How do we handle algorithms that aren’t embarrassingly parallel?

Volume rendering and streamlines are the two most common examples of non-embarrassingly parallel algorithms.
MPI-hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

Mark Howison, E. Wes Bethel, and Hank Childs
Lawrence Berkeley National Laboratory

EGPGV 2010
Norrköping, Sweden
Hybrid Parallelism for Volume Rendering on Large, Multi-core Platforms

Overview

- Traditional approaches for parallel visualization may not work well in future: 100-1000 cores per node.
 - Exascale machines will likely have O(1M) nodes
- Hybrid-parallelism blends distributed- and shared-memory parallelism concepts.
- This study:
 - Does hybrid-parallelism work for volume rendering at extreme concurrency? If so, how well?
 - Experiment to compare performance shows favorable characteristics of hybrid-parallel, especially at very high concurrency.
Parallelism

- Mid 1970s-Early 1990s:
 - Vector machines: Cray 1 ... NEC SX
 - Vectorizing Fortran compilers help optimize $\text{a[i]}=\text{b[i]}*\text{x}+\text{c}$.

- Early 1990s-present:
 - The rise of the MPP based on the commodity microprocessor. Cray T3D, TM CM1, CM2, CM5, etc.
 - Message Passing Interface (MPI) becomes the gold standard for building/running parallel codes on MPPs.

- Early 1990s-Early 2000s:
 - Shared memory parallelism (e.g. SGI)

- Mid 2000s-present:
 - Rise of the multi-core CPU, GPU. AMD Opteron, Intel Nehalem, Sony Cell BE, NVIDIA G80, etc.
 - Large supercomputers comprised of lots of multi-core CPUs.
 - Shared memory programming on a node: pthreads, OpenMP; data parallel languages (CUDA); global shared memory languages (UPC) and utilities (CAF).
Related work in Hybrid Parallelism

- **Caveats**
 - Relatively new research area, not a great deal of published work.
 - Studies focus on “solvers,” not vis/graphics.
 - State of hybrid parallel visualization: lots of work to do

- **Fundamental questions:**
 - How to map algorithm onto a complex memory, communication hierarchy?
 - What is the right balance of distributed- vs. shared-memory parallelism? How does balance impact performance?

- **Conclusions of these previous works:**
 - What is best? Answer: it depends.
 - Many factors influence performance/scalability:
 - Synchronization overhead.
 - Load balance (intra- and inter-node).
 - Communication overhead and patterns.
 - Memory access patterns.
 - Fixed costs of initialization.
 - Number of runtime threads.
This Study

- Hybrid parallelism on visualization: raycasting volume rendering.
 - Ask same questions the HPC folks do:
 - How to map algorithm to hybrid parallel space?
 - How does performance compare with MPI-only implementation?

- Hybrid-parallel implementation/architecture.

- Performance study.
 - Runs at 216K-way parallel
 - Look at:
 - Costs of initialization.
 - Memory use comparison.
 - Scalability.
 - Absolute runtime.
Algorithm Studied: Raycasting VR

- Overview of Levoy’s method
 - For each pixel in image plane:
 - Find intersection of ray and volume
 - Sample data (RGBA) along ray, integrate samples to compute final image pixel color
Parallelizing Volume Rendering

- **Image-space decomposition.**
 - Each process works on a disjoint subset of the final image (in parallel)
 - Processes may access source voxels more than once, will access a given output pixel only once.
 - Great for shared memory parallelism.

- **Object-space decomposition.**
 - Each process works on a disjoint subset of the input data (in parallel).
 - Processes may access output pixels more than once.
 - Output requires image composition (ordering semantics).
Hybrid volume rendering:
- Refers to mixture of object- and image-order techniques to do volume rendering.
- Most contemporary parallel volume rendering projects are hybrid volume renderers:
 - Object order – divide data into disjoint chunks, each processor works on its chunk of data.
 - Image order – parallel compositing algorithm divides work over final image, each composites over its portion of the final image.
 - A two-stage algorithm, heavy communication load between stages.
Hybrid Parallel Volume Rendering

