Projective Geometry for Computer Vision

Raquel A. Romano
MIT Artificial Intelligence Laboratory
romano@ai.mit.edu
3D Computer Vision

Classical Problem:
Given a collection of 2D images, build a model of the 3D world.

Example Applications:
- virtual/immersive environments
- robotics & autonomous vehicles
- minimally invasive surgery
Outline

1. Projective Geometry Overview
2. Minimal Projective Parameters
3. Projective Parameter Estimation
4. Motion Boundary Detection
5. Conclusion
Image Formation

3D scene → imaging → 2D images
Computer Vision

3D scene model ➔ data ➔ 2D images

analysis ➔ measurement

Scientific Computing Seminar
May 12, 2004

Projective Geometry
for Computer Vision

Raquel A. Romano
5
Camera Geometry: Single View

pinhole model of perspective projection

unknown depth at each point

unknown internal camera parameters

\[
x = \frac{X}{Z} \quad y = \frac{Y}{Z}
\]

\[
\begin{bmatrix}
x \\
y
\end{bmatrix} \rightarrow \begin{bmatrix}
f_x & s & \cdot \\
1 & f_y & \cdot
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
c_x \\
c_y
\end{bmatrix}
\]
Camera Geometry: Multiple Views

unknown rotations and translations

\[
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}
+ T
\]
Measured Data: Image Points and Lines

geometric constraint: optical rays intersect in 3D

projective geometry: express constraint in terms of measured 2D image features
Projective Camera Model

- linear model of image formation
- depth-independent expression for optical ray intersections
- multilinear relations among point and line matches
Bilinear Constraints

\[X = \lambda_i x_i \]

\[\lambda_j x_j = \lambda_i R_{ij} x_i + T_{ij} \]

\[x_j^T [T_{ij}] x R_{ij} x_i = 0 \]

\[x_i \rightarrow A_i^{-1} x_i \]

\[x_j \rightarrow A_j^{-1} x_j \]

\[x_j^T A_{ij}^{-T} [T_{ij}] R_{ij} A_{ij}^{-1} x_i = 0 \]

\[x_j^T F_{ij} x_i = 0 \]

fundamental matrix
Fundamental Matrix

Maps a point in one image to a line in the other image that contains its match.

Given matching points in two views, predict the matching point in a third image.
Projective Models in Practice

• View synthesis and interpolation: point transfer function for dense point correspondences

• Self-calibration: automatic recovery of internal camera parameters from fundamental matrices

• Bundle adjustment initialization: initial rotation and translation for nonlinear Euclidean optimization
Outline

1. Projective Geometry Overview
2. Minimal Projective Parameters
3. Projective Parameter Estimation
4. Motion Boundary Detection
5. Conclusion
Practical Problem

- Few point matches between some views.
- Unstable for estimating geometric relationships.
Geometric Consistency

Pairwise geometric relations may be inconsistent.
Goals

• Impose algebraic geometric constraints on stationary points seen in arbitrarily many views.

• Avoid estimating too many parameters: depths, rotations, translations
Geometric Dependencies

- Pairwise projective geometric relations are interdependent.

- Approach: define projective dependencies and restrict solutions to be globally consistent.
Projective Bilinear Parameters

\[x_j^T F_{ij} x_i = 0 \]

\[F_{ij} = A_j^{-T} \left[T_{ij} \right]_x R_{ij} A_i^{-1} \]
Projective Bilinear Parameters

\[x_j^T F_{ij} x_i = 0 \]

epipoles
\[e_{ij} \quad e_{ji} \]
epipolar collineation
\[h_{ij} \]

imaged 3D translation & rotation

\[F_{ij} \approx [e_{ji}]_x [p_j \quad q_j] h_{ij} \begin{bmatrix} q_i^T \\ -p_i^T \end{bmatrix} [e_{ij}]_x \]

(Csurka, et.al., 1997)
Projective Parameters

• provide a complete projective model of camera configuration

But...

• set of all pairwise parameters are still redundant

• not all images have sufficient overlap
Trifocal Dependencies

• derive dependencies among three fundamental matrices

• correctly models degrees of freedom in camera configuration

• geometrically consistent parameterized model of view triplets
Trifocal Dependencies

- derive dependencies among three fundamental matrices
- correctly models degrees of freedom in camera configuration
- geometrically consistent parameterized model of view triplets

trifocal lines available from two fundamental matrices
Outline

1. Projective Geometry Overview
2. Minimal Projective Parameters
3. Projective Parameter Estimation
4. Motion Boundary Detection
5. Conclusion
Recovering Camera Geometry

view i view k view j

few correspondences

Scientific Computing Seminar
May 12, 2004

Projective Geometry
for Computer Vision

Raquel A. Romano
24
Linear Initialization
8-point Algorithm
(Hartley, 1995)

Minimize \[\sum_{i,j} \left(x_i^T F_{ij} x_i \right) \]
over all matching point pairs.

