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Abstract 
 Advanced medical imaging technologies have enabled 
biologists and biomedical researchers to gain better insight in 
complex, large-scale data sets. These data sets, which occupy 
large amounts of space, can no longer be archived on local hard 
drives and are also difficult to transmit over currently existing 
networks. To make the data accessible to researchers at remote 
locations over the Internet within a reasonable amount of time, 
we are describing a web-based volume rendering system that 
incorporates a multi-resolution technique for transforming large-
scale data sets into hierarchical volumes. We are using Haar 
wavelets to decompose the data set into a multi-level-of-detail 
representation that can be transmitted from the server side to the 
client side in a progressive fashion. The image is rendered using 
a texture-based visualization technique in Java3D. A new 
efficient illumination technique has been implemented to 
improve the image quality of the rendered volumes by using pre-
calculated normal vectors for all the surface voxels. The 
advantage of this method is that the illumination can be 
calculated on the client side. It does neither affect the data 
transmission time nor the interactive behavior of the texture-
based rendering algorithm. 
 
INTRODUCTION 
 
 We want to demonstrate that 3-D texture mapping in 
combination with wavelet compression is a viable and efficient 
alternative to conventional ray-based or projection-based 
volume or surface rendering methods. Volume rendering is a 
technique for visualizing, interacting with and interpreting large 
volumetric data sets by sampling data in three dimensions. It is a 
powerful tool well suited to a wide range of applications in 
different scientific disciplines. Enhanced imaging techniques 
like Computed Tomography (CT), Magnetic Resonance Imaging 
(MRI), Positron Emission Tomography (PET), Confocal laser-
scanning microscopy, etc., allow physicians and biologists to 
distinguish pathological from healthy tissues or to study 
microscopic cell structures in greater detail. The common aspect 
about all of these scanning devices is that they provide 
comprehensive 2-D cross-sectional images of anatomical 
structures of the human body at high resolution. The size of 
these data sets makes them difficult to store on a local hard drive 
and prohibits efficient transmission over currently existing 
networks. 

  
 To provide a facility for large-scale data storage, San Diego 
Supercomputer Center (SDSC) maintains a High-Performance 
Storage System (HPSS), where large structured and unstructured 
mesh data sets can be stored. The Scalable Visualization Toolkits 
(VisTools), an NPACI initiative, primarily developed at SDSC, The 
Scripps Research Institute (La Jolla, CA), UC Davis, UC Irvine, U 
Texas, and Mississippi State University, are used to access these data 
sets.  
 The large-scale volumetric data sets provided by HPSS are 
commonly stored in two typical file formats: the MSH format is used 
for unstructured grids and supports multiple data sets in a single file, 
while the VOL format is used for structured, volumetric data. The 
VOL file format consists of two variants: "V1" (simple format) and 
"V2" (additional features that can handle large data sets more 
efficiently). Additionally, both V1 and V2 variants come in three 
different flavors: vols, volb, and volc. A vols file consists of 8-bit 
scalar values, a volb file consists of data stored as 32-bit RGB or 
RGBA values, and a volc file stores data as 64-bit RGB-alpha-beta 
values. "V2" can store data in both chunked and unchunked formats. 
The chunked layout is used when the user is interested in rendering a 
particular region-of-interest (ROI), say a tumor in the brain, or a 
particular sub-volume in general. 
 
BACKGROUND 

 
Uncompressed data sets require massive storage capacity and 

transmission bandwidth. Several file compression schemes have been 
introduced. Despite several advantages of JPEG like simplicity, 
satisfactory compression and decompression performance and 
availability of special purpose hardware implementations, there are 
several drawbacks, for instance, loss of color information due to the 
chosen color model (YIQ), and block artifacts at low bit rates [1]. 

Wavelets have been proven to eliminate these artifacts as they 
typically do not use color model transformations, and because their 
basis functions have local support of variable length. Wavelets also 
facilitate progressive transmission of images (recursive image 
decomposition). They have an inherent multiresolution nature, which 
makes them suitable for applications where scalability is required and 
tolerable degradation can be accepted [2]. The Haar wavelet is one of 
the simplest wavelet transforms and can be computed efficiently 
using Integer arithmetics. Also, since we are dealing with pixel data, 
which resemble more a rectangular signal than a continuous analog 
signal, Haar wavelets are best suited to represent the original signal, 
because they use box functions as base functions [3].  

