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1.0  Abstract

In this article, we explore the seemingly well-worn 
subject of distance-based, or remote visualization. 
Current practices in remote visualization tend to 
clump into two broad categories. One approach, 
which we’ll call render-remote, is to render an 
image remotely, then transmit the image to the 
user. Another option, render-local, transfers raw 
data to the user, where it is then visualized and 
rendered on the local workstation. With advances 
in networking and graphics technology, we can 
explore a class of approaches from a new, third cat-
egory. With this third category, which we’ll call 
shared, or “dot com” visualization, we stand to 
reap the best of both worlds; minimized data trans-
fers and workstation-accelerated rendering. We 
will describe a prototype system called Visapult 
currently under development at Lawrence Berke-
ley National Laboratory (LBNL) that strikes such a 
balance, achieving a blended, scalable visualiza-
tion tool. “Dot com” visualization means that 
remote and local resources collaborate and negoti-
ate, combining capabilities to produce a final prod-
uct.

2.0   The Brute-Force Approaches

Consider the following common scenario: you and 
your workstation are on the West Coast, but your 
data is on the East Coast, and you need to look at 
the data. What do you do? One option is to per-
form the visualization and rendering on the East 
Coast, and send an image to your workstation. The 
other option is to move the data, either the whole 
thing or just a subset, to the West Coast.

In the render-remote approach, you win because 
only a single image is sent across the network. Pre-
sumably, one expects at least an order of magni-
tude reduction in traffic when sending only the 
final image as compared to the cost of sending the 
raw data. The usability cost of this approach is the 
loss of interaction on the local workstation due to 
the sacrifice of local rendering capabilities. The 
workstation plays the role of image viewer. In 
order to achieve interactivity using the remote ren-

dering model, one would expect a minimum of ten 
frames per second, using potentially upwards of 30 
megabytes per second of raw bandwidth 
(1024x1024x24 bit uncompressed images). We’re 
making a generous assumption: on the remote 
host, it is possible to perform visualization and 
rendering ten times per second.

Using the render-local approach, data is trans-
ferred to the local workstation where it is subse-
quently visualized and rendered. We stand to gain 
the interactivity lost in the render-remote model, 
assuming a reasonable amount of local graphics 
and processing horsepower. Troublesome areas 
inherent in the render-local model include poten-
tially long download times, the possibility that a 
large dataset simply cannot be stored on the local 
workstation, and related issues.

What if we could combine the best of both 
approaches? In such a model, we wouldn’t have to 
move the potentially large data volumes across the 
network, and we could take advantage of local 
workstation graphics. A blended model would 
facilitate the best use of resources; a large cluster, 
for example, could be used for computationally 
expensive parallel software volume rendering 
while the local workstation is used for interactive 
graphics.

3.0  Visapult: A Prototype 
Implementation

Visapult, our prototype implementation, is a visu-
alization tool that implements distributed, shared 
and parallel visualization and rendering of large, 
time-varying scientific data sets. The focus of 
ongoing research and development targets three 
broad topics. First, Visapult implements a frame-
work that is an application testbed for shared and 
parallel visualization algorithmic development. 
The volume rendering engine, described in the 
next section, uses a parallel, shared rendering 
model that scales reasonably well to accommodate 
large and hierarchical data volumes. Second, 
Visapult provides a testbed suitable for use with 
emerging technologies that implement “network 
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awareness.” Finally, Visapult is used to address a 
“hard” but factual visualization problem - volume 
visualization of large and remotely located, time 
varying, adaptive and hierarchical scientific data 
that will not fit onto a workstation.

3.1  Distributed, Parallel, Shared Volume 
Rendering

The Visapult volume rendering engine is a paral-
lel, distributed implementation of Mueller, et. al.’s 
Image Based Rendering Assisted Volume Render-
ing method [1], or just IBRAVR for short. The 
IBRAVR method leverages image-based rendering 
properties to achieve interactive, limited-range 
transformations of volume visualization on low-
cost, commodity grade graphics hardware.

One of the many attractive properties of the 
IBRAVR model is that it will perform well on low-
end workstation graphics, or even software, but 
will also run in high performance, immersive and 
stereo environments. What makes this possible is 
the decoupling of a computational back-end that 
performs software volume rendering from a front-
end viewer that can run at interactive rates.

