

882 / JOHNSON ET AL.

In particular, using INITPROB = 0.95 and CUTOFF
= 0.125 is roughly equivalent in running time and
quality of solution to our standard choice of INIT­
PROB =0.4 and CUTOFF = 1.0. Reducing CUTOFF
below 0.125 has the same effect as reducing INIT­
PROB below 0.4: running time is saved but the aver­
age solution quality deteriorates. Limited experimen­
tation also indicated that little was to be gained by
using cutoffs in conjunction with INITPROB = 0.4.

5.2. Rejection-Free Annealing

In the previous section, we investigated the effect of
shortcuts at the beginning of the annealing schedule.
Alternatively, one might attempt to remove unneces­
sary computations from the end of the schedule. At
low temperatures almost all our time is spent in
considering moves that we end up rejecting. Viewing
this as wasted time, Green and Supowit (1986) pro­
pose that we reorganize the computation as follows.
Compute for each possible move the probability Pi
that it would be accepted if chosen. Let the sum of all
these probabilities be P. We construct a probability
distribution over the set of all moves where the prob­
ability of move i is pJP, select a move randomly
according to this distribution, and accept it automat­
ically. Green and Supowit show that this is equivalent
to doing annealing in the ordinary way. Moreover, for
the generalization of graph partitioning that they con­
sider, the probabilities can be updated efficiently. Con­
sequently, the procedure runs more quickly than the
ordinary method as soon as the percentage of accept­
ances drops below some cutoff (11-13 % in Green and
Supowit's experiments). Although we did not investi­
gate this approach ourselves, it appears that for low
values of INITPROB, a time savings of up to 30%
might be obtainable. Note, however, that this ap­
proach may not be generally applicable, as the efficient
updating ofthe p;'s depends in large part on the nature
of the cost function used.

we temporarily modified our generic algorithm to
apportion its time amongst temperatures adaptive/yo
At each temperature we repeat the following loop.

I. Run for SIZEFACTOR * N trials, observing the
best solution seen and the average solution value.

2. If either of these is better than the corresponding
values for the previous SIZEFACTOR * N trials,
repeat.
Otherwise, lower the temperature in the standard
way.

This adaptive technique approximately tripled the
running time for a given set of parameters. Its effect
on solutions could not, however, be distinguished
from that of tripling the running time by changing
SIZEFACTOR or TEMPFACTOR. See Figure 20 for
a display ofsolutions found using the adaptive method
(indicated by Os) and the standard method (indicated
by *s) as a function of running time. SIZEFACTOR
was fixed at 16 and each method was run for the range
of values of TEMPFACTOR used in Tables VIII and
IX, with the smallest value omitted in the nonadaptive
case and the largest value omitted in the adaptive case.
All other parameters were set to their standard values,
with the starting temperature fixed at 1.3. Ten trials
were performed for each value.

Note how solution quality correlates much more
strongly with running time than with method (adap­
tive or nonadaptive). On the basis of these observa­
tions and similar ones for geometric graphs, we saw
no need to add the extra complication of adaptive
annealing schedules to our algorithm. Further studies
ofadaptive cooling may, however, be warranted, both
for this and other problems. The approach we took,
although easy to implement, is rather simple-minded.
More sophisticated adaptive cooling schedules have
been proposed recently in which the cooling rate
is adjusted based on the standard deviation of the

solution values Sel

Promising initial n
been reported by A
Lam and Delosme '
Sangiovanni-Vincen

5.4. Alternative Co

Returning briefly t<
authors have sugges
curve, in particular tl
goes a major chanl
process analogous t<
undergoes when it is
state. For these expe
be a much better e
curve. First note, as I

is a direct correlatic
centage of moves cm
is encountered, with
early as the probabili1
the percentage of a
mined by the temper,
cooling schedule affe,
Figure 22 displays t1J
move of size 1 will bl
is To(0.95y, where 1
Note how similar thi:

A natural question
nature of this curve?'
ods of temperature
inspire? To investiga
three proposed altern

The first is what
cooling. We first fix IJ
temperature reductiO!
we choose a starting t
imately INITPROB 0

700 ,- _

500 1000 1500 2000
RUNNING TIME IN SECONDS

Figure 20. Results for adaptive and nonadaptive
schedules as a function of running time.

o ADAPTIVE

• NON-ADAPTIVE

20

~
300~*
200

p,

600

C
U 500
T
S
I

~ 400

Figure 21. CorrelatiO!
age of acc
depicted ir

O!! 000
o tlo

0
0o 0 ..00

o 00.
o • •

235

230 · q·.0 •

C
225 til •

U · O.
T · 00

• 0
S 220 · 0
I · .00 00z ·E

215 1J'l0 ". 00 •
• ·.W80 0 0

210 °ll q;o.. 8 o~ ..
• 0

205

5.3. Adaptive Cooling Schedules

Although much of the time spent by Annealing at
very high and very low temperatures seems unproduc­
tive, we saw in Section 4.3 that the amount of time
spent at temperatures between these limits had a large
effect on the quality of solution obtained. The follow­
ing alternative method for increasing this time was
suggested by Kirkpatrick, Gelatt and Vecchio Based
on their reasoning about the physical analogy, they
proposed spending more time at those temperatures
where the current average solution value is dropping
rapidly, arguing that more time was needed at such
temperatures to reach equilibrium. To investigate this,

lperature in the standard

adaptive and nonadaptive
l function of running time.

Figure 22. Probability that a given uphill move will
be accepted as a function of the number
of times the temperature has been lowered
under geometric cooling.

Number of Temperature Reductions

A be the size of an uphill move accepted with proba­
bility INITPROB at temperature To. The ith temper·
ature T; is then chosen so that the probability Pi thal
an uphill move of size A will be accepted equal~

«C - i)C) * INITPROB. (This is guaranteed by set·
ting T i = -Aj(ln«C - i)C) * INITPROB), or more
precisely the minimum of this figure and 0, since the
solution may still be improving at temperature Two,
in which case, we will need additional temperature~

to ensure freezing according to our standard criterion
of five temperatures without improvement.)

This cooling method is intriguing in that it yielill
time exposures that approximate straight lines (see
Figure 23), further confirming our hypothesis that the
shapes of such time exposure curves are determined
by the cooling schedule. Based on limited experi­
ments, it appears that this cooling technique is far
more sensitive to its starting temperature than is geo­
metric cooling. For To = 1.3 (corresponding to INIT·
PROB = 0.4 for the graph Gsoo), we were unable to
distinguish the results for this cooling method from
those for the geometric method when the parameten
were adjusted to equalize running time. In particular,
for C = 100 and SIZEFACTOR = 8, the running time
for linear probability cooling was roughly the same ~
that for geometric cooling under ourstandard param­
eters (346 seconds versus 330), while averaging a
cutsize of 213.5 over 50 runs, compared to 213.3 for
the standard parameters. However, if we set To = 11.3
(corresponding to INITPROB = 0.9), the average cut
increased significantly (to 220.4), even if we doubled
C to take account of the fact that we were starting at
a higher temperature. Recall that under geometric
cooling, increasing INITPROB above 0.4, although it
led to increased running time, had no significant effect
on cutsizes found.

]00

solution values seen at the current temperature.
Promising initial results for such approaches have
been reported by Aarts and Van Laarhoven (1984),
Lam and Delosme (1986), and Huang, Romeo, and
Sangiovanni-Vincentelli (1986).