In most cases of image transformation, wavelets have been 
implemented for one-dimensional signal transformation or two-
dimensional image decomposition. As volume rendering of images 



has become more and more important, the necessity to store 
volume data in a more compact way and the need for 
hierarchical, multi-resolution representations and progressive 
data transmission motivates the implementation of a Haar 
wavelet transformation in 3-D. 

Volume rendering has gained lot of importance in recent 
times due to improvements in rendering hardware and due to its 
widespread use in various applications. Ray-based algorithms 
like ray tracing or ray casting produce high quality images but 
are very time-consuming [4]. Splatting [5] is also 
computationally expensive though it is more efficient than ray 
tracing. The Shear-Warp [6] volume-rendering algorithm is 
based on the factorization of the viewing matrix, which produces 
artifacts if the opacity or color attributes of the volume contain 
high frequencies.  

Texture-based volume rendering can be used as an 
alternative, as it has been recognized as a very efficient 
technique, especially after the first SGI Reality EngineTM 
featuring 3-D texture mapping hardware became available [7]. 
Hardware accelerated 3-D texture-based volume rendering 
algorithms let users achieve interactive frame rates and high 
quality images [8]. Most of the previous texture-based volume 
rendering algorithms have been primarily based on OpenGL or 
Open Inventor [9, 10]. The need for web applications in recent 
years has encouraged researchers to explore web-based 
rendering techniques using Java and Java3D [11]. Earlier works 
include methods of extracting slices on the client side [12] or 
remotely on the server side [13]. Some authors proposed loading 
the entire data set onto one's local drive, but these methods 
could prove tedious due to the limited storage capacity on the 
client side. Server-based storage can also be inefficient if large 
data sets need to be transmitted due to the limited bandwidth 
that current networks typically provide. To overcome these 
drawbacks, we are developing a web-based volume rendering 
system, which uses 3-D Haar wavelet transformations to 
transform large data sets into multi-resolution volumes before 
being transmitted over the network to the client side. The 
transformed volumes are then used in texture-based volume 
rendering on the client side. Previous texture-based volume 
rendering algorithms have incorporated different lighting 
methods to bring realism to the rendered volumes [10, 11, 14]. 
Our texture-based volume rendering application provides an 
efficient illumination implementation by using a positional light 
source and pre-calculated normal vectors for all surface voxels 
of the 3-D volume. 
 
WEB-BASED VOLUME RENDERING  
SYSTEM 
  
 Our web-based volume rendering system implements a 
client-server model (figure 1) [15, 16]. The data repository 
(HPSS), where our input data sets are stored, allows the users to 
define public and private user groups. 
 On the server side, depending on the file format either a 
series of 2-D cross-sections or a sub-volume is extracted from a 
data set using VisTools. The 2-D cross-sections are assembled to 
form a 3-D volume (or 3-D array). This volume is then 
transformed using a 3-D Haar wavelet transformation and 
compressed into a more compact representation. The 
compressed representation of the volume is then transmitted to 

the client who had requested this data set or a particular sub-volume 
for rendering. The client-side rendering algorithm renders it as a 3-D 
volume using 3-D texture mapping in Java3D. The initial data 
transmission usually consists of a coarse representation of the entire 
original volume, which serves as an initial preview of the data set for 
the user. The resolution of the rendered volume is increased later by 
adding detail coefficients to the initial coefficients that represent the 
coarse volume. The data reconstruction uses an inverse Haar wavelet 
transformation. Though the whole data set can be reconstructed on 
the client-side and rendered in full resolution, in many cases it is 
sufficient to render only a particular region-of-interest (ROI) selected 
by the user in full detail. In this case, a low-level representation of the 
ROI is transmitted first, along with a coarse overview representation 
of the rest of the data set (Figure 2). Subsequently, the detail 
coefficients of the ROI are transmitted to render the ROI in full 
resolution. 
 
ACCESSING DATA SETS USING VISTOOLS 
 
 The VisTools are available in both a Java and C++ version. To 
implement a platform-independent application, the Java version of 
the VisTools is used. The VisTools can be used to extract 2-D cross-
sections from the data sets. 

