
Hank Childs, University of Oregon & Lawrence Berkeley Sep 16th, 2013

Hybrid Parallelism and Visualization

We achieve parallelism by
parallelizing over pieces of data.

PE = Processing Element

Embarrassingly parallel
vs.

Non-embarrassingly parallel

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

supercomputer

What is hybrid parallelism?

PE #1 PE #2 PE #3

PE
#N-2

PE
#N-1

PE
#N

….

Distributed-memory parallelism

  Hybrid parallelism combines distributed- and
shared-memory techniques.

PE = Processing Element

message
passing

Examples: MPI (Message Passing
 Interface)

Shared-memory parallelism

C2 C1 C3

C5 C4 C6

single node

memory
semaphores,
mutexes

Examples: pthreads, OpenMP,
 OpenCL, CUDA?
There are different types of
shared-memory parallelism.

Definitions

  Core: a processing thread on a CPU
  Node: a group of cores that share memory
  Processing Element (PE): one instance (of many) of a

distributed memory parallel program

7

Brief Historical Perspective
  Mid 1970s-mid 1990s:

  Vector machines: Cray 1 ... NEC SX
  Vectorizing Fortran compilers help optimize

a[i]=b[i]*x+c.

8

Brief Historical Perspective
  Mid 1970s-mid 1990s:

  Vector machines: Cray 1 ... NEC SX
  Vectorizing Fortran compilers help optimize

a[i]=b[i]*x+c.
  Early 1990s-present:

  The rise of MPP (massively parallel processing),
based on the commodity microprocessor.

  Message Passing Interface (MPI) becomes the gold
standard for building/running parallel codes on
MPPs.

Massive programming
investment!!

9

Brief Historical Perspective
  Mid 1970s-mid 1990s:

  Vector machines: Cray 1 ... NEC SX
  Vectorizing Fortran compilers help optimize

a[i]=b[i]*x+c.
  Early 1990s-present:

  The rise of MPP (massively parallel processing),
based on the commodity microprocessor.

  Message Passing Interface (MPI) becomes the gold
standard for building/running parallel codes on
MPPs.

  Mid 2000s-present:
  Rise of the multi-core CPU, GPU. AMD Opteron,

Intel Nehalem, Sony Cell BE, NVIDIA G80, etc.
  Large supercomputers comprised of lots of multi-

core CPUs.

Massive programming
investment? … not so much (yet)

Massive programming
investment!!

Distributed Memory Parallelism
(early 2000s)

supercomputer

CPU0 Node 0
PE 0

CPU0 Node 1
PE 1

CPU0 Node 2
PE 2

CPU0 Node 3
PE 3

De Facto Standard for Distributed-
Memory Parallelism

supercomputer

CPU0 Node 0
PE 0

CPU1

PE 1

CPU0 Node 1
PE 2

CPU1

PE 3

CPU0 Node 2
PE 4

CPU1

PE 5

CPU0 Node 3
PE 6

CPU1

PE 7

Contrasting Hybrid Parallel and
Non-Hybrid Parallel Versions

supercomputer

CPU0 Node 0
PE 0

CPU1

PE 1

CPU0 Node 1
PE 2

CPU1

PE 3

CPU0 Node 2
PE 4

CPU1

PE 5

CPU0 Node 3
PE 6

CPU1

PE 7

supercomputer

CPU0 Node 0
PE 0

CPU1

CPU0 Node 1
PE 1

CPU1

CPU0 Node 2
PE 2

CPU1

CPU0 Node 3
PE 3

CPU1

Non-hybrid parallel version Hybrid parallel version

Q: What do we lose when we ignore shared-
memory parallelism?

A1: With two cores per node, probably not a lot.
A2: Possibilities for saving on communication,

memory, load balancing.

On the (non-) transition to
hybrid parallelism…

  In our defense,
 Biggest gains were in scalability with many PE’s
 Putting two MPI tasks on a node wasn’t so bad
 Lack of will/enthusiasm for big code re-writes

  But…

Research Overview For
Hybrid Parallelism

  Fundamental questions:
 How to map algorithm onto a complex memory, communication

hierarchy?
 What is the right balance of distributed- vs. shared-memory

parallelism? How does balance impact performance?

Research Overview For
Hybrid Parallelism

  Many factors influence performance/scalability:
 Synchronization overhead.
 Load balance (intra- and inter-chip).
 Communication overhead and patterns.
 Memory access patterns.
 Fixed costs of initialization.
 Number of runtime threads.

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

The (Soon to Be) Good Old Days:
Visualization as a Post-Processor

Problem setup
(i.e. meshing)

Simulation Visualization

Filesystem

Week 1
Week 2

Week 2

Week 5 Week 2

Week 3
Week 3

The shift away from this model has been
happening for a while.

