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new problems (even in the absence of deep insight
into the problems themselves) and, because of its
apparent ability to avoid poor local optima, it offers
hope of obtaining significantly better results.

These observations, together with the intellectual
appeal of the underlying physical analogy, have
inspired articles in the popular scientific press (Science
82, 1982 and Physics Today 1982) as well as attempts
to apply the approach to a variety of problems, in
areas as diverse as VLSI design (Jepsen and
Gelatt 1983, Kirkpatrick, Gelatt and Vecchi 1983,
Vecchi and Kirkpatrick 1983, Rowan and Hennessy
1985), pattern recognition (Geman and Geman 1984,
Hinton, Sejnowski and Ackley 1984) and code gen
eration (EI Gamal et al. 1987), often with substantial
success. (See van Laarhoven and Aarts 1987 and
Collins, Eglese and Golden 1988 for more up-to-date
and extensive bibliographies of applications.) Many of
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In this and two companion papers, we report on an extended empirical study of the simulated annealing approach to
combinatorial optimization proposed by S. Kirkpatrick et al. That study investigated how best to adapt simulated
annealing to particular problems and compared its performance to that of more traditional algorithms. This paper (Part
I) discusses annealing and our parameterized generic implementation of it, describes how we adapted this generic
algorithm to the graph partitioning problem, and reports how well it compared to standard algorithms like the Kernighan
Lin algorithm. (For sparse random graphs, it tended to outperform Kernighan-Lin as the number of vertices become
large, even when its much greater running time was taken into account. It did not perform nearly so well, however, on
graphs generated with a built-in geometric structure.) We also discuss how we went about optimizing our implementation,
and describe the effects of changing the various annealing parameters or varying the basic annealing algorithm itself.
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new approach to the approximate solution of
difficult combinatorial optimization problems

" tly has been proposed by Kirkpatrick, Gelatt and
. hi (1983), and independently by Cerny (1985).

simulated annealing approach is based on ideas
statistical mechanics and motivated by an anal

.0 the behavior of physical systems in the presence
;heat bath. The nonphysicist, however, can view
, ply as an enhanced version of the familiar tech
e of local optimization or iterative improvement,
. 'ch an initial solution is repeatedly improved by
ng small local alterations until no such alteration
a better solution. Simulated annealing random

.his procedure in a way that allows for occasional
moves (changes that worsen the solution), in an
pt to reduce the probability of becoming stuck

r but locally optimal solution. As with local
h, simulated annealing can be adapted readily to

OPTIMIZATION BY SIMULATED ANNEALING: AN EXPERIMENTAL
EVALUATION; PART I, GRAPH PARTITIONING
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the practical applications of annealing, however, have
been in complicated problem domains, where pre
vious algorithms either did not exist or performed
quite poorly. In this paper and its two companions,
we investigate the performance ofsimulated annealing
in more competitive arenas, in the hope of obtaining
a better view of the ultimate value and limitations of
the approach.

The arena for this paper is the problem of partition
ing the vertices of a graph into two equal size sets to
minimize the number of edges with endpoints in
both sets. This application was first proposed by
Kirkpatrick, Gelatt and Vecchi, but was not exten
sively studied there. (Subsequently, Kirkpatrick 1984
went into the problem in more detail, but still did not
deal adequately with the competition.)

Our paper is organized as follows. In Section 1, we
introduce the graph partitioning problem and use it
to illustrate the simulated annealing approach. We
also sketch the physical analogy on which annealing
is based, and discuss some ofthe reasons for optimism
(and for skepticism) concerning it. Section 2 presents
the details ofour implementation ofsimulated anneal
ing, describing a parameterized, generic annealing
algorithm that calls problem-specific subroutines, and
hence, can be used in a variety of problem domains.

Sections 3 through 6 present the results of our
experiments with simulated annealing on the graph
partitioning problem. Comparisons between anneal
ing and its rivals are made difficult by the fact that
the performance of annealing depends on the partic
ular annealing schedule chosen and on other, more
problem-specific parameters. Methodological ques
tions also arise because annealing and its main com
petitors are randomized algorithms (and, hence, can
give a variety of answers for the same instance) and
because they have running times that differ by factors
as large as 1,000 on our test instances. Thus, if com
parisons are to be convincing and fair, they must be
based on large numbers of independent runs of the
algorithms, and we cannot simply compare the aver
age cutsizes found. (In the time it takes to perform
one run of the slower algorithm, one could perform
many runs of the faster one and take the best solution
found.)

Section 3 describes the problem-specific details of
our implementation of annealing for graph partition
ing. It then introduces two general types oftest graphs,
and summarizes the results of our comparisons
between annealing, local optimization, and an algo
rithm due to Kernighan-Lin (1970) that has been the
long-reigning champion for this problem. Annealing
almost always outperformed local optimization, and

for sparse random graphs it tended to outpe .,
Kernighan-Lin as the number of vertices
large. For a class of random graphs with b .
geometric structure, however, Kernighan-Lin won:
comparisons by a substantial margin. Thus, sim
annealing's success can best be described as mix

Section 4 describes the experiments by which
optimized the annealing parameters used to gene
the results reported in Section 3. Section 5 investi~
the effectiveness of various modifications and alt
natives to the basic annealing algorithm. Section
discusses some of the other algorithms that have .
proposed for graph partitioning, and considers h'
these might factor into our comparisons. We conclu.
in Section 7 with a summary ofour observations abo
the value of simulated annealing for the graph p
tioning problem, and with a list oflessons learned
may well be applicable to implementations of sim
lated annealing for other combinatorial optimizatiq
problems. '

In the two companion papers to follow, we
report on our attempts to apply these lessons to thr
other well studied problems: Graph Coloring an
NumberPartitioning (Johnson et al. 1990a), and th
Traveling Salesman Problem (Johnson et al. I990b).:

1. SIMULATED ANNEALING: THE BASIC
CONCEPTS

1.1. Local Optimization

To understand simulated annealing, one must fi
understand local optimization. A combinatorial optii
mization problem can be specified by identifying a
of solutions together with a cost function that assign
a numerical value to each solution. An optimal solu.
tion is a solution with the minimum possible cost,.
(there may be more than one such solution). Given;
an arbitrary solution to such a problem, local opti-.
mization attempts to improve on that solution by a ..
series of incremental, local changes. To define a local.
optimization algorithm, one first specifies a method
for perturbing solutions to obtain different ones. The
set of solutions that can be obtained in one such step
from a given solution A is called the neighborhood of
A. The algorithm then performs the simple loop shown
in Figure I, with the specific methods for choosing S
and Sf left as implementation details.

Although S need not be an optimal solution when
the loop is finally exited, it will be locally optimal in
that none of its neighbors has a lower cost. The hope
is that locally optimal will be good enough.

To illustrate these concepts, let us consider the graph
partitioning problem that is to be the topic of Section
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Simulated annealing is an approach that attempts
to avoid entrapment in poor local optima by allowing
an occasional uphill move. This is done under the
influence ofa random number generator and a control
parameter called the temperature. As typically imple
mented, the simulated annealing approach involves a
pair of nested loops and two additional parameters, a
cooling ratio r, 0 < r < 1, and an integer temperature
length L (see Figure 3). In Step 3 of the algorithm, the
term frozen refers to a state in which no further
improvement in cost(S) seems likely.

