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ABSTRACT

In the context of vector field data visualization, it is often desirable to construct a hierarchical data representation.
One possibility to construct a hierarchy is based on clustering vectors using certain similarity criteria. We
combine two fundamental approaches to cluster vectors and construct hierarchical vector field representations.
For clustering, a locally constructed linear least-squares approximation is incorporated into a similarity measure
that considers both Euclidean distance between point pairs (for which dependent vector data are given) and
difference in vector values. A modified normalized cut (NC) method is used to obtain a near-optimal clustering
of a given discrete vector field data set. To obtain a hierarchical representation, the NC method is applied
recursively after the construction of coarse-level clusters. We have applied our NC-based segmentation method
to simple, analytically defined vector fields as well as discrete vector field data generated by turbulent flow
simulation. Our test results indicate that our proposed adaptation of the original NC method is a promising
method as it leads to segmentation results that capture the qualitative and topological nature of vector field
data.

Keywords: Normalized Cut, Vector Field, Segmentation, Clustering, Least Squares, Visualization, Approxima-
tion

1. INTRODUCTION

Visualizing vector field data is challenging due to the size and the complexity of the data sets produced by
today’s complex numerical simulations. Many hierarchy construction techniques have been proposed to make
it possible to deal with the complexity and size of vector field data sets. Different criteria for combining and
approximating vectors have been introduced to achieve the goal of faithfully preserving the topology of an
original vector field.? 3561112 Utilizing the fact that in a vector field every vector can be associated with a
certain type of critical point, a method based on an image segmentation algorithm, called “normalized cut” (NC)?
was proposed.! The goal of our method is to cluster vectors together that are associated with the same critical
point, and therefore leads to a “natural cluster.” Under the concept of hierarchical clustering, a cluster on the
finest level of representation is defined as the set of all vectors that can be expressed or related to the same
critical point. The size of a cluster, in a geometrical sense, represents the “influence region” of the associated
critical point.
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We have extended the original NC method and demonstrated its ability to extract global and dominant
structures in a vector field by identifying types and sizes of clusters. The ability of this method to approximate
vectors within a cluster fairly accurately is described and demonstrated in the following sections. A brief
description of the concepts of clustering, similarity measure, and an extended NC method is presented in Section
2. Cluster refinement strategies and hierarchy construction techniques for the extended NC method are discussed
in Section 3. The applications of our methods to analytically defined and real data sets are presented in Section
4. Concluding remarks and a discussion of future work are presented in Section 5.

2. THE NC METHOD AND VECTOR FIELD SEGMENTATION
2.1. Similarity Measure and Clusters

A linear 2D vector field can be expressed as
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A critical point (z.,y.) is a point where the vector field is zero, i.e, v(z.,y.) = 0.

The interesting features of a 2D vector field are its critical points, or derived features related to critical
points. Critical points can be classified according to the behavior of nearby vector field data, subject to a certain
local polynomial approximation. Several techniques have been developed to understand the nature of 2D critical
points and to classify them. A summary of classification techniques is presented in Ref. 1.

A similarity measure between vector should consider the fact that a vector quantity has direction and mag-
nitude. Another desirable feature of a similarity measure is a smoothly varying behavior. Considering these
)T

. T . T
requirements, for vectors v; = [ v;» v, | located at positions (z;,y;)T and v; = [ vj» vj, | located at

positions (z;,y;)T, we define the similarity measure

’LU(V“V]) - - e*dist(vi,vj') + (1 _ O{) X efdiﬁ‘(vi,v]'), (2)
where
dist(vi,v;) = /(2 = 7)2 + (i — ;) (3)
and
diff(vi,vj) = (Um - Uj,w)2 + (Ui,y - Uj7y)2- (4)

The parameter « is also required to vary between 0 and 1. A small value of o emphasizes the difference in direction
and magnitude while a large value of a places more weight on distance between data locations. Equation (3) is
the Euclidean distance function, and Equation (4) is a measure for direction and magnitude. Other difference
measures could also be used as long as they lead the desired characteristics of a clustering. For example, we

could also use the measure ) )
<dist(vi,v]-)> <diff(vi,‘,j )
A U -\
w(v;,vj) =e e . (5)

To simplify the use of Equation (5), the parameter 8 could be set to 1 and « could vary in the range (0, c0).
With this setting, an « value smaller than 1 would place more emphasis on the vector norm. An « value larger
than 1 shifts emphasis to Euclidean point distance.



