
Visualization Dot Com

Wes Bethel
Lawrence Berkeley National Laboratory

University of California, Berkeley
Berkeley, CA 94720
1.0 Abstract

In this article, we explore the seemingly well-worn
subject of distance-based, or remote visualization.
Current practices in remote visualization tend to
clump into two broad categories. One approach,
which we’ll call render-remote, is to render an
image remotely, then transmit the image to the
user. Another option, render-local, transfers raw
data to the user, where it is then visualized and
rendered on the local workstation. With advances
in networking and graphics technology, we can
explore a class of approaches from a new, third cat-
egory. With this third category, which we’ll call
shared, or “dot com” visualization, we stand to
reap the best of both worlds; minimized data trans-
fers and workstation-accelerated rendering. We
will describe a prototype system called Visapult
currently under development at Lawrence Berke-
ley National Laboratory (LBNL) that strikes such a
balance, achieving a blended, scalable visualiza-
tion tool. “Dot com” visualization means that
remote and local resources collaborate and negoti-
ate, combining capabilities to produce a final prod-
uct.

2.0 The Brute-Force Approaches

Consider the following common scenario: you and
your workstation are on the West Coast, but your
data is on the East Coast, and you need to look at
the data. What do you do? One option is to per-
form the visualization and rendering on the East
Coast, and send an image to your workstation. The
other option is to move the data, either the whole
thing or just a subset, to the West Coast.

In the render-remote approach, you win because
only a single image is sent across the network. Pre-
sumably, one expects at least an order of magni-
tude reduction in traffic when sending only the
final image as compared to the cost of sending the
raw data. The usability cost of this approach is the
loss of interaction on the local workstation due to
the sacrifice of local rendering capabilities. The
workstation plays the role of image viewer. In
order to achieve interactivity using the remote ren-

dering model, one would expect a minimum of ten
frames per second, using potentially upwards of 30
megabytes per second of raw bandwidth
(1024x1024x24 bit uncompressed images). We’re
making a generous assumption: on the remote
host, it is possible to perform visualization and
rendering ten times per second.

Using the render-local approach, data is trans-
ferred to the local workstation where it is subse-
quently visualized and rendered. We stand to gain
the interactivity lost in the render-remote model,
assuming a reasonable amount of local graphics
and processing horsepower. Troublesome areas
inherent in the render-local model include poten-
tially long download times, the possibility that a
large dataset simply cannot be stored on the local
workstation, and related issues.

What if we could combine the best of both
approaches? In such a model, we wouldn’t have to
move the potentially large data volumes across the
network, and we could take advantage of local
workstation graphics. A blended model would
facilitate the best use of resources; a large cluster,
for example, could be used for computationally
expensive parallel software volume rendering
while the local workstation is used for interactive
graphics.

3.0 Visapult: A Prototype
Implementation

Visapult, our prototype implementation, is a visu-
alization tool that implements distributed, shared
and parallel visualization and rendering of large,
time-varying scientific data sets. The focus of
ongoing research and development targets three
broad topics. First, Visapult implements a frame-
work that is an application testbed for shared and
parallel visualization algorithmic development.
The volume rendering engine, described in the
next section, uses a parallel, shared rendering
model that scales reasonably well to accommodate
large and hierarchical data volumes. Second,
Visapult provides a testbed suitable for use with
emerging technologies that implement “network
February 9, 2000 1LBNL-44871

awareness.” Finally, Visapult is used to address a
“hard” but factual visualization problem - volume
visualization of large and remotely located, time
varying, adaptive and hierarchical scientific data
that will not fit onto a workstation.

3.1 Distributed, Parallel, Shared Volume
Rendering

The Visapult volume rendering engine is a paral-
lel, distributed implementation of Mueller, et. al.’s
Image Based Rendering Assisted Volume Render-
ing method [1], or just IBRAVR for short. The
IBRAVR method leverages image-based rendering
properties to achieve interactive, limited-range
transformations of volume visualization on low-
cost, commodity grade graphics hardware.