The heart of this procedure is the loop at Step 3.1.
Note that e-A/T will be a number in the interval (0, 1)
when ~ and T are positive, and rightfully can be
interpreted as a probability that depends on ~ and T.
The probability that an uphill move of size ~ will be
accepted diminishes as the temperature declines, and,
for a fixed temperature T, small uphill moves have
higher probabilities ofacceptance than large ones. This
particular method of operation is motivated by a
physical analogy, best described in terms ofthe physics
of crystal growth. We shall discuss this analogy in the
next section.

1.3. A Physical Analogy With Reservations

To grow a crystal, one starts by heating the raw
materials to a molten state. The temperature of this
crystal melt is then reduced until the crystal structure
is frozen in. If the cooling is done very quickly (say,
by dropping the external temperature immediately to
absolute zero), bad things happen. In particular, wide
spread irregularities are locked into the crystal struc
ture and the trapped energy level is much higher than
in a perfectly structured crystal. This rapid quenching
process can be viewed as analogous to local optimi
zation. The states of the physical system correspond
to the solutions ofa combinatorial optimization prob
lem; the energy of a state corresponds to the cost of a

Figure 2. Bad but locally optimal partItIOn with
respect to pairwise interchange. (The dark
and light vertices form the two halves of the
partition.)

<1-_1>
<1 1>

Figure 1. Local optimization.

/3. In this problem, we are given a graph G = (V, E),
~where V is a set of vertices (with I V I even) and E is a
. t of pairs of vertices or edges. The solutions are

artitions of V into equal sized sets. The cost of a
ition is its cutsize, that is, the number of edges in

that have endpoints in both halves of the partition.
e will have more to say about this problem in

ion 3, but for now it is easy to specify a natural
ocal optimization algorithm for it. Simply take the
.eighbors of a partition II = IVI U V2 1to be all those

'tions obtainable from II by exchanging one ele-
ent of VI with one element of V2 •

For two reasons, graph partitioning is typical of the
roblems to which one might wish to apply local
ptimization. First, it is easy to find solutions, perturb
em into other solutions, and evaluate the costs of

uch solutions. Thus, the individual steps of the iter
';tive improvement loop are inexpensive. Second, like

ost interesting combinatorial optimization prob-
ems, graph partitioning is NP-complete (Garey,
ohnson and Stockmeyer 1976, Garey and Johnson
979). Thus, finding an optimal solution is presum
bly much more difficult than finding some solution,
nd one may be willing to settle for a solution that is
erely good enough.
Unfortunately, there is a third way in which graph

itioning is typical: the solutions found by local
ptimization normally are not good enough. One can

locally optimal with respect to the given neighbor
,000 structure and still be unacceptably distant from

e globally optimal solution value. For example, Fig
, e 2 shows a locally optimal partition with cutsize 4
?r a graph that has an optimal cutsize of O. It is clear

at this small example can be generalized to arbitrar
ybad ones.

.2. Simulated Annealing

i is within this context that the simulated annealing
pproach was developed by Kirkpatrick, Gelatt and
ecchi. The difficulty with local optimization is that

,t has no way to back out of unattractive local optima.
e never move to a new solution unless the direction
downhill, that is, to a better value of the cost

nction.

Get an initial solution 5.
While there is an untested neighbor of 5 do the
following.
2.1 Let 5' be an untested neighbor of 5.
2.2 If cost (5') < cost (5), set 5 = 5'.

3. Return 5.
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Figure 4. The analogy.

Figure 3. Simulated annealing.

1. Get an initial solution 8.
2. Get an initial temperature T> O.
3. While not yet frozen do the following.

3.1 Perform the following loop L times.
3.1.1 Pick a random neighbor 8' of 8.
3.1.2 Let.::l = cost (8 ') - cost (8).
3.1.3 If.::l E; 0 (downhill move),

Set8=8'.
3.1.4 If.::l > 0 (uphill move),

Set 8 = 8' with probability e-Il
/
T

•

3.2 Set T = rT (reduce temperature).
4. Return 8. 1.5. Claims and Que
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first proponents. Like
applicable, even to pr<
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The simulated annealing approach was first devel
oped by physicists, who used it with success on the
Ising spin glass problem (Kirkpatrick, Gelatt and
Vecchi), a combinatorial optimization problem where
the solutions actually are states (in an idealized model
of a physical system), and the cost function is the
amount of (magnetic) energy in a state. In such an
application, it was natural to associate such physical
notions as specific heat and phase transitions with the
simulated annealing process, thus, further elaborating
the analogy with physical annealing. In proposing that
the approach be applied to more traditional combi
natorial optimization problems, Kirkpatrick, Gelatt
and Vecchi and other authors (e.g., Bonomi and
Lutton 1984, 1986, White 1984) have continued
to speak of the operation of the algorithm in these
physical terms.

Many researchers, however, including the authors
of the current paper, are skeptical about the relevance
of the details of the analogy to the actual performance
of simulated annealing algorithms in practice. As a
consequence of our doubts, we have chosen to view
the parameterized algorithm described in Figure 3
simply as a procedure to be optimized and tested, free
from any underlying assumptions about what the
parameters mean. (We have not, however, gone so far
as to abandon such standard terms as temperature.)
Suggestions for optimizing the performance of simu
lated annealing that are based on the analogy have
been tested, but only on an equal footing with other
promising ideas.

1.4. Mathematical Results, With Reservations

In addition to the support that the simulated annealing
approach gains from the physical analogy upon which
it is based, there are more rigorous mathematical
justifications for the approach, as seen, for instance,
in Geman and Geman (1984), Anily and Federgruen
(1985), Gelfand and Mitter (1985), Gidas (1985),
Lundy and Mees (1986) and Mitra, Romeo and
Sangiovanni-Vincentelli (1986). These formalize the
physical notion of equilibrium mathematically as the
equilibrium distribution of a Markov chain, and show
that there are cooling schedules that yield limiting
equilibrium distributions, over the space of all solu
tions, in which, essentially, all the probability is con
centrated on the optimal solutions.

Unfortunately, these mathematical results provide
little hope that the limiting distributions can be
reached quickly. The one paper that has explicitly
estimated such convergence times (Sasaki and Hajek
1988) concludes that they are exponential even for a
very simple problem. Thus, these results do not seem

OPTIMIZATION PROBLEM

Feasible Solution
Cost
Optimal Solution
Local Search
Simulated Annealing

PHYSICAL SYSTEM

State
Energy
Ground State
Rapid Quenching
Careful Annealing

solution, and the minimum energy or ground state
corresponds to an optimal solution (see Figure 4).
When the external temperature is absolute zero, no
state transition can go to a state of higher energy.
Thus, as in local optimization, uphill moves are pro
hibited and the consequences may be unfortunate.

When crystals are grown in practice, the danger of
bad local optima is avoided because the temperature
is lowered In a much more gradual way, by a process
that Kirkpatrick, Gelatt and Vecchi call "careful
annealing." In this process, the temperature descends
slowly through a series oflevels, each held long enough
for the crystal melt to reach equilibrium at that tem
perature. As long as the temperature is nonzero, uphill
moves remain possible. By keeping the temperature
from getting too far ahead of the current equilibrium
energy level, we can hope to avoid local optima until
we are relatively close to the ground state.