2.2. The Extended NC Method

The similarity measure should not be applied to the original vectors data directly, since two vectors associated
with the same critical point can have opposite directions and highly different magnitudes. Instead, similarity is
determined by how well two vectors can be represented by a linear least-squares approximation. The process of
measuring similarity and constructing a partition of vector field data can be described as follows:

1. Construct the weight (or association) matrix W:

(a) For each vector v; = [ Vig Uiy ]T at location (z;,y;)7, randomly pick m neighboring vector data
within a circle of radius r centered at (z;,y;)T. The neighboring vectors can be represented as v =

[ Uk Uky ]T, where k = 1,2,3, ..., m. The locations of these neighboring vectors are xx = (2, Y ).

(b) Considering positional and vector data, solve the following linear least-squares problem:
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(c) Evaluate the resulting linear least-squares approximation at points x,, i.e., at the locations of the
chosen neighboring vectors, leading to

Vi=[O0e Ory ] =A-x+b.

(d) Compute the similarity w(v;,vy) between v; and vj by applying Equation (2) to v; and v, and
place it as the (i,k) and (k, ) elements of the weight matrix W.

2. Construct a vector d as follows:

where N is the total number of initial vectors.

3. Compute the eigenvector associated with the second-smallest eigenvalue of the matrix D3 (D-W) D~z ,
where D is a diagonal matrix having d as its diagonal elements.

4. Partition the vector field:

(a) Use the signs of the eigenvector components as indicators to partition the vector data set. Vectors
associated with the same sign are placed in the same cluster. The resulting partition is the first-level
clustering result.

(b) Finer partitioning is achieved by executing the described procedure again on each cluster or by using
the eigenvectors associated with the third- and fourth-smallest eigenvalues as indicator vectors.’

Once a cluster has been determined, the vectors v,, in the cluster can be used to compute the linear least-
squares approximation, defined by A and b as in Equation (1). Let v,, be the approximated vectors, the quality
of the approximation is measured by the mean-squared error (MSE) defined as

1 M
MSE(Vin, Vi) = MZ [(Vie = Vig)? + (Vig — Viy)?], (7)

i=1



where M is the number of vectors in the cluster.

An analytically defined vector field with a saddle point and a repelling focus is shown in Fig. 1 along with
the initial partition and the approximated vectors for the two clusters obtained. The initial partition is obtained
with our extended NC method by using the similarity measure defined by Equation (2). Cluster 1 contains
198 vectors, and the critical point inside is identified as a saddle point. Cluster 2 contains 202 vectors, and
it is identified as a repelling focus. The MSE is 0.008414 for cluster 1, and 0.018914 for cluster 2. The linear
least-squares approximation representation for cluster 1 is given by

A — 0.0000 —1.0000 and b — 0.0000
LT 19779 1.0207 L= —1.0207 |-

The linear least-squares approximation for cluster 2 is given by

A, — —0.0000 —1.0000 and b = 0.0000
2= 1.8927  0.9591 27| —0.9658 |-

The same vector field with a resolution of 50-by-50 is shown in Fig. 2. The MSE value for the two clusters
are 0.122503 and 0.104881, respectively. A rotated saddle-focus vector field is shown in Fig. 3. The MSE for the
two clusters are 0.006641 and 0.003203, respectively. In both examples, the types of critical points are correctly
identified as saddle point and repelling focus.

Fig. 4 and Fig. 5 show the effect of using different a values for our extended NC method. The parameter
setting used in Fig. 4 is r = 6 and m = 6, while the examples in Fig. 5 use the parameter setting » = 5 and
m = 14. The partitions with «a set to 0.0,0.1,0.5 and 1.0 are shown in both figures. It is interesting to observe
that the values of r and m seem to have a greater effect on the quality of the partition than the value of a.

3. CLUSTER REFINEMENT AND HIERARCHY CONSTRUCTION
3.1. Cluster Refinement

The MSE is a quantitative measure for the quality of a partition. Therefore, the strategy for refining clusters
should be aimed at the reduction of the MSE. We have derived a cluster refinement strategy based on the goal
of reducing the MSE values associated with clusters. The refinement strategy consists of these steps:

1. Store the membership information and the approximation matrices for both clusters.

2. Find the vector in cluster 1 with largest squared-error (SE) value. Move it to cluster 2 and compute a new
linear least-squares approximation and new MSE values for both clusters. If the sum of the MSE values of
the two clusters is smaller than the sum of the original cluster MSE values, go back to step 1; otherwise,
continue with step 3.

3. Store the membership information and the approximation matrices for both clusters.

4. Find the vector in cluster 2 with largest SE value. Move that vector to cluster 1 and compute a new
linear least-squares approximation and new MSE values for both clusters. If the sum of the MSE values of
the two clusters is smaller than the sum of the original cluster MSE values, go back to step 3; otherwise,
continue with step 5.