5.4. Alternative Cooling Schedules

Returning briefly to Figure 13, we note that some
authors have suggested that the shape of this cooling
curve, in particular the points at which its slope under­
goes a major change, may in some way reflect a
process analogous to the phase transitions that H20
undergoes when it is cooled from a gaseous to a solid
state. For these experiments, however, there seems to
be a much better explanation for the shape of the
curve. First note, as displayed in Figure 21, that there
is a direct correlation between cutsize and the per­
centage of moves currently accepted when the cutsize
is encountered, with cutsize improving essentially lin­
early as the probability ofacceptance goes down. Since
the percentage of acceptance presumably is deter­
mined by the temperature, it is natural to ask how our
cooling schedule affects the probability of acceptance.
Figure 22 displays the probability P(t) that an uphill
move of size 1 will be accepted when the temperature
is To(0.95)', where To is chosen so that P(1) = 0.99.
Note how similar this curve is to that in Figure 13.

A natural question to ask is how important is the
nature of this curve? What about other possible meth­
ods of temperature reduction, and the curves they
inspire? To investigate this question, we considered
three proposed alternatives.

The first is what we shall call linear probability
cooling. We first fix INITPROB and the number C of
temperature reductions that we wish to consider. Next
we choose a starting temperature To at which approx­
imately INITPROB of the moves are accepted, letting

Percentage of Accepted Moves

Figure 21. Correlation between cutsize and percent­
age of acceptance for the annealing run
depicted in Figure 13.

2000

o ADAPTIVE

... NON-ADAPTIVE

· generic algorithm to
mperatures adaptive/yo
l the following loop.

N trials, observing the
lVerage solution value.
than the corresponding
lZEFACTOR * Ntrials,

)proximately tripled the
of parameters. Its effect
wever, be distinguished
ming time by changing
:::TOR. See Figure 20 for
sing the adaptive method
ndard method (indicated
ing time. SIZEFACTOR
hod was run for the range
~ used in Tables VIII and
nitted in the nonadaptive
litted in the adaptive case.
t to their standard values,
re fixed at 1.3. Ten trials

ue.
ty correlates much more
than with method (adap­
1e basis of these observa­
geometric graphs, we s~w

complication of adapti~e

algorithm. Further studies
)wever, be warranted, both
lS. The approach we took,
t is rather simple-minded.
v~ cooling schedules have
n which the cooling rate
standard deviation of the

1000 ISOO

G TIME IN SECONDS

884 I JOHNSON ET AL.

LINEAR TEMPERATURE COOLING

LINEAR PROBABILITY COOLING

+5.6. Using Better-Thi

'fiMany authors have su
~better-than-random su
h
{'"normal starting tempe
~or at least better ruJ
;;;possibility, and our re1
'the better-than-randol
significance.

. We first studied the
~iPartitions generated b)
~random, as our starti
~Initial_Solution routil
crunning on a random]
partition itself. (Sine
.' nced partitions, we a

anced partition, as'
an a general randon

Or annealing.) We the
hose in Figures 16 a.
,resumably lower thaI
urprisingly, it turned

4good starts looked juS'
-starts in Figures 16 an
PROB were still 0.3 0

random permutation e
ofeach block, and USil
the next N moves.

Using this modifica
changes from the Stal
time, we performed I(]
ard geometric graph (
was essentially uncha
found was 212.5, as co
of the standard algo:
because none ofthe l(

up that 1,000 yielded ~

view of the results sUI
duction in cutsize obu
generate moves seems
would obtain by doub]
ing with the standard
further supported by e

: graph of Figure 8. H
during 100 trials drop]

- method to 20.4 using p
',. a significant change in

.Yt mutation generation t
" FACTOR from 16 t(
fi"back up to 22.8 but,
_the standard implemel

.~ •• experiments, it seem
,f permutation is a prom

at step i be C/O + log(i» for come constant C, and if
one is willing to wait long enough, then the process
will almost surely converge to an optimal solution.
The catch is that waiting long enough may well mean
waiting longer than it takes to find an optimal solution
by exhaustive search. It is, thus, unlikely that such
results have anything to tell us about annealing as it
can be implemented in practice.

Nevertheless, for completeness, we performed lim­
ited experiments with such logarithmic cooling sched­
ules, executing logarithmic cooling runs of 1,000,000
steps for Gsoo and various values of C. This seems to
give logarithmic cooling the benefit of the doubt,
because a typical geometric cooling run on Gsoo using
the standard parameters took about 400,000 steps.
Note, however, that under logarithmic cooling the
temperature only drops by about 5% during the last
half of the schedule; indeed, after the first 0.1 % of the
schedule it drops only by a factor of 2. Thus, the
choice of C seems to be crucial. Too high a value of
C will cause the annealing run to finish at too high a
temperature for the solution to be frozen in the normal
sense. Too Iowa value will result in almost all the
time spent at near-zero temperatures, thus yielding
results that are little better than Local Opt. For Gsoo ,
the best value of C we could find was one that yielded
a schedule for which the last 80% of the time was
spent with an acceptance ratio between 2 and 3%, and
for which the average cutsize found (over 20 runs) was
219.7, significantly above the 213.3 that our standard
method averaged while using less than half the time.

5.5. Choosing Moves According to Random
Permutations

In our description of the basic annealing process in
Figure 3, the neighboring solution Sf to be tested is
simply chosen randomly from the set of all neighbors
of the current solution. In terms ofgraph partitioning,
we randomly choose a vertex as a candidate for mov­
ing from one side of the partition to the other, inde­
pendently of all previous choices. Although this has
the appeal of simplicity, there are reasons to think it
might be inefficient, Suppose, for instance, that just
one of the N vertices in the graph will yield an accept­
able new solution if moved. Then there is a nonnegli­
gible probability that we may have to perform sub­
stantially more than N trials before we encounter that
special vertex. Thus, it has been suggested that, instead
of picking our moves independently at each iteration,
we should introduce enough dependence so that each
vertex is chosen once in each successive block of N
moves. This can be done while still maintaining a
high degree of randomness, simply by choosing a

600

700 ,--------------__--------,

300

200
SOO 1000 ISOO 2000

(NUMBER OF TRlALSjlN

Figure 23. Time exposure for linear probability
cooling.

soo 1000 ISOO 2000
(NUMBER OF TRIALSjlN

200

300

5 soo
T
S
I
~ 400

600

700 r-------------------,

The second cooling method we shall call linear
temperature cooling, and it has apparently been used
by some experimenters (e.g., Golden and Skiscim
1986). In this method we choose C and derive a
starting temperature To from INITPROB as before.
The ith temperature T; is then simply «C - O/C) *
To. Time exposures for this cooling method (see Fig­
ure 24) again reflect the curve of acceptance proba­
bility values. This technique proved to be equally
sensitive to the choice of To. For our standard in­
stance Gsoo , setting C = 100, SIZEFACTOR = 8, and
To = 1.3 again yielded an average cutsize over 50 runs
of 213.5 (again using approximately the same time as
geometric cooling), whereas increasing To to 11.3 and
Cto 200 yielded an average cutsize of219.9. Because
of this lack of robustness, it appears that neither linear
probability cooling nor linear temperature cooling is
to be preferred to geometric cooling.

The final alternative we considered was suggested
by the mathematical proofs of convergence for simu­
lated annealing that were discussed in Section 1.4. In
the papers cited there, it is shown that if one changes
the temperature at every step, letting the temperature

5 500
T
S
I

~ 400

Figure 24. Time exposure for linear temperature
cooling.