In Situ Processing

  Defined: couple visualization and analysis routines
with the simulation code (no I/O)

  Pros:
 No I/O!
 Can access all the data
 Computational power readily available

  Cons:
 Must know what you want to look for a priori
  Increasing complexity
 Constraints (memory, network, execution time)

Some history behind this presentation…

  “Why Petascale Visualization Will Change the
Rules” (2007-2010)

  “Why Exascale Visualization Will Change the
Rules” (2011-2013)

NSF Workshop on Petascale I/O

The context for this talk…

Petascale
Visualization

Exascale
Visualization

I/O Bandwidth I/O Bandwidth
Data

Movement

Data Movement’s
4 Angry Pups

Hybrid
Parallelism &
Visualization

5th Pup!!

Will describe petascale and exascale wolves and
pups in upcoming slides.

The I/O Wolf

  Large data visualization is
almost always >50% I/O
and sometimes 98% I/O

  Amount of data to visualize
is typically O(total mem)

FLOPs  Memory  I/O 

Terascale machine 

“Petascale machine” 

  Two big factors:
①  how much data you have to read
②  how fast you can read it

   Relative I/O (ratio of total memory and I/O) is key

Exascale: a heterogeneous, distributed
memory GigaHz KiloCore MegaNode system

~3

c/o P. Beckman, Argonne

Data movement costs power
and we have to get ~100X

more power efficient.

The Four Angry Pups

Exascale
Visualization

I/O Bandwidth
Data

Movement

Data Movement’s
4 Angry Pups

  In situ system design
  Memory footprint
  Programming languages
  Exploration with in situ
  (5th pup: hybrid parallelism)

Exascale Hardware: Moore’s Law Is
Alive and Well

•  Moore’s Law was
approximated to apply to
clock speed…
•  … that approximation

no longer applies
•  But transistor counts

continue to climb.
•  And this is equating to

more and more cores
per node…
•  … how far will this

go?

Multi-core Versus Many-core

Intel Pentium Dual-Core, 2006 NERSC Hopper machine, 24 cores per node

NVIDIA K20 GPU Accelerator,
2496 thread processors

Intel Xeon Phi, 57-61 cores per node,
each with 16-way vector compute

There are qualitative differences between
programming multi-core and many-core nodes.

Pthreads,
OpenMP

CUDA

Intel
TBB

Typically used as
accelerator (no

access to network)

  Multi-core node: few dozens of cores per node

  Many-core node: 100s to 1000s of cores per node
OpenCL

Definitions

  Core: a processing thread on a CPU
  Node: a group of cores that share memory
  Processing Element (PE): one instance (of many) of a

distributed memory parallel program
  Multi-core: dozens of cores per node
  Many-core: 100s to 1000s of cores per node

Petascale and Exascale Solutions

  Petascale: we must reduce I/O
 Multi-resolution
  In situ
 Subsetting
 Out-of-core

  Exascale: we must minimize power & data movement
  In situ
 Power efficiency within a core
 Power efficiency across nodes

“The world as we know it” /
“The world as we assume it”

  We will need to run in situ
 We will need to minimize impact on the simulation code:

memory, execution time, communication bandwidth,
power consumption

  The HW already is multi-core, and increasingly
many-core
 We are going to have to adapt to the HW

Hybrid parallelism will be necessary
to achieve these goals.

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

Previous work on hybrid parallelism

  Simulations: GPGPU, others
  Visualization: lots of single GPU work
  Hybrid parallelism + visualization: only a handful of

studies.
 This oversight is significant: parallel visualization and

analysis algorithms have markedly different
characteristics – computational load, memory access
pattern, communication, idle time, etc. – than the other
two categories.

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection

Multi-core

Many-core

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection

Multi-core

Many-core

Volume Rendering Studies

  Volume rendering: use a combination of
color and transparency to see an entire
three-dimensional volume at one time.

  Consists of 2 phases: sample & composite
 Sampling: embarrassingly parallel
 Compositing: parallel communication

  Goal: sampling continues to work well,
compositing gets faster

Multi-core Volume Rendering

  Study: use same HW, with hybrid parallelism and without

  References:
  Howison et al. “MPI-hybrid Parallelism for Volume Rendering on Large, Multi-

core Systems” In EGPGV’10

  Howison et al. “Hybrid Parallelism for Volume Rendering on Large-, Multi-, and
Many-Core Systems” in TVCG, Jan. 2012

Many-core Volume Rendering

  Study concerned with mapping the algorithm and
optimizing performance, not with comparisons
 Result: can use GPU cluster to do volume rendering of

very large data sets.

  References:
  T. Fogal et al. Large Data Visualization on Distributed Memory Multi-

GPU Clusters. In HPG 2010.