5. If any vector in cluster 2 has been moved to cluster 1 under step 4, go back to step 1; otherwise, stop.

The linear least-squares approximation and the MSE values must be re-computed for both clusters each time
a vector is moved.

Our experiments indicate that the refinement strategy works reasonably well for vector fields with two crit-
ical points. Parts (f), (g) and (h) of Fig. 1 show the refined partition of the saddle-focus vector field and the



approximated vectors using the refinement strategy. The MSE values for both clusters are 0.000000 after refine-
ment. Both clusters contain 200 vectors after refinement. The types and the locations of the critical points are
accurately identified and approximated.

Another example obtained with the refinement strategy is shown in part (d) of Fig. 3. The MSE value is
0.000000 after refinement, and both clusters contain 200 vectors. The types and locations of the critical points
are also accurately identified and approximated.

3.2. Hierarchy Construction

To obtain a finer partition, the eigenvector associated with the third-smallest eigenvalue can be used as indicator
vector to split the two refined clusters obtained from the first-level segmentation into four clusters. A refinement
process can then be applied to the four clusters. This refinement process is similar to the one described in
Section 3.1 that aims at reducing the MSE values of clusters by moving the vector with the largest SE to the
neighboring cluster.

Experiments with a four-focus vector field are shown in Figs. 6 and 7. Part (a) of Fig. 6 shows the initial
partition with MSE values of 1.044294 and 1.044294 for cluster 1 and cluster 2, respectively. Both of the clusters
are incorrectly identified as saddle points. After the application of the refinement strategy, the MSE values of
the clusters are reduced to 0.797128 and 0.786701. The types of clusters are both identified as attracting nodes
after the refinement. Part (c) of Fig. 6 shows the initial second-level cut together with the refined first-level
cut. The first cluster (in the lower-right corner) has an MSE value of 0.319273. The second cluster (in the
upper-right corner) has an MSE value of 0.373211. The third cluster (in the lower-left corner) has an MSE value
of 0.379029. The fourth cluster (in the upper-left corner) has an MSE value of 0.463941. All four clusters are
correctly identified as attracting foci. But the approximated locations of the critical points are incorrect. After
the second-level refinement process, as shown in part (d) of the same figure, the locations of the critical points
are all correctly approximated. The MSE value of every cluster after the refinement is 0.000000. Each cluster
contains exactly 100 vectors after refinement.

Fig. 7 shows an example where the strategy of performing a second-level cut after refining first-level partition
fails. Only one of the four clusters is correctly identified as attracting focus, while others are being identified
as attracting nodes or saddle points. Based on the results shown in this figure, we derive another approach
to perform the hierarchical clustering. This procedure is described as follows: First, perform multiple level of
clustering. Second, once the partitioning process stops, apply the refinement process on each cluster. The results
of applying procedure are shown in Figs. 8 and 9 and they will be discussed in the next section.

4. RESULTS
4.1. Two-dimensional Analytically Defined Vector Fields

Fig. 8 shows an example of performing the refinement only after two levels of partition. Part (c) of Fig. 8 shows
the four clusters are correctly identified along with the locations of the approximated critical points. The MSE
value of every cluster after in part (c) is 0.000000.

Fig. 9 shows another example of same process used for the vector field shown in Fig. 8. As shown in part (b)
of Fig. 9, only two locations of the critical points are correctly identified though three of the clusters are classified
correctly as attracting foci. Cluster 1 (in the upper-right corner) has a MSE value of 0.426785 and contains 117
vectors. Cluster 2 (in the upper-left corner) has a MSE value of 0.000000 and contains only 57 vectors. Cluster
3 (in the lower-right corner) has a MSE value of 0.367830 and contains 132 vectors. Cluster 4 (in the lower-left
corner) has a MSE value of 0.000000 and contains 94 vectors.

Same procedure is applied to a three-focus vector field as shown in Fig. 10 and Fig. 11. The refined partition
shown in Fig. 10 is a perfect cut. The MSE value for every cluster is 0.000000 and the types and the location of
the critical points are all identified correctly. But the results shown in Fig. 11 indicate that the only cluster 2
(on the left-hand side) contains the majority of the correct vectors as indicated by its relatively small MSE value
of 0.012896. The other three clusters have high MSE values and incorrectly approximated locations of critical
points.



