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Abstract

Within the European DataGrid project, Work
Package 2 has designed and implemented a set of
integrated replica management services for use by
data intensive scientific applications. These ser-
vices, based on the web services model, enable
movement and replication of data at high speed
from one geographical site to another, management
of distributed replicated data, optimization of ac-
cess to data, and the provision of a metadata man-
agement tool. In this paper we describe the archi-
tecture and implementation of these services and
evaluate their performance under demanding Grid
conditions.

1 Introduction

The European DataGrid (EDG) project was
charged with providing a Grid infrastructure for
the massive computational and data handling re-
quirements of several large scientific experiments.
The size of these requirements brought the need
for scalable and robust data management services.
Creating these services was the task of EDG Work
Package 2.

The first prototype replica management sys-
tem was implemented early in the lifetime of the

project in C++ and comprised the edg-replica-
manager [14] based on the Globus toolkit and
the Grid Data Mirroring Package (GDMP) [15].
GDMP was a service for the replication (mirror-
ing) of file sets between Storage Elements and to-
gether with the edg-replica-manager it provided ba-
sic replication functionality.

After the experience gained from deployment of
these prototypes and feedback from users, it was
decided to adopt the web services paradigm [20]
and implement the replica management compo-
nents in Java. The second generation replica man-
agement system now includes the following ser-
vices: the Replica Location Service, the Replica
Metadata Catalog, and the Replica Optimization
Service. The primary interface between users and
these services is the Replica Manager client.

In this paper we discuss the architecture and
functionality of these components and analyse their
performance. The results show that they can han-
dle user loads as expected and scale well. Work
Package 2 services have already been successfully
used as production services for the LHC Comput-
ing Grid [12] in preparation for the start of the
next generation of physics experiments at CERN
in 2007.

The paper is organised as follows: in Section 2
we give an overview of the architecture of the WP2



services and in Section 3 we describe the replica-
tion services in detail. In Section 4 we evaluate the
performance of the replication services and Section
5 discusses directions of possible future work. Re-
lated work is described in Section 6 and we conclude
in Section 7.

2 Design and Architecture

The Work Package 2 replica management ser-
vices [9, 11] are based on web services and im-
plemented in Java. Web service technologies [20]
provide an easy and standardized way to logically
connect distributed services via XML (eXtensible
Markup Language) messaging. They provide a
platform and language independent way of access-
ing the information held by the service and, as such,
are highly suited to a multi-language, multi-domain
environment such as a Data Grid.

All the data management services have been de-
signed and deployed as web services and run on
Apache Axis [3] inside a Java servlet engine. All
services use the Java reference servlet engine, Tom-
cat [4], from the Apache Jakarta project [18]. The
Replica Metadata Catalog and Replica Location
Service have also been successfully deployed into
the Oracle 9i Application Server and are being used
in production mode in the LCG project [12].

The services expose a standard interface in
WSDL format [21] from which client stubs can be
generated automatically in any of the common pro-
gramming languages. A user application can then
invoke the remote service directly. Pre-built client
stubs are packaged as Java JAR files and shared
and static libraries for Java and C++, respectively.
C++ clients, which provide significant performance
benefits, are built based on the gSOAP toolkit [19].
Client Command Line Interfaces are also provided.

The communication between the client and
server components is via the HTTP(S) protocol
and the data format of the messages is XML, with
the request being wrapped using standard SOAP
Remote Procedure Call (RPC). Persistent data is
stored in a relational database management system.
Services that make data persistent have been tested
and deployed with both open source (MySQL) and
commercial (Oracle 9i) database back-ends, using
abstract interfaces so that other RDBMS systems
can be easily slotted in.

3 Replication Services

The design of the replica management system is
modular, with several independent services inter-
acting via the Replica Manager, a logical single
point of entry to the system for users and other
external services. The Replica Manager coordi-
nates the interactions between all components of
the systems and uses the underlying file transport
services for replica creation and deletion. Query
functionality and cataloging are provided by the
Replica Metadata Catalog and Replica Location
Service. Optimized access to replicas is provided
by the Replica Optimization Service, which aims to
minimize file access times by directing file requests
to appropriate replicas.

