Building IDL
Applications

IDL Version 6.1

July, 2004 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Research Systems Inc.

07041DL61BLD

Restricted Rights Notice

TheIDL®, ION Script™, and ION Java™ software programs and the accompanying procedures, functions,
and documentation described herein are sold under license agreement. Their use, duplication, and disclosure
are subject to the restrictions stated in the license agreement. Research Systems, Inc., reserves theright to
make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, asto any matter not expressly set forth
in the license agreement, including without limitation the condition of the software, merchantability, or fitness
for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered by the Lic-
ensee or any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransferable license
to reproduce this particular document provided such copies are for your use only and are not sold or distrib-
uted to third parties. All such copies must contain the title page and this notice pagein their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were devel oped using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

(@ AT YT S RUS 15
What isan IDL APPHICALIONT ...cccueecieciecie ettt ee s ee e st e e e s sre e e e reenre e nee s 16
About Building ApplicationSiN IDLccccveeeiiiiiiceeeese e 17

Part I: Components of the IDL Language

Chapter 2:

Expressions and OPeratorSccoviiiiiiiiiiiii et ee et e e 21
L@ < V=SS 22
1B I @01 o] £ T TSRS 23
(O] 01 (0 gl 1= 0= 0 = 0= RS 40
Data Type and Structure of EXPreSSIONScccceceieieeeeieneseseeeese e esae s sae e 43
Chapter 3:

Constants and VariableS ... a7
DAIA TYPES .ottt nneenre e 48

Building IDL Applications 3

CONSLANTS ...ttt ettt ea e en e e e e nne e ne e 51
Type CONVErSION FUNCLIONScoiiiiieieiniisieseeeeesi e 58
VAHTADIES ...t 61
SYSIEM VATADIES ...ttt ene et sreene s 64
COMIMON BIOCKSoviieiiiiiiiree st nne s 65

Chapter 4:

Procedures and FUNCLIONScuuiiiiiiiiiiiieee e 69
OVEIVIBIW ..ttt sttt e te st saeste s e s teese e tessesse e e e tessesseeneeseesseeseensenseseneneensensensennenn 70
(D T gTo T W 010 o (U = 71
CalliNg @PIOCEAUIE ...t eb e 72
(11] Vo = 1 U Vo 1 o 73
PAIGMELENS ...ttt st e st e e s b e e s b e e ere e eb e e e neeennee s 76
UsiNg KeYyWOrd Par@MeLErScoeeieiiiriie e seesteese e et ete et e sae e st 79
KeyWOrd INNENMTANCEoeiiieieieieeeeee st 81
Entering Procedure DEfINITIONSccveiiiie et 89
HOW IDL RESOIVES ROULINES ...c.vveieieiesieeiiesee sttt se sttt st st enee e sne e 91
Parameter Passing MEChaNIiSIMccueeiiiie e 92
Calling MECNANISIM ...ttt r e en e e nr e 94
Setting Compilation OPLIONSccceeiieeieeie e e e e s sneesreesree e 96
Chapter 5:

Library AUTNOTING oo 99
Overview of Library AUtNOINGcccoiiiiiieiece e 100
Recognizing Potential Naming CONfIICEScoieieiiriieeee e 101
Advicefor Library AULNOISoooiiiiieecc et 103
Converting EXisting LIDIarieso..ceoieieeeeereeeere e 104
Chapter 6:

1 10 PPN 107
OVEIVIBIW .ttt b ettt b e bt b b e et et b e s b et et et ebene et 108
S T a0 @ o= = 1 o LT 109
Non-string and NON-scalar ArQUMENLSc..oceiiereerieseieeeesee e eee e e e ae e e see e 110
S T alo J @0 aTor= 1= g = o o 111
Using STRING t0 FOrmMat Datacccceeveeeeieiieseeeesie sttt 112
Byte Arguments @and SEHNGSoo.eeeereiiieeiere et se e e enes 113
(025 o] Lo [T o 115

Contents Building IDL Applications

LAY TR =S o= o= 116
Finding the Length of @StriNgccooeeeiienineeenere e 118
SUDSITINGS vvuveeueeieitiiteeiee st st se s e s et e e e re e e et e tesreetestesteeseensebesaeereensetesresnseeeseennn 119
Splitting and JOINING SEHNGS ..eeverieieeeeee e seeenes 122
(@0 00107211 a0 S T e ST 123
NON-Printing CharaClerscouoeieeeerese et ee s ee st sneeneeseenneas 127
Learning About Regular EXPrESSIONScceeueveieieeierie e seeseesse e sseeseesre e sseesessesnens 128
Chapter 7:

ATTAYS et 133
(@< V= T 134
F N = VS ¥ o1 e] o 11 o S 137
SUDSCIIPE RANGES ...cveviiiieiirierie ettt e e b n e 142
Dimensionality Of SUDBITAYScccveoeiiiiiir e 144
USING ATTAYS 8S SUDSCIPLS ..uveueeieetereeieesie sttt 146
CombINING SUDSCIIPLS ..vveveeieeiieesie ettt s e e e s e sneesre e reenre e e 148
Storing Elements with Array SUDSCIIPLSc.coviverieierineseieeniese e 150
Columns, Rows, and Array M Orityccceeoeeieiceiir e e e e 151
Chapter 8:

o 11 =] SR 155
OVEIVIBIW ..ttt b sttt b e ettt b e bbb st et et e b e sbe it e 156
HEBP VATADIES ...ttt st ene e seenaeas 157
Creating HEap VariablESocveiiiececee ettt s 159
Saving and Restoring Heap Variablescooeiiieieeiene e 160
Pointer HEap Variables ..ot s 161
0TI o T = S 162
OpErationS 0N POINLEIScecueeieiiiiteeeeiese e e et s et e b s e e s e tesre s e e naesreans 165
Dangling REFEIENCESoouieieiesee et see e 169
Heap Variable LEAKAGEcoevveiieeecce ettt sttt sreeneas 170
Lo T 10 V=TT SRR 172
= L aTo o] 1 = £SO 173
POINEEr EXAMPIES ...ttt eeseeseeeneenseneenneas 174
Chapter 9:

SHITUCTUIES e e e e e e e e e e e e e e e e e eenes 181
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 182

Building IDL Applications Contents

Creating and DefiniNg SIIUCIUMESc..ocviiviieieiecie sttt 183
SIrUCIUrE REFEIEINCESo.vieeeie ettt e e ae e e e et sneeneens 186
USINg HELP With SITUCLUIES ..ottt 188
Parameter Passing With SITUCTUFEScoueeioieieeeeeeeese e 189
ATTAYS OF SEIUCIUIES ...ttt ettt st tesaesreeneennesaesreennas 191
Structure INPULY/OULPULcoveeieeeeieetesieseeeeese e s 193
AdvanCed SITUCIUNE USBOEoveeueeierie ettt ettt sttt st aesreennas 196
Automatic Structure DEfiNItIONcooie e 198
Relaxed Structureé ASSIGNMENToce it ens 200

Part II: Basics of IDL Programming
Chapter 10:

Introduction to IDL Programmingccccccceeeeeiiiiiieceeicciee e 205
What iSan IDL Program?oooeeieiiieeeesese e see e st eeseesneeneas 206
Creating aSIMPIE PrOgramcccoceeieie ettt sreene e 209
Compiling and RUNNING Y OUr PrOgramcocooeeeoieneeeerese e 210
Commenting Your IDL COOEocueeieiecieeieeeese sttt sttt e 214
Saving Compiled IDL Programs and Datacccecevereeienene e 215
Restoring Compiled IDL Programs and Dataccceeeeveevieieeeese e seeeese e seeee e 223
Chapter 11:

Files and INPUL/OULPUL .oooiiiiiiii e 231
(@< V= ST 232
FIHEITO TN TDL ettt ettt bttt sb e e es 233
Unformatted INPUL/OULPULooveeeieiireesiee et 238
Formatted INPUL/OULPULc..ocviieiiieie ettt sttt sa e e ne s 239
(@7 0= 01110 1 T - ST 241
(O o1 o 1 1 =SS 242
Logical Unit NUMBErS (LUNS) ...ooeeieiiieeere et 243
Reading and Writing Very Large Fil€Scviviiicicece et 246
Using Free Format INPUL/OULPULc..ooveiieeeieriieseeeee s 248
Using Explicitly Formatted INPUt/OULPULoeeeieiiiieee e e 253
0] 0= A 00 [T 258
Using Unformatted INPUL/OULPULccveeeerieiieceeeee sttt e 294
Portable Unformatted INPUE/OULPULcoeereiieeeeieese et 301
Associated INPUI/OULPULccveeieeeeiesie ettt e e saesre st seennesaesreennas 306

Contents Building IDL Applications

File Manipulation OPErationSccccceieiieeeesiesesteeeesiese s esae e sre e ste e sreesessesresneas 312
UNIX-SPeCific INFOMELIONoeiviieiieeeiestereeeeese e 325
Windows-Specific INfFOrMELIONcccciiiiieieese e 328
SCIENtific Dala FOMMELScccveieiiieeeese et nee e see s 329
Support for Standard Image File FOrmMatscccvieeieii e 330
Chapter 12:

ASSIGNIMENT e e e r e e e e e e aaaeeas 333
Overview of the ASSIgNMENT SEAEEMENTc.oviiireeieeeereee e 334
AssigningaValueto aVariable ... 336
Assigning Scalars to Array EI@MENtS ... 337
Assigning Arraysto Array EIEMENEScccceveeiee et 338
AV0id USING RANGE SUDSCIILSververeeieiiriisieieeeieeie et 340
Compound AsSIgNMENt OPEFELOLScceccurerieerieeiesir e seeseeseesreesreesreesreesseesseesseessesses 342
Using Associated FIle Variables ... 344
Chapter 13:

Program CONtIOlcciiiii e 345
(@< V= T 346
(0010010101010 10 IStz = 1= £SO 347
ConditioNal SEALEMENTSccveieeeee et e e e e e neeseeenes 350
[0 T0 OIS 41] £ SRR 357
JUMP SEBEEIMENTS ...ttt ettt ettt s ae e sae et e eae e saeesanesneeas 365
Definition of True and FalSEccooiiiiiiierireee e 368
Chapter 14:

Writing Efficient IDL Programsueueeeiiiiinineeeeeeeeeeeeeeeeevei s 369
(@< V=T 370
EXpression EValUation OFAErcceceeveieieeiese et e st sre st enesresneas 371
AVOIA [F SEBEEMENESoeiieeeeiee sttt sttt e e e sne e e e neesne e 372
Use Vector and Array OPEFaLiONScccvveeeeiereseeeeeesse e seeseesse e seessesresresseesessesnens 373
Use System FuNnctions and ProCeAUIEScceoiiieerieneie e 375
Use Constants Of the COrrECt TYPE ..c.uvevviiicecieie ettt e sttt sresnea 376
Eliminate INvariant EXPreSSIONSc.cceiieeerere e e eeenie st seeeesee e seeseeseeseesseeseseeseeas 377
VITTUBI IMBIMONY .ottt ettt sttt e st r e e ste st e st e ess e besresreennesenneens 378
IDL IMPIEMENTALIONovieeeeiee et saesne e e e eesne e 383
THe IDL COUE PrOfIlEfociiiiieeeir ettt 384

Building IDL Applications Contents

Chapter 15:

Multithreading in IDLccooviiiieiiecce e 391
The IDL Thread POOI ..ot 392
Controlling the IDL Thread POOIccooiiiiieeeereseeeee e 395
Routines that Use the Thread POOIcocoiiiirinninreere s 401
Chapter 16:

Solutions to Common IDL Taskscccccciiiiiiiiiiieeeee s 405
Determining Variabl@ SCOPEcveeririerieine et e 406
Determining if a KeyWOord iSSELccvveiiieriiie et 407
Determining the Number of Array Elementsin an Expression or Variable 408
Determining if aVariableiSDEfINEdccoovevieiieicecee e 409
Supplying Values for Missing KeYWOrdScccvvrireieninineeerese s 410
Supplying Values for Missing ArQUIMENEScccveeercieiieiie s see e sreesessreeseesneesneesnes 411
Determining the SIiZe/TYPe Of 8N AITAYooveeeerereeeeeeere e 412
Determining if aVariable Containsa Scalar or Array Valuecccccceeeevcevcnccieseesnennn, 415
Calling Functions/ProcedureS INAITECHYcoeeiereneierireseeesese e 416
Executing Dynamically-Created IDL COUEcccvverierier s e see e sre e eseee e 417
Chapter 17:

Building Cross-Platform Applicationscccccooiiiiiiiiiiiiiiiiiiieeeeee, 419
OVEIVIBIW .ttt sttt b bbbt b e st et et be e b et et et ebene et 420
Which Operating SysStem iS RUNNING?ccoiiiieieiereeeese e 421
File and Path SPeCITiCAtiONScccccvveieeiee st 422
ENVironment VariablEScocooiiiiee et 424
FHES BN 17O ..o 425
= o= o o] U 428
OpErating SYSLEM ACCESSveiviiieiieeiesie s eeete s et e st e ste e eseesaestesreeseesbesresreeeestessesneens 429
Display Characteristics and Palettesccooeiiiieieiere e e 430
FrONES bbbt e bt b a et b s ae e e e 431
101 0 U 432
SAVE @Nd RESTORE ..ottt 433
LAY = USSR 434
USING EXErNEAl COUEveieeeeeeieciieee ettt ettt n e sreene s 437
DL DEAMINES ISSUESoueiieieeieeiiesieeiesee st eeeeeseeste e e seesseeseeneesaesneeneeseessesneeneenensens 438

Contents Building IDL Applications

Chapter 18:

Debugging an IDL Programoeuuuiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeenene s 439
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 440
Debugging COMIMANGScooveriiriiieeerie e eeeee e ste e eeesee et eeeseessesneeeeseeseesseenseseesneas 441
The Variable WatCh WINAOWccooeiiiiireniree s 447
Chapter 19:

Controlling ErrOrs e 451
(@< V= T 452
Default Error-Handling MEeChaniSMccceiirieriien et 453
Disappearing ValriableS ..ot 454
Controlling Errors UsiNg CATCH ...ttt 455
Controlling Errors Using ON_ERRORccciiiiiinenienese e 459
Controlling INPUL/OULPUL EXTOISveeieeieeieecie e e see e seesaee e se s sreesreesneesseesseeseee e 460
EITOr SIgNAIING .oeeiveieeeeeeeseie ettt 462
Obtaining Traceback INfOrmMation ..o e 464
Error HANAING ..ot 465
Y= 1 = (0] SRR 467
Chapter 20:

Providing Online Help For Your Applicationccccccciieeeeeeeiinnnnnnn. 473
OVEIVIBIW ..ttt b sttt b e ettt b e bbb st et et e b e sbe it e 474
Providing Help Within the User INterface ... 475
Displaying TEXE FIIESviiuicecieee ettt st sresre s 478
USING @N EXTErNAl VIBWEL ...ttt et see e 479
About IDL'SONIINE HEIP SYSIEM ..ot 480
UsiNg IDL’SONINE HEIP VIBWELS ...t 484

Part 1ll: Creating Applications in IDL
Chapter 21:

Creating IDL ProOjJECTS ...cooiiiiiiiiieieti ettt 493
(@< V= P 494
Where to Store the FileSfor @Projectccoovveeieeveeiie et 498
Creating @PTOJECEc.coiiiirieieieee ettt nne e 500
Opening, Closing, and Saving ProjECLSccccccvvciiiiriienie e see e see e s seee s 502
MOdiTYiNG ProjECE GIOUPSc.ccveueeiiriiieiniesiesieie st see e 503
Adding, Moving, and ReMOVING FIlEScceiie i 505

Building IDL Applications Contents

10

Working With FII€SIN @PrOJECcccviieieieie et 509
Setting the OptioNS fOr aPrOJECEcccviiiieeee e 514
Selecting the BUild OFEY ..ot 517
Compiling an Application from @ProjeCtccoceoeieneeieie e 519
(2 TU TN o g To = 0= o U 520
Running an Application from @ Projectccoceeriiieieie e 522
(o To (Lo = W = A 523
Chapter 22:

Distributing IDL APPlICAtIONS ...vvveeiiiiiiieie et 529
What isa Stand-Alone IDL APPHCALIONTcvcveeeeereresieeeeese s 530
Building a Native IDL APPHCALIONoiueeieeierieeeeee e 533
Licensing Options for IDL APPHICALIONSccvvereereineiirie e e seeeseeseeeeee e sse e see s 535
The IDL Virtual MaChine ..o 537
EMDEdded LICENSING ...oveeieriiiieieeeesie ettt e 543
RUNEIME LICENSING .veeveeieeieeiesieeieseesee s e st e saeesreesteesteesteesreesteeseenseenseensesnsesnsesnessneens 550
Building Your APPIICELIONccueeeiiirieieieiesesie et 559
Preparing a Windows DistriBULIONccooceieeiienecrecsee e 568
Preparing @ UNIX DistribDULION ..o e 574
Distributing Your Application 0N @ CDcccceeiieiiiiece e 578
INStalliNg Y OUr APPlICAIIONcc.oviiiieieiieirie e 584
Incorporating the IDL Data MinNerccccoieeiiiieeieese ettt 585

Part IV: Using IDL Objects
Chapter 23:

ODJECT BASICS ..iiiiiiiiiiiiiiiiiitiee ettt e e e e e e e e e e eeeaenees 589
Object-Oriented Programmingcccoeeeeeereneneeere e 590
IDL ODJECE OVEIVIEW ...ttt sttt s esaestesneenaeneennas 591
(O =SSR 1 o (T 593
INNEITTANCE ...t e sttt b e bbb b nns 595
Object HEap VariabIesccoiiieeeeese e 597
N T LI = =S 600
The ODJECE LITECYCIE ..ottt eneas 601
OpErationNS 0N ODJECLSccueviiiiieieiete st ettt s et se et esbe e s e e s e tesae e s e saesresreensesens 604
Obtaining Information about ODJECEScccoiiiiriee e 606
MELNO ROULINES ..ottt sttt st sbe e 608

Contents Building IDL Applications

MEthOd OVEITIAING ...ecveiiiiieieiec ettt st e s resresraennesrenreas 612
(@ o] T= ot B = 0 o= T 615
Chapter 24:

Using Language Catalogsooevvviiiiiiiiiiiiiiieeee e 617
What IsaLanguage CalalOg?cecceeeieririierer e e seeseeseesree e e sreesteenseeseeeseeensessesneens 618
Creating aLanguage Catalog File ..o 619
Using the IDLFLaNgCat ClaSScccvevviieiieiie e cee e stee e see st se et eee e e 621
WiIAQEL EXAMPIE ..ottt 624
Chapter 25:

Using the XML Parser Object ClasScccceeevviiiiiiiiiiiieeeecceeeen 627
ADOUE XIML ettt 628
USING thE XIML PaISESccuiiiiieieiesiesteieesie sttt sttt st se e sne e 630
Example: Reading Data INt0 @N ATTAYccovvveieeieeiriseseeeeenie s e 635
Example: Reading Data INt0 SEIUCLUIESccvecveiieeieeeie e s 642
Building Complex Data SETUCLUIEScoeeeeiereeie e ee e ee e eneeeeseeseeas 649
Chapter 26:

Using the XML DOM Object ClaSSeS ...ccccovvviiiieieiiiiieeeeiiieiieeee e 651
About the Document ObJECt MOElccooeeieiiiiice e 652
About the XML DOM ODJECE CIASSESc.coerereririrrerireririeieesesesieieseseseses e sessssesesesesees 655
Using the XML DOM ODbJECt ClIASSESuecueeieierieeeeeesiesieeeesseste e eeesaesresreeaessesresneas 661
Tree-Walking EXAMPIEooooieeee et 667

Part V: Creating Graphical User Interfaces in IDL

Chapter 27:

Using the IDL GUIBUIIAErooiiiiiiiiiiaii e 671
OVEIVIBIW ...ttt sttt b ettt b e bbb st e et s be s b e te s 672
Starting the IDL GUIBUITEScouiiieeeee et 674
Creating an Example APPHICALIONcccoeiiiiieieeececeeese et 676
IDL GUIBUIIAEr TOOIS ..oeeeiieieeeesie sttt 687
LAV (o 1= A @] o1 = 1 o 702
LT 0T = g To T =S 705
IDL GUIBUIlIDEr EXAMPIES ...cveiveieeeeeie sttt 707
WidQet PrOPEITIESooeiieeeeeeee ettt sttt st sne e e e neesneene e 721
CommOoN Widget PropertiEScovieeeeiesie ettt st st enas 722

Building IDL Applications Contents

12

Base Widget PrOPErti€Sccviiiiiie ettt sttt sttt s 728
BULEON WidgEt PrOPEITIES ...c.eeveieieeee ettt e 741
TEXt WIAQEL PrOPEITIES ..vocveceeeiecie ettt st st st aesreeneas 747
Label Widget PrOPEItIESociiieeee ettt see e enes 753
Slider Widget PrOperti€Sciiieieeese sttt sttt 755
Droplist Widget PropertieSooeoereiieieeeere ettt enes 758
LiStboxX Widget PrOPErtiEScccvveeieiecieeiese sttt 761
Draw Widget PrOPErTIESc.ooiiiiiere ettt enes 765
Table Widget PrOPErti€Scvciiiiciceee sttt st sreeneas 772
Tah Widget PrOPEITIESooeeeeeeeeeie et see st neeseesreeneas 781
Tree Widget PrOPEMIESocvceeeieie ettt st st esaesreeneas 784
Chapter 28:

LAY/ T Ko 1= SR 789
(@< V= 790
WiAGEL PHIMITIVES ..ottt et st s e e sneesreeenee e 794
COMPOUNT WITGELS ...ttt st eb e e 807
[T 0o 816
L 1 =SSP 818
Chapter 29:

Creating Widget AppliCatioNSccooiiiiiiiiiiiiiiiieee s 823
ADOUt Widget APPlICALIONScoueieiieeeieriesie et 824
Widget Programming CONCEPLSccvevviiueeieiierieitieeestesie st see e sre e sae e stesseesesaesreeneas 825
Example 1: A Simple Widget APpliCaLIONcccceoiririrereseeeee e 828
Widget Application LITECYCIEocueeiiiie et 830
Manipulating WIAQELSooeieeee ettt s e e 833
WOrKing With WIdQEL IDSocveeeeiecie ettt st st sre s 838
WidQEt USEN VAIUES ...ttt sttt eneesaeseeeneas 840
Widget EVENE PrOCESSING ..cveiveiiecieeiesie it ceesies et ettt e st st aesre st s ennesaesreeneas 841
Example 2: Event Processing and USer ValUEScccooeeierrneneeiene e 847
Managing APPliCatioN SEALEccceveiiiieeiese e e e 849
COMPOUNT WIAGELS ...ttt e st ee e e besaesne e e e sesaesneens 853
Example 3: Compound WIdQELccceieeieie et 856
Debugging Widget APPlICALIONSc.ciiieeeiere e 865

Contents Building IDL Applications

13

Chapter 30:

Widget Application TEChNIQUEScevvviieiiiiiiiiieeeeeeeeeeeeeeeee 867
Working With Widget EVENLScccecviiiiicecce et 868
Using Multiple Widget HI€rarChies ... 873
(@ 1110 LY=o 876
LAY (0T S T4 o T 890
Tipson Creating Widget APPlHICALIONScccueveiiieeiese e s 896
USING BUON WIAGELS ..ottt st enee e nneas 898
USING DIaW WIAGELSovicviceciece ettt ettt st st st sne e nrenne s 903
Using Property Sheet WIAQELScooereiieeeee e 916
USING TabI@ WIAGELSc.vivieeecece sttt st st st nne s 941
USING TAD WIAGELS ...ttt ettt seeeneeneeseenaeas 952
USING TIrEE WIGELSeoviiviiieee sttt sttt sttt esresresneennentenneas 961
Enhancing Widget Application USabilityccccoeoeriienieene e 967
IO EX i a e e as 985

Building IDL Applications Contents

14

Contents Building IDL Applications

Chapter 1:
Overview

This chapter includes information about the following topics:

What isan IDL Application?............ 16 About Building Applicationsin IDL

Building IDL Applications

15

16 Chapter 1: Overview
What is an IDL Application?

We use the term “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the very
simple (aMAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing asmall program to analyze asingle data set or a
large-scale application for commercial distribution, it isuseful to understand the
programming concepts used by the IDL language.