 
 

Figure 1. System Architecture 
 
 In order to reduce the amount of information that needs to be 
transmitted from the server to the client, sub-volumes can be 
extracted from a large data set. Extraction of sub-volumes is helpful 
when the user is interested in a particular region of the data set and 
wants it to be rendered at a higher level-of-detail than the rest. A low-

Dataset 

2D cross-
sections 

3D Volume

3D Haar Wavelet 
Transformation 

Intranet 

Internet 

3D Haar Wavelet 
Reconstruction 

3D Texture 
Mapping 

3D Texture

Server (HPSS) Client 



Client-side rendering Volume

resolution version of the data set is used to provide the necessary 
context information and to enable orientation and navigation 
within the data set. For example, a neuroscientist might be 
interested only in a particular part of the brain for conducting his 
or her analysis of the tissue. For such cases, VisTools support a 
special format called the chunked file format (“V2”), which 
enables the extraction of sub-volumes from a data set. 
  

 
 
 

Figure 2. Sub-volume representation 
 
 We tested our algorithm by extracting cross-sections from a 
CT scan of a human head (ctbrain.vols), a human brain 
(brain_stride_8.volc), a cancer cell (cell.volc) and a series of 
cryosections of a human brain (brain_stride_cryo_8.volc). The 
CT scan of a human head consists of 512 x 512 x 231 elements, 
the human brain data set consists of 94 x 113 x 131 elements, 
the cancer cell data set consists of 251 x 70 x 312 elements, and 
the cryosections of a human brain consist of 223 x 144 x 184 
elements. All the sizes of these data sets clearly show that they 
occupy large amounts of space and cannot be accommodated on 
commodity desktop machines. 
 Sample 2-D cross-sections extracted from these data sets 
are shown in figure 3. 
 

           
     CT head                 Human brain         Cryosection of a 
                                                                    human brain 
 

              
Cancer cell 

 
Figure 3. Sample 2-D cross-section 

 
HIERARCHICAL REPRESENTATION OF 
LARGE DATA SETS USING 3-D HAAR 
WAVELETS 
  
 After the cross-sections are extracted from the data set, the 
data needs to be transformed into lower-resolution 
representations to enable faster transmission over the network. 
The Haar wavelet transformation has been implemented in 3-D 
to enable transformation of a 3-D volume. The Haar wavelet 
transformation decomposes an image into a set of low-pass filter 
coefficients and a set of high-pass filter coefficients (detail 

coefficients). To give a better idea of the actual implementation of the 
wavelet transformation, we illustrate the procedure with a simple 
numeric example. 
 Assume we have a one-dimensional image with an 8-pixel 
resolution where the pixels have the following values [17]: 
 

9       7        3       5       9       3       1       9 
Original data 

 
 The low-pass filtered coefficients are obtained by averaging two 
consecutive pixels, while the detail coefficients represent the 
difference between the average and one of the two consecutive 
pixels. After the transformation cycle, the above image will be 
represented as follows: 
 
              8      4      6      5                        1     –1      3      –4 
     Low-pass filter coefficients               Detail coefficients 
 
 Now the original image can be represented as a low-resolution 
image ((a+b)/2), which consists of four pixels, and another four-pixel 
image, which contains the detail coefficients ((a-b)/2). Recursively 
repeating this algorithm leads to an image that is reduced by a factor 
of two for each cycle. 
 This simple 1-D scheme can be lifted to higher dimensional 
cases. For a 2-D wavelet transformation, this algorithm is applied in 
the x-direction first, and then in the y-direction. Figure 4 shows the 
low-pass filter coefficients and the detail coefficients obtained after 
each cycle for a single slice of a human brain. Since most of the 
detail coefficients are very small, they can be discretized or neglected 
in order to obtain higher compression rates (lossy compression). One 
cycle for an n-dimensional data set is defined as the completion of the 
algorithm for all n directions  [15, 16].  
 