Ie constant C, and if
~, then the process
LO optimal solution.!
)Ugh may well mea
Ian optimal solutio
, unlikely that suc
bout annealing as i

, we performed lim~;

thmic cooling sched"
19 runs of 1,000,000,
of C. This seems to

mefit of the doubt,
ng run on Gsoo using
bout 400,000 steps.
lrithmic cooling the
t 5% during the last
. the first 0.1 % of the
:tor of 2. Thus, the
Too high a value of
) finish at too high a
:frozen in the normal '
ult in almost all the
atures, thus yielding
Local Opt. For Gsoo ,

was one that yielded
0% of the time was
:tween 2 and 3%, and
nd (over 20 runs) was
3.3 that our standard
s than half the time.

Ig to Random

annealing process in
on Sf to be tested is
Ie set of all neighbors
ofgraph partitioning,
a candidate for mov­
m to the other, inde­
~s. Although this has
re reasons to think it
or instance, that just
11 will yield an accept­
:n there is a nonnegli­
lave to perform sub­
)re we encounter that
.uggested that, instead
otly at each iteration,
Jendence so that each
mccessive block of N
Ie still maintaining a
mply by choosing a

random permutation of the vertices at the beginning
ofeach block, and using that permutation to generate
the next N moves.

Using this modification, but otherwise making no
changes from the standard parameters and starting
time, we performed 100 annealing runs on our stand­
ard geometric graph Gsoo . The average running time
was essentially unchanged, but the average cutsize
found was 212.5, as compared to 213.3 for 1,000 runs
of the standard algorithm. This seems significant
because none ofthe 10 groups of 100 runs that made
up that 1,000 yielded an average better than 212.9. In
view of the results summarized in Table IX, the re­
duction in cutsize obtained by using permutations to
generate moves seems to be almost as much as one
would obtain by doubling the running time and stay­
ing with the standard method. This conclusion was
further supported by experiments with the geometric
graph of Figure 8. Here the average cutsize found
during 100 trials dropped from 22.6 for the standard
method to 20.4 using permutation generation, without
a significant change in running time. If we used per­
mutation generation but reduced the value of SIZE­
FACTOR from 16 to 8, the average cutsize went
back up to 22.8 but we only used half the time of
the standard implementation. Based on these limited
experiments, it seems that move generation by
permutation is a promising approach.

5.6. Using Better-Than-Random Starting Solutions

Many authors have suggested the possibility of using
better-than-random starting solutions, and lower than
normal starting temperatures, to obtain better results,
or at least better running times. We studied this
possibility, and our results indicate that the source of
the better-than-random solutions may be of crucial
significance.

We first studied the effect on annealing of using
partitions generated by K-L, which are far better than
random, as our starting solutions. We revised our
Initial_Solution routine to return the result of K-L
running on a random partition, rather than a random
partition itself. (Since K-L works only on bal­
anced partitions, we actually started from a random
balanced partition, as we normally did for K-L, rather
than a general random partition, as we normally did
for annealing.) We then ran experiments analogous to
those in Figures 16 and 17 to find an appropriate,
presumably lower than normal, value of INITPROB.
Surprisingly, it turned out that the boxplots for these
good starts looked just like the boxplots for random
starts in Figures 16 and 17. The best values ofINIT­
PROB were still 0.3 or 0.4 for our standard random

Graph Partitioning by Simulated Annealing / 885

graph Gsoo , and so no significant speedup could be
expected. Furthermore, for Gsoo the average cutsize
found over 100 runs was exactly the same as the
average for random starts. There also seems to be no
significant benefit to using K-L starts on the 16 stand­
ard random graphs covered by Tables II-V, although
this conclusion is based only on 20 runs with and
without the K-L starts for each graph. (We also did
not attempt to determine optimal values of INIT­
PROB for each graph separately, but stuck with the
value of 0.4 indicated by our experiments with Gsoo .)

The situation for geometric graphs was somewhat
better. Although, once again, the optimal value of
INITPROB was around 0.4 and so no speedup could
be obtained, the use of starting solutions generated
by K-L yields better solutions on average, as seen in
Table XI. As shown in the table, however, for these
geometric graphs there proved to be an even better
starting solution generator, a simple heuristic we shall
call the Line Algorithm. This heuristic is tailored
especially to the geometric nature of these instances.
Recall that a geometric graph is based on a model in
which vertices correspond to points in the unit square,
and there is an edge between two vertices if and only
if the vertices are sufficiently close to each other. In
terms of this underlying model, one might expect a
good partition to divide the unit square into two
regions, and the size of the cut to be roughly propor­
tional to the length of the boundary between the two

Table XI
Average Cutsizes Found for Line, K-L, and

Annealing (the Latter Two With and Without
Good Starting Solutions Compared to Best Cuts

Ever Founda

IVI 5 10 20 40 Algorithm

500 4 26 178 412 (Best Found)

38.1 89.4 328.4 627.8 Line
36.1 89.7 221.0 436.3 K-L
12.5 45.0 200.8 442.8 Line + K-L

21.1 65.8 247.0 680.3 Anneal
22.2 52.4 192.4 507.4 K-L + Anneal
12.9 48.6 217.0 501.1 Line + Anneal

1000 3 39 222 737 (Best Found)

47.2 123.7 381.8 1128.7 Line
70.7 157.5 316.7 857.8 K-L
15.7 64.6 272.0 825.5 Line + K-L

41.2 120.4 355.3 963.8 Anneal
38.1 99.9 295.0 833.8 K-L + Anneal
15.8 54.7 262.5 839.6 Line + Anneal

a These figures do not take running time into account, and
thus, overestimate the relative efficacy of annealing.

886 I JOHNSON ET AL.

regions. Since the shortest such boundary is a straight
line, this suggests looking at those partitions that are
formed by straight lines.

The Line Algorithm is given as input the coordi­
nates of the points Pi, 1 .,;; i .,;; n, in the model for a
geometric graph and proceeds as follows.

1. Pick a random angle fJ, 0 .,;; fJ .,;; 1r.

2. For each point Pi, compute the y-intercept Yi ofthe
straight line through Pi with a slope equal to tan(fJ).

3. Sort the points according to their values of Yi, and
form a partition between the vertices correspond­
ing to the first nl2 points and those corresponding
to the last n12.

Compared to our more sophisticated algorithms, the
running time for the O(n log n) Line Algorithm was
negligible, e.g., 1.5 seconds for the I,OOO-vertex, ex­
pected degree 5 graph. (Note that by using a linear­
time, median-finding algorithm instead of the sorting
in Step 3, we could reduce the overall time to O(n),
although for the size of problems we consider here,
the time saving is not worth the programming effort.)

Table XI shows the average cuts found for our eight
standard geometric graphs by 20 runs of Annealing
starting from random partitions, K-L partitions, and
Line partitions. For comparison purposes, it also
shows the best cuts ever found by any method and
the averages of 1,000 runs of Line, 2,000 runs of
K-L, and 1,000 runs of K-L from a Line start. Note
that Line by itself is as good or better than K-L for
the sparser graphs, but that the true value of Line
appears to be as an initial partition generator. Even
more intriguing than the averages reported in the table
are the cutsizes of the best partitions found by the
various algorithms for the 1,000-vertex graph with
ntrd 2 = 5: The best partition ever found by random
start K-L has cutsize 26 (compared to 30 for random
start Annealing), the best Line partition found had
cutsize 19, and both Line + K-Land Line + Annealing
found cuts ofsize 3. Moreover, with Line starts, it was
possible to begin Annealing at a very low temperature
(INITPROB = 0.025) without losing on solution qual­
ity, and so substantial speedups (as big as a factor of
5) were possible. (The combination of Line with K-L
was also slightly faster than K-L by itself, no doubt
because fewer K-L iterations were needed, given the
good start.)

