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Abstract Hierarchical, texture-based rendering is a key technology for exploring large-
scale data sets. We describe a framework for an interactive rendering system 
based on a client/server model. The system supports various output media 
from immersive 3-D environments to desktop based rendering systems. It uses 
web-based transport mechanisms to transfer the data between the server and 
the client application. This allows us to access and explore large-scale data sets 
from remote locations over the Internet. Hierarchical space-subdivision, 
wavelet compression, and progressive data transmission are used to visualize 
the data on the client side. 
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1.  Introduction 

We present a framework for distributed hierarchical rendering of large-scale 
data sets that addresses two problems at the same time: (i) limited network 
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bandwidth and (ii) limited rendering resources. Our goal is to convert the 
data set into a more compact representation and to break it down into smaller 
subunits, while making effective use of multiresolution techniques. Our 
system uses a server-based data repository, which can be accessed remotely 
by a rendering client in a hierarchical way. This is beneficial both for 
effective data transmission over the Internet and for optimizing rendering 
time on the client side. 

The system consists of two components: (i) a server, which serves as a 
data repository for large-scale data sets, and (ii) a rendering client, which 
accesses the data on the server and renders the data (figure 1). For efficiency 
reasons, most of the rendering is done on the client side. This means that the 
client uses specially designed Java applets provided by the server to render 
the data. Depending on the type of request that is sent by the client, the 
server returns a Java applet for rendering geometry data (iso-surfaces) or 
volume data. A 2-D texture-based desktop rendering application has been 
implemented in Java3D. An alternative rendering client that uses 3-D 
texture-based rendering and OpenGL has been implemented in C++ 
[Ope99]. This client can run in desktop mode or in VR stereo mode. 

Customizing the rendering 
application keeps the applet small and 
avoids additional overhead for different 
cases. The initial data set is also small. 
The first scene provides the user with a 
preview of the entire data set and is 
refined later upon subsequent requests by 
the client. The term ‘scene‘ in this 
context refers to a 3-D object, which can 
be rotated, scaled, and translated 
interactively, as opposed to a single 2-D 
preview image. All data transmitted from 
the server is rendered as a 3-D object. 

In order to keep the amount of data 
transmitted over the Internet small, the 
algorithm uses hierarchical data 
compression and storage techniques. 
This includes a data preparation step 
(section 3), adaptive space subdivision 

(delimited octrees for volume), wavelet-based data reduction and storage of 
large volume data sets, and progressive data transmission techniques for 
hierarchically stored volume data sets. These hierarchical data structures will 
be explained in section 5. 

Java/VRML (desktop) 

 

 CAVE 

Figure 1. Client/server system 
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The web-based user interface combines HTMLform-driven server 
requests with customized Java applets, which are transmitted by the server to 
accomplish a particular rendering task (section 5). This allows us to create a 
flexible user interface, which can be easily modified and customized. It also 
enables features such as hypertext-documentation and online-help. The C++ 
version features interactive rendering and improved rendering performance. 

2.  Related Work 

In [Mic97], the authors present a framework for an interactive rendering 
client in Java. In contrast to this universal solution, we use customized Java 
applets that are loaded on demand (volume rendering, geometry rendering, 
hybrid rendering, other volume tools). Similar to [Tra97], the tools are 
available on the Internet as a rendering service for large-scale data sets. 

Other web-based approaches include rendering of data directly from the 
compression domain (volume data) [Lip97] and isosurface extraction 
techniques (geometry data) [Eng99]. We present a method that combines 
these techniques with an efficient hierarchical data structure. Our method 
takes advantage of the fact that reconstruction from the Haar wavelet domain 
can be implemented very efficiently using integer arithmetic without 
additional overhead on the client side. The resulting patterns can be written 
directly into the texture buffer. 

