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Abstract 
 
Demyelination, the loss of the myelin sheath that insulates axons, is a prominent feature in 
many neurological disorders including multiple sclerosis (MS) and spinal cord injury (SCI) 
[11, 3]. As a result of demyelination, signals are disrupted within the axons, leading to the 
loss of motor and other functions. The myelin sheath can be replaced by a process called 
remyelination, which can be initiated by transplanting stem cell derived oligodendrocyte 
progenitor cells into the injury site. Animal models have shown the effectiveness of this 
treatment for partially restoring the myelin sheath and some of the motor function. 
 We describe a method for automated tracking of the fate of these progenitor cells. 
The method uses cross-sectional histology, high-resolution imaging, and newly developed 
digital image processing algorithms to distinguish between regular oligodendrocyte-
myelinated axons, newly oligodendrocyte-remyelinated axons and Schwann cell-remyelinated 
axons, and to track these cell types over time. The method provides an accurate count for 
each cell type, which is consistent with results obtained from a domain expert by means of 
cross-verification. 

The method, which is based on high-resolution microscopic imagery and multiple 
time series, can be used for temporal tracking of the amount of newly remyelinated axons 
after human embryonic stem cell (hESC) treatment. 
 
1. Introduction 
 
After spinal cord injury (SCI), the human body uses two kinds of cells – oligodendrocytes 
and Schwann cells [12, 2] – to wrap myelin around the demyelinated axons. This process is 
necessary to restore the conduction of signals within axons. However, animal models of SCI 
suggest that remyelination is incomplete and that demyelination progressively continues [13]. 
One of the many therapies being developed to improve the remyelination includes 
transplantation of oligodendrocyte progenitor cells into the adult spinal cord of rats 
following SCI. 

It is important to identify the remyelination that is attributable to therapies so as to 
appreciate their effectiveness in addressing the issues of demyelination at the cellular level. 
Oligodendrocyte-remyelinated axons are identified by their characteristically thin myelin 
sheaths relative to the diameter of the axons. This ratio of myelin sheath thickness to axon 
diameter is called the G-ratio. In addition to the G-ratio, the lighter intensity of the myelin 
sheath of the oligodendrocyte-remyelinated axons is taken into account while distinguishing 
them from the darker, more compact, Schwann cell-remyelinated axons [13, 7]. 

 
 
 
 



 
 

Figure 1. Three types of myelination. The goal of this work is to 
identify oligodendrocyte-remyelinated axons. 

 
An additional challenge for the image processing algorithm is the size of the images obtained 
from the microscope (approx. 66 mega-pixels per cross-section = 200 MB of uncompressed 
RGB image data). Typically, tens of cross-sections are obtained per time step and per animal, 
and images are taken after one day, after two days, after four days, etc., resulting in more 
than 100 images for a single study, or multiple giga-bytes of image data. 
 The amount of image data produced in a single study is prohibitive for accurate 
manual counting. Therefore, an automated method is required to obtain the specific cell 
counts necessary for statistical hESC fate tracking. 
 Figure 1 shows a close-up (229 x 312 pixels = 0.1%), while figure 2 shows an entire 
cross-section (100%). 
 
2. Background 
 
Digital image cytometry, the analysis of cell attributes from microscopy images, serves as an 
essential component of biomedical research. Cytometry can be carried out manually or by 
automated algorithms. One of the current methods for identifying the cells wrapped around 
remyelinated axons is the line sampling technique [3] that is achieved manually by computer-
assisted microscopy. There are two kinds of error introduced in manually estimating and 
classifying the remyelinated axons. Remyelinated axons are analyzed on 5×625μm2 areas 
aligned on a radial oriented line that originates from the central canal of the spinal cord and 
extends to the outermost limit of the spinal cord cross section. 

The remyelinated axons are identified in small areas and estimated for a larger total 
area of pathology. On average, manual identification of occurs only in approximately 15.6% 
of the actual area of pathology. This leaves out a high percentage of estimation in which a 
large amount of error – the estimation error – can be introduced to the data. In addition to 
the estimation error, there is classification error which is because of the subjectivity involved 
in the manual classification of the axons. Basically, distinguishing oligodendrocyte-
remyelinated axons is subjective. It is not known how much error is introduced to the data 
when there are multiple examiners counting these axons. As a result, it is important to be 
able to normalize the error across examiners with an automated method of identification. 

