Available online at www.sciencedirect.com

science @hormeer:

NUCLEAR
INSTRUMENTS
& METHODS
IN PHYSICS
RESEARCH

Section A

ELSEVIER

Nuclear Instruments and Methods in Physics Research A 559 (2006) 99—-102
www.elsevier.com/locate/nima

Bitmap indices for fast end-user physics analysis in ROOT

Kurt Stockinger?, Kesheng Wu®, Rene Brun®*, Philippe Canal®

#Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
bEuropean Organization for Nuclear Research, 1211 Geneva, Switzerland
CFermi National Accelerator Laboratory, Batavia, IL 60510, USA

Available online 7 December 2005

Abstract

Most physics analysis jobs involve multiple selection steps on the input data. These selection steps are called cuts or queries. A common
strategy to implement these queries is to read all input data from files and then process the queries in memory. In many applications the
number of variables used to define these queries is a relative small portion of the overall data set therefore reading all variables into
memory takes unnecessarily long time.

In this paper we describe an integration effort that can significantly reduce this unnecessary reading by using an efficient compressed
bitmap index technology. The primary advantage of this index is that it can process arbitrary combinations of queries very efficiently,
while most other indexing technologies suffer from the “curse of dimensionality’” as the number of queries increases. By integrating this
index technology with the ROOT analysis framework, the end-users can benefit from the added efficiency without having to modify their
analysis programs. Our performance results show that for multi-dimensional queries, bitmap indices outperform the traditional analysis

method up to a factor of 10.
© 2005 Elsevier B.V. All rights reserved.

PACS: 01.50.hv

Keywords: Bitmap index; Speed data base access; ROOT; ROOT Trees; Fast queries; Physics analysis

1. Introduction

Typical interactive, end-user physics analysis is an
iterative process where data is selected based on specific
cuts (queries). These queries are often complex and involve
several conditions (dimensions) such as npTight <10 AND
muonLoose2cm> 5.7 AND nTracks>20. A common strat-
egy for evaluating these queries is to read all input data
from files and then process the queries in memory.
However, reading all data values into memory before
performing the queries is often very inefficient because
most of the data would not be used.

In this paper, we evaluate the use of bitmap indices for
efficient query processing in ROOT. By integrating this
index technology with the ROOT analysis framework, the
end-users can benefit from the added efficiency without
having to modify their analysis programs. We will discuss

*Corresponding author.
E-mail address: rene.brun@cern.ch (R. Brun).

0168-9002/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
do0i:10.1016/j.nima.2005.11.127

some implementation details and give a simple use case for
performing analysis in ROOT with bitmap indices. Next
we compare the performance of bitmap indices with
traditional methods. Our measurements show that for
multi-dimensional queries, bitmap indices outperform the
traditional analysis method up to a factor of 10.

2. Related work

Bitmap indices are efficient index data structures for
speeding up multi-dimensional range queries for read-only
data [1,2]. For an attribute with ¢ distinct values, the basic
bitmap index [3] generates ¢ bitmaps with N bits each,
where N is the number of records in the data set. Each bit
in a bitmap is set to 1 if the attribute in the record is of a
specific value, otherwise the bit is set to 0. For example, the
integer attribute I shown in Fig. 1 can be one of four
distinct values, 0,1,2, and 3. The corresponding bitmap
index has four bitmaps. Since the value in record 5 is 3, the

www.elsevier.com/locate/nima

100 K. Stockinger et al. | Nuclear Instruments and Methods in Physics Research A 559 (2006) 99-102

bitmap index

RID|I|=0 =1 =2 =3
110 1 0 0 0
2|1 0 1 0 0
313 0 0 0 1
4121 0 0 1 0
513 0 0 0 1
63| O 0 0 1
7111 0 1 0 0
813 0 0 0 1
by by, by by

Fig. 1. A sample bitmap index where RID is the record ID and I is the
integer attribute with values in the range of 0-3.

fifth bit in b4 is set to 1 and the same bits in other bitmaps
are 0.

Bitmap indices are efficient for processing multi-dimen-
sional range queries such as “I<2 and J>3". The queries
are evaluated with bitwise logical operations that are well-
supported by computer hardware.

Several bitmap compression methods were studied in
Ref. [4] to reduce the size of bitmap indices. Note that an
efficient bitmap compression scheme not only has to reduce
the size of bitmaps but also has to perform bitwise Boolean
operations efficiently. More recently a new compression
scheme called Word-Aligned Hybrid (WAH) [2] was
introduced. It has been shown that even in the worst case,
the bitmap indices can be compressed to a size that is
comparable with a typical B-tree index. The time required
to answer a range query using a compressed bitmap index
is in fact optimal. In the worst case, the response time is
proportional to the number of hits of the query [2].

The bitmap indices discussed so far encode each distinct
attribute value as one bitmap vector. This technique is very
efficient for integer or floating point values with low
attribute cardinalities. However, scientific data is often
based on floating point values with high-attribute cardin-
alities. The work presented in Ref. [5] demonstrates that
bitmap indices with binning can significantly speed up
multi-dimensional queries for high-cardinality attributes.

