External
Development
Guide

IDL Version 6.3
April 2006 Edition
Copyright © RSI

All Rights Reserved

Restricted Rights Notice

The IDL®, ION Scri pt™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RS reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, asto any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantahility, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of I TT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ isatrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ s atrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDFS5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1

External Development OVEIVIEWiiiiiiiiiiiiiii e 11
ADOUE TRISM@NUEL ...ttt s ee e 12
Supported I nter-Language Communication Techniquesin IDLcccccecevivvvveeveennnne, 13
Dynamic Linking Terms and CONCEPLScvevurreriirierierseesieeseeseeseesseesseesseessesssesnseens 20
When Is It Appropriate to Combine External Code With IDL?ccooeveivieniinenienenncns 22
Skills Required to Combine External Code With DLcccooveeeiciv e seesiee e 23
T] I @ o g (o S 27
External DEfINITIONSccocoiiiiiec ettt 29
Interpreting Logical BOOIEAN VAIUEScccevviiiiiieieseceeese et 30
Compilation and Linking DELAIIScceeieeiiieieeseeseeseesie ettt es e sreesre e e 31
Recommended REBAINGccoevuiiiiiccse ettt ns 32

External Development Guide 3

4

Part I: Techniques That Do Not Use IDL’s Internal API

Chapter 2

UsSiNg SPAWN and PiPES ...oeuuuiuiiiiiiiiiieiee ettt e e e e e e a e e 37
Chapter 3

Using CALL _EXTERNAL ...coiiiiiei e 43
The CALL_EXTERNAL FUNCHONooiiiiieiecses e sse s 44
PasSiNg ParaMELEr'Sccocieieieciecieee ettt st s ae e e s re s neeneene e renne e 54
USING AULO GIUE ..ttt sttt e st e s aeene e e e eesneeneeneeseesne e 56
T ol O e 1] o == 58
LTz o) 0 g 01U] = SR 62
[S aTe IS g gTo [- - P 64
[S o [N = Y I - - T 68
PaSSING SEIUCLUIESveviieeceeeiesie sttt sttt s re et e st e st saeeneestesnesneeneesrenne e 70
FOrran EXAMPIEScoeoiiieeieesese ettt st s e e ee s neeneeneeseesee e 72
Chapter 4

Remote Procedure CallS ... 77
IDL and Remote Procedure CallS ..o 78
USING IDL @S 8N RPC SEIVEDc.coiiiitiieieeeeseie et s 79
CHENt VariallEScooiiiiiee et sttt sae e 80
Linking tO the CHENt LiDrary ... e s 81
Compatibility with Older IDL COdEccoocuveiier e 83
THE IDL RPC LIDIaIY oottt sttt 85
L O = 10 010 == S 110

Part II: IDL's Internal API

Chapter 5

IDL INterNalS: TYPES oiiiiiiiiiiiieeeee et 113
TYPE COUES ..ottt ettt ettt s aeeae e e e s eesae et e neestesaeeneeneesrenneas 114
MapPING Of BASIC TYPES ...ecveiiitiiieeiie e ste st eseeste s e teete s e s e e eae st st sseeaestestesnaesesnesreenes 116
IDL_MEMINT and IDL_FILEINT TYPES ..cucoieerererueireririeieienesesisis e isie e 119

Contents External Development Guide

Chapter 6

IDL Internals: Keyword ProCeSSiNgcccceeeiieeeeeeeeeieeeeeeeeevineiinenens 121
IDL and KeyWord PrOCESSINGcccveeeieerieiieiesiesiesteseessestesreeseessessesresseesessessesseessessenns 122
Creating Routines that ACCEPt KEYWOITScceoeeeririenieeeirie e 123
Overview Of IDL Keyword PrOCESSINGccvvveiverieiieeiese e steeeeste st se et 124
The IDL_KW_PAR SIIUCIUIccveeeeeieieeeesie ettt saeneenas 126
The IDL_KW_ARR _DESC R SITUCIUIEc.ooiieiieecese et 129
Keyword ProceSSiNg OPLIONScccceceirreeeeene e eeeeenie e e seesee e seesee e eneesessesnens 130
The KW_RESULT SHUCLUIEvecueeeieiie ettt sttt sne e ens 132
Processing KEYWOITSc.ooieiiiiiieeieresie sttt e e eseeseeseeeneeneenneas 133
(@11 oo To T TSP 136
KeyWOrd EXAMPIESooiiiieieeees ettt sreeneenee e 137
The Pre-IDL 5.5 KeyWOrd APlouooe ettt 144
Chapter 7

IDL Internals: Variables ... 151
IDL and INternal VariablEScoovieeeiiiiiieiee et 152
The IDL_VARIABLE SITUCLUIEc.coveieeieiriesierieee sttt 153
SCAA VATADIES ...ttt sttt e 156
F N = VAV = o =SSR 157
SITUCIUrE VarTADIES ...ttt sttt e e 159
[(5= O = = o - 164
TemPOrary VariablEscooiiiiiiiineeere e 165
Creating an Array from EXiStiNg Datacccecviieiierier e ses e 172
Getting DYNAMIC MEMONYccuiieieiieiiriereeeete st se e b s 174
ACCESSING VAiaDI@ DELAcceeveeieeieiie ettt et nree 176
CopYiNG Vari@DlEScooeiieiiieieeeeee et 177
SOrNG SCAlAr VAIUESocevece ettt r e e enne s 178
Obtaining the Name of aVariableccoceiiiiiieneee e 180
Looking Up Main Program VariablesScccevevieeiiee it 181
Looking Up Variablesin CUurrent SCOPEccecveerererienineninieseeeeiesiesie e 182

External Development Guide Contents

Chapter 8

IDL Internals: String ProCeSSiNgcccevveiiiieeeieiieeeeeeeetveee e 183
String Processing @and DLccoivieeieie ettt e 184
ACCESSING IDL_STRING VEIUEScoceiiririeieireriiete st 185
(00 0) V71010 RS (1010 1SS 186
(D E= e TS o T 187
Setting an IDL_STRING VAIUEocveieciicieeetesteseeee ettt 188
Obtaining a String of a GIVeN Lengthccccoiiiiieree e 189
Chapter 9

IDL Internals: Error HanNdliNgcciiiiiiiiiie e 191
MESSAZE BIOCKSveeieciece ettt ettt et e sne e e e 192
[SSUING EITOr MESSAESoviriiieeeieieste sttt e nn e 195
Looking Up A Message Code by NaMEcccceeveeieeieere et 201
Checking ATQUMENTScouiiiiieieeeiesie ettt sttt b e b e e 202
Chapter 10

IDL Internals: Type CONVEISIONucciiiiieiieeeeeeeeeeeeeeiiitse e e 205
Converting ArgumentSto C SCAlAISccooviieierireieere e e 206
General TYPE CONVEISIONeciveiieiieeiiesiesiisteeeeeste e e eseesee e eseesaestesreeseesessesreeseesensesaeens 207
Converting to SPECITIC TYPEScvriiirerieieeriesi et 208
Chapter 11

IDL Internals: UNIX SignalSuuiiiiiiiiiiiieeccecceeeeeevss e 209
I g To IS o = P 210
SIGNal HBNAIES ... r e 213
Establishing aSignal HanAIErccooeiiiieee et 214
Removing aSignal Handlerccooiiiiieee e 215
UNIX SIgNal IMBSKS ...vovieiceieieciesieesee sttt ettt sttt sttt snaenaesnesreens 216
Chapter 12

1 g AT g = 1K S T 0 =T 221
10]I Vo I 0 1= RS 222
MaKinNg TIMEr REQUESESceceeiieiiectie e see st e st teeste e teeste e stesstestesnaesneesnaesneesneesressnee e 223
Canceling Asynchronous Timer REQUESEScceveeririirierieerese e 225
(23 oTo T 1o T 1NN I T 1= 226

Contents External Development Guide

Chapter 13

IDL Internals: Files and Input/OuUtputcccoooeeiiieeiiieiiieeeecee, 229
IDL and INPUL/OULPUL FILES ..ottt e 230
File INFOrMBLION ...ttt e s eeseesreeneenee e 232
(@7 0= o110 1 T S 236
L@ o= o 1 =S 239
Preventing File ClOSINGoooveiiiieiecese et st srenneas 240
CheCKing File SEALUScoeieeeeeeeiese ettt e e neas 241
Allocating and Freeing FIl@ UNItScccciviiieieii e 243
Detecting ENG OF FIlE ..ottt 245
Flushing BUFfEred Dalalccceieieeiieriesieceeseste ettt st st st e e srenneas 246
Reading a SiNgle CharaCter ... 247
Output Of IDL VariableSccueceeieii ettt s s 248
Adding to the JOUrNal Fleooo i 249
Chapter 14

IDL Internals: MiSCellan@ouUScooveeeeeiiiiiiiiiiiieeeeee e 251
(D177l /= o] Y 252
EXIEHBNAIEL'S ..ottt s e et n e esaestesreeneenaennens 255
L0 L < 101 (= (1] PRSI 256
Functions for Returning System Variables ... 257
Terminal INFOrMELIONcooeiiiiieee ettt s 258
ENSUNNG UNIX TTY SEAE ...ttt 260
TYPE INFOIMELIONeeuveeie e s e s e s esreesreesreesreesneennaenrenns 261
LS g o0 7= o o RS PRRS 263
CONSLANTS ...ttt s s e e et e b e sh e e sb e e s b e e sbe e s be e b e e b e e reere e e 264
= L TSP R URPTPRPTUPROPI 265

Part Ill: Techniques That Use IDL's Internal API

Chapter 15

Adding System ROULINESccooviiiiiieeeirrr e 269
IDL and SyStemM ROULINEScccciuiiieeieiesieseceeee et sre et sae e sre et sne e eneese s 270
The System ROULINE INTEITACEocueieeee e 271
EXample: HEHOWOITA ..ottt nae s 272
Example: Doing aLittle More (MULTZ2) ...c.oooiiiieeeeee e 273
Example: A Complete Numerical Routine Example (FZ_ROOTS2)ccccovvveeevienene 276

External Development Guide Contents

Example: An Example Using Routine Design Iteration (RSUM)cccoovvvvvecievieennee. 285
REGISLENING ROULINES ..ottt ettt eeeseeseeenes 295
Enabling and Disabling System ROULINEScccocveieeieiiceceeese et e 298
LINKIMAGE ...ttt ettt sttt st na e sesaeaeseesensessenaeneesenseseenen 306
Dynamically Loadable MOAUIESccccueiieieiicececese sttt 308
Chapter 16

(@1 =1 o 1= | PSPPI 317
Calling IDL as @ SUDIOULINEcoeiiiieieieierieie e 318
When is Callable IDL APPrOPriate?cccoveciveceeieiiesee e sieeseeseesteesreessessseesreessesssee e 319
Licensing Issues and Callable IDLccciiirinieninesesie e s 322
USING CaAllADIE IDL ...ttt enes 323
T QTR AF= T2 (o] o S 325
Diverting IDL OULPULcceeieiieeiecieseeeiesseeseeseesaeesteesteesreesteesseesseensesnsesnsesnsesnnssneesns 331
EXeCUtiNg IDL SEBLEMENTSooveeeiiiiesierieieesie st 333
Runtime IDL and EMbedded IDL ..o 334
ClIEANUD ..ttt b ettt e et b bt b e st e e bt b e b e e e st b e e e 335
Issues and EXampPles: UNIX ..ottt et 336
Issues and Examples: MicroSoft WINAOWScoeeeinirienieienenesieseeesie e 352
Chapter 17

Adding External Widgets to IDLcccooiiiiiiiiieiiieeeeees e 363
IDL and EXternal WIAQELSccceieriririieieniesieseee e e 364
WIDGET _STUB ..ottt sttt sttt sttt st eb e st nne b 365
WIDGET_CONTROL/WIDGET_STUB ...ttt s sae e esse e 366
Functions for Use with StUD WIAQELSeceeveiicececeseeeee e 368
Internal Callback FUNCLIONSoieieeeie e e 371
UNIX WIDGET_STUB Example: WIDGET_ARROWSABccoooveininineeenesie e 373
Appendix A

Obsolete Internal INterfaces ... 379
Interfaces ODSOlEted iN IDL 6.3coceeieieie et ens 380
Interfaces Obsoleted IN IDL 5.5 ... e 382
Interfaces Obsoleted iN IDL 5.2.1ccoiiiiiieeeee et e 395
Simplified ROULINE INVOCALTIONcceeiieiicieeeeee et 398
Obsolete Error Handling APl ... 405

Contents External Development Guide

External Development Guide Contents

10

Contents External Development Guide

Chapter 1

External Development

Overview

This chapter discusses the following topics:

About ThisManual 12
Supported I nter-Language Communication
TechniquesinIDL 13

Dynamic Linking Terms and Concepts 20

When Is It Appropriate to Combine External
CodewithIDL?t 22

External Development Guide

Skills Required to Combine External Code

WithIDL ... 23
IDL Organization 27
External Definitions 29
Interpreting Logical Boolean Values 30
Compilation and Linking Details 31
Recommended Reading 32

11

12 Chapter 1: External Development Overview

About This Manual

The External Development Guide describes options for using code not written in the
IDL language alongside IDL itself. It is divided into three parts:

Part I: Techniques That Do Not Use IDL's Internal API

This section discusses techniques that allow IDL to work together with programs
written in other programming languages, using IDL’'s “public” interfaces. Little or no
familiarity with IDL’s internal interfacesisrequired. For many users, the techniques
in this section will solve most problems that require IDL to use — or be used by —
other programs. Topics covered in Part | include:

» Letting IDL programsinteract with other programs via pipes.
* Incorporating COM objects and ActiveX controlsinto IDL programs.

e Giving Microsoft Windows programs access to IDL features viathe
IDLDrawWidget ActiveX control.

* Incorporating Java objects into IDL programs.
e Using IDL as aRemote Procedure Call server on a UNIX system.

» Cdling routines written in other programming languages from within IDL
using the CALL_EXTERNAL function.

Part Il: IDL’s Internal API

This section describes IDL’s internal implementation in enough detail to allow you to
write an IDL system routine in another compiled programming language (usually C)
and link it with IDL.

Part 1ll: Techniques That Use IDL’s Internal API

This section describes the process of combining IDL with code written in another
programming language. Topics covered in Part |11 include:

» Creating a system routine using the interface described in Part 11 and linking
that routine into IDL at runtime.

e Cdling IDL as asubroutine from another program (“ Callable IDL™).
e Adding user-defined widgets to IDL widget applications.

About This Manual External Development Guide

Chapter 1: External Development Overview 13

Supported Inter-Language Communication
Techniques in IDL

IDL supports a number of different techniques for communicating with the operating
system and programs written in other languages. These methods are described, in
brief, below.

Options are presented in approximate order of increasing complexity. We
recommend that you favor the simpler options at the head of thislist over the more
complex ones that follow if they are capable of solving your problem.

It can be difficult to choose the best option — there is a certain amount of overlap
between their abilities. We highlight the advantages and disadvantages of each
method aswell as make recommendationsto help you decide which approach to take.
By comparing thislist with the requirements of the problem you are trying to solve,
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

All the benefits of using a high level, interpreted, array oriented environment
with high levels of platform independence.

Disadvantages
Not always possible.
Recommendation

Writing in IDL isthe easiest path. If you have existing code in another language that
is simple enough to translate to IDL, thisis the best way to go. You should
investigate the other optionsif the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardized
package. Another good reason for considering the techniques described in this book
isif you wish to access IDL ahilities from alarge program written in some other
language.

External Development Guide Supported Inter-Language Communication Techniques in IDL

14 Chapter 1: External Development Overview

SPAWN

The simplest (but most limited) way to access programs external to IDL isto usethe
SPAWN procedure. Calling SPAWN spawns a child process that executes a specified
command. The output from SPAWN can be captured in an IDL string variable. In
addition, IDL can communicate with a child process through a bi-directiona pipe
using SPAWN. More information about SPAWN can be found in Chapter 2, “Using
SPAWN and Pipes’ or in the documentation for “SPAWN” in the IDL Reference
Guide manual.

Advantages
e Simplicity
* Allows use of existing standal one programs.

» Datacan be sent to and returned by the program via a pipe, making
sophisticated inter-program communication possible quickly and easily.

Disadvantages

e Can be adow when transferring large datasets.

e Programs may not have a useful user interface.
Recommendation

SPAWN isthe easiest form of interprocess communication supported by IDL and
allows accessing operating system commands directly.

Microsoft COM and ActiveX

IDL supports the inclusion of COM objects and ActiveX controls within IDL
applications running on Microsoft Windows systems by encapsul ating the object or
control inan IDL object. Full access to the COM object or ActiveX control’s
methods is available in this manner, allowing you to incorporate features not
availablein IDL into IDL programs. For more information, see Chapter 2,
“Overview: COM and ActiveX in IDL” in the IDL Connectivity Bridges manual.

IDL also providesthe IDL DrawWidget ActiveX control. The IDLDrawWidget
control is built around IDL for Windows and provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in languages such as C,
C++, Visua Basic, Fortran, Delphi, and others. For more information, see Appendix
D, “The IDLDrawWidget ActiveX Control” in the IDL Connectivity Bridges manual.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 15

Advantages

e Integrates easily with an important interprocess communication mechanism
under Microsoft Windows.

e May support ahigher level interface than the function call interfaces supported
by the remaining options.

Disadvantages
e Only supported under Microsoft Windows.
Recommendation

Incorporate COM objects or ActiveX controls into your Windows-only IDL
application if doing so provides functionality you cannot easily duplicatein IDL.

Usethe IDL ActiveX control if you are writing a Windows-only application in a
language that supports ActiveX and you wish to use IDL to perform computation or
graphics within a framework established by this other application.

Sun Java

IDL also supports the inclusion of Java objects within IDL applications by
encapsulating the object or control in an IDL object. Full accessto the Java object is
available in this manner, allowing you to incorporate features not available in IDL
into IDL programs. For more information, see Chapter 5, “Using Java Objectsin
IDL” in the IDL Connectivity Bridges manual.

Advantages

* Integrates easily with al types of Java code.
¢ Caneasily leverage existing Java objectsinto IDL.

Disadvantages

* Only supported under Microsoft Windows, Linux, Solaris, and Macintosh
platforms supported in IDL.

Recommendation

Incorporate Java objectsinto your IDL application if doing so provides functionality
you cannot easily duplicatein IDL.

External Development Guide Supported Inter-Language Communication Techniques in IDL

16 Chapter 1: External Development Overview

UNIX Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communication
between IDL and other programs. IDL isrun asan RPC server and your own program
isrun asaclient. IDL's RPC functionality is documented in Chapter 4, “Remote
Procedure Calls”.

Advantages

» Code executes in a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

« APl issimilar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

« Possihility of overlapped execution on a multi-processor system.
Disadvantages

e Complexity of managing RPC servers.
e Bandwidth limitations of network for moving large amounts of data.

e Only supported under UNIX.
Recommendation

Use RPC if you are coding in a distributed UNIX-only environment and the amount
of data being moved is reasonable on your network. CALL _EXTERNAL might be
more appropriate for especially simpletasks, or if the external code is not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL's CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same memory and data space.
CALL_EXTERNAL ismuch easier to use than either system routines
(LINKIMAGE, DLMs) or Calable IDL and is often the best (and simplest) way to
communicate with other programs. CALL_EXTERNAL isalso supported on al IDL
platforms.

While many of the topics in this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found in Chapter

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 17

3,“Using CALL_EXTERNAL” and the documentation for “CALL_EXTERNAL” in
the IDL Reference Guide manual.

Advantages

« Allowscaling arbitrary code written in other languages.

* Reguireslittle or no understanding of IDL internals.
Disadvantages

e Errorsin coding can easily corrupt the IDL program.
* Requires understanding of system programming, compiler, and linker.

« Datamust be passed to and from IDL in precisely the correct type and size or
memory corruption and program errors will result.

e System and hardware dependent, requiring different binaries for each target
system.

Recommendation

Use CALL_EXTERNAL to call code written for general use in another language
(that is, without knowledge of IDL internals). For safety, you should call your
CALL_EXTERNAL functionswithin special IDL procedures or functions that do
error checking of the inputs and return values. In this way, you can reduce the risks of
corruption and give your callers an appropriate IDL-like interface to the new
functionality. If you use this method to incorporate external code into IDL, RS
highly recommends that you also use the MAKE_DLL procedure and the
AUTO_GLUE keyword to CALL_EXTERNAL.

If you lack knowledge of IDL internals, CALL_EXTERNAL isthe best way to add
external code quickly. Programmers who do understand IDL internals will often
write a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, DLMs)

It is possible to write system routines for IDL using a compiled language such as C.
Such routines are written to have the standard IDL calling interface, and are
dynamically linked, aswith CALL_EXTERNAL. They are more difficult to write,
but more flexible and powerful. System routines provide access to variables and other
objectsinside of IDL.

This book contains the information necessary to successfully add your own code to
IDL as asystem routine. Especially important is Chapter 15, “Adding System

External Development Guide Supported Inter-Language Communication Techniques in IDL

18 Chapter 1: External Development Overview

Routines’. Additional information about system routines can be found in Chapter 3,
“Using CALL_EXTERNAL” and in the documentation for “LINKIMAGE” in the
IDL Reference Guide manual.

Advantages

* Thisisthe most fully integrated option. It allows you to write IDL system
routines that are indistinguishable from those written by RSI.

¢ Inuse, system routines are very robust and fault tolerant.

e Allowsdirect accessto IDL user variables and other important data structures.
Disadvantages

* All the disadvantages of CALL_EXTERNAL.
* Requiresin-depth understanding of IDL internals, discussed in Part I of this
manual.
Recommendation

Use system routines if you require the highest level of integration of your code into
the IDL system. UNIX users with RPC experience should consider using RPCsto get
the benefits of distributed processing. If your task is sufficiently simple or you do not
have the desire or timeto learn IDL internals, CALL_EXTERNAL is an efficient
way to get the job done.

Callable IDL

IDL is packaged in a shareable form that allows other programsto call IDL asa
subroutine. This shareable portion of IDL can be linked into your own programs.
Thisuse of IDL isreferred to as“Callable IDL” to distinguish it from the more usual
case of calling your code from DL via CALL_EXTERNAL or as a system routine
(LINKIMAGE, DLM).

Thisbook contains the information necessary to successfully call IDL from your own
code.

Advantages

e Supported on all systems.

* Allows extremely low level accessto IDL.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 19

Disadvantages

e All the disadvantages of CALL_EXTERNAL or IDL system routines.

¢ |DL imposes some limitations on programming techniques that your program
can use.

Recommendation

Most platforms offer a specialized method to call other programs that might be more
appropriate. Windows users should consider the ActiveX control or COM

component. UNIX users should consider using the IDL RPC server. If these options
are not appropriate for your task and you wish to call IDL from another program, then

use CdlableIDL.

External Development Guide Supported Inter-Language Communication Techniques in IDL

20 Chapter 1: External Development Overview

Dynamic Linking Terms and Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into a form which is loadable by
programs at run time aswell aslink time. The ability to load them at run time iswhat
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

e UNIX: Sharable Libraries
e Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such files sharable librariesin order to have a consistent
and uniform way to refer to them. It should be understood that thisis a generic usage
that applies equally to all of these systems. Sharable libraries contain functions that
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the linker
gives you control over which functions and data (often referred to as symbols) are
visible from the outside (public symbols) and which are hidden (private symbols).
Such control over the interface presented by a sharable library can be very useful.
Your system documentation discusses these options and explains how to build a
sharable library.

Dynamic linking is the enabling technology for many of the techniques discussed in
thismanual. If you intend to use any of these techniques, you should first be sure to
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL uses dynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as system routines.

Callable IDL

Most of IDL isbuilt as asharable library. The actual IDL program that implements
the standard interactive IDL program links to this library and uses it to do its work.
Since IDL isasharable library, it can be called by other programs.

Dynamic Linking Terms and Concepts External Development Guide

Chapter 1: External Development Overview 21

Remote Procedure Calls (RPCs)

The IDL RPC server is aprogram that links to the IDL sharable library. The IDL
RPC client side library is also a sharable library. Your RPC client program links
against it to obtain access to the IDL RPC system.

External Development Guide Dynamic Linking Terms and Concepts

22 Chapter 1: External Development Overview

When Is It Appropriate to Combine External
Code with IDL?

IDL is an interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys alarge amount of portability across these
platforms because IDL provides accessto system abilities at arelatively high level of
abstraction. The large magjority of IDL users have no need to understand itsinner
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

e Many sites have an existing investment in other code that they would prefer to
use from IDL rather than incurring the cost of rewriting it in the IDL language.

* |tisoften best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviorsto it, and incur the ongoing maintenance costs of supporting it.

« IDL may belargely suitable for a given task, requiring only the addition of an
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understand
the following caveats:

* RSl attempts to keep the interfaces described in this document stable, and we
endeavor to minimize gratuitous change. However, we reserve the right to
make any changes required by the future evolution of the system. Code linked
with IDL is more likely to require updates and changes to work with new
releases of IDL than programs written in the IDL language.

e Theact of linking compiled codeto IDL isinherently less portable than use of
IDL at the user level.