Note that the results in Table XI do not take run­
ning time into account. If one equalizes for running
time, Line beats Annealing (usually substantially) on
all but the 500-vertex graph with ntrd2 = 20, and beats
K-L on all the graphs with ntrd2

.,;; 10. Moreover, Line
+ K-L passes Line + Annealing on the two graphs

where it does not already beat it without accounting
for running time. (The especially good value for K-L
+ Annealing on the 500-vertex, ntrd2 = 20 graph
appears to be a statistical anomaly, arising from the
fact that the starting solutions generated by K-L for
these 20 runs had a much better than normal per­
centage of very good cutsizes.)

We conclude from these experiments that there is
value to be gained by using good starting solutions,
but that the nature ofthe starting solutions can make
a crucial difference. It is especially helpful if the start­
ing solutions are in some sense orthogonal to the kinds
ofsolutions generated by annealing, as is the case with
the Line solutions for geometric graphs, which make
use of geometric insights into the nature of the in­
stances that are not directly available to a general
algorithm like annealing that must work for all in­
stances. (One might hypothesize that the reason that
K-L starting solutions were also helpful for geometric
graphs is that the detailed operation ofK-L is adapted
to take advantage of the local structure of geometric
graphs in ways that annealing is less likely to find. See
Section 7 for a brief description of how K-L works.)
Moreover, good starts may be equally or more useful
when used with approaches other than annealing.

The above results mirror practical experience we
had with certain real-life instances. The real-life in­
stances came from a related problem, that of hyper­
graph partitioning. In a hypergraph the edges are sets
ofvertices, not just pairs, and the cutsize for a partition
V = VI U V2 is the number of edges that contain
vertices from both VI and V2 • A scheme for designing
"standard-cell VLSI circuits," developed at AT&T
Bell Laboratories and described by Dunlop and
Kernighan, performs cell layout by repeated calls to a
hypergraph partitioning algorithm. Traditionally the
K-L algorithm has been used for this (it was originally
defined in general hypergraph terms). On real circuits,
it gives its best results when started from a partition
provided by the circuit designers or a slightly random­
ized variant thereof. Such starting partitions were
significantly better than the partitions typically found
by K-L when it was started from a purely random
partition. They made use of instance-specific inside
information, just as the Line starting partitions
did for our geometric instances of ordinary graph
partitioning.

The same behavior was observed with an imple­
mentation of annealing for hypergraph partitioning.
In a victory for our generic approach, this implemen­
tation was obtained from our graph partitioning im­
plementation in a few hours by just making some
minor changes to the problem-specific routines. If

started from a rand
competitive with tb
partition, with a Ie
substantial improvel
provements were m
by K-L, on others th
tition between the tv!
was inconclusive, so
time into account.

As a final commer
starting solutions, WI

further dimension to
K-L when running til
the solutions found b
than the initial K-L S(

They were still aver2
K-L solutions when
which reduced the n
factor of 4. In contr2
experiments in which
solution found by AI
improvement.

5.7. Approximate E)

In looking for other ~

streamlining is the e
place once each time
code. On a VAX 11­
accelerator, this is an I

standard parameters, J

imately 400,000 sud
,G500 , and these will
': running time. It thus
. other function than e­
.of acceptance. Althouj
tivations for using the
certain asymptotic ~

Federgruen, and Mitl
Vincentelli). There is
other, simpler to com]
gust as well or better iJ

actually used. One aj
'on 1 - !::>.IT, which in
east approximates the

;25 as much time to (
resumably offering al

". asis of 300 runs with 1
arameters, we can cOl
o significant difference

ian average cutsize of 2
. We did not investiga
owever, as an equival

. Yan alternative and b

it without accounting
ly good value for K-L
x, mrd2 = 20 graph,
laly, arising from the;
generated by K-L for'
ter than normal per"',

eriments that there is
lod starting solutions"
19 solutions can make'
lly helpful if the start, '
,rthogonal to the kinds
ing, as is the case with
c graphs, which make
the nature of the in­
lvailable to a general
nust work for all in­
e that the reason that
1 helpful for geometric
tion ofK-L is adapted
;tructure of geometric
less likely to find. See

II of how K-L works.)
:qually or more useful
er than annealing.
actical experience we
nces. The real-life in­
'oblem, that of hyper­
'aph the edges are sets
~ cutsize for a partition
of edges that contain
, scheme for designing
developed at AT&T

Jed by Dunlop and
t by repeated calls to a
hm. Traditionally the
r this (it was originally
~rms). On real circuits,
arted from a partition
s or a slightly random­
lrting partitions were
titions typically found
'om a purely random
llstance-specific inside
Ie starting partitions
:es of ordinary graph

:erved with an imple­
pergraph partitioning.
Iroach, this implemen­
graph partitioning im­
by just making some
n-specific routines. If

started from a random partition, annealing was not
competitive with the designers; starting from their
partition, with a low initial temperature, it made
substantial improvements. On certain graphs the im­
provements were more substantial than those made
by K-L, on others they were less. Overall, the compe­
tition between the two algorithms for this application
was inconclusive, so long as one did not take running
time into account.

As a final comment on our experiments with good
starting solutions, we note that they also indicate a
further dimension to the superiority ofAnnealing over
K-L when running time is ignored. For the graph G500 ,

the solutions found by Annealing averaged 9% better
than the initial K-L solutions when INITPROB = 0.4.
They were still averaging 1% better than the initial
K-L solutions when INITPROB was set to 0.025,
which reduced the running time of Annealing by a
factor of 4. In contrast, when we performed limited
experiments in which K-L was started from the final
solution found by Annealing, K-L never yielded an
improvement.

5.7. Approximate Exponentiation

In looking for other savings, a natural candidate for
streamlining is the exponentiation e-t>./T that takes
place once each time through the inner loop of the
code. On a VAX 11-750, even with a floating point
accelerator, this is an expensive operation. Under our
standard parameters, Annealing will perform approx­
imately 400,000 such exponentiations in handling
G500 , and these will take almost one third of the
running time. It thus seems appealing to use some
other function than e-D./T to determine the probability
of acceptance. Although there are mathematical mo·
tivations for using the exponential, they only apply in
certain asymptotic senses (e.g., see Anily and
Federgruen, and Mitra, Romeo and Sangiovanni­
Vincentelli). There is no a priori reason why some
other, simpler to compute function might not serve
just as well or better in the context of the algorithm
as actually used. One appealing possibility is the func­
tion 1 - b./T, which involves just one division and at
least approximates the exponential. It takes less than
1125 as much time to compute on our system, thus
presumably offering about a 33% speedup. On the
basis of 300 runs with this function and our standard
parameters, we can confirm the speedup, and notice
no significant difference in the quality of the solution
(an average cutsize of 213.2 versus 213.3 for e-D./T).

We did not investigate this approximation further
however, as an equivalent speedup can be obtained
by an alternative and better approximation to e-t>./T.

