
1

Data Analysis
using the R Project for
Statistical Computing

Daniela Ushizima
NERSC Analytics/Visualization and Math Groups

Lawrence Berkeley National Laboratory

2

Outline

I. R-programming
– Why to use R

– R in the scientific community

– Extensible

– Graphics

– Profiling

II. Exploratory data analysis
– Regression

– Clustering algorithms

III. Case study
– Accelerated laser-wakefield particles

IV. HPC
– State-of-the-art

3

R-PROGRAMMING

Packages, data visualization and examples

4

Download:
http://www.r-project.org

Recommended tutorial:
http://cran.r-project.org/doc/contrib/Paradis-
rdebuts_en.pdf

is a language and environment
for statistical computing and

graphics, a GNU project.
R provides a wide variety of

statistical (linear and nonlinear
modeling, classical statistical
tests, time-series analysis,

classification, clustering, ...) and
graphical techniques, and is

highly extensible.

5

1.Why to use R?

• Open-source, multiplatform, extensible;

• Easy on users with familiarity with S/S+,
Matlab, Python or IDL;

• Active and growing community:

– Google, Pfizer, Merck, Bank of America,
Boeing, the InterContinental Hotels Group
and Shell.

I. R-programming II. Data Analysis III. Case study IV. HPC

2.R in the scientific community

• Google summer of code and projects using R-project to
mine large datasets:
http://www.r-project.org/SoC08/ideas.html

• With Pfizer:

– predict the safety of compounds, specifically carcinogenic side carcinogenic side

effects in potential drugseffects in potential drugs.

– models eliminate the expensive and time-consuming process of

studying a large number of potential compounds in the physical

laboratory…”

http://www.bio-medicine.org/medicine-news-1/Pfizer-Partners-with-
REvolution-Computing-to-Improve-Medicine-Production-Pipeline-17917-
2/

6
I. R-programming II. Data Analysis III. Case study IV. HPC

2.1. You R with NERSC

• Get started with R on DaVinci:

> module load R

> R

>help()

>demo()

>help.start()

>source(‘your_function.R’)

>library(package_name)

http://www.nersc.gov/nusers/analytics/analysis/R.php

7
I. R-programming II. Data Analysis III. Case study IV. HPC

8

3.Extensible

• Add-on packages:

– Data input/output: hdf5, Rnetcdf, DICOM, etc.

– Graphics: trellis, gplot, RGL, fields, etc.

– Multivariate analysis: MASS, mclust, ape, etc.

– Other languages: Rcpp, Rpy, R.matlab, etc.

I. R-programming II. Data Analysis III. Case study IV. HPC

9

4.Statistical analysis and graphs

• Histogram

• Density

• Boxplot

• Multivariate plot

• Conditioning plot

• Contour plot

I. R-programming II. Data Analysis III. Case study IV. HPC

10

4.1.Multivariate plots

> data=read.table('ozone.txt',
header=T)

> names(data)

[1] "rad" "temp" "wind" "ozone“

> pairs(data,panel.smooth)
#panel.smooth = locally-weighted polynomial regression

Ex: Explanatory variables: solar radiation, temperature, wind and the

response variable ozone;

- use of pairs() with dataframes to check for dependencies between the

variables.

I. R-programming II. Data Analysis III. Case study IV. HPC

11

4.2.Conditional plots

• Check the relation of the two
explanatory variables wind,

temp and the response
variable ozone:

– Low temp: no influence of wind

on levels of zone;

– High temp: negative

relationship between wind

speed and ozone concentraton

>coplot(ozone~wind|temp,panel=panel.smooth)

I. R-programming II. Data Analysis III. Case study IV. HPC

12

4.3. Package RGL for 3D visualization

• OpenGL

> rgl.demo.lsystem() - kernel density estimation

Use Visit: https://wci.llnl.gov/codes/visit/

13

5.Profiling
several.times <- function (n, f, ...) {
for (i in 1:n) {
f(...)