One of the many attractive properties of the
IBRAVR model is that it will perform well on low-
end workstation graphics, or even software, but
will also run in high performance, immersive and
stereo environments. What makes this possible is
the decoupling of a computational back-end that
performs software volume rendering from a front-
end viewer that can run at interactive rates.

FIGURE 1. IBRAVR Task Decomposition

In the IBRAVR model, a volume is decomposed
into some number of “slabs” (Figure 1). Each of
these slabs is separately volume rendered using
whatever technique is handy to produce a single
image. The resulting image is then used as raw tex-
ture data, and applied to either axis-aligned quads

or quadmeshes. Quadmeshes are used to create a
“terrain-style” elevation map for each of the tex-
tures, and provide more depth cues than flat quad-
rilaterals. Multiple texture maps are created from
subsets of the volume so that the viewer may
rotate the entire model for inspection. The IBRVR
method works well, but within a limited range of
rotation. Mueller et. al. claim a rotation range of
about thirty-two degrees before visual degradation
occurs [1], although this threshold may prove to be
data-dependent. Increasing the number of texture
maps may increase the threshold, while decreasing
the number of texture maps will decrease the
threshold.

3.2 Distributed IBRAVR

The IBRAVR model maps nicely to an object-order
decomposition for parallel rendering [2]. The pri-
mary difference between the IBRAVR method and
traditional object-order parallel software volume
rendering lies in the design of the partial image
recombination, or gather stage of the parallel ren-
dering operation. The intermediate images pro-
duced by each processor, each of which renders a
subset of a volume, must be composited together
in a specific order to produce a final image. Algo-
rithms for the image recombination stage of paral-
lel software volume rendering have been the
subject of much study [2].

Our IBRAVR implementation uses a pool of pro-
cessors that perform object-order, parallel volume
rendering in software. Rather than recombine the
intermediate images in software, the partial images
are “combined” using low-cost graphics hardware
that supports two-dimensional texture mapping.
By low-cost, we mean contemporary PC graphics
cards that are in the $100-$250 price range. One of
the fundamental ideas behind IBRAVR is that the
image warping and depth-order compositing is
performed using inexpensive graphics hardware.
The image warping and inter-slice translation pro-
vided by texture mapping represents the image-
based rendering aspect of the algorithm, while the
depth-order rendering of semi-transparent 2D tex-
tures represents the image-gather and compositing
stage of the traditional object order decomposition.

3.3 Visapult Framework

Our prototype is an application composed of two
logical rendering components and one data com-
ponent, all of which may be separated by a WAN.

Volume data is first sub-
divided, with each pro-
cessing element given
the assignment of vol-
ume rendering it’s subset
of the volume.

The results, an image
from each PE represent-
ing partial volume ren-
dering, is sent to a
viewer.

The viewer uses 2D tex-
ture mapping to render
all partial images, and
provides for interactive
transformation.
February 9, 2000 2

A “back-end” volume rendering engine performs
the object-order parallel volume rendering in soft-
ware. It is written using MPI [3], and runs on a
variety of distributed memory and shared memory
machines. The second component is a viewer. The
viewer is a lightweight interactive rendering appli-
cation built from a OpenGL-based scene graph tool
[4] that manages data and rendering services. The
viewer is also a parallel application built using
Pthreads[5]. The third component of the system is

the scientific data and it’s management. In some
cases, this might be as simple as a large disk farm
connected directly to the volume rendering back-
end, while in other cases, the data may be scattered
across a WAN using a “network cache,” such as
that implemented by the Distriubuted Parallel
Storage System (DPSS) [7].

The volume renderer and the viewer communicate
over a custom IPC layer built using TCP sockets.
The protocol implemented by the prototype might
be considered a visualization communication protocol,
similar in some respects to the scene description
and payload model described by the MPEG-4 spec-
ification [8].