Simulated annealing is the algorithmic counterpart
to this physical annealing process, using the well
known Metropolis algorithm as its inner loop. The
Metropolis algorithm (Metropolis et al. 1953) was
developed in the late 1940's for use in Monte Carlo
simulations of such situations as the behavior of gases
in the presence of an external heat bath at a fixed
temperature (here the energies of the individual gas
molecules are presumed to jump randomly from level
to level in line with the computed probabilities). The
name simulated annealing thus refers to the use of
this simulation technique in conjunction with an
annealing schedule of declining temperatures.
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to provide much direct practical guidance for the real
world situation in which one must stop far short of
the limiting distribution, settling for what are hoped
to be near-optimal, rather than optimal solutions. The
Il1athematical results do, however, provide intuitive
support to the suggestion that slower cooling rates
(and, hence, longer running times) may lead to better
solutions, a suggestion that we shall examine in some
detail.

1.5. Claims and Questions

Although simulated annealing has already proved its
economic value in practical domains, such as those
Il1entioned in the Introduction, one may still ask if it
is truly as good a general approach as suggested by its
first proponents. Like local optimization, it is widely
applicable, even to problems one does not understand
very well. Moreover, annealing apparently yields bet
ter solutions than local optimization, so more of these
applications should prove fruitful. However, there are
certain areas of potential difficulties for the approach.

First is the question of running time. Many
researchers have observed that simulated annealing
needs large amounts of running time to perform well,
and this may push it out of the range of feasible
approaches for some applications. Second is the ques
tion of adaptability. There are many problems for
which local optimization is an especially poor heuris
tic, and even ifone is prepared to devote large amounts
of running time to simulated annealing, it is not clear
that the improvement will be enough to yield good
results. Underlying both these potential drawbacks is
the fundamental question of competition.

Local search is not the only way to approach com
binatorial optimization problems. Indeed, for some
problems it is hopelessly outclassed by a more con
structive technique one might call successive augmen
tation. In this approach, an initially empty structure
is successively augmented until it becomes a solution.
This, in particular, is the way that many of theeffi
ciently solvable optimization problems, such as the
Minimum Spanning Tree Problem and the Assign
ment Problem, are solved. Successive augmentation
is also the design principle for many common heuris
tics that find near-optimal solutions.

Furthermore, even when local optimization is the
method of choice, there are often other ways to
improve on it besides simulated annealing, either by
sophisticated backtracking techniques, or simply by
running the local optimization algorithm many times
from different starting points and taking the best
solution found.

The intent of the experiments to be reported in this
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paper and its companions has been to subject simu
lated annealing to rigorous competitive testing in
domains where sophisticated alternatives already
exist, to obtain a more complete view of its robustness
and strength.

2. FILLING IN THE DETAILS

The first problem faced by someone preparing to use
or test simulated annealing is that the procedure is
more an approach than a specific algorithm. Even if
we abide by the basic outline sketched in Figure 3, we
still must make a variety of choices for the values of
the parameters and the meanings of the undefined
terms. The choices fall into two classes: those that are
problem-specific and those that are generic to the
annealing process (see Figure 5).

We include the definitions of solution and cost in
the list of choites even though they are presumably
specified in the optimization problem we are trying to
solve. Improved performance often can be obtained
by modifying these definitions: the graph partitioning
problem covered in this paper offers one example, as
does the graph coloring problem that will be covered
in Part 11. Typically, the solution space is enlarged
and penalty terms are added to the cost to make the
nonfeasible solutions less attractive. (In these cases,
we use the term feasible solution to characterize
those solutions that are legal solutions to the original
problem.)

Given all these choices, we face a dilemma in eval
uating simulated annealing. Although experiments are
capable of demonstrating that the approach performs
well, it is impossible for them to prove that it performs
poorly. Defenders of simulated annealing can always
say that we made the wrong implementation choices.
In such a case, the best we can hope is that our
experiments are sufficiently extensive to make the
existence of good parameter choices seem unlikely, at

PROBLEM-SPECIFIC
1. What is a solution?
2. What are the neighbors of a solution?
3. What is the cost of a solution?
4. How do we determine an initial solution?

GENERIC
1. How do we determine an initial temperature?
2. How do we determine the cooling ratio r?
3. How do we determine the temperature length L?
4. How do we know when we are frozen?

Figure 5. Choices to be made in implementing sim
ulated annealing.
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least in the absence of firm experimental evidence that
such choices exist.

To provide a uniform framework for our experi
ments, we divide our implementations into two parts.
The first part is a generic simulated annealing pro
gram, common to all our implementations. The sec
ond part consists of subroutines called by the generic
program which are implemented separately for each
problem domain. These subroutines, and the standard
names we have established for them, are summarized
in Figure 6. The subroutines share common data
structures and variables that are unseen by the generic
part of the implementation. It is easy to adapt our
annealing code to new problems, given that only the
problem-specific subroutines need be changed.

The generic part of our algorithm is heavily para
meterized, to allow for experiments with a variety of
factors that relate to the annealing process itself. These
parameters are described in Figure 7. Because ofspace
limitations, we have not included the complete generic
code, but its functioning is fully determined by the
information in Figures 3, 6, and 7, with the exception
of our method for obtaining a starting temperature,
given a value for INITPROB, which we shall discuss
in Section 3.4.2.

Although the generic algorithm served as the basis
for most of our experiments, we also performed lim
ited tests on variants ofthe basic scheme. For example,
we investigated the effects of cHanging the way tem
peratures are reduced, ofallowing the number of trials

READ_'NSTANCEO
Reads instance and sets up appropriate data structures;
returns the expected neighborhood size N for a solution
(to be used in determining the initial temperature and the
number L of trials per temperature).

INITIALSOlUTIONO
Constructs an initial solution So and returns cost (So),
setting the locally-stored variable S equal to So and the
locally-stored variable c· to some trivial upper bound on
the optimal feasible solution cost.

PROPOSE_CHANGEO
Chooses a random neighbor S' of the current solution S
and returns the difference cost (S ') - cost (S), saving S'
for possible use by the next subroutine.

CHANGE-SOlUTIONO
Replaces S by S' in local memory, updating data struc
tures as appropriate. If S' is a feasible solution and cost
(S') is better than c·, then sets c· = cost (S') and sets
the locally stored champion solution S· to S'.

FINALSOlUTIONO
Modifies the current solution S to obtain a feasible solution
S". (S" = S if S is already feasible). If cost (S") .. c·,
outputs S"; otherwise outputs S·.

Figure 6. Problem-specific subroutines.

ITERNUM
The number of annealing runs to be performed with this
set of parameters.

INITPROB
Used in determining an initial temperature for the current
set of runs. Based on an abbreviated trial annealing run, a
temperature is found at which the fraction of accepted
moves is approximately INITPROB, and this is used as the
starting temperature (if the parameter STARTTEMP is set,
this is taken as the starting temperature, and the trial run
is omitted).