Can | Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and otherswho use IDL. (If you intend to distribute your applications, it is a good
ideato avoid any code that depends on the qualities of a specific platform. See
“I'VERSION” in the IDL Reference Guide manual and “ Tips on Creating Widget
Applications’ on page 896 for some hints on writing platform-independent code.) Of
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have accessto an IDL license.

If you would like to distribute your I DL application to people who do not have access
toan IDL license, you have several options. Many IDL applications will run in the
freely-available IDL Virtual Machine. If your application uses features not available
in the virtual machine, you may wish to consider aruntime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. See Chapter 22, “ Distributing IDL Applications” for a complete
discussion of the different ways you can distribute an application writtenin IDL.

What is an IDL Application? Building IDL Applications

Chapter 1: Overview 17

About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL isatime-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

IDL isacomplete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

IDL’sflexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including BMP,
JPEG, and XWD) and scientific data formats (CDF, HDF, and NetCDF).

IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

IDL programs run the same across all supported platforms (Microsoft
Windows and awide variety of Unix systems) with little or no modification.
This application portability allows you to easily support avariety of
computers.

Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine’.

Building IDL Applications About Building Applications in IDL

18 Chapter 1: Overview

About Building Applications in IDL Building IDL Applications

Part I: Components
of the IDL Language

Chapter 2:
Expressions and
Operators

The following topics are covered in this chapter:

OVEIVIEW ... 22 Operator Precedence 40
IDL Operatorscovvviviinnann. 23 DataType and Structure of Expressions .. 43

Building IDL Applications 21

22

Chapter 2: Expressions and Operators

Overview

Overview

Variables, constants, and function results are combined into expressions using
operators. The value of an expression depends on the values of the operands and the
operator involved. Expressions can be combined with other expressions, variables,
and constants to yield more complex expressions. In IDL, unlike FORTRAN or C,
expressions can be scalar- or array-valued.

IDL has alarge number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and logical arithmetic (& &, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

Functions, which are operatorsin themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!Pl) evaluates the variable A multiplied by the value of =, then
applies the trigonometric sine function. Thisresult can be used as an operand to form
amore complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI)) evaluates e3"(@)),

Building IDL Applications

Chapter 2: Expressions and Operators 23

IDL Operators

As described in the previous section, operators are used to combine terms and
expressions. |DL supports the following types of operators:

¢ Parentheses

e Square Brackets

¢ Mathematical Operators

¢ Minimum and Maximum Operators
e Matrix Multiplication

e Array Concatenation

e Logical Operators

e Bitwise Operators

¢ Relationa Operators

Parentheses

Parentheses are used to group expressions and to enclose function parameter lists.
Parentheses can be used to override the order of operator evaluation described above.
Examples:

; Parent heses encl ose function argunment |ists.
SIN(ANG * PI/180.)

; Parent heses specify order of operator eval uation.
(A+5)/B

Theright parenthesis must always close the list begun by the left parenthesis.
Square Brackets

Square brackets are used to create arrays and to enclose array subscripts.

; Use brackets when assigning elenments to an array.
ARRAY = [1, 2, 3, 4, 5]

; Brackets encl ose subscripts.
ARRAY[X, Y]

Building IDL Applications IDL Operators

24 Chapter 2: Expressions and Operators

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()" on page 140 for additional
details.

Mathematical Operators

There are seven basic IDL mathematical operators, described below.
Assignment

The equal sign (=) isthe assignment operator. The value of the expression on theright
hand side of the equal sign is stored in the variable, subscript element, or range on the
left side. For example, the following assigns the value 32 to A.

A =32
See Chapter 12, “Assignment” for more information.
Compound Assignment Operators

In addition to the standard assignment operator, there are numerous compound
operators (+=, -=, etc.) that combine assignment with another operator. Compound
assignment operators provide succinct syntax for expressions in which the same
variable would otherwise be present on both sides of the equal sign. For example, the
following statements both add 100 to the current value of the variable A:

A= A + 100

A += 100
See “ Compound Assignment Operators’ in Chapter 12 for more information and a
list of compound assignment operators.

Addition

The positive sign (+) is the addition operator. When applied to strings, the addition
operator concatenates the strings. For example:

;Store the sumof 3 and 6 in B.
B=3+6

;Store the string value of "John Doe" in B.
B ='John" +' ' + 'Doe'

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 25

Subtraction and Negation

The negative sign (-) is the subtraction operator. Also, the minus sign is used as the
unary negation operator. For example:

;Store the value of 5 subtracted from9 in C
C=9-5

; Change the sign of C
CcC=-C

Multiplication

The asterisk (*) isthe multiplication operator. For example:

; Store the product of 2 and 5 in variable C
C=2=*5

Division
The forward dlash (/) is the division operator. For example:

; Store the result of 10.0 divided by 3.2 in variable D
D =10.0/3.2

Exponentiation

The caret () isthe exponentiation operator. A*B isequal to A raised to the B power.
For real numbers, A*B is evaluated as follows:

« If Alisareal number and B is of integer type, repeated multiplication is
applied.

« If both A and B arereal (non-integer), the formula AB = eB™ js evaluated.

« Alisdefinedas 1.

For complex numbers, A*B is evalutated as follows. The complex number A can be
represented as A = a + ib, where aisthereal part, and ib isthe imaginary part. In
polar form, we can represent the complex number as A = ré®=r cosd +ir sing,
wherer cos isthereal part, andir sind isthe imaginary part:

« If Aiscomplex and B isreal, the formula AB = (ré®)B = rB (cosB0 + isinB) is
eval uated.

« If Aisrea and B is complex, the formula AB = eB™ s evaluated.

« If both A and B are complex, the formula AB = e®M is evaluated, and the
natural logarithm is computed to be In(A) = In(re'e) =In(r) +i6.

Building IDL Applications IDL Operators

26 Chapter 2: Expressions and Operators

Modulo

The keyword MOD isthe modul o operator. | MOD Jis equal to the remainder when |
isdivided by J. The magnitude of the result isless than that of J, and its sign agrees
with that of 1. For example:

; Assign the value of 9 nmobdulo 5 (4) to A
A =9 MDS5

; Comput e angl e nodul o 2p.
A =(ANGLE + B) MOD (2 * IPI)

Increment/Decrement

Theincrement (++) and decrement (--) operators can be applied to variables
(including array subscripts or structure tags) of any numeric type. The ++ operator
increments the target variable by one. The -- operator decrements the target by one.
When written in front of the target variable (that is, using prefix notation), the
operations are known as preincrement and predecrement, respectively. When written
following the target variable (using postfix notation), they are called postincrement
and postdecrement.

Note
Theincrement and decrement operators can only be applied to variable expressions
to which avalue can be assigned. Hence, the following is not allowed:

A = 23++

because it attempts to apply the increment operator to a constant. Another way of
stating thisrule is to say that it must be possible for the expression being
incremented or decremented to appear on the left-hand side of the equal sign.

The increment and decrement operators can be used either as standal one statements
or within alarger enclosing expression. Although the two forms are very similar, the
expression form has some efficiency and side-effect issues (described below) that do
not apply to the statement form.

Increment/Decrement Statements

Increment and decrement operators can be used, along with avariable, as standalone
Statements:

o A++0r++A

o A-oOr--A

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 27

The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable is incremented in place and no temporary copies of the
data are made.

Increment/Decrement Expressions

Increment and decrement operators can be used within expressions. When the
operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of the variable A is 27, while B is 28:

B
A

27
B++

In contrast, after executing the following statements, both A and B have avalue of 26:

B
A

27
--B

Efficiency of Prefix vs. Postfix Operations — When used as part of an expression,
the prefix form of the increment and decrement operators has an efficiency advantage
over the postfix form. The reason for thisis that the postfix form requires IDL to
make a copy of the data, while the prefix form does not. The operations carried out by
IDL to execute a prefix increment or decrement operation are:

1. Fetch thetarget variable.
2. Increment or decrement the target variable in place (no copies are made).
3. Usethe variable when evaluating the surrounding expression.

Thisisvery efficient. In contrast, the postfix form requires IDL to make a copy of the
variablein order to use its old value in the surrounding expression following the
increment/decrement. The operations carried out by IDL to execute a postfix
increment or decrement operation are;

1. Fetchthetarget variable.

2. Make atemporary copy of the variable.

3. Increment or decrement the original variable.
4

Use the temporary copy when evaluating the surrounding expression.

Building IDL Applications IDL Operators

28

Chapter 2: Expressions and Operators

If your computation requires the postfix form, then these operations are necessary
and reasonable. If not, the prefix form will use fewer resources and is the better
choice. The larger the data involved, the more important this becomes. It isnot a
concern for small variables.

Order Of Side Effects — The way that the increment and decrement operators
change the value of avariable in addition to using its value in a surrounding
expression is called a side effect. In most cases, the side effects are desired, and cause
no problems. Side effects can cause problems, however, if the increment or
decrement operator is applied to a variable that appears more than once within a
single statement or expression. Consider the following statement (taken from The C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie):

AlT] = i++
Which value of i isused to index A? Isit the original value of i, or the incremented
value? The answer depends on the order in which the various parts of the statement

are evaluated. Either answer might be considered correct, and IDL does not require
one or the other. Similarly, in the statements

23
B++ + B

B
A

the value of A could be either 47 or 46, depending on which part of the expressionis
evaluated first.

Note that this situation falls outside the rules of operator precedence — it isthe order
in which the variables themselves are evalutated that affects the result. Let’s examine
the situation closely:

e Herethe“old” value of B (23) is always used for the first occurrence of B in
the statement.

* |f the sub-statement B++ is evaluated first, the value of the second occurrence
of B in the statement uses the “new” value of B (24), giving A the value 47.

¢ If the sub-statement that contains only the variable B is evaluated first, the
“old” value of B will be used for both occurrences, and A will get the value 46.

As with most languages that implement increment and decrement operators, IDL
does not require any particular ordering of evaluation within an expression in which
such side effects occur. Different versions or implementations of IDL may evaluate
the same expression differently. As aresult, you should avoid writing code that
depends on a particular ordering of the side effects.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 29

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below. Note that negated values must be enclosed in
parentheses in order for IDL to interpret them correctly.

The Minimum Operator
The “lessthan” sign (<) isthe IDL minimum operator. The value of “A < B” isegua
to the smaller of A or B. For example:
;Set A equal to 3.
A=5<3
;Set A equal to -6.
A =5 < (-6)

;Syntax Error. IDL attenpts to performa subtraction operation if
;the "-6" is not enclosed in parentheses.
A=5<-6

;Set all points in array ARR that are |arger than 100 to 100.
ARR = ARR < 100

;Set X to the snallest of the three operands.
X = X0 < X1 < X2

For complex numbers the absolute value (or modulus) is used to determine which
value is smaller. If both values have the same magnitude then the first valueis

returned.

For example:

; Set A equal to 1+2i, since ABS(1+2i) is |ess than ABS(2-4i)
A = COWLEX(1,2) < COWPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COMPLEX(1,-2) < COMPLEX(-2, 1)

The Maximum Operator

The " greater than” sign (>) isthe IDL maximum operator. “A > B” isequal to the
larger of A or B. For example:

;"> is used to avoid taking the | og of zero or negative nunbers.
C = ALOG D > 1E - 6)

;Plot positive points only. Negative points are plotted as zero.

Building IDL Applications IDL Operators

30 Chapter 2: Expressions and Operators

PLOT, ARR > 0

For complex numbers the absolute value (or modulus) is used to determine which
valueislarger. If both values have the same magnitude then thefirst value is returned.
For example:

; Set A equal to 2-4i, since ABS(2-4i) is greater than ABS(1+2i)
A = COWLEX(1,2) > COWLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COMPLEX(1,-2) > COMPLEX(-2, 1)

Matrix Multiplication

IDL hastwo operators used to multiply arrays and matrices.
The # Operator

The # operator computes array elements by multiplying the columns of thefirst array
by the rows of the second array. The second array must have the same number of
columns asthefirst array has rows. The resulting array has the same number of
columns asthefirst array and the same number of rows as the second array.

Tip
If one or both of the arrays are also transposed as part of a matrix multiplication,
such as TRANSPOSE(A) # B, it is more efficient to use the MATRIX_MULTIPLY
function, which does the transpose simultaneously with the multiplication.

The ## Operator

The ## operator does what is commonly referred to as matrix multiplication. It
computes array elements by multiplying the rows of the first array by the columns of
the second array. The second array must have the same number of rows as the first
array has columns. The resulting array has the same number of rows asthefirst array
and the same number of columns as the second array.

For an exampleillustrating the difference between the two, see “Multiplying Arrays’
in Chapter 22 of the Using IDL manual.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 31

Array Concatenation

The square brackets are used as array concatenation operators. Operands enclosed in
square brackets and separated by commas are concatenated to form larger arrays. The
expression [A,B] isan array formed by concatenating A and B, which can be scalars
or arrays, along the first dimension.

Similarly, [A,B,C] concatenates A, B, and C. The second and third dimensions can be
concatenated by nesting the bracket levels; [[1,2],[3,4]] is a 2-element by 2-element
array with the first row containing 1 and 2 and the second row containing 3 and 4.
Operands must have compatible dimensions; all dimensions must be equal except the
dimension that isto be concatenated, e.g., [2,INTARR(2,2)] are incompatible.
Examples:

;Define C as three-point vector.

cC=1[-1, 1, -1]

;Add 12 to the end of C
C=[C 12]

;lnsert 12 at the beginning of C
CcC=1[12, C

; Plot ARR2 appended to ARRL.
PLOT, [ARR1, ARRZ?]

; Define a 3x3 matrix.
KER = [[1,2,1], [2,4,2], [1,2,1]]
Note
Array concatenation is arelatively inefficient operation, and should only be
performed once for a given set of dataif possible.

Logical Operators
There are three logical operatorsinIDL: &&, ||, and ~.
&&
Thelogical && operator performs the logical short-circuiting “and” operation on two

scalars or one-element arrays, returning 1 if both operands are true and O if either
operand isfalse.

Building IDL Applications IDL Operators

32 Chapter 2: Expressions and Operators

Thelogica | | operator performsthe logical short-circuiting “or” operation on two
scalars or one-element arrays, returning 1 if either of the operandsistrueand O if both
arefalse.

The logical ~ operator performs the logical “not” operation on ascalar or array
operand. If the operand isa scalar, it returns scalar 1 if the operand isfalse or scalar O
if the operand istrue. If the operand is an array, it returns an array containing al for
each element of the operand array that isfalse, and a0 for each element that is true.

Note
Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1's complement),
and for! to be used for logical negation. Thisisnot thecasein IDL: ! isusedto
reference system variables, the NOT operator performs bitwise negation, and ~
performslogical negation.

When is an Operand True?

When evaluated by alogical operator, an expression is considered to be “true” under
the following conditions:

e For numerical operands, if the value is non-zero.
e For string operands, if the value is non-null.

e For heap variables (pointers and object references), if the value is non-null.
Short-circuiting

The&& and | | logical operators are short-circuiting operators. This meansthat IDL
does not evaluate the second operand unlessit is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, sinceit allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Opl && Op2

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 33

IDL does not evaluate Op2 if Op1 isfalse, because it already knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Opl || Op2
IDL does not evaluate Op2 if Op1l istrue, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the LOGICAL_AND and
LOGICAL_OR functions or the bitwise AND and OR operators.

Logical Operator Examples

Results of relational expressions can be combined into more complex expressions
using the logical operators. Some examples of relational and logical expressions are
asfollows:

;True if Ais between 25 and 50. If Ais an array, then the result

;is an array of zeros and ones.
(A LE 50) && (A CE 25)

;True if Ais less than 25 or greater than 50. This is the inverse
;of the first.
(A GI 50) || (ALT 25)

Bitwise Operators

There are four bitwise operatorsin IDL: AND, NOT, OR, and XOR. For integer
operands (byte, signed- and unsigned-integer, longword, and 64-bit longword data
types), bitwise operators operate on each bit of the operand or operands
independently.

AND

The bitwise AND operator performs the logical “and” operation on two scalar or
array operands. If the operands are scalars, it returns a scalar value. If either operand
isan array, it returns an array containing one value for each element of the shortest
array operand. The returned values are as follows:

« For integer operands, AND performs abitwise “and” operation and returns the
result. For example, the statement

5 AND 6 = 4
isrepresented in binary asfollows:
0101 AND 0110 = 0100

Building IDL Applications IDL Operators

34

NOT

Chapter 2: Expressions and Operators

For floating-point and complex operands, AND returns the second operand if
the first operand is not equal to zero; otherwise, the returned valueis zero.

For string operands, AND returns the second operand if the first operand is
non-null; otherwise, the returned value is the null string.

The bitwise AND operator is not valid for heap variable operands.

The bitwise NOT operator returns the bitwise inverse of its scalar or array operand. If
the operand isascalar, it returnsascalar value. If the operand isan array, it returns an
array containing one value for each element of the operand array. The returned values
areasfollows:

Warning

For integer operands, NOT returns the complement of each bit of the operand.
For example, the statement

NOT 4 = -5
isrepresented in binary asfollows:
NOT 0100 = 1011

For floating-point operands, NOT returns 1.0 if the operand is zero; otherwise,
it returns zero.

The bitwise NOT operator is not valid for string, complex, or heap variable
operands.

Use caution when using the return value from the bitwise NOT operator as an
operand for the logical operators && and | | . See “Note on the NOT Operator” on
page 36 for additional discussion.

Note

Modern computers use the “2s complement” representation for negative signed
integers. This means that to arrive at the decimal representation of a negative binary
number (a string of binary digits with a one as the most significant bit), you must
take the complement of each bit, add one, convert to decimal, and prepend a
negative sign. For example, NOT 0 equals-1, NOT 1 equals -2, etc.

IDL Operators

Building IDL Applications

Chapter 2: Expressions and Operators 35

OR

The bitwise OR operator performs the logica “inclusive or” operation on two scalar
or array operands. If the operands are scalars, it returns a scalar value. If either
operand is an array, it returns an array containing one value for each element of the
shortest array operand. The returned values are as follows:

« For integer operands, OR performs a bitwise inclusive “or” operation and
returns the result. For example, the statement

3 OR5 equals 7
isrepresented in binary asfollows:
0011 OR 0101 = 0111

e For floating-point and complex operands, OR returns the first operand if it is
non-zero, or the second operand otherwise.

* For string operands, OR returns the first operand if it is non-null, or the second
operand otherwise.

e Thebitwise NOT operator isnot valid for heap variable operands.
XOR

The bitwise XOR operator performs the logical “exclusive or” operation on two
scalar or array operands. If the operands are scalars, it returns a scalar value. If either
operand is an array, it returns an array containing one value for each element of the
shortest operand array. The returned values are as follows:

« For integer operands, XOR setsabit in the result to 1 if the corresponding bits
in the operands are different or to O if they are equal. The statement:

3 XOR5 =6
is represented in binary as follows:
0011 XOR 0101 = 0110
¢ Thebitwise XOR operator is not valid for other types.

Bitwise Operator Examples

Some examples of bitwise expressions are as follows:

Di spl ays the “negative” of an image contained in the array | Ma
TV, NOT | MG

; Adds the hexadeci mal constant FF (255 in decimal) to the array
; ARR This nmasks the |ower 8-bits and zeros the upper bits.
ARR AND ' FF' X

Building IDL Applications IDL Operators

36 Chapter 2: Expressions and Operators

Note on the NOT Operator

Due to the bitwise nature of the NOT operator, logical negation operations should
always use ~ in preference to NOT, reserving NOT exclusively for bitwise
computations. Consider a statement such as:

IF ((NOT ECF(lun)) && device_ready) THEN statenent

which wants to execute statement if the file specified by the variable | un has data
remaining, and the variable devi ce_r eady is non-zero. When EOF returns the
value 1, the expression NOT EOF(| un) yields -2, dueto the bitwise nature of the
NOT operator. The && operator interprets the value -2 as true, and will therefore
attempt to execute statement incorrectly in many cases. The proper way to write the
above statement is:

IF ((~ EOF(lun)) && device_ready) THEN st at enent
Relational Operators

The IDL relational operators can be used to test the relationship between two
arguments. The six relational operators are described in the following table:

Operator Description
EQ Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Less than

Table 2-1: Relational Operators

Relational operators apply arelation to two operands and return alogical value of
true or false. Theresulting logical value can be used asthe predicatein IF, WHILE or
REPEAT statements can be combined using Boolean operators with other logical
values to make more complex expressions. For example: “1 EQ 1" istrue, and
“1GT 3" isfalse.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 37

Therulesfor evaluating relational expressions with operands of mixed modes are the
same as those given above for arithmetic expressions. For example, in the relational
expression “2 EQ 2.07, the integer 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression istrue, as represented by abyte 1.

InIDL, the value “true” is represented by the following:
¢ Any odd, nonzero value for byte, integer, and longword data types

* Any nonzero value for single, double-precision, and the real part of a complex
number (the imaginary part is ignored)

e Any non-null string

Conversely, false is represented as anything that is not true—zero or even-valued
integers; zero-valued, floating-point quantities; and the null string.

Therelational operators return avalue of 1 for true and O for false. The type of the
result is always byte.

EQ

EQ istherelational “equal to” operator. This operator returns true if its operands are
equal; otherwise, it returns false. This operator always returns a byte value of 1 for
true and a byte value of O for false.

For complex numbers both the real and imaginary parts must be equal. For example:
print, COMPLEX(1,2) EQ COMPLEX(1,2) ; returnstrue
print, COMPLEX(1,2) EQ COMPLEX(1,-2) ; returnsfalse

NE

NE isthe “not-equal-to” relational operator. This operator returns true whenever the
operands are different. For example "sun" NE "fun" returns true.

For complex numbers both the real and imaginary parts must be equal to return a
false value. For example:

print, COMPLEX(1,2) NE COMPLEX(1,2) ; returnsfalse
print, COMPLEX(1,2) NE COMPLEX(1,-2) ; returns true

Building IDL Applications IDL Operators

38 Chapter 2: Expressions and Operators

GE

GE isthe “greater than or equal to” relational operator. The GE operator returns true
if the operand on the left is greater than or equal to the one on the right. One use of
relational operatorsisto mask arrays as shown in the following statement:

A = ARRAY * (ARRAY GE 100)

This command sets A equal to ARRAY whenever the corresponding element of
ARRAY isgreater than or equal to 100. If the element is less than 100, the
corresponding element of A is set to zero.