}
}

matrix.multiplication <- function (s) {
A <- matrix(1:(s*s), nr=s, nc=s)
B <- matrix(1:(s*s), nr=s, nc=s)
C <- A %*% B

}

v <- NULL
for (i in 2:10) {

v <- append(
v,
system.time(

several.times(
10000,
matrix.multiplication,
i

)
) [1]

)
}
plot(v, type = 'b', pch = 15,

main = "Matrix product computation time")

• Where does your
program spend more
time?

Variable number
of arguments

Also try packages:
profr and proftools

I. R-programming II. Data Analysis III. Case study IV. HPC

14

EXPLORATORY DATA ANALYSIS

Basics and beyond

15

1. Statistical analysis

• Statistical modeling: check for variations in the

response variable given explanatory variables;

– Linear regression

• Multivariate statistics: look for structure in the
data;

– Clustering:

• Hierarchical

– Dendrograms

• Partitioning

– Kmeans (stats)

– Mixture-models (mclust)

I. R-programming II. Data Analysis III. Case study IV. HPC

16

2.Linear regression
• Ex: Find the equation that best fit the data, given the

decay of radioactive emission over a 50-day period

• Linear regression: variables expected to be linearly related;

• Maximum likelihood estimates of parameters = least squares;

I. R-programming II. Data Analysis III. Case study IV. HPC

2.1.Linear regression
data = read.table('sapdecay.txt',header=T)

attach(data)

the log(y) gives a rough idea of the decay constant, a, for these data by linear regression of log(y) against x

mylm = lm(log(y)~x)

print(mylm$coefficients)

sum of squares of the difference between the observed yv and predicted yp values of y, given a specific

value of parameter a

sumsq <-function(a,xv=x,yv=y)

{

yp = exp(-a*xv) #predicted model for y

sum((yv-yp)^2)

}

a=seq(0.01,0.2,.005)

sq=sapply(a,sumsq)

decayK=a[min(sq)==sq] #this is the least-squares estimate for the decay constant

days=seq(0,50,0.1)

par(mfrow=c(1,3))

plot(x,y,main='Decay of radioactive emission over a 50-day period',xlab='days')

plot(a,sq,type='l',xlab='decay constant',ylab='sum of squares of (observ - predicted)')

matplot(decayK,min(sq),pch=19,col='red',add=T)

plot(x,y); lines(days,exp(-decayK*days),col='blue‘)

detach()

17
I. R-programming II. Data Analysis III. Case study IV. HPC

18

3.Cluster analysis

• Hierarchical

– dendrogram(stats)

• Partitioning

– kmeans (stats)

• Mixture-models:

– Mclust (mclust)

Iris dataset: 150 samples of Iris

flowers described in terms of its
petal and sepal length and width

I. R-programming II. Data Analysis III. Case study IV. HPC

3.1.Hierarchical clustering

19

• Analysis on a set of

dissimilarities, combined

to agglomeration methods

for analyzing it:

• Dissimilarities: Euclidean,

Manhattan, …

• Methods:

– ward, single, complete,
average, mcquitty,
median or centroid.

I. R-programming II. Data Analysis III. Case study IV. HPC

3.2.K-means

• Split n observations into k
clusters;

– each observation belongs

to the cluster with the

nearest mean.

20

setosa versicolor virginica

1 0 48 14

2 0 2 36

3 50 0 0

I. R-programming II. Data Analysis III. Case study IV. HPC

3.3. Model-based clustering

• Mixture Models

– Each cluster is mathematically

represented by a parametric distribution;

– Set of k distributions is called a mixture,
and the overall model is a finite mixture
model;

– Each probability distribution gives the
probability of an instance being in a given
cluster.

2121
I. R-programming II. Data Analysis III. Case study IV. HPC

22

Case study

Accelerated laser-wakefield particles

http://www.lbl.gov/publicinfo/newscenter/features/2008/apr/af-bella.html

IV. HPC

time steps

• C. Geddes (LBNL) in LOASIS program headed by W.
Leemans and SciDAC COMPASS project.