 
 
 
 
 
 
Original slice           First cycle             Second cycle         Third cycle 

 
Figure 4. Low-pass filter and detail coefficients of a Haar wavelet 

transformation 
 
 For progressive rendering, the low-pass filtered coefficients are 
sent to the client first, while the detail coefficients are transmitted at a 
later time. When the detail coefficients are received on the client side, 
detail information is added to the volume, which has already been 
rendered, to refine the image. The reconstruction of the image data 
uses simple arithmetic operations (integer arithmetic). As the image 
array received on the client side consists of the low-pass filter 
coefficients and the details coefficients, the respective pixel values 
are obtained by adding and subtracting the corresponding detail 
coefficients to and from the low-resolution image coefficients. The 
reconstructed pixel values are: 
 

(8+1)   (8-1)   (4+(-1))   (4-(-1))   (6+3)   (6-3)   (5+(-4))   (5-(-4)) 
  
       9          7           3             5            9          3          1              9 

Reconstructed data 

+ 

ROI 



These values are identical to the original values. After the data 
set has been reconstructed using the Haar wavelet reconstruction 
algorithm, the volume is rendered using 3-D texture mapping in 
Java3D.  
 
VOLUME RENDERING USING 
TEXTURES 
 
 2-D texture mapping can be used to change the appearance 
of an object by mapping a 2-D image onto the surface of the 
object while requiring only a little increase in the rendering time 
[18]. Multi-dimensional texture mapping maps a multi-
dimensional image to a multi-dimensional space usually by 
exploiting hardware-accelerated rendering capabilities. 
 The technique of 3-D texture-based volume rendering 
involves loading a 3-D texture into the texture buffer and 
mapping a stack of parallel planes in back-to-front order with 
suitable textures, perpendicular to the viewing direction. 3-D 
texture coordinates are then tri-linearly interpolated at the 
polygon vertices using the 3-D texture mapping hardware in 
order to map the values from texture space to the object space in 
which the polygonal surfaces are defined. Alpha blending and 
compositing is done for each textured plane with the contents of 
the frame buffer to produce a 3-D representation of the volume. 
The Java3D API is used for the implementation of 3-D texture-
based rendering. Using the Java3D API, the required Java3D 
objects are created and inserted in a scene graph for rendering 
[19]. The scene graph that is used in developing our texture-
based volume rendering application is shown in the figure 5. 
 

 
 

 For loading a data set into memory, a mesh is created using the 
VisTools. Once the mesh is loaded into the memory successfully, pre-
processing is performed to create a scene graph with the 3-D texture 
and its attributes for rendering. Alpha values are assigned to the 
extracted 2-D cross-sections for enabling transparency and alpha 
blending, through which the interior structures of the volumetric data 
set can be rendered. All the planes that are in the scene graph are 
rendered in a back to front order using the 3-D texture mapping 
hardware in order to display a 3-D reconstructed volume. Results 
obtained by rendering different data sets in 3-D are presented in 
figure 6. 
 The above-defined texture mapping technique is used in 
progressively reconstructing the low-resolution volumes that are 
transmitted to the client side.  The detail coefficients are added to the 
already rendered low-resolution image to refine the original image. 
 Figure 7 shows a progressively reconstructed data set from a 
low-resolution representation to its original resolution. At each level 
of reconstruction the detail coefficients are added progressively to the 
corresponding low-pass filter coefficients. A user interface, 
VOL<X>REND, that is capable of reading volb, volc and vols (volx) 
files, has been developed for rendering these reconstructed data sets 
in 3-D (figure 8). The number of slices to be mapped onto the planes 
should be a power of two, since the 3-D texture restricts its 
dimensions to powers of two. The upper limit of slices and planes a 
user can select is displayed in a panel of the user interface. A larger 
number of slices gives a better quality of the rendered image and less 
number of slices gives more speedup. 
 

           
        CT head with skin       Semi-transparent        Bone structure of  
                                                  CT head                    a CT head 
 

                 
         Cryosections of a           Human brain                Cancer cell 
             human brain 
 

Figure 6. Data sets rendered using 3-D texture mapping 
 
 The user can also select different transparency transfer functions 
(Linear Mapping, Exponential Mapping, Threshold Mapping, etc.) 
for rendering and viewing the inner structures of the data set. For 
each transparency function, the alpha value of every pixel in the 3-D 
buffer is modified. When the user selects a different transfer function 
or different number of slices and planes, a new 3-D texture and the 
newly specified number of planes are created with the new alpha 
values inserted into the 3-D texture buffer. 
 The user can interact with the 3-D volume with both the 
keyboard and the mouse. The transformations (rotation, translation 
and scaling) are applied to the 3-D texture instead of the geometry, 
keeping the planes always perpendicular to the viewing direction. 
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This method eliminates the redundancy of creating a new 3-D 
texture for every new coordinate transformation of the 3-D 
volume. 
 