In addition to these errors, the G-ratios, when manually measured and calculated are 
influenced by the examiners subjectivity. Moreover the G-ratio is not calculated for every 



single axon because this would be a tedious and time intensive work. This again leads to 
more classification errors. 

It is difficult to reduce these errors by increasing the percentage of the actual area of 
pathology. Typically, axons are identified in a 1μm thick slice every 2mm per animal. 
Therefore, in projects involving many groups, identifying can take several weeks. An increase 
in percentage of counted area would not only increase the analysis time, but might also 
increase the error due to human factors including fatigue. With an automated system, a 
higher percentage of area of pathology can be analyzed at a more frequent interval for higher 
accuracy, with less subjective classification, and with less human fatigue. 

Thus, it is evident that automated recognition and classification of the axons would be 
imminent in reducing the turn-around-time and the subjective error in this research. Current 
automated approaches include shape-based analysis of cells [14, 5, 1] and the Watershed 
method as a shape-independent classifier, which is very susceptible to noise [6, 10]. 
Separation of cell boundaries to detect individual cells is an active area of research [9, 4, 8, 
15]. Jones et al. [8] used a non-Euclidean Voronoi diagram on Riemannian manifolds to 
detect cell boundaries and segment cells based on known cell nuclei. 

In this work we introduce robust, shape-independent algorithmic solutions to 
automatically detect and classify the oligodendrocyte-remyelinated axons, and to track their 
fate over time. Since we are using different animals, we cannot track the fate of individual 
cells. This can only be done in an in-vivo study, for instance, using fluorescent or 
radionucletide markers. We are using a statistical approach instead. 
 

 
Figure 2. Histology seven days after hESC injection. 

(8,944 x 7,785 pixels) 
 
 
 
 
 



3. Challenges in Automated Remyelination Type Classification 
 
Several artifacts in the images make automated remyelination type classification challenging. 
The fact that the images are usually littered with large amounts of cellular debris, i.e., 
proteins and other cell bodies, require the algorithm to be robust in terms of accurate cell 
identification. On top of this, the classifier must be shape-independent as Schwann cells and 
oligodendrocytes do not conform to any particular shape. In particular, axons are not 
necessarily convex. 

Other artifacts, such as varying intensity levels across the image, also need to be 
addressed. The latter can be resolved by introducing a local gradient based method to 
identify cell boundaries. 
 
4. Image Segmentation and Classification 
 
Our technique first detects the axon boundaries progressively using isocontours with varying 
gradient levels. Compared to an intensity-based method, the gradient-based method makes 
the algorithm robust to changes in intensity levels caused by different illumination, slice 
thickness, staining, stray light, and other factors. Gradient-based isocontouring is 
independent of shape and can be computed for all myelin sheath types regardless of their 
absolute intensity values. 

The detected structures are subsequently analyzed for unwanted features including 
cellular debris, which are then removed. Finally, the remyelinated axon parameters including 
the G-ratio are calculated. The oligodendrocyte-remyelinated axons are then detected by 
evaluating this quantity. 
 
5. Results 
 

 
Figure 3. Manual (red) vs. automated (cyan) classification. 

 
Figure 3 shows the results of manual vs. automated classification. The red markers 
correspond to the manual mark-up of the image. The cyan contours refer to the automated 



segmentation and classification. The images (488 x 470 pixels, total: 255 axons) exposed a 
good correlation between the manual (count: 92 axons) and the automated method (count: 
100 axons) for identifying oligodendrocyte-remyelinated axons. These results have been 
confirmed on other similar-sized and larger images which cannot be shown here. 
 
6. Conclusions 
 
The gradient-based progressive isocontouring for cell detection is a generic pre-processing 
method to detect closed shapes. We have developed a robust method for stem cell fate 
tracking based on a G-ratio classification. 

Our success in 2D geometry based post-processing of structures for axon-separation 
and noise removal might evoke great interest in the newly developing bio-geometry 
community. This automated classification of oligodendrocyte-remyelinated axons has also 
injected a lot of excitement among the neurobiologist collaborators. This project will relieve 
them of several weeks of pain-staking routine, repetitive, and mundane task that consumes 
several hours of trained people power. The accuracy of our detection and classification 
results have been corroborated, appreciated, and accepted by them and on account of its 
reliability, we are sure these methods will find widespread applicability reducing the 
turnaround time of their research. 

The authors would like to acknowledge Dr. Hans S. Keirstead and his lab for 
providing the data set and the manual mark up, and Koel Das for some of the software code. 
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