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Hybrid Parallelism and Visualization  



We achieve parallelism by 
parallelizing over pieces of data. 

PE = Processing Element 

Embarrassingly parallel 
vs. 

Non-embarrassingly parallel 



Outline 

  Overview:  
 What is hybrid parallelism? 

  Motivation:  
 Why is hybrid parallelism so important? 

  Results:  
 What has been demonstrated with hybrid parallelism 

so far? 

  Challenges:  
 What work still needs to happen? 
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supercomputer 

What is hybrid parallelism? 

PE #1 PE #2 PE #3 

PE 
#N-2 

PE 
#N-1 

PE  
#N 

…. 

Distributed-memory parallelism 

  Hybrid parallelism combines distributed- and 
shared-memory techniques. 

PE = Processing Element 

message  
passing 

Examples: MPI (Message Passing   
                    Interface) 

Shared-memory parallelism 

C2 C1 C3 

C5 C4 C6 

single node 

memory 
semaphores, 
mutexes 

Examples: pthreads, OpenMP,         
     OpenCL, CUDA? 
There are different types of 
shared-memory parallelism. 



Definitions 

  Core: a processing thread on a CPU 
  Node: a group of cores that share memory 
  Processing Element (PE): one instance (of many) of a 

distributed memory parallel program 
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Brief Historical Perspective 
  Mid 1970s-mid 1990s:  

  Vector machines: Cray 1 ... NEC SX 
  Vectorizing Fortran compilers help optimize 

a[i]=b[i]*x+c. 
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Massive programming  
investment!! 
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Brief Historical Perspective 
  Mid 1970s-mid 1990s:  

  Vector machines: Cray 1 ... NEC SX 
  Vectorizing Fortran compilers help optimize 

a[i]=b[i]*x+c. 
  Early 1990s-present: 

  The rise of MPP (massively parallel processing), 
based on the commodity microprocessor.  

  Message Passing Interface (MPI) becomes the gold 
standard for building/running parallel codes on 
MPPs. 

  Mid 2000s-present: 
  Rise of the multi-core CPU, GPU. AMD Opteron, 

Intel Nehalem, Sony Cell BE, NVIDIA G80, etc. 
  Large supercomputers comprised of lots of multi-

core CPUs. 

Massive programming  
investment? … not so much (yet) 

Massive programming  
investment!! 



Distributed Memory Parallelism 
(early 2000s) 

supercomputer 

CPU0 Node 0 
PE 0 

CPU0 Node 1 
PE 1 

CPU0 Node 2 
PE 2 

CPU0 Node 3 
PE 3 



De Facto Standard for Distributed-
Memory Parallelism 

supercomputer 

CPU0 Node 0 
PE 0 

CPU1 

PE 1 

CPU0 Node 1 
PE 2 

CPU1 

PE 3 

CPU0 Node 2 
PE 4 

CPU1 

PE 5 

CPU0 Node 3 
PE 6 

CPU1 

PE 7 



Contrasting Hybrid Parallel and 
Non-Hybrid Parallel Versions 

supercomputer 

CPU0 Node 0 
PE 0 

CPU1 

PE 1 

CPU0 Node 1 
PE 2 

CPU1 

PE 3 

CPU0 Node 2 
PE 4 

CPU1 

PE 5 

CPU0 Node 3 
PE 6 

CPU1 

PE 7 

supercomputer 

CPU0 Node 0 
PE 0 

CPU1 

CPU0 Node 1 
PE 1 

CPU1 

CPU0 Node 2 
PE 2 

CPU1 

CPU0 Node 3 
PE 3 

CPU1 

Non-hybrid parallel version Hybrid parallel version 

Q: What do we lose when we ignore shared-
memory parallelism? 

A1: With two cores per node, probably not a lot. 
A2: Possibilities for saving on communication, 

memory, load balancing. 



On the (non-) transition to 
hybrid parallelism… 

  In our defense, 
 Biggest gains were in scalability with many PE’s 
 Putting two MPI tasks on a node wasn’t so bad 
 Lack of will/enthusiasm for big code re-writes 

  But… 



Research Overview For  
Hybrid Parallelism 

  Fundamental questions: 
 How to map algorithm onto a complex memory, communication 

hierarchy? 
 What is the right balance of distributed- vs. shared-memory 

parallelism? How does balance impact performance? 



Research Overview For  
Hybrid Parallelism 

  Many factors influence performance/scalability: 
 Synchronization overhead. 
 Load balance (intra- and inter-chip). 
 Communication overhead and patterns. 
 Memory access patterns. 
 Fixed costs of initialization. 
 Number of runtime threads. 
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The (Soon to Be) Good Old Days: 
Visualization as a Post-Processor 

Problem setup 
(i.e. meshing) 

Simulation Visualization 

Filesystem 

Week 1 
Week 2 

Week 2 

Week 5 Week 2 

Week 3 
Week 3 

The shift away from this model has been 
happening for a while. 