         
                    Initial preview                 Second stage 
 

         
                       Third stage                      Final stage 
 

Figure 7. Progressive reconstruction 
 
  

 
 

Figure 8. User interface of VOL<X>REND 
 

ILLUMINATION 
 
 Illumination adds realism to a scene, and it provides a more 
realistic visual appearance of 3-D models. It also provides an 
additional depth cue that makes it easier to recognize and 
distinguish anatomical features. An illumination model 
determines the color of a surface point by simulating light 
attributes (intensity, color, position, direction) and material 
attributes (color, reflectivity, transparency) [20].  
 In order to illuminate a 3-D object, a light source (IL) must 
be defined, and normals must be calculated for all surface voxels 
of the 3-D model. In our texture-based volume rendering 
algorithm, which uses 3-D texture-mapped 2-D planes as 
geometric objects, there is no surface information available to 
calculate normals for surface voxels. Therefore, we estimate 
normal vectors based on gradients (tri-linear interpolation) for 
the surface voxels. 
 The first step in this process is to identify the surface 
voxels of the 3-D volume. A voxel is a surface voxel if at least 

one of its neighbor voxels is outside the 3-D object. A voxel is called 
an outside voxel if it is either completely transparent or close to the 
background color. Since a data set can be rendered to display 
different anatomical structures or materials by selecting different 
transparency mappings, the material boundary keeps changing. For 
example, when rendering the bone in a CT scan, all the voxels that 
represent soft tissue are made totally transparent. Therefore, along 
with testing a voxel’s color, its alpha value is also tested for 
determining whether it is an outside voxel. When a surface voxel is 
identified, a normal is calculated as the normalized sum of all the 
gradient-weighted unit vectors of its outside neighbors.  
  Figure 9 shows a 2-D representation of a normal vector of a 
surface voxel. A 2-D surface point has 8 neighbors, and a 3-D surface 
voxel has 26 neighbors. For each voxel in the 3-D texture, all its 26 
neighbors must be tested to identify whether it is a surface voxel. A 
positional light source is chosen and kept fixed at a particular 
position in the scene.   
 

 
Figure 9. Calculating a normal for a 2-D surface point 

 
 According to Lambert’s law, a dot product must be calculated 
between the light vector and the normal of a surface voxel to 
determine the percentage of light a surface voxel reflects. For diffuse 
surfaces, the reflected light is determined by the cosine between the 
surface normal N, and the light vector IL,  (i.e., idiff = N · IL = cosφ) 
[20]. The resulting value of the dot product is multiplied with the R, 
G, and B components of the color of the respective surface voxel. 
This way we modulate the intensity and calculate the new color of the 
voxel. 
 In summary, all surface voxels are identified for a 3-D texture, 
their normals are calculated, and the resulting newly colored pixels 
replace the existing 3-D texture. This 3-D texture is then used in a 3-
D texture-based rendering algorithm as described in the previous 
section. 
 Since the light position is fixed to the scene, it is rotated along 
with the texture, when a camera motion is simulated by rotating the 
texture. If the light position keeps changing with respect to the 
texture, recalculation of the 3-D texture is necessary for every new 
orientation, which decreases the performance of the algorithm. 
 The advantage of this algorithm is that for a fixed light source it 
is possible to rotate, scale, and translate the object within the texture 
buffer without any performance loss. 
 Figure 10 shows some of the results that were obtained by 
incorporating a light model in the 3-D texture-based Java3D renderer. 
The results show a significant improvement in image quality of the 3-
D rendered data sets. 
 
 
 
 
 



     
CT head rendered without and with illumination 

 

    
Human brain rendered without and with illumination 

 

    
A gray scale human brain rendered without and with 

illumination 
 

Figure 10. 3-D Rendered volumes showing the effects of 
illumination 

 
STATISTICS 
 
 Timings were taken for sample data sets rendered with 
VOL<X>REND, and they were taken individually for loading, 
processing, and rendering. The loading step includes the creation 
of the data structures and the actual file loading, the processing 