For volume visualization, the payload between
viewer and software renderer consists of two-
dimensional texture maps containing the interme-
diate results of partial volume rendering. Our
implementation uses a striped-socket model,
where multiple back-end processing elements

communicate with multiple threads in the viewer.
Figure 2 presents an example created by our dis-
tributed IBRAVR prototype.

In general, the payload from the back-end and the
viewer consists of “visualization data.” The texture
maps and geometry in the current system combine
on the viewer side to implement the IBRAVR algo-
rithm. Arbitrary geometry can be used to represent
the results of other types of visualization, such as
the representation of grids in Boxlib [6], an Adap-
tive Mesh Refinement (AMR) multiresolution
modeling framework. Figure 3 shows a set of

A data volume from a combustion simula-
tion is decomposed into four slabs, and each
slab is volume rendered in parallel using a
software compositing engine. The resulting
images, shown on the left, are transmitted
across a WAN to a viewer that uses a scene
graph rendering engine and two-dimen-
sional texture mapping to produce the image
on the right. Except for the data transfer,
both viewer and back-end rendering execute
asynchronously.

FIGURE 2. IBRAVR Applied to Combustion Simulation Results
February 9, 2000 3

adaptive grids from a scientific simulation
included with volume visualization.

The scene graph model plays an integral part in the
design of the communication framework as well as
viewer architecture: we can think of the scene
graph model as a “data sink,” and data arriving on
a communication channel as a combination of
scene layout and scene data, or content. Each of the
viewer-side listener threads makes a contribution
to the scene graph in the form of new texture data,
or new geometry.

3.4 Application of Shared Visualization

The prototype has proven useful in viewing large
and time varying datasets produced by discipline
scientists in the fields of Combustion and Cosmol-
ogy, and was demonstrated at SC99 [9]. The proto-
type application defines a flexible framework
centered around the communication protocol
between the back-end and the viewer. As such, we

have several types of back-end renderers. One of
these back-end engines consumes data from a
DPSS, a distributed parallel storage system.

The prototype shown at SC99 performed interac-
tive rendering of a 50Gbyte time varying simula-
tion, with data located in Berkeley, the back-end
volume rendering engine located at Sandia
National Laboratory in Livermore, and the viewer
operating in Portland, Oregon.

A real and ongoing problem faced by scientific
researchers is the sheer size of data produced by
simulations and gathered by experiments. Datasets
on the order of hundreds of gigabytes are not
uncommon. Simply storing this much data can be
problematic, and moving it across a WAN is often
impractical. Our goal with Visapult is to make
inroads into solutions for interactive visualization
for problems of this scale. Three domains, data
management, network and visualization technol-
ogy all contribute to potential solutions.

4.0 Discussion and Future Work

We believe that network-based, shared rendering
and visualization is a fruitful avenue for future
research. The application model we have pre-
sented uses a decomposition that leverages current
trends in technology: graphics, networking and
data storage and management.

Low-cost graphics hardware for the PC continues
to become faster and more usable. Current com-
modity-grade graphics accelerators match the ren-
dering rates of $100,000 machines of just a few
years ago. Those visualization tools that are cross-
platform, and that perform well and scale through
the continuum from the desktop to the fully
immersive environment are economically and
socially attractive.

Network technology improvements can enhance
the basic “visualization dot com” model. Dynamic
monitoring of Quality-of-Service parameters such
as raw bandwidth, error rate, latency, reliability
and priority can all have an impact on scheduling
and performance of the system. Dynamic route
discovery and modification could potentially
result in shorter and more reliable data paths,
either from the back-end to the viewer, or the data
source to the back-end. Changes in bit rate can be
taken into account to alter the resolution of data
sent from the back-end to the viewer. Bandwidth
reservation will assist in scheduling, so that “hero-

Our distributed IBRAVR prototype combines
shared, parallel volume rendering with tradi-
tional visualization. In this case, the underly-
ing grids are adaptive and hierarchical.

FIGURE 3. IBRAVR and Grid Visualization
February 9, 2000 4

sized” problems may be smoothly executed. A
“hero” problem would be one in which a
researcher wishes to perform visualization of
remote data that is tera-scale in size.