- Hybrid-parallelism a blend of shared- and distributed-memory parallelism.
- Details of hybrid parallel implementation described on the next slide
 - 2 Implementations: pthreads, OpenMP.
- Note the difference between hybrid parallel volume rendering and hybrid volume rendering
Our hybrid-parallel architecture:

- **Distributed-memory parallel**

 - Mesh data
 - Create
 - Ghost Data
 - Read
 - Raytracing
 - Fragments
 - Compositing
 - Pixels
 - Image Collection
 - Image

- **Shared memory parallel**

 - Create threads
 - Trace rays
 - End threads
 - Raytracing (hybrid only)
Our Experiment

- Thesis: hybrid-parallel will exhibit favorable performance, resource utilization characteristics compared to traditional approach.
- How/what to measure?
 - Memory footprint, scalability characteristics, absolute runtime.
 - Across a wide range of concurrencies.
 - Remember: we’re concerned about what happens at extreme concurrency.
 - Also varied view point to induce different memory access patterns.
- Strong scaling study: hold problem size constant, vary amount of resources.
Experiment: Platform and Source Data

- **Platform**: JaguarPF, a Cray XT5 system at ORNL
 - 18,688 nodes, dual-socket, six-core AMD Opteron (224K cores)

- **Source data**:
 - Combustion simulation results, hydrogen flame (data courtesy J. Bell, CCSE, LBNL)
 - Effective AMR resolution: 1024^3, flattened to 512^3, runtime upscaled to 4608^3 (to avoid I/O costs).

- **Target image size**: 4608^2 image.
 - Want approx 1:1 voxels to pixels.

- **Strong scaling study**:
 - As we increase the number of procs/cores, each proc/core works on a smaller-sized problem.
 - Time-to-solution should drop.
Experiment – The Unit Test

- Raycasting time: view/data dependent
 - Execute from 10 different prescribed views: forces with- and cross-grained memory access patterns.
 - Execute 10 times, result is average of all.

- Compositing
 - Five different ratios of compositing PEs to rendering PEs.

- Measure:
 - Memory footprint right after initialization.
 - Memory footprint for data blocks and halo exchange.
 - Absolute runtime and scalability of raycasting and compositing.
-hybrid outperforms –only at every concurrency level.
 - At 216K-way parallel, -hybrid is more than twice as fast as –only.
 - Compositing times begin to dominate: communication costs.
Scalability – Raycasting Phase

- Near linear scaling since no interprocess communication.
- Hybrid shows sublinear scaling due to oblong block shape.
- Only shows slightly better than linear due to reduced work caused by perspective foreshortening.
How many compositors to use?

- Previous work: 1K to 2K for 32K renderers (Peterka, 2009).
- Our work: above ~46K renderers, 4K to 8K works better.
- Hybrid cases always perform better: fewer messages.
- Open question: why the critical point?
Memory Use – Data Decomposition

- **16GB RAM per node**
 - Sets lower bound on concurrency for this problem size: 1728-way parallel (no virtual memory!).
- **Source data (1x), gradient field (3x)**
- **Want cubic decomposition.**
 - 1x2x3 block configuration per socket for –only.
- **-hybrid has ~6x data per socket than –only**
 - Would prefer to run study on 8-core CPUs to maintain cubic shape

<table>
<thead>
<tr>
<th></th>
<th>MPI-only</th>
<th>MPI-hybrid</th>
<th>Memory Per Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI PE</td>
<td>Block Dimensions</td>
<td>MPI PE</td>
<td>Memory Per Node</td>
</tr>
<tr>
<td>12^3=1728</td>
<td>$384 \times 384 \times 384$</td>
<td>288</td>
<td>10368MB</td>
</tr>
<tr>
<td>24^3=13824</td>
<td>$192 \times 192 \times 192$</td>
<td>2304</td>
<td>1296MB</td>
</tr>
<tr>
<td>36^3=46656</td>
<td>$128 \times 128 \times 128$</td>
<td>7776</td>
<td>384MB</td>
</tr>
<tr>
<td>48^3=110592</td>
<td>$96 \times 96 \times 96$</td>
<td>18432</td>
<td>162MB</td>
</tr>
<tr>
<td>60^3=216000</td>
<td>$76 \times 76 \times 76$</td>
<td>36000</td>
<td>80.4MB / 81.6MB</td>
</tr>
</tbody>
</table>
Memory Use – MPI_Init()

- Per PE memory:
 - About the same at 1728, over 2x at 216000.