Our prototype implementation features 2-D/3-D preview capability (both 
in the Java3D and in the VR version), interactive cutting planes in a 3-D 
rendering, hierarchical iso-surface models to provide context information 
[Lor87, Nie91, Mon94], a lens function to examine particular regions of 
interest (ROIs), and variable magnification and lens shape with interactively 
modifiable ROI. The user interface can be extended to provide additional 
functionality. Complex geometry scenes are converted into VRML2 so that 
the web-based client can render the scene interactively in real time. 

3.  System Overview 

The server (figure 2) integrates a series data preparation steps. First, each 
data set is prepared for hierarchical storage using NPACI’s Scalable 
Visualization Toolkit before it is added to the data repository (section 7) 
[Mey99]. 

The filter step is described in section 4, followed by the space 
subdivision and wavelet compression scheme. The data is finally stored in a 
repository (section 5). 
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The server sends the data either through a web channel together with a 
Java applet to the Java/VRML client, or to the C++ 3-D rendering engine 
(figure 3). 

4.  Data Preprocessing and Filtering 

As datasets become larger and more 
detailed, they can no longer be segmented 
exclusively by interactive methods or by 
hand. Also, they do not compress very well 
because of lots of redundant data in the 
unsegmented part of the image. Image parts 
that would not contribute to the rendering 
do not need to be stored. Therefore, using 
segmentation in conjunction with data 
compression, we obtain much better 
compression rates and improved data 
transmission times. 

Real-color RGB images, such as 
cryosections, contain much more 
information than CT or MRI data: the reso-
lution is usually higher (150-500 dpi as opposed to 25 dpi, today’s standard, 
leading to an increase of the data volume by a factor of 203 = 8,000), and the 
color information provides some additional cues. Therefore, we use an 
automated segmentation pipeline, which allows us to apply different filters 
and image processing algorithms to separate the tissue from the surrounding 
material. 

4.1. Human Brain Data Set 

The Human Brain Data Set (courtesy of Arthur W. Toga, Ahmanson-
Lovelace Brain Mapping Center, UCLA School of Medicine) that we present 
here has a resolution of 1472 x 1152 pixels per slice and consists of 753 
images of cryosections. The data set provides real-color RGB information, 
16 bits per channel. Due to the nature of the cutting technique, the data is 
different from conventional CT or MRI data. The images are not real cross-
sections, but merely photographs of the surface and the structures that have 
not been sliced yet. Cavities or gaps in the brain reveal structures that are 
actually located behind the cutting plane, i.e., in deeper layers. These parts of 
the image need to be eliminated and replaced by transparent regions. Also, 
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Figure 2. Server operations 
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Figure 3. Client: access mechanism 

the brain must be separated from the surrounding matter, i.e., from the ice, 
and from the background (figure 4). 

4.2. Segmentation: Color Cues 

The brain can be easily distinguished from the ice and the background by 
using the RGB color information from the images. By using a different color 
model, we can make use of the fact that the red and light brown components 
are much more dominant in the brain than in the rest of the picture. We have 
found that the YIQ color model works best for selecting this brown color 
(the I component detects both the red component and the intensity). This 

model is used in television 
for natural representation of 
skin colors. 

Figure 5a shows a 
resulting image (slice #100 
of 753). The brain has been 
nicely segmented. However, 
the image still shows 
transparent spots and holes 
inside the brain structure 
and some noise around the 
brain. To fill these holes, to 
smooth the contour, and to 
remove the noise, we apply 
a set of filters after YIQ 
thresholding. 

4.3. Filtering 

Figures 5b-e show the individual steps of the filter pipeline. In figure 6, 
the rectangles represent the filters that were used to fill the holes and  
smooth the contour, and  the ovals depict the filters that were used to remove 
the noise. Each process shows some progress, but after using a dilation filter, 
some of the ice appears again close to the contours. An RGB color threshold 
was used to remove these artifacts. 

The segmentation pipeline consists of these steps: 

(1) Median filter (5 x 5 window, remove holes, smooth contours); 

(2) Region growing (8 directions, check for background pixels, remove 
      noise if below size threshold); 
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(3) 2D morphology (9 x 9 window, dilation); 

(4) RGB thresholding (removal of iced area); and 

(5) 3D morphology (9 x 9 x 9 window, erosion). 