« Troubleshooting and debugging such applications can be very difficult. With
standard IDL, malfunctions in the program are clearly the fault of RSI, and
given areproducible bug report, we attempt to fix them promptly. A program
that combines IDL with other code makes it difficult to unambiguously
determine where the problem lies. The level of support RSI can providein
such troubleshooting is minimal. The programmer is responsible for locating
the source of the difficulty. If the problemisin IDL, asimple program
demonstrating the problem must be provided before we can address the issue.

When Is It Appropriate to Combine External Code with IDL? External Development Guide

Chapter 1: External Development Overview 23

Skills Required to Combine External Code
with IDL

There is alarge difference between the level at which atypical user sees|DL
compared to that of the internals programmer. To the user, IDL is an easy-to-use,
array-oriented language that combines numerical and graphical abilities, and runs on
many platforms. Internally, IDL is alarge C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, and a
large amount of operating system-dependent code.

The amount of knowledge required to effectively write internals code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have experience and proficiency in many of the
following areas:

Microsoft COM

To incorporate a COM object into your IDL program, you should be familiar with
COM interfaces in general and the interface of the object you are using in particular.

Microsoft ActiveX

To incorporate an ActiveX control into your IDL widget application, you should be
familiar with COM interfacesin general and the interface of the control you are using
in particular.

To use the IDLDrawWidget ActiveX control, you should be familiar with the
programming environment in which you will be using the control (Visual Basic, for
example). A level of understanding of ActiveX and COM is necessary.

Sun Java

To incorporate a Java object into your IDL program, you should be familiar with Java
object classesin general and the methods and data members of the object you are
using in particular.

UNIX RPC

To use IDL as an RPC server, aknowledge of Sun RPC (Also known as ONC RPC)
isrequired. Sun RPC is the fundamental enabling technology that underlies the
popular NFS (Network File System) software available on al UNIX systems, and as
such, is universally available on UNIX. The system documentation on this subject
should be sufficient.

External Development Guide Skills Required to Combine External Code with IDL

24 Chapter 1: External Development Overview

ANSI C

IDL iswrittenin ANSI C. To understand the data structures and routines described in
this document, you must have a compl ete understanding of this language.

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand the
compilation tools being used as well as those used to build IDL and how they might

interact. IDL is built with the standard C compiler used (and usually supplied) by the
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions (C++, Fortran, ...)

Itispossibleto link IDL directly with code written in compiled languages other than
C athough the details differ depending on the machine, language, and compiler used.
It isthe programmer’s responsibility to understand the inter-language calling
conventions and rules for the target environment—there are too many possibilities
for RSl to actively document them all. ANSI C is a standard system programming
language on all systems supported by IDL, soitisusually straightforward to combine
it with code written in other compiled languages. You need to understand:

« The conventions used to pass parameters to functions in both languages. For
example, C uses call-by-value while Fortran uses call-by-reference. It is easy
to compensate for such conventions, but they must be taken into account.

* Any systematic name changes applied by the compilers. For example, some
compilers add underscores at the beginning or end of names of functions and
globa data.

e Any run-timeinitialization that must be performed. On many systems, the real
initial entry point for the program is not main(), but a different function that
performs some initialization work and then calls your main() function. Usually
these issues have been addressed by the system vendor, who has alarge
interest in allowing such inter-language usage:

* Ifyoucall IDL from aprogram written in alanguage other than C, has the
necessary initialization occurred?

e If youuseIDL to cal codewrittenin alanguage other than C, do you need
to take steps to initialize the runtime system for that |anguage?

e Arethe two runtime systems compatible?

Alternatives to direct linking (Microsoft COM or Active X) exist on some systems
that ssimplify the details of inter-language linking.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 25

C++

We are often asked if IDL can call C++ code. Compatibility with C has always been
astrong design goal for C++, and C++ islargely a superset of the C language. It
certainly is possible to combine IDL with C++ code. Callable IDL is especially
simple, as all you need to do isto include the idl_export.h header file in your C++
code and then call the necessary IDL functions directly. Calling C++ code from IDL
(CALL_EXTERNAL, System Routines) is also possible, but there are some issues
you should be aware of:

e AsaC program, IDL isnot able to directly call C++ methods, or use other
object-oriented features of the C++ language. To use these C++ features, you
must supply afunction with C linkage (using an extern “C” specification) for
IDL to call. That routine, which iswritten in C++ is then able to use the C++
features.

e |DL does not initialize any necessary C++ runtime code. Your system may
reguire such code to be executed before your C++ code can run. Consult your
system documentation for details. (Please be aware that thisinformation can be
difficult to find; locating it may require some detective work on your part.)

Fortran
Issues to be aware of when combining IDL with Fortran:

* The primary issue surrounding the calling of Fortran code from IDL is one of
understanding the calling conventions of the two languages. C passes
everything by value, and supplies an operator that lets you explicitly take the
address of amemory object. Fortran passes everything by reference (by
address). Difficulties in calling FORTRAN from C usually come down to
handling this issue correctly. Some people find it helpful to write a C wrapper
function to call their Fortran code, and then have IDL call the wrapper. Thisis
generally not necessary, but may be convenient.

« IDL isaC program, and as such, does not initialize any necessary Fortran
runtime code. Your system may require such code to be executed before your
Fortran code can run. In particular, Fortran code that does its own input output
often requires such startup code to be executed. Consult your system
documentation for details. One common strategy that can minimize this sort of
problemisto use IDL’s I/O facilities to do I/O, and have your Fortran code
limit itself to computation.

External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: External Development Overview

Operating System Features and Conventions

With the exception of purely numerical code, the programmer must usually fully
understand the target operating system environment in which IDL isrunning in order
to write code to link with it.

Microsoft Windows

You must be an experienced Windows programmer with an understanding of
Windows APIsand DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, and
possibly even X Windows depending on the scope of the code being linked.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 27

IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understand a
little about itsinternal operation. This section isintended to give just enough
background to understand the material that follows. Traditional interpreted languages
work according to the following algorithm:

while (statenents remaining) {
Cet next statement.
Perform | exical analysis and parse statenent.
Execute statenent.

}

Thisdescription is accurate at a conceptual level, and most early interpretersdid their
work in exactly this way dueto its simplicity. However, this scheme is inefficient
because:

* The meaning of each statement is determined by the relatively expensive
operations of lexical analysis, parsing, and semantic analysis each and every
time the statement is encountered.

e Since each statement is considered in isolation, any statement that requires
jumping to adifferent location in the program will require an expensive search
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system isthe interpreter.
The interpreter implements a simple, stack-based postfix language, in which each
instruction corresponds to a primitive of the IDL language. Thisinternal formisa
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into thisinternal form by the IDL compiler when the .RUN
executive command isissued, or when any other command requires a new routine to
be executed. Oncethe IDL routineis compiled, the original versionisignored, and all
references to the routine are to the compiled version. Some of the advantages of this
organization are;

¢ The expensive compilation process is only performed once, no matter how
often the resulting code is executed.

e Statements are not considered in isolation, so the compiler keeps track of the
information required to make jumping to a new location in the program fast.

e Thebinary internal form is much faster to interpret than the original form.

External Development Guide IDL Organization

28

Chapter 1: External Development Overview

e Theinterna formis compact, leading to better use of main memory, and
allowing more code to fit in any memory cache the computer might be using.

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains pointers
to variables, which are implemented by IDL_VARIABLE structures (see “The
IDL_VARIABLE Structure” on page 153). Pointersto IDL_VARIABLEs are
referred to asIDL_VPTRs. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and then
pushing the IDL_VPTR to theresulting IDL_VARIABL E back onto the stack. The
removed items are the arguments to the instruction, and the new element represents
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routine is compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error if an
invalid number of arguments is specified.

At execution time, the interpreter instructions that execute system procedures and
functions operate as follows:

1. Look up the requested routine in the internal table of routines.
2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If theroutine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpreter
does al the work related to pushing and popping elements from the stack. The called
function need only worry about executing its operation and providing aresult.

IDL Organization External Development Guide

Chapter 1: External Development Overview 29

External Definitions

Thefilei dl _export. h, foundintheext er nal /i ncl ude subdirectory of the IDL
distribution, supplies all the IDL-specific definitions required to write code for
inclusion with IDL. As such, this file defines the interface between IDL and your
code. It will be worth your while to examine thisfile, reading the comments and
getting a general idea of what isavailable. If you are not writing in C, you will have
to translate the definitionsin thisfile to suit the language you are using.

Warning
i dl _export . h contains some declarations which are necessary to the compilation
process, but which are still considered private to RSI. Such declarations are likely to
be changed in the future and should not be depended on. In particular, many of the
structure data types discussed in this document have more fields than are discussed
here—such fields should not be used. For this reason, you should always include
i dl _export. h rather than entering the type definitions from this document. This
will also protect you from changesto these data structuresin future releases of IDL.
Anythingini dl _export. h that isnot explicitly discussed in this document
should not be relied upon.

The following two lines should be included near the top of every C program file that
isto become part of IDL:

#i ncl ude <stdio. h>
#i ncl ude "idl _export.h"

External Development Guide External Definitions

30

Chapter 1: External Development Overview

Interpreting Logical Boolean Values

IDL iswritten in the C programming language, and this manual therefore discusses C
language functions and data structures from the IDL program. In this documentation,
you will see referencesto logical (boolean) arguments and results referred to in any
of the following forms: True, False, TRUE, FALSE, IDL_TRUE, IDL_FALSE, and
possibly other permutations on these. In all cases, the meaning of true and falsein
this manual correspond to those of the C programming language: A zero (0) valueis
interpreted as “false”, and a non-zero value is “true’.

When reading this manual, please be aware of the following points:

Unless otherwise specified, the actual word used when discussing logical
valuesis not important (i.e. true, True, TRUE, and IDL_TRUE) all mean the
same thing.

Internally, IDL usesthe IDL_TRUE and IDL_FAL SE macros described in
“Macros’ on page 265, for hard-wired logical constants. These macros have
the values 1, and O respectively. This convention is nothing more than
reflection of the need for a consistent standard within our code, and adesire to
keep IDL names within a standard namespace to avoid collisions with user
selected names. Otherwise, any of those other alternative names might have
been used with equally good results.

We don't usethe IDL_TRUE and IDL_FAL SE convention in the text of this
book because it would be unnecessarily awkward, preferring the more natural
True/TRUE and False/FAL SE.

The convention for truth valuesin the IDL Language differ from those used in
the C language. It isimportant to keep the language being used in mind when
reading code to avoid drawing incorrect conclusions about its meaning.

Interpreting Logical Boolean Values External Development Guide

Chapter 1: External Development Overview 31

Compilation and Linking Details

Once you've written your code, you need to compileit and link it into IDL before it
can be run. Information on how to do thisis available in the various subdirectories of
theext er nal subdirectory of the IDL distribution. Referencesto filesthat are useful
in specific situations are contained in this book.

In addition:

The IDL MAKE_DLL procedure, documented in the IDL Reference Manual,
provides a portable high level mechanism for building sharable libraries from
code written in the C programming language.

ThelDL 'MAKE_DLL system variableis used by the MAKE_DLL procedure
to construct C compiler and linker commands appropriate for the target
platform. If you do not use MAKE_DLL to compile and link your code, you
may find the value of IMAKE DLL.CC and 'MAKE _DLL.LD helpful in
determining which options to specify to your compiler and linker, in
conjunction with your system and compiler documentation. For the C
language, the optionsin IMAKE_DLL should be very close to what you need.
For other languages, the IMAKE_DLL options should still be helpful in
determining which options to use, as on most systems, all the language
compilers accept similar options.

The UNIX IDL distribution has abi n subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with thesefilesisaMakef i | e that shows how to build IDL from
the shareable libraries present in the directory. The link linein this makefile
should be used as a starting point when linking your code with Callable IDL—
simply omit mai n. o and include your own object files, containing your own
main program.

A more detailed description of the issues involved in compiling and linking
your code can be found in this book under “Compiling Programs That Call
IDL” on page 336.

External Development Guide Compilation and Linking Details

32 Chapter 1: External Development Overview

Recommended Reading

There are many books written on the topics discussed in the previous section. The
following list includes books we have found to be the most useful over the yearsin
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are also excellent. The absence of abook from thislist
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9.
Thisisthe origina C language reference, and is essential reading for this subject.

In addition, you should study the vendor supplied documentation for your compiler.
Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applications that call IDL in the Microsoft Windows environment.

Petzold, Charles. Programming Windows, The Definitive Guide to the Win32 API,
Microsoft Press, 1998. ISBN 157231995X (Supersedes: Programming Windows 95).

Richter, Jeffrey. Programming Applications for Microsoft Windows. Microsoft Press,
1999. ISBN 1572319968 (Supersedes: Advanced Windows, Third Edition).

The Microsoft Developer Network (MSDN) supplies essential documentation for
programming in the Windows environment. This documentation is part of the Visual
C++ environment. More information on the MSDN is available at

http://nmsdn. mi crosoft.com

Sun Java

Fanagan, David. Java in a Nutshell, Fourth Edition, O’ Reilly & Associates, March
2002. ISBN 0596002831. This book provides an accelerated introduction to the Java
language and key APIs.

In addition, you should study the Java tutorials and documentation provided on the
Sun’s Java website (http://www.java.sun.com).

UNIX

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,
Massachusetts: Addison Wesley, 1992. ISBN 0-201-56317-7. Thisis the definitive

Recommended Reading External Development Guide

http://www.java.sun.com

Chapter 1: External Development Overview 33

reference for UNIX system programmers. It covers all the important UNIX concepts
and covers the mgjor UNIX variantsin complete detail.

Rochkind, Marc J. Advanced UNIX Programming (Second Edition). Boston:
Addison-Wesley Professional, 2004. ISBN 0-13-141154-3. Thisvolumeisalso
extremely well written and does an excellent job of explaining and motivating the
fundamental UNIX concepts that underlie the UNIX system calls.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

X Windows

The X Windows series by O’ Reilly & Associates contains all the information needed
to program for the X Window system. There are several volumes—the ones you will
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys. X Window System. Digital Press. Thisis
purely areference manual, as opposed to the O’ Reilly books which contain alarge
amount of tutorial aswell as reference information. This book is primarily useful for
those using XLIB to draw graphicsinto Motif Draw Widgets and for those who need
to understand the base layers of X Windows. Motif programmers may not require this
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of quality
and usefulness. Note that most X Windows books are updated with each version of
the system. (X Version 11, Release 6 isthe current version at this printing.)

External Development Guide Recommended Reading

34

Recommended Reading

Chapter 1: External Development Overview

External Development Guide

Part I: Techniques
That Do Not Use IDL’s
Internal API

Chapter 2

Using SPAWN and
Pipes

IDL’s SPAWN procedure spawns a child process to execute a command or series of
commands. General use of SPAWN isdescribed in detail in the IDL Reference Guide.
This section describes how to use SPAWN to communicate with the spawned child
process using operating system pipes.

By default, calls to the SPAWN procedure cause the IDL processto wait until the
child process has finished before continuing, with output sent to the standard output
or captured in an IDL variable. Alternatively, IDL can attach a bidirectional pipeto
the standard input and output of the child process, and then continue without waiting
for the child processto finish. The pipe created in this manner appearsin the IDL
process as anormal logical file unit.

Once a process has been started in this way, the normal IDL input/output facilities
can be used to communicate with it. The ability to use a child processin this manner
alowsyou to solve specialized problems using other languages and to take advantage
of existing programs.

External Development Guide 37

Chapter 2: Using SPAWN and Pipes

In order to start such a process, use the UNIT keyword to SPAWN to specify a named
variable in which the logical file unit number will be stored. Once the child process
has done its work, use the FREE_LUN procedure to close the pipe and delete the
process.

When using a child processin thismanner, it isimportant to understand the following
points:

« Closing the file unit causes the child process to be killed. Therefore, do not
close the unit until the child process completes its work.

« A pipeissimply abuffer maintained by the operating system with an interface
that makes it appear as afile to the programs using it. It has a fixed length and
can therefore become completely filled. When this happens, the operating
system puts the process that is filling the pipe to sleep until the process at the
other end consumes the buffered data. The use of a bidirectional pipe can lead
to deadlock situations in which both processes are waiting for the other. This
can happen if the parent and child processes do not synchronize their reading
and writing activities.

e Most C programs use the input/output facilities provided by the Standard C
Library (stdio). In situations where IDL and the child process are carrying on a
running dialog (as opposed to a single transaction), the normal buffering
performed by stdio on the output file can cause communications to hang. We
recommend calling the stdio setbuf() function asthefirst statement of the child
program to eliminate such buffering.

(void) setbuf(stdout, (char *) 0);

It isimportant that this statement occur before any output operationis
executed; otherwise, it may not have any effect.

Example: Communicating with a Child Process via
an Operating System Pipe

The C program shown in the following example (t est _pi pe. c¢) accepts floating-
point values from its standard input and returns their average on the standard outpui.
In actual practice, such atrivial program would never be used from IDL, sinceitis
simpler and more efficient to perform the calculation within IDL itself. The example
does, however, serveto illustrate a method by which significant programs can be
called from IDL.

In the interest of brevity, some error checking that would normally be included in
such a program has been omitted. For example, areal program would need to check

External Development Guide

Chapter 2: Using SPAWN and Pipes 39

the non-zero return valuesfrom f r ead(3) andfwri t e(3) to ensurethat the
desired amount of datawas actually transferred.

The code for this example can be found in the spawn subdirectory of the ext er nal
directory of the IDL distribution. Instructions for building it can be found in the
README filelocated in that directory.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>

int main(int argc, char **argv)
{
float *data, total = 0.0;
9 char *err_str;
10 int i, n;

0O~NO O WNPRF

12 /* Make sure the output is not buffered */
13 set buf (stdout, (char *) 0);

14
15 /* Find out how many points */
16 if (!'fread(&n, sizeof(n), 1, stdin)) goto error;
17
18 /* Get nenory for the array */
C 19 if (!I(data = (float *) malloc(n * sizeof(*data)))) goto error;
20
21 /* Read the data */
22 if (!fread(data, sizeof(*data), n, stdin)) goto error;
23

24 /* Cal cul ate the average */
25 for (i=0; i <n; i++) total += data[i];
26 total /= (float) n;

27

28 /* Return the answer */

29 if ('fwite(&otal, sizeof(*data), 1, stdout)) goto error;
30 return O; /* Success */

31

32] error:

33 err_str = strerror(errno);

34 if (lerr_str) err_str = "<unknown error>";
35 fprintf(stderr, "test_pipe: %\n", err_str);
36 return 1; [* Failure */

371 }

Table 2-1: test_pipe.c

External Development Guide

40 Chapter 2: Using SPAWN and Pipes
This program performs the following steps:
1. Readsalong integer that tells how many data pointsto expect, becauseit is
desirable to be able to average an arbitrary number of points.
2. Obtains dynamic memory viathe malloc() function, and reads the data into it.
3. Calculates the average of the points.
4. Returnsthe answer as asingle floating-point value.
Since the amount of input and output for this program is explicitly known and
because it reads all of itsinput at the beginning and writes al of its results at the end,
adeadlock situation cannot occur.
The following IDL statements use test_pipe to determine the average of the values 0
to 9:
1] PRO test_pipe
2
3 Start test_pipe. The use of the NOSHELL keyword is not
4 necessary, but serves to speed up the start-up process.
5 SPAWN, 'test_pipe’, UNIT=UNIT, /NOSHELL
6
7 Send the number of points followed by the actual data.
8 VRITEU, UNIT, 10L, FI NDGEN(10)
9
IDL 10 Read the answer.
11 READU, UNI T, ANSWER
12
13 ; Announce the result.
14 PRI NT, ' Average = ', ANSVER
15
16 Close the pipe, delete the child process, and deal |l ocate the
17 logical file unit.
18 FREE_LUN, UNIT
19§ END

Table 2-2: pro test_pipe

Executing the IDL TEST_PIPE procedure gives the result:
Aver age = 4.50000

This mechanism provides the IDL user asimple and efficient way to augment DL
with code written in other languages such as C or Fortran. It is, however, not as
efficient as writing the required operation entirely in IDL. The actual cost depends
primarily on the amount of data being transferred.

External Development Guide

Chapter 2: Using SPAWN and Pipes

For example, the above example can be performed entirely in IDL using asimple
statement such as the following:

PRI NT, 'Average = ', TOTAL(FI NDGEN(10))/10.0

External Development Guide

41

42

Chapter 2: Using SPAWN and Pipes

External Development Guide

Chapter 3

Using

CALL_EXTERNAL

This chapter discusses the following topics:

The CALL_EXTERNAL Function 44
Passing Parameters 54
Using AutoGlue 56
BasicCExamples 58
Wrapper Routines 62

External Development Guide

Passing StringData 64
PassingArrayData................... 68
Passing Structures 70
FortranExamples 72

43

44 Chapter 3: Using CALL_EXTERNAL

The CALL_EXTERNAL Function

IDL allowsyou to integrate programs written in other languages with your IDL code,
either by calling a compiled function from an IDL program or by linking a compiled
function into IDL’s internal system routine table:

e The CALL_EXTERNAL function allowsyou to call external functions
(written in C/C++ or Fortran, for example) from your IDL programs. You
should be comfortable writing and building programs in the external language
being used, but significant knowledge of IDL’s internals beyond basic type
mapping between the languages is generally not necessary.

¢ Anadternativeto CALL_EXTERNAL isto write an IDL system routine and
merge it with IDL at runtime. Routines merged in this fashion are added to
IDL’sinternal system routine table and are available in the same manner as
IDL built-in routines. This technique is discussed in Chapter 15, “Adding
System Routines’. To write a system routine, you will need to understand the
IDL internals discussed in later sections of this book.

This chapter covers the basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX and Windows versions of IDL. It
can be helpful to refer to the documentation for “CALL_EXTERNAL” inthe IDL
Reference Guide manual when reading this material.

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. Arguments passed to IDL are passed to this external code, and
returned data from the external code is automatically presented as the result from
CALL_EXTERNAL asan IDL variable. IDL and the called routine share the same
process address space. Because of this, CALL_EXTERNAL avoids the overhead of
process creation of the SPAWN routine. In addition, the shareable object library is
only loaded the first timeit is referenced, saving overhead on subsequent calls.

CALL_EXTERNAL is much easier to use than writing a system routine. Unlike a
system routine, however, CALL_EXTERNAL does not check the type or number of
parameters. Programming errors in the external routine are likely to result in
corrupted data (either in the routine or in IDL) or to cause IDL to crash. See
“Common CALL_EXTERNAL Pitfalls’ on page 51 for help in avoiding some of the
more common mistakes.

Example Code in the IDL Distribution

This chapter contains examples of CALL_EXTERNAL use. All of the code for these
examples, along with additional examples, can be foundinthecal | _ext er nal

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 45

subdirectory of the ext er nal directory of the IDL distribution. The C language
examples use the MAKE_DLL procedure, and can therefore be easily run on any
platform supported by IDL. To build the sharable library containing the external C
code and then run all of the provided examples, execute the following IDL
statements:

PUSHD, FI LEPATH('’ , SUBDI RECTORY=[" external’,’call _external’,’C])

ALL_CALLEXT_EXAMPLES

POPD
Additional information on these examples, including details on running the
individual examples, can be found in the README file located in that directory.

CALL_EXTERNAL Compared to UNIX Child Process

In many situations, a UNIX IDL user has a choice of using the SPAWN procedure to
start a child process that executes external code and communicates with IDL viaa
pipe connecting the two processes. The advantages of this approach are:

* Simplicity.

« The processes do not share address space, and are therefore protected from
each other’s mistakes.

The advantages of CALL_EXTERNAL are:

* IDL and the called routine share the same memory and data space. Although
this can be a disadvantage (as noted above) there are times where sharing
address space is advantageous. For example, large data can be easily and
cheaply shared in this manner.

e« CALL_EXTERNAL avoids the overhead of process creation and parameter
passing.
* The shareable object library containing the called routine is only loaded the

first timeit is referenced, whereas a SPAWNed process must be created for
each use of the external code.

Compilation and Linking of External Code

Each operating system requires different compilation and link statements for
producing a shareable object suitable for usage with CALL_EXTERNAL. Thisis
even true between different implementations of a common operating system family.
For example, most UNIX systems require unique options despite their shared
heritage. You must consult your system and compiler documentation to find the
appropriate options for your system.

External Development Guide The CALL_EXTERNAL Function

46 Chapter 3: Using CALL_EXTERNAL

ThelDL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
a portable high level mechanism for building sharable libraries from code writtenin
the C programming language. In many situations, this procedure can completely
handle the task of building sharable libraries to be used with CALL_EXTERNAL.
MAKE_DLL requiresthat you have a C compiler installed on your system that is
compatible with the compiler described by the IDL IMAKE_DLL system variable.

TheIDL IMAKE_DLL system variableis used by the MAKE_DLL procedure to
construct C compiler and linker commands appropriate for the target platform. If you
do not use MAKE _DLL to compile and link your code, you may find the contents of
IMAKE_DLL.CC and 'MAKE_DLL.LD helpful in determining which options to
specify to your compiler and linker, in conjunction with your system and compiler
documentation. For the C language, the optionsin IMAKE_DLL should be very
close to what you need. For other languages, the 'MAKE_DL L options should be
helpful in determining which options to use, as on most systems, all the language
compilers accept similar options.

AUTO_GLUE

Asdescribed in “Passing Parameters’ on page 54, CALL_EXTERNAL usesthe IDL
Portable Calling Convention to call external code. This convention uses an (ar gc,
ar gv) styleinterface to allow CALL_EXTERNAL to call routines with arbitrary
numbers and types of arguments. Such an interface is necessary, because IDL, like
any compiled program, cannot generate arbitrary function calls at runtime.