step includes creating a 3-D texture, inserting alpha values into the 3-
D texture, creating planes and finally creating a scene graph, and the 
rendering step includes the time taken by the Java3D renderer to 
render the scene graph. The timing values are shown in Tables 1+2. 
 These timings were taken for rendering the data sets in 3-D with 
and without illumination both on an SGITM workstation (Machine A), 
and on a Sun workstation (Machine B). Machine A is a SGITM with 
four 400Mhz IP27 R12000 processors and 4096 MB of main 
memory.  It has an InfinityReality3TM graphics engine that supports a 
texture of size 2048 x 2048 x 1. Machine B is a sun4u 8-slot SunTM 
Enterprise 4000/5000 machine with a system clock frequency of 82 
MHz and a main memory size of 2048 MB. 
 Please note that when the user selects a different set of slices and 
planes, the data set is not loaded again, since it is already present in 
the memory. Moreover, rendering time also decreases for subsequent 
combinations of slices and planes, since the scene graph is not 
constructed again from scratch, instead new nodes are added to the 
already constructed scene graph.  
 The average total time for rendering eight slices and sixteen 
planes of any data set is less than 15 seconds. Therefore, in less than 
15 seconds the user can get a preview of the data set, and the image 
will be continuously refined as new detail coefficients are received by 
the client. There is a 2.51 factor of increase in the total time to render 
the CT head data set with 256 slices and 512 planes on Machine A, 
and a 1.73 factor of increase on Machine B, when compared with the 
times taken to render the same data set without illumination. 
Similarly, for a human brain data set the time increases by a factor of 
4.93 on Machine A and 3.74 on Machine B (rendered with 128 slices 
and 220 planes). This factor of increase in time is in the processing 
step where all the voxels in the 3-D texture are traversed to define 
normals for surface voxels and calculate new shaded pixel colors, 
which are again saved in the 3-D texture. 
 There is no significant change in the rendering time with 
illumination and without illumination, since in both cases always the 
same size of the 3-D texture is rendered. 

 
Table 1. Timing results of a CT scan of a human head without and with illumination 

Slices / 
Planes 

Loading 
(ms) 

Processing (ms) 
(Without 

Illumination) 

Processing (ms) 
(With Illumination) 

Rendering (ms) 

 A B A B A B A B 
8/16 1435 3108 5512 10547 7671 13834 158 92 

64/128 0 0 26921 42049 48505 72488 103 227 
128/256 0 0 53286 84160 113118 144540 132 538 
256/512 0 0 105541 167784 266114 291258 196 756 

 

 
Table 2. Timing results of a human brain without and with illumination 

 
Slices / 
Planes 

Loading 
(ms) 

Processing (ms) 
(Without 

Illumination) 

Processing (ms) 
(With Illumination) 

Rendering (ms) 

 A B A B A B A B 
8/16 2864 3388 2952 5753 5215 9723 364 85 

16/32 0 0 2499 2977 9616 16031 49 185 
32/64 0 0 4686 5980 17961 26431 31 199 

64/128 0 0 9493 11881 40118 49629 51 235 
128/220 0 0 18772 25324 92749 96182 83 455 



CONCLUSIONS AND FUTURE WORK 
 
 We have presented a 3-D Haar wavelet algorithm for 
hierarchical representation of large data sets that can be used to 
transmit low-resolution representations followed by detail 
information across the network. Progressive data transmission 
enables the client to render an initial preview image instantly 
while the rest of the data set is added as detail information as 
soon as it becomes available. VOL<X>REND is a fast, 
interactive, Java-based, platform-independent, texture-based, 
direct volume rendering system for large biomedical data sets 
that are encoded in the VOL file format. It can be easily 
extended to read other volumetric formats by replacing the read 
method, and it can also be used for other application domains. 
 Defining gradient-based normals for surface voxels in 3-D 
volumes and incorporating an illumination model have 
significantly improved the image quality of the rendered images. 
Processing time is slightly increased when using lighting, which 
affects the overall performance of VOL<X>REND, but the 
rendering time remains constant, so that the frame rate and the 
interactive response time of client application remain 
unchanged. This is an important feature and one of the major 
contributions of this work. 
 Future work will focus on calculating shadows for 
volumes, which will provide even more realism. New techniques 
need to be explored for re-rendering a data set without much 
decrease in performance when the position of the light source is 
moved. Since VOL<X>REND is implemented in Java, it will be 
integrated into a web-based volume rendering system, such that 
it supports multiple users and allows to render large-scale 
biomedical datasets or sub-volumes of such data sets 
hierarchically (low-resolution followed by detail information) 
over the web. 
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