Analyzing Enron Data: A Performance Comparison of MySQL with FastBit

Kurt Stockinger, Doron Rotem, Arie Shoshani, Kesheng Wu
Computational Research Division
Lawrence Berkeley National Laboratory
University of California
1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract 2 Performance Results - Original Data Set

In this article we evaluate the performance of MySQL In our first set of experiments we measured the perfor-
and FastBit for analyzing the email traffic of the Enron data mance of searching for speciiendersaindreceiversof the
set. The first findings shows that materializing the join re- €mails. We thus built an index for each of these two at-
sults of several tables Significanﬂy improves the query per- tributes. Since both senders and receivers are in different
formance. Finally, FastBit outperforms MySQL several or- database tables, this kind of search requires an expensive
ders of magnitude. join operation. The next step was to materialize the join
and store the results in an additional table that wernatie-
rialized table The newly created table contains some 2 mil-
lion records. Remember, the number of original messages
) was 250,000 which indicates that, on average, each message
1 Introduction contains 8 recipients. We also built indices famderand
receiveron the materialized table.
In order to build bitmap indices for the materialized ta-

The Enron data set was used by various researchers ifble, we needed to export the date into binary files. In partic-
the area of social network analysis to discover patterns in ular, we stored each attribute in a separate file and then built
the data. Theses patterns are usually visualized by com2 bitmap index for the attributenderandreceiver
plex graph algorithms. However, due to the large amount Next we measured the performance of queries of the
of social network data, the pattern f|nd|ng and visualiza- form “Retrieve the reCipientS of all emails that were sent
tion algorithms often take a long time to terminate. In or- by personP”. For these experiments we randomly selected
der to reduce the time complexity of these algorithms, it 100 persons from the tablemployeeListind executed a
is often important to pre-filter the results based on multi- query for each person. In total we ran 100 queries and mea-
dimensional criteria such as “Retrieve all emails that were sured the time including the result retrieval (number of hits).
sent by person P at time T”. In this article we will show that ~ Figure 1 shows the performance of three different access
multi-dimensional bitmap indices significantly improve the plans, namelyMySQL - Join MySQL - Materializecand
performance of these types of queries_ FastBit We can see that the query that is based on joining
two tables takes the most time. We can also see that the
response time is independent of the number of IriéstBit
shows the best query response time and is a factor of 10 to
100 faster thaMySQL - Materialized

. Next we measured the performance of queries of the
tal, the data set contains some 250,000 message from 158 rm “Retrieve all senders of emails that were received by

Enron employees that were recorded over the lifetime of apersonP". Similar to the previous experiments, we ran-

frivav déerat;s'[Zﬁor further details about the data set we refer thedomly selected 100 persons. Figure 2 shows that this time

the difference betweelklySQL - Joinand MySQL - Mate-

In this article we compare the performance of MySQL rialized is much smaller. The reason is that the number of
with FastBit [1], an efficient, compressed bitmap indexing hits is much smaller than in the previous experiments and
technology that was developed in our group. thus the join operation is less expensive. HowekastBit

For our performance evaluation we use the Enron data
set that was prepared by Shetty and Adibi [2]. All the data
is stored in MySQL containing the following four tables:
employeelistmessaggrecipientinfq referencelnfo In to-

dateandtimeand built indices.
The performance of these queries is shown in Figures 3
[+~ MySQL - Join —+— MySQL - Wateridized —~FasiBi and 4. Again we see th&astBitshows better performance
10 characterstics than MySQL. In particular, we can observe
that the performance dflySQL - Materializedlepends on
f the number of hits whereas the performancd-a$tBit is

Tl 1A f\/\ about constant.
0t eal
0.01 MM v v

s st A g Ak ‘s [—+—mysaL = FasBt]

1D Query - Sender (incl. retrieval)

Time [sec]

1D Query: Date

0.001 T T T T T T !
0 200 400 600 600 1000 1200 1400 75

Number of hit

umber of hits , /
Figure 1. Performance of query: “Retrieve the /

recipients of all emails that were sent by per- ‘

son P". 05 /'/
et e e

] 500,000 1,000,000 1,500,000 2,000,000 2,500,000

Time [sec]
o

Number of hits
is again up to a factor of 100 faster thelySQL - Material-
ized . : .
Figure 3. “Find all emails that were sent every
day before time T.
1D Query: Receiver (incl. retrieval)
‘+ MySQL - Join —=— MySQL - Meterialized - --&--- FastBit
10
1D Query: Time
1
B
— |—+—Mys0L -~ = FasiBit]
° [
-:“T 01y 3
'E - 25 i
o0t b / /’ﬂ
2
7 ’[..V
000 : : ‘ L5
1 10 100 1000 £ /
) o
Nurmber of hits /’
03
. . . “:: e R u
Figure 2. Performance of query: “Retrieve the ! R ‘ A —
. . 0 500,000 1,000,000 1,500,000 2,000,000 2,500,000
senders of all emails that were received by)
. Number of hits
person P”.