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection

Multi-core

Many-core

What is advection?

Particle advection is a foundational
visualization algorithm

•  Advecting particles
creates integral curves

“Parallelize over data” strategy:
parallelize over pieces and pass particles

PE1 PE2

PE4 PE3
PE = Processing

Element, i.e.
an instance of
the program.

Other parallelization schemes, but
this one is common.

Very hard to get good efficiency,
especially due to data dependency.

Studies for Multi-core and
Many-core Particle Advection

  “No two particle advection problems are alike.”
 Studies vary over:

 Number of seed points.
 Duration of advection.
 Vector field complexity (via multiple data sets)

  Both studies involve comparisons:
 Multi-core: how does hybrid parallelism improve

performance?
 Many-core: if we have a GPU cluster, should we even

use the GPUs? (latencies, slower processor cores)

Multi-core: comparing speedups for
hybrid parallelism

Data Set #1 Data Set #3 Data Set #2

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Benefits in execution time and
communication.

Also studied other parallelization
schemes which showed benefits in

memory footprint.

Multi-core comparisons: Gantt Chart
MPI-Hybrid

MPI-Only

Time

Time

8 cores integrating

2 cores integrating

  References: D. Camp et al. “Streamline Integration Using MPI-Hybrid
Parallelism on a Large Multicore Architecture.” TVCG Nov. 2011

Many-core: studying 150 pairs of
tests…

Many-core: identifying the most
dominant factors for performance

  References: D. Camp et al. “GPU Acceleration of Particle Advection
Workloads in a Parallel, Distributed Memory Setting.” EGPGV 2013

Studies on hybrid parallelism and
visualization to date

Architecture Volume Rendering Particle Advection
Production

Usage

Multi-core

Many-core

Multi-core production usage

  Many visualization algorithms are embarrassingly
parallel.

  Further, nature of implementation for visualization
software lends itself to hybrid parallel model.
 One PE per node.
 PE divides work among cores.
 Cores can execute on their piece of data without

needing to coordinate with other cores/PEs.

Multi-core production usage

  Savings in memory: 22.3 GB  20.7GB (=1.6GB)
 Strictly because of fewer instances of the binary

  Improvements in performance: 14s  8.4s (1.67X)
 Due to improved load balancing

  References:
  Camp et al. “Transitioning Data Flow-Based Visualization Software to

Multi-Core Hybrid Parallelism.” Workshop on Data-Flow Execution
Models for Extreme Scale Computing (DFM 2013)

Many-core production usage

  See future work… 

Outline

  Overview:
 What is hybrid parallelism?

  Motivation:
 Why is hybrid parallelism so important?

  Results:
 What has been demonstrated with hybrid parallelism

so far?

  Challenges:
 What work still needs to happen?

Many-core is scary.

  Two reasons legacy code may not map well to
many-core space:
 Language mismatch
 Need to re-think algorithms for 100s to 1000s of cores

per node.

Many-core is scary.

  New libraries in development for many-core
visualization
 DAX
 EAVL
 PISTON
  (panel at SC12 & upcoming panel @ Vis13)

  These libraries could be integrated with tools that
have legacy approaches

  Still need to explore hybrid parallelism!!

More future work

  New dimension of evaluation: power
 What is the most power-efficient way to do hybrid

parallel particle advection? … we don’t know

Summary, Part 1 (of 4)

  Hybrid parallelism research questions:
 How to map the algorithm to this complex architecture?
 How to best take advantage of the architecture?

  Hybrid parallelism has been demonstrated to
improve:
 Memory usage
 Execution time
 Communication bandwidth

Summary, Part 2 (of 4)

  The volume rendering and particle advection studies
help understand the impacts of hybrid parallelism,
but more work is needed for these algorithms.
 And lots of work for other algorithms.

Adding it all up

  Today:
 Simulation scientist: “can you help me visualize X?”

  Soon:
 Simulation scientist: “can you help me visualize X? … and I

have the following constraints --- C1, C2, C3”

  Example constraints:
  Execution time
 Memory usage
  Power consumption
 Communication bandwidth

The primary message of this talk

  We will soon live in a world where simulation
scientists will ask us to solve problems with
constraints.

  Hybrid parallelism will help us meet those
constraints, by lowering our requirements.

  Our community has a lot of work to do ... let’s get to
it!!!

Acknowledgments

  Thank you to:
 Funding agencies:

 U.S. Dept. of Energy CAREER award
 SciDAC Institute on Scientific Data Management, Analysis

and Visualization (SDAV)

 Dr. Garth & TU Kaiserslautern for arranging this
presentation.

 You, the audience!

Hank Childs, University of Oregon & Lawrence Berkeley Sep 16th, 2013

Questions?

Hybrid Parallelism and Visualization