An observation can be made from the results. If the cluster obtained from the initial cut does not contain
enough vectors that are associated with same critical point, then the linear least-squares approximation will not
be good. The SE and the MSE values will not provide enough useful information for the refinement strategy to
work with. A large SE value computed from the least-squares approximation does not give correct indication on
which vector is mis-clustered.

Another consideration for hierarchy construction is the need for merging neighboring clusters that are asso-
ciated with the same critical point. As shown in Fig. 10, the location of cluster 1’s critical (asterisk) and the
location of cluster 3’s critical point (cross) are inside the same cell. This information along with the fact that
both clusters are identified as attracting focus show that these two clusters should be merged together to form
a single cluster.

4.2. Two-dimensional Numerical Simulated Vector Fields

The extended NC method is applied on a complete turbulent flow data set.® This data set contains 703 critical
points. A complete partition of this data set will required log2(703) applications of the current version of extended
NC method. In order to have a meaningful complete partition of this data set, a robust refinement strategy is
needed. Fig. 12 shows a two-level partition of the data set without any using any refinement strategy.

A partition of a smaller portion of the turbulent flow data set are shown in Fig. 13. Part (a) of Fig. 13 shows
the un-refined two-level cut. The first cluster (in the lower-right corner) has an MSE value of 0.080653 and
contains 95 vectors. The second cluster (in the lower-left corner) has an MSE value of 0.102449 and contains
85 vectors. The third cluster (in the upper-right corner) has an MSE value of 0.190171 and contains 92 vectors.
The fourth cluster (in the upper-left corner) has an MSE value of 0.038333 and contains 88 vectors. After the
second-level refinement process, as shown in part (b) of the same figure, the first cluster has an MSE value of
0.080617 and contains 96 vectors. The second cluster has an MSE value of 0.101152 and contains 87 vectors.
The third cluster has an MSE value of 0.186285 and contains 98 vectors. The fourth cluster has an MSE value
of 0.000385 and contains 79 vectors. The first cluster is identified as attracting focus, while other clusters are
identified as saddle points. An observations can be made from the results. Although the MSE values for these
clusters are small, further partitions of the clusters are still needed. A relative error measure could be used to
aid the qualitative analysis of the clusters. This will be the subject of further study.

5. CONCLUSIONS AND FUTURE WORK

In preparation of achieving the goal of constructing a hierarchical representation for vector fields, we have
introduced the utilization of the normalized cut method along with the proposed similarity measurement. A
cluster refinement is presented. Experimental results demonstrate the potentials of the approach. Many issues
are still remained to be resolved in order to realize the ultimate goal of applying the proposed method to 3D
time-varying vector fields. Some of these issues are:

1. Cluster refinement and hierarchy construction: To obtain the desired hierarchical representation of a vector
field, the extended NC method must incorporate a robust cluster refinement strategy in order to obtain
high quality (in terms of MSE or other criteria) fine clusters. One alternative to the previous refinement
method can be summarize as follows:

(a) Store the membership information and the approximation matrices for both clusters.

(b) Find the vector with largest SE value among all vectors in the clusters. Move that vector to the other
cluster, compute a new linear least-squares approximation and new MSE values for both clusters. If
the sum of the MSE values of the two clusters is smaller than the sum of the MSE values of the
original clusters, go back to step 1; otherwise, stop.

Another possible refinement solution is the use of Linkage Refinement scheme.*



2. Handling 3D data sets: The feature we would like to identify in a 3D vector field data set is the vortex core.
The first step is to obtain the capability to identify vortex cores.”!'® The next step is to incorporate the
vortex core identification technique into the similarity measurement. Alternatively, one can also perform
the extraction of the vortex cores prior the clustering process, then use the extracted volumes as the
building blocks in the hierarchy construction process.
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(b)

(c) First-level partition and initial second-level partition (shown by dashed line).

(d) Refined first-level partition and refined second-level partition. Only one type and one location of the critical points

Figure 7. (a) Initial partition of a four-focus vector field with parameter values r = 4, m = 10, and o = 0.1.
are identified correctly.

First-level partition with refinement.
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Figure 8. (a) Initial partition of a four-focus vector field using parameter values r = 4, m = 10, and « = 0.1. (b) Initial

first-level partition and initial second-level partition (shown by dashed line). (d) Refined partition of the vector field. The

types and locations of the critical points are all identified correctly. The MSE value for every cluster is 0.000000.
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Figure 11. (a) Initial partition of a three-focus vector field. (b) Refined partition of the vector field. Only one cluster is

identified correctly.



Figure 12. Two-level partition of the turbulent flow data set without using any refinement strategy.
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Figure 13. (a) A small portion of the turbulent flow data set. (b) A refined two-level partition of the vector field.