Of course, most C functions are not written to the IDL portable convention. Rather,
they are written using the natural form of argument passing used in compiled
programs. It is therefore common for IDL programmers to write so-called glue
functionsto match the IDL calling interface to that of the target function. On systems
that have a C compiler installed that is compatible with the one described by the IDL
IMAKE_DLL system variable, the AUTO_GLUE keyword to CALL_EXTERNAL
can be used to instruct IDL to automatically write, compile, and load this glue code
on demand, and using a cache to preserve this glue code for future invocations of
functions with the same interface.

AUTO_GLUE thusalows CALL_EXTERNAL to call functions with a natural
interface, without requiring the user to write or compile additional code.
AUTO_GLUE isdescribed in the documentation for “CALL_EXTERNAL” in the
IDL Reference Guide manual, aswell asin “Using Auto Glue” on page 56. The
examples given in “Basic C Examples’ on page 58 show CALL_EXTERNAL used
with and without AUTO_GLUE.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 47

Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using IDL_M essage(). Performing input/output from
code external to IDL, especialy to the user console or tty (e.g. st di n or st dout),
may generate unexpected results.

Memory Cleanup

IDL hasasdtrict internal policy that it never performs memory cleanup on memory
that it did not allocate. This policy is necessary so that external code which allocates
memory can use any memory allocation package it desires, and so that thereis no
confusion about which code is responsible for releasing allocated memory.

Note
The code that allocates memory is aways responsible for freeing it. IDL allocates
and frees memory for itsinternal needs, and external code is not allowed to release
such memory except through a proper IDL function documented for that purpose.
Similarly, IDL will never intentionally free memory that it did not allocate.

Assuch, IDL does not perform any memory cleanup calls on the values returned
from external code called viathe CALL_EXTERNAL routine. Because of this, any
dynamic memory returned to IDL will not be returned to the system, which will result
in amemory leak. Users should be aware of this behavior and design their
CALL_EXTERNAL routinesin such amanner as not to return dynamically allocated
memory to IDL. The discussion in “Passing String Data’ on page 64 contains an
example of doing thiswith strings.

Memory Access

IDL and your external code share the same address space within the same running
program. This means that mistakes common in compiled languages, such asawild
pointer altering memory that it does not own, can cause problems elsewhere. In
particular, external code can easily corrupt IDL’s data structures and otherwise cause
IDL to fail. Authors of such code must be especially careful to guard against such
errors.

Argument Data Types

When using CALL_EXTERNAL to call external code, IDL passesits argumentsto
the called code using the data types that were passed to it. It has no way to verify

External Development Guide The CALL_EXTERNAL Function

48 Chapter 3: Using CALL_EXTERNAL

independently that these types are the actual types expected by the external routine. If
the data types passed are not of the types expected by the external code, the results
are undefined, and can easily include memory corruption or even crashing of the IDL
program.

Warning
You must ensure that the arguments passed to external code are of the exact type
expected by that routine. Failure to do so will result in undefined behavior.

Mapping IDL Data Types to External Language Types

When writing external code for use with CALL_EXTERNAL, your code must use
datatypes that are compatible with the C data types used internally by IDL to
represent the IDL datatypes. This mapping is the topic of Chapter 5, “IDL Internals:
Types'.

By-Value and By-Reference Arguments

There are two basic formsin which arguments can be passed between functionsin
compiled languages such as C/C++ and Fortran. To use CALL_EXTERNAL
successfully, you should be comfortable with these terms and their meanings. In
particular, Fortran programmers are often unaware that Fortran code passes
everything by reference, and that C code defaults to passing everything by value. By
default, CALL_EXTERNAL passes arguments by reference (unless this behavior is
explicitly altered by the use of the ALL_VALUE or VALUE keywords), so no special
action istypically required to call Fortran code viaCALL_EXTERNAL.

Warning
You must ensure that the arguments passed to external code are passed using the
correct method — by value, or by reference. Failure to do so will result in undefined
behavior.

Arguments Passed by Value

A copy of the value of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are local to that routine, and do not change
the original value of the variable in the calling routine. C/C++ pass everything by
value, but have an explicit address-of operator (&) that is used to pass addresses of
variables and get by-reference behavior.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 49

Arguments Passed by Reference

The machine address of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are immediately visible to the caller,
because both routines are actually modifying the same memory addresses. Fortran
passes everything by reference, but most Fortran implementations support intrinsic
operators that allow the programmer control over this (sometimes called %L OC and
%VAL, or just LOC and VAL). Consult your compiler documentation for details.

Microsoft Windows Calling Conventions

All operating system/hardware combinations define an inter-routine calling
convention. A calling convention defines the rules used for passing arguments
between routines, and specifies such details as how arguments of different types are
passed (i.e. in registers or on the system stack) and how and when such arguments are
cleaned up.

A stable and efficient calling convention is critical to the stability of an operating
system, and can affect most aspects of the system:

* Theéefficiency of the entire system depends on the efficiency of the core
calling convention.

« Backwards compatibility, and thus the longevity of binary software written for
the platform depends on the stability of the calling convention.

» Cadlling routines from different languages within a single program depends on
all the language compilers adhering to the same calling convention. Even
within the same language, the ability to mix code compiled by different
compilers requires those compilers to adhere to the same conventions. For
example, at the time of this writing, the C++ language standard lacks an
Application Binary Interface (ABI) that can be targeted by all C++ compilers.
This can lead to situations in which the same compiler must be used to build all
of the code within a given program.

Microsoft Windows is unique among the platforms supported by IDL in that it has
two distinct calling conventions in common use, whereas other systems define a
single convention. On single-convention systems, the calling conventionis
unimportant to application programmers, and of concern only to hardware designers
and the authors of compilers, and operating systems. On a multiple convention
system, application programmers sometimes need to be aware of the issue, and
ensure that their code is compiled to use the proper convention and that calls to that
code use the same convention. The Microsoft Calling Conventions are:

External Development Guide The CALL_EXTERNAL Function

50 Chapter 3: Using CALL_EXTERNAL

STDCALL

STDCALL isthe caling convention used by the mgjority of the Windows
operating system API. InaSTDCALL call, the calling routine places the
arguments in the proper registers and/or stack locations, and the called routine
isresponsible for cleaning them up and unwinding the stack.

CDECL

CDECL isthe calling convention used by C/C++ code by default. This default
can be changed via compiler switches, declspec declarations, or #pragmas.
With CDECL, the caller isresponsible for both setup and cleanup of the
arguments. CDECL isableto call functions with variable numbers of
arguments (varargs functions) because the caller knows the actual number of
arguments passed at runtime, whereas STDCALL cannot call such functions.
Thisisbecause the STDARGS routine cannot know efficiently at compiletime
how many arguments it will be passed at runtime in these situations.

The inconvenience of having two distinct and incompatible calling conventionsis
usually minor, because the header files that define functions for C/C++ programs
include the necessary definitions such that the compiler knows to generate the proper
code to call them and the programmer is not required to be aware of the issue.
However, CALL_EXTERNAL does have a problem: Unlike a C/C++ program, IDL
determines how to call afunction solely by the arguments passed to
CALL_EXTERNAL, and not from a header file.

IDL therefore has no way to know how your external code was compiled. It uses the
STDARG convention by default, and the CDECL keyword can be used to change the
default. CALL_EXTERNAL therefore relies on the IDL user to tell it which
convention to use. If IDL calls your code using the correct convention, it will work
correctly. If it calls using the wrong convention, the results are undefined, including
memory corruption and possible crashing of the IDL program.

Warning
The default calling convention for CALL_EXTERNAL is STDCALL, whereas the
default convention for the Microsoft C compiler is CDECL. Hence, Windows users
must usually specify the CDECL keyword when calling such code from IDL. Non-
Windows versions of IDL ignore the CDECL keyword, so it is safe to always
include it in cross platform code.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 51

Here iswhat happens when external code is called viathe wrong calling convention:

« |f aSTDARG call ismadeto a CDECL function, the caller placesthe
arguments in the proper registers/stack locations, and relies on the called
routine to cleanup and unwind the stack. The called routine, however, does not
do these things because it is a CDECL routine. Hence, cleanup does not

happen.
« If aCDECL call is made to a STDARG function, the caller placesthe

arguments in the proper register/stack locations. The called routine cleans up
on exit, and then the caller cleans up again.

Either combination is bad, and can corrupt or kill the program. Sometimes this
happens, and sometimes it doesn’t, so the results can be random and mysterious to
programmers who are not aware of the issue.

Note
When the wrong calling convention is used, it is common for the process stack to
become confused. A “smashed stack” visible from the C debugger following a
CALL_EXTERNAL isusually indicative of having used the wrong calling
convention.

Common CALL_EXTERNAL Pitfalls

Following are alist of common errors and mistakes commonly seen when using
CALL_EXTERNAL.

e The number of arguments and their types, as passed to CALL_EXTERNAL,
must be the exact types expected by the external routine. In particular, it is
common for programmers to forget that the default IDL integer is a 16-bit
value and that most C compilers definethei nt type as being a 32-bit value.
You should be careful to use IDL LONG integers, which are 32-bit, in such
cases. See “Argument Data Types' on page 47 for additional details.

e Passing data using the wrong form: Using by-value to pass an argument to a
function expecting it by-reference, or the reverse. See”By-Vaue and By-
Reference Arguments’ on page 48 for additional details.

¢ Under Microsoft Windows, using the incorrect calling convention for a given
external function. See “Microsoft Windows Calling Conventions’ on page 49
for additional details.

External Development Guide The CALL_EXTERNAL Function

52

Chapter 3: Using CALL_EXTERNAL

Failure to understand that IDL uses IDL_STRING descriptors to represent
strings, and not just a C style NULL terminated string. Passing a string value
by reference passes the address of the IDL_STRING descriptor to the external
code. See Chapter 8, “IDL Internals. String Processing” for additional details.

Attempting to make IDL data structures use memory allocated by external
code rather than using the proper IDL API for creating such data structures.
For instance, attempting to give an IDL_STRING descriptor a different value
by using C malloc() to allocate memory for the string and then storing the
address of that memory inthe IDL_STRING descriptor is hot supported, and
can easily crash or corrupt IDL. Although IDL uses malloc()/free() internally
on most platforms, you should be aware that thisis not part of IDL’s public
interface, and that RSI can change this at any time and without notice. Even on
platforms where IDL does use these functions, its use of them is not directly
compatible with similar calls made by external code because IDL allocates
additional memory for bookkeeping that is generally not present in memory
allocations from other sources. See Chapter 8, “IDL Internals: String
Processing” for information on changing the value of an IDL_STRING
descriptor using supported IDL interfaces. See Chapter 3, “Memory Cleanup”
for more on memory alocation and cleanup.

IDL iswritten in the C language, and when IDL starts, any necessary runtime
initialization code required by C programs is automatically executed by the
system before the IDL main() function is called. Hence, calling C code from
IDL usually does not require additional runtime initialization. However, when
calling external code written in languages other than C, you may find that your
code does not run properly unless you arrange for the necessary runtime
support for that language to run first. Such details are highly system specific,
and you must refer to your system and compiler documentation for details.
Code that islargely computational rarely encounters thisissue. It is more
common for code that performs Input/Output directly.

Programming errorsin the external code. It is easy to make mistakesin
compiled languages that have bad global consequences for unrelated code
within the same program. For example, awild memory pointer can lead to the
corruption of unrelated data. If you are lucky, such an error will immediately
kill your program, making it easy to locate and fix. Less fortunateis the
situation in which the program dies much later in aseemingly unrelated part of
the program. Finding such problems can be difficult and time consuming.
When IDL crashes following a call to external code, an error in the external
codeor inthecall to CALL_EXTERNAL isthe cause in the vast majority of
cases.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 53

e Some compilers and operating systems have a convention of adding leading or
trailing underscore characters to the names of functions they compile. These
conventions are platform specific, and as they are of interest only to system
linker and compiler authors, not generally well documented. Thisisusually
transparent to the user, but can sometimes be an issue with inter language
function calls. If you find that a function you expect to call from alibrary isnot
being found by CALL_EXTERNAL, and the obvious checks do not uncover
the error (usually asimple misspelling), this might be the cause. Under UNIX,
the nm command can be helpful in diagnosing such problems.

e C++ compilers use atechnique commonly called name munging to encode the
types of method arguments and return values into the name of the routine as
written to their binary object files. Such names often have only a passing
resemblance to the name seen by the C++ programmer in their source code.
IDL can only call C++ code that has C linkage, as discussed in “C++” on
page 25. C linkage code does not use hame munging.

* When calling external code written in other languages, there are sometimes
platform and language specific hidden arguments that must be explicitly
supplied. Such arguments are usually provided by the compiler when you work
strictly within the target language, but become visible in inter-language calls.
An example of this can be found in “Hidden Arguments’ on page 73. In this
example, the Fortran compiler provides an extra hidden length argument when
aNULL terminated string is passed to a function.

External Development Guide The CALL_EXTERNAL Function

54 Chapter 3: Using CALL_EXTERNAL

Passing Parameters

IDL calls routines within a shareable library using the IDL portable calling
convention, in which the routine is passed two arguments:

argc
A count of the number of arguments being passed to the routine
argv

An array of argc memory pointers, which are the addresses of the arguments
(by reference) or the actual value of the argument (by value) depending on the
types of arguments passed to CALL_EXTERNAL and the setting of the
VALUE keyword to that function. You should note that while all types of data
can be passed by reference, there are limitations on data types that can be
passed by value, as described in the documentation for “CALL_EXTERNAL”
in the IDL Reference Guide manual.

The CALL_EXTERNAL portable convention is necessary because IDL, like any
program written in a compiled language, cannot generate arbitrary function calls at
runtime. Only calls to interfaces that were known to it when it was compiled are
possible. Naturally, most existing C functions are not written to use this interface.
Calling such functions typically requires IDL usersto write glue functions, the sole
purpose of which isto be called by CALL_EXTERNAL with the portable
convention, and then to take the arguments and pass them to the real target function
using the natural interface for that function. The AUTO_GLUE keyword to
CALL_EXTERNAL can be used to generate, compile, and load such glue routines
automatically and on demand, without requiring user intervention. Auto Glueis
described in “Using Auto Glue” on page 56. AUTO_GLUE does not eliminate the
need for, or use of, the portable convention, but it can relieve the IDL user of the
requirement to handle it explicitly. The end result is that calling existing function
interfacesis easier to do, and less error prone.

Routines called by CALL_EXTERNAL with the portable convention are defined
with a prototype similar to the following:

return_type exanmple(int argc; void *argv[])

wherer et ur n_t ype isone of the datatypeswhich CALL_EXTERNAL can return. If
thisret urn_type isnot IDL_LONG, akeyword must be used in the
CALL_EXTERNAL call to indicate the actual type of the result.

Passing Parameters External Development Guide

Chapter 3: Using CALL_EXTERNAL 55

The parameter ar gc gives the number of arguments passed to the external routine by
CALL_EXTERNAL inthear gv array, while ar gv isan array containing the
arguments. Arguments are passed either by value or by reference. Those passed by
value are copied directly into the ar gv array, with the exception of scalar strings,
which place a pointer to anull-terminated stringin ar gv[i] . All arrays are passed
by reference. Scalar items passed by reference (the default) place a pointer to the
datuminar gv[i] . Stringsand string arrays passed by reference place a pointer to an
IDL_STRING structurein ar gv[i] . Thisstructure is defined as follows:

typedef struct {
| DL_STRI NG SLEN T sl en; /* Length of string */
short stype; /* type of string: (0) static, (!0) dynamc */
char *s; /* Addr of string, invalid if slen == 0. */
} IDL_STRING
See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additiona details
about passing parameters by value.

It isimportant to note that IDL integer variables correspond to a 16-hit integer (aC
si gned short integer). For example, an integer variable could be defined in an IDL
routine as follows:

IDL> A=5 ;default type of integer, not LONG

The variable could then be passed by referenceina CALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be:

short *a;
a = (short *) argv[O0];

or

I DL_I NT *a;
a = (IDL_INT *) argv[O];

IDL_INT corresponds to a C short (16-bit integer), so either form is correct. The
corresponding type in Fortran would be INTEGER* 2.

External Development Guide Passing Parameters

56 Chapter 3: Using CALL_EXTERNAL

Using Auto Glue

Usersof CALL_EXTERNAL freguently write small functions with the sole purpose
of matching the CALL_EXTERNAL portable calling convention with its (ar gc,

ar gv) interface to the actual interface presented by some existing function that they
wish to call. Such functions are often called glue functions.

It quickly becomes obvious to anyone who has written afew glue functions that there
isn't much to them, and that producing such functionsis a purely mechanical
operation. As you read the examples in this chapter, you will see many such
functions, and will notice that they are all essentially the same. Further examination
should serve to convince you that IDL already has al of the information, in the form
of the arguments and keywords specified to the CALL_EXTERNAL function, to
generate such functions without requiring human intervention. Examining the
CALL_EXTERNAL routine'sinterface, we see that:

e the number and types of argumentsto the CALL_EXTERNAL function
provide the same information about the arguments for the target external
function;

e the VALUE keyword, and CALL_EXTERNAL’s built in rules for deciding
whether or not to pass arguments by value or by reference determine how the
arguments should be passed;

* inthe case of Microsoft Windows, the CDECL keyword tells it which system
calling convention to employ;

e keywordsto CALL_EXTERNAL determine the result type.

Furthermore, other than the actual name of the user function being called, these glue
functions are generic in the sense that they could be used to call any function that
accepted arguments of the same types and produce a result of the same type.

The AUTO_GLUE keyword to CALL_EXTERNAL exploitsthese factsto alow you
to call functions with natural interfaces, without the need to write, compile, and load
aglue function to do the job. The sole requirement is that your system must havea C
compiler installed that is compatible with the compiler described by the IDL
IMAKE_DLL system variable. Thisisamost always the case if you are interested in
calling external code, since acompiler is necessary to compile such code.

Using Auto Glue External Development Guide

Chapter 3: Using CALL_EXTERNAL 57

AUTO_GLUE automatically writes the C code for the glue function, uses the
MAKE_DLL procedure to build a sharable library containing it, loads that library,
and then callsthe glue function, passing it a pointer to the target function and all of its
arguments. It maintains a cache of glue functions that have been built previously, and
never builds the same glue function more than once. From the user perspective, there
isasdlight pause the first time a given glue function is used. In that brief moment,
AUTO_GLUE performs the steps described above, and then makes the call to the
user function. All of this happens transparently to the IDL user — no user interaction
isrequired, and no output is produced by the process. Subsequent calls to the same
glue function happen instantaneously, as IDL loads the existing glue function from
the MAKE_DLL cachewithout rebuilding it. In principle, it is similar to the way IDL
automatically compiles I DL language programs on demand, only with C code instead
of IDL code.

See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additiona details
about how AUTO_GLUE works, and the options for controlling its use.

Generating Glue Without Executing It

AUTO_GLUE isthe preferred option for most calls to functions with natural
interfaces, due to it’'s simplicity and ease of use. However, you might find yourself in
a situation where you would like your glue functions to be automatically generated,
but wish to simply get the resulting C code so that you can modify it or incorporate it
into alarger library. For example, you might have alarge library of IDL specific
code, and wishto giveit al IDL callableinterfaces without requiring the overhead of
AUTO_GLUE for al of them.

The WRITE_ WRAPPER keyword to CALL_EXTERNAL can be used to produce
such code without compiling or using the results. See “CALL_EXTERNAL” inthe
IDL Reference Guide manual for additional information on this keyword.

External Development Guide Using Auto Glue

58 Chapter 3: Using CALL_EXTERNAL

Basic C Examples

All of the code for the examplesin this section can be found in the

/ external / cal | _ext ernal / Csubdirectory of the IDL distribution. Please read
the README filein that directory for details on how to run the examples. In many
cases, thefilesin that directory go into more detail, and are more fully commented
than the versions shown here. Also, the examples provide IDL wrapper routines that
perform the necessary CALL_EXTERNAL calls, while the examples shown here use
CALL_EXTERNAL directly in order to explain how it is used. It isworth reading the
contents of the. ¢ and IDL . pr o filesin that directory in addition to reading the code
shown here.

Example: Passing Parameters by Reference to IDL

The following routing, found in'si nmpl e_vars. ¢, accepts several of IDL'sbasic
data types as arguments. The parameters are passed in by reference and the new
squared values of the numbers are passed back to IDL. Thisisimplemented as a
function with anatural C interface, and a second glue routine that implements the

Basic C Examples External Development Guide

Chapter 3: Using CALL_EXTERNAL 59

IDL portable convention, using the one with the natural interface to do the actual
work.

O©oOoO~NO O~ WNPER

#i ncl ude <stdi o. h>
#i ncl ude "idl _export.h" /* 1DL external definitions */

int sinple_vars_natural (char *byte_var, short *short_var,
| DL_LONG *l ong_var, float *float_var,
doubl e *doubl e_var)

{
/* Square each variable. */
*byt e_var *= *pyte_var;
*short _var *= *short _var;
*| ong_var *= *| ong_var;
*fl oat _var *= *f| oat _var;

*doubl e_var *= *doubl e_var;

return 1;

}

int sinple_vars(int argc, void* argv[])

{
/* Insure that the correct nunber of argunents were passed in */
if(argc !'=5) return O;

return sinple_vars_natural ((char *) argv[0], (short *) argv[1],
(I'DL_LONG *) argv[2], (float *) argv[3],
(double *) argv[4]);
}

Table 3-1: Passing Parameters by Reference to IDL — simple_vars.c

The IDL statements necessary to call thesi npl e_var s() function from IDL can be
written:

B=2B & 1=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL(GET_CALLEXT EXLIB(), ’sinple vars’, $
b,i,l,f,d, /CDECL)

Note
GET_CALLEXT_EXLI B() isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

External Development Guide Basic C Examples

60 Chapter 3: Using CALL_EXTERNAL
Using the AUTO_GLUE keyword to CALL_EXTERNAL, you can call the function
with the natural C interface directly:

B=2B & 1=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), 'sinple_vars_natural’, $
b,i,l,f,d, /CDECL, /AUTO G.UE)
Example: Calling a C Routine to Perform
Computation
The following example demonstrates an external function that returns the sum of a
floating point array. It issimilar in function to the TOTAL function in IDL. The code
for thisexampleisfound inthefilesum array. c inthe IDL distribution. Aswith
the previous example, this function is implemented by afunction that has anatural C
interface, and a second glue function is provided that matches the IDL portable
calling convention to the natural interface:
1§ #include <stdio. h>
2Q #include "idl _export.h"
3
4) float sumarray_natural (float *fp, |DL_LONG n)
5{
6 float s = 0.0;
7
C 8 while (n--) s += *fp++;
9 return(s);
10Q }
11
12 float sumarray(int argc, void *argv[])
13] {
14 return sumarray_natural ((float *) argv[0], (IDL_LONG argv[1]);
150 }

Table 3-2: Calling a C routine — example.c

The IDL statements necessary to call thesum array() function from IDL can be
written:

X
S

FI NDGEN(10)
CALL_EXTERNAL(GET_CALLEXT_EXLIB(), ’'sumarray’ $
X, N_ELEMENTS(X), VALUE=[0, 1], /F_VALUE, /CDECL)

Basic C Examples External Development Guide

Chapter 3: Using CALL_EXTERNAL 61

Note
GET_CALLEXT_EXLI B() isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Using the AUTO_GLUE keyword, you can call the function with the natural C
interface directly:
X = FI NDGEN(10)
S = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), ’sumarray_natural’$
X, N_ELEMENTS(X), VALUE=[0, 1], /F_VALUE, / CDECL, $
/ AUTO_GLUE)

In this example, sum ar ray and sum ar r ay_nat ur al are the names of the entry
points for the external functions, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The F_VALUE keyword specifies that the returned valueis a
floating-point number rather than an IDL_LONG.

External Development Guide Basic C Examples

62 Chapter 3: Using CALL_EXTERNAL

Wrapper Routines

CALL_EXTERNAL routines are very sensitive to the number and type of the
arguments they receive. Calling a CALL_EXTERNAL routine with the wrong
number of arguments or with arguments of the wrong type can cause IDL to crash.
For thisreason, it isagood practice to provide an IDL wrapper routine that is used to
make the actual CALL_EXTERNAL call. The job of thiswrapper, which iswritten
inthe IDL language, is to ensure that the arguments that are passed to the external
code are always of the correct number and type. The following IDL procedure isthe
wrapper used in the simple vars() example of the previous section (“ Example:
Passing Parameters by Reference to IDL” on page 58).

Example Code
Thisfile, si npl e_vars. pro, islocatedintheext ernal /cal | _external / C
subdirectory of the IDL installation directory.