Graph Partitioning by Simulated Annealing / 887

This better approximation uses the following table
lookup scheme. First note that the ratio between the
smallest uphill move that has a nonnegligible chance
of rejection and the largest uphill move that has a
nonnegligible chance of acceptance is no more than
1,000 or so (an uphill move of size T/200 has an
acceptance probability 0.9950 whereas one of size 5T
has an acceptance probability 0.0067). Thus, to obtain
the value of e-t>./T to within a half percent or so, all we
need do is round 200b./T down to the nearest integer,
and use that as an index into a table of precomputed
exponentials (if the index exceeds 1,000, we automat­
ically reject). Implementing this latter scheme saved
113 the running time, and had no apparent effect on
quality of solution. We have used it in all our subse­
quent experiments with Annealing on other problems,
choosing it over the linear approximation so that we
could still claim to be analyzing what is essentially the
standard annealing approach.

Had we used this approximation in our graph par­
titioning experiments, it would skew the results
slightly more in Annealing's favor, but not enough to
upset our main conclusions, even if we combine it
with the two other major potential speedups uncov­
ered in this study. Table XII shows the reduction in
running time obtained by: 1) using table lookup ex­
ponentiation, 2) doing more generation by random
permutation while halving the temperature length,
as suggested in Section 6.5, and 3) combining a
further reduction in the temperature length (SIZE­
FACTOR = 1) with a corresponding decrease in the
cooling rate (TEMPFACTOR = 0.99358 = (0.95) 1/8)

for smoother cooling, as suggested in Section 5.3. Five
runs of this modified Annealing algorithm were per­
formed for each of the 16 random graphs in our
ensemble, and Table XII reports the ratios of the
resulting average running times to the averages for our
original implementation, as reported in Table IV.

Note that the running time was reduced by a factor
of at least two in all cases, with significantly more
improvement as the graphs became sparser and/or

Table XII
Average Speedups Using Approximate

Exponentiation, Permutation Generation, and
Smoother Cooling (Running Time Ratios)

Expected Average Degree

IVI 2.5 5.0 10.0 20.0

124 0.29 0,28 0.38 0.40
250 0.31 0.36 0.35 0.41
500 0.34 0.39 0.41 0.47

1000 0.34 0.37 0.39 0.49

888 1 JOHNSON ET AL.

Table XIII
Comparison of K-L and C-K-L With Sped-up

Annealing (Percent Above Best Cut Ever Found)

Expected Average Degree

IVI 2.5 5.0 10.0 20.0 Algorithm

124 0.0 0.0 0.0 0.0 K-L's
0.0 0.1 0.0 0.0 C-K-L's
0.0 0.4 0.1 0.2 5 Anneals

250 0.1 0.9 0.5 0.2 K-L's
0.0 0.4 0.6 0.2 C-K-L's
1.8 0.6 0.3 0.0 5 Anneals

500 4.0 3.3 1.1 0.7 K-L's
1.9 2.2 1.2 0.8 C-K-L's
5.7 0.8 0.2 0.2 5 Anneals

1,000 5.2 4.5 1.8 1.0 K-L's
2.0 3.5 1.6 1.1 C-K-L's
3.2 0.8 0.2 0.1 5 Anneals

smaller. The running time reductions for our eight
geometric graphs were similar, with ratios ranging
from 0.33 to 0.45 in all but one case (the ratio for the
500-vertex geometric graph with mrd 2 = 40 was 0.76).
These running time savings were obtained with no
appreciable loss in solution quality: the average cut­
sizes were roughly the same for both implementations.
These speedups for both types ofgraphs alter the time­
equalized comparison of Annealing and K-L reported
in Tables V and VII, as fewer runs of K-L could be
performed in the time it takes to do 5 anneals. The
typical change, however, involves only a minor in­
crease in K-L's expected excess over the best cutsize
found, and K-L still has a significant lead over An­
nealing for all the geometric graphs and for the ran­
dom 250- and 500-vertex graphs with expected degree
2.5. (To see the effect on random graphs, compare
Table XIII with Table V.) Moreover, if we are willing
to go to such efforts to optimize our annealing imple­
mentation, we should also consider attempts to
improve on K-L by more traditional means. We do
this in the next section.

6. MORE ON THE COMPETITORS

Simulated annealing is not the only challenger to the
Kernighan-Lin graph partitioning throne. Alternative
algorithms for graph and hypergraph partitioning re­
cently have been proposed by a variety of researchers,
including Fiduccia and Mattheyses (1982), Goldberg
and Burstein (1983), Bui et al. (1984), Goldberg
and Gardner (1984), Krishnamurthy (1984), Bui,
Leighton and Heigham (1986), and Frankle and Karp
(1986). Some of this work in fact has been stimulated
by the reported success of annealing on certain graph

partitioning problems, researchers having concluded
that the true message in this relative success is not that
annealing is good, but that K-L is a much poorer
algorithm than previously thought.

We have done limited tests of two of the most
promising approaches. The first is based on the
Fiduccia-Mattheyses algorithm, a variant of K-L. The
K-L algorithm operates only on balanced partitions,
and is based on a repeated operation of finding the
best pair ofas-yet-unmoved vertices (one from VI and
one from V2) to interchange (best in the sense that
they maximize the decrease in the cut, or if this is
impossible, minimize the increase). If this is done for
a total of I VI/2 interchanges, one ends up with the
original partition, except that VI and V2 are reversed.
One then can take the best of the 1 VI 12 partitions
seen along the way as the starting point for another
pass, continuing until a pass yields no improvement.
For a fuller description, see Kernighan and Lin.

Fiduccia and Matheyses (F-M) proposed to speed
up the process by picking just the best single vertex to
move at each step. This reduces the number of possi­
bilities from 1 V 12 to I V I and, with the proper data
structures (adjacency lists, buckets, etc.) can reduce
the total worst case running time (per pass) to
O(I V I + IE I) from what looks like Q(I V 13

) for
K-L. In practice, this speedup is illusory, as K-L
runs in time O(I V I + IE I) per pass in practice when
implemented with the same proper data structures,
and the two algorithms had comparable running times
in our limited tests. Nor were we able to get F-M to
outperform K-L in the quality of solutions found.
F-M was actually slightly worse under the standard
implementation in which vertices are chosen alter­
nately from VI and from V2 , to ensure that every other
partition encountered is in balance. If instead we
choose to move the best vertex in either VI or V2 , and
use the imbalance squared penalty function of our
Annealing algorithm, F-M improved to parity with
K-L, but no better. (As remarked in Section 4.3, lo­
cal optimization based on this penalty function is
substantially better than local optimization based on
pairwise interchanges: The average of 1,000 runs of
the former on G500 was 276 versus 290 for the latter.)

The second approach has been embodied in algo­
rithms due to Goldberg and Burstein and to Bui,
Leighton, and Heigham, and involves coalescing ver­
tices to form a smaller graph, and applying K-L to
this. Based on our implementation ofboth algorithmS,
the Bui, Leighton, and Heigham algorithm seems to
be superior and can offer a significant improvement
over basic K-L. In this algorithm, one first finds a
maximal matching on the vertices of the graph, and

forms a new graph by Cl
edge in the matChing (
number of edges in thl
4). The result is a gr,
vertices, upon which K
partition is expanded
vertices, and, if necessa
so that it becomes a bal
graph. This is then use4
run of K-L on the entil
the output of the algo
algorithm as coalesced
it as C-K-L.

