilla 1.7.6, FireFox 1.0.6. Note that the memory footprint for high-resolution images and large
image cache sizes is quite large. All three browsers behave similarly in terms of the ratio of cached image to memory
consumption. During the first pass, JS downloads images and then loads images into memory, so its initial fps rate is
lower. During the second pass, JS uses decompressed frames directly from memory, so fps is as high as QTVR or
higher (due to decompressed format while QTVR uses compressed format in memory). (note- About* indicates the fps
is measured by the number of frames divided by navigation time observed by user after loading is done, and “<” or “>”
are used to abbreviate “less than” and “more than” respectively.)
optimal since memory consumption would grow unbounded. When physical memory was exhausted and the system
began to use virtual memory, system performance was seriously degraded due to memory paging. We found that for a
given number of images, the QTVR player has a smaller memory footprint than a web browser. The reason is that web
browsers maintain images in memory in an uncompressed format (Figure 3a). Table 2 shows the relationship between
number of images and memory consumption when using IE 6.0.2900, Mozilla 1.7.6, and FireFox 1.0.6. We observe that
these web browsers consume a substantial amount of memory, especially when caching higher resolution images. These
memory use patterns motivated us to implement a mechanism to limit a browser’s memory requirement when
navigating through high resolution, time varying 3D visualization results. Our solution is a finite- and tunable-sized
image cache implemented in JavaScript. It limits the number of images in memory, and avoids the memory
oversubscription problem by downloading images only when needed for interactive navigation. We implement our
JavaScript image cache as an image queue, and cache all the incoming image data into the array until it is full. When
new images are downloaded, they replace the last recently cached image. Figure 3a shows a case where the image cache
is set to 2048 images. Our Table 2 shows the amount of cached images versus required memory for certain resolution of
images. Each cell in the table indicates memory consumption for each of the different browsers we tested. Each cell in
the table reports browser memory use when the cache is full. When our JavaScript image cache is set to limit the
number of images in memory, we limit the amount of memory the browser consumes and thus avoid the poor
performance that results from memory paging. Note that our JavaScript image cache limits the number of images in
memory, but not their absolute size in bytes: JavaScript has no mechanism to measure and report an object’s memory
size. Using profiling tools external to the browser to observe memory consumption, we note that an image object of
resolution 400x300 image occupies about 355KB memory, and an image resolution of 1600x1200 occupies about
5642KB of memory. The ratio between number of pixels per image and between memory consumptions are almost the
same, (400x300)/(1600x1200)=0.0625 which is similar to 355/5642=0.0629. Therefore we can use this observation to
estimate the actual cache size in bytes, and still be able to control the actual cache size in some degree.

One potential impact of using an image cache of finite size to limit client-side resource consumption is a potential
adverse impact on interactivity. Such an impact may occur when an image frame needs to be transmitted from the web
server to the client application. The QTVR approach does not suffer from this particular problem since all images for
the Object Movie are stored in memory in compressed format. However, the entire QTVR Object Movie must be first

1000

101000

201000

301000

401000

501000

601000

701000

801000

901000

0 1000 2000 3000 4000

Number of frames

m
em

or
y

us
ag

e
(B

yt
e)

IE 400x300

IE 1600x1200

Mozilla 400x300

Mozilla 1600x1200

FireFox 400x300

FireFox 1600x1200

Poly. (QTVR 400x300)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

Time (sec)

Nu
m

be
r o

f F
ra

m
es

 D
is

pl
ay

ed
 o

ve
r T

im
e

QTVR stime.mov
JS version of stime movie
QTVR vrtime.mov
JS version of vrtime movie
QTVR isotime.mov
JS version of isotime movie

Figure 3a. Comparison of QTVR and JS memory Figure 3b. Comparison of accumulated number of frames
downloaded in its entirety before the first frame is displayed. In contrast, the JavaScript version shows the first frame of
the sequence much more quickly, but its long-term frames-per-second rate is lower as images not in the cache are
requested and downloaded from the web server. Generally speaking, our results show that the uncompressed images in
the JavaScript version display more quickly than those in the QTVR player, where they must be first decompressed then
displayed. These characteristics are visible in Figure 3b. The performance of both approaches is sensitive to the
performance of the underlying network connection. We measure the download time for the two image resolutions in our
test image set. For the 400x300 JPEG images, it takes about 0.103 second (5 ~ 10 fps is possible) and for 1600x1200
JPEG image, it takes about 0.25 second (2 ~ 4 fps is possible) on our residential broadband connection. Both download
rates are suitable for interactive exploration. We note that an 1600x1200 image takes much longer to be decompressed
and the overall interaction rate is not as smooth as with the smaller resolution images. Thus, using higher resolution
source imagery may improve the visual quality but also decreases the interaction rate in the present implementation.
Combined with the observation discussed in the previous paragraph, using higher resolution images with both
approaches has an adverse impact in terms of increasing the download time, increasing the amount of memory required
and potentially having an adverse impact on the interactivity of display updates.

consumption. JavaScript uses decompressed images
while QTVR uses compressed images; the result is a
different memory use profile. In this example, the
maximum of the JS image cache is set as 2048, which
can be set lower to reduce memory consumption in the
expense of fps. JS shows higher fps as it does not
require an image decompression step during image
display.

displayed over time for three different sets of interactive
movie. QTVR starts with long downloading time (especially
for bigger ones) and fps is also slightly lower. In the case of
the JavaScript media, the first pass is slower due to image
downloading and decompression into memory. In the second
pass, the fps goes higher than QTVR as no image
decompression is required. This graph was constructed
using the data from the Table 1 and 2.