1] PRO SIMPLE VARS, b, i, I, f, d, AUTO GLUE=auto_gl ue, DEBUG=debug, $
2 VERBOSE=ver bose
3 if ~ (KEYWORD_SET(debug)) THEN ON_ERROR, 2
4
5 ; Type checking: Any missing (undefined) argunents will be set
6 ; to a default value. Al argunents will be forced to a scal ar
7 ; of the appropriate type, which nay cause errors to be thrown
8 ; If structures are passed in. Local variables are used so that
9 ; the values and types of the user supplied argunments don’t change.
10 b_| = (SIZE(b,/TYPE) EQO0) ? 2b : byte(b[0])
11 i | = (SIZE(i,/TYPE) EQO) ? 3 o fix(i[0])
12 I I = (SIZE(lI,/TYPE) EQ 0) ? 4L : long(l[0])
IDL 13 f_I = (SIZE(f,/TYPE) EQQO) ? 5.0 : float(f[O0])
14 d |l = (SIZE(d,/ TYPE) EQ 0) ? 6.0D : double(d[0])
15
16 PRI NT, "Calling sinple_vars with the follow ng argunents:’
17 HELP, b I, i_I, I_I, f_I, d_l
18 func = keyword_set (auto_glue) ? 'sinple_vars_natural’ : 'sinple_vars’
19 | F (CALL_EXTERNAL(GET_CALLEXT_EXLI B(VERBOSE=ver bose), func, $
20 b I, i_I, 11, f_I, d.lI, /CDECL, $
21 AUTO GLUE=aut o_gl ue, VERBOSE=verbose, $
22 SHOW ALL_OUTPUT=ver bose) EQ 1) then BEA N
23 PRI NT,' After calling sinple_vars:’
24 HELP, b I, i_I, I_I, f_I, d_l
25 ENDI F ELSE MESSAGE, ' External call to sinple_vars failed
26 END

Table 3-3: Wrapper Routine — simple_vars.pro

Wrapper Routines External Development Guide

Chapter 3: Using CALL_EXTERNAL 63

Theroutine si npl e_vars. pr o uses the system routine SIZE() to examine the
arguments that are passed in by the user to the si npl e_var s routine. If one of the
arguments is undefined, a default value will be used in the call to the external routine.
Otherwise, the argument will be converted to a scalar of the appropriate type.

Note

GET_CALLEXT_EXLI B() isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

External Development Guide Wrapper Routines

64 Chapter 3: Using CALL_EXTERNAL

Passing String Data

IDL represents strings internally as IDL_STRING descriptors. For more information
about IDL_STRING, see Chapter 7, “IDL Internals: Variables” and Chapter 8, “IDL
Internals. String Processing” . These descriptors are defined in the C language as.

typedef struct {
I DL_STRING SLEN T sl en;
unsi gned short stype;
char *s;

} IDL_STRI NG

To pass astring by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

e Cadled code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

« Thesl en field contains the length of the string without including the NULL
termination that is required at the end of al C strings.

« Thestype fieldisused internally by IDL to keep track of how the memory for
the string was obtained, and should be ignored by CALL_EXTERNAL users.

* s isthepointer to the actual C string represented by the descriptor. If the string
iSNULL, IDL representsit asaNULL (0O) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

e You must use the functions discussed in Chapter 8, “IDL Internals: String
Processing” to allocate the memory for an IDL_STRING. Attempting to do
this directly by alocating dynamic memory and assigning it to the
IDL_STRING descriptor isacommon pitfall, as discussed in “ Common
CALL_EXTERNAL Pitfalls’ on page 51.

Returning a String Value

When returning a string value, a function must allocate the memory used to hold it.
Onreturn, IDL will copy this string. You can use a static buffer or dynamic memory,
but do not return the address of an automatic (stack-based) variable.

Note
IDL will not free dynamically-allocated memory for this use.

Passing String Data External Development Guide

Chapter 3: Using CALL_EXTERNAL 65

Example

The following routine, found in st ri ng_arr ay. ¢, demonstrates how to handle
string variablesin external code. Thisroutinetakesastring or array of stringsasinput
and returns acopy of the longest string that it received. It isimportant to note that this
routine uses a static char array as itsreturn value, which avoids the possibility of a
memory leak, but which must be long enough to handle the longest string required by
the application. Thisisimplemented as a function with a natural C interface, and a
second glue routine that implements the IDL portable convention, using the one with
the natural interface to do the actual work:

External Development Guide Passing String Data

66 Chapter 3: Using CALL_EXTERNAL
1] #i ncl ude <stdio. h>
2] #include <string. h>
3f #include "idl _export.h"
44 /*
5] * IDL_STRING is declared in idl_export.h like this:
6 * typedef struct {
4 | DL_STRI NG SLEN T sl en; Length of string, O for null
8y * short stype; Type of string, static or dynamc
9 * char *s; Address of string
10§ * } IDL_STRING
11 * However, you should rely on the definition in idl_export.h instead
12 * of declaring your own string structure.
13§ */
14
154 char* string_array_natural (1 DL_STRI NG *str_descr, |DL_LONG n)
16Q {
17 /*
18 * |DL will rmake a copy of the string that is returned (if it is
19 * not NULL). One way to avoid a nenmory leak is therefore to return
20 * a pointer to a static buffer containing a null termnated string.
C 21 * IDL will copy the contents of the buffer and drop the reference
22 * to our buffer inmediately on return.
23 */
24 #define MAX_OUT_LEN 511 /* truncate any string
25 | onger than this */
26 static char result[MAX_ OUT_LEN+1]; /* |l eave a space for a '\0’
27 on the |ongest string */
28 int max_i ndex; /* index of |ongest string */
29 int max_sofar; /* length of |ongest string*/
30 int i;
31
32 /* Check the size of the array passed in. n should be > 0.*/
33 if (n <1) return (char *) 0;
34 nax_i ndex = 0;
35 nmax_sofar = 0;
36 for(i=0; i <n; i++) {
37 if (str_descr[i].slen > max_sofar) {
38 mex_i ndex = i;
39 max_sofar = str_descr[i].slen;
40 }
41 }

Figure 3-1: Handling String Variables in External Code — string_array.c

Passing String Data External Development Guide

Chapter 3: Using CALL_EXTERNAL 67

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

/*

* |f all strings in the array are enpty, the |ongest
*will still be a NULL string.

*/

if (str_descr[max_index].s == NULL) return (char *) O;

/*

* Copy the longest string into the buffer, up to MAX_ OUT_LEN
* characters.

*

Explicitly store a NULL byte in the |ast byte of the buffer,
* pecause strncpy() does not NULL terminate if the string copied
* is truncated.

*/
strncpy(result, str_descr[max_index].s, MAX OUT_LEN);
resul t[sizeof (result)-1] = "\0";

return(result);

#undef MAX_OUT_LEN

}

char* string_array(int argc, void* argv[])

{

}

/*

* Make sure there are the correct # of arguments.

* |DL will convert the NULL into an enpty string ('’).

*/

if (argc !'= 2) return (char *) NULL;

return string_array_natural ((IDL_STR NG *) argv[0], (IDL_LONG argv[1]);

Figure 3-1: Handling String Variables in External Code — string_array.c (Continued)

External Development Guide Passing String Data

68 Chapter 3: Using CALL_EXTERNAL

Passing Array Data

When you passan IDL array intoaCALL_EXTERNAL routine, that routine gets a
pointer to the first memory location in the array. In order to perform any processing
on the array, an external routine needs more information—such as the array’s size
and number of dimensions. With CALL_EXTERNAL, you will need to passthis
information explicitly as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needs to know the size of the array at
compiletime. In most cases, this means that you will need to treat multi-dimensional
arrays passed in from IDL as one dimensional arrays. However, you can still build
your own indices to access an array asif it had more than one dimension in C. For
example, the IDL array index:

array[x, y]
could be represented in a CALL_EXTERNAL routine as:
array_ptr[x + x_size*y];

The following routine, found in sum 2d_arr ay. ¢, calculates the sum of a
subsection of atwo dimensional array. Thisisimplemented as a function with a
natural C interface, and a second glue routine that implements the IDL portable
convention, using the one with the natural interface to do the actual work:

Passing Array Data External Development Guide

Chapter 3: Using CALL_EXTERNAL

69

©oo~NOoOOh~wWNPR

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#i ncl ude <stdio. h>
#i nclude "idl _export.h"
doubl e sum 2d_array_natural (double *arr, IDL_LONG x_start, |DL_LONG x_end,
IDL_LONG x_size, IDL_LONG y_start,
| DL_LONG y_end, | DL_LONG y_size)
/* Since we didn't know the di mensions of the array at conpile tinme, we

* nust treat the input array as if it were a one di mensional vector. */
I DL_LONG X, Vy;

doubl e result = 0.0;

/* Make sure that we don't go outside the array.strictly speaking, this

*i s redundant since identical
* routine.IDL_MN() and IDL_MAX() are macros fromidl_export.h */

checks are perforned in the | DL wapper

x_start = I DL_MAX(x_start, 0);
y_start = | DL_MAX(y_start, 0);
x_end = IDL_M N(x_end, x_si ze-1);
y_end = IDL_M N(y_end, y_si ze-1);
/* loop through the subsection */

for (y = y_start;y <= y_end;y++)
for (x = x_start; x <= x_end; x++)
result += arr[x + y*x_size]; /* build the 2d index:
return result;

}

arr[x,y] */

doubl e sum 2d_array(int argc,void* argv[])
{

if (argc !'=7) return 0.0;

return sum 2d_array_natural ((double *) argv[0], (IDL_LONG argv[1],
(IDL_LONG argv[2], (IDL_LONG argv[3],
(IDL_LONG argv[4], (IDL_LONG argv[5],
(I DL_LONG) argv[6]);

}

Table 3-4: Adding the Elements of a 2D IDL Array — sum_2d_array.c

External Development Guide

The IDL system routine interface provides much more support for the manipulation
of IDL array variables. See Chapter 15, “Adding System Routines’” for more
information.

Passing Array Data

70 Chapter 3: Using CALL_EXTERNAL

Passing Structures

IDL structure variables are stored in memory in the same layout that C uses. This
makes it possible to pass IDL structure variablesinto CALL_EXTERNAL routines,
aslong as the layout of the IDL structure is known. To access an IDL structure from
an external routine, you must create a C structure definition that has the exact same
layout as the IDL structure you want to process.

For example, for an IDL structure defined as follows:
s = { ASTRUCTURE, zer 0: 0B, one: OL, two: 0. 0, t hree: OD, four: intarr(2)}
the corresponding C structure would look like the following:

typedef struct {
unsi gned char zero;
| DL_LONG one;
float two;
doubl e three;
short four[2];
} ASTRUCTURE;

Then, cast the pointer from ar gv to the structure type, as follows:

ASTRUCTURE* nyst ruct ur e,
nmystructure = (ASTRUCTURE*) argv[O0];

The following routine, found ini ncr _st ruct . ¢, increments each field of an IDL
structure of type ASTRUCTURE. Thisisimplemented as afunction with anatural C
interface, and a second glue routine that implements the IDL portable convention,
using the one with the natural interface to do the actual work:

Passing Structures External Development Guide

Chapter 3: Using CALL_EXTERNAL

71

O©O~NOULA WNPRE

#i ncl ude <stdi o. h>
#i ncl ude "idl _export.h"

/*
* Cdefinition for the structure that this routine accepts. The
* corresponding IDL structure definition would | ook |ike this:
* s = {zero:0B,one: OL,two:0.,three: 0D, four: intarr(2)}
*/
typedef struct {
unsi gned char zero;
| DL_LONG one;
float two;
doubl e three;
short four[2];
} ASTRUCTURE;

int incr_struct_natural (ASTRUCTURE *nystructure, |DL_LONG n)
{
/* for each structure in the array, increnent every field */
for (; n--; nystructure++) {
nystruct ure->zer o++;
nystruct ure->one++;
nmystruct ur e- >t wo++;
myst ruct ur e- >t hr ee++;
myst ruct ur e- >f our [0] ++;
myst ruct ure- >f our [1] ++;

}

return 1;

}
int incr_struct(int argc, void *argv[])
{
if (argc != 2) return O;
return incr_struct_natural ((ASTRUCTURE*) argv[0], (IDL_LONG
argv[1]);
}

Table 3-5: Accessing an IDL Structure from a C Routine — incr_struct.c

External Development Guide

It is not possible to access structures with arbitrary definitions using the
CALL_EXTERNAL interface. The system routineinterface, discussed in Chapter 15,
“Adding System Routines’, does provide support for determining the layout of a

structure at runtime.

Passing Structures

72

Chapter 3: Using CALL_EXTERNAL

Fortran Examples

Example: Calling a Fortran Routine Using a C
Interface Routine

Calling Fortranis similar to calling C, with the significant difference that Fortran
code expects al arguments to be passed by reference and not by value (the C default).
This means that the addr ess of the argument is passed rather than the argument
itself. Thisissueis discussed in “By-Vaue and By-Reference Arguments’ on

page 48.

A Cinterface routine can easily extract the addresses of the arguments from the ar gv
array and pass them to the actual routine which will compute the sum. The arguments
f, n, and s are pointersthat are being passed by value. Fortran expects all argumentsto
be passed by reference — that is, it expects all argumentsto be addresses. If C passes
apointer (an address) by value, Fortran will interpret it correctly as the address of an
argument. The following code segmentsillustrate this. The exanpl e_c2f . c file
contains the C interface routine, which would be compiled asillustrated above. The
exanpl e. f file contains the Fortran routine that actually sums the array.

In these examples, we assume that the routines are being compiled under Sun Solaris.
The object name of the Fortran subroutine will besum ar ray1_ to match the output
of the Solaris Fortran compiler. The following are the contents of exanpl e_c2f . c
and exanpl e. f:

0O~NO O WNPRF

#i ncl ude <stdi o. h>
void sumarray(int argc, void *argv[])
{
extern void sumarrayl ();/* Fortran routine */
int *n;
float *s, *f;
f = (float *) argv[O]; /* Array pntr */
n=(int *) argv[1]; /* Get # of elenents */
s = (float *) argv[2]; /* Pass back result a paranmeter */
sumarrayl (f, n, s); /* Compute sum */

}

Table 3-6: C Wrapper Used to Call Fortran Code (example_c2f.c)

Fortran Examples External Development Guide

Chapter 3: Using CALL_EXTERNAL 73

f77

O©O~NOULA WNPRE

¢ This subroutine is called by SUM ARRAY and has no | DL-specific code.
c

SUBROQUTI NE sunmarrayl(array, n, sum

I NTEGER*4 n

REAL*4 array(n), sum

sum=0. 0

DO i=1,n

sum = sum + array(i)
PRINT *, sum array(i)
ENDDO

RETURN
END

Table 3-7: Fortran Code Called from IDL via C Wrapper (example.f)

This example is compiled and linked in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README filecontained intheext er nal / cal | _external / Fortran
subdirectory of the IDL distribution. This directory also contains a makefile, which
builds this example on UNIX platforms. To call the example program from within
IDL:

; Make an array.

X = FI NDGEN(10)

;A floating result

SUM = 0.0

S = CALL_EXTERNAL(' exanpl e.so', $
‘sumarray', X, N_ELEVMENTS(X), sum

In this example, exanpl e. so isthe name of the sharableimagefile, sum array is
the name of the entry point, and X and N_ELEMVENTS(X) are passed to the called routine
as parameters. The returned value is contained in the variable sum

Hidden Arguments

When passing C null-terminated character strings into a Fortran routine, the C
function should also passin the string length. This extra parameter is added to the end
of the Fortran routine call in the C function, but does not explicitly appear in the
Fortran routine.

For example, in C:

char * stril1= "IDL';
char * str2= "RS|';

External Development Guide Fortran Examples

74

Chapter 3: Using CALL_EXTERNAL

int | enl=3;

int | en2=3;

doubl e data, info;

/* Call a Fortran sub-routine naned exanplel */
exanmpl el _(strl, data, str2, info, lenl, |en2)

In Fortran:

SUBROUTI NE EXAMPLEL(STR1, DATA, STR2, | NFO
CHARACTER* (*) STR1, STR2
DOUBLE PRECI SI ONDATA, | NFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Calling Fortranis similar to calling C, with the significant difference that Fortran
expects all arguments to be passed by reference. This means that the address of the
argument is passed rather than the argument itself. See “ By-Value and By-Reference
Arguments’ on page 48 for more on this subject.

A Fortran interface routine can be written to extract the addresses of the arguments
from the ar gv array and pass them to the actual routine which will compute the sum.
Passing the contents of each ar gv element by value has the same effect as converting
the parameter to a normal Fortran parameter.

This method uses the OpenVM S Extensions to Fortran, %L OC and %VAL. On IBM
AlX, the LOC function is an intrinsic operator. The syntax of the call, which differs
from that used on other platforms, is:

y=l oc(x)

Some Fortran compilers may not support these extensions. If your compiler does not,
use the method discussed in the previous section for calling Fortran with a C interface
routine.

The contents of the fileexanpl el. f are shown inthe following figure. This
example is compiled, linked, and called in amanner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in the ext er nal / f or t r an subdirectory of the IDL
distribution. This directory also contains a makefile, which builds this example on
UNIX platforms.

Fortran Examples External Development Guide

Chapter 3: Using CALL_EXTERNAL 75

Note

This example is written to run under a 32-hit operating system. To run the example
under a 64-bit operating system would require modifications, most notably, to
declarear gv as| NTEGER* 8 rather than | NTEGER* 4.

f77

SUBROUTI NE SUM ARRAY(argc, argv) !Called by IDL

j

¢ Call subroutine SUM ARRAY1, converting the |IDL paraneters
c to standard Fortran, passed by reference argunents:

CALL SUM ARRAY1(W/AL(argv(1l)), %WAL(argv(2)), WAL(argv(3)))
RETURN
END

c This subroutine is called by SUM ARRAY and has no
c IDL specific code.

c

SUBROUTI NE SUM ARRAY1(array, n, sum

REAL*4 array(n), sum

sum=0. 0

DOi=1,n

sum = sum + array(i)
ENDDO

RETURN

END

NTEGER*4 argc, argv(*) l'Argc and Argv are integers

= LOC(argc) I bt ai ns the nunber of arguments (argc)
I Because argc is passed by VALUE

NTEGER*4 n

Table 3-8: Fortran Code Called Directly From IDL

To call the example program from within IDL:

X = FINDGEN(10) ; Make an array.

sum= 0.0

S = CALL_EXTERNAL(' exanplel.so', $
"sumarray_', X, N_ELEMENTS(X), sum

In this example, exanpl el. so isthe name of the sharable imagefile, sum array_
isthe name of the entry point, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The returned value is contained in the variable sum

External Development Guide Fortran Examples

76 Chapter 3: Using CALL_EXTERNAL

Note
The entry point name generated by the Fortran compiler may be different than that
produced by the C compiler. One of the best waysto find out what name was

generated isto use the UNIX nmutility on the object file. See your system’s man
page for nmfor details.

Fortran Examples External Development Guide

Chapter 4

Remote Procedure

Calls

This chapter discusses the following topics:

IDL and Remote Procedure Calls 78
UsingIDL asanRPC Server 79
ClientVariables 80
LinkingtotheClient Library 81

External Development Guide

Compatibility with Older IDL Code 83
ThelDL RPCLibrary 85
RPCExamples 110

77

78 Chapter 4: Remote Procedure Calls

IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routinesisincluded to handle communication between client programs
and the IDL server.

A startup file is executed only when a command lineis present. Running an
application using an IDL Remote Procedure Call server does not execute the startup
file. See “Understanding When Startup Files are Not Executed” in Chapter 1 of the
Using IDL manual for details.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your own
program to be run asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

With the release of IDL version 5.0, IDL's RPC functionality has been completely
revised and an new API created. The new RPC interface mirrors the APl used by
callable IDL. See “Compatibility with Older IDL Code” on page 83 for details.

IDL and Remote Procedure Calls External Development Guide

Chapter 4: Remote Procedure Calls 79

Using IDL as an RPC Server
The IDL RPC Directory

All of thefilesrelated to using IDL’s RPC capabilities are found in ther pc
subdirectory of theext er nal subdirectory of the main IDL directory. The main IDL
directory isreferred to here asidldir.

Running IDL in Server Mode

To use IDL asan RPC server, run IDL in server mode by using thei dl r pc
command. The RPC server can be invoked one of two ways:

idlrpc
or
i dl rpc -server=server_nunber

where server_number is the hexadecimal server ID number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If aserver ID number is not supplied, IDL uses the default,
IDL_RPC _DEFAULT ID, defined inthefileidldir/ ext ernal / rpc/idl _rpc. h.
Thisvalueisoriginally set to 0x2010CAFE.

External Development Guide Using IDL as an RPC Server

80 Chapter 4: Remote Procedure Calls

Client Variables

The IDL RPC client API uses the same data structure as IDL to represent avariable,
namely an IDL_VARIABLE structure. By not using a unique data structure to
represent avariable, the IDL RPC client API can follow aformat that issimilar to the
API of Callable IDL.

When avariableis created by the IDL RPC client API (when avariableis returned
from the IDL_RPCGetM ainVariable function, for example) dynamic memory is
alocated for the variable and for its value. These dynamic variables are similar to
temporary variableswhich are used in IDL.

The IDL RPC client API provides routines to create, manipul ate and delete dynamic
or IDL RPC client temporary variables. These API routines follow the same format
asthe Callable IDL API and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RPC
client program, use the IDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete a client temporary variable could result
amemory “leak” in the client program.

Client Variables External Development Guide

Chapter 4: Remote Procedure Calls 81

Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:

Include thefilei dl _r pc. h inyour application.

Haveacopy of i dl _export. h intheinclude path when you compile the
client application.

Link your client application to the IDL client shared object library
(I'i bidl _rpc).

If the client library islinked as a shared object, you must set the shared
object search path environment variable so that it includes the directory
that containsthe IDL client library.

The name of thisvariableisnormally LD_LIBRARY _PATH, except on HP
and IBM systems, where the variable names are:

HP. SHLIB_PATH
IBM: LIBPATH

If thisvariable is not set correctly, an error message will be issued by the
system loader when the client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -0 exanpl e $(PRE_FLAGS) exanple.o -lidl_rpc

$(POST_FLAGS)

where PRE_FLAGS and POST_FL AGS are platform dependent. The proper flags for
each UNIX operating system supported by IDL are contained in the file Makefi | e,

|ocated

intheinther pc subdirectory of theext er nal subdirectory of themain IDL

directory.

Example of IDL RPC Client API

To usethe IDL client side API, execute the following sequence of steps:
1. Cdl IDL_RPCInit() to connect to the server

2. Perform actions on the server—get and set variables, run IDL commands, etc.

3. Cdl IDL_RPCCleanup() to disconnect from the server.

External Development Guide Linking to the Client Library

82

Chapter 4: Remote Procedure Calls

The code shown in the following figure is an example that can be used to set up a
remote session of IDL using the RPC features. Note that this C program will need to
be linked against the supplied shared library | i bi dl _r pc. Thiscodeisincludedin
theidldir/ ext er nal / r pc directory asexanpl e. c.

O©CoO~NOUAWNPE

#i nclude "idl _rpc. h"

int main()

{
CLIENT *pCient;
char cmdBuf fer[512];
i nt result;

/* Connect to the server */
if((pAdient = IDL_RPCInit(0, (char*)NULL)) == (CLI ENT*)NULL) {
fprintf(stderr, "Can't register with |IDL server\n");
exit(1l);
}

/* Start a loop that will read commands and then send themto idl */
for(;;){
printf("RMIIDL> ");
cmdBuf fer[0] ="\ 0";
get s(cndBuffer);

if(cmdBuffer[0] == "'\n'" || cndBuffer[0] == "\0")
br eak;
result = | DL_RPCExecuteStr(pCdient, cndBuffer);
}
/* Now di sconnect fromthe server and kill it. */

i f(!1DL_RPCC eanup(pClient, 1))
fprintf(stderr, "IDL_RPCC eanup: failed\n");
exit(0);

Table 4-1: Remote Execution of IDL via RPC

Compile example.c with the appropriate flags for your platform, as described in
“Linking to the Client Library” on page 81. Once this exampleis compiled, execute it
using the following commands:

% idlrpc
Then, in another process:

% exanpl e

Linking to the Client Library External Development Guide

Chapter 4: Remote Procedure Calls 83

Compatibility with Older IDL Code

With the release of IDL 5.0, IDL’'s Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantages.

The new API mirrorsthe Callable IDL API.

The RPC client-side library is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

The RPC server-side executable, i dl r pc, isbuilt using Callable IDL,
providing an example of how Callable IDL can be used.

Source code is provided for both the Server and Client side programs, allowing
you to enhance IDL’s RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. This layer is contained in the files
idl _rpc_obsolete.candidl _rpc_obsol ete. h.

To use the compatibility routines, include thefilel i b_r pc_obsol et e. h inyour
application and use the following link statement as a template:

% cc -0 ol d_exanpl e $(PRE_FLAGS) ol d_exanple.o \
idl _rpc_obsolete.o -lidl _rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those described
in “Linking to the Client Library” on page 81.

External Development Guide Compatibility with Older IDL Code

84

Chapter 4: Remote Procedure Calls

While the compatibility layer covers most of the old IDL RPC functionality, some of
the more obscure operations have either been modified or are no longer supported.
The features which have changed are as follows:

e idl_server_interactive: Thisfunction isno longer supported.

» get_idl_variable: Thefollowing return values are no longer supported:

Value Description
-2 Illegal variable name (for example, “213xyz", “#a’,
“IDEVICE")
-3 Variable not transportable (for example, the variable
isastructure or associated variable)

Table 4-2: get_idl_variable Unsupported Values

e set_idl_timeout: thetv_usec field of the timeval struct isignored.
e idl_set_verbosity(): Thisfunction is no longer supported.

All other functionality is supported.