- Aggregate memory use:
 - About 6x at 1728, about 12x at 216000.
 - At 216000, -only requires 2GB of memory for initialization per node!!!

<table>
<thead>
<tr>
<th>Cores</th>
<th>Mode</th>
<th>MPI PEs</th>
<th>MPI Runtime Memory Per PE (MB)</th>
<th>MPI Runtime Memory Per Node (MB)</th>
<th>Usage Aggregate (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1728</td>
<td>MPI-hybrid</td>
<td>288</td>
<td>67</td>
<td>133</td>
<td>19</td>
</tr>
<tr>
<td>1728</td>
<td>MPI-only</td>
<td>1728</td>
<td>67</td>
<td>807</td>
<td>113</td>
</tr>
<tr>
<td>13824</td>
<td>MPI-hybrid</td>
<td>2304</td>
<td>67</td>
<td>134</td>
<td>151</td>
</tr>
<tr>
<td>13824</td>
<td>MPI-only</td>
<td>13824</td>
<td>71</td>
<td>857</td>
<td>965</td>
</tr>
<tr>
<td>46656</td>
<td>MPI-hybrid</td>
<td>7776</td>
<td>68</td>
<td>136</td>
<td>518</td>
</tr>
<tr>
<td>46656</td>
<td>MPI-only</td>
<td>46656</td>
<td>88</td>
<td>1055</td>
<td>4007</td>
</tr>
<tr>
<td>110592</td>
<td>MPI-hybrid</td>
<td>18432</td>
<td>73</td>
<td>146</td>
<td>1318</td>
</tr>
<tr>
<td>110592</td>
<td>MPI-only</td>
<td>110592</td>
<td>121</td>
<td>1453</td>
<td>13078</td>
</tr>
<tr>
<td>216000</td>
<td>MPI-hybrid</td>
<td>36000</td>
<td>82</td>
<td>165</td>
<td>2892</td>
</tr>
<tr>
<td>216000</td>
<td>MPI-only</td>
<td>216000</td>
<td>176</td>
<td>2106</td>
<td>37023</td>
</tr>
</tbody>
</table>
Memory Use – Ghost Data

- Two layers of ghost cells required for this problem:
 - One for trilinear interpolation during ray integration loop.
 - Another for computing a gradient field (central differences) for shading.
- Hybrid approach uses fewer, but larger data blocks.
 - ~40% less memory required for ghost data (smaller surface area)
 - Reduced communication costs
Factors in hybrid parallelism performance

- Synchronization overhead.
 - Had two MPI tasks per node, not one, to prevent work spreading across CPU.
- Load balance (intra- and inter-node).
 - Studied extensively, comes down to communication
- Communication overhead and patterns.
 - Hybrid implementation naturally lends itself to superior communication pattern
- Memory access patterns.
 - Not presented
- Fixed costs of initialization.
 - Ghost data generation cost reduced with hybrid parallelism
 - MPI initialization cost reduced with hybrid parallelism
- Number of runtime threads.
 - Not studied
3 Questions revisited

- Seeing poor indicators @ 216K
- Yes
- Yes

2010

MPI-only

“Not MPI-only”

Will MPI-only work?
- Yes

Hybrid possible?
- Yes

Performance gains?
Summary of Results

- Absolute runtime: -hybrid twice as fast as –only at 216K-way parallel.
- Memory footprint: -only requires 12x more memory for MPI initialization then –hybrid
 - Factor of 6x due to 6x more MPI PEs.
 - Additional factor of 2x at high concurrency, likely a vendor MPI implementation (an N\(^2\) effect).
- Communication traffic:
 - -hybrid performs 40% less communication than -only for ghost data setup.
 - -only requires 6x the number of messages for compositing.
- Image: 4608\(^2\) image of a \(~4500^3\) dataset generated using 216,000 cores on JaguarPF in \(~0.5\)s (not counting I/O time).
Large Vector-Field Visualization, Theory and Practice:

Large Data and Parallel Visualization

Hank Childs +

D. Pugmire, D. Camp, C. Garth,
G. Weber, S. Ahern, & K. Joy

Lawrence Berkeley National Laboratory /
University of California at Davis

October 25, 2010
Outline

• Motivation
• Parallelization strategies
• Master-slave parallelization
• Hybrid parallelism
Outline

- Motivation
- Parallelization strategies
- Master-slave parallelization
- Hybrid parallelism
Supercomputers are generating large data sets that often require parallelized postprocessing.