5. CONCLUSION AND FUTURE WORK

Delivering interactive 3D, time-varying visualization by using structured images decouples the cost of scientific
visualization rendering from the act of interactive exploration. This approach offers a number of distinct advantages
when compared to other decompositions of the visualization pipeline. The data transfer cost is bounded by number of
views and resolution of rendered images that comprise the interactive movie. This characteristic is increasingly
important in light of growing data size and complexity. In the case of our JavaScript implementation, the combination
of internal memory and web browser cache offers opportunity for images to be reused on the client. The approach we
describe offers the ability to perform 4D interaction/exploration (three spatial dimensions for the viewpoint, and an

additional temporal dimension for time varying data or other visualization parameters) using “standard desktop
software,” like a standard Web browser, or the QuickTime player plug-in from Apple Computer. The approach is

g
s
I
t
p

H
M
i
s
d
t
A
i
w
c
u
I
i

F
a
r
a
p

Figure 4a. Visual artifacts result when using a fixed Figure 4b. A zoomed-in view of a high resolution image
enerally applicable in that images may be produced by any visualization or rendering application. No special server-
ide setup or configuration is required – all our experiments were conducted using an unmodified Apache web server.
mages, which may be expensive to compute, may be reused across multiple visualization sessions. A central premise is
hat a user may successfully obtain an understanding of 3D structure and depth relationships from a finite number of
recomputed views.

image resolution for zoom-in operations. is free of artifacts, but consumes substantially more
resources for a given QTVR Object Movie.

owever, there are some noteworthy limitations of the approach we present in this paper. For QTVR, the entire Object
ovie file must be completely downloaded onto the local system before users may begin full navigation. Another issue

s memory consumption: in QTVR, all images must be loaded into memory before users may navigate through the
cene. A QTVR Object Movie containing scientific visualization may become quite large and may not be playable
epending upon the amount of available system memory. Third, when zooming in for close-up views, the resolution of
he displayed image will remain the constant. The resulting pixel zoom during display results in degraded visual quality.
lthough our JavaScript implementation provides on-demand data downloading and has more flexibility in terms of its

mage caching strategy, it also suffers from the same fixed-resolution image display artifacts as QTVR. In addition, the
eb browser controls overall memory performance, and different browsers have different memory management

haracteristics. Unlike QTVR, the JavaScript image object model ends up storing image data in memory in an
ncompressed format. Another limitation is that our approach does not offer the possibility of unconstrained navigation.
f views are generated on 10-degree intervals of azimuth, users do not have the possibility for a view at a 5-degree
nterval.

uture work should focus on techniques to overcome the limitations we have identified in this paper. A multiresolution
pproach for image delivery and display would be useful to overcome the visual artifacts associated with fixed-
esolution image zooming. More intelligent prefetching would make more effective use of network bandwidth as well
s available system memory. A more thorough study of the impact of varying multiresolution parameters and
refetching strategies would with understanding their relationship upon system performance in common use scenarios.

ACKNOWLEDGEMENTS

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research,
Mathematical, Information and Computational Sciences Division of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231

REFERENCES

[1] K. Brodlie, J. Brooke, M Chen, D. Chisnall, A. Fewings, C. Hughes, N. W. John, M. W. Jones, M Riding, and N

Roard, “Visual Supercomputing – Technologies, Applications and Challenges,” Eurographics State of The Art
Reports 2, Grenoble, France August 30-Sept 3, 2004.

[2] R. Mount, “Office of Science Data-Management Workshops,” Report from the DOE Office of Science Data-
Management Workshops, Stanford, May, 2004. Available at http://www-user.slac.stanford.edu/rmount/dm-
workshop-04/Final-report.pdf

[3] Beck, M., T. Moore, and J.S. Plank. An End-to-end Approach to Globally Scalable Network Storage. in ACM
Sigcomm 2002. Pittsburgh, PA: Association of Computing Machinery.

[4] Ensight Gold, CEI International. http://www.ceintl.com/products/ensightgold.html
[5] Trapp, J.C., and Pagendarm, H.G., “A prototype for a WWW-based Visualization Service”, Eurographics

Workshop, Visualization in Scientific Computing ’97, pp 21 – 30. (1997)
[6] Bethel, W., et al., Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed

Visualization (LBNL-45365). in Proceedings of SC2000. 2000: Dallas, TX.
[7] VNC Documentation. AT&T Laboratories, Cambridge.

http://www.uk.research.att.com/archive/vnc/howitworks.html
[8] OpenGL Vizserver, Silicon Graphics, Inc. http://www.sgi.com/products/software/vizserver/.
[9] Marc Levoy, “Polygon-Assisted JPEG and MPEG Compression of Synthetic Images,” SIGGRAPH '95,

http://graphics.stanford.edu/papers/poly/.
[10] D. Cohen-Or and E. Zadicario, “Visibility Streaming for Network-based Walkthroughs” Graphics Interface'98, 1--7,

June 1998.
[11] Ilmi Yoon and Ulrich Neumann, “Web-based Remote Rendering with IBRAC (Image-based rendering acceleration

and compression)”, Eurographics 2000, Vol 19(3), pp. C321 ~ 330.
[12] QuickTime VR, Apple Computer, Inc. http://www.apple.com/quicktime/qtvr/T.

http://www-user.slac.stanford.edu/rmount/dm-workshop-04/Final-report.pdf
http://www-user.slac.stanford.edu/rmount/dm-workshop-04/Final-report.pdf
http://www.uk.research.att.com/archive/vnc/howitworks.html
http://www.apple.com/quicktime/qtvr/