Compatibility with Older IDL Code External Development Guide

Chapter 4: Remote Procedure Calls 85

The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are:

» IDL_RPCCleanup * IDL_RPCSetMainVariable
» IDL_RPCDeltmp * IDL_RPCSetVariable

¢ |DL_RPCExecuteStr « |DL_RPCStoreScalar

* IDL_RPCGetMainVariable * IDL_RPCStrDelete

¢ |DL_RPCGettmp * IDL_RPCStrDup

e IDL_RPCGetVariable « IDL_RPCStrEnsurel ength
e |DL_RPCImportArray e |DL_RPCStrStore

» IDL_RPCInit » IDL_RPCTimeout

e IDL_RPCMakeArray e |IDL_RPCVarCopy

* IDL_RPCOutputCapture * IDL_RPCVarGetData

* IDL_RPCOutputGetStr » Variable Accessor Macros

External Development Guide The IDL RPC Library

86 Chapter 4: Remote Procedure Calls

IDL_RPCCleanup

Calling Sequence

int 1DL_RPCC eanup(CLIENT *pCient, int iKill)
Description

Use this function to rel ease the resources associated with the given CLIENT structure
or to kill the IDL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

iKill
Set iKill to anon-zero value to kill the server when the connection is broken.
Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCCleanup External Development Guide

Chapter 4: Remote Procedure Calls 87

IDL_RPCDeltmp

Calling Sequence
voi d | DL_RPCDel t np(| DL_VPTR vTnp)
Description
Use thisfunction to de-allocate all dynamic memory associated with the IDL_VPTR

that is passed into the function. Once this function returns, any dynamic portion of
vTmp is deallocated and should not be referenced.

Parameters

vimp
The variable that will be de-all ocated.
Return Value

None.

External Development Guide IDL_RPCDeltmp

88 Chapter 4: Remote Procedure Calls

IDL_RPCEXxecuteStr

Calling Sequence

int | DL_RPCExecuteStr(CLI ENT *pdient, char * pConmmand)
Description

Use this function to send IDL commands to the IDL RPC server. The command is
executed just asif it had been entered from the IDL command line.

Thisfunction cannot be used to send multiple line commands and will return an error
if a“$” is detected at the end of the command string. It will also return an error if “$”
isthefirst character, since this would spawn an interactive process and hang the IDL
RPC server.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
pCommand

A null-terminated IDL command string.
Return Value

This function returns the following values:
1 — Success.
0 — Invalid command string.

For all other errors, the value of lERROR_STATE.CODE isreturned. This number
could be passed as an argument to the IDL function STRM ESSAGE() to determine
the exact cause of the error.

IDL_RPCEXxecuteStr External Development Guide

Chapter 4: Remote Procedure Calls 89

IDL_RPCGetMainVariable

Calling Sequence
| DL_VPTR | DL_RPCGet Mai nVari abl e(CLI ENT *pClient, char *Name)
Description

Call this function to get the value of an IDL RPC server main level variable
referenced by the name contained in Name. IDL_RPCGetMainVariable will then
return apointer to an IDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC main level variable. On failure this
function returns NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 80.

External Development Guide IDL_RPCGetMainVariable

90 Chapter 4: Remote Procedure Calls

IDL_RPCGettmp

Calling Sequence

I DL_VPTR | DL_RPCGet t np(voi d)

Description
Use thisfunction to create an IDL_VPTR to adynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, passit to
IDL_RPCDetmp() to free any memory allocated by the variable.
Parameters
None.

Return Value

On success, this function returnsan IDL_VPTR. On failure, it returns NULL.

IDL_RPCGettmp External Development Guide

Chapter 4: Remote Procedure Calls 91

IDL_RPCGetVariable

Calling Sequence

| DL_VPTR | DL_RPCGet Vari abl e(CLI ENT *pClient, char *Name)

Description

Use this function to get a pointer to an IDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced by Name. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC variable. On failure this function returns
NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 80.

External Development Guide IDL_RPCGetVariable

92 Chapter 4: Remote Procedure Calls

IDL_RPCIimportArray

Calling Sequence

I DL_VPTR I DL_RPCl nport Array(int n_dim |IDL_MEM NT dinf],
int type, UCHAR *data, |DL_ARRAY_FREE CB free_ch)

Description

Use this function to create an IDL array variable whose data the server supplies,
rather than having the client API allocate the data space.

Parameters

n_dim
The number of dimensionsin the array.

dim
Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in “ Type
Codes’ on page 114.

data
A pointer to your array data.
free_cb

If non-NULL, free_cb isapointer to afunction that will be called when the IDL RPC
client routines frees the array. This feature gives the caller a sure way to know when
the datais no longer referenced. Use the called function to perform any required
cleanup, such as freeing dynamic memory or releasing shared or mapped memory.

Return Value

AnIDL_VPTR that pointsto an IDL_VARIABLE structure containing a reference
to the imported array. This function returns NULL if the operation was unsuccessful.

IDL_RPCImportArray External Development Guide

Chapter 4: Remote Procedure Calls 93

IDL_RPCInit

Calling Sequence

Client *IDL_RPCInit(long Serverld, char* pHostnamne)

Description

Use this function to initialize an IDL RPC client session.

Theclient program isregistered asa client of the IDL RPC server. The server that the
client is registered with depends on the values of the parameters passed to the
function.

Parameters

Serverld

The ID number of the IDL server that the program is to be registered with. If this
value is 0, the default server ID (0x2010CAFE) is used.

pHostname

Thisisthe name of the machine where the IDL server isrunning. If thisvalueis
NULL or “”, the default, “localhost”, is used.

Return Value
A pointer to the new CLIENT structure is returned upon successful completion. This

opaque data structure is then later used by the client program to perform operations
with the server. This function returns NULL if the operation was unsuccessful.

External Development Guide IDL_RPClInit

94

Chapter 4: Remote Procedure Calls

IDL_RPCMakeArray

Calling Sequence

char * | DL_RPCMakeArray(int type, int n_dim IDL_MEMNT dinf],
int init, IDL_VPTR *var)

Description

This function creates an IDL RPC client temporary array variable with a data area of
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in “Type
Codes’ on page 114.

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

dim
A Carray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init
This parameter specifies the sort of initialization that should be applied to the
resulting array. init must be one of the following:

 IDL_ARR_INI_NOP— Noinitialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.

* IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

Theaddressof anIDL_VPTR containing the address of the resulting IDL RPC client
temporary variable.

IDL_RPCMakeArray External Development Guide

Chapter 4: Remote Procedure Calls 95

Return Value

On success, this function returns a pointer to the data area of the alocated array. The
value returned is the same as is contained in the var->value.arr->data field of the
variable. On failure, it returns NULL.

Aswith variables returned from IDL_RPCGettmp(), the variable allocated viathis
function must be de-allocated using IDL_RPCDeltmp() when the variableis no
longer needed.

External Development Guide IDL_RPCMakeArray

96 Chapter 4: Remote Procedure Calls

IDL_RPCOutputCapture

Calling Sequence
int |1 DL_RPCQut put Capture(CLIENT *pCient, int n_lines)
Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server was
started. This function can be used to save thisinformation so that the client program
can request the lines sent to the output buffer.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
n_lines

If thisvalueislessthan or equal to zero, no output lineswill be buffered in the IDL
RPC server and output will be sent to the normal output device on the IDL RPC
server. If the value of this parameter is greater than zero, the specified number of
lineswill be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCOutputCapture External Development Guide

Chapter 4: Remote Procedure Calls 97

IDL_RPCOutputGetStr

Calling Sequence

int I DL_RPCQut putGetStr(CLIENT *pClient, |IDL_RPCLINE_S *pLine,
int first)

Description

Use this function to get an output line from the line queue being maintained on the
RPC server. The routine IDL_RPCOutputCapture() must have been called to
initialize the output queue on the RPC server before this routine is called.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
pLine

A pointer toavalid IDL_RPC_LINE_Sstructure. The buf field of this structure will
contain the output string returned from the IDL RPC server and the flags field will be
set to one of the following (fromi dl _export . h):

e IDL_TOUT_F STDERR — Send the text to stderr rather than stdout, if that
distinction means anything to your output device.

« |IDL_TOUT_F NLPOST — After outputting the text, start a new output line.
On atty, thisis equivalent to sending anew line (‘\ n) character.

first

If first is set equal to anon-zero value, the first line is popped from the output buffer
onthe IDL RPC server (the output buffer istreated like astack). If first is set equal to
zero, thelast line is de-queued from the output buffer (the output buffer istreated like
aqueue).

Return value

A true value (1) isreturned upon success. A false value (0) isreturned when there are
no more lines available in the output buffer or when an RPC error is detected.

External Development Guide IDL_RPCOutputGetStr

98 Chapter 4: Remote Procedure Calls

IDL_RPCSetMainVariable

Calling Sequence

i nt |1 DL_RPCSet Mai nVari abl e(CLIENT *pCient, char *Nane,
| DL_VPTR pVar)

Description

Usethisroutineto assign avalue to amain level IDL variablein the IDL RPC server
session referred to by pClient. If the variable does not aready exist, a new variable
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
main level variable referenced by Name should be set to. For more information on
creating this variable, see “ Client Variables” on page 80.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCSetMainVariable External Development Guide

Chapter 4: Remote Procedure Calls 99

IDL_RPCSetVariable

Calling Sequence

int | DL_RPCSet Variable(CLIENT *pClient, char *Nane,
| DL_VPTR pVar)

Description

Use thisroutine to assign avalueto an IDL variable in the IDL RPC server session
referred to by pClient. If the variable does not already exist, a new variable will be
created. Unlike IDL_RPCSetMainVariable(), this routine sets the variable in the
current IDL program scope.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
variable referenced by Name should be set to. For more information on creating this
variable, see“Client Variables’ on page 80.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide IDL_RPCSetVariable

100

Chapter 4: Remote Procedure Calls

IDL_RPCStoreScalar

Calling Sequence

void | DL_RPCSt oreScal ar (1 DL_VPTR dest, int type,
| DL_ALLTYPES *val ue)

Description

Usethisfunction to store ascalar valueinto an IDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existing IDL_VARIABLE isde-
allocated.

Parameters
dest
AnIDL_VPTR tothelDL_VARIABLE inwhich the scalar should be stored.

type

Thetype code for the scalar value. IDL type codes are discussed in “ Type Codes’ on
page 114.

value

The address of an IDL_ALLTYPES union that contains the value to store.
Return Value

None.

IDL_RPCStoreScalar External Development Guide

Chapter 4: Remote Procedure Calls 101

IDL_RPCStrDelete

Calling Sequence

void IDL_RPCStrDel ete(I DL_STRING *str, |DL_MEM NT n)
Description

Use this function to delete a string. See the description of IDL_StrDelete() in
“Deleting Strings” on page 187.

External Development Guide IDL_RPCStrDelete

102 Chapter 4: Remote Procedure Calls

IDL_RPCStrDup

Calling Sequence

void | DL_RPCSt r Dup(|1 DL_STRI NG *str, |DL_NMEM NT n)
Description

Use this function to duplicate a string. See the description of IDL_StrDup() in
“Copying Strings’ on page 186.

IDL_RPCStrDup External Development Guide

Chapter 4: Remote Procedure Calls 103

IDL_RPCStrEnsurelLength

Calling Sequence

voi d | DL_RPCSt r EnsureLengt h(1 DL_STRI NG *s, int n)
Description

Use this function to check the length of a string. See the description of
IDL_StrEnsurel ength() in “Obtaining a String of a Given Length” on page 189.

External Development Guide IDL_RPCStrEnsureLength

104 Chapter 4: Remote Procedure Calls

IDL_RPCStrStore

Calling Sequence

void IDL_RPCStrStore(IDL_STRING *s, char *fs)
Description

Use this function to store a string. See description of IDL_StrStorein “ Setting an
IDL_STRING Value” on page 188.

IDL_RPCStrStore External Development Guide

Chapter 4: Remote Procedure Calls 105

IDL_RPCTimeout

Calling Sequence
int | DL_RPCTi meout (1 ong | Ti meCut)
Description

Usethis function to set the timeout val ue used when the RPC client makes requests of
the server.

Parameters

I TimeOut

A integer value, in seconds, specifying the timeout value that will be used in RPC
operations.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide IDL_RPCTimeout

106

Chapter 4: Remote Procedure Calls

IDL_RPCVarCopy

Calling Sequence

voi d | DL_RPCVar Copy(| DL_VPTR src, |DL_VPTR dst)
Description

Use this function to copy the contents of the src variable to the dst variable. Any
dynamic memory associated with dst is de-allocated before the source datais copied.
This function emulates the callable IDL function IDL_Var Copy().

Parameters

Src

The source variable to be copied. If this variable is marked as temporary (returned
from IDL_RPCGettmp(), for example) the dynamic data will be moved rather than
copied to the destination variable.

dst
The destination variable that src is copied to.

Return Value

None.

IDL_RPCVarCopy External Development Guide

Chapter 4: Remote Procedure Calls 107

IDL_RPCVarGetData

Calling Sequence

void I DL_RPCVar GetData(l DL_VPTR v, IDL_MEM NT *n, char **pd,
int ensure_sinple)

Description

Use this function to obtain a pointer to a variable's data, and to determine how many
data elements the variable contains.

Parameters

\Y

The variable for which datais desired.

The address of avariable that will contain the number of e ementsin v.

pd

The address of avariable that will contain a pointer to v's data, cast to be a pointer to
pointer to char (e.g. (char **) & myptr).

ensure_simple

If TRUE, thisroutine calls the ENSURE_SIMPLE macro on the argument v to
screen out variables of the typesit prevents. Otherwise, EXCLUDE_FILE iscalled,
because file variables have no data area to return.

Return Value

Onexit, IDL_RPCVar GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

External Development Guide IDL_RPCVarGetData

108

Chapter 4: Remote Procedure Calls

Variable Accessor Macros

The following macros can be used to get information on IDL RPC variables. These
macros are defined ini dl _r pc. h.

All of these macros accept a single argument, v, of type IDL_VPTR.
IDL_RPCGetArrayData(v)

This macro returns a pointer (char*) to the data area of an array block.
IDL_RPCGetArrayDimensions(v)

This macro returns a C array which contains the array dimensions.
IDL_RPCGetArrayNumDims(v)

This macro returns the number of dimensions of the array.
IDL_RPCGetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.
IDL_RPCGetVarComplex(v)

This macro returns the value (as a struct, hot a pointer) of a complex variable.
IDL_RPCGetVarComplexR(v)

This macro returns the real field of acomplex variable.
IDL_RPCGetVarComplexI(v)

This macro returns the imaginary field of a complex variable.
IDL_RPCGetVarDComplex(v)

Thismacro returns the value (as a struct, not apointer) of adouble precision, complex
variable.

IDL_RPCGetVarDComplexR(v)
This macro returns the real field of a double-precision complex variable.

IDL_RPCGetVarDComplexl(v)

This macro returns the imaginary field of a double-precision complex variable.

Variable Accessor Macros External Development Guide

Chapter 4: Remote Procedure Calls 109

IDL_RPCGetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.
IDL_RPCGetVarFloat(v)

This macro returns the value of a single-precision, floating-point variable.
IDL_RPCGetVarint(v)

This macro returns the value of a 2-byte integer variable.
IDL_RPCGetVarLong(v)

This macro returns the value of a4-byte integer variable.
IDL_RPCGetVarLong64(v)

This macro returns the value of a 8-byte integer variable.
IDL_RPCVarlsArray(v)

This macro returns non-zero if visan array variable.
IDL_RPCGetVarString(v)

This macro returns the value of astring variable (as a char*).
IDL_RPCGetVarType(v)

This macro returns the type code of the variable. IDL type codes are discussed in
“Type Codes’ on page 114.

IDL_RPCGetVarUint(v)

This macro returns the value of an unsigned 2-byte integer variable.
IDLRPCGetVarULong(v)

This macro returns the value of an unsigned 4-byte integer variable.
IDL_RPCGetVarULong64(v)

This macro returns the value of an unsigned 8-byte integer value.

External Development Guide Variable Accessor Macros

110 Chapter 4: Remote Procedure Calls
RPC Examples

A number of examplefilesareincluded inthe RSI _DI R/ ext er nal / r pc directory.
A Makef i | e for these examplesis also included. These short C programs
demonstrate the use of the IDL RPC library.

Sourcefilesfor thei dl r pc server program are located in the

RSI _DI R/ ext ernal / rpc directory. Note that you do not need to build thei dI r pc
server; it is pre-built and included in the IDL distribution. Thei dI r pc server source
files are provided as examples only.

RPC Examples External Development Guide

Part Il: IDL’s Internal
API

Chapter 5
IDL Internals:
Types

This chapter describes the following topics:

TypeCodescovviiinnnn. 114 IDL_MEMINT and IDL_FILEINT Types 119
Mapping of Basic Types 116

External Development Guide 113

114

Chapter 5: IDL Internals: Types

Type Codes

Type Codes

Every IDL variable has adatatype. The possible type codes and their mapping to C
language types are listed in the following table. The undefined type code
(IDL_TYP_UNDEF) will always have the value zero.

Although it israre, the number of types could change someday. Therefore, you
should aways use the symbolic names when referring to any type except
IDL_TYP_UNDEF. Eveninthecaseof IDL_TYP_UNDEF, using the symbolic
name will add clarity to your code. Note that all IDL structures are considered to be
of asingletype (IDL_TYP_STRUCT).

Clearly, distinctions must be made between various structures, but such distinctions
are made at adifferent level. There are afew constants that can be used to make your
code easier to read and less likely to break if/when thei dl _export. h file changes.
These are:

e« IDL_MAX_TYPE—The value of the largest type.

e« |IDL_NUM_TYPES—The number of types. Since the types are numbered
starting at zero, IDL_NUM _TYPESisonegreater than IDL_MAX_TYPE.

Name Type C Type
IDL_TYP_UNDEF Undefined <None>
IDL_TYP BYTE Unsigned byte UCHAR
IDL_TYP_INT 16-bit integer IDL_INT
IDL_TYP_LONG 32-bit integer IDL_LONG
IDL_TYP_FLOAT Single precision floating | float
IDL_TYP_DOUBLE Double precision floating | double
IDL_TYP_COMPLEX Single precision complex | IDL_COMPLEX
IDL_TYP_STRING String IDL_STRING
IDL_TYP_STRUCT Structure See " Structure Variables’

on page 159

IDL_TYP_DCOMPLEX

Double precision
complex

IDL_DCOMPLEX

Table 5-1: IDL Types and Mapping to C

External Development Guide

Chapter 5: IDL Internals: Types

115

Name Type C Type
IDL_TYP_PTR 32-hit integer IDL_ULONG
IDL_TYP_OBJREF 32-hit integer IDL_ULONG
IDL_TYP_UINT Unsigned 16-bit integer IDL_UINT
IDL_TYP_ULONG Unsigned 32-bit integer IDL_ULONG
IDL_TYP_LONG64 64-bit integer IDL_LONG64
IDL_TYP_ULONG64 Unsigned 64-bit integer IDL_ULONG64

Table 5-1: IDL Types and Mapping to C (Continued)

Type Masks

There are some situations in which it is necessary to specify typesin the form of abit
mask rather than the usual type codes, for example when a single argument to a
function can represent more than asingle type. For any given type, the bit mask value

can be computed as. Mask =

2TypeCode

ThelDL_TYP_MASK preprocessor macro is provided to calculate these masks.
Given atype code, it returns the bit mask. For example, to specify abit mask for all

the integer types:

| DL_TYP_MASK(1 DL_TYP_BYTE) | | DL_TYP_MASK(| DL_TYP_I NT) |
| DL_TYP_MASK(1 DL_TYP_LONG)

Specifying all the possible types would require along statement similar to the one
above. To avoid having to type so much for this common case, the
IDL_TYP_B_ALL constant is provided.

External Development Guide

Type Codes

116 Chapter 5: IDL Internals: Types
Mapping of Basic Types

Within IDL, the IDL data types are mapped into data types supported by the C
language. Most of the types map directly into C primitives, while
IDL_TYP_COMPLEX,IDL_TYP_DCOMPLEX, and IDL_TYP_STRING are
defined as C structures. The mappings are given in the following table. Structures are
built out of the basic types by laying them out in memory in the specified order using
the same alignment rules used by the C compiler for the target machine.

Unsigned Byte Data

UCHAR isdefined to be unsigned char ini dl _export. h.
Integer Data

IDL_INT represents the signed 16-bit datatype and isdefined ini dl _export. h.
Unsigned Integer Data

IDL_UINT represents the unsigned 16-bit data type and is defined in
i dl _export.h.

Long Integer Data
IDL long integers are defined to be 32-bitsin size. The C long datatypeis not correct
on all systems because C compilers for 64-bit architectures usually define long as 64-
bits. Hence, the IDL_L ONG typedef, declared ini dl _export. h isused instead.
Unsigned Long Integer Data

IDL_ULONG represents the unsigned 32-bit datatype and is defined in
i dl _export. h.

64-bit Integer Data

IDL_L ONGB64 represents the 64-bit data type and isdefined ini dl _export . h.

Mapping of Basic Types External Development Guide

Chapter 5: IDL Internals: Types 117

Unsigned 64-bit Integer Data

IDL_UL ONG64 represents the unsigned 64-bit datatype and is defined in
i dl _export. h.

Complex Data

TheIDL_TYP_COMPLEX and IDL_TYP_DCOMPLEX data types are defined
by the following C declarations:

typedef struct { float r, i; } |DL_COWLEX
typedef struct { double r, i; } |DL_DCOWLEX

Thisisthe same mapping used by Fortran compilers to implement their complex data
types, which alows sharing binary data with such programs.

String Data

ThelDL_TYP_STRING datatype isimplemented by a string descriptor:

typedef struct {
IDL_STRING SLEN T slen; /* Length of string */
short stype; /* Type of string */
char *s; /* Pointer to string */

} I DL_STRI NG

Thefields of the IDL_STRING struct are defined as follows:
slen

The length of the string, not counting the null termination. For example, the
string “Hello” has 5 characters.

stype

If stypeiszero, the string pointed at by s (if any) was not allocated from
dynamic memory, and should not be freed. If non-zero, s points at a string
alocated from dynamic memory, and should be freed before being replaced.
For information on dynamic memory, see “Dynamic Memory” on page 252
and “ Getting Dynamic Memory” on page 174.

External Development Guide Mapping of Basic Types

118 Chapter 5: IDL Internals: Types

If den isnon-zero, sisapointer to a null-terminated string of slen characters.
If den iszero, s should not be used. The use of a string pointer to memory
located outside the IDL_STRING structure itself allows IDL strings to have
dynamically-variable lengths.

Note
Strings are the most complicated basic data type, and as such, are at the root of

more coding errors than the other types. See“IDL Internals. String Processing” on
page 183.

Mapping of Basic Types External Development Guide

Chapter 5: IDL Internals: Types 119

IDL_MEMINT and IDL_FILEINT Types

Some of the IDL-supported operating systems limit memory and file lengths to a
signed 32-bit integer (approximately 2.3 GB). Some systems have 64-bit memory
capabilities and others allow files longer than 231-1 bytes despite being 32-hit
memory limited. To gracefully handle these differences without using conditional
code, IDL internals use two specid types, IDL_TYP_MEMINT (datatype
IDL_MEMINT) and IDL_TYP_FILEINT (datatype IDL_FILEINT) to represent
memory and file length limits.

IDL_MEMINT and IDL_FILEINT are not separate and distinct types; they are
actually mappings to the IDL types discussed in “Mapping of Basic Types’ on
page 116. Specificaly, they will be IDL_L ONG for 32-bit quantities, and
IDL_LONG®64 for 64-bit quantities.

Asan IDL internals programmer, you should not write code that depends on the
actual machine type represented by these abstract types. To ensure that your code
runs properly on al systems, use IDL_MEMINT and IDL_FILEINT in place of more
specific types. These types can be used anywhere that anormal IDL type can be used,
such as in keyword processing. Their systematic use for these purposes will ensure
that your code is correct on any IDL platform.

Programmers should be aware of the IDL_MEMINT Scalar() and
IDL_FILEINTScalar() functions, described in “ Converting Argumentsto C Scalars’
on page 206.

External Development Guide IDL_MEMINT and IDL_FILEINT Types

120 Chapter 5: IDL Internals: Types

IDL_MEMINT and IDL_FILEINT Types External Development Guide

Chapter 6

IDL Internals:
Keyword Processing

This chapter discusses the following topics:

IDL and Keyword Processing 122
Creating Routines that Accept Keywords . 123
Overview Of IDL Keyword Processing ... 124
TheIDL_KW_ARR _DESC R Structure . 129

External Development Guide

Keyword Processing Options 130
The KW_RESULT Structure 132
CleaningUpou.t. 136
Keyword Examples 137

121

122 Chapter 6: IDL Internals: Keyword Processing

IDL and Keyword Processing

Keyword arguments are an important IDL language feature. They allow a multitude
of options to be specified to aroutine in a straightforward, easily understood way.
The price of this added power isthat it is somewhat more complicated to write a
routine that accepts keywords than one that doesn’t. However, the additional effort is

well worth it.

IDL and Keyword Processing External Development Guide

Chapter 6: IDL Internals: Keyword Processing 123

Creating Routines that Accept Keywords

Asdescribed in “Adding System Routines’” on page 269, you must register your
system routine before IDL will recognize it. When registering the routine, you
indicate that it accepts keyword arguments in one of the following ways.