       

      Figure 4. Cryosection of       Figure 5a. YIQ thresholding    Figure 5b. Median filter 

                     a human brain 

       

Figure 5c. Region growing   Figure 5d. 2-D morphology   Figure 5e. RGB thresholding 

  (dilation) 

Some algorithms require to vary the threshold, because the structure of 
the image changes across the data set. However, it is much easier to select a 
set of thresholds than to segment the entire data set by hand. 

5.  Hierarchical Space Subdivision 

Volume data sets are usually arranged by the scanner software  as a set of 
2-D images, which represent a series of 2-D cross-sections. Putting all those 
slices together, we obtain a 3-D volume. Unfortunately, when we access the 
data we typically don’t need the implicit coherency across single slices. This 
coherency stretches only across one preferred direction. Instead, we merely 
need brick-like coherency within subvolumes. We use a data structure, 
which uses a combination of delimited octree space subdivision and wavelet 
compression techniques to achieve better performance. 
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The purpose of this 
approach is not to present a 
new compression scheme or 
a new hierarchical 
subdivision method. Instead, 
we present an integrated 
framework that combines an 
efficient indexing scheme, a 
suitable data reduction 
method, and an efficient 

compression scheme. All 
techniques are based on 

integer arithmetic and are optimized for speed. Binary bit operations allow 
for memory efficient storage and access. 

We use a standard file system to store our derived data structures, and we 
use filenames as keys to the database, thus avoiding additional overhead, 
which is typically caused by incorporating additional layers between the 
application and the underlying storage system. We found that this method 
provides the fastest method to access the data. Our indexing scheme in 
conjunction with the underlying file system provides the storage system 
(repository) for the server application, which reads the data at a low 
resolution from the repository and sends it to a remote rendering client upon 
request. After the user has specified a subvolume or region-of-interest (ROI), 
the client application sends a new request to the server to retrieve a 
subvolume at a higher level of resolution. This updating procedure typically 
takes considerably less time, because only a small number of files need to be 
touched. The initial step, which requires reading the initial section of every 
file, i.e., of all bricks, can be sped up by storing an additional file which 
contains a reduced version of the entire data set. 

Our new data structure uses considerably less memory than the original 
data set, even if the user chooses lossless compression (see statistics, section 
6). By choosing appropriate thresholds for wavelet compression, the user can 
switch between lossless compression and extremely high compression rates. 
Computing time mainly depends on the size of the bricks. Therefore we take a 
closer look at the filesize to determine an optimal size for the subvolumes. 

One of the advantages of this approach is the fact that the computing time 
does not so much depend on the resolution of the subvolume, but merely on 
the size of the subvolume. This is because the higher resolution versions 
(detail coefficients in conjunction with the lower resolution versions) can be 
retrieved in almost the same time from disk as the lower resolution version 
alone. All levels of detail are stored in the same file, and the content of 

Figure 6. 2-D/3-D filtering 
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several files, which make up the subvolume, usually fits into main memory. 
Since seek time is much higher than read time for conventional harddisks, 
the total time for data retrieval mainly depends on the size of the subvolume, 
i.e., the number of files that need to be accessed, and not so much on the 
level of detail. The seek time for a file in general is much higher than the 
seek time within a file for the desired level of detail. 

5.1. File storage 

The filesize f for storing the leaves of the octree structure, which is 
described in section 5.2, should be a multiple n of the minimum page size p 
of the file system. p is typically defined as a system constant in a system file 
named param.h). n depends on the wavelet compression. If the lowest 
resolution of the subvolume requires b bytes, the next level requires a total 
of 8 · b bytes (worst case, uncompressed) and so forth. 

