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Table XIII
Comparison of K-L and C-K-L With Sped-up

Annealing (Percent Above Best Cut Ever Found)

Expected Average Degree

IVI 2.5 5.0 10.0 20.0 Algorithm

124 0.0 0.0 0.0 0.0 K-L's
0.0 0.1 0.0 0.0 C-K-L's
0.0 0.4 0.1 0.2 5 Anneals

250 0.1 0.9 0.5 0.2 K-L's
0.0 0.4 0.6 0.2 C-K-L's
1.8 0.6 0.3 0.0 5 Anneals

500 4.0 3.3 1.1 0.7 K-L's
1.9 2.2 1.2 0.8 C-K-L's
5.7 0.8 0.2 0.2 5 Anneals

1,000 5.2 4.5 1.8 1.0 K-L's
2.0 3.5 1.6 1.1 C-K-L's
3.2 0.8 0.2 0.1 5 Anneals

smaller. The running time reductions for our eight
geometric graphs were similar, with ratios ranging
from 0.33 to 0.45 in all but one case (the ratio for the
500-vertex geometric graph with mrd 2 = 40 was 0.76).
These running time savings were obtained with no
appreciable loss in solution quality: the average cut­
sizes were roughly the same for both implementations.
These speedups for both types ofgraphs alter the time­
equalized comparison of Annealing and K-L reported
in Tables V and VII, as fewer runs of K-L could be
performed in the time it takes to do 5 anneals. The
typical change, however, involves only a minor in­
crease in K-L's expected excess over the best cutsize
found, and K-L still has a significant lead over An­
nealing for all the geometric graphs and for the ran­
dom 250- and 500-vertex graphs with expected degree
2.5. (To see the effect on random graphs, compare
Table XIII with Table V.) Moreover, if we are willing
to go to such efforts to optimize our annealing imple­
mentation, we should also consider attempts to
improve on K-L by more traditional means. We do
this in the next section.

6. MORE ON THE COMPETITORS

Simulated annealing is not the only challenger to the
Kernighan-Lin graph partitioning throne. Alternative
algorithms for graph and hypergraph partitioning re­
cently have been proposed by a variety of researchers,
including Fiduccia and Mattheyses (1982), Goldberg
and Burstein (1983), Bui et al. (1984), Goldberg
and Gardner (1984), Krishnamurthy (1984), Bui,
Leighton and Heigham (1986), and Frankle and Karp
(1986). Some of this work in fact has been stimulated
by the reported success of annealing on certain graph

partitioning problems, researchers having concluded
that the true message in this relative success is not that
annealing is good, but that K-L is a much poorer
algorithm than previously thought.

We have done limited tests of two of the most
promising approaches. The first is based on the
Fiduccia-Mattheyses algorithm, a variant of K-L. The
K-L algorithm operates only on balanced partitions,
and is based on a repeated operation of finding the
best pair ofas-yet-unmoved vertices (one from VI and
one from V2 ) to interchange (best in the sense that
they maximize the decrease in the cut, or if this is
impossible, minimize the increase). If this is done for
a total of I VI/2 interchanges, one ends up with the
original partition, except that VI and V2 are reversed.
One then can take the best of the 1 VI 12 partitions
seen along the way as the starting point for another
pass, continuing until a pass yields no improvement.
For a fuller description, see Kernighan and Lin.

Fiduccia and Matheyses (F-M) proposed to speed
up the process by picking just the best single vertex to
move at each step. This reduces the number of possi­
bilities from 1 V 12 to I V I and, with the proper data
structures (adjacency lists, buckets, etc.) can reduce
the total worst case running time (per pass) to
O( I V I + IE I) from what looks like Q( I V 13

) for
K-L. In practice, this speedup is illusory, as K-L
runs in time O( I V I + IE I) per pass in practice when
implemented with the same proper data structures,
and the two algorithms had comparable running times
in our limited tests. Nor were we able to get F-M to
outperform K-L in the quality of solutions found.
F-M was actually slightly worse under the standard
implementation in which vertices are chosen alter­
nately from VI and from V2 , to ensure that every other
partition encountered is in balance. If instead we
choose to move the best vertex in either VI or V2 , and
use the imbalance squared penalty function of our
Annealing algorithm, F-M improved to parity with
K-L, but no better. (As remarked in Section 4.3, lo­
cal optimization based on this penalty function is
substantially better than local optimization based on
pairwise interchanges: The average of 1,000 runs of
the former on G500 was 276 versus 290 for the latter.)