TEMPFACTOR
This is a descriptive name for the cooling ratio r of
Figure 3.

SIZEFACTOR
We set the temperature length L to be N*SIZEFACTOR.
where N is the expected neighborhood size. We hope to
be able to handle a range of instance sizes with a fixed
value for SIZEFACTOR; temperature length will remain
proportional to the number of neighbors no matter what
the instance size.

MINPERCENT
This is used in testing whether the annealing run is frozen
(and hence, should be terminated). A counter is maintained
that is incremented by one each time a temperature is
completed for which the percentage of accepted moves is
MINPERCENT or less, and is reset to 0 each time a solution
is found that is better than the previous champion. If the
counter ever reaches 5, we declare the process to be
frozen.

Figure 7. Generic parameters and their uses.

per temperature to vary from one temperature to the
next, and even of replacing the e-d/T of the basic loop
by a different function. The results of these experi·
ments will be reported in Section 6.

3. GRAPH PARTITIONING

The graph partitioning problem described in Section
2 has been the subject ofmuch research over the years,
because of its applications to circuit design and
because, in its simplicity, it appeals to researchers as
a test bed for algorithmic ideas. It was proved NP·
complete by Garey, Johnson and Stockmeyer (1976),
but even before that researchers had become con
vinced of its intractability, and hence, concentrated
on heuristics, that is, algorithms for finding good but
not necessarily optimal solutions.

For the last decade and a half, the recognized bench
mark among heuristics has been the algorithm of
Kernighan and Lin (1970), commonly called the
Kernighan-Lin algorithm. This algorithm is a very
sophisticated improvement on the basic local
search procedure described in Section 2.1, involving
an iterated backtracking procedure that typicallY
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finds significantly better partitions. (For more
details, see Section 7.) Moreover, if implemented
using ideas from Fiduccia and Mattheyses (1982), the
Kernighan-Lin algorithm runs very quickly in prac
tice (Dunlop and Kernighan 1985). Thus, it repre
sents a potent competitor for simulated annealing,
and one that was ignored by Kirkpatrick, Gelatt
and Vecchi when they first proposed using simulated
annealing for graph partitioning. (This omission was
partially rectified in Kirkpatrick (1984), where
limited experiments with an inefficient implementa
tion of Kernighan-Lin are reported.)

This section is organized as follows. In 3.1, we
discuss the problem-specific details of our implemen
tation of simulated annealing for graph partitioning
and in 3.2 we describe the types of instances on which
our experiments were performed. In 3.3, we present
the results of our comparisons of local optimization,
the Kernighan-Lin algorithm, and simulated anneal
ing. Our annealing implementation generally outper
forms the local optimization scheme on which it is
based, even if relative running times are taken into
account. The comparison with Kernighan-Lin is more
problematic, and depends on the type of graph tested.

3.1. Problem-Specific Details

Although the neighborhood structure for graph parti
tioning described in Section 2.1 has the advantage of
simplicity, it turns out that better performance can be
obtained through indirection. We shall follow
Kirkpatrick, Gelatt and Vecchi in adopting the follow
ing new definitions of solution, neighbor, and cost.

Recall that in the graph partitioning problem we
are given a graph G = (V, E) and are asked to find
that partition V = VI U V2 of V into equal sized sets
that minimizes the number of edges that have end
points in different sets. For our annealing scheme, a
solution will be any partition V = VI U V2 of the
vertex set (not just a partition into equal sized sets).
Two partitions will be neighbors ifone can be obtained
from the other by moving a single vertex from one of
its sets to the other (rather than by exchanging two
vertices, as in Section 2.1). To be specific, if (VI, V2 )

is a partition and u E VI, then (VI - Iu}, V2 U Iu})
and (VI, V2 ) are neighbors. The cost of a partition
(VI, V2 ) is defined to be

c( VI, V2 ) = I IIu, u lEE: u E VI & u E V2 11

+ a( I VI I - I V2 1)2

where IX I is the number of elements in set X and a
is a parameter called the imbalance factor. Note that
although this scheme allows infeasible partitions to be
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solutions, it penalizes them according to the square of
the imbalance. Consequently, at low temperatures the
solutions tend to be almost perfectly balanced. This
penalty function approach is common to implemen
tations of simulated annealing, and is often effective,
perhaps because the extra solutions that are allowed
provide new escape routes out of local optima. In the
case of graph partitioning, there is an extra benefit.
Although this scheme allows more solutions than the
original one, it has smaller neighborhoods (n neigh
bors versus n2/4). Our experiments on this and other
problems indicate that, under normal cooling rates
such as r = 0.95, temperature lengths that are signifi
cantly smaller than the neighborhood size tend to give
poor results. Thus, a smaller neighborhood size may
well allow a shorter running time, a definite advantage
if all other factors are equal.

Two final problem-specific details are our method
for choosing an initial solution and our method for
turning a nonfeasible final solution into a feasible one.
Initial solutions are obtained by generating a random
partition (for each vertex we flip an unbiased coin to
determine whether it should go in VI or V2 ). If the
final solution remains unbalanced, 'we use a greedy
heuristic to put it into balance. The heuristic repeats
the following operation until the two sets of the par
tition are the same size: Find a vertex in the larger set
that can be moved to the opposite set with the least
increase in the cutsize, and move it. We output the
best feasible solution found, be it this possibly modi
fied final solution or some earlier feasible solution
encountered along the way. This completes the
description of our simulated annealing algorithm,
modulo the specification ofthe individual parameters,
which we shall provide shortly.

3.2. The Test Beds

Our explorations of the algorithm, its parameters, and
its competitors will take place within two general
classes of randomly generated graphs. The first type
of graph is the standard random graph, defined in
terms of two parameters, nand p. The parameter n
specifies the number of vertices in the graph; the
parameter p, °< p < 1, specifies the probability that
any given pair of vertices constitutes an edge. (We
make the decision independently for each pair.) Note
that the expected average vertex degree in the random
graph Gn,p is p(n - 1). We shall usually choose p so
that this expectation is small, say less than 20, as most
interesting applications involve graphs with a low
average degree, and because such graphs are better for
distinguishing the performance of different heuristics
than more dense ones. (For some theoretical results
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compared this particular implementation (hereafter
referred to as Annealing with a capital A) to the
Kernighan-Lin algorithm (hereafter referred to as the
K-L algorithm), and a local optimization algorithm
(referred to as Local Opt) based on the same neigh
borhood structure as our annealing algorithm, with
the same rebalancing heuristic used for patching up
locally optimal solutions that were out-of-balance.
(Experiments showed that this local optimization
approach yielded distinctly better average cutsizes
than the one based on the pairwise interchange neigh
borhood discussed in Section 2.1, without a substan
tial increase in running time.) All computations were
performed on VAX 11-750 computers with floating
point accelerators and 3 or 4 megabytes of main
memory (enough memory so that our programs could
run without delays due to paging), running under the
UNIX operating system (Version 8). (VAX is a trade
mark of the Digital Equipment Corporation; UNIX
is a trademark of AT&T Bell Laboratories.) The pro
grams were written in the C programming language.