3. Implementation and example usage

We integrated the bitmap indexing technology (devel-
oped at Berkeley Lab) into the ROOT-framework to speed
up cuts with TTree: : Draw and TChain: : Draw. One of
the design goals was to integrate the indices in such a way
that the end-user only has to make minimal modifications
to the analysis code.

3.1. Building bitmap indices
A typical example of building bitmap indices within
ROOT is as follows:

// open ROOT-file
TFile f("data/root/data.root") ;
TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;
bitmapIndex.Init () ;
char indexLocation[1024] =

.
’

‘' /data/index/

bitmapIndex.ReadRootWriteIndexFile(tree,
indexLocation) ;

// build index for two attributes
bitmapIndex.BuildIndex (tree, "npTight",
indexLocation) ;
bitmapIndex.BuildIndex (tree,
"muonLoose2cm",
indexLocation) ;

3.2. Simple analysis with bitmap indices

Usually end-user physics analysis is done by performing
cuts with TTree: : Draw. In this example we show how to
do efficient data analysis with bitmap indices, which
requires the new class called TBitmapIndex.

// open ROOT-file
TFile f("data/root/data.root") ;
TTree *tree = (TTree*) f.Get("tree");

TBitmapIndex bitmapIndex;
bitmapIndex.Init () ;
bitmapIndex.Draw (tree,
"npTight :muonLoose2cm",
"npTighta < 10 && muonLoose2cm > 5.7") ;

4. Experimental results

In this section we evaluate the performance of the
bitmap indices in ROOT and compare them with tradi-
tional techniques. In particular, we measure the perfor-
mance of multi-dimensional queries both with bitmap
indices and TTreeFormula. The experiments are based
on a data set from the Babar High Energy Physics
experiment at Stanford Linear Accelerator Center (SLAC).
The original data sets consists of 7.6 million records with
some 100 attributes each. For our experiments we
randomly chose 10 attributes.

4.1. Size of the compressed bitmap indices

We first measure the sizes of the compressed bitmap
indices and compare them with the original, uncompressed
data set. The compression factors of the equality-encoded
and range-encoded bitmap indices [3] per attribute are
shown in Figs. 2 and 3. For the two bitmap index strategies
we use 1000 and 100 equal-depth bins, respectively, where
each bins has roughly the same number of entries. The
compression factors vary between 1 and 13. The total sizes
of all 10 attributes are shown in Fig. 4. We can see that the
total size of the equality-encoded bitmap indices is about
half of the original data size. The size of the range-encoded

K. Stockinger et al. | Nuclear Instruments and Methods in Physics Research A 559 (2006) 99-102 101

14
= 12 —
=1
g
210 —
=
g B
g 6 ~
£ 4
g
S il B
() . T . - . ‘ .
— - - — o ° =
= &8 § 3 § E & § § E
= 5 E g % = = 9 = <
z 2 T § 2/ &% 2 & g 5
g & © =T E 5 s =
Z ER- g = S =
4 & = = e 5 S
E g 3 ¢ g 2 2
= E £ =
Q =
=]
=
m
Attribute

Fig. 2. Size of the equality-encoded, compressed bitmap indices per
attribute.

14
§ 12 —
& 10 -
=
g8 B
2 6 -
3
g 4 B B
=]
O 2 — —
0 / /3, T T T T T T T
= > = = o -
: £ 32 3 % §E & & 3 §
= 3 = 8 % = = 3 fam |
2 @& 2T S5 A §F 3T 3% = 5
S 5§ 9 % e &5 3 g
z 2 3 S E e 2 E
2 & g 3 9] g 9]
= S E] g 2 = 2
<= g 51 =) g g
= Z
S =
=
=
A
Attribute

Fig. 3. Size of the range-encoded, compressed bitmap indices per
attribute.

600,000,000

500,000,000

400,000,000

300,000,000

Size [bytes]

200,000,000

100,000,000

Base data EE-BMI RE-BMI

Fig. 4. Total size of all compressed bitmap indices. Base data refers to the
original, uncompressed data in binary format, EE-BMI refers to equality-
encoded bitmap index, and RE-BMI refers to range-encoded bitmap
index.

bitmap indices, on the other hand, is larger than the base
data. Note that typical indices such as the B-tree are often
three times larger than the base data. In this sense, the size
of the range-encoded bitmap index with 100 bins is still
acceptable.

4.2. Query performance

Next we measure the performance of multi-dimensional
queries. All our experiments are carried out on an Intel
Pentium 4 with 2 GB of main memory and a SCSI RAID
disk. In order to avoid caching effects during the
performance measurements, we flushed the disk cache by
unmounting the file system before each query.

In Figs. 5-8 we show the query response time of 1, 2, 5
and 10-dimensional queries with different query box sizes.
The query box size is defined as the fraction of the query
range with respect to the whole domain space. For instance,
for a 1-dimensional query a query box of 0.1 means that the
query range covers 10% of the attribute range.