1 billion element unstructured mesh

217 pin reactor cooling simulation. Nek5000 simulation on \(\frac{1}{4}\) of Argonne BG/P. Image credit: Paul Fischer using VisIt.
Communication between “channels” are a key factor in effective cooling.
Particle advection can be used to study communication properties.
This sort of analysis requires many particles to be statistically significant.

Place thousands of particles in one channel
Observe which channels the particles pass through
Observe where particles come out (compare with experimental data)
Repeat for other channels

How can we parallelize this process?
Outline

• Motivation
• Parallelization strategies
• Master-slave parallelization
• Hybrid parallelism
Particle advection: Four dimensions of complexity

- Data set size
- Seed set distribution
- Seed set size
- Vector field complexity
Do we need parallel processing? When? How complex?

- Data set size?
 - Not enough!
- Large #’s of particles?
Parallelization for small data and a large number of particles.

This scheme is referred to as parallelizing-over-particles.

GPU-accelerated approaches follow a variant of this model.

The key is that the data is small enough that it can fit in memory.
Do we need advanced parallelization techniques? When?

- Data set size?
 - Not enough!
- Large #’s of particles?
 - Need to parallelize, but embarrassingly parallel OK
- Large #’s of particles + large data set sizes
Parallelization for large data with good “distribution”.

This scheme is referred to as parallelizing-over-data.
Do we need advanced parallelization techniques? When?

- Data set size?
 - Not enough!
- Large #’s of particles?
 - Need to parallelize, but embarrassingly parallel OK
- Large #’s of particles + large data set sizes
 - Need to parallelize, simple schemes may be OK
- Large #’s of particles + large data set sizes + (bad distribution OR complex vector field)
 - Need smart algorithm for parallelization
Parallelization with big data & lots of seed points & bad distribution

Two extremes:

- Partition data over processors and pass particles amongst processors
 - Parallel inefficiency!
- Partition seed points over processors and process necessary data for advection
 - Redundant I/O!

Parallelizing Over I/O Efficiency

<table>
<thead>
<tr>
<th>Parallelizing Over</th>
<th>I/O</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>Particles</td>
<td>Bad</td>
<td>Good</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• Parallelization strategies
• Master-slave parallelization
• Hybrid parallelism
The master-slave algorithm is an example of a hybrid technique.

- “Scalable Computation of Streamlines on Very Large Datasets”, Pugmire, Childs, Garth, Ahern, Weber. SC09
 - Many of the following slides compliments of Dave Pugmire.
- Algorithm adapts during runtime to avoid pitfalls of parallelize-over-data and parallelize-over-particles.
 - Nice property for production visualization tools.
- Implemented inside VisIt visualization and analysis package.
Master-Slave Hybrid Algorithm

- Divide processors into groups of N
- Uniformly distribute seed points to each group

Master:
- Monitor workload
- Make decisions to optimize resource utilization

Slaves:
- Respond to commands from Master
- Report status when work complete
Master Process Pseudocode

```python
Master()
{
    while ( ! done )
    {
        if ( NewStatusFromAnySlave() )
        {
            commands = DetermineMostEfficientCommand()
            for cmd in commands
                SendCommandToSlaves( cmd )
        }
    }
}
```

What are the possible commands?
Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block
3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Slave is given a streamline that is contained in a block that is already loaded
Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block
3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Slave is given a streamline and loads the block
Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block
3. Handle OOB / Load
4. Handle OOB / Send
 OOB = out of bounds

Slave is instructed to load a block. The streamline in that block can then be computed.
Commands that can be issued by master

1. Assign / Loaded Block
2. Assign / Unloaded Block
3. Handle OOB / Load
4. Handle OOB / Send

OOB = out of bounds

Slave is instructed to send a streamline to another slave that has loaded the block.
Master Process Pseudocode

```python
Master()
{
    while ( ! done )
    {
        if ( NewStatusFromAnySlave() )
        {
            commands = DetermineMostEfficientCommand()

            for cmd in commands
                SendCommandToSlaves( cmd )
        }
    }
}
```

* See SC 09 paper for details
Master-slave in action

- When to pass and when to read?
- How to coordinate communication? Status? Efficiently?