Despite the two calls
C-K-L is less than twiCf
1.1 and 1.9 times that
graphs (the first call to I
the second is from a
excess over K-L's ronni
density of the graph in
running time into acce
forms basic K-L on all
on the sparser of our ra
form Line + K-L on tt
Table XIII is the analog
random graphs. Both I<
to our original estimate
the time equalization tal
for Annealing reported
are derived from our 01

graph; data for C-K-I
per graph.

Note that C-K-L dom
implementation on all
erage degree 2.5 (excepl
algorithms are tied). In ,
the 1,000-vertex graph,
pared to the slower Am
Table V. Annealing sti
however, as the graphs 1

Finally, all three algOl
nealing) can be beaten
~aphs. We have seen t
rithm for geometric gr,
~pproach based on nev
finds the optimal cut il
,unique optimal cuts.]
tnatches its performanc
cially sparse graphs, ano
Such graphs may not 1
Possible that some colI

,nents might contain a tc
\(Yielding a perfect cut. .

ers having concluded
tive success is not that
-L is a much poorer
~t.

of two of the most
rst is based on the·
a variant ofK-L. The·
1 balanced partitions,
~ration of finding the
:ices (one from Vj and
best in the sense that
the cut, or if this is

lse). If this is done for
one ends up with the
"I and V2 are reversed.
the I V I/2 partitions

jng point for another
elds no improvement.
nighan and Lin.
vi) proposed to speed
le best single vertex to
s the number of possi­
, with the proper data
:kets, etc.) can reduce
~ time (per pass) to
loks like Q(I V1 3

) for
p is illusory, as K-L
rpass in practice when
lroper data structures,
lparable running times
we able to get F-M to
:y of solutions found.
se under the standard
tices are chosen alter­
ensure that every other
lalance. If instead we
in either VI or V2 , and
malty function of our
lproved to parity with
ked in Section 4.3, lo­
is penalty function is
optimization based on
erage of 1,000 runs of
"Sus 290 for the latter.)
een embodied in algo-
Burstein and to Bui,

nvolves coalescing ver­
, and applying K-L to
tion ofboth algorithms,
am algorithm seems to
gnificant improvement
ithm, one first finds a
iices of the graph, and

forms a new graph by coalescing the endpoints ofeach
edge in the matching (or all but one of them, if the
number of edges in the matching is not divisible by
4). The result is a graph with an even number of
vertices, upon which K-L is performed. The resulting
partition is expanded by uncoalescing the matched
vertices, and, if necessary, modified by random shifts
so that it becomes a balanced partition of the original
graph. This is then used as the starting solution for a
run of K-L on the entire graph, the result of which is
the output of the algorithm. We shall refer to this
algorithm as coalesced Kernighan-Lin and abbreviate
it as C-K-L.

Despite the two calls to K-L, the running time of
C-K-L is less than twice that of K-L, ranging between
1.1 and 1.9 times that for K-L by itself on our test
graphs (the first call to K-L is on a smaller graph, and
the second is from a good starting partition). The
excess over K-L's running time tends to go up as the
density of the graph increases. Taking this increased
running time into account, however, C-K-L outper­
forms basic K-L on all our geometric test graphs and
on the sparser of our random ones. It did not outper­
form Line + K-L on the geometric graphs, however.
Table XIII is the analog of Table V for our test bed of
random graphs. Both K-L and C-K-L are compared
to our original estimate for the best of 5 anneals, with
the time equalization taking into account the speedups
for Annealing reported in Table XII. The K-L data
are derived from our original suite of 2,000 runs per
graph; data for C-K-L are based on 1,000 runs
per graph.

Note that C-K-L dominates our sped-up Annealing
implementation on all the graphs with expected av­
erage degree 2.5 (except the smallest, where all three
algorithms are tied). In comparison, K-L loses out on
the 1,OOO-vertex graph of this type, even when com­
pared to the slower Annealing implementation, as in
Table V. Annealing still seems to be pulling away,
however, as the graphs become larger and denser.

Finally, all three algorithms (K-L, C-K-L, and An­
nealing) can be beaten badly on special classes of
graphs. We have seen the efficacy of the Line Algo­
rithm for geometric graphs. Bui et al. report on an
approach based on network flow that almost surely
finds the optimal cut in certain regular graphs with
unique optimal cuts. Neither Annealing nor K-L
matches its performance on such graphs. For espe­
cially sparse graphs, another possibility suggests itself.
Such graphs may not be connected, and it is thus
possible that some collection of connected compo­
nents might contain a total of exactly I V I/2 vertices,
yielding a perfect cut. Theoretically this is unlikely

Graph Partitioning by Simulated Annealing / 889

unless the graph is very sparse; normally there should
still be one monster component that contains most of
the vertices, and this was indeed the case for all the
test graphs studied. We were, however, able to generate
a 500-vertex geometric graph with this property by
taking d = 0.05 (expected average degree slightly less
than 4). This graph had an optimum cutsize of 0 that
was found by using a connected components algo­
rithm with an O(n 2

) dynamic programming algorithm
for solving the resulting subset sum problem. Neither
K-L nor Annealing, however; ever found such a cut,
despite thousands of runs of the former and hundreds
of the latter.

7. CONCLUSIONS

In light of the above, simulated annealing seems to be
a competitive approach to the graph partitioning prob-·
lem. For certain types of random graphs, it appears to
beat such traditional heuristics as Kernighan-Lin, as
well as more recent improvements thereon, even when
running time is taken into account. It was substan­
tially outclassed on other types of graphs, however.
Generalizing from the results we observed for random
and geometric graphs, it appears that if the graph is
particularly sparse or has some local structure, it may
well be better to spend an equivalent amount of time
performing multiple runs of K-L or C-K-L, or using
heuristics specially tuned to the instances at hand.

In addition to evaluating annealing's performance
on the graph partitioning problem, our experiments
may also provide some preliminary insight into
how best to adapt our generic annealing algorithm to
other problems. In particular, we offer the following
observations.

Observation 1. To get the best results, long annealing
runs must be allowed.

Observation 2. Of the various ways to increase the
length of an annealing run, adding time to the begin­
ning or end of the schedule does not seem to be as
effective as adding it uniformly throughout the sched­
ule. The latter can be accomplished by increasing
TEMPFACTOR, increasing SIZEFACTOR, or using
adaptive temperature reduction. It is not clear which
of these methods is to be preferred, although a TEMP­
FACTOR increase seems to yield a slight running
time advantage in our implementation.

Observation 3. It may not be necessary to spend much
time at very high temperatures (ones where almost all
moves are accepted). One can reduce the time spent

ACKNOWLEDGMENT

Observation 11. In adapting annealing to a particular
problem, it may pay to expand the definition of solu­
tion. One can allow violations of some of the basic
constraints of the problem definition, so long as a
penalty for the violation is included in the cost func­
tion. This allows for a smoother solution space in
which local optima are easier to escape. The smaller
the penalty, the smoother the space, and surprisingly
small penalties may still be enough to ensure that final
solutions are legal, or close to it.

Observation 10. The best values of the annealing
parameters may depend not only on the problem
being solved, but also on the type and size of instance
at hand. One must beware of interactions between the
generic parameters, and between these and any prob­
lem specific parameters that may exist in the imple­
mentation. Given this warning, however, the generic +'
parameter values we derived for our graph partitioning
implementation seem like a good starting point,
assuming they result in feasible running times.