The Replica Manager is implemented as a client
side tool. The Replica Metadata Catalog, Replica
Location Service and the Replica Optimization Ser-
vice are all stand-alone services, allowing for a mul-
titude of deployment scenarios in a distributed en-
vironment. One advantage of such a design is that
if any service is unavailable, the Replica Manager
can still provide the functionality that does not
make use of that particular service. Critical ser-
vice components may have more than one instance
to provide a higher level of availability and avoid
service bottlenecks. However, since much of the
coordinating logic occurs within the client, asyn-
chronous interaction is not possible and in the case
of failures on the client side, there is no way to
automatically re-try the operations.

3.1 Replica Manager

For the user, the main entry point to the replica
management system is through the Replica Man-
ager client interface that is provided via C++ and
Java APIs and a Command Line Interface. The
actual choice of the service component to be used
can be specified through configuration files and
Java dynamic class loading features are exploited to
make each component available at execution time.

The Replica Manager uses other replica man-
agement services to obtain information on data lo-
cation and underlying Globus file transfer mecha-
nisms to move data around the Grid. It also uses
many external services, for example, an Informa-
tion Service such as MDS (Monitoring and Discov-
ery Service) or R-GMA (Relational Grid Monitor-



ing Architecture) needs to be present, as well as
storage resources with a well-defined interface, in
our case SRM (Storage Resource Manager) or the
EDG-SE (EDG Storage Element).

3.2 Replica Location Service

In a highly geographically distributed environment,
providing global access to data can be facilitated
via replication, the creation of remote read-only
copies of files. In addition, data replication can
reduce access latencies and improve system robust-
ness and scalability. However, the existence of mul-
tiple replicas of files in a system introduces addi-
tional issues. The replicas must be kept consistent,
they must be locatable and their lifetime must be
managed. The Replica Location Service (RLS) is
a system that maintains and provides access to in-
formation about the physical locations of copies of
files [10].

The RLS architecture defines two types of com-
ponents: the Local Replica Catalog (LRC) and the
Replica Location Index (RLI). The LRC maintains
information about replicas at a single site or on a
single storage resource, thus maintaining reliable,
up to date information about the independent lo-
cal state. The RLI is a (distributed) index that
maintains soft collective state information obtained
from any number of LRCs.

Grid Unique IDentifiers (GUIDs) are guaranteed
unique identifiers for data on the Grid. In the LRC
each GUID is mapped to one or more physical file
names identified by Storage URLs (SURLs), which
represent the physical location of each replica of the
data. The RLI stores mappings between GUIDs
and the LRCs that hold a mapping for that GUID.
A query on a replica is a two stage process. The
client first queries the RLI in order to determine
which LRCs contain mappings for a given GUID.
One or more of the identified LRCs is then queried
to find the associated SURLs.

An LRC is configured at deployment time to sub-
scribe to one or more RLIs. The LRCs periodically
publish the list of GUIDs they maintain to the set
of RLIs that index them using a soft state proto-
col, meaning that the information in the RLI will
time out and must be refreshed periodically. The
soft state information is sent to the RLIs in a com-
pressed format using bloom filter objects [8].

An LRC is typically deployed on a per site ba-
sis, or on a per storage resource basis, depending on
the site’s resources, needs and configuration. A site
will typically deploy 1 or more RLIs depending on
usage patterns and need. The LRC can also be de-
ployed to work in stand-alone mode instead of fully
distributed mode, providing the functionality of an
replica catalog operating in a fully centralized man-
ner. In stand-alone mode, one central LRC holds
the GUID to SURL mappings for all the distributed
Grid files.

3.3 Replica Metadata Catalog Ser-
vice

The GUIDs stored in the RLS are neither intuitive
nor user friendly. The Replica Metadata Catalog
(RMC) allows the user to define and store Logical
File Name (LFN) aliases to GUIDs. Many LFNs
may exist for one GUID but the LFN must be
unique within the RMC. The relationship between
LFNs, GUIDs and SURLs and how they are stored
in the catalogs is summarised in Figure 1.
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Figure 1: The Logical File Name to GUID mapping
is maintained in the Replica Metadata Catalog, the
GUID to physical file name (SURL) mapping in the
RLS.

In addition, the RMC can store GUID metadata
such as file size, owner and creation date. The
RMC is not intended to manage all generic ex-
perimental metadata however it is possible to use
the RMC to maintain O(10) items of user defin-
able metadata. This metadata provides a means
for a user to query the file catalog based upon
application-defined attributes.