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P0 reads B0, P3 reads B1</td>
</tr>
</tbody>
</table>

Notional streamline example
Algorithm Test Cases

- Core collapse supernova simulation
- Magnetic confinement fusion simulation
- Hydraulic flow simulation
Workload distribution in supernova simulation

Parallelization by:

Particles Data Hybrid

Colored by processor doing integration
Workload distribution in parallelize-over-particles

Too much I/O
Workload distribution in parallelize-over-data

Starvation
Workload distribution in hybrid algorithm

Just right
Comparison of workload distribution
Astrophysics Test Case:
Total time to compute 20,000 Streamlines

Uniform Seeding

Non-uniform Seeding

VisWeek 2011
Astrophysics Test Case:
Number of blocks loaded

Uniform Seeding

Non-uniform Seeding

Blocks loaded

Number of procs

VisWeek 2019
Outline

• Motivation
• Parallelization strategies
• Master-slave parallelization
• Hybrid parallelism
Are today’s algorithms going to fit well on tomorrow’s machines?

- Traditional approach for parallel visualization – 1 core per MPI task – may not work well on future supercomputers, which will have 100-1000 cores per node.
 - Exascale machines will likely have \(O(1M) \) nodes … and we anticipate in situ particle advection.

Hybrid parallelism blends distributed- and shared-memory parallelism concepts.
The word “hybrid” is being used in two contexts…

- The master-slave algorithm is a *hybrid algorithm*, sharing concepts from both parallelization-over-data and parallelization-over-seeds.
- *Hybrid parallelism* involves using a mix of shared and distributed memory techniques, e.g. MPI + pthreads or MPI+CUDA.
- One could think about implement a *hybrid particle advection algorithm* in a *hybrid parallel* setting.
What can we learn from a hybrid parallel study?

- How do we implement parallel particle advection algorithms in a hybrid parallel setting?
- How do they perform?
 - Which algorithms perform better? How much better?
 - Why?
Streamline integration using MPI-hybrid parallelism on a large multi-core architecture

- Implement parallelize-over-data and parallelize-over-particles in a hybrid parallel setting (MPI + pthreads)
 - Did not study the master-slave algorithm
- Run series of tests on NERSC Franklin machine (Cray)
- Compare 128 MPI tasks (non-hybrid) vs 32 MPI tasks / 4 cores per task (hybrid)
- 12 test cases: large vs small # of seeds
 - uniform vs non-uniform seed locations
 - 3 data sets
Hybrid parallelism for parallelize-over-data

Expected benefits:
- Less communication and communicators
- Should be able to avoid starvation by sharing data within a group.
Measuring the benefits of hybrid parallelism for parallelize-over-data.
Gantt chart for parallelize-over-data
Hybrid parallelism for parallelize-over-particles

- Expected benefits:
 - Only need to read blocks once for node, instead of once for core.
 - Larger cache allows for reduced reads
 - “Long” paths automatically shared among cores on node
Measuring the benefits of hybrid parallelism for parallelize-over-particles.
Gantt chart for parallelize-over-particles
Summary of Hybrid Parallelism Study

- Hybrid parallelism appears to be extremely beneficial to particle advection.
- We believe the parallelize-over-data results are highly relevant to the in situ use case.
- Although we didn’t implement the master-slave algorithm, we believe the benefits shown at the spectrum extremes provide good evidence that hybrid algorithms will also benefit.
- Implemented on VisIt branch, goal to integrate into VisIt proper in the coming months.
Summary for Large Data and Parallelization

• The type of parallelization required will vary based on data set size, number of seeds, seed locations, and vector field complexity
• Parallelization may occur via parallelization-over-data, parallelization-over-particles, or somewhere in between (master-slave). Hybrid algorithms have the opportunity to de-emphasize the pitfalls of the traditional techniques.
• Hybrid parallelism appears to be very beneficial.
• Note that I said nothing about time-varying data…