The prototype system discussed in this article is
not unique in its design. MPEG-4, for example,
provides for a scene description layer that is based
upon scene graph technology, includes support for
dynamic video compression, as well as support for
audio [8]. One of the design goals of MPEG-4 is the
possibility that the local viewer may interact with
objects in a 3D scene, but with scene content being
provided by a remote source.

Compression technology is integral to many net-
work-based applications. The fundamental trade-
off is one of time versus space. Compression algo-
rithms can consume a substantial amount of time,
but can produce highly compact and quickly-
transmitted data objects. The cost of compression,
which can be substantial for video streams, is typi-
cally amortized by many downloads of a single
video or audio stream. Visualization tends to be an
iterative process, hence the cost of video stream
compression is difficult to justify.

An alternative, or supplement to payload compres-
sion is to approach the problem from a semantic,
rather than syntactic perspective. We take this
approach in Visapult by using “high level”
descriptions of geometric elements when possible.
The box geometries used in grid visualization are
described with a minimum and maximum coordi-
nate, rather than specifying eight box vertices and
twelve box edges. Similarly, the quadmeshes in the
IBRAVR implementation are specified with two
coordinates, two integers defining the mesh reso-
lution, then a stream of bytes defining offsets from
the base plane for each grid point.

5.0 Conclusion

We have described a prototype application that
explores a new approach to remote and large-scale
visualization. Shared and parallel visualization
and rendering lie at the center of the approach,
with cooperative agents contributing to the fin-
ished product; interactive visualization on the
desktop of remotely located data using remotely
located resources, yet retaining the interactivity
provided by desktop graphics engines.

While far from complete, Visapult provides
glimpses of future research and development
activities in parallel and remote visualization.

6.0 Acknowledgement

This work was supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-
AC03-76SF00098.

7.0 Bibliography

[1] Klaus Meuller, Naeem Shareef, Jian Huang and
Roger Crawfis, IBR-Assisted Volume Rendering,
Proceedings of IEEE Visualization 99, Late Break-
ing Hot Topics, pp. 5-8, 1999.

[2] Ulrich Neumann, Communication Costs for
Parallel Volume-Rendering Algorithms, IEEE
Computer Graphics and Applications, Volume 14,
Number 4, pp 49-58, July 1994.

[3] The Message Passing Interface (MPI) Standard,
http://www.mcs.anl.gov/mpi/.

[4] RM Scene Graph Programming Guide, http://
www.r3vis.com/.

[5] David Butenhof, Programming with POSIX
Threads, Addison-Wesley, 1997.

[6] C.A. Rendleman, V. E. Beckner, M. Lijewski,
W.Y. Crutchfield, J. B. Bell, Parallelization of Struc-
tured, Hierarchical Adaptive Mesh Refinement
Algorithms, Computing and Visualization in Sci-
ence, April 1999.

[7] Brian Tierney, Jason Lee, Brian Crowley, Mason
Holding, J. Holding and F. Drake, A Network-
Aware Distributed Storage Cache for Data Inten-
sive Environments, Proceedings of IEEE High Per-
formance Distributed Computing, August 1999.
http://www-didc.lbl.gov/DPSS/.

[8] Overview of the MPEG-4 Standard, http://
drogo.cselt.stet.it/mpeg/standards/mpeg-4/
mpeg-4.htm#E40E1.

[9] SC99, Annual High Performance Networking
and Computing Conference, http://
www.sc99.org/
February 9, 2000 5

	1.0 Abstract
	2.0 The Brute-Force Approaches
	3.0 Visapult: A Prototype Implementation
	3.1 Distributed, Parallel, Shared Volume Rendering
	3.2 Distributed IBRAVR
	3.3 Visapult Framework
	3.4 Application of Shared Visualization

	4.0 Discussion and Future Work
	5.0 Conclusion
	6.0 Acknowledgement
	7.0 Bibliography