The RMC is implemented using the same tech-
nology choices as the RLS, and thus supports dif-
ferent back-end database implementations, and can
be hosted within different application server envi-
ronments.

The reason for providing a separate RMC service
from the RLS for the LFN mapping is the differ-
ent expected usage patterns of the LFN and replica
lookups. The LFN to GUID mapping and the cor-
responding metadata are used by the users for pre-
selection of the data to be processed. However the
replica lookup happens at job scheduling time when
the locations of the replicas need to be known and
at application runtime when the user needs to ac-
cess the file.

3.4 Replica Optimization Service

Optimization of the use of computing, storage and
network resources is essential for application jobs
to be executed efficiently. The Replica Optimiza-
tion Service (ROS) [6] focuses on the selection of
the best replica of a data file for a given job, tak-
ing into account the location of the computing re-
sources and network and storage access latencies.

Network monitoring services provide the API
that is used by the ROS to obtain information
on network latencies between the various Grid re-
sources. This information is used to calculate the
expected transfer time of a given file with a specific
size. The ROS can also be used by the Resource
Broker to schedule user jobs to the site from which
the data files required can be accessed in the short-
est time.

The ROS is implemented as a light-weight web
service that gathers information from the European
DataGrid network monitoring service and performs
file access optimization calculations based on this
information.

3.5 Service Interactions

The interaction between the various data manage-
ment services can be explained through a simple
case of a user wishing to make a copy of a file cur-
rently available on the Grid to another Grid site.
The user supplies the LFN of the file and the des-
tination storage location to the Replica Manager.
The Replica Manager contacts the RMC to obtain
the GUID of the file, then uses this to query the

RLS for the locations of all currently existing repli-
cas. The ROS calculates the best site from which
the file should be copied based on network monitor-
ing information. The Replica Manager then copies
the file and registers the new replica information in
the RLS.

4 Evaluation of Data Manage-
ment Services

Grid middleware components must be designed to
withstand heavy and unpredictable usage and their
performance must scale well with the demands of
the Grid. Therefore all the replica management ser-
vices were tested for performance and scaleability
under stressful conditions. Some results of these
tests are presented in this section and they show
the services can handle the loads as expected and
scale well.

Clients for the services are available in three
forms: C++ API, Java API, and a Command Line
Interface (CLI). It was envisaged that the CLI, typ-
ing a command by hand on the command line of a
terminal, would be mainly used for testing an in-
stallation or individual command. The APIs on
the other hand would be used directly by applica-
tions’ code and would avoid the need for the user to
interact directly with the middleware. Tests were
carried out using all three clients for each compo-
nent and as the results will show, using the API
gives far better performance results than using the
CLI. The reasons for this will be explained in this
section.

The performance tests were run on the Work
Package 2 testbed, consisting of 13 machines in 5
different sites. All the machines had similar spec-
ifications and operating systems and ran identical
versions of the replica management services. The
application server used to deploy the services was
Apache Tomcat 4 and for storing data on the server
side, MySQL was used. For most of the perfor-
mance tests small test applications were developed;
these are packaged with the software and can there-
fore be re-run to check the results obtained. Note
that these tests were all performed using the non-
secured versions of the services (i.e. no SSL hand-
shake).



4.1 Replica Location Service

Within the European DataGrid testbed, the RLS
so far has only been used with a single LRC per
Virtual Organization (group of users collaborating
on the same experiment or project). Therefore re-
sults are presented showing the performance of a
single LRC.

Firstly, the C++ client was tested using a test
suite which inserts a number of GUID:SURL map-
pings, queries for one GUID and then deletes the
mappings. This tests how each of these operations
on the LRC scales with the number of entries in the
catalog.

Figure 2(a) shows the total time to insert and
delete up to 10 million mappings, and Figure 2(b)
shows how the time to query one entry varies with
the number of entries in the LRC.

Figure 2: (a) Total time to add and delete map-
pings and (b) query the LRC using the C++ API.

The results show that insert and delete opera-
tions have stable behaviour, in that the total time
to insert or delete mappings scales linearly with the
number of mappings inserted or deleted. A single
transaction with a single client thread takes 25 -
29 ms with the tendency that delete operations are
slightly slower than inserts. The query time is in-
dependent of the number of entries in the catalog
up to around 1 million entries, when it tends to
increase. This is due to the underlying database,
which takes longer to query the more entries it con-
tains.