Strings are compared using the ASCII collating sequence: " " islessthan "0" isless
than "9" islessthan "A" islessthan "Z" islessthan "&" which islessthan "z".

For complex numbers the absolute value (or modulus) is used for the comparison.
GT

GT isthe “greater than” relational operator. This operator returns true if the operand
on the left is greater than the operand on the right. For example, “6 GT 5” returns
true.

For complex numbers the absolute value (or modulus) is used for the comparison.
LE

LE isthe “less-than or equal-to” relational operator. This operator returnstrue if the
operand on the left is less than or equal to the operand on the right. For example, “4
LE 4” returns true.

For complex numbers the absolute value (or modulus) is used for the comparison.
LT

LT isthe “less-than” relational operator. This operator returns true if the operand on
the left is less than the operand on the right. For example, “3 LT 4” returns true.

For complex numbers the absolute value (or modulus) is used for the comparison.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 39

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression, ARR * (ARR LE 100)
isan array equal to ARR except that al points greater than 100 have been reduced to
zero. The expression (ARR LE 100) is an array that contains a 1 where the
corresponding element of ARR islessthan or equal to 100, and zero otherwise. For
example, to print the number of positive elementsin the array ARR:

PRI NT, TOTAL(ARR GT 0)
Using Relational Operators with Infinity and NaN Values

On Windows and Solaris x86 platforms, using relational operators with the values
infinity or NaN (Not a Number) causes an “illegal operand” error. The FINITE
function’s INFINITY and NAN keywords can be used to perform comparisons
involving infinity and NaN values. For more information, see “FINITE” in the IDL
Reference Guide manual and “ Special Floating-Point Values’ on page 468.

Conditional Expression

The conditional expression—written with the ternary operator ?—has the lowest
precedence of all the operators. It provides away to write simple constructions of the
IF...THEN...EL SE statement in expression form. In the following example, Z receives
the larger of the values contained by A and B:

IF (AGIrB) THENZ = AELSEZ =B

This statement can be written more concisely using a conditional expression:
Z=(AGI'B) ?A: B

The general form of a conditional expressionis:
exprl ? expr2 : expr3

The expression exprl is evaluated first. If exprlistrue, then the expression expr2 is
evaluated and set as the value of the conditional expression. If exprlisfase, expr3is
evaluated and set as the value of the conditional expression. Only one of expr2 or
expr3 is evaluated, based on the result of exprl. (See “Definition of True and False”
on page 368 for details on how the “truth” of an expression is determined.)

Note
Since 7. has very low precedence—just above assignment—parentheses are not
necessary around expr 1. However, parentheses are often used in this situation, as
they enhance the readability of the expression.

Building IDL Applications IDL Operators

40

Operator Precedence

Chapter 2: Expressions and Operators

IDL operators are divided into the levels of algebraic precedence found in common
arithmetic. Operators with higher precedence are evaluated before those with lesser
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into eight classes of precedence as shown in the following

table.

Operator Precedence

Priority

Operator

First (highes)

() (parentheses, to group expressions)

[] (brackets, to concatenate arrays)

Second

. (structure field dereference)

[] (brackets, to subscript an array)

() (parentheses, used in a function call)

Third

* (pointer dereference)

A (exponentiation)

++ (increment)

-- (decrement)

Fourth

* (multiplication)

and ## (matrix multiplication)

/ (division)

MOD (modulus)

Fifth

+ (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (Bitwise negation)

Table 2-2: Operator Precedence

Building IDL Applications

Chapter 2: Expressions and Operators

41

Priority

Operator

Sixth

EQ (equality)

NE (not equal)

LE (lessthan or equal)

LT (lessthan)

CE (greater than or equal)

GT (greater than)

Seventh

AND (Bitwise AND)

OR (Bitwise OR)

XOR (Bitwise exclusive OR)

Eighth

&& (Logical AND)

|| (Logical OR)

~ (Logical negation)

Ninth

?. (conditional expression)

Table 2-2: Operator Precedence (Continued)

The effect of a given operator is based on both position and the rules of operator
precedence. This concept is shown by the following examples.

A=4+5%*2

A isequal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A= (4+5 *2

Inthis case, A equals 18 because the parentheses have higher operator precedence
than the multiplication operator; the expression inside the parentheses is evaluated
first, and the result is multiplied by two.

Position within the expression is used to determine the order of evaluation when two
or more operators share the same operator precedence. Consider the following:

A=6/2*3

Building IDL Applications

Operator Precedence

42

Chapter 2: Expressions and Operators

In this case, A equals 9, since the division operator is to the left of the multiplication
operator. The subexpression 6 / 2 isevaluated before the multiplication is done,
even though the multiplication and division operators have the same precedence.
Again, parentheses can be used to override the default evaluation order:

A=61 (2* 3)

Inthis case, A equals 1, because the expression inside parentheses is evaluated first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Expression Value
A+l Thesum of A and 1.
A<2+1 The smaller of A or two, plus one.
A<2*3 The smaller of A and six, since* has
higher precedence than <.
2* SQRT(A) Twice the square root of A.
A + 'Thursday' The concatenation of the strings A

and “Thursday.” An error resultsif A
isnot astring

Operator Precedence

Table 2-3: Examples of Expressions

Building IDL Applications

Chapter 2: Expressions and Operators 43

Data Type and Structure of Expressions

Every entity in IDL has an associated data type and structure. The twelve atomic data
typesin decreasing order of precedence are as follows:

¢ Double-precision complex floating-point

¢ Complex floating-point

¢ Double-precision floating-point

* Floating-point

e Signed and unsigned 64-bit integer

e Signed and unsigned longword (32-hit) integer

e Signed and unsigned (16-bit) integer

* Byte

* String
The structure of an expression determines whether the expression can represent a
single value or multiple values. IDL expressions can be either scalars (with exactly
one value) or arrays (with one or more values). The datatype and structure of an
expression depend on the data type and structure of its operands. Unlike many other
languages, the data type and structure of most expressionsin IDL cannot be
determined until the expression is evaluated. Because of this, care must be taken

when writing programs. For example, a variable can be a scalar byte variable at one
point in a program while at alater point the same variable can hold a complex array.

Expression Type

IDL attempts to evaluate expressions containing operands of different data typesin
the most accurate manner possible. The result of an operation becomes the same data
type as the operand with the greatest precedence or potential precision. For example,
when adding a byte variable to a floating-point variable, the byte variable is first
converted to floating-point, then added to the floating-point variable, yielding a
floating-point result. When adding a double-precision variable to acomplex variable,
the result is double-precision complex, because the double-precision complex type
has a higher position in the hierarchy of data types.

Building IDL Applications Data Type and Structure of Expressions

44 Chapter 2: Expressions and Operators

Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed data types, care must be taken to obtain the
desired results. For example, assumethe variable A isan integer variable with avalue
of 5. The following expressions yield the indicated results:

;Integer division is performed. The remai nder is di scarded.
Al 2 =2

; The value of Ais first converted to floating.
Al 2. =2.5

;Integer division is done first because of operator precedence.
;Result is floating point.
Al 2+ 1 =3

;Division is done in floating, then the 1 is converted to floating
;and added.
Al 2. +1 =3.5

; Si gned and unsi gned i nteger operands have the sane precedence, so
;the | eft-nost operand deternmines the type of the result as signed
;i nteger.

A+ 5U =10

; As above, the |left-nost operand deternines the result type
; between types with the sane precedence
5U + A = 10U

Note
When other data types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric datatype, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 isfirst converted to integer type.
In the same manner, 'ABC' + 123 also causes a conversion error.

Data Type and Structure of Expressions Building IDL Applications

Chapter 2: Expressions and Operators 45

Expression Structure

IDL expressions can contain operandsthat are either scalars or arrays, just asthey can
contain operands with different types. Conversion of variables between the scalar and
array formsisindependent of datatype conversion. An expression will yield an array
result if any of its operandsis an array, as shown in the following table:

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Table 2-4: Structure of Expressions

Functions exist to create arrays of the datatypes IDL supports: BY TARR, INTARR,
UINTARR, LONARR, ULONARR, LON64ARR, ULON64ARR, FLTARR,
DCOMPLEXARR, DBLARR, COMPLEXARR, OBJARR, PTRARR, and
STRARR. The dimensions of the desired array are the parameters to these functions.
Theresult of FLTARR(5) is afloating-point array with one dimension, a vector, with
five elements initialized to zero. FLTARR(50,100) is atwo-dimensiona array, a
matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array; the
last 50 points of the larger array areignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array alwaysyields an array of identical dimensions. When two arrays of
equal size (number of elements) but different dimensionality are operands, the result
is of the same dimensionality as the first operand. For example:

;Yields fltarr(4).

FLTARR(4) + FLTARR(1, 4)
In the above example, arow vector is added to a column vector and arow vector is
obtained because the operands are the same size. This causes the result to take the
dimensionality of thefirst operand. Here are some examples of expressionsinvolving
arrays.

;An array in which each elenent is equal to the sane el ement in ARR

;plus one. The result has the sanme dinensions as ARR |If ARR s
;byte or integer, the result is of integer type; otherw se, the

Building IDL Applications Data Type and Structure of Expressions

46 Chapter 2: Expressions and Operators

;result is the same type as ARR
ARR + 1

;An array obtained by summing two arrays.
ARR1 + ARR2

;An array in which each element is set to twice the smaller of
;either the corresponding el enent of ARR or 100.
(ARR < 100) * 2

;An array in which each elenent is equal to the exponential of the
; same el enent of ARR divided by 10.
EXP(ARR/ 10.)

;An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./ MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its array
argument. Thisway of writing the statement requires that each element of ARR be
operated on twice. If (3./MAX(ARR)) is evaluated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the
time.

Data Type and Structure of Expressions Building IDL Applications

Chapter 3:
Constants and
Variables

The following topics are covered in this chapter:

DataTypescovviiii i 48 Variables............. 61
Constants 51 SystemVariables 64
Type Conversion Functions 58 CommonBlocks..................... 65

Building IDL Applications 47

48

Chapter 3: Constants and Variables

Data Types

The IDL language is dynamically typed. This means that an operation on avariable
can change that variable s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision.

For example, if an integer variable is added to afloating-point variable, the result will
be a floating-point variable.

Basic Data Types

Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to avariable is determined either by the syntax used when
creating the variable, or as aresult of some operation that changes the type of the
variable.

IDL’s basic data types are discussed in more detail beginning with “Constants” on
page 51.

¢ Byte: An 8-bit unsigned integer ranging in value from 0 to 255. Pixelsin
images are commonly represented as byte data.

* Integer: A 16-bit signed integer ranging from —32,768 to +32,767.
e Unsigned Integer: A 16-bit unsigned integer ranging from 0O to 65535.

e Long: A 32-bit signed integer ranging in value from approximately minus two
billion to plus two billion.

« Unsigned Long: A 32-bit unsigned integer ranging in value from 0 to
approximately four billion.

e 64-bit Long: A 64-bit signed integer ranging in value from —
9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

e 64-bit Unsigned Long: A 64-bit unsigned integer ranging in value from O to
18,446,744,073,709,551,615.

¢ Hoating-point: A 32-bit, single-precision, floating-point number in the range
of +103®, with approximately six or seven decimal places of significance.

« Double-precision: A 64-bit, double-precision, floating-point number in the
range of £103%8 with approximately 14 decimal places of significance.

Building IDL Applications

Chapter 3: Constants and Variables 49

e Complex: A real-imaginary pair of single-precision, floating-point numbers.
Complex numbers are useful for signal processing and frequency domain
filtering.

* Double-precision complex: A real-imaginary pair of double-precision,
floating-point numbers.

Note
In previous versions of IDL prior to version 4, the combination of adouble-
precision number and a complex number in an expression resulted in asingle-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex data type. Starting with IDL version 4, this combination
resultsinaDCOMPLEX number.

e String: A sequence of characters, from 0 to 2147483647 (2.1 GB) charactersin
length, which isinterpreted as text.

Precision of Floating-Point Numbers

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver dlightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, thisis something you
should consider.

For more information on floating-point mathematics, see Chapter 22, “Mathematics’
in the Using IDL manual. For information on your machine’s precision, see
“MACHAR” in the IDL Reference Guide manual.

Complex Data Types
e Structures: Aggregations of data of various types. Structures are discussed in

Chapter 9, “ Structures”.

« Pointers: A reference to a dynamically-allocated heap variable. Pointers are
discussed in Chapter 8, “Pointers’.

¢ Object References: A reference to a special heap variable that containsan IDL
object structure. Object references are discussed in Chapter 23, “ Object
Basics'.

Building IDL Applications Data Types

50

Chapter 3: Constants and Variables

Determining the Data Type of a Variable or Array

Data Types

The SIZE function can be used to determine the datatype of avariable. See
“Determining the Size/Type of an Array” on page 412 for an example.

Building IDL Applications

Chapter 3: Constants and Variables

Constants

Integer Constants

51

Numeric constants of different types can be represented by a variety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B
Integer nornS 12,12S,425,425S
Unsigned Integer nU or nUS 12U,12US
Long nL 12L, 94L
Unsigned Long nuUL 12UL, 94UL
64-bit Long nLL 12LL, 94LL
Unsigned 64-bit nULL 12ULL, 94ULL
Long

Hexadecimal Byte 'n'XB '2E'XB
Integer n'X 'OFX
Unsigned Integer | 'n'XU "OF XU
Long "n'’XL 'FF'XL
Unsigned Long 'n'XUL "FF XUL
64-bit Integer 'n'XLL "FF XLL
Unsigned 64-bit n'XULL 'FFXULL
I nteger

Building IDL Applications

Table 3-1: Integer Constants

Constants

52 Chapter 3: Constants and Variables
Radix Type Form Examples
Octal Byte "nB "12B
I nteger "n "12
n'o ‘3770
Unsigned Integer | "nU "12U
'n'OU '377'0U
Long "nL "12L
'n'OL 777r77TToL
Unsigned Long "nUL "12UL
'n'OUL 7T77T77T7'OUL
64-bit Long "nLL "12LL
n'OLL 777r777TOLL
Unsigned 64-bit "nULL "12ULL
Long nOULL 777r77r'OULL
Table 3-1: Integer Constants (Continued)
Digits in hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.
Type Absolute Value Range
Byte 0-255
I nteger 0-32767
Unsigned Integer 0—65535
Long 0-2%1-1
Unsigned Long 0-2%2.1
Table 3-2: Absolute Value Range Of Integer Constants
Constants Building IDL Applications

Chapter 3: Constants and Variables 53

Type Absolute Value Range
64-bit Long 0-288.1
Unsigned 64-hit Long 0-204-1

Table 3-2: Absolute Value Range Of Integer Constants (Continued)

Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it istoo large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Unacceptable Reason Acceptable
256B Too large, limit is 255 255B
'123L Missing apostrophe '123'L
'03G'x Invalid character "129
'27'L No radix '27'0L
650X L No apostrophes '650'XL

"129 9isaninvalid octal digit "124

Table 3-3: Examples of Integer Constants

Building IDL Applications Constants

54

Chapter 3: Constants and Variables

Floating-Point and Double-Precision Constants

Constants

Floating-point and double-precision constants can be expressed in either conventional
or scientific notation. Any numeric constant that includes a decimal pointisa
floating-point or double-precision constant.

The syntax of floating-point and double-precision constantsis shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for

example, E- 2.
Form Example

n. 102.

.n 102

n.n 10.2

nE 10E

nEsx 10E5

n.Esx 10.E-3

.NEsx JE+12
n.nEsx 2.3E12

Table 3-4: Syntax of Floating-Point Constants

Double-precision constants are entered in the same manner, replacing the E with aD.
For example, 1. 0DO, 1D, and 1. D each represent a double-precision numeral 1.

Note

The nE and nD forms are shorthand for nE0 and nDO, and are usually used to
indicate the type of the number, either single or double precision. When using these
formsin expressions, be sure to |eave a space after the E or Dif the next term has a

+or-sign.

For example, the expression 1D+45 is evaluated as 1x10™ in double precision,
while 1D + 45 (note the spaces) evaluates to the number 46 in double precision.
Similarly, the expression 1D+x gives an error, because there was no space after the
D. The correct way to write thisexpressionis1D + x (note the spaces).

Building IDL Applications

Chapter 3: Constants and Variables 55

Complex Constants

Complex constants contain areal and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of a complex constant is as follows:

COVPLEX(REAL_PART, | MAGI NARY_PART)
or
COVPLEX(REAL_PART)

For example, COMPLEX(1,2) is acomplex constant with areal part of one, and an
imaginary part of two. COMPLEX(1) isacomplex constant with area part of one
and azero imaginary component. To extract the real part of acomplex expression, use
the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
guotes (*). The value of the constant is simply the characters appearing between the
leading delimiter (' or " ") and the next occurrence of the same delimiter. A double
apostrophe (" ') or quote (" ") is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g.,' Don' ' t' returnsDon' t . This syntax often can be
avoided by using a different delimiter; e.g.," Don' t " instead of ' Don' ' t' . The
following table illustrates valid string constants.

Expression Resulting String
'Hi there' Hi there
"Hi there" Hi there
" Null String
"I'm happy" I’'m happy
'I"'m happy' I"m happy
‘counter counter
129 129

Table 3-5: Examples of Valid String Constants

Building IDL Applications Constants

56

Chapter 3: Constants and Variables

The following tableillustrates invalid string constants. In the last entry of the table,
"129" isinterpreted as an illegal octal constant. Thisis because a quote character
followed by adigit from O to 7 represents an octal numeric constant, not a string, and
the character 9isanillegal octal digit.

String Value Unacceptable

Reason

Hi there

'Hi there"

Mismatched delimiters

Null String '

Missing delimiter

I’m happy

'I'm happy'

Apostrophein string

counter

"counter"

Double apostrophe is null string

129

"129"

Illegal octal constant

Note

Table 3-6: Examples of Invalid String Constants

While an IDL string variable can hold up to 64 Kbytes of information, the buffer

than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the
IDL command prompt, split the variable into multiple sub-variables and combine
them with the “+” operator:

var = varl

+var 2+var 3

Thislimit only affects string constants created at the IDL command prompt.

Constants

Building IDL Applications

Chapter 3: Constants and Variables

57

Representing Non-Printable Characters

The ASCII characters with value less than 32 or greater than 126 do not have
printable representations. Such characters can be included in string constants by
specifying their ASCII value as a byte argument to the STRING function.

Specified String

Actual Contents

Comment

STRING(27B)+;H'
+STRING(27B)+[27

'<Esc>[;H<Esc>[2J

Erase ANSI termina

STRING(7B)

Bell

Ring the bell

STRING(8B)

Backspace

Move cursor |eft

Table 3-7: Specifying Non-Printable Characters

Note that ASCII characters may have different effects (or no effect) on platforms that
do not support ASCII terminal commands.

Building IDL Applications

Constants

58 Chapter 3: Constants and Variables

Type Conversion Functions

IDL alows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output datain a mode compatible with

other programs, etc. The conversion functions are in the following table

Function Description
STRING Convert to string
BYTE Convert to byte
FIX Convert to 16-bit integer, or optionally other type
UINT Convert to 16-bit unsigned integer
LONG Convert to 32-bit integer
ULONG Convert to 32-bit unsigned integer
LONG64 Convert to 64-bit integer
ULONG64 Convert to 64-bit unsigned integer
FLOAT Convert to floating-point
DOUBLE Convert to double-precision floating-point
COMPLEX Convert to complex value
DCOMPLEX Convert to double-precision complex value

Table 3-8: Type Conversion Functions

Conversion functions operate on data of any structure: scalars, vectors, or arrays, and
variables can be of any type.

Type Conversion Functions Building IDL Applications

Chapter 3: Constants and Variables 59

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

Define A. Note that the value of A is outside the range
; of integers, and is autonmatically created as a | ongword
; integer by IDL.
A = 33000
;Bis silently truncated.
B = FI X(A)
PRI NT, B

IDL prints:
- 32536

Applying FIX creates a short (16-hit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See Chapter 19, “ Controlling Errors’, for
more information.

Converting Strings

When converting from astring argument, it is possibl e that the string does not contain
avalid number and no conversion is possible. The default action in such casesisto
print a warning message and return zero. The ON_|IOERROR procedure can be used
to establish a statement to be jJumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. Theresult of the BY TE function applied to astring or string array isabyte array
containing the ASCII codes of the characters of the string. Converting a byte array
with the STRING function yields astring array or scalar with one less dimension than
the byte array.

Building IDL Applications Type Conversion Functions

60 Chapter 3: Constants and Variables

Dynamic Type Conversion

The TY PE keyword to the FIX function allowstype conversion to an arbitrary type at
runtime without the use of CASE or |F statements on each type. The following
example demonstrates the use of the TY PE keyword:

PRO EXAVPLE_FI XTYPE
Define a variable as a doubl e:
A = 3D

; Store the type of Ain a variable:
typeA = SI ZE(A, /TYPE)
PRINT, "Ais type code', typeA

Pronpt the user for a numeric val ue:
READ, UserVal, PROWT='Enter any Numeric Val ue: '
; Convert the user value to the type stored in typeA:
ConvUserVal = FI X(UserVal, TYPE=typeA)

PRI NT, ConvUser Val
END

Examples of Type Conversion

See the following table for examples of type conversions and their results.

Operation Results
FLOAT(1) 1.0
FIX(1.3+ 1.7) 3
FIX(1.3) + FIX(1.7) 2
FIX(1.3, TYPE=5) 1.3000000
BYTE(1.2) 1
BYTE(-1) 255b (Bytes are modul o 256)
BYTE(01ABC) [48b, 49b, 65b, 66b, 67b]
STRING([65B, 66B, 67B]) 'ABC’
FLOAT(COMPLEX(1, 2)) 1.0
COMPLEX([1, 2], [4, 5]) [COMPLEX(1,4),COMPLEX (2,5)]

Table 3-9: Uses of Type Conversion Functions

Type Conversion Functions Building IDL Applications

Chapter 3: Constants and Variables 61

Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL datatypes. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and atype.

Structure

A variable can contain asingle value (ascalar) or anumber of values of the sametype
(an array) or data entities of potentially differing type and size (a structure). Strings
are considered as single values, and a string array contains a number of variable-
length strings.

In addition, a variable can associate an array structure with afile; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in “ASSOC” in the
IDL Reference Guide manual.

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When avariable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.

Building IDL Applications Variables

62 Chapter 3: Constants and Variables

Variable Names

IDL variables are named by identifiers. Each identifier must begin with aletter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after the first 128 are ignored. Names are case insensitive. Lowercase letters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptabl e variable names.

Unacceptable Reason Acceptable
EOF Conflicts with function name | A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE
AB@ Illega character ABCS$DEF
abcd Embedded space My_variable

Table 3-10: Unacceptable and Acceptable IDL Variable Names

Warning
A variable cannot have the same name as a function (either built-in or user-defined)
or areserved word (see the following list). Giving a variable such a name resultsin
asyntax error or in “hiding” the variable.

Thefollowing tablelists al of the reserved wordsin IDL.