* Specifying the KEYWORDS option for the routine in the module definition
file of a Dynamically Loadable Module (DLM)

» Setting the KEYWORDS keyword in acall to LINKIMAGE.

¢ OR-ingtheconstant IDL_SYSFUN_DEF_F_KEYWORDS into the flags
field of the IDL_SYSFUN_DEF2 struct passed to IDL_SysRtnAdd()

Routines that accept keywords must perform keyword processing. A routine that does
not allow keyword processing knows that its argc argument gives the number of
positional arguments, and ar gv contains only those positional arguments. In contrast,
aroutine that accepts keywords receives an ar gc that gives the total number of
positional and keyword arguments, and these arguments are delivered in ar gv mixed
together in an undefined order.

The function IDL_K W ProcessByOffset() is used to process keywords and separate
the positional and keyword arguments. It is passed an array of IDL_KW_PAR
structures that give information about the allowed keywords and their attributes. The
keyword data resulting from this processis stored in a user defined KW_RESULT
structure. Finaly, the IDL_KW_FREE macrois used to clean up.

More information about these routines and structures can be found in the following
sections.

External Development Guide Creating Routines that Accept Keywords

124 Chapter 6: IDL Internals: Keyword Processing

Overview Of IDL Keyword Processing

IDL keyword processing can seem confusing at first glance, due to the interrelated
data structures involved. However, as the examples that follow in this chapter will
show, the concepts involved are relatively straightforward once you have seen and
understood a concrete example such as “ Keyword Examples’” on page 137.

Following is a skeleton of a system routine that accepts keyword arguments. These
elements must be present in any such system routine:

voi d keyword_sysrtn_skel eton(int argc, |IDL_VPTR *argv, char *argk)

{
typedef struct {

| DL_KW RESULT _FI RST_FI ELD; /* Must be first entry in struct */
/* Variables specific to your keywords go here */
} KW RESULT;
static | DL_KW PAR kw_pars[] = {
/*

* Keyword definitions for the keywords you accept go here,

* one definition per keyword. The keyword definitions refer

* to fields within the KWRESULT type defined above.

*/

{ NULL } /* List nust be NULL term nated */

I
KW RESULT kw; /* Variable which will hold the keyword val ues */

(void) |IDL_KWProcessByOrfset(argc, argv, argk, kw pars,
(IDL_VPTR *) 0, 1, &kw);

/* The body of your routine */

| DL_KW FREE;
}

IDL keyword processing is made up of the following data structures and steps:
e A NULL terminated array of IDL_KW _PAR structures must be present. Each

entry in this array describes the keyword processing required for asingle
keyword.

« If akeyword represents an input-only, by-value array, the IDL_KW_PAR
structure that describes it points at an auxiliary IDL_KW_ARR_DESC R
structure that supplies the additional array specific information.

e The system routine must declare alocal type definition named KW_RESULT,
and avariable of thistype named kw. The KW_RESULT type contains al of

Overview Of IDL Keyword Processing External Development Guide

Chapter 6: IDL Internals: Keyword Processing 125

the data fields that will be set as aresult of processing the keywords described
by theIDL_KW_PAR and IDL_KW_ARR_DESC_R structures described
above. TheIDL_KW_PAR and IDL_KW_ARR_DESC R structures refer
to thefields of the KW_RESULT structure by their offset from the beginning
of the structure. The IDL_KW_OFFSETOF() macro is used to compute this
offset.

e Thesystem routine callsthe IDL_KWProcessByOffset() function, passing it
the address of the IDL_KW _PAR array, and the KW_RESULT variable
(kw).

o After IDL_KWProcessByOffset() iscaled, the KW_RESULT structure
(kw) contains the results, which can be accessed freely by the system routine.

« Beforereturning, the system routine must invoke the IDL_KW_FREE macro.
This macro ensures that any dynamic memory used by
IDL_KWProcessByOffset() is properly released.

e System routines are not required to, and generally do not, call
IDL_KW_FREE before throwing errorsusing | DL_M essage() with the
IDL_MSG_LONGJIMPor IDL_MSG_|O_LONGJIMP action codes. In
these cases, the IDL interpreter automatically knows to release the resources
used by keyword processing on your behalf.

All of these data structures and routines are discussed in detail in the sections that
follow.

External Development Guide Overview Of IDL Keyword Processing

126 Chapter 6: IDL Internals: Keyword Processing

The IDL_KW_ PAR Structure

ThelDL_KW_PAR struct provides the basic specification for keyword processing.

The IDL_KWProcessByOffset() function is passed a null-terminated array of these
structures. IDL_KW _PAR structures specify which keywords a routine accepts, the
attributes required of them, and the kinds of processing that should be done to them.

IDL_KW_PAR structures must be defined in lexical order according to the value of
the keyword field.

The definition of IDL_KW _PAR is:

typedef struct {
char *keyword;
UCHAR t ype;
unsi gned short mask;
unsi gned short flags;
int *specified;
char *val ue

} 1 DL_KW PAR;

where:
keyword

A pointer to a null-terminated string. Thisis the name of the keyword, and must be
entirely upper case. The array of IDL_KW _PAR structures passed to
IDL_KWProcessByOffset() must be lexically sorted by the strings pointed to by
thisfield. The final element in the array is signified by setting the keyword field to
NULL ((char *) 0).

type

IDL_KWProcessByOffset() automatically converts the keywords to the IDL type
specified by the typefield. Specify O (IDL_TYPE_UNDEF) in cases where
ID_ KW _VINor IDL_KW_OUT are specified in the flags field.

mask

The enable mask. Thisfield is ANDed with the mask argument to
IDL_KWProcessByOffset() and if the result is non-zero, the keyword is accepted. If
the result is 0, the keyword isignored. This ability alows you to share an array of
IDL_KW_PAR structures between several routines, and enable or disable the
keywords used by each one.

The IDL_KW_PAR Structure External Development Guide

Chapter 6: IDL Internals: Keyword Processing 127

As an example of this, the IDL graphics and plotting routines have alarge number of
keywordsin common. In addition, each routine has afew keywords that are unique to
it. Keywords are implemented using asingle shared array of IDL_KW_PAR with
appropriate values of the mask field. Thistechnique dramatically reduces the amount
of datathat would otherwise be required by graphics keyword processing, and makes
IDL easier to maintain.

flags

Thisfield specifies special processing instructions. It is abit mask made by ORing
the following values:

e IDL_KW_ARRAY — Set this bit to specify that the keyword must be an
array. Otherwise, ascalar isrequired. If IDL_KW_ARRAY is specified, the
value field must point at an associated IDL_KW_ARR_DESC_R structure.

e |IDL_KW_OUT — Set thishbit to indicate that the keyword specifies an output
parameter, passed by reference. Expressions and constants are excluded. In
other words, the routine is going to change the value of the keyword argument,
as opposed to the more usual case of simply reading it. The address of the
IDL_VARIABLE will be placed in auser supplied field of type IDL_VPTR
inthe KW_RESULT structure (kw). The offset of thisfield in the
KW_RESULT dtructureis specified by the value field (discussed below).
IDL_KW_OUT impliesthat no type checking or processing will be
performed on the keyword—it is up to the routine to perform the same sort of
type checking normally carried out for plain positional arguments.

A standard approach to find out if an IDL_KW_OUT parameter ispresentina
call toasystem routineisto specify IDL_TYP_UNDEF (0) for the type field
and IDL_KW_OUT |IDL_KW_ZERO for flags. The IDL_VPTR
referenced by the value field will either contain NULL, or a pointer to the
IDL_VARIABLE.

e« IDL_KW_VIN — Set thishit to indicate that the keyword parameter is an
input parameter (expressions and/or constants are valid) passed by reference.
The address of the IDL_VARIABLE or expression is stored in a user-
supplied field of the KW_RESULT structure (kw) referenced by the value
field, aswith IDL_KW_OUT. IDL_KW_VIN impliesthat no type checking
or processing will be performed on the keyword—it is up to the routine to
perform the same sort of type checking normally carried out for plain
positional arguments.

e IDL_KW_ZERO — Set thishit in order to zero the C variable pointed to by
the value field before parsing the keywords. This means that the object pointed

External Development Guide The IDL_KW_PAR Structure

128

Chapter 6: IDL Internals: Keyword Processing

to by value will always be zero unless it was specified by the user. Use this
technique to create keywords that have Boolean (on or off) meanings.

e |IDL_KW_VALUE — If thishit is set and the specified keyword is present
and non-zero, the low 12 bits of thisfield (flags) will be bitwise ORed with the
IDL_L ONG field of the KW_RESULT structure referenced by the value
field. Note that thisimpliesthe IDL_TYP_L ONG type code, and is
incompatible withthe IDL_KW_ARRAY, IDL_KW_VIN, and
IDL_KW_OUT flags.

specified

NULL, or the offset of the user supplied field within the KW_RESULT structure
(kw) of aCint variable that will be set to TRUE (non-zero) or FAL SE (0) based on
whether the routine was called with the keyword present. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset. Setting this
field to NULL (0) indicates that thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield isthe offset of the user supplied field in
the KW_RESULT structure (kw) into which the keyword value will be copied. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset.

In the case of aread-only array, value isthe memory address of an
IDL_KW_ARR_DESC R, structure, whichisdiscussedin“The
IDL_KW_ARR_DESC R Structure” on page 129.

Inthe case of aninput (IDL_KW _VIN) or output (IDL_KW_OUT) variable, this
field should contain the offset to the IDL_VPTR field within the user supplied
KW_RESULT that will befilled by IDL_KWProcessByOffset() with the address
of the keyword argument. The IDL_KW_OFFSETOF() macro should be used to
calculate the offset.

The IDL_KW_PAR Structure External Development Guide

Chapter 6: IDL Internals: Keyword Processing 129

The IDL_KW_ARR _DESC R Structure

When a keyword is specified to be aread-only array (i.e., theIDL_KW_ARRAY
flag is set), the value field of the IDL_KW_PAR struct should be set to point to an
IDL_KW_ARR_DESC R structure. This structure is defined as:
typedef struct {
char *dat a;
| DL_MEM NT nni n;
| DL_MEM NT nnax;
| DL_MEM NT n_of fset;
} IDL_KWARR DESC R

where;

data

The offset of the field within the user supplied KW_RESULT structure, of the C
array to receive the data. This offset is computed using the IDL_KW_OFSETOR()
macro. Thisarray must be of the C type specified by the typefield of the
IDL_KW_PAR struct. For example, IDL_TYP_LONG mapsintoaC

IDL_L ONG. There must be nmax elementsin the array.

nmin

The minimum number of elements allowed.
nmax

The maximum number of elements allowed.

n_offset

The offset of the field within the user defined KW_RESULT structure into which
IDL_KWProcessByOffset() will store the number of elements actually stored into
the array field. This offset is computed using the IDL_KW_OFSETOF() macro.

External Development Guide The IDL_KW_ARR_DESC_R Structure

130 Chapter 6: IDL Internals: Keyword Processing

Keyword Processing Options

The following cases occur in keyword processing:
Scalar Input-Only

For scalar, input-only keywords, the user never seesthe IDL_VARIABLE passed as
the keyword argument. Instead, the value of the IDL_VARIABLE is converted to
the type specified by the typefield of the IDL_KW_PAR struct and is placed into
the field of the user specified KW_RESULT structure, the offset of which is given
by the value field. This offset is calculated using the IDL_KW_OFFSETOF()
macro.

Array Input-Only

Array input-only keywords work similarly to the scalar case, except that the value
field contains the address of an IDL_KW_ARR_DESC_R struct that suppliesthe
added information required to convert the passed array elements to the specified type
and place them into a C array for easy access. The array datais copied into aarray
within the user supplied KW_RESULT structure. The data field of the
IDL_KW_ARR_DESC_R struct suppliesthe offset of the array field within the
KW_RESULT structure. This offset is calculated using the
IDL_KW_OFFSETOF() macro.

As part of this process, the number of array elements passed is checked to be within
the range specified inthe IDL_KW_ARR_DESC_R struct, and if no error results,
the number is stored into afield of the user supplied KW_RESULT struct. The
n_offset field of theIDL_KW_ARR_DESC_R struct supplies the offset of this
“number of elements’ field within the KW_RESULT structure. This offset is
calculated using the IDL_KW_OFFSETOF() macro.

It isworth noting that input-only array keywords don’t pass information about the
number of dimensions or their sizes, only the total number of elements. Therefore,
they are treated as 1-dimensional vectors. For more flexibility, use an Input/Output
keyword instead.

Input/Output

Thiscase occursif theIDL_KW _VIN or IDL_KW_OUT flagissetin the
IDL_KW_PAR struct. In this case, the value field contains the offset of the
IDL_VPTR field (computed with the IDL_KW_OFFSETOF() macro) in the user
defined KW_RESULT struct into which the actual keyword argument is copied. In
this case, you must do al error checking and type conversion yourself, just like with

Keyword Processing Options External Development Guide

Chapter 6: IDL Internals: Keyword Processing 131

positional arguments. Thisis certainly the most flexible method. However, the other
two cases are much easier to use, and are suitable for the vast majority of keywords.

External Development Guide Keyword Processing Options

132

Chapter 6: IDL Internals: Keyword Processing

The KW_RESULT Structure

Each system routine that processes keywords is required to define a structure variable
into which IDL_ KW ProcessByOffset() will store all the results of keyword
processing. This variable must follow the following rules:

e The name of the structure type must be defined as KW_RESULT. This
requirement exists so that the IDL_KW_OFFSETOF() macro can properly
do itswork.

e Thefirst field within any KW_RESULT structure must be defined using the
IDL_KW_RESULT_FIRST_FIELD macro. The contents of thisfirst field
are private, and should not be examined. It contains the information required
by IDL to properly track its resource use.

e Thename of the KW_RESULT variable must be kw. This requirement exists
so that the IDL_KW_FREE macro can properly do its work.

Hence, al system routines that process keywords will contain statements similar to
the following:
typedef struct {
| DL_KW RESULT_FI RST_FI ELD; /* Must be first entry in struct */

/* Additional user specified fields */
} KW RESULT;

KW RESULT kw;

All fields within the KW_RESULT structure after the required first field can have
arbitrary user selected names. The types of these fields are dictated by the
IDL_KW_PAR and IDL_KW_ARR_DESC_R structures that refer to them.

The KW_RESULT Structure External Development Guide

Chapter 6: IDL Internals: Keyword Processing 133

Processing Keywords

The IDL_KWProcessByOffset() function is used to process keywords.

IDL_KWProcessByOffset() performs the following actions on behalf of the calling
system routine;

* Verify that the keywords passed to the routine are al allowed by the routine.
e Carry out the type checking and conversions required for each keyword.

* Find the positional (non-keyword) arguments that are scattered among the
keyword arguments in ar gv and copy them in order into the plain_args array.

¢ Return the number of plain arguments copied into plain_args.
IDL_KWProcessByOffset() has the form:

int | DL_KWProcessByOFfset(int argc, |IDL_VPTR *argv, char *argk,
| DL_KW PAR *kw | i st,
I DL_VPTR pl ain_args[], int mask,
void * base)

where:
argc

The number of arguments passed to the caller. Thisisthefirst parameter to all system
routines.

argv

Thearray of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisisthe third
parameter to all system routines that accept keyword arguments.

kw_list

Anarray of IDL_KW_PAR structures (see* Overview Of IDL Keyword Processing”
on page 124) that specifies the acceptable keywords for thisroutine. Thisarray is
terminated by setting the keyword field of the final struct to NULL ((char *) 0).

External Development Guide Processing Keywords

134 Chapter 6: IDL Internals: Keyword Processing

plain_args

NULL, or an array of IDL_VPTR into which the IDL_VPTRs of the positional
arguments will be copied. This array must have enough elementsto hold the
maximum possible number of positional arguments, as defined in
IDL_SYSFUN_DEF2. See “Registering Routines’ on page 295.

Note
IDL_KWProcessByOffset() sorts the plain argumentsinto the front of the input
argv argument. Hence, plain_argsis often not necessary, and can be set to NULL.

mask

Mask enable. Thisvariableis ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

base
Address of the user supplied KW_RESULT structure, which must be named kw.

Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_ KW ProcessByOffset() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and valuefields
with IDL_KW_ZERO set), can become significant, especially when more than a
few keyword array elements (e.g., 5to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN asthefirst keyword array
element. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL_K W ProcessByOffset() into amore efficient form the first
time it isused. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static I DL_KWPAR kw pars[] = {
{ "DOUBLE", |IDL_TYP_DOUBLE, 1, O,
| DL_KW OFFSETOF(d_t here), | DL_KW OFFSET_OF(d) 1},
{ "FLOAT", IDL_TYP_FLOAT, 1,!DL_KWZERQO, 0, DL_KW OFFSET_OF(f) },
{ NULL }
b

Processing Keywords External Development Guide

Chapter 6: IDL Internals: Keyword Processing 135

To use fast scanning, it would be written as:

static | DL_KWPAR kw pars[] = {
| DL_KW FAST_SCAN,
{ "DOUBLE', |DL_TYP_DOUBLE, 1, O,
| DL_KW OFFSET_OF(d_t here), |DL_KW OFFSETOR(d) 1},
{"FLOAT", IDL_TYP_FLOAT, 1, |DL_KWZERO, O, |DL_KW OFFSETOR(f) 1},
{ NULL }
b

External Development Guide Processing Keywords

136 Chapter 6: IDL Internals: Keyword Processing

Cleaning Up

All normal exit paths from your system routine are required to call the
IDL_KW_FREE macro prior to returning. This macro must be called exactly once
for every cal to IDL_KWProcessByOffset(). You must therefore structure your
code sothat IDL_KW_FREE executes before any return statement. Many functions
to not use an explicit return statement, relying on the implicit return that occurs when
execution comesto the end of the function. Insuchacase, IDL_KW_FREE must be
the last statement in the function.

Cleaning Up External Development Guide

Chapter 6: IDL Internals: Keyword Processing 137

Keyword Examples

The following C function implements KEYWORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for aroutine. It
prints the values of its keywords, changes the value of READWRITEto 42 if it is
present, and returns. Each lineis numbered to make discussion easier. These numbers
are not part of the actual program.

Note

The following code is designed to demonstrate keyword processing in asimple,

uncluttered example. In actual code, you would not use the printf mechanism used
on lines 42-53.

External Development Guide Keyword Examples

138 Chapter 6: IDL Internals: Keyword Processing
1f void keyword_deno(int argc, |DL_VPTR *argv, char *argk)
28 {
3 typedef struct {
4 | DL_KW RESULT_FI RST_FI ELD; /* Must be first entry in structure */
5 IDL_LONG | ;
6 float f;
7 doubl e d;
8 int d_there;
9 I DL_STRI NG s;
10 int s there;
11 I DL_LONG arr_data[10] ;
12 int arr_there;
13 | DL_MEM NT arr _n;
14 | DL_VPTR var;
15 } KW RESULT;
16 static I DL_KWARR DESC R arr_d = { I DL_KWOFFSETCF(arr_data), 3, 10,
C 17 | DL_KW OFFSETOF(arr_n) };
18
19 static | DL_KWPAR kw pars[] = {
20 | DL_KW FAST_SCAN,
21 { "ARRAY", IDL_TYP_LONG 1, |DL_KW ARRAY,
22 | DL_KW OFFSETOF(arr_there), CHARA(arr_d) },
23 { "DOUBLE", IDL_TYP_DOUBLE, 1, O,
24 | DL_KW OFFSETOF(d_t here), | DL_KW OFFSETOR(d) 1},
25 { "FLOAT", IDL_TYP_FLOAT, 1, IDL_KWZERO 0, |DL_KW OFFSETOF(f) },
26 { "LONG', IDL_TYP_LONG 1, |IDL_KWZERQ |DL_KW VALUE| 15, O,
27 | DL_KW OFFSETOF(1) 1},
28 { "READWRI TE", IDL_TYP_UNDEF, 1, |DL_KWQUT|IDL_KW ZERO,
29 0, |DL_KW OFFSETOF(var) 1},
30 { "STRING', TYP_STRING 1, O,
31 | DL_KW OFFSETOF(s_t here), |DL_KW OFFSETOF(s) 1},
32 { NULL }
33 }

Figure 6-1: Keyword processing example.

Keyword Examples

External Development Guide

Chapter 6: IDL Internals: Keyword Processing

139

34 KW RESULT Kkw,

35 int i;

36 | DL_ALLTYPES newal ;

37

38 (void) | DL_KWProcessByOffset(argc,
39

40

41 printf("LONG <%spresent>\n",
42 printf("FLOAT: %\n", kwf);
43 printf("DOUBLE: <%present>\n",

44 printf("STRING %s\n",

45 kw.s_there ? | DL_STRI NG_STR(&w. s)
46 printf("ARRAY: ");

47 if (kw arr_there)

48 for (i =0; i < kwarr_n;

C 49 printf(" %", kw arr_datal[i]);

50 el se
51 printf("<not present>");
52 printf("\n");

53

54 printf("READWRI TE: ");

55 if (kwvar) {

56 IDL_Print(1, &kw var, (char *) 0);

57 newal .| = 42;

58 | DL_StoreScal ar (kw. var, TYP_LONG &newal);

59 } else {
60 printf("<not present>");

61 }

62 printf("\n");
63

64 I DL_KW FREE;
65] }

(IDL_VPTR *) 0,

kw. d_t here ?2 ""

argk, kw pars,
1, &kw);

"not ");

"<not present>");

Figure 6-1: Keyword processing example. (Continued)

Executing this routine from the IDL command line, by entering:

KEYWORD_DEMO
gives the output:

LONG <not present>
FLOAT: 0. 000000

DOUBLE: <not present>
STRING <not present>
ARRAY: <not present>
READWRI TE: <not present>

Executing it again with keywords specified:

External Development Guide

Keyword Examples

140 Chapter 6: IDL Internals: Keyword Processing

A = 56
KEYWORD DEMO, /LONG FLOAT=2, DOUBLE=34, $

STRI NG="hel | 0", ARRAY=FI NDGEN(10), READWRI TE=A
PRINT, 'Final Value of A: ', A

gives the output:

LONG <present>

FLQAT: 2.000000

DOUBLE: <present >

STRING hello

ARRAY: 0123456789
READVRI TE: 56

Fi nal Val ue of A 42

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

3-15

Every system routine that processes keywords must defineaKW_RESULT
structure type. All output from keyword processing is stored in the fields of this
structure.The first field in the KW_RESULT structure must always be
IDL_KW_RESULT_FIRST_FIELD. Theremaining fields are dictated by the
keywords defined in kw_par s below, starting on line 19. The fields with named
ending in _there are used for the specified field of the IDL_KW_PAR structs, and
must be typeint. The types of the other fields must match their definitionsin the
relevant IDL_KW_PAR and IDL_KW_ARR_DESC_R structs.

16-17

The ARRAY keyword, defined on line 21, is aread-only array, and requires this
array description. Note that the data field specifies the location of the arr_data array
within KW_RESULT where the array contents should be copied, and the n_offset
field specifies the location of the arr_n field where the number of elements actually
seen isto be written. Both of these are specified as offsetsinto KW_RESULT, using
the | DL_KW_OFFSET () macro to compute this. The minimum number of elements
allowed is 3, the maximum is 10.

19

The start of the keyword definition array. Notice that al of the keywords are ordered
lexically (ASCII) and that thereisaNULL entry at theend (line 32). Also, al of the
mask fields are set to 1, asis the mask argument to |DL_ KW ProcessByOffset() on
line 39. This meansthat al of the keywordsin thelist are to be considered valid in
this routine.

Keyword Examples External Development Guide

Chapter 6: IDL Internals: Keyword Processing 141

20

Thisroutine is requesting fast keyword processing. You can learn more about this
option in “ Speeding Keyword Processing” on page 134.

21-22

ARRAY isaread-only array. Itsvaluefield is therefore the actual address (and not an
offset into KW_RESULT) of theIDL_KW_ARR_DESC_R struct that completes

the array definition. This program wants to know explicitly if ARRAY was specified,
s0 the specified field is set to the offset within KW_RESULT of thearr_therefield.

23-24

DOUBLE isascaar keyword of IDL_TYP_DOUBLE. It usesthe variable
kw.d_thereto know if the keyword is present. Both the specified and valuefields are
specified as offsetsinto KW_RESULT.

25

FLOAT isanIDL_TYP_FL OAT scalar keyword. It does not use the specified field
of theIDL_KW _PAR struct to get notification of whether the keyword is present, so
that field is set to 0. Instead, it usesthe IDL_KW_ZERO flag to make sure that the
variable kw.f is always zeroed. If the keyword is present, the value will be written
into kw.f, otherwise it will remain 0. The important point is that the routine can't tell
the difference between the keyword being absent, or being present with a user-
supplied value of zero. If this distinction doesn’t matter, such as when the keyword is
to serve as an on/off toggle, use this method. If it does matter, use the specified field
as demonstrated with the DOUBLE keyword, above.

26-27

LONG isascaar keyword of IDL_TYP_LONG. It setstheIDL_KW_ZERO flag
to get the variable kw.l zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable kw.l.

28-29

ThelDL_KW_OUT flag indicates that the routine wantsthe IDL_VPTR for
READWRITE if it is present. Since IDL_KW_ZERO isalso set, the variable
kw.var will be zero unless the keyword is present. The specification of
IDL_TYP_UNDEF here indicates that there is no type conversion or processing
appliedto IDL_KW_OUT keywords.