The second approach has been embodied in algo­
rithms due to Goldberg and Burstein and to Bui,
Leighton, and Heigham, and involves coalescing ver­
tices to form a smaller graph, and applying K-L to
this. Based on our implementation ofboth algorithmS,
the Bui, Leighton, and Heigham algorithm seems to
be superior and can offer a significant improvement
over basic K-L. In this algorithm, one first finds a
maximal matching on the vertices of the graph, and
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forms a new graph by coalescing the endpoints ofeach
edge in the matching (or all but one of them, if the
number of edges in the matching is not divisible by
4). The result is a graph with an even number of
vertices, upon which K-L is performed. The resulting
partition is expanded by uncoalescing the matched
vertices, and, if necessary, modified by random shifts
so that it becomes a balanced partition of the original
graph. This is then used as the starting solution for a
run of K-L on the entire graph, the result of which is
the output of the algorithm. We shall refer to this
algorithm as coalesced Kernighan-Lin and abbreviate
it as C-K-L.

Despite the two calls to K-L, the running time of
C-K-L is less than twice that of K-L, ranging between
1.1 and 1.9 times that for K-L by itself on our test
graphs (the first call to K-L is on a smaller graph, and
the second is from a good starting partition). The
excess over K-L's running time tends to go up as the
density of the graph increases. Taking this increased
running time into account, however, C-K-L outper­
forms basic K-L on all our geometric test graphs and
on the sparser of our random ones. It did not outper­
form Line + K-L on the geometric graphs, however.
Table XIII is the analog of Table V for our test bed of
random graphs. Both K-L and C-K-L are compared
to our original estimate for the best of 5 anneals, with
the time equalization taking into account the speedups
for Annealing reported in Table XII. The K-L data
are derived from our original suite of 2,000 runs per
graph; data for C-K-L are based on 1,000 runs
per graph.

Note that C-K-L dominates our sped-up Annealing
implementation on all the graphs with expected av­
erage degree 2.5 (except the smallest, where all three
algorithms are tied). In comparison, K-L loses out on
the 1,OOO-vertex graph of this type, even when com­
pared to the slower Annealing implementation, as in
Table V. Annealing still seems to be pulling away,
however, as the graphs become larger and denser.

Finally, all three algorithms (K-L, C-K-L, and An­
nealing) can be beaten badly on special classes of
graphs. We have seen the efficacy of the Line Algo­
rithm for geometric graphs. Bui et al. report on an
approach based on network flow that almost surely
finds the optimal cut in certain regular graphs with
unique optimal cuts. Neither Annealing nor K-L
matches its performance on such graphs. For espe­
cially sparse graphs, another possibility suggests itself.
Such graphs may not be connected, and it is thus
possible that some collection of connected compo­
nents might contain a total of exactly I V I/2 vertices,
yielding a perfect cut. Theoretically this is unlikely
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unless the graph is very sparse; normally there should
still be one monster component that contains most of
the vertices, and this was indeed the case for all the
test graphs studied. We were, however, able to generate
a 500-vertex geometric graph with this property by
taking d = 0.05 (expected average degree slightly less
than 4). This graph had an optimum cutsize of 0 that
was found by using a connected components algo­
rithm with an O(n 2

) dynamic programming algorithm
for solving the resulting subset sum problem. Neither
K-L nor Annealing, however; ever found such a cut,
despite thousands of runs of the former and hundreds
of the latter.

7. CONCLUSIONS

In light of the above, simulated annealing seems to be
a competitive approach to the graph partitioning prob-·
lem. For certain types of random graphs, it appears to
beat such traditional heuristics as Kernighan-Lin, as
well as more recent improvements thereon, even when
running time is taken into account. It was substan­
tially outclassed on other types of graphs, however.
Generalizing from the results we observed for random
and geometric graphs, it appears that if the graph is
particularly sparse or has some local structure, it may
well be better to spend an equivalent amount of time
performing multiple runs of K-L or C-K-L, or using
heuristics specially tuned to the instances at hand.