The evaluation of our experiments is complicated
by the fact that we are dealing with randomized algo
rithms, that is, algorithms that do not always yield the
same answer on the same input. (Although only the
simulated annealing algorithm calls its random num
ber generator during its operation, all the algorithms
are implemented to start from an initial random par
tition.) Moreover, results can differ substantially from
run to tun, making comparisons between algorithms
less straightforward.

Consider Figure 9, in which histograms of the cuts
found in 1,000 runs each of Annealing, Local Opt,
and K-L are presented. The instance in question was
a random graph with n = 500 and p = 0.01. This
particular graph was used as a benchmark in many of
our experiments, and we shall refer to it as Gsoo in the
future. (It has 1,196 edges for an average degree of
4.784, slightly less than the expected figure of 4.99.)
The histograms for Annealing and Local Opt both can
be displayed on the same axis because the worst cut
found in 1,000 runs of Annealing was substantially
better (by a standard deviation or so) than the best cut
found during 1,000 runs of Local Opt. This disparity
more than balances the differences in running time:
Even though the average running time for Local Opt
was only a second compared to roughly 6 minutes for
Annealing, one could not expect to improve on
Annealing simply by spending an equivalent time
doing multiple runs of Local Opt, as some critics
suggested might be the case. Indeed, the best cut
found in 3.6 million runs of Local Opt (which took
roughly the same 600 hours as did our 1,000 runs of

Figure 8. A geometric graph with n = 500 and
n7rd2 = 10.

about the expected minimum cutsizes for random
graphs, see Bui 1983.)

Our second class of instances is based on a non
standard type ofrandom graph, one that may be closer
to real applications than the standard one, in that the
graphs ofthis new type will have by definition inherent
structure and clustering. An additional advantage is
that they lend themselves to two-dimensional depic
tion, although they tend to be highly nonplanar. They
again have two parameters, this time denoted by n
and d. The random geometric graph Un,d has n vertices
and is generated as follows. First, pick 2n independent
numbers uniformly from the interval (0, 1), and view
these as the coordinates of n points in the unit square.
These points represent the vertices; we place an edge
between two vertices if and only if their (Euclidean)
distance is d or less. (See Figure 8 for an example.)
Note that for points not too close to the boundary the
expected average degree will be approximately n7rd2

•

Although neither of these classes is likely to arise in
atypical application, they provide the basis for repeat
able experiments, and, it is hoped, constitute a broad
enough spectrum to yield insights into the general
performance of the algorithms.

3.3. Experimental Results

Asa result of the extensive testing reported in Section
5, we settled on the following values for the five
parameters in our annealing implementation: a =
0.05, INITPROB = 0.4, TEMPFACTOR = 0.95,
SIZEFACTOR = 16, and MINPERCENT = 2. We
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150

Figure 9. Histograms of solution values found for
graph Gsoo during 1,000 runs each of
Annealing, Local Opt and Kernighan-Lin.
(The X-axis corresponds to cutsize and the
Y-axis to the number of times each cutsize
was encountered in the sample.)

Anneal K-L K-L
k (Best of k) (Best of k) (Best of lOOk)

I 213.32 232.29 214.33
2 211.66 227.92 213.19
5 210.27 223.30 212.03

10 209.53 220.49 211.38
25 208.76 217.51 210.81
50 208.20 215.75 210.50

100 207.59 214.33 210.00

Table I
Comparison of Annealing and Kernighan-Lin on

Gsoo

Graph Partitioning by Simulated Annealing / 873

m » k runs, and then compute the expected best
of a random sample of k of these particular m runs,
chosen without replacement. (This can be done by
arranging the m results in order from best to worst
and then looping through them, noting that, for
1 < j ~ m - k + 1, the probability that the jth best
value in the overall sample is the best in a subsample
of size k is k/(m - j + 1) times the probability that
none of the earlier values was the best.) The reliability
of such an estimate on the best of k runs, of course,
decreases rapidly as k approaches m, and we will
usually cite the relevant values of m and k so that
readers who wish to assess the confidence intervals for
our results can do so. We have not done so here as we
are not interested in the precise values obtained from
any particular experiment, but rather in trends that
show up across groups of related experiments.

Table I shows our estimates for the expected best of
k runs of Annealing, k runs ofK-L, and lOOk runs of
K-L for various values of k, based on the 1,000 runs
of Annealing charted in Figure 9 plus a sample of
10,000 runs of K-L. Annealing clearly dominates
K-L if running time is not taken into account, and
still wins when running time is taken into account,
although the margin ofvictory is much less impressive
(but note that the margin increases as k increases).
The best cut ever found for this graph was one of size
206, seen once in the 1,000 Annealing runs.

To put these results in perspective, we performed
similar, though less extensive, experiments with ran
dom graphs that were generated using different choices
for nand p. We considered all possible combinations
of a value of n from 1124, 250, 500, 1,000} with a
value of np (approximately the expected average
degree) from {2.5, 5, 10, 20}. We only experimented
with one graph of each type, and, as noted above, the
overall pattern ofresults is much more significant than
any individual entry. Individual variability among
graphs generated with the same parameters can be
substantial: the graph with n = 500 and p = 0.01 used
in these experiments was significantly denser than
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Annealing) was 232, compared to 225 for the worst
of the annealing runs. One can, thus, conclude that
this simulated annealing implementation is intrinsi
cally more powerful than the local optimization heu
ristic on which it is based, even when running time is
taken into account.

Somewhat less conclusive is the relative perform
ance of Annealing and the sophisticated K-L algo
rithm. Here the histograms would overlap ifthey were
placed on the same axis, although the median and
other order statistics for Annealing all improve on the
corresponding statistics for K-L. However, once again,
Annealing is by far the slower of the two algorithms,
this time by a factor of roughly 100 (K-L had an
average running time of 3.7 seconds on G5(0 ). Thus,
ideally we should compare the best of 100 runs of K
L versus one run of Annealing, or the best of lOOk
runs versus the best of k.

Fortunately, there is a more efficient way to obtain
an estimate of the expected best of k runs than simply
to repeatedly perform sets of k runs and compute
the average of the bests. We perform some number
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Table II
Best Cuts Found for 16 Random Graphs

Gsoo , which was generated using the same parameters.
It had an average degree of 4.892 versus 4.784 for
Gsoo , and the best cut found for it was of size 219
versus 206. Thus, one cannot expect to be able to
replicate our experiments exactly by independently
generating graphs using the same parameters. The
cutsizes found, the extent of the lead of one algorithm
over another, and even their rank order, may vary
from graph to graph. We expect, however, the same
general trends to be observable. (For the record, the
actual average degrees for the 16 new graphs are:
2.403,5.129, 10.000,20.500 for the 124-vertex graphs;
2.648,4.896, 10.264, 19.368 for the 250-vertex graphs;
2.500,4.892,9.420,20.480 for the 500-vertex graphs;
and 2.544, 4.992, 10.128, 20.214 for the 1,000-vertex
graphs.)

The results of our experiments are summarized in
Tables II-V. We performed 20 runs of Annealing for
each graph, as well as 2,000 runs each of Local Opt
and K-L. Table II gives the best cuts ever found for
each ofthe 16 graphs, which mayor not be the optimal
cuts. Table III reports the estimated means for all the
algorithms, expressed as a percentage above the best
cut found. Note that Annealing is a clear winner in
these comparisons, which do not take running time
into account.