FIGURE 1. IBRAVR Task Decomposition

In the IBRAVR model, a volume is decomposed 
into some number of “slabs” (Figure 1). Each of 
these slabs is separately volume rendered using 
whatever technique is handy to produce a single 
image. The resulting image is then used as raw tex-
ture data, and applied to either axis-aligned quads 

or quadmeshes. Quadmeshes are used to create a 
“terrain-style” elevation map for each of the tex-
tures, and provide more depth cues than flat quad-
rilaterals. Multiple texture maps are created from 
subsets of the volume so that the viewer may 
rotate the entire model for inspection. The IBRVR 
method works well, but within a limited range of 
rotation. Mueller et. al. claim a rotation range of 
about thirty-two degrees before visual degradation 
occurs [1], although this threshold may prove to be 
data-dependent. Increasing the number of texture 
maps may increase the threshold, while decreasing 
the number of texture maps will decrease the 
threshold.

3.2  Distributed IBRAVR

The IBRAVR model maps nicely to an object-order 
decomposition for parallel rendering [2]. The pri-
mary difference between the IBRAVR method and 
traditional object-order parallel software volume 
rendering lies in the design of the partial image 
recombination, or gather stage of the parallel ren-
dering operation. The intermediate images pro-
duced by each processor, each of which renders a 
subset of a volume, must be composited together 
in a specific order to produce a final image. Algo-
rithms for the image recombination stage of paral-
lel software volume rendering have been the 
subject of much study [2].

Our IBRAVR implementation uses a pool of pro-
cessors that perform object-order, parallel volume 
rendering in software. Rather than recombine the 
intermediate images in software, the partial images 
are “combined” using low-cost graphics hardware 
that supports two-dimensional texture mapping. 
By low-cost, we mean contemporary PC graphics 
cards that are in the $100-$250 price range. One of 
the fundamental ideas behind IBRAVR is that the 
image warping and depth-order compositing is 
performed using inexpensive graphics hardware. 
The image warping and inter-slice translation pro-
vided by texture mapping represents the image-
based rendering aspect of the algorithm, while the 
depth-order rendering of semi-transparent 2D tex-
tures represents the image-gather and compositing 
stage of the traditional object order decomposition.

3.3  Visapult Framework

Our prototype is an application composed of two 
logical rendering components and one data com-
ponent, all of which may be separated by a WAN. 

Volume data is first sub-
divided, with each pro-
cessing element given 
the assignment of vol-
ume rendering it’s subset 
of the volume.

The results, an image 
from each PE represent-
ing partial volume ren-
dering, is sent to a 
viewer.

The viewer uses 2D tex-
ture mapping to render 
all partial images, and 
provides for interactive 
transformation.
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A “back-end” volume rendering engine performs 
the object-order parallel volume rendering in soft-
ware. It is written using MPI [3], and runs on a 
variety of distributed memory and shared memory 
machines. The second component is a viewer. The 
viewer is a lightweight interactive rendering appli-
cation built from a OpenGL-based scene graph tool 
[4] that manages data and rendering services. The 
viewer is also a parallel application built using 
Pthreads[5]. The third component of the system is 

the scientific data and it’s management. In some 
cases, this might be as simple as a large disk farm 
connected directly to the volume rendering back-
end, while in other cases, the data may be scattered 
across a WAN using a “network cache,” such as 
that implemented by the Distriubuted Parallel 
Storage System (DPSS) [7].

The volume renderer and the viewer communicate 
over a custom IPC layer built using TCP sockets. 
The protocol implemented by the prototype might 
be considered a visualization communication protocol, 
similar in some respects to the scene description 
and payload model described by the MPEG-4 spec-
ification [8]. 

For volume visualization, the payload between 
viewer and software renderer consists of two-
dimensional texture maps containing the interme-
diate results of partial volume rendering. Our 
implementation uses a striped-socket model, 
where multiple back-end processing elements 

communicate with multiple threads in the viewer. 
Figure 2 presents an example created by our dis-
tributed IBRAVR prototype.

In general, the payload from the back-end and the 
viewer consists of “visualization data.” The texture 
maps and geometry in the current system combine 
on the viewer side to implement the IBRAVR algo-
rithm. Arbitrary geometry can be used to represent 
the results of other types of visualization, such as 
the representation of grids in Boxlib [6], an Adap-
tive Mesh Refinement (AMR) multiresolution 
modeling framework. Figure 3 shows a set of 

A data volume from a combustion simula-
tion is decomposed into four slabs, and each 
slab is volume rendered in parallel using a 
software compositing engine. The resulting 
images, shown on the left, are transmitted 
across a WAN to a viewer that uses a scene 
graph rendering engine and two-dimen-
sional texture mapping to produce the image 
on the right. Except for the data transfer, 
both viewer and back-end rendering execute 
asynchronously.

FIGURE 2. IBRAVR Applied to Combustion Simulation Results
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adaptive grids from a scientific simulation 
included with volume visualization.