In Situ Processing 

  Defined: couple visualization and analysis routines 
with the simulation code (no I/O) 

  Pros: 
 No I/O! 
 Can access all the data 
 Computational power readily available 

  Cons: 
 Must know what you want to look for a priori 
  Increasing complexity 
 Constraints (memory, network, execution time) 



Some history behind this presentation… 

  “Why Petascale Visualization Will Change the 
Rules” (2007-2010) 

  “Why Exascale Visualization Will Change the 
Rules” (2011-2013) 

NSF Workshop on Petascale I/O 



The context for this talk… 

Petascale 
Visualization 

Exascale 
Visualization 

I/O Bandwidth I/O Bandwidth 
Data 

Movement 

Data Movement’s     
4 Angry Pups 

Hybrid 
Parallelism & 
Visualization 

5th Pup!! 

Will describe petascale and exascale wolves and 
pups in upcoming slides. 



The I/O Wolf 

  Large data visualization is 
almost always >50% I/O 
and sometimes 98% I/O 

  Amount of data to visualize 
is typically O(total mem) 

FLOPs  Memory  I/O 

Terascale machine 

“Petascale machine” 

  Two big factors:  
①  how much data you have to read 
②  how fast you can read it 

   Relative I/O (ratio of total memory and I/O) is key 



Exascale: a heterogeneous, distributed 
memory GigaHz KiloCore MegaNode system 

~3 

c/o P. Beckman, Argonne  

Data movement costs power 
and we have to get ~100X 

more power efficient. 



The Four Angry Pups 

Exascale 
Visualization 

I/O Bandwidth 
Data 

Movement 

Data Movement’s     
4 Angry Pups 

  In situ system design 
  Memory footprint 
  Programming languages 
  Exploration with in situ 
  (5th pup: hybrid parallelism) 



Exascale Hardware: Moore’s Law Is 
Alive and Well 

•  Moore’s Law was 
approximated to apply to 
clock speed… 
•  … that approximation 

no longer applies   
•  But transistor counts 

continue to climb.   
•  And this is equating to 

more and more cores 
per node… 
•  … how far will this 

go? 



Multi-core Versus Many-core 

Intel Pentium Dual-Core, 2006 NERSC Hopper machine, 24 cores per node 

NVIDIA K20 GPU Accelerator,  
2496 thread processors 

Intel Xeon Phi, 57-61 cores per node, 
each with 16-way vector compute 

There are qualitative differences between 
programming multi-core and many-core nodes. 

Pthreads, 
OpenMP 

CUDA 

Intel 
TBB 

Typically used as 
accelerator (no 

access to network) 

  Multi-core node: few dozens of cores per node 

  Many-core node: 100s to 1000s of cores per node 
OpenCL 



Definitions 

  Core: a processing thread on a CPU 
  Node: a group of cores that share memory 
  Processing Element (PE): one instance (of many) of a 

distributed memory parallel program 
  Multi-core: dozens of cores per node 
  Many-core: 100s to 1000s of cores per node 



Petascale and Exascale Solutions 

  Petascale: we must reduce I/O 
 Multi-resolution 
  In situ 
 Subsetting 
 Out-of-core 

  Exascale: we must minimize power & data movement 
  In situ 
 Power efficiency within a core 
 Power efficiency across nodes 



“The world as we know it” /  
“The world as we assume it” 

  We will need to run in situ 
 We will need to minimize impact on the simulation code: 

memory, execution time, communication bandwidth, 
power consumption 

  The HW already is multi-core, and increasingly 
many-core 
 We are going to have to adapt to the HW 

Hybrid parallelism will be necessary 
to achieve these goals. 
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Previous work on hybrid parallelism 

  Simulations: GPGPU, others 
  Visualization: lots of single GPU work 
  Hybrid parallelism + visualization: only a handful of 

studies. 
 This oversight is significant: parallel visualization and 

analysis algorithms have markedly different 
characteristics – computational load, memory access 
pattern, communication, idle time, etc. – than the other 
two categories.  



Studies on hybrid parallelism and 
visualization to date 

Architecture Volume Rendering Particle Advection 

Multi-core 

Many-core 
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Volume Rendering Studies 

  Volume rendering: use a combination of 
color and transparency to see an entire 
three-dimensional volume at one time. 

  Consists of 2 phases: sample & composite 
 Sampling: embarrassingly parallel 
 Compositing: parallel communication 

  Goal: sampling continues to work well, 
compositing gets faster 



Multi-core Volume Rendering 

  Study: use same HW, with hybrid parallelism and without 

  References: 
  Howison et al. “MPI-hybrid Parallelism for Volume Rendering on Large, Multi-

core Systems” In EGPGV’10 

  Howison et al. “Hybrid Parallelism for Volume Rendering on Large-, Multi-, and 
Many-Core Systems” in TVCG, Jan. 2012 



Many-core Volume Rendering 

  Study concerned with mapping the algorithm and 
optimizing performance, not with comparisons 
 Result: can use GPU cluster to do volume rendering of 

very large data sets. 