In addition to evaluating annealing's performance
on the graph partitioning problem, our experiments
may also provide some preliminary insight into
how best to adapt our generic annealing algorithm to
other problems. In particular, we offer the following
observations.

Observation 1. To get the best results, long annealing
runs must be allowed.

Observation 2. Of the various ways to increase the
length of an annealing run, adding time to the begin­
ning or end of the schedule does not seem to be as
effective as adding it uniformly throughout the sched­
ule. The latter can be accomplished by increasing
TEMPFACTOR, increasing SIZEFACTOR, or using
adaptive temperature reduction. It is not clear which
of these methods is to be preferred, although a TEMP­
FACTOR increase seems to yield a slight running
time advantage in our implementation.

Observation 3. It may not be necessary to spend much
time at very high temperatures (ones where almost all
moves are accepted). One can reduce the time spent
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Observation 11. In adapting annealing to a particular
problem, it may pay to expand the definition of solu­
tion. One can allow violations of some of the basic
constraints of the problem definition, so long as a
penalty for the violation is included in the cost func­
tion. This allows for a smoother solution space in
which local optima are easier to escape. The smaller
the penalty, the smoother the space, and surprisingly
small penalties may still be enough to ensure that final
solutions are legal, or close to it.

Observation 10. The best values of the annealing
parameters may depend not only on the problem
being solved, but also on the type and size of instance
at hand. One must beware of interactions between the
generic parameters, and between these and any prob­
lem specific parameters that may exist in the imple­
mentation. Given this warning, however, the generic +'
parameter values we derived for our graph partitioning
implementation seem like a good starting point,
assuming they result in feasible running times.

Although based on the study of a single application
of annealing, these observations have been supported
by our subsequent work on other applications. In
particular, they will be USed and elaborated on in the
two companion papers (Johnson et al. 1990a, b),
which report on our experiments adapting simulated
annealing to graph coloring, number partitioning and
the traveling salesman problem.

As a service to readers who would like to replicate "••
or improve upon our graph partitioning experiments .
and desire a common basis for comparison, we are '
prepared, for a limited time, to make electronic copies
available of the graphs used as instances in this study.
Interested readers should contact the first author (elec­
tronic mail address: dsj@research.att.com).
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Observation 6. It appears that better solutions can be
found subject to a given bound on running time, if
one does not simply generate candidate moves one at
a time, independently, but instead uses random per­
mutations to generate sequences of N successive
moves without repetition.

Observation 5. There seems no reason to replace the
standard geometric cooling method by any of the
nonadaptive alternatives we have examined (logarith­
mic cooling, linear temperature cooling, etc.).

Observation 7. Even with long runs, there can still be
a large variation in the quality of solutions found by
different runs. However, up to a certain point, it seems
to be better to perform one long run than to take the
best of a time-equivalent collection of shorter runs.

Observation 4. Simple minded adaptive scheduling
appears to yield no improvement beyond that to be
expected due to the increase in overall running time
it provides. We do not rule out the possibility that
more sophisticated adaptive schedules or schedules
hand-tuned to particular types of instances might be
more effective, especially if instances exhibit evidence
of the "phase transitions" alluded to by Kirkpatrick,
Gelatt and Vecchio No such transitions were evident
in our graph partitioning instances, however. For
these, the shape of a time exposure ofcurrent solution
values seems to be determined mostly by the curve of
declining move probabilities, with no unexplained
irregularities that an adaptive scheduler might attempt
to exploit.
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at such temperatures by using cutoffs, or simply by
starting at a lower temperature. It is not clear if it
makes a difference which technique is used, so long
as the value of the cutoff/starting temperature is
properly chosen. For this, experimentation may be
required.

Observation 8. There can be an advantage to starting
at a good solution rather than a randomly generated
one (an advantage in quality ofsolution, running time,
or both), but this depends strongly on the nature of
the good solution. Starting solutions that take advan­
tage of some special structure in the instance at hand
seem to be preferable to those obtained by general
heuristics.

Observation 9. Replacing the computation of the ex­
ponential e-t>IT with a table lookup approximation
seems to be a simple way to speed up the algorithm
without degrading its performance.
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