•• Highlights:Highlights:
– Described compact electron clouds
using minimum enclosing ellipsoids;

– Developed algorithms to adapt
mixture model clustering to large datasets;

•• Science Impact:Science Impact:
– Automated detection and analysis of
compact electron clouds;

– Derived dispersion features of electron clouds;
– Extensible algorithms to other science problems;

•• Collaborators:Collaborators:
– Tech-X
– Math Group, LBNL

– UCDavis, University of Kaiserlautern

Knowledge discovery in LWFA science
via machine learning

I. R-programming II. Data Analysis III. Case study

24

Framework

• Goal: automate the analysis of electron bunches by
detecting compact groups of particles, with similar
momentum and spatio-temporal coherence.

I. R-programming II. Data Analysis III. Case study IV. HPC

25

B1. Select relevant particles

• Beams of interest are

characterized by high density of
high-energy particles:

1. Elimination of low energy particles
(px<1e10)

– Wake oscillation: px<=1e9

– Excludes particles of the background

2. Calculation of the simulation
average number of particles (µs);

3. Elimination of timesteps with
number of particles inferior to µs;

Representation of particle momentum in one

time step: spline interpolation onto a grid for
visualization of irregularly spaced input data.

Packages:
akima, hdf5, fields

I. R-programming II. Data Analysis III. Case study IV. HPC

26

B2.Kernel-based estimation

• Kernel density estimators are less sensitive to
the placement of the bin edges;

• Goal: retrieve a dense group of particles with

similar spatial and momentum characteristics:

� argmax f(x,y,px),

� Neighborhood: 2 µm

Packages:
misc3d, rgl, fields

I. R-programming II. Data Analysis III. Case study IV. HPC

27

B3. Identify beam candidates

• Detection of compact groups of particles

independent of being a maximum in one of the
variables;

I. R-programming II. Data Analysis III. Case study IV. HPC

28

B4. Cluster using mixture models

• Model and number of clusters

can be selected at run time

(mclust);

• Partition of multidimensional

space;

• Assume that the functional

form of the underlying

probability density follows a

mixture of normal distributions;

Packages:
mclust, rgl

I. R-programming II. Data Analysis III. Case study IV. HPC

29

B5. Evaluation of compactness

• Bunches of interest move at speed ≈ c, hence are nearly

stationary in the moving simulation window;

• Moving averages smoothes out short-term fluctuations and

highlights longer-term trends.

I. R-programming II. Data Analysis III. Case study IV. HPC

30

High performance computing

Packages, challenges and new businesses

1. Improve performance/reusability

• Good coding: avoid loops, vectorization;

• Extend R using C++ compiled code:

– packages: Rcpp, inline

• Reuse your Python codes:

– Package: Rpython

• Parallelism:

– Explicit: packages Rmpi, Rpvm, nws

– Implicit: packages pnmath, pnmath0 for multithreaded math

functions

• Use out-of-memory processing with

– packages bigmemory and ff

31
I. R-programming II. Data Analysis III. Case study IV. HPC

2. What is going on HPC in R?

• Parallelism:

– Multicore: multicore, pnmath, …

– Computer cluster: snow, Rmpi, rpvm, …

– Grid computing: GRIDR, …

• GPU:

– gputools: parallel algorithms using CUDA + CULA

• Extremely large data:

– ff: memory mapped pages of binary flat files.

I. R-programming II. Data Analysis III. Case study IV. HPC

3. Nothing is perfect…

• Limits on individual objects: on all versions

of R, the maximum number of elements of

a vector is 2^31 – 1;

• R will take all the RAM it can get (Linux

only);

• More information, type:

>help(‘Memory-limits’)

>gc() #garbage collector

>object.size(your_obj) #size of your object
33

I. R-programming II. Data Analysis III. Case study IV. HPC

Take home

• Everything is an object. This means that your variables are objects, but so

are output from analyses. Everything that can possibly be an object by
some stretch of the imagination… is an object.

• R works in columns, not rows. R thinks of variables first, and when you
line them up as columns, then you have your dataset. Even though it seems

fine in theory (we analyze variables, not rows), it becomes annoying when
you have to jump through hoops to pull out specific rows of data with all
variables.