Taking advantage of the multiple threading ca-
pabilities of Java, it was possible to simulate many
concurrent users of the catalog and monitor the
performance of the Java API.

To measure the effective throughput of the LRC,

Figure 3: (a) Total time to add 500,000 mappings
to the LRC using concurrent threads and (b) time
to insert mappings and query one GUID for dif-
ferent numbers of entries in the LRC, using 5 con-
current inserting clients and 5 concurrent querying
clients.

i.e. the time to complete the insert of a certain
number of entries, the total time to insert 500,000
mappings was measured for different numbers of
concurrent threads. Figure 3 shows that the time
falls rapidly with increasing numbers of threads,
bottoming out after 10 or 20 threads. For 20
threads the total time taken is about 40% less than
using one thread. Although the time for an in-
dividual operation is slower the more concurrent
operations are taking place, the overall throughput
actually increases, showing the ability of the LRC
to handle multiply threaded operations.

Figure 3(b) compares insert time and query time
for the LRC with between 0 and 500,000 entries.
This test was done with 10 concurrent threads,
where at any given moment 5 threads would be in-
serting a mapping and 5 threads would be querying
a mapping. The plot shows the insert time rising
from 140 ms to 200 ms but the query time stays
at a constant 100 ms and does not vary with the
number of entries.

4.2 Replica Metadata Catalog

The Replica Metadata Catalog can be regarded as
an add-on to the RLS system and is used by the
Replica Manager to provide a complete view on
LFN:GUID:SURL (Figure 1) mapping. In fact the
way the RMC and LRC are used is exactly the
same, only the data stored is different and thus
one would expect similar performance from both



components.
In the European DataGrid model, there can be

many user defined LFNs to a single GUID and so
in this Section the query behaviour with multiple
LFNs per GUID is analysed. Figure 4(a) shows the
time to insert and delete 10 GUIDs with different
numbers of LFNs mapped to them and Figure 4(b)
shows the time to query for 1 LFN with varying
numbers of LFNs per GUID. These tests used the
C++ API.

Figure 4: Total time to (a) insert and delete 10
GUIDs with varying number of LFNs, and (b)
query for one LFN.

The insert/delete times increase linearly as one
might expect, since each new LFN mapping to the
GUID is treated similarly to inserting a new map-
ping, thus the effect is to give similar results to the
insert times for the LRC seen in Figure 2 in terms
of number of operations performed. Query opera-
tions take longer the more LFNs exist for a single
GUID, however the query time per LFN mapped
to the GUID actually decreases the more mappings
there are, hence the RMC performance scales well
with the number of mappings.

The command line interface for all the services is
implemented in Java using the Java API. Table 1
shows some timing statistics giving the time to exe-
cute different parts of the command addAlias used
to insert a GUID:LFN mapping into the RMC.

The total time to execute the command was 3.0s
and this time is broken down into the following ar-
eas: The start-up script sets various options such as
logging parameters and the class-path for the Java
executable and this, along with the time to start
the Java Virtual Machine, took 1.0s. After pars-
ing the command line it took a further 1.0s to get
the LRC service locator - during this time many

Time (s) Operation
0 - 1.0 Start-up script and JVM start-up
1.0 - 1.1 Parse command and options
1.1 - 2.1 Get RMC service locator
2.1 - 2.3 Get RMC object
2.3 - 3.0 Call to rmc.addAlias() method
3.0 End

Table 1: Timing statistics for adding a GUID:LFN
mapping in the RMC using the CLI.

external classes had to be loaded in.
The call to the addAlias() method within the

Java API took around 0.7s, due to the effect of
dynamic class loading the first time a method is
called. Compared to the average over many calls
of around 25 ms observed above in the API tests,
this is very large, and because every time the CLI is
used a new JVM is started up, the time to execute
the command is the same every time.

In short, the time taken to insert a GUID:LFN
mapping using the command line interface is about
2 orders of magnitude longer than the average time
taken using the Java or C++ API. Therefore the
command line tool is only recommended for simple
testing and not for large scale operations on the
catalog.