Once again, however, Annealing dominates the
other algorithms in amount oftime required, as shown
in Table IV. The times listed do not include the time
needed to read in the graph and create the initial data
structures, as these are the same for ali the algorithms,
independently of the number of runs performed, and
were, in any case, much smaller than the time for a
single run. The times for Annealing also do not
include the time used in performing a trial run to
determine an initial temperature. This is substantially
less than that required for a full run; moreover, we
expect that in practice an appropriate starting temper
ature would be known in advance-from experience
with similar instances-or could be determined ana
lyticallyas a simple function ofthe numbers ofvertices
and edges in the graph, a line of research we leave to
the interested reader.

Expected Average Degree

Expected A

IVI 2.5 5.0

124 7.7 1.6
0.0 0.0
0.0 OA

250 31.0 5.3
0.0 0.3
1.8 0.6

500 59.6 13.2
1.7 2.6
5.7 0.8

1,000 72A 19.9
3.7 3.6
3.2 0.8

Table III 1
Average Algorithmic Results for 16 Random Average Algorithmic

Graphs (Percent Above Best Cut Ever Found) for 16 R
Expected Average Degree Expected A

IVI 2.5 5.0 10.0 20,0 Algorithm IVI 2.5 5.0

124 87.8 24.1 9.5 5.6 Local Opt 124 0.1 0.2
18.7 6.5 3.1 1.9 K-L 0.8 1.0
4.2 1.9 0.6 0.2 Annealing 85.4 82.8

250 lOlA 26.5 11.0 5.5 Local Opt 250 0.3 OA
21.9 8.6 4.3 1.9 K-L 1.5 2.0
10.2 1.8 0.8 OA Annealing 190.6 163.7

500 102.3 32.9 12.5 5.8 Local Opt 500 0.6 0.9
23.4 11.5 4A 2A K-L 2.8 3.8
10.0 2.2 0.9 0.5 . Annealing 379.8 308.9

1,000 106.8 31.2 12.5 6.3 Local Opt 1,000 2A 3.8
22.5 10.8 4.8 2.7 K-L 7.0 8.5

7.4 2.0 0.7 OA Annealing 729.9 661.2

densest 250-vertex grap
A comment about the running times in Table IV is graphs, all four 1,000,

in order. As might be expected, the running times for density its lead increast
Kernighan-Lin and Local Opt increase if the number ever, that by choosing
of vertices increases or the density (number of edges) •Annealing as our stand:
increases. The behavior of Annealing is somewhat ,i11 single run, we have:
anomalous, however. For a fixed number of vertices, ~Annealing's advantage I

the running time does not increase monotonically "in Table I are typical).
with density, but instead goes through an initial de- :iexpected cut for a singl,
cline as the average degree increases from 2.5 to 5. ,lent number ofK-L rur
This can be explained by a more detailed look at the ~:degree 2.5 graph, K-L
way Annealing spends its time. The amount of time ~rather than lose to it 1
per temperature increases monotonically with density. 'here.
The number of temperature reductions needed, how-'" cOur next series ofexp
ever, declines as density increases, that is, freezing phs. We considered
sets in earlier for the denser graphs. The interaction
between these two phenomena accounts for the
nonmonotonicity in total running time.

Estimated PerformTable V gives results better equalized for running
Equalized for Runntime. Instead of using a single run of Annealing as our

Best CUIstandard for comparison, we use the procedure that E--------
runs Annealing 5 times and takes the best result. As

i:
can be seen, this yields significantly better results, and ;.jj;"--

is the recommended way to use annealing in practice,
assuming enough running time is available. For each
of the other algorithms, the number of runs corre
sponding to 5 Anneals was obtained separately for
each graph, based on the running times reported in
Table IV. Observe that once again Annealing's advan
tage is substantially reduced when running times are
taken into account. Indeed, it is actually beaten by
Kernighan-Lin on most of the 124- and 250-vertex
graphs, on the sparsest 500-vertex graph, and by Local
Opt on the densest 124-vertex graph. Annealing does, ---:-=:--------

f " Q The best of 5 runs of A
however, appear to be pulling away as the number 0 btainable in the same ov
vertices increases. It is the overall winner for the ',Illultiple runs of Local Opt;

20.0

449
828

1,744
3,389

10.0

178
357
628

1,367

5.0

63
114
219
451

2.5

13
29
52

102

IVI
124
250
500

1,000
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II Table IV
ults for 16 Random Average Algorithmic Running Times in Seconds

est Cut Ever Found) 0 for 16 Random Graphs
't,.

Degree Expected Average Degree

~ 20,0 Algorithm '¥J
IVI 2.5 5.0 10.0 20.0 Algorithm:JJ:

5 5.6 Local Opt , 124 0.1 0.2 0.3 0.8 Local Opt
I 1.9 K-L 0.8 1.0 1.4 2.6 K-L
5 0.2 Annealing 85.4 82.8 78.1 104.8 Annealing

) 5.5 Local Opt 250 0.3 0.4 0.8 1.3 Local Opt
3 1.9 K-L 1.5 2.0 2.9 4.6 K-L
~ 0.4 Annealing 190.6 163.7 186.8 223.3 Annealing

5 5.8 Local Opt 500 0.6 0.9 1.5 3.2 Local Opt
~ 2.4 K-L 2.8 3.8 5.7 11.4 K-L
~ 0.5 . Annealing 379.8 308.9 341.5 432.9 Annealing

5 6.3 Local Opt 1,000 2.4 3.8 6.9 14.1 Local Opt
~ 2.7 K-L 7.0 8.5 14.9 27.5 K-L
7 0.4 Annealing 729.9 661.2 734.5 853.7 Annealing

densest 250-vertex graph, the three densest 500-vertex
ling times in Table IV is graphs, all four I,OOO-vertex graphs, and for each
d, the running times for density its lead increases with graph size. Note, how
t increase if the number ever, that by choosing to use the best of 5 runs for
:nsity (number of edges) Annealing as our standard of comparison, rather than
<\nnealing is somewhat asingle run, we have shifted the balance slightly to
xed number of vertices, Annealing's advantage (assuming the results reported
increase monotonically in Table I are typical). Indeed, had we compared the
's through an initial de- . expected cut for a single Annealing run to an equiva
ncreases from 2.5 to 5. lent number of K-L runs on the I,OOO-vertex, average
LOre detailed look at the degree 2.5 graph, K-L would outperform Annealing
leo The amount of time rather than lose to it by a small amount as it does
10tonically with density. here.
'eductions needed, how- Our next series ofexperiments concerned geometric
ceases, that is, freezing graphs. We considered just 8 graphs this time, four
graphs. The interaction
lena accounts for the Table V