The measurements show that in all cases the bitmap
index is significantly faster than TTree: : Formala with a

2.5
P —
- _’____._____.
o 15
o —— TTree Formula
“E’ —8— BMI-EE
£ 1 1+—
= -4~ BMI-RE
0.5
o T T : ‘ :
0.00001 0.0001 0.001 0.01 0.1 1
Query box

Fig. 5. Response time of 1-dimensional queries compared to TTree::For-
mula.

6
5 / —
— 4 ”/_*"‘,
TR
(7]
(2]
2 3
£ —— TTree Formula
[o —&— BMI-EE
- -4~ BMI-RE
_m—a
! -4
r_._. [R, _*,____—-v--‘":f:-....*..,--
0 -) T T T 1
0.00001 0.0001 0.001 0.01 0.1 1

Query box

Fig. 6. Response time of 2-dimensional queries compared to TTree::For-
mula.

102 K. Stockinger et al. | Nuclear Instruments and Methods in Physics Research A 559 (2006) 99-102

14 —— TTree Formula

—&— BMI-EE

12 #
- -4 - BMI-RE /
10 /

g‘ ’ ’_”—0——#‘*//

o ‘

E 6

=
4
2 ____"—l‘_*‘_ _____ *IZ-T_’__
0+ r . r - ‘
0.00001 0.0001 0.001 0.01 0.1 1

Query box

Fig. 7. Response time of 5-dimensional queries compared to TTree::For-
mula.

30
—&— TTree Formula

—a— BMI-EE

25 T »
--4- BMI-RE /

20

) /

10

Time [sec]

03
0.00001

0.0001 0.001 0.01 0.1 1
Query box

Fig. 8. Response time of 10-dimensional queries compared to TTree::-
Formula.

performance improvement up to a factor of 10. We can
also see that the range-encoded bitmap index (RE-BMI)
performs slightly better than the equality-encoded bitmap
index (EE-BMI).

Bitmap indices with bins provide an additional feature
that could be interesting for physicists in the initial phase of
the interactive data analysis. When using bitmap indices
with bins, specific records need to be read from disk in
order to check whether they fulfill the query constraint.
This is called Candidate Check [5]. By omitting the
Candidate Check the results are good approximations with
error ranges that depend on the number of bins. For
instance, for the equality-encoded bitmap index, the error
for 1000 bins is 0.1%. For the range-encoded bitmap index
with 100 bins, the error is 1%.

Next we measure the performance of multi-dimensional
queries with approximate results. Since the characteristics
of the query performance is similar for various dimensions,

30

—— TTree Formula
—a— BMI-EE

25 T »-
- -4 - BMI-RE /

Time [sec]
- n
;] o

0.00001

0.0001 0.001 0.01 0.1 1
Query box

Fig. 9. Response time of 10-dimensional queries compared to TTree::-
Formula. The answers are approximations with 0.1-1% errors.

we only show the performance of 10-dimensional queries.
As we can see in Fig. 9, the performance improvement of
approximate queries over TTree: :Formula is up to a
factor of 30.

5. Conclusions

In this paper we discussed the integration of bitmap
indices into the ROOT framework. We presented a simple
example use case for bitmap indexed accelerated physics
analysis and evaluated the performance of the bitmap
indices. The results show that for multi-dimensional
queries, the bitmap indices outperform the traditional
analysis method up to a factor of 10 for exact answers. For
approximate queries, we measured a performance gain up
to a factor of 30.

References

[1] P. O’Neil, Model 204 architecture and performance, in: Second
International Workshop in High Performance Transaction Systems,
Asilomar, California, USA, Springer, Berlin, 1987.

[2] K. Wu, E.J. Otoo, A. Shoshani, On the performance of bitmap indices
for high cardinality attributes, in: International Conference on Very
Large Data Bases, Toronto, Canada, September 2004, Morgan
Kaufmann, Los Altos, CA.

[3] C.Y. Chan, Y.E. Ioannidis, An efficient bitmap encoding scheme for
selection queries, in: SIGMOD, Philadelphia, Pennsylvania, USA,
June 1999, ACM Press, New York.

[4] T. Johnson, Performance measurements of compressed bitmap indices,
in: International Conference on Very Large Data Bases, Edinburgh,
Scotland, September 1999, Morgan Kaufmann, Los Altos, CA.

[5] K. Stockinger, K. Wu, A. Shoshani, Evaluation strategies for bitmap
indices with binning, in: International Conference on Database and
Expert Systems Applications (DEXA), Zaragoza, Spain, September
2004, Springer, Berlin.

	Bitmap indices for fast end-user physics analysis in ROOT
	Introduction
	Related work
	Implementation and example usage
	Building bitmap indices
	Simple analysis with bitmap indices

	Experimental results
	Size of the compressed bitmap indices
	Query performance

	Conclusions
	References