• R likes lists. If you aren’t sure how to give data to an R function, assume it
will be something like this: c(“item 1”, “item 2”) meaning “concatenate into a
list the 2 objects named Item 1, Item 2”. Also, “list” is different to R from
“vector” and “matrix” and “dataframe” etc.

• Its open source. It won’t work the way you want. It has far too many too many

commands commands instead of an optimized core set. It has multiple ways to do
things, none of them really complete. People on the mailing lists revel in
their power over complexity, lack of patience, and complete inability to
forgive a novice. We just have to get used to it, grit our teeth, and help them

become better people.
34http://www.nettakeaway.com/tp/R/129/understanding-r

35

References
• Michael J. Crawley. Statistics: An Introduction using R. Wiley, 2005.

ISBN 0-470-02297-3.

– data: http://www.bio.ic.ac.uk/research/mjcraw/therbook/

• Robert H. Shumway and David S. Stoffer. Time Series Analysis and
Its Applications With R Examples. Springer, New York, 2006. ISBN
978-0-387-29317-2

• Basics

– http://cran.r-project.org/doc/contrib/Short-refcard.pdf

– http://cran.r-project.org/doc/contrib/refcard.pdf

– http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

– http://www.manning.com/kabacoff/Kabacoff_MEAPCH1.pdf

• Intermediate

– http://math.acadiau.ca/ACMMaC/Rmpi/basics.html

– User-lists

Cheat sheets

36

EXTRA SLIDES

Basic but fundamental

1.Install R

• Download R from: http://www.r-project.org

• Install the binary

• Start R

• Print one of the “cheat sheets”

• Warm up

• Customize by typing the cmd in your R session:
install.packages(‘<name_pkg>’)

38

2.Getting started
1) your question can be a valid package name or valid

command:

> help(graphics) or ?plot

2) this will search anything that contain your query string:

> help.search(‘fourier’)

3) which package contains the cmd?

> find(“plot”)

4) get working directory:

> getwd()

5) set working directory:

> setwd()

6) variables in your R-session:

> ls()

7) remove your variable:

> rm(mytrash_var)

8) List the objects which contain ‘n’

> ls(pat=‘n’)

9) Source a function:

> source(‘myfunction.R’)

10) Load a library

> library(fields)

workspace

39

• Basic types: numeric, character, complex or logical

> v1=c(7,33,1,7) #this is a vector

> v2=1:4 #this is also a vector

> v3=array(1,c(4,4,3)) #create a multidimensional array

> i=complex(real=1,imag=3) #this is a complex number

• Functions:

> n=11; print(n); sqrt(n);

> ifelse(n>11,n+1,n%%2)

[1] 1

• Operators: + * / - ^ < <= > >= == !=

%/%, ^, %%, sqrt(): integer division, power, modulo, square root

>A%*%B #matrix multiplication

• Packages

> install.packages()

> library(stats)

3. Simple syntax

40

4.Type of objects representing data

Object Modes Allow mode
heterogeneity ?

vector numeric, character, complex or
logical,

No

factor numeric or character No

array numeric, character, complex or logical No

matrix numeric, character, complex or logical No

data.frame numeric, character, complex or logical YES

ts numeric, character, complex or logical No

list numeric, character, complex or logical,
function, expression,

YES

Emmanuel Paradis (2009), R for Beginners

1) Test type of object/mode: is.type()
2) Coerce: as.type()

Ex:
x=c(8,3,6,3)
is.character(x)
m=as.character(x)

1) Test type of object/mode: is.type()
2) Coerce: as.type()

Ex:
x=c(8,3,6,3)
is.character(x)
m=as.character(x)

41

4.1.Creating objects

• Arrays;

• Matrices;

• Data frame: set of
vectors of the
same length;

• Factor: ‘category’,
‘enumerated type’

> summary(.)

> attributes(.)

42

4.2.Data input/output

• Graphical spreadsheet-like editor:

>data.edit(x) #open editor

>x=c(5,7,2,33,9,14)

>x=scan()

>data=read.table(“data.txt’,header=T)

• Ex output:

>write.table(d,“new_file.txt”)

43

5. Functions
>myfun=function(x=1,y){

+ z=x+y

+ z}

> myfun(2,3)

[1] 5

• Several mathematical, statistical and graphical functions;

• The arguments can be: “data”, formulae, expressions, . .