,ning time. Estimated Performance of Algorithms When
r equalized for running

Equalized for Running Times (Percent Above
run of Annealing as our

Best Cut Ever Found)a
use the procedure that 1-----------------'------

takes the best result. As Expected Average Degree

~antly better results, and IVI 2.5 5.0 10.0 20.0

se annealing in practice, 124 7.7 1.6 0.1 0.0
l1e is available. For each 0.0 0.0 0.0 0.0

f
0.0 0.4 0.1 0.2

number 0 runs corre-
obtained separately for 250 31.0 5.3 2.1 1.4 Locals

0.0 0.3 0.2 0.1 K-L's
aning times reported in 1.8 0.6 0.3 0.0 5 Anneals
gain Annealing's advan- 500 59.6 13.2 4.5 2.5 Locals
when running times are 1.7 2.6 0.8 0.6 K-L's
it is actually beaten by 5.7 0.8 0.2 0.2 5 Anneals
he 124- and 250-vertex 1,000 72.4 19.9 7.6 3.7 Locals

rtex graph, and by Local j:i ~:~ 6:~ g:~ ~i"~~eals
, graph. Annealing does, a • • •

b f The best of 5 runs of Annealing IS compared wIth the best
~ away as the num er 0 btainable in the same overall running time by performing
overall winner for the ultiple runs of Local Opt and Kernighan-Lin.
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with 500 vertices and four with 1,000. For these we
chose values of d so that the expected degrees nrrd2 E
15,10,20, 40}. (The actual average degrees were 5.128,
9.420, 18.196, and 35.172 for the SOD-vertex graphs
and 4.788, 9.392, 18.678, and 36.030 for the 1,000
vertex graphs.) We performed 20 runs of Annealing
and 2,000 runs each of Local Opt and K-L on each of
the 8 graphs. The best cuts ever found for these graphs
were 4, 26, 178, and 412 for the SOD-vertex graphs,
and 3, 39, 222, and 737 for the I,OOO-vertex graphs.
None. of these were found by Annealing; all but the 4,
3, and 39 were found by K-L. The latter three were
found by a special hybrid algorithm that takes into
account the geometry of these graphs, and will be
discussed in more detail in Section 6. Table VI sum
marizes the average running times of the algorithms.
Table VII estimates the expected best cut encountered
in 5 runs of Annealing or a time-equivalent number
of runs ofK-L or Local Opt. Note that for geometric

Table VI
Average Algorithmic Running Times in Seconds

for 8 Geometric Graphs

IVI 5 10 20 40 Algorithm
500 1.0 1.6 3.2 7.2 Local Opt

3.4 4.8 7.4 11.1 K-L
293.3 306.3 287.2 209.9 Annealing

1,000 2.2 3.7 7.2 18.0 Local Opt
7.6 11.9 18.9 28.7 K-L

539.3 563.7 548.7 1038.2 Annealing

graphs. On the sparsest graphs, none of the algorithms
is particularly good, but K-L substantially outper
forms Annealing.

Annealing's poorer relative performance here may
well be traceable to the fact that the topography of the
solution spaces for geometric graphs differs sharply
from that of random graphs. Here local optima may
be far away from each other in terms of the length of
the shortest chain of neighbors that must be traversed
in transforming one to the other. Thus, Annealing is
much more likely to be trapped in bad local optima.
As evidence for the different nature of the solution
spaces for geometric graphs, consider Figure 10, which
shows a histogram of cutsizes found by K-L for a
geometric graph with n = 500, n7rd2 = 20. Compared
to Figure 9, which is typical of the histograms one
generates for standard random graphs, the histogram
of Figure lOis distinctly more spiky and less bell
shaped, and has a much larger ratio of best to worst
cut encountered. The corresponding histogram for
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4.1. The Imbalance Factor

First, let us examine the effect of varying our one
problem-specific parameter, the imbalance factor a.
Figure 11 shows, for each of a set of possible values
for a, the cutsizes found by 20 runs of our annealing
algorithm on Gsoo . In these runs, the other annealing
parameters were set to the standard values specified
in the previous section. The results are represented by
box plots (McGill, Tukey and Desarbo 1978), con
structed by the AT&T Bell Laboratories statistical
graphics package S, as were the histograms in the
preceding section. Each box delimits the middle two
quartiles of the results (the middle line is the median).
The whiskers above and below the box go to the
farthest values that are within distance (1.5) * (quartile
length) of the box boundaries. Values beyond the
whiskers are individually plotted.

Observe that there is a broad safe range of equiva
lently good values, and our chosen value of a = 0.05
falls within that range. Similar results were obtained
for a denser SOO-vertex random graph and a sparser
1,000-vertex random graph, as well as for several
geometric graphs. For all graphs, large values of a lead
to comparatively poor results. This provides support
for our earlier claim that annealing benefits from the
availability of out-of-balance partitions as solutions.
The main effect of large values of a is to discourage
such partitions. As this figure hints, the algorithm also
performs poorly for small values of a. For such a, the
algorithm is likely to stop (i.e., freeze) with a partitioll

that is far out-of-balance, and our greedy rebalancing
heuristic is not at its best in such situations.

Unexpectedly, the choice of a also has an effect oil
the running time of the algorithm. See Figure 12,
where running time is plotted as a function of a for
our runs on graph Gsoo • Note that the average running

even be precisely applicable to graph partitioning if
the graphs are substantially larger or different in char
acter from those we studied. (The main experiments
were performed on our standard graph Gsoo , with
secondary runs performed on a small selection ofother
types of graphs to provide a form of validation.) As
there were too many parameters for us to investigate
all possible combinations of values, we studied just
one or two factors at a time, in hope of isolating their
effects.

Despite the limited nature of our experiments, they
may be useful in suggesting what questions to inves
tigate in optimizing other annealing implementations,
and we have used them as a guide in adapting
annealing to the three problems covered in Parts II
and Ill. .

200 250 300 350 400

KERNIGHAN-LIN on a Geometric Graph

IVI 5 10 20 40 Algorithm

500 647.5 169.6 11.3 0.0 Locals
184.5 3.3 0.0 0.0 K-L's
271.6 70.6 11.3 15.5 5 Anneals

1,000 3217.2 442.7 82.5 6.4 Locals
908.9 44.4 1.3 0.0 K-L's

1095.0 137.2 15.7 7.2 5 Anneals

do

20

876 / JOHNSON ET AL.

Table VII
Estimated Performance of Algorithms When

Equalized for Running Times (Percent Above
Best Cut Ever Found)

120

Local Opt is slightly more bell shaped, but continues
to be spiky with a large ratio of best to worst cut
found. (For lower values of d, the histograms look
much more like those for random graphs, but retain
some of their spikiness. For higher values of d, the
solution values begin to be separated by large gaps.)

In Sections 4 and 5, we consider the tradeoffs
involved in our annealing implementation, and
examine whether altering the implementation might
enable us to obtain better results for annealing than
those summarized in Tables V and VII.

4. OPTIMIZING THE PARAMETER SETTINGS

60

100

40

In this section, we will describe the experiments that
led us to the standard parameter settings used in the
above experiments. In attempting to optimize our
annealing implementation, we faced the same sorts of
questions that any potential annealer must address.
We do not claim that our conclusions will be appli
cable to all annealing implementations; they may not

Figure 10. Histogram of solution values found for a
geometric graph with n = 500, n1rd 2 = 20
during 2,000 runs of K-L. (The X-axis
corresponds to cutsize and the Y-axis to
the number of times each cutsize was
encountered in the sample.)
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time among such candidates. No candidate yielded a
simultaneous minimum for all the graphs, but our
value of a = 0.05 was a reasonable compromise.