Figure 4. “Find all emails that were sent be-

fore date D".
Due to the better performance of the access pMgB8QL

- Materialized for the remaining experiments we only use
this access plan and compare it WitistBit

Our next experiments evaluate the performance of the
following queries: a) “Find all emails that were sent every 3 Performance Results - Duplicated Data Set
day before timé". b) “Find all emails that were sent before
dateD”. For performance reasons we split the attribdeite In the next experiments we measured the query perfor-
of the original tablanessagénto the basic components of mance of a larger data set. We thus duplicated the Enron

data set 10 times. The resulting materialized table contains
some 20 million records.
Figures 5 through 7 show the performance of queries

1D Query - Date

|—+—MSQL = FastBil|

with one specific search criterion. Similar to the previous 1000
experiments, FastBit is up to a factor of 100 faster than .
MySQL. // !

p

1D Query: Sender

Time [sec]
-

[—e—ms0L = - FastBi e 1
001 .“

=
=]

0.001 , . : ! !
hd 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000
Nurrber of hits

=

o

Time [sec]

Figure 7. “Find all emails that were sent be-

oot | Biaba R R fore date D”.
NN N S R N "
U.Ummﬂ W‘D‘DD WD“DDD ijDDD W‘DDD“DDD
Number of hits
queries are shown in Figures 8 and 9. We notice that as the
number of query dimensions increases, the relative perfor-
Figure 5. “Find all emails that were sent by mance improvement of FastBit over MySQL increases even
person P". more. For these types of queries, FastBit is even up to a

factor of 1000 faster than MySQL.

2D Query: Sender + Date

1D Query - Receiver \+MJSQL e FastBil|

=
=1

| —+—MySOL = FastBit]

1. *t -

el
RVANVLIR

=
=]
=1

.

= g
in
Time [sec]

Time [sec]

| "
01 * 8 B A : 0ot 4
. [I N -
H R IERT
001 o 0.001 , . , , , ,
L 1 10 100 1,000 10,000 100,000 1,000,000
0.001 \ Number of hits
1 10 100 1,000 10,000 100,000
Number of hits

Figure 8. “Find all emails that were sent by

. . .) person P before data D".
Figure 6. “Find all emails that were received

by person P”.

In our last set of experiments we measured the per-4 Conclusions
formance of queries with multiple search criterimuti-
dimensional querigs A typical query of this kind is “Find In this article we evaluated the performance of MySQL
all emails that were sent by perséhin the time intervall’ and FastBit for queries on the Enron data set. Our first
before dateD”. The results of two and three dimensional findings show that queries on materialized tables provide a

3D Query: Sender + Date + Time

|—+—MSQL = FastBil|

100

IR
VSR

01 S

Time [sec]

0.001

1 10 100 1,000 10,000 100,000 1,000,000
Number of hits

Figure 9. “Find all emails that were sent by
person P before data D and time 7.

significant performance improvement since expensive join
operations are avoided. We also demonstrated that Fast-
Bit outperforms MySQL up to a factor of 1000 for multi-
dimensional queries.

In the future we will work onneighborhood queries
that are of particular importance for analyzing message
flows/chains within groups. Typical queries are “Find all
the emails that persoA sent to persorB. Next, find all
emails that perso3 received fromA and sent to person
C”. By analyzing these kinds of messages one can dis-
cover indirect relationships between persérand person
C. Moreover, the message frequency and the message date
might also reveal some important characteristics. In order
to quickly search through this information, efficient, multi-
dimensional indexing as described in this article is very im-
portant.

Acknowledgment

The work was funded by the Department of Homeland
Security under grant XXX.

References

[1] FastBit, http://sdm.Ibl.gov/fastbit . Jan.
2006.

[2] J. Shetty, J. Adibi, The Enron Email Dataset, Database
Schema and Brief Statistical Report, Retrieved from
http://www.isi.edu/"adibi/Enron/Enron _
Dataset _Report.pdf ,Jan. 2006