Rewrite bilinear constraints as
\[\begin{bmatrix} x_i x_j & y_i x_j & x_i y_j & y_i y_j & y_j & x_j & y_j & 1 \end{bmatrix} f_{ij} = 0 \]
where
\[f_{ij} = [f_{11} f_{12} f_{13} f_{21} f_{22} f_{23} f_{31} f_{32} f_{33}]^T \]
and solve linear system
\[A f_{ij} = 0 \]
Projection to Parameter Space

Map linear estimate of fundamental matrix to projective parameter space:

\[F_{ij} \rightarrow p_{ij} = \{e_{ij}, e_{ji}, h_{ij}\} \rightarrow p_{4}^{ij} = \{\gamma_i, \gamma_j, h_{ij}\} \]

- parameterization requires choice of projective basis
- basis affects shape of error surface for nonlinear optimization
Geometric Objective Function

point-to-epipolar-line distance ~ image reprojection error

weighted residual of bilinear constraint

\[E(x_i, x_j; p_{ij}) = w_{ij} \ x_j^T F_{p_{ij}} x_i \]

\[w_{ij} = \frac{1}{(F_{ij} x_i)_1^2 + (F_{ij} x_i)_2^2} + \frac{1}{(F_{ij}^T x_j)_1^2 + (F_{ij}^T x_j)_2^2} \]
Error Surface Depends on Basis

canonical basis

geometrically defined basis

\(\gamma(i,j) \)
Nonlinear Trifocal Estimation

1. Initialize epipolar geometry
 - 8-point algorithm: linear solution to fundamental matrix for all view pairs
 - extract epipoles and epipolar collineations
2. 7D nonlinear minimization: bifocal parameters for view pairs \((i,k) (j,k)\)
3. Trifocally constrained estimation for view pair \((i,j)\)
 - compute trifocal lines
 - project parameters to trifocally constrained space
 - 4D nonlinear minimization for bifocal parameters
Convergence

- Convergence plots for different algorithms:
 - Ground Truth
 - 8-point Algorithm
 - 7-Parameter Search
 - Trifocal Projection
 - 4-Parameter Search

Scientific Computing Seminar
May 12, 2004

Projective Geometry for Computer Vision

Raquel A. Romano
30
knossos sequence

view i

view k

view j

few correspondences

Scientific Computing Seminar
May 12, 2004

Projective Geometry
for Computer Vision

Raquel A. Romano
32
Ground Truth

Results

8-Point Algorithm

7-Parameter Algorithm

4-Parameter Algorithm
Summary

• Imposing projective constraints on camera geometry corrects the estimation of epipolar geometry

• Resulting camera configuration for multiple cameras is globally consistent
Outline

1. Projective Geometry Overview
2. Minimal Projective Parameters
3. Projective Parameter Estimation
4. Motion Boundary Detection
5. Conclusion
Camera and Scene Motion
Combining Intensity and Geometry

trifocal tensor

projective linear form relating a point-line-line

(Spetsakis & Aloimonos, 1990; Shashua, 1994)

\[T(x_i, l_j, l_k) = 0 \]
Tensor Brightness Constraint
(Shashua & Hannah, 1995; Shashua & Stein, 1997)

\[u I_x + v I_y + I_t = 0 \]

\[u = x - x_0 \quad v = y - y_0 \]

\[ax + by + c = 0 \]

\[(a,b,c)^T \cong \begin{bmatrix} I_x \\ I_y \\ I_t - x_0 I_x - y_0 I_y \end{bmatrix} \]

- Horn-Schunk brightness constraint is linear in point coordinates
- Defines line in each image containing matching point
- Spatiotemporal gradient at every pixel provides test of rigid motion
Motion Boundary Detection

• Partition image into windows and solve for trifocal tensor coefficients.

• Only regions with rigid 3D motion have a good fit.

• Sum residual error of tensor solution.

• High residuals indicate regions that cross a motion boundary.
Multiple Frame Flow

- Track points over many frames.
- Multi-frame tracks fall into separable classes.
- Robustly fit tracks to linear approximation of instantaneous planar motion.

\[x(t) = x_0 + t [Ax_0 + b] \]
Detecting Independent Motions

Residual error of estimated motion model on all point tracks
Complexity of Motion Model
Conclusions

When possible, use domain and task knowledge to choose model:

• What type of information is needed
• What aspects of the imaging conditions are known or controlled
• What types of uncertainty can be modeled and compensated for
Future Needs

Role of learning in motion analysis:

• Supervised learning of geometric motion classes
• Data-driven model selection by flow classification
• Robust estimation of appropriate motion model
• Adaptive, time-varying estimation