
Prediction Machines

The value of a scientific theory is determined in large part by its ability to makepredictions. Quantum electrodynamics, for example, allows the anomalousmagnetic moment of the electron to be calculated to more than 10 significantfigures, in agreement with comparable experimental observations. Similarly, inapplied science and technology, the ability to make predictions, for example, thebiological activity of a candidate drug molecule, or the structural and aerodynamicproperties of the wing for a new airliner, is again of central importance.
In some domains, the underlying equations are well understood, and in principle,predictions simply involve solving these using appropriate numerical techniques.Even here, however, many research questions often arise due to issues such asefficiency, numerical accuracy and model validation. Performance improvementsin computers continually extend the range of predictions which can be obtainedby numerical solution from first principles. In chemical dynamics, for instance,computational methods are having a major impact on the capabilities for first-principles prediction. Currently, reaction cross-sections can only be calculated forsystems involving a few atoms at a time, and for each additional atom thecomputational cost increases by two or three orders of magnitude. While thisclearly does not scale directly to large systems, the possibility exists to exploit thelocality of chemical reactions so that only the handful of atoms directly involvedin a reaction need be modelled in detail, with the remainder treated semi-classically, or quasi-classically, thereby opening the door to accurate modelling ofcomplex chemical dynamics on computers having perhaps just a few hundredteraflops of processing power. If such an approach can be developed, the potentialimpact not only on chemistry but on neighbouring fields could be profound.There is no shortage of other drivers for large-scale simulation of basic physicalprocesses. For instance, modelling of turbulent flows has motivated thedevelopment of sophisticated multi-scale techniques, while future grandchallenges such as space weather forecasting, or tsunami prediction based on real-time computer simulation driven by inputs from networks of distributed sensors,could potentially lead to new breakthroughs.
It is increasingly easy to write simulation models, and these are intuitively moreattractive to the non-mathematically inclined because of their less reductionistcharacter, but arguably they require broad as well as deep mathematical expertise(all the way from statistics and numerical analysis to stochastic process theory andnon-linear dynamics) to be applied correctly. Heuristically constructed simulationmodels, while sometimes producing intriguing results, are next to uselessscientifically as the source code is rarely published (and is hard to interpret if it is)leaving at best a qualitative verbal description of the model’s structure.Consequently, there is a pressing need to maintain mathematical and scientificrigour, as well as to ensure that models and their implementations areappropriately validated.
However, for most areas of science, the complexity of the domain, or theabsence of sufficiently precise models at the appropriate level of description,often prohibit a first-principles simulation with any current or conceivablefuture level of computational resource. In such cases statistical approaches, in
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particular machine learning, have proven to be very powerful. While classicalstatistics is focused on the analysis of data to test hypotheses, the goal of machinelearning is to use (primarily) statistical methods to make predictions. For instance,in the basic supervised learning scenario, a large number of input-response pairsare used to construct a model of the input–output relationship of a system,capturing the underlying trends and extracting them from noise.The data is thendiscarded and the resulting model used to predict the responses for new inputs.Here, the key issue is that of generalisation, that is the accurate prediction ofresponses for new inputs, rather than simply the modelling of the training dataitself. Machine learning techniques are also used for data visualisation, datamining, screening, and a host of other applications. For instance, in the area ofbiological modelling, techniques from Inductive Logic Programming (a form ofmachine learning which represents hypotheses using logic) have beendemonstrated on a variety of tasks including the discovery of structuralprinciples concerning the major families of protein folds [24], prediction ofstructure-activity relations in drugs [25] and prediction of toxicity of smallmolecules [26] . In addition, Bayesian networks, whose structure is inferred fromobserved data, have been used to model the effects of toxins on networks ofmetabolic reactions within cells.
Research into algorithms and methods for machine learning provides insightswhich can inform research into one of the greatest scientific challenges of ourtime, namely the understanding of information processing in biological systemsincluding the human brain. For instance, in low-level visual processing, there areinteresting similarities between the localised responses of cells in the early visualcortex and the wavelet feature bases which are found to be very effective incomputer vision problems such as object recognition. More speculatively, thecurrent interest in hybrids of generative and discriminative models in the machinelearning field offers potential insights into the brain’s remarkable ability to achieveaccurate generalisation from training data which is almost entirely unlabelled.
Ongoing developments in machine learning over the last 5 years have significantlyincreased the scope and power of machine learning.Three such developments inparticular, have been pivotal, namely the widespread adoption of a Bayesianperspective, the use of graphical models to describe complex probabilistic models,and the development of fast and accurate deterministic techniques forapproximate solution of inference and learning problems.The Bayesian networksmentioned earlier are a particular instance of graphical models.
Machine learning techniques are not, however, confined to the standard batchparadigm which separates the learning phase from the prediction phase.With active learning techniques, the adaptation to the data and the predictionprocess are intimately linked, with the model continually pointing to new regionsof the space of variables in which to collect or label data so as to be maximallyinformative. Indeed, as reported recently in Nature, an active learning frameworkwas used for choosing and conducting scientific experiments in the RobotScientist project (see following section on ‘Artificial Scientists’).
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The two approaches to prediction, based, respectively on first-principles simulation and statistical modelling of observed data, need not be exclusive, andthere is undoubtedly much to be gained in addressing complex problems bymaking complementary use of both approaches. In population biology, forexample, a complete treatment is likely to require combination of elements fromnon-linear dynamics, complexity science, network theory, stochastic processtheory and machine learning.
Many of the developments in the computational sciences in recent years havebeen driven by the exponential increase in the performance of computerhardware. However, the limits of the single processor are already being reached,and in order to sustain continued exponential growth, the manufacturers ofprocessors are already moving towards massively multi-core devices, posing somemajor challenges for software developers. Fortunately, many machine learning algorithms, as well as a significant proportion of numerical simulation methods,can be implemented efficiently on highly parallel architectures. Disk capacity, aswell as the size of scientific data sets, have also been growing exponentially (witha shorter doubling time than for processors and memory) and so the need foreffective data mining and statistical analysis methods is becoming greater thanever. Coupled with the continuing developments in models and algorithms formachine learning, we can anticipate an ever more central role for statisticalinference methods within much of the computational science arena.As probabilistic inference methods become more widely adopted, we cananticipate the development of new programming languages and user tools whichembrace concepts such as uncertainty at their core, and which thereby make theprocess of implementing and applying machine techniques substantially moreefficient, as well as making them accessible to a much broader audience.
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