Although based on the study of a single application
of annealing, these observations have been supported
by our subsequent work on other applications. In
particular, they will be USed and elaborated on in the
two companion papers (Johnson et al. 1990a, b),
which report on our experiments adapting simulated
annealing to graph coloring, number partitioning and
the traveling salesman problem.

As a service to readers who would like to replicate "••
or improve upon our graph partitioning experiments .
and desire a common basis for comparison, we are '
prepared, for a limited time, to make electronic copies
available of the graphs used as instances in this study.
Interested readers should contact the first author (elec­
tronic mail address: dsj@research.att.com).

ANILY, S., AND A
nealing Metha
abilities. PrepI
Columbia Uni'

BONOMI, E., AND J.
elling Salesmar
the Metropoli
551-568.

BUI, T. 1983. On
No. MIT/LCS
Science, Mas~
Cambridge, Ma

. BUI, T., S. CHAUntf
1984. Graph Bi
erage Case Be
Symp. on Four.
192. Los Angel(

BUI, T., T. LEIGHTC
Communicatior

CERNY, V. 1985. A
Travelling Sales
tion Algorithm.

COLLINS, N. E., R. "
Simulated Ann(
Report No. 88-(
agement, Univel

DUNLOP, A E., AND
dure for Placem
IEEE Trans. Co

EL GAMAL, A A, L
AND V. K. WEI.
to Design Good (
33, 116-123.

FIDUCCIA, C. M., A;
Linear-Time Hel
titions. In Proc. 1
pp. 175-181, Las

FRANKLE, J., AND R. I
and Cost Bounds
Proc. IEEE Int.
414-417, Santa (

GAREY, M. R., AND
and IntractabilitJ

The authors thank Phil Anderson for providing the Completeness. W
initial stimulation for this study, Scott Kirkpatrick for GAREY, M. R., D. S
his help in getting us started, Jon Bentley, Mike Garey, 1976. Some SimI
Mark Goldberg, Martin Grotschel, Tom Leighton andl lems. Theor. Com
John Tukey for insightful discussions along the way,! GELF~ND, S. B., AND
and the Referees for suggestions that helped improve; SImulated Anneal
the final presentation. i Conf on Decisi

I Lauderdale, Ha.IGEMAN, S., AND D. GE
REFERENCES i Gibbs DistributiOl

r Images. IEEE Pri
AARTS, E. H. L., AND P. J. M. VAN LAARHOVEN. 1985.[Intelligence PAM]

A New Polynomial-Time Cooling Schedule. In Proc.! GIDAS, B. 1985. Non
IEEE Int. Conf on CAD (ICCAD 85), pp. 206-208,1 Convergence of th
Santa Clara, Calif. .t Phys. 39, 73-131.

Observation 6. It appears that better solutions can be
found subject to a given bound on running time, if
one does not simply generate candidate moves one at
a time, independently, but instead uses random per­
mutations to generate sequences of N successive
moves without repetition.

Observation 5. There seems no reason to replace the
standard geometric cooling method by any of the
nonadaptive alternatives we have examined (logarith­
mic cooling, linear temperature cooling, etc.).

Observation 7. Even with long runs, there can still be
a large variation in the quality of solutions found by
different runs. However, up to a certain point, it seems
to be better to perform one long run than to take the
best of a time-equivalent collection of shorter runs.

Observation 4. Simple minded adaptive scheduling
appears to yield no improvement beyond that to be
expected due to the increase in overall running time
it provides. We do not rule out the possibility that
more sophisticated adaptive schedules or schedules
hand-tuned to particular types of instances might be
more effective, especially if instances exhibit evidence
of the "phase transitions" alluded to by Kirkpatrick,
Gelatt and Vecchio No such transitions were evident
in our graph partitioning instances, however. For
these, the shape of a time exposure ofcurrent solution
values seems to be determined mostly by the curve of
declining move probabilities, with no unexplained
irregularities that an adaptive scheduler might attempt
to exploit.

890 / JOHNSON ET AL.

at such temperatures by using cutoffs, or simply by
starting at a lower temperature. It is not clear if it
makes a difference which technique is used, so long
as the value of the cutoff/starting temperature is
properly chosen. For this, experimentation may be
required.

Observation 8. There can be an advantage to starting
at a good solution rather than a randomly generated
one (an advantage in quality ofsolution, running time,
or both), but this depends strongly on the nature of
the good solution. Starting solutions that take advan­
tage of some special structure in the instance at hand
seem to be preferable to those obtained by general
heuristics.

Observation 9. Replacing the computation of the ex­
ponential e-t>IT with a table lookup approximation
seems to be a simple way to speed up the algorithm
without degrading its performance.

of the annealing
on the problem

tld size of instance
:tions between the:

<if£

ese and any prob- ..~
:xist in the imple-l1
wever, the generic;~'
graph partitioning· ,
Id starting point,
ning times.

ling to a particular
definition of solu.
some of the basic
:ion, so long as a
j in the cost func­
solution space in
:cape. The smaller
e, and surprisingly
to ensure that final

I single application
ve been supported
:r applications. In
aborated on in the
et al. 1990a, b),

ldapting simulated
er partitioning and

ld like to replicate
oning experiments
)mparison, we are
~e electronic copies
mces in this study.
e first author (elec­
tt.com).

for providing the
:ott Kirkpatrick for
:ntley, Mike Garey,
Tom Leighton and
Jns along the way,
tat helped improve

LAARHOVEN. 1985.
g Schedule. In Proc.
D 85), pp. 206-208,

ANILY, S., AND A. FEDERGRUEN. 1985. Simulated An­
nealing Methods With General Acceptance Prob­
abilities. Preprint. Graduate School of Business,
Columbia University, New York.

BoNOMI, E., AND J.-L. LUTION. 1984. The N-City Trav­
elling Salesman Problem: Statistical Mechanics and
the Metropolis Algorithm. SIAM Review 26,
551-568.

BUI, T. 1983. On Bisecting Random Graphs. Report
No. MITjLCSjTR-287, Laboratory for Computer
Science, Massachusetts Institute of Technology,
Cambridge, Mass.

BUI, T., S. CHAUDHURI, T. LEIGHTON AND M. SIPSER.
1984. Graph Bisection Algorithms With Good Av­
erage Case Behavior. In Proceedings 25th Ann.
Symp. on Foundations of Computer Science, 181­
192. Los Angeles, Calif.

BUI, T., T. LEIGHTON AND C. HEIGHAM. 1986. Private
Communication.

CERNY, V. 1985. A Thermodynamical Approach to the
Travelling Salesman Problem: An Efficient Simula­
tion Algorithm. J. Optim. Theory Appl. 45,41-51.

COLLINS, N. E., R W. EGLESE AND B. L. GOLDEN. 1988.
Simulated Annealing: An Annotated Bibliography.
Report No. 88-019, College of Business and Man­
agement, University of Maryland, College Park, Md.

DUNLOP, A. E., AND B. W. KERNIGHAN. 1985. A Proce­
dure for Placement of Standard-Cell VLSI Circuits.
IEEE Trans. Computer-Aided Design 4, 92-98.

EL GAMAL, A. A., L. A. HEMACHANDRA, I. SHPERLING
AND V. K. WEI. 1987. Using Simulated Annealing
to Design Good Codes. IEEE Trans. Inform. Theory
33, 116-123.