AND BEGIN BREAK

CASE COMMON COMPILE_OPT
CONTINUE DO ELSE

END ENDCASE ENDELSE
ENDFOR ENDIF ENDREP
ENDSWITCH ENDWHILE EQ

FOR FORWARD_FUNCTION FUNCTION

Table 3-11: IDL Reserved Words

Variables Building IDL Applications

Chapter 3: Constants and Variables

GE

IF

LT

NOT

OR
SWITCH
WHILE

GOTO
INHERITS
MQOD

OF

PRO
THEN
XOR

63

GT

LE

NE
ON_IOERROR
REPEAT
UNTIL

Table 3-11: IDL Reserved Words (Continued)

Building IDL Applications

Variables

64 Chapter 3: Constants and Variables

System Variables

System variables are a specia class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set variousinternal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSY SV
procedure.

System variables are discussed in Appendix D, “System Variables’ in the IDL
Reference Guide manual.

System Variables Building IDL Applications

Chapter 3: Constants and Variables 65

Common Blocks

Common blocks are useful when there are variables that need to be accessed by
several IDL procedures or when the value of a variable within a procedure must be
preserved across calls. Once a common block has been defined, any program unit
referencing that common block can access variablesin the block as though they were
local variables. Variables in acommon statement have a global scope within
procedures defining the same common block. Unlike local variables, variablesin
common blocks are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and reference
Statements.

Common Block Definition Statements

The common block definition statement creates acommon block with the designated
name and places the variables whose names follow into that block. Variables defined
in acommon block can be referenced by any program unit that declares that common
block. The general form of the COMMON block definition statement is as follows:

COMCN Bl ock_Nane, Variableq, Variable,, ..., Variable,

The number of variables appearing in the common block cannot change after the
common block has been defined. The first program unit (main program, function, or
procedure) to define the common block sets the number of included variables; other
program units can reference the common block with any number of variables up to
the number originally specified. Different program units can give the variables
different names, as shown in the example below.

Common blocks share the same space for al procedures. In IDL, common block
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variablein agiven IDL common block will always
be the same asthe third variablein al declarations of the common block regardless of
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define are
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same manner
as normal variables. Variables appearing as parameters cannot be used in common
blocks. There are no restrictions on the number of common blocks used, although
each common block uses dynamic memory.

Building IDL Applications Common Blocks

66 Chapter 3: Constants and Variables

Example

Thetwo proceduresin the following example show how variables defined in common
blocks are shared.

PRO ADD, A
COMWON SHAREL, X, Y, Z, Q R
A=X+Y+Z+Q+R
PRINT, X Y, Z Q R A
RETURN

END

PRO SUB, T
COWON SHARE1, A, B, C, D
T=A-B-C-D
PRINT, AL B, C, D T
RETURN

END

Thevariables X, Y, Z, and Q in the procedure ADD are the same as the variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD isnot used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an error
would occur when the COMMON definition in ADD was compiled. Thisis because
SUB has already declared the size of the COMMON block, SHAREL, which cannot
be extended.

Common Block Reference Statements

The common block reference statement duplicates the COMMON block and variable
names from a previous definition. The COMMON block need only be defined in the
first routine to be compiled that references the block.

Example

The two procedures in the following example share the COMMON block SHARE2
and al its variables.

PRO MULT, M
COWON SHAREZ2, E, F, G
M=E* F* G
PRINT, M E F, G
RETURN

END

PRODYV, D

COVWON SHARE2
D=E/ F

Common Blocks Building IDL Applications

Chapter 3: Constants and Variables 67

PRINT, D, E F, G
RETURN
END

The MULT procedure uses a common block definition statement to define the block
SHARE2. The DIV procedure then usesa COMMON block reference statement to
gain accessto all the variables defined in SHAREZ2. (Note that MULT must be
defined before DIV in order for the COMMON block reference to succeed.)

Note on Common Block Variable Names

Variablesin IDL COMMON blocks do not actually have names. Rather, IDL
represents COMMON blocks internally as an array of variables, and these variables
are referenced by their positional index. Hence, the first variable is at position 0, the
second at position 1, and so forth. When you specify a COMMON block declaration
in an IDL routine, you specify names to be used for these variables within the scope
of that routine.

Thefirst routine in which a COMMON block is defined is remembered by IDL as
part of the state of that block. When another routine defines the same COMMON
block, it is allowed to omit the variable names. In this case, IDL uses the same names
used in the original defining routine. Since good programming practice dictates that
the same names be used everywhere, this result usually causes no confusion.
However, different routines are allowed to use entirely different namesto refer to a
given variable. For example, the DIV routine above could have been written like this:

PRO DI V2, D
COVWON SHAREZ2, X, Y, Z
D=X/Y
PRINT, D, X Y, Z
RETURN

END

In this scenario, the variable referred to by the name E in the MULT routineis
referred to by the name X in the DIV 2 routine. Similarly, the variable name F is
replaced by Y, and the name G is replaced by Z. Note that only the names by which
the variables are called has changed — the underlying variables are the same. While
thistype of COMMON block referenceislegal, it can quickly become confusing, and
most programmers use the same names in every case.

Building IDL Applications Common Blocks

68 Chapter 3: Constants and Variables

Common Blocks Building IDL Applications

Chapter 4:

Procedures and

Functions

The following topics are covered in this chapter:

OVEIVIBW ..ot 70
DefiningaProcedure 71
DefiningaFunction 73
Parameters 76
Using Keyword Parameters 79
Keyword Inheritance 81

Building IDL Applications

Entering Procedure Definitions 89
How IDL ResolvesRoutines 91
Parameter Passing Mechanism 92
Cdling Mechanism 94
Setting Compilation Options 96

69

70 Chapter 4: Procedures and Functions

Overview

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the keyboard or from other
programs. When a procedure or function is finished, it executesa RETURN
statement that returns control to its caller. Functions always return an explicit result.
A procedureis called by a procedure call statement, while afunction iscalled by a
function reference. For example, if ABC isaprocedure and XY Z isafunction, the
caling syntax is:

;Call procedure ABC with two paraneters.
ABC, A 12

;Call function XYZ with one paraneter. The result of XYZ is stored
;in variable A
A = XYZ(C D)

Overview Building IDL Applications

Chapter 4: Procedures and Functions 71

Defining a Procedure

A sequence of one or more IDL statements can be given aname, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

Note
See Chapter 5, “Library Authoring” for information on naming procedures to avoid
conflictswith IDL routine names. It isimportant to implement and consistently use
anaming scheme from the earliest stages of code devel opment.

The general format for the definition of a procedureis as follows:

PRO Nane, Paraneterl, ..., Paranetern
; Statemrent s defining procedure
Statenent 1
St at enent 2

; End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that isin adirectory in the IDL search path (!PATH)
and has the same name as the prefix of the. SAV or . PROfile, causes the procedure to
be read from the disk, compiled, and executed without interrupting program
execution.

Building IDL Applications Defining a Procedure

72 Chapter 4: Procedures and Functions

Calling a Procedure

The syntax of the procedure call statement is as follows:
Procedure_Name, Paraneterq, Parameter,, ..., Paraneter,

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:
e System procedures provided with IDL.

e User-written procedures written in IDL and compiled with the .RUN
command.

e User-written proceduresthat are compiled automatically becausethey residein
directories in the search path. These procedures are compiled the first time
they are used. See “ Defining a Function” on page 73.

* Procedureswrittenin IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

¢ Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Example

Some procedures can be called without any parameters. For example:
ERASE

Thisis aprocedure call to a subroutine to erase the screen. There are no explicit
inputs or outputs. Other procedures have one or more parameters. For example, the
Statement:

PLOT, ClRCLE
callsthe PLOT procedure with the parameter CIRCLE.

Calling a Procedure Building IDL Applications

Chapter 4: Procedures and Functions 73

Defining a Function

A function is a program unit containing one or more IDL statements that returns a
value. This unit executes independently of its caler. It hasits own local variables and
execution environment. Once afunction has been defined, references to the function
cause the program unit to be executed. All functions return a function value which is
given as a parameter in the RETURN statement used to exit the function. Function
names can be up to 128 characters long.

Note
See Chapter 5, “Library Authoring” for information on naming routines to avoid
conflictswith IDL routine names. It isimportant to implement and consistently use
anaming scheme from the earliest stages of code devel opment.

The genera format of afunction definition is as follows:

FUNCTI ON Name, Paraneterq, ..., Paranmeter,
St at enent 4
St at enent ,

RETURN, Expression
END

Example

To define afunction called AV ERAGE, which returns the average value of an array,
use the following statements:

FUNCTI ON AVERAGE, arr

RETURN, TOTAL(arr)/N ELEMENTS(arr)
END

Once the function AV ERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRI NT, AVERAGE(X"2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. Parameters passed to functions are identified by their position or by akeyword.
See “Using Keyword Parameters’ on page 79.

Building IDL Applications Defining a Function

74 Chapter 4: Procedures and Functions

Automatic Execution
IDL automatically compiles and executes a user-written function or procedure when
itisfirst referenced if:

1. Thesource code of the function isin the current working directory or in a
directory in the IDL search path defined by the system variable !PATH.

2. Thename of the file containing the function is the same as the function name
suffixed by .pro or .sav. Under UNIX, the suffix should bein lowercase |etters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be named with lowercase.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For information on how to accessroutines, see“Running IDL Programs’ in Chapter 9
of the Using IDL manual.

Forward Function Definition

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

This problem has been addressed beginning with IDL version 5.0 by the use of square
brackets“[]” instead of parenthesesto specify array subscripts. See “Array Subscript
Syntax: [] vs. ()" on page 140 for adiscussion of the IDL version 5.0 and later
syntax. However, because parentheses are still allowed in array subscripting
statements, the need for amechanism by which the programmer can “reserve” aname
for afunction that has not yet been defined remains. The FORWARD_FUNCTION
statement addresses this need.

As mentioned above, ambiguities can arise between function calls and array
references when afunction has not yet been compiled, or there is no file with the
same name as the function found in the IDL path.

Defining a Function Building IDL Applications

Chapter 4: Procedures and Functions 75

For example, attempting to compile the IDL statement:
A = xyz(1l, COLOR=1)

will cause an error if the user-written function XY Z has not been compiled and the
filename xyz.proisnot found inthe IDL path. IDL reports asyntax error, because xyz
isinterpreted as an array variable instead of a function name.

This problem can be eliminated by using the FORWARD_FUNCTION statement.
This statement has the following syntax:

FORWARD_FUNCTI ON Nare;, Name,, ..., Namey

where Name is the name of afunction that has not yet been compiled. Any names
declared as forward-defined functions will be interpreted as functions (instead of as
variable names) for the duration of the IDL session.

For example, we can resolve the ambiguity in the previous example by adding a
FORWARD_FUNCTION definition:

; Define XYZ as the nane of a function that has not yet been
; conpi | ed.
FORWARD_FUNCTI ON XYZ

;1 DL now understands this statenent to be a function call instead
;of a bad vari abl e reference.
a = XYZ(1, COLOR=1)

Note
Declaring a function that will be merged into IDL viathe LINKIMAGE command
with the FORWARD_FUNCTION statement will not have the desired effect.
Routines merged via LINKIMAGE are considered by IDL to be built-in routines,
and thus need no compilation or declaration. They must, however, be merged with
IDL before any routines that call them are compiled.

Building IDL Applications Defining a Function

76

Chapter 4: Procedures and Functions

Parameters

The variables and expressions passed to the function or procedure from its caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the examples at the beginning of this section, the actual
parameters in the procedure call are the variable A and the constant 12, while the
actual parameter in the function cal isthe value of the expression (C/D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
anumber of placesin other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

Parameters

A keyword parameter, which can be either actual or formal, isan expression or
variable name preceded by a keyword and an equal sign (“=") that identifies which
parameter is being passed.

When calling aroutine with akeyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEY WORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

For example, a procedure is defined with a keyword parameter named TEST.
PRO XYZ, A, B, TEST = T

The caller can supply avalue for the formal (keyword) parameter T with the
following calls:

;Supply only the value of T. A and B are undefined inside the
; procedure.

Building IDL Applications

Chapter 4: Procedures and Functions 77

XYZ, TEST = A

; The value of Ais copied to formal paranmeter T (note the
;abbreviation for TEST), Qto A and Rto B.
Xyz, TE=A Q R

;Variable Qis copied to formal parameter A. B and T are undefi ned
;inside the procedure.

XYZ, Q
result = FUNCTI ON(Argl, Arg2, KEYWORD = val ue)
Note
When supplying keyword parameters for afunction, the keyword is specified inside
the parentheses:

Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, viaa RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or afunction can be called with fewer arguments than were defined in
the procedure or function. For example, if aprocedure is defined with 10 parameters,
the user or ancther procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into
parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parametersin the calling list can be found
by using the system function N_PARAMS. Usethe N_ELEMENTS function to
determineif avariableis defined.

Building IDL Applications Parameters

78

Chapter 4: Procedures and Functions

Example

Parameters

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTI ON GRAD, i mage
;Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

; Evaluate and return the result.
RETURN, ABS(inmage - SH FT(inmage, 1, 0)) + $
ABS(i mage- SHI FT(i mage, 0, 1))

; End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within amodule (i.e., they are not parameters and
are not contained in common blocks).

The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

;Store gradient of Bin A
A = GRAD(B)

; Display gradient of | MAGE sum
TVSCL, GRAD(abc + def)

Building IDL Applications

Chapter 4: Procedures and Functions 79

Using Keyword Parameters

A short example of afunction that exchanges two columns of a4 x 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

; Function to swap columms of T. XYEXCH swaps colums 0 and 1,
; XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTI ON SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

;Swap colums 0 and 1 if keyword XYEXCH is set.
| F KEYWORD_SET(XY) THEN S=[0,1] $

;Check to see if xz is set.
ELSE | F KEYWORD _SET(XZ) THEN S=[0,2] $

; Check to see if yz is set.
ELSE | F KEYWORD SET(YZ) THEN S=[1,2] $

;1 f nothing is set, return.
ELSE RETURN, T

; Copy matrix for result.
R=T

; Exchange two columms using matrix insertion operators and
; subscri pt ranges.

RIS[1], 0] = T[S[0], *]

RES[O], O] = T[S[1], *]

:Return result.
RETURN, R

END
Typical calsto SWAP are asfollows:

Q = SWAP(! P. T, /XYEXCH)

Q = SWAP(Q / XYEX)

Q = SWAP(I NVERT(Z), YZ = 1)

Q=SWAP(Z, XYE=1 EQO, XZE = | EQ1, YZE = | EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variablell.

Building IDL Applications Using Keyword Parameters

80 Chapter 4: Procedures and Functions

This function exampl e uses the system function KEYWORD_SET to determineiif a

keyword parameter has been passed and if it is nonzero. Thisis similar to using the
condition:

IF N_ELEMENTS(P) NE O THEN IF P THEN ...
to test if keywords that have a true/false value are both present and true.

Using Keyword Parameters Building IDL Applications

Chapter 4: Procedures and Functions 81

Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to the routines that they
call. Routines are able to accept keywords on behalf of the routines they call without
explicitly processing each individual keyword. The resulting code is ssimple, and
requires significantly less maintenance. Keyword inheritance is of particular value
when writing:

e Wrapper routines, which are variations of a system or user-provided routine.
Such wrappers usually augment the behavior of another routinein asmall way,
largely passing arguments and keywords through without interpretation.
Keyword inheritance allows such wrappersto be very simple, and benefit from
not having to specify all the details of the underlying routine's interface.
Maintenance of the wrapper is also greatly simplified, because the wrapper
does not require modification every time the underlying routine changes.

« Methods for an object. In an object hierarchy, each subclass has the option of
overriding the methods provided by its superclasses. Often, the subclass
method calls the superclass version. Keyword inheritance makesit simple to
pass on keywords without having to be explicitly aware of them, and without
having to be concerned with filtering out those keywords that are not accepted
by the superclass method. In addition to enhancing maintainability, this allows
subclassing from a base class without having detailed knowledge of itsinternal
implementation, an important consideration for object oriented programming.

There are two steps required to use keyword inheritance in an IDL routine:

1. Theroutine must declare that it accepts inherited keywords. Thisis done by
specifying either the EXTRA or _REF EXTRA keyword in the formal
parameter list of the routine (note the leading underscore in these names). IDL
will use one of its two available keyword inheritance mechanisms depending
on which of these keyword parameters is used. The first inheritance
mechanism (_EXTRA) passes keywords by value, while the other
(_LREF_EXTRA) passes them by reference. The difference between these
methods is explained in “Keyword Inheritance Mechanisms’ on page 83.
Advice on how to choose the best one for your needs can be found in
“Choosing a Keyword Inheritance Mechanism” on page 85. Only one of these
two keywords can be specified for a given routine.

Building IDL Applications Keyword Inheritance

82

Chapter 4: Procedures and Functions

2. Theroutine passes the inherited keywords to a called routine, by including

either the EXTRA or _STRICT_EXTRA keyword in the call to that routine.
_EXTRA and _STRICT_EXTRA differ only in how IDL behaves when an
inherited keyword is not accepted by the called routine. _EXTRA causes such
keywords to be quietly ignored, while _STRICT_EXTRA causes DL to issue
an error and stop execution. _EXTRA isthe usual choice, while
_STRICT_EXTRA isused primarily for wrapper routines.

When using keyword inheritance, the following points should be kept in mind:

The mechanism used by aroutine for inherited keywords is solely determined
by which keyword (_ EXTRA or _REF_EXTRA) isused in the formal
parameter list for that routine. Hence, REF _EXTRA isonly usedin the
formal parameter list of aroutine, and never in acall to that routine. This also
means that you can change an existing routine from using one mechanism to
the other by simply changing the name of the keyword. There is no need to
change any of the calls to the routine, just the formal parameter list of the
routine itself.

Attempting to use both the _ EXTRA and _REF_EXTRA keywordstogether in
the formal parameter list of afunction or procedure will cause an error to be
issued. You can only use one or the other.

Only the caller of aroutine can dictate whether keywords that are not
understood by the called routine should be ignored (_ EXTRA) or should
generate an error (_STRICT_EXTRA). For thisreason, _STRICT_EXTRA is
only used in acall to aroutine, and not in the formal parameter list for the
routine.

Attempting to use both the EXTRA and _STRICT_EXTRA keywords
together in acall to afunction or procedure will cause an error to be issued.
You can only use one or the other.

Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 83

Keyword Inheritance Mechanisms

Asdescribed above, there are two possible mechanisms used by IDL to passinherited
keywords. The one used by aroutineis determined by the formal parameter list of the
routine.

_EXTRA: Passing Keyword Parameters by Value

You can cause inherited keyword parameters to be passed to aroutine by value by
adding the keyword parameter EXTRA to the formal argument list of that routine.
Passing parameters by value meansthat you are giving the called routine a copy of the
value of the passed parameter, and not the original. As such, any changes made to the
value of such akeyword is not passed back to the caller.

When aroutine is defined with the formal keyword parameter EXTRA, and
keywords that are not recognized by that routine are passed to itinacall, IDL
constructs an anonymous structure to contain the keyword inheritance information.
Each tag in this structure has the name of an inherited keyword, and the value of that
tag isacopy of the value that was passed to that keyword. If no unrecognized
keywords are passed in a call, the value of the _EXTRA keyword will be undefined,
indicating that no inherited keyword parameters were passed.

Modifying Inherited Keyword Values

If extra keyword parameters have been passed by value, their values are stored in an
anonymous structure. The inheriting routine has the opportunity to modify these
values and/or to filter them prior to passing them to another routine. The
CREATE_STRUCT, N_TAGS, and TAG_NAMES functions can all be of usein
performing such operations. For example, here is an example of adding a keyword
named COLOR with value 12 to an _EXTRA structure:

PRO SOVEPROC, _EXTRA = ex
if (N_ELEMENTS(ex) NE 0) $
THEN ex = CREATE STRUCT(’ COLOR , 12, ex) $
ELSE ex = { COLOR: 12 }
SOVE_UNDERLYI NG PROC, _EXTRA=ex
END

Theuse of N_ELEMENTS is necessary because if the caller does not supply any
inherited keyword, the variable EX will have an undefined value, and an attempt to
use that value with CREATE_STRUCT will cause an error to be issued. Hence, we
only use CREATE_STRUCT if we know that inherited keywords are present.

Building IDL Applications Keyword Inheritance

84 Chapter 4: Procedures and Functions

_REF_EXTRA: Passing Keyword Parameters by Reference

You specify that a routine accepts inherited keywords by reference, by adding the
keyword REF EXTRA to the formal argument list of the routine. When aroutineis
defined with _REF _EXTRA, inherited keywords are passed using IDL’s standard
parameter passing mechanism, as with any other variable. Unlike regular variables
however, the values of these keywords are not available within the routine itself.
Instead, the names of these keywords are passed as a string array to the routine asthe
value of the REF EXTRA keyword. The presence of anameinthe REF EXTRA
value indicates that a keyword of that name was passed, and its value is available to
be passed on in afunction or procedure call (using either EXTRA or
_STRICT_EXTRA). If no unrecognized keywords are passed in a call, the value of
the EXTRA keyword will be undefined, indicating that no inherited keyword
parameters were passed.

If inherited keywords passed by reference are modified by a called routine, those
changes will be passed back to the caller.

The pass by reference keyword inheritance mechanism is especially useful when
writing object methods.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names viathe EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:

PRO SOMEPROC, _REF EXTRA = ex
ONE, _EXTRA=[' MOOSE', ' SQUI RREL']
TWO, _EXTRA=' SQUI RREL'

END

If we call the SOMEPROC routine with three keywords:
SOVEPROC, MOOSE=nmose, SQUI RREL=3, SPY=PTR_NEW noose)

e it will pass the keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

e itwill passthe keyword SQUIRREL and its value to procedure TWO,

¢ it will do nothing with the keyword SPY, or any other keyword that might be
passed to it.

Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 85

Choosing a Keyword Inheritance Mechanism

The two available keyword inheritance mechanisms have different strengths and
weaknesses. The one to choose depends on the requirements of your routine:

e |If your routine needs to see the values of the inherited keywords, and you do
not need to pass modified values back to the caller, use EXTRA (pass by
value).

» If your routine does not need to see the values of the inherited keywords, and it
is OK to pass back modified keyword values, use_ REF_EXTRA (pass by
reference).

e |If your routine is an object method, REF EXTRA ismost likely the correct
choice for your application.

¢ If either mechanism will serve your needs, asis often the case, then RS
recommends _REF _EXTRA, which has aminor efficiency advantage over
_EXTRA, dueto the fact that it does not have to construct an anonymous
structure and copy the original valuesinto it.

Example: Writing a Wrapper Routine

One of the most common uses for the keyword inheritance mechanism isto create
wrapper routines that extend the functionality of existing routines. This example
shows how to write such a wrapper, using both avail able inheritance mechanisms.

By Value

In most wrapper routines, thereis no need to return modified keyword values back to
the calling routine — the aim is simply to provide the complete set of keywords
available to the existing routine from the wrapper routine. Hence, the by value form
(_EXTRA) of keyword inheritance can be used.