• Functions always need to be written with parentheses in
order to be executed, even if there are no parameters;

– Type the function without parentheses: R will display the content

of the function.

44

5.1. Built-in functions

1. Basic functions

– sin(), cos(), exp(), log(), …

2. Distributions

– rnorm(),beta(), gamma(), binom(), cauchy(),
mvrnorm(),…

3. Matrix algebra

– sum(), diag(), var(), det(), ginv(), eigen(),…

4. Calculus

– Ex: D(), integrate()

5. Differential equation

– Rk4() #library(odesolve)

45

• Querying data:

> f=rep(2:4,each=3) #repeats each element of the 1st parameter 3X

> which(f==3) #indexes of where f==3 holds

[1] 4 5 6

• Related commands:

> seq(), unique(), sort(), rank(), order(), rev()

• NaN is not NA:

> 0/0

[1] NaN

> is.nan(0/0) #this is not a number

[1] TRUE

>names=c(‘mary’,’john’,NA) # use of not available

6.Manipulation of objects – step1

different

46

• Faster operations: apply(), lapply(), sapply(),

tapply()

– apply = for applying functions to the rows or columns
of matrices or dataframes

>apply(M,2,max) #max of col

– lapply = for lists

>lapply(list(x=1:10,y=1:30), max)

– sapply = for vectors

>sapply(m=sapply(rnorm(2000),(function(x){x^2}))

– tapply = for tables

> mylist <- list(c(1, 2, 2,1), c("A", "A", "B","C"))

> tapply(1:length(mylist), mylist)

6.1.Manipulation of objects – step2

47

• Use the command line or an editor to create a function:

• Editor:

>fact <- function (x){ ifelse (x>1,x*fat(x-1),1)}

– Save in a file name fact.R

>source(‘fact.R’)

>fact(3)

• You can also save the history:

>savehistory(‘facthistory’)

>loadhistory(‘facthistory’)

>history(5) #see last 5 commands

• Tip: save filename = function name

6.2. Create your own function

48

7. Graphics

• Get a sense of what R can do:
>demo(graphics)

• The graphical windows are called X11

under Unix/Linux and windows under
Windows

• Other graphical devices: pdf, ps, jpg, png

>x11()

>windows()

>png()

>pdf()

7.1. Plot structure

• Graph parameter function:
> par(mfrow=c(2, 2),las=2,cex=.5,cex.axis=2.5,

cex.lab=2)

49

orientation

Changing
defaults

50

7.2.Example of data plots

> x=1:10

> layout(matrix(1:3, 3, 1))

> par(cex=1)

> plot(x[2:9],col=rainbow(9-
2+2)[2:9], pch=15:(15+ 9-
2+1)) #add to the plot

> matplot(x,pch=17,add=T);

> title('Using layout cmd')

> plot(runif(10),type='l')

> plot(runif(10),type='b')

51

7.3.Creating a gif animation
library(fields) # for tim.colors

library(caTools) # for write.gif

m <- 400 # grid size

C <- complex(real=rep(seq(-1.8,0.6, length.out=m),

each=m), imag=rep(seq(-1.2,1.2, length.out=m), m))

C <- matrix(C, m, m)

Z <- 0

X <- array(0, c(m, m, 20))

for (k in 1:20)

{

Z <- Z^2+C

X[,,k] <- exp(-abs(Z))

}

col <- tim.colors(256)

col[1] <- "transparent"

write.gif(X, “rplot-mandelbrot.gif", col=col, delay=100)

image(X[,,k], col=col) # show final image in R

52

8.1.Data input/output – special formats

• Availabity of several libraries. Ex:

– Rnetcdf: netcdf functions and access to
udunits calendar conversions;

– DICOM: provides functions to import and

manipulate medical imaging data via the
Digital Imaging and Communications in
Medicine (DICOM) Standard.

– hdf5: interface to NCSA HDF5 library; read
and write (only) the entire data