We assume that we have a recursion depth r for the wavelet 
representation. This gives us 8r · b bytes, which must fit in f. This means: 

bpnf r ⋅≥⋅= 8  

Both r and b are user-defined constants. Typical values are b = 512, 
which corresponds to an 8 x 8 x 8 subvolume, and r = 3, which gives us four 
levels of detail over a range between 512 and 83 · 512 = 262144 data 
elements, which is more than 2.7 orders of magnitude. 

For optimal performance and in order to avoid gaps in the allocated files, 
we can assume that 

bpn r ⋅=⋅ 8 , 

thus                                             
p

b
n r ⋅= 8  

5.2. Delimited octree and wavelet structure 

The enormous size of the data sets (section 4) requires to subdivide the 
data into smaller subunits, which can be loaded into core memory within a 
reasonable amount of time [Mey97, Mey99]. Since we are extracting 
subvolumes, it seems quite natural to break the data up into smaller bricks. 
This can be done recursively by using an octree approach [Jac80, Mea80, 
Red78]. Each octant is subdivided until we reach an empty region which 
does not need to be subdivided any further, or until we hit the filesize limit f, 
which means that the current leaf fits into a file of the given size. 
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Each leaf contains the full resolution. The memory reduction occurs by 
skipping the empty regions. Typically, the size of the data set shrinks to 
about 20%, i.e., one fifth of the original size (section 6). 

Since we want to access the data set in a hierarchical fashion, we have to 
convert the leaves into a multiresolution representation. This representation 
must be chosen in a way that the reconstruction can be performed most 
efficiently with minimal computational effort. 3-D Haar wavelets fulfill 
these requirements (figure 7). They also provide the advantage that they can 
be easily implemented as integer arithmetic. The lower resolution is stored at 
the beginning of the file, thus avoiding long seek times within the file. 

 

 

           

Figure 7. Wavelet compression scheme (2-D case) 

 

Another very useful property is the fact that a volume converted into the 
frequency domain, i.e., the wavelet representation, requires the exact same 
amount of memory as the original representation. This is also true for all 
subsequent wavelet recursions. The wavelet recursion terminates when we 
have reached a predefined minimum subvolume size b. The lower bound is 
the size of a single voxel. 

Each octant can be described by a number [Fol96, Hun79]. We use the 
following numbering scheme (figure 8): A leaf is uniquely characterized by 
the octree recursion depth and the octree path. We limit the recursion depth 
to eight, which allows us to encode the depth in 3 bits. In order to store the 
path, we need 3 bits per recursion step, which gives us 24 bits. 4 bits are 
spent to encode the depth of the wavelet recursion. The remaining bit is a 
flag that indicates that the file is empty. This prevents us from opening and 
attempting to read the file and speeds up the computation. The total number 
of bits is 32. 
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Figure 8. Encoding scheme for file storage 

 

Each bit group can be easily converted into an ASCII character by using 
binary arithmetic, e.g., (OCT_DEPTH >> 29) | 0x30) would encode the 
octree depth as an ASCII digit. By concatenating these characters we can 
generate a unique filename for each leaf. 

In order to retrieve a subvolume, we have to find the file(s) in which it is 
stored. We start with the lower left front corner and identify the subvoxel by 
recursive binary subdivision of the bounding box for each direction. Each 
decision gives us one bit of the subvolume path information. We convert 
these bits into ASCII characters, using the same macros as above. The first 
file we are looking for is 7xxxxxxxx??, where the ’x’s describe the path, 
and ’?’ is a wildcard. If this file does not exist, we keep looking for 
6xxxxxxx???, and so forth, until we find an existing leaf. If the filename 
indicates that the file is empty (last digit), we can skip the file. The filename 
also indicates how many levels of detail we have available for a particular 
leaf. This allows us to scale the rendering algorithm. In order to retrieve the 
rest of the subvolume, we must repeat this procedure for the neighboring 
leaves. The number of iterations depends on the recursion depth and 
therefore on the size of the leaves found. The algorithm terminates when all 
files have been retrieved so that the subvolume is complete. 