5 Open Issues and Future
Work

Most of the replica management services provided
by Work Package 2 have satisfied the basic user
requirements and thus the software system can be
used efficiently in the DataGrid environment. How-
ever, several areas still need work.

5.1 User Feedback

There are a number of capabilities that have been
requested by the users of our services or that we
have described and planned in the overall architec-
ture but did not implement within the project.

There is currently no proper transaction support
in the Replica Management services. This means
that if a seemingly atomic operation is composite,
like copying a file and registering it in a catalog,



there is no transactional safety mechanism if only
half of the operation is successful. This may leave
the content of the catalogs inconsistent with respect
to the actual files in storage. A consistency service
scanning the catalog content and checking its va-
lidity also would add to the quality of service.

The other extreme is the grouping of several op-
erations into a single transaction. Use cases from
the High-Energy Physics community have shown
that the granularity of interaction is not on a sin-
gle file or even of a collection of files. Instead, they
would like to see several operations managed as a
single operative entity. These are operations on sets
of files, spawned across several jobs, involving oper-
ations like replication, registration, unregistration,
deletion, etc. This can be managed in a straight-
forward manner if data management jobs are as-
signed to a session. The Session Manager would
hand out session IDs and finalize sessions when they
are closed, i.e. only at that time would all changes
to the catalogs be visible to all other sessions. In
this context sessions are not to be misinterpreted
as transactions, as transactions may not span dif-
ferent client processes; sessions are also managed in
a much more lazy fashion.

5.2 Future Services

There are several other services that need to be ad-
dressed in future work. As a first prototype WP2
provided a replica subscription facility, GDMP [15],
and the hope was to replace this with a more robust
and versatile facility fully integrated with the rest
of the replication system. This was not done due
time pressures but the functionality to automat-
ically distribute files based on some subscription
mechanism is still much-needed.

In terms of metadata management, currently the
metadata support in the RMC is limited to of O(10)
basic typed attributes, which can be used to se-
lect sets of LFNs. The RMC cannot support many
more metadata attributes or more complex meta-
data structures. There is ongoing work in the con-
text of the GGF DAIS working group to define
proper interfaces for data access and integration,
much of their findings can be used to refine and
re-define the metadata structures of the RMC.

6 Related Work

As mentioned, one of the first Grid replica manage-
ment prototypes was GDMP [15]. In its first toolkit
the Globus project [1] provided an LDAP-based
replica catalog service and a simple replica man-
ager that could manage file copy and registration
as a single step. The initial implementation of the
EDG Replica Manager simply wrapped these tools,
providing a more user-friendly API and mass stor-
age bindings. Later, we developed the concept of
the Replica Location Service (RLS) together with
Globus [10]. Both projects have their own imple-
mentation of the RLS.

An integrated approach for data and meta-data
management is provided in the Storage Resource
Broker (SRB) [5]. Related work with respect to
replica access optimization has been done in the
Earth Science Grid (ESG) [2] project, which makes
use of the Network Weather Service (NWS). Within
the High-Energy Physics community one of the
most closely related projects is SAM [16] (Sequen-
tial data Access via Metadata) that was initially
designed to handle data management issues of the
D0 experiment at Fermilab. In terms of storage
management, we have also participated actively in
the definition of the Storage Resource Management
(SRM) [7] interface specification. In terms of data
management services relevant work is being carried
out on a Reliable FTP service [13] by the Globus
Alliance, which may be exploited by future high-
level data management services for reliable data
movement. Another data management system as
part of the Condor project is Kangaroo [17], which
provides a reliable data movement service. It also
makes use of all available replicas in its system such
that this is transparent to the application.

7 Conclusion

In this paper we have described the design and ar-
chitecture and examined the performance of the
replica management system provided to the Euro-
pean DataGrid project by Work Package 2. The
web services model was used to create a set of
independent replication, cataloging and optimiza-
tion services accessed via a single entry point, the
Replica Manager. The adoption of the web services
model enables a platform and vendor independent



means of accessing and managing the data and as-
sociated metadata of the user applications. Perfor-
mance analysis has shown that when the services
are used as intended, they can cope under stressful
conditions and scale well with increasing user load.

It remains to be seen what the final standard will
be for a Grid services framework. But the data
management services we have developed should be
adaptable with minimal effort to the emergent stan-
dards and can provide a solid base for any future
efforts in this area.
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