For example, suppose that procedure TEST isawrapper to the PLOT procedure. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, _EXTRA = e
END

Building IDL Applications Keyword Inheritance

86

Chapter 4: Procedures and Functions

This wrapper passes all keywords it does not accept directly to PLOT using keyword
inheritance. If such a keyword is not accepted by the PLOT procedure, it is quietly
ignored. If you wish to catch such errors, you would re-write TEST to use the
_STRICT_EXTRA keyword in the call to PLOT:

PRO TEST, a, b, EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be placed into an anonymous structure assigned to the variable
e. If there are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THI CK=5

variable e, within TEST, contains an anonymous structure with the value:
{ LINESTYLE: 4, THICK: 5}

These keyword/value pairs are then passed from TEST to the PLOT routine using the
_EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into aroutine via_ EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR 12}
specifies acolor index of 12 to PLOT.

By Reference

It is extremely simple to modify the by value (EXTRA) version of the TEST
procedure from the previous section to use by reference keyword inheritance. It
sufficesto changethe EXTRA keyword to REF _EXTRA in the formal parameter
list:
PRO TEST, a, b, _REF EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be passed to TEST using the normal IDL parameter passing
mechanism. However, their values are not visible within TEST itself. Instead, astring
array containing the inherited keyword names is assigned to the variable e. If there
are no unrecognized keywords, e will be undefined.

Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 87

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THI CK=5

variable e, within TEST, contains an anonymous structure with the value:
[‘LINESTYLE', ‘TH CK]

These inherited keywords are then passed from TEST to the PLOT routine using the
EXTRA keyword. Note that keywords passed into aroutine via EXTRA override
previous settings of that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR 12}

specifies acolor index of 12 to PLOT. Also note that we are passing a structure (the
by value format used by EXTRA) as the value of the extra keyword to aroutine that
uses the by reference keyword inheritance mechanism (_REF_EXTRA). Thereisno
problem in doing this, because each routine establishes its own inheritance
mechanism independent of any other routines that may be calling it. However, any
keyword valuesthat are changed within PLOT will fail to be returned to the caller due
to the use of the by-value mechanism.

Example: By Value Versus By Reference

The pass by reference keyword inheritance mechanism allows you to change the
value of avariable in the calling routine’s context from within the routine, whereas
the pass by value mechanism does not. To demonstrate this difference between
_EXTRA and _REF_EXTRA, consider the following simple example procedures:

PRO HELP_BYVAL, _EXTRA = ex

HELP, _EXTRA = ex
END

PRO HELP_BYREF, _REF_EXTRA = ex
HELP, _EXTRA = ex
END
Both HELP_BY VAL and HELP_BY REF are simple wrappers to the HELP
procedure. The HEL P procedure accepts a keyword named OUTPUT that passes
back avalue to the caller. Observe the result when we call each wrapper, specifying
OUTPUT as an inherited keyword parameter:

HELP_BYVAL, QUTPUT = out & HELP, out

Building IDL Applications Keyword Inheritance

88 Chapter 4: Procedures and Functions

IDL prints:
% At HELP_BYVAL 2 /dev/tty
% SMAINS
EX UNDEFI NED = <Undefi ned>

Conpi | ed Procedures:
$MAIN$ HELP_BYVAL

Conpi | ed Functi ons:

ouT UNDEFI NED = <Undef i ned>

This occurs because the HELP call within HELP_BY VAL is passed a variable that
cannot be used to return a value, due to the use of by value keyword inheritance. It
therefore revertsto the default of writing to the user’s screen, and no valueis returned
to the caller for the OUTPUT keyword.

Now run HELP_BY REF:
HELP_BYREF, OUTPUT = out & HELP, out
IDL prints:
ouT STRI NG = Array] 8]
HELP_BY REF returns the value of the HELP OUTPUT keyword as desired.

Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 89

Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commandsis as follows:

_RUN [File; , Filey, ...]
_COMVPILE [File; , File, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see “.RUN” and “.COMPILE” in the IDL Reference Guide
manual.

To enter program text directly from the keyboard, simply enter .RUN at the

IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
adirectly entered program. Aslong asIDL requires more text to complete a program
unit, it prompts with the “-" character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as awhole.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

Thefirst non-empty line the IDL compiler reads determines the type of the program
unit; procedure, function, or main program. If the first non-empty lineis not a
procedure or function definition statement, the program unit is assumed to be amain
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is already
compiled, it is replaced by the new program unit.

Note Regarding Functions

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable PATH, must be compiled before the first reference to the
function is compiled. Thisis necessary because the IDL compiler isunable to
distinguish between areference to a variable subscripted with parentheses and a call
to a presently undefined user function with the same name. For example, in the
Statement

A = XYZ(5)
itisimpossible to tell by context aloneif XYZ isan array or afunction.

Building IDL Applications Entering Procedure Definitions

90 Chapter 4: Procedures and Functions

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()" on page 140 for additional
details.

When IDL encounters references that may be either afunction call or a subscripted
variable, it searches the current directory, then the directories specified by !PATH,
for files with names that match the unknown function or variable name. If one or
more files matching the unknown name exist, IDL compiles them before attempting
to evaluate the expression. If no function or variable with the given name exists, IDL

displays an error message.
There are severa ways to avoid this problem:

¢ Compilethe lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

e Place the function in afile with the same name as the function, and place that
file in one of the directories specified by PATH.

¢ Usethe FORWARD_FUNCTION definition statement to inform IDL that a
given name refersto afunction rather than a variable. See “Forward Function
Definition” on page 74.

e Manually compile al functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.

Entering Procedure Definitions Building IDL Applications

Chapter 4: Procedures and Functions 91

How IDL Resolves Routines

When IDL encountersacall to afunction or procedure, it must find the routine to
call. To do this, it goes through the following steps. If a given step yields a callable
routine, IDL arranges to cal that routine and the search ends at that point:

1

If the routine is known to be a built in intrinsic routine (commonly referred to
as asystemroutine), then IDL calls that system routine.

If auser routine written in the IDL language with the desired name has already
been compiled, IDL callsthat routine.

If afile with the name of the desired routine (and ending with the filename
suffix . pr o) existsin the current working directory, IDL assumes that thisfile
contains the desired routine. It arranges to call a user routine, but does not
compilethefile. Thefilewill be compiled when IDL actually needsit. In other
words, it is compiled at run time when IDL actually attemptsto call the
routine, not when the code for the call is compiled.

IDL searchesthe directories given by the |PATH system variable for afile with
the name of the desired routine ending with the filename suffix . pro. If sucha
fileexists, IDL assumesthat thisfile containsthe desired routine. It arrangesto
call auser routine, but does not compile the file, as described in the previous
step.

If the above steps do not yield a callable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parentheses to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 7, “Arrays’ for adiscussion of thisambiguity). In either case, the
result is not a callable routine.

Building IDL Applications How IDL Resolves Routines

92

Chapter 4: Procedures and Functions

Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It isimportant to recognize the distinction between these two
methods.

¢ Expressions, constants, system variables, and subscripted variable references
are passed by value.

e Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:
PRO ADD, A, B
A=A+B
RETURN
END

This procedure adds its second parameter to the first, returning the result in the first.
Thecall

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A
No error messageisissued. Similarly, if ARR is an array, the call
ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as
follows:

TEMP = ARR[5]

ADD, TEMP, 4

ARR[5] = TEWP

Parameter Passing Mechanism Building IDL Applications

Chapter 4: Procedures and Functions 93

Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “ Parameter
Passing with Structures’ on page 189 for additional details.

Building IDL Applications Parameter Passing Mechanism

94

Chapter 4: Procedures and Functions

Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1

All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

The actual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

The function or procedure is executed until aRETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
auser-written function is passed back to the caller by specifying it asthe value
of aRETURN statement. RETURN statements in procedures cannot specify a
return value.

All local variablesin the procedure, those variables that are neither parameters
nor common variables, are deleted.

The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actua parameters that were passed by
value are deleted.

Control resumesin the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., aprogram calling itself) is supported for both procedures and
functions.

Calling Mechanism

Building IDL Applications

Chapter 4: Procedures and Functions 95

Example

Hereis an example of an IDL procedure that reads and plots the next vector from a
file. This example illustrates using common variables to store values between calls,
aslocal parameters are destroyed on exit. It assumes that the file containing the data
isopen on logical unit 1 and that the file contains a number of 512-element, floating-
point vectors.

; Read and plot the next record fromfile 1. If RECNO is specified,
;set the current record to its value and plot it.
PRO NXT, recno

; Save previous record numnber.
COMVON NXT_COM | astrec

; Set record nunber if paraneter is present.
I F N_PARAMS(0) CGE 1 THEN | astrec = recno

:Define LASTREC if this is first call.
| F N_ELEMENTS(| astrec) LE O THEN | astrec = 0

;Define file structure.
AA = ASSOC(1, FLTARR(512))

; Read and pl ot record.
PLOT, AA[l astrec]

;lncrement record for next tine.
| astrec = lastrec + 1

END

Once the user has opened thefile, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.

Building IDL Applications Calling Mechanism

96 Chapter 4: Procedures and Functions

Setting Compilation Options

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears. The syntax of
COMPILE_OPT isasfollows:

COMPILE_OPT opt, [,0pt,, ..., Opt,]
where opt,, is any of the following:
e |IDL2— A shorthand way of saying:
COWPI LE_OPT DEFINT32, STRI CTARR

e« DEFINT32 — IDL should assume that lexical integer constants are the 32-bit
LONG type rather than the default of 16-bit integers. Thistakes effect from the
point where the COMPILE_OPT statement appears in the routine being
compiled.

« HIDDEN — Thisroutine should not be displayed by HEL P, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side effect of making aroutine hidden isthat IDL will not print a“Compile
module” message for it when it is compiled from the library to satisfy acall to
it. This makes hidden routines appear built in to the user.

e OBSOLETE — If the user has 'WARN.OBS ROUTINES set to True,
attempts to compile acall to this routine will generate warning messages that
thisroutine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

¢ STRICTARR — While compiling this routine, IDL will not alow the use of
parenthesisto index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good ideafor library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTION
definition.

Setting Compilation Options Building IDL Applications

Chapter 4: Procedures and Functions 97

RSI recommends the use of
COVPI LE_OPT | DL2

in all new code intended for use in areusable library. We further recommend the use
of

COWPI LE_OPT idl 2, H DDEN

in al such routines that are not intended to be called directly by regular users (e.g.
hel per routines that are part of alarger package).

Building IDL Applications Setting Compilation Options

98 Chapter 4: Procedures and Functions

Setting Compilation Options Building IDL Applications

Chapter 5:

Library Authoring

The following topics are covered in this chapter:

Overview of Library Authoring 100 Advicefor Library Authors
Recognizing Potential Naming Conflicts . 101 Converting Existing Libraries

Building IDL Applications

99

100 Chapter 5: Library Authoring

Overview of Library Authoring

Library authors provide an invaluable resource to the IDL community — they
develop domain-specific programs and applications that implement knowledge far
beyond RSI’slevel of expertise. User library codeis often freely available, supported,
and documented. However, asthe number of library authors and routines continues to
grow, it becomesincreasingly important for authors to adhere to a routine naming
convention within their libraries that avoids conflicts with core IDL functionality.

Most user libraries start out as small collections of code, and then grow. Initially, the
naming issue is not very important. Over time, the library grows in complexity and
number of users. Because thisis often a gradual process, the importance of naming is
not obvious until thereis a conflict with IDL system functionality, or a conflict with
another library author’s code.

An understanding of the way IDL resolves routines during program execution reveals
why new IDL system procedures and functions may periodically conflict with pre-
existing routines written by usersin the IDL community. (See “How IDL Resolves
Routines’ on page 91 for step-by-step routine resolution details.)

Thefact that IDL system routines always take precedence over user routines provides
the following benefits:

e ThelDL environment remains reliable and consistent — a call to FFT always
returnsthe IDL version of the FFT function.

e |teliminates agreat deal of path searching, which translates into faster
execution speed.

In contrast, if user routinestook precedence over system routines, agiven installation
could radically alter the meaning of common and basic IDL constructs simply by
creating user routines with the names of IDL system routines. Thiswould result in
conflicts when sharing code, degradation of the common IDL language core, and
ultimately, the reduced usefulness of IDL.

Although the way IDL handles the search for routines is simple, efficient, and
reliable, it is not perfect. The potential for namespace conflicts exists. It isimportant
to recognize and take steps to avoid these naming conflicts as described in the
following sections:

e “Recognizing Potential Naming Conflicts” on page 101
e “Advicefor Library Authors’ on page 103
e “Converting Existing Libraries’ on page 104

Overview of Library Authoring Building IDL Applications

Chapter 5: Library Authoring 101

Recognizing Potential Naming Conflicts

IDL favors simple names, and it blurs the user level distinction between system
routines and user routines. The reason for this has everything to do with IDL’s
orientation towards ad hoc analysis. The primary goal is transparency. Names should
make sense, be easy to remember, and not require too much typing. Language
transparency also results in very human-readable code. In conjunction with the way
IDL searchesfor routines, this may cause either user level or system level conflicts.

User Level Conflicts

In the user level case, an IDL user writes aroutine that is not part of the base release
of IDL, and placesitin aloca library. At some later date, a new version of IDL is
installed that contains anew IDL library routine with the same name as the user's
routine. Depending on the order of the directories in the user’s path, one of these two
routines is executed. If the user’sroutine is used, IDL library code that callsthe
routine will get the wrong version and fail in strange and mysterious ways. If the IDL
routine isused, the IDL library will be satisfied, but the user'slibrary will get the
wrong version, also with bad results.

System Level Conflicts

The system level caseis similar, but harder to work around. In this case, the user
creates alocal routine, as before. However, the new version of IDL contains a system
routine with the same name. In this case, IDL will always choose to use the system
routine, and the user routine simply vanishes from view never to be called again. The
order of the search path is meaninglessin this case because the search path is not even
consulted. A system routine always has precedence over a user routine.

Choosing Routine Names to Avoid Conflicts

Naming conflicts can result in costly and time consuming problems; carefully
considered names make everything easier. On the surface, naming routines seemslike
atrivial issue, but names are very important. It is crucial to adopt and consistently
adhere to a routine naming strategy to avoid conflict. The core idea of this convention
(described in detail in “Advice for Library Authors’ on page 103) isto prefix al
library routine names with a unique identifier, one indicative of your organization or
project. Research Systems reserves routine names that are generic, and those with an
“IDL” or “RSI” prefix on behalf of the entire IDL community. Prefixing your user
library routines significantly reduces the risk of namespace collisions with IDL
routines.

Building IDL Applications Recognizing Potential Naming Conflicts

102 Chapter 5: Library Authoring

Asalibrary author, your decision to follow aroutine prefixing strategy benefits the
entire IDL community. This convention translates into simplicity and reliability,
allowing IDL system routines to always take precedence over user routines. It also
raises the visibility of your routines, readily distinguishing them as part of your
library.

Note

For instructions on how to prefix an existing user library, see “ Converting Existing
Libraries’ on page 104.

Recognizing Potential Naming Conflicts Building IDL Applications

Chapter 5: Library Authoring 103

Advice for Library Authors

An ordinary IDL programmer needs only to solve his or her own problemsto the
desired level of quality, reusability, and robustness. Lifeis more difficult for an author
of alibrary of IDL routines. In addition to the challenges facing any programmer,
library authors face additional challenges:

¢ The structure and organization of the library needs to encourage reuse and
generality.

e Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

e Errors must be gracefully handled whenever possible. See Chapter 19,
“Controlling Errors’ for more on error control.

e Themost useful libraries are written to work correctly on awide variety of
platforms, without requiring their users to be aware of the details.

e Documentation must be provided, or the library will not find users.

e Libraries must be able to co-exist with other code over which they have no
control. Authors must not alter the global environment in ways that cause
conflicts, and they must also take care to prefix the names of al routines,
common blocks, systems variables, and any other global resources they use.
This prevents alibrary from conflicting with other libraries on the same
system, and protects the library from changesto IDL that may occur in newer
releases.

Prefixing Routine Names

The use of aproper prefix minimizestherisk of anamespace collision as described in
“Recognizing Potential Naming Conflicts’ on page 101. In selecting a prefix for your
library, you should select a name that is short, mnemonic, and unlikely to be chosen
by others. For example, such a name might use the name of your organization or
project in an abbreviated form.

Non-prefixed names and names prefixed by “IDL” or “RS|” are reserved by RSI.
New names of these forms can and will appear without warning in new versions of
IDL, and should be avoided when naming new library routines.

Building IDL Applications Advice for Library Authors

104

Chapter 5: Library Authoring

Converting Existing Libraries

Many libraries that already exist do not follow the naming guidelines provided in
“Advicefor Library Authors’ on page 103. Such libraries are bound to experience an
occasiona conflict with new versions of IDL. The best solution to avoid conflictsis
to perform a systematic one-time conversion to a prefixed naming scheme.

Any existing library islikely to already have users. Assuming that non-prefixed
nameswere used in such libraries, it is not possible to smply change the names. Such
conversions require time to carry out, and once that has happened, it takes time for
users to adjust and alter their usage. However, the actual conversion can go very
quickly, and with proper planning it is easy to offer a backwards compatibility option
for your users. Use the following steps to convert an existing library:

1

Generate alist of al files containing routines to be renamed.
Using thislist, build an IDL batch file that uses .COMPILE on each file.

Start afresh IDL session, execute the batch file, and use HELP, /ROUTINES to
get acomplete list of all compiled routines. Only IDL user library routines
(those . pr o files shipped with the IDL distribution) should not contain a
prefix.

Asyou rename each routine to its prefixed form, write a non-prefixed wrapper
routine with the old name that callsthe new version. Such wrappers are easy to
writein IDL, using the_ REF EXTRA keyword to pass keywords through to
the real routine. See “Keyword Inheritance” on page 81 for details.

Use the COMPILE_OPT OBSOLETE compilation directive in such wrappers
so that IDL will recognize them as obsolete routines. See “ Setting Compilation
Options’” on page 96 and COMPILE_OPT in the IDL Reference Guide for
more information on COMPILE_OPT. These compatibility wrappers serve the
following purposes:

¢ You can use them to migrate your library to fully prefixed form over time,
since the wrapper will be used any place you failed to changeto calling the
new name. This enhances the stability of the library and gives you timeto
do acareful job.

¢ Onceyou are finished, you can provide them to your customers as a
bridge, so that their old code continues to work.

* Asyou change the names of routines, use grep (or asimilar file searching
tool) to locate uses of that name, and convert them to the new form aswell.

Converting Existing Libraries Building IDL Applications

Chapter 5: Library Authoring 105

6. Iterate, using the batch file mentioned above to find any remaining non-
prefixed uses of the library names. Since your wrappers specified the
COMPILE_OPT OBSOLETE directive, you can set the 'WARN system
variable to help you pinpoint such uses. You are done when your batch file
reveals no more unprefixed names.

Once the conversion is done, you can use the compatibility wrappers to smoothly
transition your users to the new names. You should keep the wrappersin a separate
subdirectory, and even consider making them optional. Doing this raises the end
user’s awareness of the issue and may convince them to convert to using the new
names sooner rather than later.

When you add new routines to your library, ensure that they use the proper prefix. Do
not provide non-prefixed wrapper routines for new routines. There is no backward
compatibility issue in this case, and they are not needed.

Although the one time hit of prefixing an existing library can consume sometime and
effort, there are benefits that accrue from doing it. When new versions of IDL are
released, the odds of the library working with the new version without encountering
any name clashes are extremely high. Use of a consistent prefix also raisesthe profile
of the library to the end user, raising their level of understanding and appreciation for
the work it does.

Building IDL Applications Converting Existing Libraries

106 Chapter 5: Library Authoring

Converting Existing Libraries Building IDL Applications

Chapter 6:

Strings

The following topics are covered in this chapter:

OVEIVIEW ..ot 108
String Operations 109
Non-string and Non-scalar Arguments . .. 110
String Concatenation 111
Using STRING to Format Data 112
Byte Argumentsand Strings 113
CaseFolding 115

Building IDL Applications

Whitespace 116
Finding the Lengthof aString 118
SUBbSLHNGS . ..o 119
Splitting and Joining Strings 122
Comparing Strings 123
Non-Printing Characters. 127
Learning About Regular Expressions ... 128

107

108 Chapter 6: Strings

Overview

An DL string isasequence of characters from 0 to 2147483647 (2.1 GB) characters
in length. Strings have dynamic length (they grow or shrink to fit), and thereis no
need to declare the maximum length of astring prior to using it. Aswith any data
type, string arrays can be created to hold more than a single string. In this case, the
length of each individual string in the array depends only on its own length and is not
affected by the lengths of the other string elements.

A Note About the Examples

In some of the examplesin this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', '"Birch', 'Mahogany', 'Maple', 'Cak', $
"Pine', 'Wal nut']

Executing the statement,
PRI NT, "> + trees + '<'
resultsin the following output:
>Beech< >Birch< >Mahogany< >Maple< >Cak< >Pine< >Wal nut<

Overview Building IDL Applications

Chapter 6: Strings 109

String Operations

IDL supports severa basic string operations, as described below.
Concatenation

The Addition operator, “+”, can be used to concatenate strings together.
Formatting Data

The STRING function is used to format datainto astring. The READS procedure can
be used to read values from a string into IDL variables.

Case Folding

The STRLOWCA SE function returns a copy of its string argument converted to
lowercase. Similarly, the STRUPCA SE function converts its argument to uppercase.

White Space Removal

The STRCOMPRESS and STRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Length
The STRLEN function returns the length of its string argument.
Substrings

The STRPOS, STRPUT, and STRMID routineslocate, insert, and extract substrings
from their string arguments.

Splitting and Joining Strings

The STRSPLIT function is used to break strings apart, and the STRJOIN function
can be used to and glue strings together.

Comparing Strings

The STRCMP, STRMATCH, and STREGEX functions perform string comparisons.

Building IDL Applications String Operations

110 Chapter 6: Strings

Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument that is the string on which they act.

If the argument is not of type string, IDL convertsit to type string using the same
default formatting rules that are used by the PRINT/PRINTF or STRING routines.
The function then operates on the converted result. Thus, the IDL statement,

PRI NT, STRLEN(23)
returns the result
8

because the argument “23” isfirst converted to the string ' 23' that happens to
be a string of length 8.

If the argument is an array instead of ascalar, the function returns an array result with
the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

; Get an uppercase version of TREES.
A = STRUPCASE(tr ees)

; Show that the result is also an array.
HELP, A

;Display the original.
PRI NT, trees

;Display the result.
PRI NT, A

produce the following outpuit:

A STRI NG = Array(7)
Beech Birch Mahogany Maple Cak Pi ne Wl nut
BEECH Bl RCH MAHOGANY MAPLE QAK PI NE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptionsin the IDL Reference Guide.

Non-string and Non-scalar Arguments Building IDL Applications

Chapter 6: Strings 111

String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A ="'This is' + ' a concatenation exanple.'
PRI NT, A

resultsin the following output:
This is a concatenation exanpl e.

Thefollowing IDL statements build a scalar string containing a comma-separated list
of the names found in the TREES string array:

; Use REPLI CATE to nake an array with the correct nunber of conmmas
;and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

; Show the resulting list.
PRI NT, nanes

Running the above statements results in the following outpult:
Beech, Birch, Mahogany, Maple, Oak, Pine, Wl nut

Building IDL Applications String Concatenation

112 Chapter 6: Strings

Using STRING to Format Data

The STRING function has the following form:
S = STRING(Expressiony, ..., Expression,,)

It convertsits parameters to characters, returning the result as astring expression. It is
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. Aswith PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
freeformat and explicitly formatted input/output (“ Free Format 1/O” on page 239) for
details of dataformatting. For more information on the STRING function, see
“STRING” in the IDL Reference Guide manual.