External Development Guide Keyword Examples

142

Chapter 6: IDL Internals: Keyword Processing

30-31

The STRING keyword demonstrates scalar string keywords.
32

All IDL_KW _PAR arrays must be terminated with aNULL entry.
35

Every system routine that processes keywords must declare a variable named kw, of
type KW_RESULT. This variable should be a C stack based local variable (C auto
class).

37

The IDL_StoreScalar () function used on line 59 requires the scalar value to be
providedinan IDL_ALLTYPES struct.

39-40

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_ KW ProcessByOffset() is
discarded. Thefinal argument isthe address of the KW_RESULT variable (kw) into
which the results will be written.

42
The kw.l variable will be 0 if LONG is not present, and 1if itis.
43

The kw.f variable will aways have some usable value, but if it is zero there is no way
to know if the keyword was actually specified or not.

44-46

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Values’ on page 185.

Keyword Examples External Development Guide

Chapter 6: IDL Internals: Keyword Processing 143

47-53

Accessing the ARRAY keyword issimple. The kw.arr_there variable indicates if
the keyword is present, and kw.arr_n gives the number of elements.

55-63

Since the READWRITE keyword is accessed viathe argument’'s IDL_VPTR, we
usethe IDL_Print() function to print its value. This has the same effect as using the
user-level PRINT procedure when running IDL. See “Output of IDL Variables’ on
page 248. Then, we change its value to 42 using IDL_StoreScalar ().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_Print()) in your own code.

65

Normal exit from any routine that callsIDL_KWProcessByOffset() must be
preceded by acall to IDL_KW_FREE. This macro releases any dynamic resources
that were allocated by keyword processing.

External Development Guide Keyword Examples

144 Chapter 6: IDL Internals: Keyword Processing

The Pre-IDL 5.5 Keyword API

Versions of IDL prior to IDL 5.5 used a different, but similar, keyword processing
API to that found in the current versions. The remainder of this chapter provides
information of interest to programmers maintaining older system routines that were
written to that API.

Note
Research System recommends that all new code be written using the new keyword
processing API. The older API continues to be supported for backwards
compatibility, and there is no urgent reason to convert code that usesit. However,
the effort of converting old code to the new API is minimal, and can be beneficial.

Background

If you have system routines that were written for use with versions of IDL older than
IDL 5.5, your code uses an older keyword processing API, described in “Processing
Keywords With IDL_KWGetParams()” on page 384, that including the following
obsol ete elements:

 IDL_KWGetParams()
e |IDL_KW_ARR_DESC
e |IDL_KWCleanup(), IDL_KW_MARK, IDL_KW_CLEAN

Thisold APl served for many years, but it had some unfortunate features that made it
hard to use correctly:

e Therulesfor when and how to use IDL_KWCleanup() were difficult to
remember. The programmer had to decide whether or not to call it based on the
types of the keywords being processed. If you didn’t call it when you should,
memory would be |eaked.

e Inorder to ensure correctness, many programmers would resort to always
caling IDL_KWCleanup() whether it was is needed or not. Thisis
inefficient, but otherwise fine.

e« Theuseof IDL_KWCleanup() is based on aworst case assumption that the
keywords that require cleaning will actually be invoked by the IDL user. This
is often not the case, and is therefore inefficient.

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 6: IDL Internals: Keyword Processing 145

Imagine an existing system routine that does not need to use
IDL_KWCleanup(), and therefore is coded not to useit. If anew keyword
should later be added to that routine, and that new keyword should require the
use of IDL_KWCleanup(), itisvery likely that the programmer adding this
new keyword will fail to recognize that issue. Thisleads to memory leaking
from aformerly correct routine.

If afuture version of IDL should get a new data type that requires cleaning,
that will change the rules for when IDL_KW Cleanup() needsto be called.
Existing code may need to be examined to fix this situation.

The old keyword API is not reentrant, because it requires static variable
addresses to be embedded in the keyword list. This has always been a problem
for recursively callable routines (e.g. WIDGET_CONTROL, which can cause
an IDL procedure callback to execute, which can in turn call
WIDGET_CONTROL again). In the past, we have carefully coded these
complex routines to avoid problems, but the large amount of code required is
difficult to write and verify. The proper solution is areentrant keyword API
that uses offsets to variables within a structure, instead of actual statically
scoped variable addresses. Thisiswhat the current API provides.

Advantages Of The IDL 5.5 API

In contrast, keyword processing, in IDL 5.5 and later is built around the
IDL_KWProcessByOffset() function, has the following advantages:

The old API remainsin place with full functionality. Hence, you are not
required to update your old code (There are benefits to such updating,
however).

A transitional API, build around the IDL_KW ProcessByAddr () function,
exists to help ease updating your code. See “ The Transitional API” on

page 147 for details. The transitional API is a halfway measure designed to
solve the worst problems of the old API while requiring the minimum amount
of change.

The new API, and the transitional API both eliminate the confusing
IDL_KWCleanup() routine and its requirement to KW_MARK before, and
KW _CLEAN after keyword processing based on the types of the keywords.
Instead, the keyword processing API keeps track of the need to cleanup itself,
and handles this efficiently. The user is freed from guesswork about how and
when to do the required cleanup.

External Development Guide The Pre-IDL 5.5 Keyword API

146

Chapter 6: IDL Internals: Keyword Processing

Keyword cleanup will only happen if the keyword modul e determinesthat it is
necessary as it processes the actual keywords used. Thisis more efficient, and
it can be easily extended within IDL if anew datatypeis added to the IDL
system, without requiring any change to your code.

Theinternal data structures used to maintaining keyword state are now
dynamically allocated, and do not have the static limits that the old
implementation did.

The new API is able to process keywords using a re-entrant keyword
description. Results are written to stack based (C auto) variables rather than
statically defined variables. This can be used to greatly simplify the
implementation of recursive system routines, and has been used extensively
for that purpose within IDL.

Differences And Similarities Between APIs

The current IDL keyword processing APl was designed to minimize the changes
necessary to convert existing older code. The differences and similarities between
these APIs are summarized below:

Thebasic IDL_KW_PAR data structure is unchanged between the two.
However, in the old API, the specified, and value fields are addresses to
statically alocated C variablesor IDL_KW_ARR_DESC structures. In the
new AP, specified is always an offset into a user defined KW_RESULT
structure. The value field is an offset into KW_RESULT when it is used to
refer to data. It is an address when used to refer to an
IDL_KW_ARR_DESC_R structure.

Theold APl usesthe IDL_KW_ARR_DESC structure to define
IDL_KW_ARRAY read-only arrays. The new API usesthe very similar
IDL_KW_ARR_DESC_R structure. Thisis necessary because
IDL_KW_ARR_DESC is not reentrant (the number of array elementsused is
written into the struct), while IDL_KW_ARR_DESC_R causes them to be
writteninto afield inthe KW_RESULT variable instead.

The new API requires all keyword variables to be contained in asingle
KW_RESULT structure, while the old API allowed them to be independent
variables. Thisisimportant to the offset-based scheme used in the new API, as
well as having the nice side effect of improving the organization and
readability of most code.

Theold API uses IDL_KWGetParams() to process keywords. The new AP
uses IDL_KWProcessByOffset().

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 6: IDL Internals: Keyword Processing 147

e Theold APl usesIDL_KW(Cleanup() to free resources. The rulesfor using it
are complicated and lead to latent coding errors. The new API usesthe
IDL_KW_FREE macro, and has asimple consistent rule for use.

Converting Existing Code To The New API

To convert code that uses the old API to the new version:

« Define atypedef for astruct named KW_RESULT, containing the keyword
variables. Make the first field be the predefined
IDL_KW_RESULT_FIRST_FIELD.

* Modify your keyword definition list so that the specified and value fields of
each IDL_KW_PAR struct contain offsets instead of addressesin all cases
except when the value field referencesan IDL_KW_ARR_DESC struct. To
dothis, usethe IDL_KW_OFFSETOF() macro.

* Anyreferencetoan IDL_KW_ARR_DESC structure for an
IDL_KW_ARRAY keyword must be converted to an
IDL_KW_ARR_DESC R struct.

* Replacethecall to IDL_KWGetParams() with acall to
IDL_KWProcessByOffset().

¢ Removeany IDL_KWCleanup(IDL_KW_MARK) célls.

* Replaceany IDL_KWCleanup(IDL_KW_CLEAN) callswith the
IDL_KW_FREE macro. Check to ensure that all exit paths from your
function other than vial DL _M essage() include a call to this macro.

The Transitional API

RSI recommends that your convert your code to the reentrant keyword API based
around the IDL_KWProcessByOffset() and IDL_KWFree() functions. Thisis
amost aways a straightforward operation, and the resulting code has all of the
advantages discussed in “Advantages Of The IDL 5.5 API” on page 145. However,
there is another alternative that may be useful is some situations. A third keyword
API, built around the IDL_KWProcessByAddr () function exists that provides the
benefits of eliminating the confusing IDL_K W Cleanup() function, while not
requiring the use of static non-reentrant separate variables to change.

External Development Guide The Pre-IDL 5.5 Keyword API

148 Chapter 6: IDL Internals: Keyword Processing

Thetransitional API is a halfway measure designed to solve the worst problems of
the old API while requiring the minimum amount of change to your code:
int | DL_KWProcessByAddr (int argc, |DL_VPTR *argv, char *argk,
| DL_KW PAR *kw_| i st, | DL_VPTR *pl ai n_args,
int mask, int *free_required)

voi d | DL_KWFree(voi d)

where:
argc, argv, argk, plain_args, mask

These arguments are the same as those required by IDL_ KW ProcessByOffset()
kw_list

Anarray of IDL_KW_PAR structures, in the absolute address form required by the
old IDL_KWGetParams() keyword API (the specified and value fields use address
to static C variables).

free_required

The address of an integer to be filled in by IDL_KWProcessByAddr (). If set to
TRUE, the caller must call IDL_KWFree() prior to exit from the routine.

Example: Converting From The Old Keyword API

Toillustrate the use of the old keyword API, the transitional API, and the new
reentrant AP, this section provides an extremely simple example, written three
times, once with each API.

Another useful comparison isto compare the example “Keyword Examples’ on
page 137 with its original version written with the old API which can be found in
“Keyword Examples’ on page 388.

Old API

I DL_VPTR | DL_soneroutine(int argc, |IDL_VPTR *argv, char *argk)
{
static | DL_VPTR count _var;
static | DL_LONG debug;
static | DL_STRI NG nane;
static | DL_KW PAR kw_pars[] = {
{ "COUNT", 0,1, |DL_KWOUT|IDL_KW ZERQ, 0, | DL_CHARA(count _var)},
{ "DEBUG', IDL_TYP_LONG 1, |IDL_KWZERO 0, I|DL_CHARA(debug) },
{ "NAME", IDL_TYP_STRING 1, |IDL_KWZERO 0, |DL_CHARA(nane) },

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 6: IDL Internals: Keyword Processing 149

{ NULL }
b
I DL_VPTR resul t;

| DL_KWC eanup(| DL_KW MARK) ;
argc = | DL_KWeet Par ans(ar gc, ar gv, ar gk, kw_pars, (1 DL_VPTR *)0, 1);

/* Your code goes here. Keyword val ues are available in the
* static variables.*/

/* O eanup keywords before | eaving */
| DL_KWC eanup(| DL_KW CLEAN) ;
return(result);

}
Transitional API

Thetransitional API provides the benefits of simplified and straightforward cleanup,
but does not require you to ater your IDL_KW _PAR array or gather the keyword
variables into a common structure. The resulting code is very similar to the old API.

I DL_VPTR | DL_soneroutine(int argc, |IDL_VPTR *argv, char *argk)

{

static | DL_VPTR count _var;

static | DL_LONG debug;

static | DL_STRI NG nane;

static | DL_KW PAR kw_pars[] = {
{"COUNT", 0, 1, IDL_KW.QUT|IDL_KW ZERO,

0, | DL_KW ADDROF(count _var) },

{ "DEBUG', IDL_TYP_LONG 1,|DL_KW ZERGQ, 0, | DL_KW ADDROF(debug) },
{ "NAME", IDL_TYP_STRING 1, | DL_KW ZERQO, 0, | DL_KW ADDROF(nane) },
{ NULL }

b

int kw_ free;

I DL_VPTR resul t;

argc = | DL_KWProcessByAddr (argc, argv, argk, kw pars,

(IDL_VPTR *) 0, 1, &kw free);
/* Your code goes here. Keyword val ues are available in the
* static variables.*/

/* C eanup keywords before | eaving */

if (kw_free) IDL_KWree();

return(result);

}

External Development Guide The Pre-IDL 5.5 Keyword API

150 Chapter 6: IDL Internals: Keyword Processing

New Reentrant API

I DL_VPTR | DL_soneroutine(int argc, |DL_VPTR *argv, char *argk)
{
typedef struct {
| DL_KW RESULT _FI RST_FI ELD; /* Must be first entry in struct */
| DL_VPTR count _var;
| DL_LONG debug;
| DL_STRI NG nane;
} KW RESULT;
static | DL_KW PAR kw_pars[] = {
{ "COUNT", 0, 1, IDL_KWOQUT | |DL_KW ZERQ,
0, I DL_KW OFFSETOF(count _var) 1},
{ "DEBUG', IDL_TYP_LONG 1, |DL_KWZERO
0, | DL_KW OFFSETOF(debug) 1},
{ "NAME", IDL_TYP_STRING 1, |DL_KW ZERO
0, |DL_KW OFFSETOF(nane) },
{ NULL }
I

KW RESULT kw;
I DL_VPTR resul t;

argc = | DL_KWProcessByOf f set (argc, argv, argk, kw pars,
(IDL_VPTR *) 0, 1, &kw);

/* Your code goes here. Keyword val ues are available in the
* kw struct.*/

/* O eanup keywords before leaving if necessary */
| DL_KW FREE;

return(result);

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 7

IDL Internals:

Variables

This chapter discusses the following topics:

IDL and Internal Variables 152
TheDL_VARIABLE Structure 153
Scalar Variables 156
Array Variables 157
Structure Variables. 159
Heap Variables 164
Temporary Variables 165

Creating an Array from Existing Data.. ... 172

External Development Guide

Getting DynamicMemory 174
Accessing VariableData. 176
Copying Variables 177
Storing Scalar Values 178
Obtaining the Name of aVariable 180
Looking Up Main Program Variables ... 181
Looking Up Variablesin Current Scope . 182

151

152

Chapter 7: IDL Internals: Variables

IDL and Internal Variables

This chapter describes how variables are created and managed within IDL. While
reading this chapter, you should refer to the following figure to see how each part fits
into the overall structure of an IDL variable.

32-bit Assoc offset

IDL and Internal Variables

IDL_MEMINT et_len
IDL_MEMINT ar_len
IDL_MEMINT n_ets
Imported Data g UCHAR *dJata
Normal UCHAR n_dim
UCHAR type orm UCHAR flags
UCHAR flagg case short file_unit
IDL_ARRAY_DIM dim
IDL_ALLTYPESvaug <union> IDL_ARRAY_FREE CB free cb
IDL_FILEINT offset
UCHAR c IDL_LONG data_guard
IDL_INT i v—»
UINT ui Usually, datafollowed by a
IDL_LONG | trailing data guard.
IDL_ULONG ul
IDL_LONG64 164 A
IDL_ULONG ul64
float f
double d
IDL_COMPLEX <struct>
cmp float r
float i
IDL_DCOMPLEX <struct>
dcmp double r
double i
IDL_STRING <struct>
str IDL_STRING_SLEN|T den
short stypel
char *s
IDL_ARRAY *ar |
IDL_HVID hvid
IDL_SREF s <struct>
IDL_ARRAY *ar —p
IDL_STRUCTURE *sdef —»
Structures and object

definitions (opague)

Figure 7-1: Structure of an IDL variable

External Development Guide

Chapter 7: IDL Internals: Variables 153

The IDL_VARIABLE Structure

IDL variables are represented by IDL_VARIABLE structures. The definition of
IDL_VARIABLE isasfollows:

typedef struct {
UCHAR type;
UCHAR f | ags;
| DL_ALLTYPES val ue;
} 1 DL_VARI ABLE;

AnIDL_VPTR isapointer to an IDL_VARIABLE structure:
typedef |DL_VARI ABLE *|DL_VPTR,
ThelDL_ALLTYPESunion isdefined as:
typedef wunion {

UCHAR c; /* Scalar |DL_TYP_BYTE */

IDL_INT i; /* Scalar |IDL_TYP_INT */

I DL_UI NT ui; /* Unsigned short integer value */
IDL_LONG | ; /* Scalar |IDL_TYP_LONG */

| DL_ULONG ul ; /* Unsigned | ong val ue */

| DL_LONG64 | 64; /* 64-bit integer value */

| DL_ULONG64 ul 64; [/* Unsigned 64-bit integer value */
float f; /* Scal ar | DL_TYP_FLOAT */

doubl e d; /* Scal ar | DL_TYP_DQOUBLE */

| DL_COVPLEX cnp; /* Scalar |DL_TYP_COVPLEX */
| DL_DCOVPLEX dcnp; /* Scalar |DL_TYP_DCOVPLEX */

I DL_STRI NG str; /* Scalar I DL_TYP_STRI NG */

| DL_ARRAY *arr; /* Pointer to array descriptor */
| DL_SREF s; [* Structure descriptor */

I DL_HVI D hvi d; /* Heap variable identifier */

}1 DL_ALLTYPES;

The basic scalar types are contained directly in thisunion, while arrays and structures
are represented by the IDL_ARRAY and IDL_SREF structures that are discussed
later in this chapter. The typefield of the IDL_VARIABL E structure contains one of
the type codes discussed in “ Type Codes’ on page 114. When avariableisinitially
created, it is given the type code IDL_TYP_UNDEF, indicating that the variable
contains no value.

Theflagsfield is a bit mask that specifies information about the variable. Asa
programmer adding code to the IDL system, you will rarely need to set bitsin this
mask. These bits are set by whatever portion of IDL created the variable. You can
check them to make sure the characteristics of the variable fit the requirements of
your routine (see “Checking Arguments’ on page 202).

External Development Guide The IDL_VARIABLE Structure

154 Chapter 7: IDL Internals: Variables

The defined bitsin the mask are;
IDL_V_CONST

If thisflag is set, the variable is actually a constant. This means that storage for the
IDL_VARIABLE residesinside the code section of the user procedure or function
that used it. The IDL compiler generates such IDL_VARIABL Eswhen an
expression involving a constant occurs. For example, the IDL statement:

PRI NT, 23 * A

causes the compiler to generate a constant for the “23”. You must not change the
value of thistype of “variable”.

IDL_V_TEMP

If thisflag is set, the variable is atemporary variable. IDL maintains a pool of
nameless IDL_VARIABL Esthat can be checked out and returned as needed. Such
variables are used by the interpreter to temporarily store the results of expressions on
the stack. For example, the statement:

PRINT, 2 * 3
will cause the interpreter to go through a sequence of events similar to:
1. Push aconstant variable for the 2 on the stack.
2. Push aconstant variable for the 3 on the stack.

3. Allocate atemporary variable, pop the two constants from the stack, perform
the multiplication with the result going into the temporary variable.

4. Push the temporary variable onto the stack.
Call the PRINT system procedure specifying one argument.

6. Remove the argument to PRINT from the stack, and return the temporary
variable.

Temporary variables are also used inside user procedures and functions. See
“Temporary Variables” on page 165.

IDL_V_ARR

If thisflag is set, the variable is an array, and the value field of the IDL_VARIABLE
points to an array descriptor.

IDL_V _FILE
If thisflag is set, the variable is afile variable, as created by IDL's ASSOC function.

The IDL_VARIABLE Structure External Development Guide

Chapter 7: IDL Internals: Variables 155

IDL_V_DYNAMIC

If thisflag is set, the memory used by thisIDL_VARIABLE is dynamically
allocated. Thisbit is set for arrays, structures, and for variables of
IDL_TYP_STRING (because the memory referenced viathe string pointer is
dynamic).

IDL_V_STRUCT

If thisflag is set, the variable is a structure, and the value field of the
IDL_VARIABLE points to the structure descriptor. For implementation reasons, all
structure variables are also arrays, so IDL_V_STRUCT dsoimpliesIDL_V_ARR.
Therefore, it isimpossible to have a scalar structure. However, single-element
structure arrays are quite common.

Because structure variables have their typefield set to IDL_TYP_STRUCT, the
IDL_V_STRUCT bhit isredundant. It exists for efficiency reasons.

External Development Guide The IDL_VARIABLE Structure

Scalar Variables

Chapter 7: IDL Internals: Variables

A scalar IDL_VARIABLE isdistinguished by not having the IDL_V_ARR bit set
initsflagsfield. A scalar variable must have one of the basic data types (IDL
structures are never scalar) shown in Table 7-1. The datafor ascalar variableis stored
inthe IDL_VARIABLE itsalf, using the IDL_ALLTYPES union. The following
table gives the relationship between the data type and the field used.

Scalar Data Type

Field that Stores

Data

IDL_TYP_UNDEF None.
IDL_TYP BYTE vauec
IDL_TYP_INT value.
IDL_TYP UINT value Ui
IDL_TYP_LONG valuel
IDL_TYP _ULONG vaue.ul
IDL_TYP_LONG64 value. |64
IDL_TYP_ULONG64 value.ul64
IDL_TYP_FLOAT valuef
IDL_TYP _DOUBLE valued
IDL_TYP_COMPLEX value.cmp
IDL_TYP_DCOMPLEX value.dcmp
IDL_TYP_STRING value.str
IDL_TYP_PTR value.hvid
IDL_TYP_OBJ value.hvid

Table 7-1: Scalar Variable Data Locations

Scalar Variables

External Development Guide

Chapter 7: IDL Internals: Variables 157

Array Variables

Array variables havethe IDL_V_ARR bit of their flags field set, and the value.arr
field pointsto an array descriptor defined by the IDL_ ARRAY structure:

typedef | DL_MEM NT | DL_ARRAY DI M | DL_MAX_ARRAY DI M ;

typedef struct {
IDL_MEM NT elt_len;
IDL_MEM NT arr_|len;
IDL_MEM NT n_elts;
UCHAR *dat a;
UCHAR n_di m
UCHAR f | ags;
short file unit;
| DL_ARRAY_DI M di m
} | DL_ARRAY;

The meaning of the fields of an array descriptor are:
elt_len

The length of each array element in bytes (chars). The array descriptor does not keep
track of the types of the array elements, only their lengths. Single elements can get
quite long in the case of structures.

For IDL structures, this value includes any padding necessary to properly align the
data aong required boundaries. On a given platform, IDL creates structures the same
way a C compiler does on that platform. As aresult, you should not assume that the
size of astructureisthe sum of the sizes of the structurefields, or that the field offsets
are in specific locations.

arr_len

The length of the entire array in bytes. This value could be calculated as (elt_len *
n_elts), but is used so frequently that it is maintained as a separate field in the
IDL_ARRAY struct.

n_elts

The number of elementsin the array.

External Development Guide Array Variables

158 Chapter 7: IDL Internals: Variables

data

A pointer to the data area for the array. Thisisaregion of dynamically allocated
memory arr_len byteslong. This pointer should be cast to be a pointer of the correct
type for the data being manipulated. For example, if the array variable being
processed is pointed at by an IDL_VPTR named v and containsIDL_TYP_INT

data:
I DL_I NT *dat a; /* Declare a pointer variable */
data = (IDL_INT *) v->val ue. arr->dat a;
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of thisvalue.

flags

A bit mask that specifies characteristics of the array. Allowed values are:

IDL_A_FILE — Thisflag indicates that the array is afile variable, as created
by the ASSOC function. The variable has an array block to specify the
structure of the variable, but it has no data area. The data field of the
IDL_ARRAY structure does not contain useful information, and should not be
used.

IDL_A_PACKED — If array isan IDL_A_FILE variable and the datatypeis
IDL_TYP_STRUCT, then Input/Output to this struct should use a packed data
layout compatible with WRITEU instead of being a direct mapping onto the
struct (which reflects the C compiler layout of the structure including its
alignment holes).

file_unit

WhentheIDL_A_FILE bitisset in the flags field, file_unit contains the IDL
Logical Unit Number associated with the variable.

dim
An array that contains the dimensions of the IDL variable. There can be up to

IDL_MAX_ARRAY_DIM dimensions. The number of dimensionsin the current
array isgiven by the n_dim field.

Array Variables External Development Guide

Chapter 7: IDL Internals: Variables 159

Structure Variables

Structure variables have the type code IDL_TYP_STRUCT. They aso have the
IDL_V_STRUCT bhit set intheir flags field. The value.sfield of such avariable
contains a structure descriptor defined by the IDL_SREF structure:

typedef struct {

| DL_ARRAY *arr; /* ~ to | DL_ARRAY containing data */
voi d *sdef; /* ™ to structure definition */
} | DL_SREF;

Thearr field points at an array block, as described in “Array Variables’ on page 157.
It isworth noting that in the definition of the IDL_ALLTYPES union (described in
“The IDL_VARIABLE Structure” on page 153), the arr field is a pointer to
IDL_ARRAY, whilethe sfield isan IDL_SREF, a structure that contains a pointer
to IDL_ARRAY asitsfirst member.