FIDUCCIA, C. M., AND R. M. MATIHEYSES. 1982. A
Linear-Time Heuristic for Improving Network Par­
titions. In Proc. 19th Design Automation Conference,
pp. 175-181, Las Vegas, N.M.

FRANKLE, J., AND R. M. KARP. 1986. Circuit Placements
and Cost Bounds by Eigenvector Decomposition. In
Proc. IEEE Int. Can/. on CAD (/CCAD 86), pp.
414-417, Santa Clara, Calif.

GAREY, M. R, AND D. S. JOHNSON. 1979. Computers
and Intractability: A Guide to the Theory of NP­
Completeness. W. H. Freeman, San Francisco.

GAREY, M. R, D. S. JOHNSON AND L. STOCKMEYER.
1976. Some Simplified NP-Complete Graph Prob­
lems. Theor. Comput. Sci. 1,237-267.

GELFAND, S. B., AND S. K. MITIER. 1985. Analysis of
Simulated Annealing for Optimization. In Proc. 24th
Can! on Decision and Control, 779-786, Ft.
Lauderdale, Fla.

GEMAN, S., AND D. GEMAN. 1984. Stochastic Relaxation,
Gibbs Distribution, and the Bayesian Restoration of
Images. IEEE Proc. Pattern Analysis and Machine
Intelligence PAMI-6, 721-741.

GIDAS, B. 1985. Non-Stationary Markov Chains and
Convergence of the Annealing Algorithm. J. Statis.
Phys. 39, 73-131.

Graph Partitioning by Simulated Annealing / 891

GOLDBERG, M. K., AND M. BURSTEIN. 1983. Heuristic
Improvement Technique for Bisection ofVLSI Net­
works. In Proc. IEEE International Con! on Com­
puter Design, 122-125, Port Chester, N.Y.

GOLDBERG, M. K., AND R. D. GARDNER. 1984. Com­
putational Experiments: Graph Bisecting. Unpub­
lished Manuscript.

GoLDEN, B. L., AND C. C. SKISCIM. 1986. Using Simu­
lated Annealing to Solve Routing and Location
Problems. Naval. Res. Logist. Quart. 33,261-279.

GREEN, J. M., AND K. J. SUPOWIT. 1986. Simulated
Annealing Without Rejecting Moves. IEEE Trans.
Computer-Aided Design CAD-5, 221-228.

HINTON, G. E., T. J. SEJNOWSKI AND D. H. ACKLEY.
1984. Boltzmann Machines: Constraint Satisfaction
Networks That Learn. Report No. CMU-CS-84-ll9,
Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pa.

HUANG, M. D., F. ROMEO AND A. SANGIOVANNI­
VINCENTELLI. 1986. An Efficient General Cooling
Schedule for Simulated Annealing. In Proc. IEEE
Int. Can! on CAD (/CCAD 86), 381-384, Santa
Clara, Calif.

JEPSEN, D. W., AND C. D. GELATI, JR. 1983. Macro
Placement by Monte Carlo Annealing. In Proc. In­
ternational Con! on Computer Design, 495-498,
Port Chester, N.Y.

JOHNSON, D. S., C. R. ARAGON, L. A. McGEOCH AND C.
SCHEVON. 1990a. Optimization by Simulated An­
nealing: An Experimental Evaluation, Part II (Graph
Coloring and Number Partitioning). Opns. Res. (to
appear).

JOHNSON, D. S., C. R. ARAGON, L. A. MCGEOCH
AND C. SCHEVON. 1990b. Optimization by Sim­
ulated Annealing: An Experimental Evaluation,
Part III (The Traveling Salesman Problem). (In
Preparation.)

KERNIGHAN, B. W., AND S. LIN. 1970. An Efficient
Heuristic Procedure for Partitioning Graphs. Bell
Syst. Tech. J. 49,291-307.

KIRKPATRICK, S. 1984. Optimization by Simulated An­
nealing: Quantitative Studies. J. Statis. Phys. 34,
975-986.

KIRKPATRICK, S., C. D. GELATI, JR. AND M. P. VECCHI.
13 May 1983. Optimization by Simulated Anneal­
ing. Science 220, 671-680.

KRISHNAMURTHY, B. 1984. An Improved Min-Cut Al­
gorithm for Partitioning VLSI Networks. IEEE
Trans. Computers C-33, 438-446.

LAM, J., AND J. M. DELOSME. 1986. Logic Minimization
Using Simulated Annealing. In Proc. IEEE Int.
Can! on CAD (/CCAD 86), 348-351, Santa Clara,
Calif.

LUNDY, M., AND A. MEEs. 1986. Convergence of the
Annealing Algorithm. Math. Prog.34, 111-124.

Math of a Salesman. 1982. Science 3:9, 7-8 (November).
McGILL, R., J. W. TUKEY AND W. A. DESARBO. 1978.

Variations on Box Plots. Am. Stat. 32:1, 12-16.

(Received .

DYNAMIC NE
CONT

Two continuous time
system optimization
theory. Pontryagin's
notions regarding dy
first dynamic general
in the form of an opt
requirements for the
under commonly enc

SASAKI, G. H., AND B. HAJEK. 1988. The Time Com­
plexity of Maximum Matching by Simulated An­
nealing. J. Assoc. Comput. Mach. 35, 387-403.

Statistical Mechanics Algorithm for Monte Carlo
Optimization. 1982. Physics Today 35:5, 17-19

(May).
VAN LAARHOVEN, P. J. M., AND E. H. L. AARTS.

1987. Simulated Annealing: Theory and Practice,
Kluwer Academic publishers, Dordrecht, The

Netherlands.
VECCHI, M. P., AND S. KIRKPATRICK. 1983. Global Wir-

ing by Simulated Annealing. IEEE Trans. Com­
puter-Aided Design CAD-2, 215-222.

WHITE, S. R. 1984. Concepts of Scale in Simulated
Annealing. In Proc. International Can! on Computer
Design, 646-651, Port Chester, N.Y.

METROPOLIS, W., A. ROSENBLUTH, M. ROSENBLUTH, A.
TELLER AND E. TELLER. 1953. Equation of State
Calculations by Fast Computing Machines. J. Chem.

Phys. 21, 1087-1092.
MITRA, D., F. ROMEO AND A. SANGIOVANNI-

VINCENTELLI. 1986. Convergence and Finite-Time
Behavior of Simulated Annealing. J. Advan. Appl.

Prob. 18, 747-771.
NAHAR, S., S. SAHNI AND E. SHRAGOWITZ. 1985. Exper-

iments with Simulated Annealing. In Proceedings
22nd Design Automation Conference, 748-752, Las

Vegas, N.M.
ROWEN, c., AND J. L. HENNESSY. 1985. SWAMI: A

Flexible Logic Implementation System. In Proceed­
ings 22nd Design Automation Conference, 169-175,

Las Vegas, N.M.

892 / JOHNSON ET AL.

I n recent years, there]
the problem of dy

networks. Although thi
the study of transportat
to telecommunications
eral. In this problem, OD<

flows on each arc of t
traffic inputs also vary 1

(queueing) exists along,
There is yet to emefl

monly agreed upon statt
traffic assignment prot
Merchant and Nemhau
by many to be the semi]
d~namic traffic assignIJ
Wide transport costs are
ning horizon. The syste
,assignment model descr
work and, as such is D'
forecasting of dyn~mic
which users make their
fxample, occurs with
highways.
I'
fubject classifications: Dynami,
I'ynamics.

eperations Research
01. 37, No.6, November-Dect