  References: 
  T. Fogal et al. Large Data Visualization on Distributed Memory Multi-

GPU Clusters. In HPG 2010. 



Studies on hybrid parallelism and 
visualization to date 

Architecture Volume Rendering Particle Advection 

Multi-core 

Many-core 



What is advection? 



Particle advection is a foundational 
visualization algorithm 

•  Advecting particles 
creates integral curves 



“Parallelize over data” strategy: 
parallelize over pieces and pass particles 

PE1 PE2 

PE4 PE3 
PE = Processing  

Element, i.e. 
an instance of 
the program.  

Other parallelization schemes, but 
this one is common. 

Very hard to get good efficiency, 
especially due to data dependency. 



Studies for Multi-core and  
Many-core Particle Advection  

  “No two particle advection problems are alike.” 
 Studies vary over: 

 Number of seed points. 
 Duration of advection. 
 Vector field complexity (via multiple data sets) 

  Both studies involve comparisons: 
 Multi-core: how does hybrid parallelism improve 

performance? 
 Many-core: if we have a GPU cluster, should we even 

use the GPUs? (latencies, slower processor cores) 



Multi-core: comparing speedups for 
hybrid parallelism 

Data Set #1 Data Set #3 Data Set #2 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Benefits in execution time and 
communication. 

Also studied other parallelization 
schemes which showed benefits in 

memory footprint. 



Multi-core comparisons: Gantt Chart  
MPI-Hybrid 

MPI-Only 

Time 

Time 

8 cores integrating 

2 cores integrating 

  References: D. Camp et al. “Streamline Integration Using MPI-Hybrid 
Parallelism on a Large Multicore Architecture.” TVCG Nov. 2011  



Many-core: studying 150 pairs of 
tests… 



Many-core: identifying the most 
dominant factors for performance 

  References: D. Camp et al. “GPU Acceleration of Particle Advection 
Workloads in a Parallel, Distributed Memory Setting.” EGPGV 2013 



Studies on hybrid parallelism and 
visualization to date 

Architecture Volume Rendering Particle Advection 
Production 

Usage 

Multi-core 

Many-core 



Multi-core production usage 

  Many visualization algorithms are embarrassingly 
parallel. 

  Further, nature of implementation for visualization 
software lends itself to hybrid parallel model. 
 One PE per node. 
 PE divides work among cores. 
 Cores can execute on their piece of data without 

needing to coordinate with other cores/PEs. 



Multi-core production usage 

  Savings in memory: 22.3 GB  20.7GB (=1.6GB) 
 Strictly because of fewer instances of the binary 

  Improvements in performance: 14s  8.4s (1.67X) 
 Due to improved load balancing 

  References: 
  Camp et al.  “Transitioning Data Flow-Based Visualization Software to 

Multi-Core Hybrid Parallelism.” Workshop on Data-Flow Execution 
Models for Extreme Scale Computing (DFM 2013) 



Many-core production usage 

  See future work…   
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Many-core is scary. 

  Two reasons legacy code may not map well to 
many-core space: 
 Language mismatch 
 Need to re-think algorithms for 100s to 1000s of cores 

per node. 



Many-core is scary. 

  New libraries in development for many-core 
visualization 
 DAX 
 EAVL 
 PISTON 
  (panel at SC12 & upcoming panel @ Vis13) 

  These libraries could be integrated with tools that 
have legacy approaches 

  Still need to explore hybrid parallelism!!  



More future work 

  New dimension of evaluation: power 
 What is the most power-efficient way to do hybrid 

parallel particle advection?  … we don’t know 



Summary, Part 1 (of 4) 

  Hybrid parallelism research questions: 
 How to map the algorithm to this complex architecture? 
 How to best take advantage of the architecture? 

  Hybrid parallelism has been demonstrated to 
improve: 
 Memory usage 
 Execution time 
 Communication bandwidth 



Summary, Part 2 (of 4) 

  The volume rendering and particle advection studies 
help understand the impacts of hybrid parallelism, 
but more work is needed for these algorithms. 
 And lots of work for other algorithms. 



Adding it all up 

  Today: 
 Simulation scientist: “can you help me visualize X?” 

  Soon: 
 Simulation scientist: “can you help me visualize X? … and I 

have the following constraints --- C1, C2, C3” 

  Example constraints: 
  Execution time 
 Memory usage 
  Power consumption 
 Communication bandwidth 



The primary message of this talk 

  We will soon live in a world where simulation 
scientists will ask us to solve problems with 
constraints. 

  Hybrid parallelism will help us meet those 
constraints, by lowering our requirements. 

  Our community has a lot of work to do ... let’s get to 
it!!! 
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Hybrid Parallelism and Visualization  