Asasimple example, the following IDL statements:

; Produce a string array.
A = STRI NG FORMAT=' ("The values are:", /, (1))', I NDGEN(5))

; Show its structure.
HELP, A

;Print the result.
FOR 1 = 0, (N_ELEMENTS(A)-1) DO PRINT, All]

produce the following output:

A STRING = Array(6)
The val ues are:

A WNPFEO

Reading Data from Strings

The READS procedure performsformatted input from a string variable and writes the
resultsinto one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of afile.

This routine is useful when you need to examine the format of a datafile before
reading the information it contains. Each line of thefile can beread into astring using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS’ in the IDL Reference Guide manual for more details.

Using STRING to Format Data Building IDL Applications

Chapter 6: Strings 113

Byte Arguments and Strings

There is a close association between a string and a byte array—a string is simply an
array of bytesthat istreated as a series of ASCII characters. Therefore, it is
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the original argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])
produces the output bel ow:
Hell o

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Itsfirst element is 72B which isthe ASCI|
code for “H,” the second is 101B which isan ASCII “e,” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte datain
the usual way.

Asdiscussed in Chapter 11, “Filesand Input/Output”, it is easier to read fixed-length
string data from binary filesinto byte variables instead of string variables. Therefore,
it is convenient to read the datainto a byte array and use this special behavior of
STRING to convert the datainto string form.

Another usefor thisfeatureisto build strings that contain nonprintable charactersin a
way such that the character is not entered directly. This results in programs that are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
areimplemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRI NT, STRING([65B, 66B, 0B, 67B])
produces the following output:
AB

This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.

Building IDL Applications Byte Arguments and Strings

114 Chapter 6: Strings

Note
The BY TE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in abyte array containing the
same byte values asits string argument. For additional information about the BY TE
function, see “Type Conversion Functions’ on page 58.

Byte Arguments and Strings Building IDL Applications

Chapter 6: Strings 115

Case Folding

The and STRUPCA SE functions are used to convert arguments to lowercase or
uppercase. They have the form:

S = STRLOWCA SE(String)
S = STRUPCASE(Sring)
where Sring is the string to be converted to lowercase or uppercase.

Thefollowing IDL statements generate atable of the contents of TREES showing
each namein its actual case, lowercase and uppercase:

FOR 1=0, 6 DO PRINT, trees[l], STRLOANCASE(trees[!]),$
STRUPCASE(trees[1]), FORMAT = ' (A Ti5, A T30, A"

The resulting output from running this statement is as follows:

Beech beech BEECH

Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the response, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yes or no” style questions:

;Create a string variable to hold the response.
answer = ''

; Ask the question.

READ, ' Answer yes or no: ', answer

| F (STRUPCASE(answer) EQ 'YES') THEN $
; Conpare the response to the expected answer.
PRI NT, ' YES' ELSE PRI NT, 'NO

Building IDL Applications Case Folding

116 Chapter 6: Strings

Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white
space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)
where Sring is the string to be compressed.

The default action is to replace each section of white space with a single space.
Setting the REMOVE_ALL keyword causes white space to be completely eliminated.
For example,

;Create a string with undesirable white space. Such a string mght
;be the result of reading user input with a READ statenent.
A=" Thi s is a poorly spaced sentence.

;Print the result of shrinking all white space to a single blank.
PRI NT, '>', STRCOWRESS(A), '<'

;Print the result of renpving all white space.
PRI NT '>', STRCOWPRESS(A, /REMOVE ALL), '<

resultsin the output:

> This is a poorly spaced sentence. <
>Thi si sapoor | yspacedsent ence. <

Whitespace Building IDL Applications

Chapter 6: Strings 117

Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S = STRTRIM(String[, Flag])

where Sring isthe string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag is O or is not present, trailing white spaceis
removed. If it is 1, leading white space isremoved. Both trailing and leading white
space are removed if Flag isequal to 2. For example:

;Create a string with unwanted | eading and trailing bl anks.
A ="' This string has |leading and trailing white space

; Renove trailing white space.
PRINT, '>', STRTRRMA), '<

; Remove | eadi ng white space.
PRINT, '>', STRTRIMA 1), '<

; Renove bot h.
PRINT, '>', STRTRIMA 2), '<

Executing these statements produces the output bel ow.

> This string has |eading and trailing white space<
>This string has leading and trailing white space <
>This string has | eading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to
remove leading and trailing white space and shrink any white space in the middle
down to single spaces.

;Create a string with undesirable white space.
A = 'Yet anot her poorly spaced sent ence.

; Eli m nate unwanted white space.
PRI NT, '>'" STRCOMPRESS(STRTRIMA 2)), <

Executing these statements gives the result bel ow:

>Yet anot her poorly spaced sentence. <

Building IDL Applications Whitespace

118 Chapter 6: Strings

Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:
L = STRLEN(String)

where String isthe string for which the length isrequired. For example, the following
Statement

PRI NT, STRLEN(' This sentence has 31 characters')
resultsin the output
31

whilethefollowing IDL statement prints the lengths of all the names contained in the
array TREES.

PRI NT, STRLEN(trees)
The resulting output is as follows:
5 5 8 5 3 4 6

Finding the Length of a String Building IDL Applications

Chapter 6: Strings 119

Substrings

IDL providesthe STRPOS, STRPUT, and STRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

The STRPOS function is used to search for the first occurrence of a substring. It has
theform

S = STRPOS(Object, Search_string[, Position])

where Object is the string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the search is
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog”:

PRO Ani mal s

; The search string, "dog", appears three tinmes.
animal s = 'dog cat duck rabbit dog cat dog'

; Start searching in character position O.
I =0

: Number of occurrences found.
cnt =0

; Search for an occurrence.
WHI LE (I NE -1) DO BEG N
| = STRPCS(ani mals, 'dog', 1)

IF (I NE -1) THEN BEG N
; Update counter.
cnt =cnt + 1

;lncrement | so as not to count the same instance of 'dog'
twice.
I =1 +1

ENDI F
ENDWHI LE

;Print the result.

PRINT, 'Found ', cnt, " occurrences of 'dog'"
END

Building IDL Applications Substrings

120 Chapter 6: Strings

Running the above program produces the result below.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makesiit easy to find
the last occurrence of asubstring within astring. In the following example, we search
for the last occurrence of the letter “1” (or “i") in a sentence:

sentence = 'IDL is fun.'

sent ence = STRUPCASE(sent ence)

|l asti = STRPOS(sentence, 'I', [/ REVERSE SEARCH)
PRI NT, |asti

Thisresultsin:
4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where O is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedure is used to insert the contents of one string into another. It has
theform,

STRPUT, Destination, Source], Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position isthe first character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwriteis started at the
first character (character position 0). The following IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “ CAT” in the
string “dog cat duck rabbit dog cat dog”:

animal s = 'dog cat duck rabbit dog cat dog'
; The string to search, "dog", appears three tines.

;Whi l e any occurrence of "dog" exists, replace it.
WH LE (((I = STRPOCS(animals, 'dog'))) NE -1) DO $
STRPUT, aninals, 'CAT', |

; Show the resulting string.
PRI NT, ani mals

Substrings Building IDL Applications

Chapter 6: Strings 121

Running the above statements produces the result below.
CAT cat duck rabbit CAT cat CAT

Extracting Substrings

The STRMID function is used for extracting substrings from alarger string. It hasthe
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,

First Character isthe starting position within Expression of the substring (the first
position is position 0), and Length isthe length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

;String containing all the nmonth nanes.
nmont hs = ' JANFEBMARAPRMAYJ UNJ UL AUGSEPOCTNOVDEC

; Extract each name in turn. The equation (1-1)*3 calcul ates the
;position within MONTH for each abbreviation

FORI =1, 12 DO PRINT, I, ' %

STRM D(nmonths, (I - 1) * 3, 3)

The result of executing these statementsis as follows:

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
10 CCT
11 NOV
12 DEC

O©COoO~NOOULDA,WNPE

Building IDL Applications Substrings

122 Chapter 6: Strings
Splitting and Joining Strings

The STRSPLIT function is used to break apart a string, and the STRJOIN functionis
used to glue together separate strings into a single string.

The STRSPLIT function uses the following syntax:
Result = STRSPLIT(String [, Pattern])

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or aregular expression, asimplemented by the
STREGEX function.

The STRJOIN function uses the following syntax:
Result = STRJOIN(Sring [, Delimiter])

where Sring isthe string or string array to be joined, and Delimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

strl = '"Hello Cruel World'

words = STRSPLI T(str1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]
PRI NT, STRJO N(newwords, ' ")

This code results in the following output:
Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsets indicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space asin the above example, we could use adifferent delimiter as
follows:

strl = "Hello Cruel Wrld'

words = STRSPLI T(strl1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]

PRI NT, STRJO N(newwords, ' Kind ')

This code results in the following output:
Hello Kind Wirld

Splitting and Joining Strings Building IDL Applications

Chapter 6: Strings 123
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N
Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only thefirst N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP(Stringl, String2 [, N])

where Sringl and Sring2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOQ” requires the following steps:

A
B

' Mbose'
1100

C=STRM D(A, 0, 3)

I F (STRLONCASE(C) EQ STRLOACASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:
A=' Mbose'
B=' m0O
I|F (STRCMP(A, B, 3, /FOLD CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function alows usto easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.

Building IDL Applications Comparing Strings

124 Chapter 6: Strings

String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:
Result = STRMATCH(String, SearchString)
where Sring is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

B Description
Character
* Matches any string, including the null string.
? Matches any single character.
[..] Matches any one of the enclosed characters. A pair of

characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [isa!, any character not enclosed is matched. To
prevent one of these characters from acting as awildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" isthesame as"a").

Table 6-1: Wildcard Characters used by STRMATCH

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter wordsin astring array that begin with “f” or “F” and end
with “t” or “T":

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRMATCH(str, 'f??t', /FOLD CASE) EQ 1)]

Thisresultsin:
foot Feet FAST fort
Example 2: Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

Comparing Strings Building IDL Applications

Chapter 6: Strings 125

PRI NT, str[WHERE(STRVATCH(str, 'f*t', /FOLD CASE) EQ 1)]
Thisresultsin:
foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “0” and “€” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRI NT, str[WHERE(STRVATCH(str, 'f[eo][eo]t', /FOLD CASE) EQ 1)]
Thisresultsin:

f oot Feet

Example 4: Find al words beginning with “f” and ending with “t” whose second
character is not the letter “0”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD CASE) EQ 1)]

Thisresultsin:
Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “0” in between. Thiswould
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRINT, STREGEX(str, '~f[”o]*t$', /EXTRACT, /FOLD_CASE)

This statement resultsin:
Feet FAST ferret
Note the following about this example:

e Unlikethe* wildcard character used by STRMATCH, the * meta character
used by STREGEX appliesto the item directly on itsleft, which in this caseis
[*o], meaning “any character except the letter ‘0’ . Therefore, [*0]* means
“zero or more characters that are not ‘0’ ”, whereas the following statement
would find only words whose second character isnot “0”:

PRI NT, str[WHERE(STRVMATCH(str, 'f[lo]*t', /FOLD CASE) EQ 1)]

Building IDL Applications Comparing Strings

126 Chapter 6: Strings

* Theanchors (" and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would also return
“fat”, which isasubstring of “fate”.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which iswhy the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see “STREGEX” in the IDL Reference Guide
manual, and for an introduction to regular expressions, see “Learning About Regular
Expressions’ on page 128.

Comparing Strings Building IDL Applications

Chapter 6: Strings 127

Non-Printing Characters

ASCII characters with value less than 32 or greater than 126 do not have printable
representations. Such characters can be included in string constants by specifying
their ASCII value as a byte argument to the STRING function.

For example, to represent the TAB character, use the expression
STRI NG(9B)

This syntax can be used when comparing strings or performing regular expression
matching. For example, to find the position of the first TAB character in a string:

pos = STREGEX(input_string, STRI NG 9b))
whereinput_string is a variable containing the string to be searched.

The following table lists the some ASCII characters you might commonly want to
represent as DL strings.

ASCII Character Byte Value
Bell 7B
Backspace 8B
Horizontal Tab 9B
Linefeed 10B
Vertical Tab 11B
Formfeed 12B
Carriage Return 13B
Escape 27B

Table 6-2: Selected ASCII Characters
and Their Byte Values

For acomplete list, consult a standard ASCI| table.

Building IDL Applications Non-Printing Characters

128 Chapter 6: Strings

Learning About Regular Expressions

Regular expressions are avery powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940's, their mathematical
foundation was established during the 1950's and 1960’s. Their use has along history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

The topic of regular expressionsis a very large one, complicated by the arbitrary
differences in the implementations found in various tools. Anything beyond an
extremely simplistic sketch is well beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as “Mastering Regular
Expressions’, by Jeffrey E.F. Friedl (O'Rellly & Associates, Inc, ISBN 1-56592-257-
3). Thefollowing isan abbreviated, simplified, and incomplete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from left
to right. The matching is considered to be “ greedy”, because at any given point, it will
always match the longest possible substring. For example, if aregular expression
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “ meta characters’, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backslash character (e.g. *'). The meta characters are
described in the following table:

Character Description

The period matches any character.

Table 6-3: Meta characters

Learning About Regular Expressions Building IDL Applications

Chapter 6: Strings 129

Character Description

[The open bracket character indicates a*“bracket expression”,
which is discussed below. The close bracket character
terminates such an expression.

\ The backslash suppresses the special meaning of the character
it precedes, and turnsit into an ordinary character. To insert a
backslash into your regular expression pattern, use adouble

backslash ('\V).

) The open parenthesis indicates a “ subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

- These characters are used to specify repetition. The repetition
Repetition
is applied to the character or expression directly to the left of
Characters .
the repetition operator.

* Zero or more of the character or expression to the left. Hence,
‘a*' means “zero or more instances of 'a .

+ One or more of the character or expression to the left. Hence,
‘at' means " one or more instances of 'a”.

? Zero or one of the character or expression to the left. Hence,
'a? will match 'a’ or the empty string "

{} Aninterval qualifier allows you to specify exactly how many

instances of the character or expression to the left to match. If
it encloses a single unsigned integer length, it means to match
exactly that number of instances. Hence, 'af 3} will match
‘aad. If it encloses 2 such integers separated by a comma, it
specifies arange of possible repetitions. For example, 'a&f 2,4}
will match 'aa, 'aad, or 'asad. Note that '{ 0,1} " is equivalent to
g

Alternation. This operator is used to indicate that one of
several possible choices can match. For example, '(alb|c)z' will
match any of ‘az', 'bz', or 'cZ'.

Table 6-3: Meta characters (Continued)

Building IDL Applications Learning About Regular Expressions

130 Chapter 6: Strings

Character Description

g Anchors. A "' matches the beginning of a string, and '$'
matches the end. As we have seen above, regular expressions
usually match any possible substring. Anchors can be used to
change this and require a match to occur at the beginning or
end of the string. For example, *abc’ will only match strings
that start with the string 'abc’. “*abc$' will only match a string
containing only 'abc'.

Table 6-3: Meta characters (Continued)

Subexpressions

Subexpressions are those parts of aregular expression enclosed in parentheses. There
are two reasons to use subexpressions:

« To apply arepetition operator to more than one character. For example,
'(fun){ 3} ' matches ‘funfunfun’, while 'fun{ 3} ' matches ‘funnn'.

¢ Toalow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of charactersthat can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs as the first character in the expression (after an
initial "N, if any).

There are severa different forms of bracket expressions, including:

e Matching List — A matching list expression specifies alist that matches any
one of the charactersin the list. For example, ‘[abc]' matches any of the
characters'd, 'b', or 'c'.

* Non-Matching List — A non-matching list expression beginswith a**', and
specifies alist that matches any character not in the list. For example, '[*abc]’
matches any characters except 'a, 'b', or 'c’. The "M only has this special
meaning when it occursfirst in the list immediately after the opening .

¢ RangeExpression — A range expression consists of 2 characters separated by
ahyphen, and matches any characters lexically within the range indicated. For

Learning About Regular Expressions Building IDL Applications

Chapter 6: Strings 131

example, TA-Za-z]' will match any alphabetic character, upper or lower case.
Another way to get this effect isto specify [a-z]' and use the FOLD_CASE
keyword to STREGEX.

Special Characters in Regular Expressions

Special (non-printing) characters are often represented in regular expressions using
backslash escape codes, such as\ t to represent a TAB character or \ n to represent a
newline character. IDL does not support these backslash codesin regular expressions.
See “Non-Printing Characters’ on page 127 for information on how to represent
these special charactersin regular expressions.

Building IDL Applications Learning About Regular Expressions

132 Chapter 6: Strings

Learning About Regular Expressions Building IDL Applications

Chapter 7:

Arrays

The following topics are covered in this chapter:

OVEIVIEW ..ot 134
Array Subscripting 137
SubscriptRanges 142
Dimensionality of Subarrays 144

Building IDL Applications

Using Arraysas Subscripts
Combining Subscripts
Storing Elements with Array Subscripts .
Columns, Rows, and Array Magjority

133

134

Chapter 7: Arrays

Overview

Overview

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. An array can be of any IDL datatype; saying that an array isof a
particular type means that all elements of the array are of that datatype. Array
subscripts provide a means of selecting one or more elements of an array for retrieval
or modification.

One-dimensional arrays are often called vectors. Thefollowing IDL statement creates
avector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often called matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:
PRINT, array

IDL prints:

1 2 3
4 5 6

Arrays can have up to eight dimensionsin IDL. The following IDL statement creates
athree-column by four-row by five-layer deep three-dimensional array. In this case,
we usethe IDL FINDGEN function to create an array whose elements are set equal to
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL isan array-oriented language. This means that any operation on an array is
performed on all elements of the array, without the need for the user to write an
explicit loop. The resulting code is easier to read and understand, and executes more
efficiently. For example, suppose you have a three-dimensional array and wish to
divide each element by two. A language that does not support array operations would
require you to write aloop to perform the division for each element; IDL can
accomplish the division in asingle line of code:

array = array/?2

Building IDL Applications

Chapter 7: Arrays 135

Array Subscripts

Subscripts are used to select individual elements of an array for retrieval or
modification. The subscript of an array element denotes the address of the element
within the array. In the simple case of a one-dimensional array (that is, an n-element
vector), elements are numbered starting at 0 with the first element, 1 for the second
element, and running to n — 1, the subscript of the last element.

The syntax of a subscript referenceis:
Variable_Name [Subscript_ List]

or
(Array_Expression)[Subscript_List]

The Subscript_List issimply alist of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commasif there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts.

When a subscripted variable reference appears in an expression, the values of the
selected array elements are extracted. For example, the following statements extract
the first two values from ar r ay by subscripting with a second array (i ndi ces) and
store the valuesin the variable new_ar r ay:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
indices = [0, 1]

new array = array[indices]

PRI NT, new_ array

IDL prints:
1.0 2.0

When a subscript reference appears on the left side of an assignment statement, new
values are stored in selected array elements, without atering the remaining elements.
For example, the following statements change the third element of array:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
array[2] = 9.0
PRI NT, array

IDL prints:
1. 00000 2.00000 9. 00000 4. 00000 5. 00000

Chapter 12, “Assignment” discusses the use of the different types of assignment
statements when storing into arrays.

Building IDL Applications Overview

136 Chapter 7: Arrays

Similarly, arrays with multiple dimensions are addressed by specifying a subscript
expression for each dimension. A two-dimensional array with n columns and mrows,
is addressed with a subscript of theform [i, j], where0<i <nand 0<j <m. Thefirst
subscript, i, is the column index; the second subscript, j, is the row index. For
example, the following statements select and print the element in the first column of
the second row of ar r ay:

array = [[1, 2, 3], [4, 5, 6]]
PRI NT, array[O, 1]

IDL prints:
4

Overview Building IDL Applications

Chapter 7: Arrays 137

Array Subscripting

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elementsto receive new values. The expressionar r [12] denotesthe
value of the 13th element of ar r (because subscripts start at 0), while the statement
arr[12] = 5 storesthe number 5 in the 13th element of ar r without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. IDL’s notational convention isthat for generic arrays and images, the first
subscript denotes the column and the second subscript denotes the row. When arrays
are used for mathematical operations (linear algebra, for example), the convention is
reversed: the first subscript denotes the row and the second subscript denotes the
column.

If Aisa2-element by 3-element array (using [column, row] notation), the elements
are stored in memory as follows:

Stored in Memory
Aoo Ao L owest memory address
Ao A11
Ao A1 Highest memory address

Table 7-1: Storage of IDL Array Elements in Memory

The elements are ordered in memory as: A, A1 0. Ag 1, A11, Ag 2 Ao This
ordering is like Fortran. It is the opposite of the order used by C/C++. For more
information on how IDL arranges multidimensional datain memory, see “Columns,
Rows, and Array Mgjority” on page 151. For adiscussion of how the ordering of such
datarelatesto IDL mathematics routines, see “Arrays and Matrices’ in Chapter 22 of
the Using IDL manual.

Building IDL Applications Array Subscripting

138 Chapter 7: Arrays

Note
When comparing IDL’s memory layout to other languages, remember that those
languages usually use a mathematical [row, column] notation for array dimensions,
which isthe reverse of the array notation used for the example above. See
“Columns, Rows, and Array Majority” on page 151 for more on comparing IDL’s
array layout to that of other languages.

Arrays that contain image data are usually displayed in graphics displays with row
zero at the bottom of the screen, matching the display’s coordinate system (although
this order can be reversed by setting the system variable 'ORDER to a nonzero
value). Array data are printed to standard text output (such asthe IDL output log or
console window) with the first row on top.

Elements of multidimensional arrays aso can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points. In the
above example, Al 2] isthesameelement asA[0, 1], and A[5] isthe same element
asAl 1, 2].

If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension minus
1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expression is
not integer, alongword integer copy is made and used to evaluate the subscript.

Note
When floating-point numbers are converted to longword integers, they are
truncated, not rounded. Thus, specifying A[1. 99] isthe same as specifying A[1] .

Extra Dimensions

When creating arrays, IDL eliminates all size 1, or “ degenerate”, trailing dimensions.
Thus, the statements

A = I NTARR(10, 1)
HELP, A

print the following:
A I NT = Array|[10]

This removal of superfluous dimensionsis usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. Therefore,
IDL allows you to specify “extra’ dimensions for an array aslong as the extra
dimensions are all zero.

Array Subscripting Building IDL Applications

Chapter 7: Arrays 139

For example, consider a vector defined as follows:
arr = | NDGEN(10)

Thefollowing are all valid references to the sixth element of arr :

X = arr[5]
X = arr[5, 0]
X =arr[5 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

The REFORM function can be used to add degenerate trailing dimensionsto an array
if desired. For example, the following statements create a 10 element integer vector,
and then alter the dimensionsto be [10, 1]:

A
A

| NTARR(10)
REFORM A, 10, 1, / OVERWRI TE)

Subscripting Scalars

Scalar quantitiesin IDL can be thought of as the first element of an array with one
dimension. They can be subscripted with a zero reflecting the first and only position.
Therefore,

;Assign the value of 5 to A
A=5

;Print the value of the first elenent of A
PRI NT, A[O]

IDL prints:
5

If we redefine the first element of A:

;:Redefine the first elenment of A
A[0] =6

PRINT, A
IDL prints:
6

Building IDL Applications Array Subscripting

140 Chapter 7: Arrays

Note
You cannot subscript a variable that has not yet been defined. Thus, if the variable B
has not been previoudly defined, the statement:

B[O] =9

will fail with the error “variable is undefined.”

Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parentheses in avisually identical way to specify argument lists.
Asaresult, the IDL compiler was not able to distinguish between arrays and
functions by looking at the statement syntax. For example, the IDL statement

val ue = fish(5)

could either set the variable value equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to afunction called fish.

To determineif it is compiling an array subscript or afunction call, IDL checksits
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish, in the above example), it calls that function
with the argument specified. If IDL does not find a function with the correct namein
its table of known functions, it assumes that the unknown element is an array, and
attempts to return the value of the designated element of that array. Thisrule
generally givesthe desired result, but it can be fooled into the wrong choice under
certain circumstances, much to the surprise of the unwary programmer.

For thisreason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in thisway is
unambiguously interpreted as an array under all circumstances. In IDL 5.0 and later:

val ue = fish[5]

sets value to the sixth element of an array named fish.

Array Subscripting Building IDL Applications

Chapter 7: Arrays 141

Due to the large amount of existing IDL code written in the older syntax, aswell as
the ingrained habits of thousands of IDL users, IDL continuesto allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

val ue = fish[5]
IS unambiguous,
val ue = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
toversion 5.0

Since the older syntax has been used widely, you should not be surprised to seeit
from time to time. However, square brackets are the preferred form, and should be
used for new code.

Building IDL Applications Array Subscripting

142

Chapter 7: Arrays

Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges. There are six
types of subscript ranges:

Subscript Ranges

A range of subscripts, written [ey:e;], denoting all elements whose subscripts
range from the expression e through e; (ey must not be greater than e;). For
example, if the variable vec isa50-element vector, vec[5: 9] isafive-
element vector composed of vec[5] throughvec] 9] .

A range of subscripts, written [ey:e,:€,], denoting every e,th element within
the range of subscripts e, through e; (ey must not be greater than ey). e, is
referred to as the subscript stride. The stride value must be greater than or
equal to 1. If it is set to the value 1, the resulting subscript expression is
identical in meaning to [ey:e;], as described above. For example, if the variable
vec isab0-element vector, vec[5: 13: 2] isafive-element vector composed
of vec[5], vec[7] ,vec[9], vec[11] , and vec[13] .

All elementsfrom agiven element to the last element of the dimension, written
as [ey:*]. Using the above example, vec|[10: *] isa40-element vector made
fromvec[10] throughvec[49] .

Every e;th element from a given element to the last element of the dimension,
written as[ey:*:ey]. & isreferred to as the subscript stride. The stride value
must be greater than or equal to 1. If it is set to the value 1, the resulting
subscript expression isidentical in meaning to [ey:*], as described above.
Using the above example, vec[10: *: 4] isa 10-element vector made from
every fourth element between vec[10] throughvec[49] .

A simple subscript, [n]. When used with multidimensional arrays, simple
subscripts specify only elements with subscripts equal to the given subscript in
that dimension.

All elements of adimension, written [*]. Thisform is used with
multidimensional arraysto select all elements along the dimension. For
example, if arr isa10-column by 12-row array, arr [*, 11] isthelast row
of ar r, composed of elements[arr[0, 11], arr[1,11], ...,
arr[9,11]], andisal0-element row vector. Similarly, arr[0, *] isthe
firstcooumnofarr,[arr[0,0], arr[O0,1],..., arr[0,11]],andits
dimensions are 1 column by 12 rows.

Building IDL Applications

Chapter 7: Arrays 143

Multidimensional subarrays can be specified using any combination of the above
forms. For example, arr[*, 0:4] ismadefrom all columns of rows0to 4 of arr
or a 10-column, 5-row array. The table below summarizes the possible forms of
subscript ranges:

Form Description
e A simple subscript expression
€p-€1 Subscript range from e to e
€p.e1:€) Subscript range from e to e with a stride of e,
€p:* All points from element e to end
ep*:e) All points from element e to end with a stride of e,
* All pointsin the dimension

Table 7-2: Subscript Ranges

Building IDL Applications Subscript Ranges

144 Chapter 7: Arrays

Dimensionality of Subarrays

The dimensions of an extracted subarray are determined by the size in each
dimension of the subscript range expression. In general, the number of dimensionsis
equal to the number of subscripts and subscript ranges. The size of the n-th dimension
isequal to oneif asimple subscript was used to specify that dimension in the
subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. If ar r
isa 10-column by 12-row array, the expressionarr [*, 11] resultsin arow vector
with asingle dimension. (The result of the expression is a 10-column by 1-row array;
the last dimension is degenerate and is removed.) On the other hand, the expression
arr[0, *] became acolumn vector with dimensions of [1, 12], showing that the
structure of columnsis preserved because the dimension with a size of one does not
appear at the end.

To see this, enter the following statementsin IDL:

arr = | NDGEN(10, 12)
HELP, arr

HELP, arr[*, 11]
HELP, arr[O0, *]

Examples

In the following examples, vec isa50-element floating-point vector, and ar r isa10-
column by 12-row integer array. Some typical subscript range expressions are as
follows:

vec
arr

FI NDGEN(50)
| NDGEN(10, 12)

; Elements 5 through 10 of vec, a six-elenent vector.
vec[5: 10]

;A three-el enent vector.
vec[l - 1:1 + 1]

; The sane vector.
[vec[l - 1], vec[l], vec[l + 1]]

; Elenents fromvec[4] to the end, a 46-el ement (50-4) vector.
vec[4:*]

Val ues of the elenents with even subscripts in vec:

Dimensionality of Subarrays Building IDL Applications

Chapter 7: Arrays 145

vec[0: *: 2]

; Val ues of the elenents with odd subscripts in vec:
vec[1: *: 2]

; The fourth colum of arr, a 1 colum by 12 row vector.
arr[3, *]

;The first row of arr, a 10-elenent row vector. Note, the | ast
;di mension was renoved because it was degenerate.

[arr[3, O], arr[3, 1], ..., arr[3, 11]]

arr[*, 0]

; The ni ne-poi nt nei ghbor hood surrounding arr[X, Y], a 3 by 3 array.
arr[X - 1: X+ 1, Y- 1:Y + 1]

; Three colums of arr, a 3 by 12 subarray:
arr[3:5, *]

See Chapter 12, “Assignment” for a description of the process of assigning valuesto
subarrays.

Building IDL Applications Dimensionality of Subarrays

146 Chapter 7: Arrays

Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the subscript array
selects an element in the subscripted array. When subscript arrays are used in
conjunction with subscript ranges (as discussed in “ Combining Subscripts’ on

page 148), more than one element may be selected for each element of the subscript

array.
If no subscript ranges are present, the length and dimensionality of the result isthe
same as that of the subscript expression. The type of the result is the same as that of

the subscripted array. If only one subscript is present, al subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript array, the process can be described as follows:

Vg if 0<S<n

VI[S] = V, if S <0 for0<i<m
Vi qif S;zn

Here, the vector V has n elements, and the subscript array Shas m elements. The
result V[§ has the same dimensionality and number of elementsas S

Clipping

If an element of the subscript array is lessthan or equal to zero, the first element of
the subscripted array is selected. If an element of the subscript array is greater than or
equal to the last subscript in the subscripted array, the last element is selected. This
clipping of out of bounds elements can be disabled within aroutine by using the
STRICTARRSUBS option to the COMPILE_OPT statement. (See the documentation
for “COMPILE_OPT” in the IDL Reference Guide manual for details.) If
STRICTARRSUBS isin force, then array subscripts that refer to out of bounds
elements will instead cause IDL to issue an error and stop execution, just as an out-
of-range scalar subscript does.

Using Arrays as Subscripts Building IDL Applications

Chapter 7: Arrays 147

Example

As an example, consider the commands:

A=1[6, 5 1, 8, 4, 3]
B=1[0 2 4, 1]
C=AB

PRINT, C

This produces the following output:
6145

Thefirst element of Cis 6 because that is the number in the O position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so on.

As another example, assume the variable Aisa 10 by 10 array. Here, the subscripts of
the diagonal elements (A[0, 0], A[1,1], ..., A[9, 9])areequa toO, 11, 22,
..., 99. The elements of the vector | NDGEN(10) *11 also areequal to 0, 11, 22, ...,
99, so the expression Al | NDGEN(10) * 11] yields a 10-element vector containing
to the diagonal elements of A.

The WHERE function, which returns avector of subscripts, can be used to select
elements of an array using expressions similar to Al WHERE(A GT 0)], which results
in avector composed only of the elements of A that are greater than O.

Building IDL Applications Using Arrays as Subscripts

148 Chapter 7: Arrays

Combining Subscripts

Subscript arrays can be combined with subscript ranges, simple scalar subscripts, and
other subscript arrays.

When IDL encounters a multidimensional subscript expression that contains one or
more subscript arrays, ranges, or scalars, it builds a subscript array by processing
each element in the subscript expression from left to right. The resulting subscript
array isthen applied to the variable to be subscripted. As with other subscript
operations, trailing degenerate dimensions (those with a size of 1) are eliminated.

Subscript Ranges

When combining a subscript array with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of the result is equal
to the number of elementsin the corresponding subscript array or range.

For example, theexpresson A[[1, 3, 5], 7:9] isanine-element, 3 x 3 array
composed of the following elements:

A1,7 A3,7 A5,7

A1,8 A3,8 A5,8

A1,9 A3,9 A5,9
Each element of the three-element subscript array [1, 3, 5] is combined with each
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of atwo-
dimensional n x marray:

:Zero the first and | ast rows.
Al*, [0, M1]] =0

;Zero the first and | ast columms.
A[[0, N- 1], *] =0

Combining Subscripts Building IDL Applications

Chapter 7: Arrays 149

Other Subscript Arrays

When combining two subscript arrays, each element of the first subscript array is
combined with the corresponding element of the second subscript array. The two
subscript arrays must have the same number of elements. The resulting subscript
array has the same number of elements asits constituents. For example, the
expression Al [1, 3], [5, 9]] vieldstheelementsA[1, 5] and Al 3, 9] .

Scalars

Combining an n-element subscript range or n-element subscript array with a scalar
yields an n-element result. The value of the scalar is combined with each element of
the range or array. For example, the expression A[[1, 3, 5], 8] yieldsthethree-
element vector composed of the elements A[1, 8] , A[3, 8] ,and A[5, 8] . The
second dimension of theresult is1 and is eliminated because it is degenerate. The
expressionA[8, [1, 3, 5]] isthelx 3-column vector A[8, 1], A 8, 3], and
Al 8, 5], illustrating that leading dimensions are not eliminated.

Building IDL Applications Combining Subscripts

150

Chapter 7: Arrays

Storing Elements with Array Subscripts

One or more values can be stored in selected elements of an array by using an array
expression as a subscript for the array on the left side of an assignment statement.
Values are taken from the expression on the right side of the assignment statement
and stored in the elements whose subscripts are given by the array subscript. The
right-hand expression can be either ascalar or array.

The subscript array is converted to longword type before use if necessary. Regardless
of structure, this subscript array isinterpreted as avector. For details and examples of
storing with vector subscripts, see Chapter 12, “Assignment”.

Examples

The statement:
Al[2, 4, 6]] =0

zeroes elements A[2], A[4] , and A[6] , without changing other elements of A. The
statement:

Al[2, 4, 6]] =[4, 16, 36]
stores4inA[2],16inA[4] ,and 36in Al 6] .
One way to create asguare n x n identity matrix is as follows:

A = FLTARR(N, N)
A[INDGEN(N) * (N + 1)] = 1.0

Theexpression | NDGEN(N) * (N + 1) resultsin avector containing the subscripts of
thediagona elements[0, N+1, 2N+2, ..., (N-1)*(N+1)].

Yet another way isto use two array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts[[0,0], [1,1], ..., [n-1, n-1]]. Thestatement:
Al WHERE(A LE 0)] = -1

sets elements of A with values of zero or lessto -1.

The following statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1

Storing Elements with Array Subscripts Building IDL Applications

Chapter 7: Arrays 151

Columns, Rows, and Array Majority

Computer hardware does not directly support the concept of multidimensional arrays.
Computer memory is unidimensional, providing memory addresses that start at zero
and increase serialy to the highest available location. Multidimensional arrays are
therefore a software concept: software (IDL in this case) maps the elements of a
multi-dimensional array into a contiguous linear span of memory addresses. There
are two ways that such an array can be represented in one-dimensional linear
memory. These two options, which are explained below, are commonly called row
major and column major. All programming languages that support multidimensional
arrays must choose one of these two possibilities. This choice is afundamental
property of the language, and it affects how programs written in different languages
share data with each other.

Before describing the meaning of these terms and IDL’s relationship to them, it is
necessary to understand the conventions used when referring to the dimensions of an
array. For mnemonic reasons, people find it useful to associate higher level meanings
with the dimensions of multi-dimensional data. For example, a 2-D variable
containing measurements of ozone concentration on auniform grid covering the earth
might associate latitude with the first dimension, and longitude with the second
dimension. Such associations help people understand and reason about their data, but
they are not fundamental properties of the language itself. It isimportant to realize
that no matter what meaning you attach to the dimensions of an array, IDL isonly
aware of the number of dimensions and their size, and does not work directly in terms
of these higher order concepts. Another way of saying thisisthat arr [d1, d2]
addresses the same element of variable arr no matter what meaning you associate
with the two dimensions.

In the IDL world, there are two such conventions that are widely used:

¢ Inimage processing, the first dimension of an image array is the column, and
the second dimension isthe row. IDL iswidely used for image processing, and
has deep roots in this area. Hence, the dominant convention in IDL
documentation is to refer to the first dimension of an array as the column and
the second dimension as the row.

¢ Inthe standard mathematical notation used for linear algebra, the first
dimension of an array (or matrix) is the row, and the second dimension is the
column. Note that thisis the exact opposite of the image processing
convention.

Building IDL Applications Columns, Rows, and Array Majority

152

Chapter 7: Arrays

In computer science, the way array elements are mapped to memory is always
defined using the mathematical [row, column] notation. Much of the following
discussion utilizes the mx n array shown in Figure 7-1, with mrows and n columns:

AO,O AO,l AO,n—l
Al,O Al,l Al,n—l

Figure 7-1: An m x n array represented in mathematical notation.

Given such a 2-dimensional matrix, there are two ways that such an array can be
represented in 1-dimensional linear memory — either row by row (row major), or
column by column (column major):

Contiguous First Dimension (Column Major): In this approach, all elements
of thefirst dimension (min this case) are stored contiguously in memory. The
1-D linear address of element Ay, ¢ istherefore given by the formula
(d2*m + d1).Asyou move linearly through the memory of such an array,
thefirst (Ieftmost) dimension changes the fastest, with the second dimension
(n, in this case) incrementing every time you come to the end of the first
dimension:

AO,O' Al,O’ ey Am—l,O’ AO,l’ Al,l’ ey Am—l,l’

Computer languages that map multidimensional arraysin this manner are
called column major, following the mathematical [row, column] notation. IDL
and Fortran are both examples of column-major languages.

Contiguous Second Dimension (Row M ajor): In this approach, all elements
of the second dimension (n, in this case) are stored contiguously in memory.
The 1-D linear address of element Ay; , is therefore given by the formula
(d1*n + d2).Asyou move linearly through the memory of such an array,
the second dimension changes the fastest, with the first dimension (min this
case) incrementing every time you come to the end of the second dimension:

A0,0, AO,l’ . AO,n-ll Al,O’ Al,l' . Al,n-l’

Computer languages that map multidimensional arrays in this manner are
known as row major. Examples of row-major languages include C and C++.

Columns, Rows, and Array Majority Building IDL Applications

Chapter 7: Arrays 153

The terms row major and column major are widely used to categorize programming
languages. It isimportant to understand that when programming languages are
discussed in this way, the mathematical convention — in which thefirst dimension
represents the row and the second dimension represents the column — isused. If you
use the image-processing convention — in which the first dimension represents the
column and the second dimension represents the row — you should be careful to
make note of the distinction.

Note
IDL users who are comfortable with the IDL image-processing-oriented array
notation [column, row] frequently follow the reasoning outlined above and
incorrectly conclude that IDL isarow-mgjor language. The often-overlooked cause
of thismistake is that the standard definition of the terms row major and column
major assume the mathematical [row, column] notation. In such cases, it can be
helpful to look beyond the row/column terminology and think in terms of which
dimension is contiguous in memory.

Note that the m x n array discussed above could be represented with equal accuracy
as having m columns and n rows, as shown in Figure 7-2. This corresponds to the
image-processing [column, row] notation. It’s important to note that while the
representation shown is the transpose of the representation in Figure 7-1, the data
stored in the computer memory are identical. Only the two-dimensional
representation, which takes its form from the notational convention used, has
changed.

AO,O Al,O Am—l,O
AOl Al,l Am—l,l

>

_Ao’n_l Al,n—l cen A
Figure 7-2: An m x n array represented in image-processing notation.

IDL’s choice of column-major array layout reflectsits roots as an image processing
language. The fact that the elements of the first dimension are contiguous means that
the elements of each row of an image array (using [column, row] notation, as shown
in Figure 7-2) are contiguous. Thisisthe order expected by most graphics hardware,
providing an efficiency advantage for languages that naturally store data that way.

Building IDL Applications Columns, Rows, and Array Majority

154

Chapter 7: Arrays

Also, this ordering minimizes virtual memory overhead, since images are accessed
linearly.

It should be clear that the higher-level meanings associated with array dimensions
(row, column, latitude, longitude, etc.) are nothing more than a human notational
device. In general, you can assign any meaning you wish to the dimensions of an
array, and as long as your use of those dimensionsis consistent, you will get the
correct answer, regardless of the order in which IDL choosesto store the actual array
elements in computer memory. Thus, it is usually possible to ignore these issues.
There are times however, when understanding memory layout can be important:

Sharing Data With Other Languages — If binary data written by arow major
language is to be input and used by IDL, transposition of the datais usually required
first. Similarly, if IDL iswriting binary datafor use by a program written in arow
major language, transposition of the data before writing (or on input by the other
program) is often required.

Calling Code Written In Other Languages — When passing IDL datato code
written in arow major language viadynamic linking (CALL_EXTERNAL,
LINKIMAGE, DLMs), it is often necessary to transpose the data before passing it to
the called code, and to transpose the results.

Matrix Multiplication — Understanding the difference between the IDL # and ##
operators requires an understanding of array layout. For a discussion of how the
ordering of such datarelatesto IDL mathematics routines, see “Arrays and Matrices’
in Chapter 22 of the Using IDL manual.

1-D Subscripting Of Multidimensional Array — IDL allows you to index
multidimensional arrays using a single 1-D subscript. For example, given atwo
dimensional 5x7 array, ARRAY[2, 3] and ARRAY[17] refer to the same array
element. Knowing this requires an understanding of the actual array layout in
memory (d2*m + d1, or 3*5+2, which yields 17).

Efficiency — Accessing memory in the wrong order can impose a severe
performance penalty if your datais larger than the physical memory in your
computer. Accessing elements of an array along the contiguous dimension minimizes
the amount of memory paging required by the virtual memory subsystem of your
computer hardware, and will therefore be the most efficient. Accessing memory
across the non-contiguous dimension can cause each such access to occur on a
different page of system memory. This forces the virtual memory subsystem into a
cyclein which it must continually force current pages of memory to disk in order to
make room for new pages, each of which is only momentarily accessed. This
inefficient use of virtual memory is commonly known as thrashing.

Columns, Rows, and Array Majority Building IDL Applications

Chapter 8:
Pointers

The following topics are covered in this chapter:

OVEIVIEW ..ot 156
Heap Variables 157
Creating Heap Variables 159
Saving and Restoring Heap Variables 160
Pointer Heap Variables 161
IDL Pointers 162

Building IDL Applications

Operationson Pointers 165
Dangling References 169
Heap VariableLeakage 170
Pointer Validity 172
FreeingPointers 173
Pointer Examples 174

155

156

Chapter 8: Pointers

Overview

Overview

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the

variable that actually holds the data must be separate from the lifetime of the tokens
that are used to accessiit.

Beginning with IDL version 5, IDL includes a new pointer datatype to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it isimportant
to understand that they are not the same thing. IDL pointers are ahigh level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of thefiles
mentioned are located in the examples/doc subdirectory of the IDL distribution. By
default, this directory is part of IDL’s path; if you have not changed your path, you
will be able to run the examples as described here. See “!PATH” inthe IDL Reference
Guide manual for information on IDL’s path.

Building IDL Applications

Chapter 8: Pointers 157

Heap Variables

Heap variables are aspecial class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 23, “ Object
Basics’ for more information on IDL objects.) In IDL documentation of pointers and
objects, heap variables accessible via pointers are called pointer heap variables, and
heap variables accessible via object references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which isthat
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use bothin
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
« Facilitate object oriented programming.

e Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

« Aremanipulated primarily via pointers or object references using built in
language operators rather than specia functions and procedures.

e Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.

Building IDL Applications Heap Variables

158 Chapter 8: Pointers

Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide a more complete and robust way of building
dynamic data structures, RSl recommends that you use pointers rather than handles
when developing new code. See Appendix |, “Obsolete Features’ in the IDL
Reference Guide manual for a discussion of RSI’s policy on language features that
have been superseded in this manner.

Heap Variables Building IDL Applications

Chapter 8: Pointers 159

Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ_NEW. (See Chapter 23, “Object Basics’ for a
discussion of object creation.) Copying a pointer or object reference does not create a
new heap variable. Thisis markedly different from the way IDL handles“regular”
variables. For example, with the statement:

A=10

you create anew IDL floating-point variable with avalue of 1.0. The following
Statement:

B=A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:
C = PTR_NEW 2. 0d)

the variable C contains not the doubl e-precision floating-point value 2.0, but a pointer
to aheap variable that contains that value. Copying the variable C with the following
Statement:

D=C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HEL P command would reveal:

% At $SMAIN$

A FLOAT = 1. 00000
B FLOAT = 1. 00000
C PO NTER = <PtrHeapVar 1>
D PO NTER = <PtrHeapVar 1>

The variables C and D are both pointers to the same heap variable. (The actual name
assigned to a heap variable is arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencing is
discussed in “Dereference” on page 166).

Destroying or redefining either C, D, or both variables would leave the contents of the
heap variable unchanged. When all pointers or references to a given heap variable are
destroyed, the heap variable still exists and holds whatever memory has been
allocated for it. See “Heap Variable Leakage” on page 170 for further discussion. If
the heap variable itself is destroyed, pointers to the heap variable may still exist, but
will beinvalid. See “Dangling References’ on page 169.

Building IDL Applications Creating Heap Variables

160

Chapter 8: Pointers

Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work for
all other supported types. When IDL saves a pointer or object referencein asavefile,
it recursively saves the heap variables that are referenced by that pointer or object
reference. SAVE handles circular data structures correctly. You can build alarge,
complicated, self-referential data structure, and then save the entire construct with a
call to SAVE to save the single pointer or object reference that points to the head of
the structure. For example, you can save a pointer to the root of a binary tree and the
entire tree will be saved.