6.  Statistics and Results 

Our test applications include molecular biology, medicine, and 
earthquake simulation. Our prototype for the biomedical field was designed 
to support three-dimensional visualization of a human brain, which allows us 
to study details by moving different tools, such as an arbitrary cutting plane 
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and variously shaped lenses, across the data set. The various data sets are 
typically between 20 MB and 76 GB, which makes them impossible to 
transfer over the Internet in real time. The rendering client operates vastly 
independent from the size of the data set and requests only as much data as 
can be displayed and handled by the Java applet. An example of a volume 
display of a human brain, which can be rendered on the workbench, is shown 
in figure 9. This image also shows the prototype for a Java applet. 

Table 1 shows the reduction of memory which is required to store a large 
data set, if we use an octree at two different levels. The column on the right 
represents the original data set. The wavelet decomposition takes about 0.07 
sec for a 643 data set, and 68 sec for a 10243 data set. The reconstruction can 
be done more efficiently and usually takes about 30% of the time 
(measurements based on an R12000 processor) of the decomposition. The 
transmission of the full data set (10243 · RGB = 3 GB) over a 10Mbps LAN 
connection took between 232 and 1563 seconds. This data is not 
representative, because transmission times vary over a great range depending 
on the network link and the actual network load. The transmission time for 
the lowest level of detail (643) in compressed format was negligible. 

Table 1. Statistics 

 

The segmented images are volume rendered in hardware using three sets 
of textures, each set aligned to one of the principle axes. With a Pentium III 
550 MHz and a 32M Nvidia GeForceTM video card, a downsampled 1283 
volume fits in texture memory and can be rendered at over 15 fps. A 2563 
volume does not fit in texture memory and can be rendered at approximately 
2 fps. The user can interactively rotate the volume, and apply multiple axis 
aligned cutting planes to quickly visualize specific regions of the brain 
(figure 9). 
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Figure 9. Volume rendering of a human brain (C++ VR client and Java client applet) 

The overall conclusion is that the reduction of memory allows for faster 
response times, more rapid data transmission, and faster rendering. The 
wavelet decomposition algorithm takes less time than the performance gain 
by reducing the amount of data to be sent and using an efficient data 
indexing and storage scheme. 

7.  Conclusions 

We have presented a framework for a distributed hierarchical rendering 
system for large-scale volume data sets. The first step is to filter the data and 
extract certain features (segmentation). The presented pipeline allows us to 
segment a large-scale data set semi-automatically with minimal user 
intervention. The parameters must be chosen carefully in order to obtain 
optimal results. After filtering and segmenting, the data is converted into a 
hierarchical format and stored in a repository, which can be accessed by a 
remote or immersive client application. We have presented an efficient 
numbering scheme and access method for hierarchical storage of sub-
volumes on a regular file system. This method allows us to access a region-
of-interest as a set of bricks at various resolutions. The simplicity of the 
method makes it easy to implement. The algorithm is scalable by increasing 
the word length for the bit string and the filename length. The algorithm has 
also been tested on larger data sets. The data decomposition, reconstruction 
and rendering times for the region-of-interest and the context were still 
acceptable due to the flat directory structure of the indexing scheme. 

Future research focuses on automated image analysis to determine 
segmentation parameters automatically, the introduction of alternative 
wavelet compression schemes, support for time-variant data sets, and the use 
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of a web channel also for the immersive workbench and the CAVE. It would 
also be desirable to provide an interface to upload data sets and apply filters 
and data compression algorithms online in an automated way. This would 
allow users to upload and explore their own data interactively. 

The developed tools will be integrated, adapted and evaluated in the 
National Partnership for Advanced Computational Infrastructure (NPACI) 
framework. Integration of San Diego Supercomputer Center's High-
performance Storage System (HPSS) as a data repository to retrieve large-
scale data sets, accessing the data via NPACI's Scalable Visualization 
Toolkits (also known as VisTools), and evaluation of particular applets with 
NPACI partners, are some of the main goals. 
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