The scene graph model plays an integral part in the 
design of the communication framework as well as 
viewer architecture: we can think of the scene 
graph model as a “data sink,” and data arriving on 
a communication channel as a combination of 
scene layout and scene data, or content. Each of the 
viewer-side listener threads makes a contribution 
to the scene graph in the form of new texture data, 
or new geometry. 

3.4  Application of Shared Visualization

The prototype has proven useful in viewing large 
and time varying datasets produced by discipline 
scientists in the fields of Combustion and Cosmol-
ogy, and was demonstrated at SC99 [9]. The proto-
type application defines a flexible framework 
centered around the communication protocol 
between the back-end and the viewer. As such, we 

have several types of back-end renderers. One of 
these back-end engines consumes data from a 
DPSS, a distributed parallel storage system. 

The prototype shown at SC99 performed interac-
tive rendering of a 50Gbyte time varying simula-
tion, with data located in Berkeley, the back-end 
volume rendering engine located at Sandia 
National Laboratory in Livermore, and the viewer 
operating in Portland, Oregon. 

A real and ongoing problem faced by scientific 
researchers is the sheer size of data produced by 
simulations and gathered by experiments. Datasets 
on the order of hundreds of gigabytes are not 
uncommon. Simply storing this much data can be 
problematic, and moving it across a WAN is often 
impractical. Our goal with Visapult is to make 
inroads into solutions for interactive visualization 
for problems of this scale. Three domains, data 
management, network and visualization technol-
ogy all contribute to potential solutions.

4.0  Discussion and Future Work

We believe that network-based, shared rendering 
and visualization is a fruitful avenue for future 
research. The application model we have pre-
sented uses a decomposition that leverages current 
trends in technology: graphics, networking and 
data storage and management.

Low-cost graphics hardware for the PC continues 
to become faster and more usable. Current com-
modity-grade graphics accelerators match the ren-
dering rates of $100,000 machines of just a few 
years ago. Those visualization tools that are cross-
platform, and that perform well and scale through 
the continuum from the desktop to the fully 
immersive environment are economically and 
socially attractive. 

Network technology improvements can enhance 
the basic “visualization dot com” model. Dynamic 
monitoring of Quality-of-Service parameters such 
as raw bandwidth, error rate, latency, reliability 
and priority can all have an impact on scheduling 
and performance of the system. Dynamic route 
discovery and modification could potentially 
result in shorter and more reliable data paths, 
either from the back-end to the viewer, or the data 
source to the back-end. Changes in bit rate can be 
taken into account to alter the resolution of data 
sent from the back-end to the viewer. Bandwidth 
reservation will assist in scheduling, so that “hero-

Our distributed IBRAVR prototype combines 
shared, parallel volume rendering with tradi-
tional visualization. In this case, the underly-
ing grids are adaptive and hierarchical. 

FIGURE 3. IBRAVR and Grid Visualization 
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sized” problems may be smoothly executed. A 
“hero” problem would be one in which a 
researcher wishes to perform visualization of 
remote data that is tera-scale in size. 

The prototype system discussed in this article is 
not unique in its design. MPEG-4, for example, 
provides for a scene description layer that is based 
upon scene graph technology, includes support for 
dynamic video compression, as well as support for 
audio [8]. One of the design goals of MPEG-4 is the 
possibility that the local viewer may interact with 
objects in a 3D scene, but with scene content being 
provided by a remote source.

Compression technology is integral to many net-
work-based applications. The fundamental trade-
off is one of time versus space. Compression algo-
rithms can consume a substantial amount of time, 
but can produce highly compact and quickly-
transmitted data objects. The cost of compression, 
which can be substantial for video streams, is typi-
cally amortized by many downloads of a single 
video or audio stream. Visualization tends to be an 
iterative process, hence the cost of video stream 
compression is difficult to justify. 

An alternative, or supplement to payload compres-
sion is to approach the problem from a semantic, 
rather than syntactic perspective. We take this 
approach in Visapult by using “high level” 
descriptions of geometric elements when possible. 
The box geometries used in grid visualization are 
described with a minimum and maximum coordi-
nate, rather than specifying eight box vertices and 
twelve box edges. Similarly, the quadmeshes in the 
IBRAVR implementation are specified with two 
coordinates, two integers defining the mesh reso-
lution, then a stream of bytes defining offsets from  
the base plane for each grid point.

5.0  Conclusion

We have described a prototype application that 
explores a new approach to remote and large-scale 
visualization. Shared and parallel visualization 
and rendering lie at the center of the approach, 
with cooperative agents contributing to the fin-
ished product; interactive visualization on the 
desktop of remotely located data using remotely 
located resources, yet retaining the interactivity 
provided by desktop graphics engines.

While far from complete, Visapult provides 
glimpses of future research and development 
activities in parallel and remote visualization.
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