The resulting definition looks like:

uni on {
| DL_ARRAY arr;
struct {
| DL_ARRAY arr;
voi d *sdef;
}os;
} val ue;
Dueto theway C lays out fields in structs and unions, value.arr will have the same
offset and size within the value union as value.s.arr. Therefore, it ispossible to
access the array block of a structure variable as var->value.arr rather than the more
correct var->value.s.arr. You should avoid use of this shorthand, however, because
itisnot strictly correct usage and because RSI reserves the right to change the
IDL_SREF definition in away that could cause the memory layout of the
ALLTY PES union to change.

Creating Structures

The actual structure definition is accessed through the sdef field, which isapointer to
an opaque IDL structure definition. Although the implementation of structure
definitionsis not public information, they can be created using the
IDL_MakeStruct() function from a structure name and allist of tags:

void *1 DL_MakeStruct (char *name, |DL_STRUCT_TAG DEF *t ags)

External Development Guide Structure Variables

160 Chapter 7: IDL Internals: Variables

name

The name of the structure definition, or NULL for anonymous structures.
tags

Anarray of IDL_STRUCT_TAG_DEF elements, one for each tag.

The result from this function can be passed to IDL_ImportArray() or
IDL_ImportNamedArray(), as described in “Creating an Array from Existing
Data’ on page 172.

IDL_STRUCT_TAG_DEF is defined as:

typedef struct {
char *nane;
| DL_MEM NT *di ns;
voi d *type;
UCHAR f | ags;
} I DL_STRUCT_TAG DEF;

name

Null-terminated uppercase name of the tag.
dims

An array that contains information about the dimensions of the structure. The first
element of thisarray isthe number of dimensions. Following elements contain the
size of each dimension.

type

Either a pointer to another structure definition, or asimple IDL type code cast to void
(e.g., (void *) IDL_TYP_BYTE).

flags

A bit mask that specifies additional characteristics of the tag. Allowed values are:

IDL_STD_INHERIT — Type must be IDL_TYP_STRUCT. Thisflag
indicates that the structure is inherited (inlined) instead of making it a sub-
structure as usual .

The following example shows how to define an anonymous structure. Suppose that
you want to create a structure whose definition in the IDL languageis:

{TAGL: OL, TAG: FLTARR(2,3,4), TAG3: STRARR(10)}

Structure Variables External Development Guide

Chapter 7: IDL Internals: Variables 161

It can be created with IDL_MakeStruct() asfollows:

static | DL_MEM NT one = 1,
static | DL_MEM NT tag2_di ns[] {
static | DL_MEM NT tag3_di ns[] { 1,
static | DL_STRUCT_TAG DEF s_tags[] =
{ "TAGL", 0, (void *) IDL_TYP_LONG
{ "TA®R", tag2_dins, (void *) |IDL_TYP_FLQOAT},
{ "TA&3", tag3_dins, (void *) |IDL_TYP_STRI NG,
{ 0}
b
typedef struct data_struct {

I DL_LONG tagl_data;

float tag2_data [4] [3] [2];

I DL_STRING tag_3_data [10];
} DATA_STRUCT;
stati c DATA STRUCT s_dat a;
void *s;
| DL_VPTR v;

3,
1

2,
10
{

/* Create the structure definition */
s = | DL_MakeStruct (0, s_tags);
/* Inport the data area s_data into an IDL structure,
note that no data are noved. */
v = IDL_InmportArray(1l, &one, |DL_TYP_STRUCT,
(UCHAR *) &s_data, 0, s);

Accessing Structure Tags

Given an opaque IDL structure definition, you can determine the offset of the data
and adescription of its size and form (scalar, array, etc) for agiven tag.
IDL_StructTaglnfoByName() returns this information given the name of the tag.
IDL_StructTagl nfoByl ndex() does the same thing, given the numeric index of the
tag. They are essentially the same routine, although IDL _StructTagl nfoByl ndex()
is dightly more efficient:

| DL_MEM NT | DL_St ruct Tagl nf oByNanme(1 DL_Struct Def Pt r sdef,
char *nane, int nsg_action,
I DL_VPTR *var)
I DL_MEM NT | DL_Struct Tagl nfoByl ndex(1 DL_St ruct Def Ptr sdef,
int index,int nsg_action,
I DL_VPTR *var)

where:

sdef

Structure definition for which offset is needed.

External Development Guide Structure Variables

162 Chapter 7: IDL Internals: Variables

name (IDL_StructTagInfoByName)

Name of tag for which information is required.
index (IDL_StructTaginfoBylndex)

Zero based index of tag for which information is required.
msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

var
NULL, or the address of an IDL_VPTR to befilled in with a pointer to the variable
description for the specified field.

On success, these functions return the data offset of the tag. On error, if the resulting
cal to IDL_Message() returnsto the caler, a-1 isreturned. The data offset can be
added to the data pointer of an IDL variable of this structure type to obtain a pointer
to the actual datafor that tag.

If thetag is successfully located and the var argument isnon-NULL, theIDL_VPTR
it pointsat isfilled in with a pointer to an IDL_VARIABLE structure that describes
the type and organization of the tag. It isimportant to understand that this
IDL_VARIABLE does not contain any actual data (or in the case of an array tag, a
valid data pointer). Hence, the data part of the IDL_VARIABL E description should
be ignored.

Determining the Number Of Structure Tags

One often needs to know how many tags a structure definition hasin order to make
use of the information supplied by the routines described above. The
IDL_StructNumTags() function returns this information:

int IDL_StructNunTags(!lDL_StructDefPtr sdef)

where;

sdef

Structure definition for which offset is needed.

Structure Variables External Development Guide

Chapter 7: IDL Internals: Variables 163

Determining the Names Of Structures and their Tags

The IDL_StructTagNameByI ndex() function returns the name of a specified tag
from a structure definition, and optionally the name of the structure:

char *1DL_Struct TagNaneByl ndex(| DL_Struct Def Ptr sdef, int index,
int meg_action, char **struct_nane)

where:
sdef

Structure definition for which name information is needed.
index

Zero based index of tag within the structure.
msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

struct_name

NULL, or the address of a character pointer (char *) to be filled in with a pointer to
the name of the structure. If the structure is anonymous, the string “ <Anonynous>"
is returned.

On success, a pointer to the tag nameis returned. On error, if the resulting call to
IDL_Message() returns to the caller, aNULL pointer is returned.

All strings returned by this function must be considered read-only, and must not be
modified by the caller.

External Development Guide Structure Variables

164 Chapter 7: IDL Internals: Variables

Heap Variables

Direct access to pointer and object reference heap variables (typesIDL_TYP_PTR
and IDL_TYP_OBJREF, respectively) is not alowed. Rather than accessing the heap
variable directly, store the value of the heap variable (an IDL pointer or object
reference) in aregular IDL variable at the IDL user level. Accessthe datain the regular
variable, then store the results back in the heap variable (via the pointer or object
reference) when done.

Note
You can use IDL’'s TEMPORARY function to avoid making copies of the data.

Heap Variables External Development Guide

Chapter 7: IDL Internals: Variables 165

Temporary Variables

Asdiscussed previoudly, IDL maintains a pool of nameless variables known as
temporary variables. These variables are used by the interpreter to hold temporary
results from eval uating expressions, and are also used within system procedures and
functions that need temporary workspace. In addition, system functions often obtain
atemporary variableto return the result of their operation to the interpreter.
Temporary variables have the following characteristics:

e All temporaries, when initially alocated, are of type IDL_TYP_UNDEF.
« Temporary variables do not have a name associated with them.

« Routines that check out temporaries must either check them back in or return
them as the result of the function. Once you return atemporary variable, you
cannot accessit again.

« Temporary variables are reclaimed by the interpreter when it is about to exit
after executing a program, so it is not possible to lose them and leak dynamic
memory by allocating them and failing to return them. If the interpreter is
exiting normally and it detects temporaries that have not been returned, it
issues an error message. Such an error message indicates an error in the
implementation of your system routine. If your routine exits by issuing an
IDL_MSG _LONGIMPor IDL_MSG_|O_LONGJIMP error via
IDL_Message() however, alocated temporaries are expected, and are
reclaimed quietly. Hence, your routines need only return temporaries on
normal return, and not before issuing errors. See “IDL Internals: Error
Handling” on page 191.

The interpreter uses temporary variablesto hold values that are the result of
evaluating expressions. Such temporaries are pushed on the interpreter stack where
they are often passed as arguments to other routines. For example, the IDL statement:

PRI NT, MAX(FI NDGEN(100))
causes the interpreter to perform the following steps:
1. Push aconstant variable with the value 100 onto the stack.
Call the system function FINDGEN, passing it one argument.

FINDGEN returns atemporary variable which is a 100-element vector with
each element set to the value of itsindex.

4. Theinterpreter removes the argumentsto FINDGEN from the stack (the
constant 100) and pushes the resulting temporary variable onto the stack.

External Development Guide Temporary Variables

166 Chapter 7: IDL Internals: Variables

5. The MAX system function is called with a single argument—the temporary
result from FINDGEN.

6. MAX findsthe largest element in its argument (99), places that value into a
temporary scalar variable, and returns that temporary variable as its result.

7. Theinterpreter removes the argument to MAX from the stack. This was the
temporary array from FINDGEN, so it is returned to the pool of temporary
variables. The resulting temporary variable from MAX isthen pushed onto the
stack.

8. ThePRINT system procedure is called with a single argument, which isthe
temporary scalar variable from MAX. It prints the value of the variable and
returns.

9. Theinterpreter removes the argument to PRINT from the stack, and returnsiit
to the pool of temporary variables.

Getting a Temporary Variable

Temporary variables are obtained viathe IDL_Gettmp() function:
I DL_VPTR I DL_Get t np(voi d);

IDL_Gettmp() requires no arguments, and returns an IDL_VPTR to atemporary
variable. This variable must be returned to the pool of temporary variables (with a
call toIDL_Deltmp()) or be returned as the value of a system function before control
returns to the interpreter, or an error will occur.

A number of variantson IDL_Gettmp() exist, as convenience routines for creating
temporary scalar variables of a given type and value. In all cases, the valueis
supplied as the sole argument, and the resulting type isindicated by the name of the
routine:

I DL_VPTR I DL_Gettnplnt (1 DL_I NT val ue);

I DL_VPTR I DL_Gett nmpUl nt (1 DL_UI NT val ue);

| DL_VPTR | DL_Get t npLong(| DL_LONG val ue);

I DL_VPTR | DL_Get t npULong(| DL_ULONG val ue) ;

I DL_VPTR | DL_Get t npFI LEI NT(| DL_FI LEI NT val ue);
I DL_VPTR | DL_Get t npMEM NT(| DL_MEM NT val ue);

Temporary Variables External Development Guide

Chapter 7: IDL Internals: Variables 167

Creating a Temporary Array

Temporary array variables can be abtained viathe IDL_MakeTempArray()
function:

char *1DL_MakeTenpArray(int type, int n_dim IDL_MEMNT dinf],
int init, IDL_VPTR *var)

where:
type

The type code for the resulting array. See “ Type Codes’ on page 114.
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of thisvalue.

dim
Anarray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init
Specifies the sort of initialization that should be applied to the resulting array. The
init argument must be one of the following:

« IDL_ARR_INI_INDEX — Each element of the array is set to the value of its
index. The INDGEN family of built-in system functions isimplemented using
this feature.

e |IDL_ARR_INI_NOP — Noinitialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.
Experience has shown that IDL_TYP_STRING data should never be | eft
uninitialized due to the risk of dereferencing an invalid string pointer and
crashing IDL. Therefore, IDL_TYP_STRING datais zeroed when
IDL_ARR_INI_NOP is specified.

e IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

External Development Guide Temporary Variables

168 Chapter 7: IDL Internals: Variables

Thedataareaof an array IDL_VARIABLE isaccessible fromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
accessthe dataarea, IDL_MakeTempArray() returns the data area pointer as its
value. Aswith IDL_Gettmp(), the variable allocated vialDL_MakeTempArray()
must be returned to the pool of temporary variables or be returned as the value of a
system function before control returns to the interpreter, or an error will occur.

Creating a Temporary Vector

IDL_MakeTempArray() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempVector () function:

char *1DL_MakeTenpVector(int type, IDL_MEMNT dim int init,
| DL_VPTR *var) where:

type, init, var

These arguments are the same asfor IDL_M akeTempArray().
dim

The number of elementsin the resulting vector.

Creating a Temporary Structure

ThelDL_MakeTempsStruct() allows you to create an IDL structure variable using
memory allocated by IDL, in much the same way that IDL_MakeStruct() and
IDL_ImportArray() allow you to create an IDL structure variable using memory
you provide. Temporary structure variables can be obtained via the
IDL_MakeTempStruct() function:

char *1DL_MakeTenpStruct (I DL_StructDefPtr sdef, int n_dim
IDL_MEM NT dinf], IDL_VPTR *var, int zero)

where:
sdef

A pointer to the structure definition.
n_dim

The number of structure dimensions. The constant IDL_MAX_ARRAY_DIM
defines the upper limit of this value.

Temporary Variables External Development Guide

Chapter 7: IDL Internals: Variables 169
dim
A Carray of IDL_MAX_ARRAY_DIM elements containing the structure
dimensions. The number of dimensions in the array is given by the n_dim argument.
var
The address of an IDL_VPTR where the address of the resulting temporary variable

will be put.

Thedataareaof an array IDL_VARIABLE isaccessible fromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
accessthe dataarea, IDL_MakeTempStruct() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable allocated vial DL _M akeTempStr uct()
must be returned to the pool of temporary variables (with acall to IDL_Deltmp()) or
be returned as the value of a system function before control returnsto the interpreter,
or an error will occur.

Zero

Set to TRUE if the data area of the resulting variable should be zeroed, or to FALSE
otherwise. Unlessthe caller intends to immediately copy avalid result into the
variable, this argument should be set to TRUE to prevent memory corruption.

Creating a Temporary Vector

IDL_MakeTempStruct() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_MakeTempStructVector () function:

char *| DL_MakeTenpStruct Vector (1 DL_Struct Def Ptr sdef, | DL_MEM NT
am I DL_VPTR *var, int zero)
where:
sdef, var, zero
These arguments are the same asfor IDL_MakeTempStruct().
dim

The number of elementsin the resulting vector.

External Development Guide Temporary Variables

170 Chapter 7: IDL Internals: Variables

Creating A Temporary Variable Using Another
Variable As A Template

It is common to want to create atemporary variable with aform that mimics that of a
variable you aready have access to. Often, such atemporary variable has the same
number of elements and dimensions, but may vary intype. It is possible to do this by
using the basic temporary variable creation routines discussed earlier in this chapter,
but the resulting code will be complex, and this sort of code occurs frequently. The
best way to create such avariable isusing the
IDL_VarMakeTempFromTemplate() function.

IDL_VarMakeTempFromTemplate() creates atemporary variable of the desired
type, using the template var argument to specify its dimensionality. The address of
thistemporary variable is stored at the address specified by the result_addr
argument. The address of the start of this variable’'s data areaiis returned as the value
of the function.

char *1 DL_Var MakeTenpFr onTTenpl at e(| DL_VPTR tenpl ate_var,int type
| DL_Struct Def Ptr sdef,
I DL_VPTR *result_addr,int zero);

where:
template_var

Source variable to take dimensionality from. This can be ascalar or array of any type.
type

The IDL type code for the desired temporary variable.
sdef

NULL, or apointer to a structure definition. This argument isignored if typeis not
IDL_TYP_STRUCT. If typeisIDL_TYP_STRUCT, sdef supplies the structure
definition for the result. It is an error to specify aresult typeof IDL_TYP_STRUCT
without providing avalue for sdef, with one exception: If typeis
IDL_TYP_STRUCT and template var isavariable of IDL_TYP_STRUCT, and
sdef isNULL, then IDL_Var M akeTempFromTemplate() will use structure
definition of template var.

result_addr
Address of IDL_VPTR to receive a pointer to the newly allocated temporary

variable.

Temporary Variables External Development Guide

Chapter 7: IDL Internals: Variables 171

Zero

TRUE if the resulting variable should be zeroed, and FAL SE to not do this. Variables
of IDL_TYP_STRING, and structure types that contain strings, are always zeroed.

Freeing A Temporary Variable

Use|IDL_Detmp() to free atemporary variable:
void I DL_Del t mp(1 DL_VPTR p)

wherep isan IDL_VPTR to the temporary variable to be returned. IDL_Deltmp()
frees the dynamic parts of the temporary variable (if any) and then returns the
variable to the pool of available temporaries. Once you have deallocated atemporary
variable, you may not accessit again. Thereisaso amacro named IDL_DELTMP
which checks its argument to make sure it’s atemporary, and if so, calls
IDL_Deltmp() to return it.

External Development Guide Temporary Variables

172 Chapter 7: IDL Internals: Variables

Creating an Array from Existing Data

There are two functions that allow you to create an IDL array variable whose data
points at data you supply rather than having IDL allocate the data space. The routine
IDL_ImportArray() returns atemporary variable, while
IDL_ImportNamedArray() returns anamed variablein the current execution scope,
creating the new variable if necessary. Your data must already exist in memory. The
data area, which can be quite large, is not copied. These functions simply create
variable and array descriptors that point to the data you supply and return the pointer
to the resulting variable. Their definitions are:

IDL_VPTR IDL_InportArray(int n_dim IDL_MEMNT din{], int type,
UCHAR *data, |DL_ARRAY_FREE CB free_cb, void *s)

I DL_VPTR | DL_I mpor t NamedArray(char *nanme, int n_dim
IDL_MEM NT dinf], int type, UCHAR *dat a,
| DL_ARRAY_FREE CB free_ch, void *s)

typedef void (* |DL_ARRAY_FREE CB) (UCHAR *);

where:
name
The name of the variable to be created or modified.
n_dim
The number of dimensionsin the array.
dim
Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type
The IDL type code describing the data. See “ Type Codes’ on page 114.
data

A pointer to your array data. Your datawill not be modified unless the user explicitly
modifies elements of the array using subscripts.

Creating an Array from Existing Data External Development Guide

Chapter 7: IDL Internals: Variables 173

Thetemporary variable returned by IDL_ImportArray() can be used immediately in
an expression, in which case the descriptors are freed immediately. It can also be
assigned to alonger-lived variable using IDL_Var Copy().

Note
IDL frees only the memory that it alocates for the descriptors, not the memory that
you supply containing your data. You can arrange to be notified when IDL is
finished with your data by using the free_cb argument, described bel ow.

free_cb

If non-NULL, free_cb isapointer to afunction that will be called when IDL freesthe
array. Thisfeature gives the caller a sure way to know when IDL is no longer
referencing data. Use the called function to perform any required cleanup such as
freeing dynamic memory or releasing shared or mapped memory. The called function
should have no return value and should accept asits argument a (uchar *), whichisa
pointer to the memory to be freed.

If the type of thevariableisIDL_TYP_STRUCT, s points to the opaque structure
definition, asreturned by IDL_M akeStruct().

External Development Guide Creating an Array from Existing Data

174 Chapter 7: IDL Internals: Variables

Getting Dynamic Memory

Many programs need to get dynamic memory for some temporary calculation. In the
C language, the functions malloc() and free() are used for this purpose, while other
languages have their own facilities. IDL providesits own memory allocation routines
(see “Dynamic Memory” on page 252). Use of such facilities within the IDL
interpreter and the system routines can lead to the loss of usable dynamic memory.
The following code fragment demonstrates how this can happen.

For example, assume that there isaneed for 100 IDL_LONG integers:

char *c;

¢ = (char *) IDL_MemAl | oc((unsigned) (sizeof(IDL_LONG * 100)
(char *) 0, |DL_MSG RET);

if (sone_error_condition) |IDL_Message(.., |DL_MSG LONGIMP, .);

| DL_MenfFree((void *) ¢, (char *) 0, |IDL_MSG RET);

In the normal case, the allocated memory is released exactly asit should be.
However, if an error causesthe IDL_M essage() function to be called, execution will
return directly to the interpreter and this code will never have a chance to clean up.
The dynamic memory allocated will therefore leak, and athough it will continue to
occupy spacein the IDL processes, will not be used again.

The IDL_GetScratch Function

To solve this problem, use a temporary variable to obtain dynamic memory. Then, if
an error should cause execution to return to the interpreter, the interpreter will
reclaim the temporary variable and no dynamic memory will be lost. This frequently-
needed operation is provided by the IDL_GetScratch() function:

char *1DL_CetScratch(lDL_VPTR *p, IDL_MEM NT n_elts,
| DL_MEM NT el t_size)

where:

The address of an IDL_VPTR that should be set to the address of the temporary
variable allocated.

Getting Dynamic Memory External Development Guide

Chapter 7: IDL Internals: Variables 175

n_elts
The number of elements for which memory should be allocated.
elt_size

The length of each element, in bytes.

Once the need for the temporary memory has passed, it should be returned using the
IDL_Deltmp() function. Using these functions, the above example becomes:

char *c;
| DL_VPTR v;

¢ = IDL_GetScratch(&, 100L, (IDL_LONG sizeof(IDL_LONG);
if (sone error condition) |IDL_Message(..., MG LONGIMP, ...);

i DL_Del t np(v);

Using the IDL_GetScratch() and IDL_Deltmp() functionsis similar to using
IDLMemAlloc() directly. Infact, IDL usesIDL_MemAlloc() and IDL_MemFreg()
internally to implement array variables. The important difference is that dynamic
memory doesn’t leak when error conditions occur.

To avoid losing dynamic memory, always use the IDL_GetScratch() function in
preference to other ways of allocating dynamic memory, and use IDL_Deltmp() to
return it.

External Development Guide Getting Dynamic Memory

176 Chapter 7: IDL Internals: Variables

Accessing Variable Data

Often, we are not concerned with the distinction between a scalar and array
variable—all that is desired is a pointer to the data and to know how many elements
there are. IDL_Var GetData() can be used to obtain this information:

void IDL_VarGetData(lDL_VPTR v, |IDL_MEM NT *n, char **pd,
i nt ensure_sinple)

where:
The variable for which datais desired.

The address of avariable that will hold the number of elements.

pd
The address of variable that will hold a pointer to data, cast to be a pointer to a pointer
to acharacter (for example (char **) & myptr).

ensure_simple

If TRUE, thisroutine callsthe|IDL_ENSURE_SIM PL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, IDL_EXCLUDE_FILE is
called, because file variables have no data area to return.

Onexit, IDL_Var GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

Accessing Variable Data External Development Guide

Chapter 7: IDL Internals: Variables 177

Copying Variables

To copy the contents of one variable to another, use the IDL_Var Copy() function:
void | DL_Var Copy(I DL_VPTR src, |DL_VPTR dst)

Arguments src and dst are the source and destination, respectively.

IDL_VarCopy() uses the following rules when copying variables:

e |f the destination variable already has a dynamic part, this dynamic part is
released.

* The destination becomes a copy of the source.

« If the sourceisatemporary variable, IDL_Var Copy() does not make a
duplicate of the dynamic part for the destination. Instead, the dynamic part of
the source is given to the destination, and the source variable itself is returned
to the pool of free temporary variables. Thisis the equivalent of freeing the
temporary variable. Therefore, the variable must not be used any further and
the caller should not explicitly free the variable. This optimization
significantly improves resource utilization and performance because this
specia case occurs frequently.

External Development Guide Copying Variables

178 Chapter 7: IDL Internals: Variables

Storing Scalar Values

ThelDL_StoreScalar () function setsan IDL_VARIABLE to ascaar value:

void I DL_StoreScal ar (I DL_VPTR dest, int type,
| DL_ALLTYPES *val ue)

where:
dest

AnIDL_VPTR tothelDL_VARIABLE inwhich the scalar should be stored.
type

Thetype code for the scalar value. See “ Type Codes’ on page 114.
value

The address of the IDL_ALLTY PES union that contains the value to store.

If dest isalocation that cannot be stored into (for example, atemporary variable,
constant, and so on), an error isissued and control returnsto the interpreter.
Otherwise, any dynamic part of dest isfreed and value is stored into it.

The DL _StoreScalar Zero() function is a specialized variation of
IDL_StoreScalar(). It stores a zero scalar value of any specified type into the
specified variable:

void I DL_StoreScal ar Zero(| DL_VPTR dest, int type)
where:

dest

AnIDL_VPTRtotheIDL_VARIABLE in which the scalar zero should be stored.
type

Thetype code for the scalar zero value. See “ Type Codes’ on page 114.

Storing Scalar Values External Development Guide

Chapter 7: IDL Internals: Variables 179

Using IDL_StoreScalar() to Free Dynamic Resources

In addition to performing its primary function, IDL_StoreScalar () and
IDL_StoreScalar Zero() have two very useful side effects:

1. Storing ascalar value in avariable causes IDL to free any dynamic memory
currently used by that variable.

2. Theseroutines do the required error checking to make sure the variable allows
anew valueto be stored into it before performing the actual storage operation.

Often, a system routine accepts an input argument that will have a new value
assigned to it before the routine returnsto its caller, and theinitial value of that
argument is of no interest to the routine. Storing a scalar value into such an argument
at the start of the routine will automatically check it for storability and free
unnecessary dynamic memory. In one easy operation, the required error checking is
done, and you've improved the dynamic memory behavior of the IDL system by
minimizing dynamic memory fragmentation. For example:

| DL_St oreScal ar Zero(&v, |DL_TYP_LONG ;
Error handling is discussed further in “IDL Internals: Error Handling” on page 191.

External Development Guide Storing Scalar Values

180 Chapter 7