Theinternal identifier of a given heap variable is dynamically allocated at run time,
and will differ between IDL sessions. As aresult, the RESTORE operation maps all
saved pointers and object references to their new valuesin the current session.

Saving and Restoring Heap Variables Building IDL Applications

Chapter 8: Pointers 161

Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only via pointers.
While there are many similarities between object references and pointers, it is
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using the PTR_NEW and
PTRARR functions. For more information on objects, see Chapter 23, “ Object
Basics'.

Building IDL Applications Pointer Heap Variables

162 Chapter 8: Pointers

IDL Pointers

Asillustrated above, you must use a special IDL routine to create a pointer to a heap
variable. Two routines are available: PTR_NEW and PTRARR. Before discussing
these functions, however, it is useful to examine the concept of a null pointer.

Null Pointers

The Null Pointer is a specia pointer value that is guaranteed to never point at avalid
heap variable. It isused by IDL to initialize pointer variables when no other
initializing value is present. It is also a convenient value to use at the end nodesin
data structures such as trees and linked lists.

It isimportant to understand the difference between anull pointer and a pointer to an
undefined or invalid heap variable. The second case isavalid pointer to aheap
variable that does not currently contain a usable value. To make the difference clear,
consider the following IDL statements:

; The variable A contains a null pointer.

A = PTR_NEW)

; The variable B contains a pointer to a heap variable with an
;undefi ned val ue.

B = PTR_NEW/ ALLOCATE_HEAP)

HELP, A B, *B

IDL prints:
A PO NTER = <Nul | Poi nt er >
B PO NTER = <PtrHeapVar 1>

<Pt r HeapVar 1> UNDEFI NED = <Undefi ned>

The primary differenceisthat it is possible to write a useful value into a pointer to an
undefined variable, but thisis never possible with anull pointer. For example, attempt
to assign the value 34 to the null pointer:

*A = 34
IDL prints:

% Unabl e to dereference NULL pointer: A
% Execution halted at: $MAIN$

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRI NT, *B

IDL Pointers Building IDL Applications

Chapter 8: Pointers 163

IDL prints:
34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(O0) returns a pointer to a heap variable that has been initialized with the
integer value 0.

The PTR_NEW Function

Usethe PTR_NEW function to create a single pointer to a new heap variable. If you
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptrl = PTR_NEW FI NDGEN(10))
creates a new heap variable that contains the ten-element floating point array created
by FINDGEN, and places a pointer to this heap variablein ptrl.

Note that the argument to PTR_NEW can be of any IDL datatype, and can include
any IDL expression, including callsto PTR_NEW itself. For example, the command:

ptr2 = PTR_ NEW{nane:"'"', next:PTR_NEW)})

creates a pointer to a heap variable that contains an anonymous structure with two
fields: thefirst field is a string, the second is a pointer. We will develop thisidea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be anull pointer. If
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

See “PTR_NEW?” in the IDL Reference Guide manual for further details.
The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensions.
By default, every element of the array created by PTRARR is set to the null pointer.
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2, 2)

;Display the contents of the ptarray variable, and of the first

;array el enent.
HELP, ptarray, ptarray(O0,0)

Building IDL Applications IDL Pointers

164 Chapter 8: Pointers

IDL prints:

PTARR PO NTER
<Expr essi on> PO NTER

Array(2, 2)
<Nul | Poi nt er >

If you want each element of the array to point to a new heap variable (as opposed to
being anull pointer), usethe ALLOCATE_HEAP keyword. Note that in either case,
you will need to initialize the array with another IDL statement.

See “PTRARR” in the IDL Reference Guide manual for further details.

IDL Pointers Building IDL Applications

Chapter 8: Pointers 165

Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or plot
them. You can, of course, do these things with the heap variables referenced by such
pointers, assuming that they contain appropriate data for the task at hand. Pointers
exist to allow the construction of dynamic data structures that have lifetimes that are
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference,
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for pointer types and are not defined.

Many non-computational functions and proceduresin IDL do work with pointer
variables. Examplesare SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noting
that the only 1/0 allowed directly on pointer variables is default formatted output,
where they are printed as a symbolic description of the heap variable they point at.
Thisis merely adebugging aid for the IDL programmer—input/output of pointers
does not make sense in general and is not allowed. Please note that this does not
imply that I/O on the contents of non-pointer data held in heap variables is not
allowed. Passing the contents of a heap variable that contains non-pointer data to the
PRINT command is a simple example of thistype of I/0.

Assignment

Assignment works in the expected manner—assigning a pointer to avariable gives
you another variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW FI NDGEN(10))
B=A
HELP, A B

A and B both point at the same heap variable and we see the outpuit:

A PO NTER
B PO NTER

<Pt r HeapVar 1>
<Pt r HeapVar 1>

Building IDL Applications Operations on Pointers

166 Chapter 8: Pointers

Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you
must use the dereference operator, which is* (the asterisk). The dereference operator
precedes the variable dereferenced. For example, if you have entered the above
assignments of the variables A and B:

PRI NT, *B

IDL prints:

0.00000 1.00000 2.00000 3.00000 4.00000 5.00000
6. 00000 7.00000 8.00000 9.00000

That is, IDL prints the contents of the heap variable pointed at by the pointer variable
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires a scalar pointer operand. This means that
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create athree-element pointer array, allocating a new heap
variable for each element:

ptarr = PTRARR(3, /ALLOCATE HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer two,
you would use the following statement:

FOR 1 = 0,2 DO *ptarr[I] =1
Note
The dereference operator is dereferencing only element | of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed
at by the pointersin ptarr, you might be tempted to try the following:

PRI NT, *ptarr
IDL prints:

% Expression nmust be a scalar in this context: PTARR
% Execution halted at: $MAIN$

To print the contents of the heap variables, use the statement:
FOR 1 = 0, N ELEMENTS(ptarr)-1 DO PRINT, *ptarr[1]

Operations on Pointers Building IDL Applications

Chapter 8: Pointers 167

Dereferencing Pointers to Pointers
The dereference operator can be applied as many times as necessary to access data
pointed at indirectly via multiple pointers. For example, the statement:
A = PTR_NEW PTR_NEW 47))
assignsto A apointer to a pointer to a heap variable containing the value 47.
To print this value, use the following statement:
PRINT, **A

Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For example,
if you define the following structure:

struct = {data:'10.0', pointer:ptr_new20.0)}

you would use the following command to print the value of the heap variable pointed
at by the pointer in the pointer field:

PRI NT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEWstruct)

you would use the following command to print the value of the heap variable pointed
at by the pointer field of the struct structure, which is pointed at by ptstruct:

PRI NT, *(*pstruct).pointer
Note that you must dereference both the pointer to the structure and the pointer
within the structure.
Dereferencing the Null Pointer

Itisan error to dereference the NULL pointer, an invalid pointer, or a non-pointer.
These cases all generate errorsthat stop IDL execution. For example:

PRI NT, *45
IDL prints:

% Poi nter type required in this context: <INT(45) >,
% Execution halted at: $MAIN$

Building IDL Applications Operations on Pointers

168 Chapter 8: Pointers

For example:
A = PTR.NEW) & PRINT, *A
IDL prints:

% Unabl e to dereference NULL pointer: A
% Execution halted at: $MAI N$

For example:
A = PTR_.NEW23) & PTR FREE, A & PRINT, *A
IDL prints:
% Invalid pointer: A.
% Execution halted at: $SMAINS

Equality and Inequality

The EQ and NE operators allow you to compare pointers to seeif they point at the
same heap variable. For example:

; Make A a pointer to a heap variabl e containing 23.
A = PTR_NEW 23)

;B points at the sane heap variable as A
B=A

; C contains the null pointer.
C = PTR_NEW)

PRINT, "AEQB ', AEQB& $

PRINT, "ANEB ', ANEB&S

PRINT, "AEQC ', AEQC& $

PRINT, 'C EQ NULL: ', C EQ PTR.NEW) & $

PRINT, 'C NE NULL:', C NE PTR_NEW)
IDL prints:

A EQB 1

A NE B 0

A EQ C 0

C EQ NULL: 1

C NE NULL: O

Operations on Pointers Building IDL Applications

Chapter 8: Pointers 169

Dangling References

If aheap variableis destroyed, any remaining pointer variable or object reference that
il referstoit is said to contain adangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap vari abl e.
A = PTR_NEW 23)
;Print A and the value of the heap variable A points to.
PRI NT, A *A
IDL prints:
<Pt r HeapVar 13> 23
For example:

; Destroy the heap vari abl e.
PTR_FREE, A

;Try to print again.
PRI NT, A *A

IDL prints:

% I nvalid pointer: A
% Execution halted at: $MAI N

There are several possible approaches to avoiding such errors. The best optionisto
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (viathe
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereference.

Building IDL Applications Dangling References

170 Chapter 8: Pointers

Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.

For example:

;Create a new heap vari abl e.
A = PTR_NEW 23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first command is |ost.
A=0
Usethe HEAP_VARIABLES keyword to the HEL P procedure to view alist of heap
variables currently in memory:

HELP, / HEAP_VARI ABLES

IDL prints:
<PtrHeapVar 14> | NT = 23

In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but there
is no way to reference the variable. There are two options: manually create a new
pointer to the existing heap variable using the PTR_VALID function (see
“PTR_VALID” inthe IDL Reference Guide manual), or do manual “Garbage
Collection” and use the HEAP_GC command to destroy all inaccessible heap
variables.

Warning
Object reference heap variables are subject to the same problems as pointer heap
variables. See “OBJ VALID” in the IDL Reference Guide manual for more
information.

The HEAP_GC procedure causes IDL to hunt for al unreferenced heap variables and
destroy them. It isimportant to understand that thisis a potentially computationally
expensive operation, and should not be relied on by programmers as away to avoid
writing careful code. Rather, the intent isto provide programmers with a debugging
aid when attempting to track down heap variable leakage. In conjunction with the
VERBOSE keyword, HEAP_GC makes it possible to determine when variables have
leaked, and it provides some hint as to their origin.

Heap Variable Leakage Building IDL Applications

Chapter 8: Pointers 171

Warning
HEAP_GC uses arecursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such aslarge linked lists, a
potentialy large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, istoo slow to be
provided automatically by IDL, and careful programming can easily avoid this pitfall.
Furthermore, implementing a reference counted data structure on top of IDL pointers
is easy to do in those cases where it is useful, and such reference counting could take
advantage of its domain specific knowledge to do the job much faster than the general
case.

Another approach would be to write all ocation and freeing routines—Ilayered on top
of the PTR_NEW and PTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to keep
track of the allocated pointers. Such afacility could offer the ability to alocate
pointers in named groups, and might provide a routine that frees all heap variablesin
agiven group. Such an operation would be very efficient, and is easier than reference
counting.

Building IDL Applications Heap Variable Leakage

172 Chapter 8: Pointers

Pointer Validity

Use the PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointersto existing
heap variables. If supplied with asingle pointer asitsargument, PTR_VALID returns
TRUE (1) if the pointer argument points at avalid heap variable, or FALSE (0)
otherwise. If supplied with an array of pointers, PTR_VALID returns an array of
TRUE and FAL SE values corresponding to the input array. If no argument is
specified, PTR_VALID returns an array of pointersto all existing pointer heap
variables. For example:

; Create a new pointer and heap vari abl e.
A = PTR_NEW 10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRI NT, "A does not point to a valid heap variable."

IDL prints:
A points to a valid heap vari abl e.
For example:

; Destroy the heap vari abl e.
PTR_FREE, A

I F PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRI NT, "A does not point to a valid heap variable."

IDL prints:
A does not point to a valid heap variable.

See“PTR_VALID" inthe IDL Reference Guide manual for further details.

Pointer Validity Building IDL Applications

Chapter 8: Pointers 173

Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied asits arguments. Any memory used by the heap variable isreleased, and the
heap variable ceasesto exist. PTR_FREE is the only way to destroy a pointer heap
variable; if PTR_FREE is not called on a heap variable, it continues to exist until the
IDL session ends, even if no pointers remain to reference it.

Note that the pointers themselves are not destroyed. Pointers that point to nonexistent
heap variables are known as dangling references, and are discussed in more detail in
“Dangling References’ on page 169.

See"PTR_FREE" in the IDL Reference Guide manual for further details.

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When avalid pointer or object referenceis
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In thisway, all heap variables that
arereferenced directly or indirectly by the input argument are located. Once all such
heap variables areidentified, HEAP_FREE releases them in afinal pass. Pointers are
released asif the PTR_FREE procedure was called. Objects are released as with a
call to OBJ DESTROY.

HEAP_FREE is recommended when:

¢ Thedatastructuresinvolved are highly complex, nested, or variable, and
writing cleanup codeis difficult and error prone.

* The data structures are opague, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE" in the IDL Reference Guide manual for further details.

Building IDL Applications Freeing Pointers

174 Chapter 8: Pointers

Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists and
trees. The following examples demonstrate how pointers are used to build several
types of dynamic structures. Note that the purpose of these examplesisto illustrate
simply and clearly how pointers are used. As such, they may not represent the * best”
or most efficient way to accomplish a given task. Readers interested in learning more
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointers to create and manipulate alinked list. One
procedure reads string input from the keyboard and creates alist of pointers to heap
variables that have the strings as their values. Another procedure prints the strings,
given the pointer to the beginning of the linked list. A third procedure uses amodified
“bubble sort” algorithm to reorder the values so the strings are in alphabetical order.

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing alist
element—an anonymous structure with two fields; oneto hold the string data and one
to hold apointer to the next list element. Any number of strings can be entered. When
the user isfinished entering strings, the program can be exited by entering a period by
itself at the “Enter string:” prompt.

The text of the program shown below can be found in thefile ptr_read.pro in the
examples/doc subdirectory of the IDL distribution.

; PTR_READ accepts one argunent, a naned variable in which to return
;the pointer that points at the beginning of the Iist.
PRO ptr_read, first

;lnitialize the input string variable.
newstring = "'

; Create an anonynous structure to contain list elements. Note that
;the next field is initialized to be a null pointer.
Ilist = {name:""', next:PTR_NEW)}

;Print instructions for this program

PRINT, 'Enter a list of nanes.'
PRINT, 'Enter a period (.) to stop list entry.'

Pointer Examples Building IDL Applications

Chapter 8: Pointers 175

; Conti nue accepting input until a period is entered.
VWH LE newstring NE "." DO BEG N

READ, newstring, PROWT='Enter string: '
;Read a new string fromthe keyboard.

;Check to see if a pointer called first exists. If not, this is
;the first elenent. Create a pointer called first and initialize
;it to be alist elenment. Create a second pointer to the heap
;variable pointed at by first.
IF newstring NE '.' THEN BEG N
IF ~(PTR_VALID(first)) THEN BEG N
first = PTR_.NEWI Iist)
current = first
ENDI F

;Create a pointer to the next list elenment.
next = PTR_NEWIlist)

;Set the nane field of current to the input string.
(*current).nane = newstring

;Set the next field of current to the pointer to the next |ist
;el enent .
(*current).next = next

;Store the "current" pointer as the "last" pointer.
last = current

; Make the "next" pointer the "current" pointer.
current = next

ENDI F
ENDWHI LE

; Free the dangling 'next' pointer at the end of the list.
I F PTR_VALI D(next) THEN PTR_FREE, next

;Set the next field of the last elenent to the null pointer.
| F PTR_VALID(l ast) THEN (*last).next = PTR_NEW)

; End of PTR_READ program
END

Run the PTR_READ program by entering the following command at the IDL
prompt:

ptr_read, first

Building IDL Applications Pointer Examples

176

Chapter 8: Pointers

Type astring, press Return, and the program prompts for another string. You can
enter as many strings as you want. Each time a string is entered, PTR_READ creates
anew list element with that string as its value. For example, you could enter the
following three strings (used in the rest of this example):

Enter a list of nanes.

Enter a period (.) to stop list entry.
Enter string: wilm

Enter string: biff

Enter string: cosno

Enter string:

The following figure shows one way of visualizing the linked list that we've created.

_ name: next: name: next: name;: next:
firstt—»| wilma —»| biff » COSMO null

Table 8-1: One way of visualizing the linked list created by the PTR_READ
procedure

Printing the Linked List

The next program in our exampl e accepts the pointer to the first element of the linked
list and prints al the valuesin the list in order. To illustrate how thelist is linked, we
will aso print the name of the heap variable that contains each element, and the name
of the heap variable in the next field of that element.

The text of the program shown below can be found in thefile ptr_print.pro in the
examples/doc subdirectory of the IDL distribution.

; PTR_PRI NT accepts one argunment, a pointer to the first el ement of
;a linked list returned by PTR_ READ. Note that the PTR_PRI NT

; program does not need to know how nmany el ements are in the |ist,
;nor does it need to explicitly know of any pointer other than the
;first.

PRO ptr_print, first

;Create a second pointer to the heap variable pointed at by first.
current = first

; PTR VALID returns O if its argument is not a valid pointer. Note
;that the null pointer is not a valid pointer.
VWH LE PTR_VALI D(current) DO BEG N

Pointer Examples Building IDL Applications

Chapter 8: Pointers 177

;Print the list elenent information.
PRI NT, current, ', named ', (*current).nane, $
', has a pointer to: ', (*current).next

; Set current equal to the pointer in its own next field.
current = (*current). next

ENDWHI LE

; End of PTR_PRI NT program
END

If we run the PTR_PRINT program with the list generated in the previous example:
IDL> ptr_print, first
IDL prints:

<PtrHeapVar 1>, named wi |l ma, has a pointer to: <PtrHeapVar2>
<Pt r HeapVar 2>, naned biff, has a pointer to: <PtrHeapVar3>
<Pt r HeapVar 3>, naned cosnp, has a pointer to: <Null Pointer>

A Simple Sorting Routine for the Linked List

The next example program takes alist generated by PTR_READ and moves the
values so that they are in aphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting with
the last element in the list and letting lower values “rise” to the top, this example
starts at the top of thelist and lets higher (“heavier”) values “sink” to the bottom of
the list. Note that thisis not a very efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL's SORT
function.

The text of the program shown below can be found in thefile ptr_sort.proin the
examples/doc subdirectory of the IDL distribution.

; PTR_SORT accepts one argunent, a pointer to the first el ement of a
;linked list returned by PTR_ READ. Note that the PTR _SORT program
; does not need to know how many el enments are in the list, nor does
;it need to explicitly know of any pointer other than the first.
pro ptr_sort, first

;lnitialize swap fl ag.
swap = 1

;Create an anonynous structure to contain list elements. Note that

;the next fieldis initialized to be a pointer.
Ilist = {name:"'"', next:PTR_NEW)}

Building IDL Applications Pointer Examples

178 Chapter 8: Pointers

;Create a pointer to this structure, to be used as "swap space."
junk = ptr_new(l!list)

; Continue the sorting until no swaps are nade. |f no adjacent
;elenents need to be swapped, the list is in al phabetical order.
VWH LE swap NE 0 DO BEG N

;Create a second pointer to the heap variable pointed at by
cfirst.
current = first

; Create another pointer to the heap variable held in the next
;field of current.
next = (*current).next

; Set swap fl ag.
swap = 0

; Continue the sorting until next is no longer a valid pointer.
;Note that the null pointer is not a valid pointer.
WHI LE PTR_VALI D(next) DO BEG N

; Get values to conpare.
valuel = (*current). name
val ue2 = (*next).nane

; Conpare val ues and exchange if first is greater than second.
I F (val uel GT value2) THEN BEG N

; Use the "swap space" pointer to exchange the name fiel ds of
;current and next.

(*junk).name = (*current).nane

(*current).nane = (*next).nane

(*next).nane = (*junk).nanme

;Set current to next to advance through the |ist.
current = next

; Reset swap fl ag.
swap = 1

;1 f valuel is | ess than value2, set current to next to advance
;through the list.
ENDI F ELSE current = next

; Redefi ne next pointer.
next = (*current). next
ENDWHI LE
ENDWHI LE

Pointer Examples Building IDL Applications

Chapter 8: Pointers 179

END

To run the PTR_SORT routine with the list from our previous examples as input,
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:
ptr_print, first

IDL prints:

<PtrHeapVar 1>, named biff, has a pointer to: <PtrHeapVar2>
<PtrHeapVar 2>, named cosnp, has a pointer to: <PtrHeapVar3>
<Pt r HeapVar 3>, naned wi | ma, has a pointer to: <Null Pointer>

and we see that now the names are in alphabetical order.

Example Files—Using Pointers to Create Binary
Trees

Two more-complicated example programs demonstrate the use of IDL pointers to
create and search a simple tree structure. Thesefiles, namedi dl _tree. pro and
tree_exanpl e. pr o, can be found in the examples/doc subdirectory of the IDL

distribution.

To run the tree examples, enter the following commands at the IDL prompt:

;Conpile the routines in idl_tree. The exanple routine calls the
;routines defined in this file.
.run idl _tree

; Run the tree_exanple.
tree_exanpl e

The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nodes
whose values are structures that contain random values for two fields, “Time” and
“Data’. The TREE_EXAMPLE routine then prints the tree sorted by both time and
data. It then searches for and del etes the nodes containing the fourth and second data
values. The resulting 8-node trees are again printed in both time and data order.

A detailed explication of the TREE_EXAMPLE and IDL_TREE routinesis beyond
the scope of this chapter. Interested users should examine the files, starting with
tree_example.pro, to see how the trees are created and searched.

Building IDL Applications Pointer Examples

180 Chapter 8: Pointers

Pointer Examples Building IDL Applications

Chapter 9:
Structures

The following topics are covered in this chapter:

OVEIVIBN ..o 182
Creating and Defining Structures 183
Structure References, 186
Using HELP with Structures 188

Parameter Passing with Structures

Building IDL Applications

Arraysof Structures 191
Structure Input/Output 193
Advanced StructureUsage 196
Automatic Structure Definition 198
Relaxed Structure Assignment 200

181

182 Chapter 9: Structures

Overview

IDL supports structures and arrays of structures. A structure isacollection of scalars,
arrays, or other structures contained in avariable. Structures are useful for
representing datain anatural form, transferring data to and from other programs, and
containing agroup of related items of varioustypes. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of nhamed structure is defined by a unique structure name. The first
time a structure nameis used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and a definition of each field that is a member of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structure is created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of atag name and atag definition that contains the type
and structure of the data contained in thefield. A field isreferred to by its tag name.
The tag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field' s type, structure, and value. Aswith
structure definitions, afield definition is fixed and cannot be changed. The contents
of afield can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of structures.

Overview Building IDL Applications

Chapter 9: Structures 183

Creating and Defining Structures

A named structure is created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name, : Tag_Definitiony, ..., Tag_Name, : Tag_Definition,,}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Namel : Tag_Definition, , ..., Tag_Name, : Tag_Definition,}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names may not be IDL Reserved Words, and must be unique within a given
structure, although the same tag name can be used in more than one structure.
Structure names and tag names follow the rules of IDL identifiers: they must begin
with aletter; following characters can be letters, digits, or the underscore or dollar
sign characters; and case isignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to itstag
definition.

A named structure that has aready been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Sructure_ Name}
Theresult of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, al
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the or