4.2. Parameters for Initialization and Termination

As we have seen, the choice of a has an indirect effect
on the annealing schedule. It is mainly, however, the
generic parameters of our annealing implementation
that affect the ranges of temperatures considered the
rate at which the temperature is lowered, and the ~ime
spent at each temperature. Let us first concentrate on
the range of temperatures, and do so by taking a more
detailed look at the operation of the algorithm for an
expanded temperature range.

Figure 13 presents a time exposure of an annealing
run on our standard random graph Gsoo . The standard

300

700 ~--------------

C
U 500
T
S
1
~ 400

200 ~__-----'- ~~~~~~
500 1000 1500

(NUMBER OF TRIALS)/N

Figure 13. The evolution of the solution value during
annealing on Gsoo• (Time increases, and
hence, temperature decreases along the
X-axis. The Y-axis measures the current
solution value, that is, the number ofedges
in the cut plus the imbalance penalty.)

parameters were used with the exception of INIT
PROB, which was increased to 0.90, and MINPER
CENT, which was dropped to 1%. During the run,
the solution value was sampled each N = 500 trials
(i.e., 16 times per temperature), and these values are
plotted as a function of the time at which they were
encountered (i.e., the number oftrials so far, expressed
as a multiple of 500). This means that temperature
decreases from left to right. It is clear from this picture
that little progress is made at the end of the schedule
(there is no change at all in the last 100 samples).
Moreover, the value of the time spent at the beginning
of the schedule is also questionable. For the first 200
or so samples the cutsizes can barely be distinguished
from those of totally random partitions (1,000 ran
domly generated partitions for this graph had a mean
cutsize of about 599 and ranged from 549 to 665).
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Figure 11. Effect of imbalance factor a on cutsize
found for Gsoo•
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same behavior occurs for the other graphs we tested,
although the point at which the running time attains
its maximum varies. This appears to be a complex
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Figure 15. Comparison ofthe tail ofan annealing run
where INITPROB = 0.4 and MINPER
CENT = 2% with an entire annealing run
where INITPROB = 0.9 and MINPER
CENT = 1%.

500 ~-----------------,

different values of INITPROB, from 0.1 to 0.9. Given
the inherent variability of the algorithm, all values of
INITPROB from 0.2 (or 0.3) to 0.9 seem to be roughly
equivalent in the quality of cutsize they deliver. Run
ning time, however, clearly increases with INITPROB.
Similar results were obtained for the other graphs
mentioned in Section 4.1, and our choice of INIT
PROB = 0.4 was again based on an attempt to reduce
running time as much as possible without sacrificing
solution quality. Analogous experiments led to our
choice of MINPERCENT = 2%.

4.3. TEMPFACTOR and SIZEFACTOR

The remaining generic parameters are TEMPFAC
TOR and SIZEFACTOR, which together control how
much time is taken in cooling from a given starting
temperature to a given final one. Tables VIII and IX
illustrate an investigation of these factors for our
standard random graph 6 500 • (Similar results also were
obtained for geometric graphs.) We fix all parameters
except the two in question at their standard settings,
in addition we fix the starting temperature at 1.3, a
typical value for this graph when INITPROB = 0.4.
We then let TEMPFACTOR and SIZEFACTOR take
on various combinations of values from {0.4401,
0.6634,0.8145,0.9025,0.9500,0.9747, 0.9873} and

'{0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024j,
respectively. Note that increasing either value to the
next larger should be expected to approximately dou
ble the running time, all other factors being equal.
(The increases in TEMPFACTOR amount to replac
ing the current value by its square root, and hence,
yield schedules in which twice as many temperatures
are encountered in a given range.) The averages pre
sented in Tables VIII and IX are based on 20 anneal
ing runs for each combination of values.

Table VIII shows the effects of the parameters on
running time. Our running time prediction was only
approximately correct. Whereas doubling the time

1500500 1000
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Furthermore, although the curve in Figure 13 begins
to slope downward at about the 200th sample, a view
behind the scenes suggests that serious progress does
not begin until much later. Figure 14 depicts a second
annealing run, where instead of reporting the cutsize
for each sample, we report the cutsize obtained when
Local Opt is applied to that sample (a much lower
figure). Comparing Figure 14 with the histogram for
Local Opt in Figure 9, we note that the values do not
fall significantly below what might be expected from
random start Local Opt until about the 700th sample,
and are only beginning to edge their way down when
the acceptance rate drops to 40% (the dotted line at
sample 750).

There still remains the question of whether the time
spent at high temperatures might somehow be laying
necessary, but hidden, groundwork for what follows.
Figure 15 addresses this issue, comparing a much
shorter annealing run, using our standard values of
INITPROB = 0.4 and MINPERCENT = 2%, with
the tail of the run depicted in Figure 13. (All samples
from Figure 13 that represent temperatures higher
than the initial temperature for the INITPROB = 0.4
run were deleted.) Note the marked similarity between
the two plots, even to the size of the cuts found (214
and 215, respectively, well within the range of varia
bility for the algorithm).

All this suggests that the abbreviated schedule im
posed by our standard parameters can yield results as
good as those for the extended schedule, while using
less than half the running time. More extensive exper
iments support this view: Figures 16 and 17 present
box plots of cutsize and running time for a series of
runs on 6 500 • We performed 20 runs for each of nine

320 r---------_-----------,

Figure 14. The evolution of Local-Opt(S) during
annealing on 6 500, where S is the current
solution and Local-Opt(S) is the cutsize
obtained by applying Local Opt to S.



Table VIII
Dependence of Running Time on SIZEFACTOR and TEMPFACTOR for Gsoo

(Number of Trials/N)
TEMPFACTOR

SIZE
FACTOR 0.4401 0.6634 0.8145 0.9025 0.9500 0.9747 0.9873

0.25 37
0.5 78 45
1 49 86 164
2 53 97 178 323
4 65 109 190 332 662
8 88 130 209 361 682 1,317

16 130 174 261 411 734 1,336 2,602
32 208 336 490 820 1,459 2,854
64 416 691 992 1,600 2,874

128 1,024 1,331 1,971 3,264
256 2,048 2,688 3,994
512 4,096 5,427

1,024 8,192

800
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Figure 17. Effect of INITPROB on running time in
seconds for G500•

~I ~ ~ ~ ~ M ~ U M

INITPROB

solutions, although beyond a certain point further
increases do not seem cost effective. A second obser
vation is that increasing TEMPFACTOR to its square
root appears to have the same effect on quality of
solution as doubling SIZEFACTOR even though it
does not add as much to the running time. (The values
along the diagonals in Table IX remain fairly con
stant.) Thus, increasing TEMPFACTOR seems to be
the preferred method for improving the annealing
results by adding running time to the schedule.

To test this hypothesis in more detail, we performed
300 runs of Annealing on G500 with SIZEFACTOR =
1 and TEMPFACTOR = 0.99678 (approximately
0.95 1/16

). The average running time was 10% better
than for our standard parameters, and the average
cutsize was 213.8, only slightly worse than the 213.3
average for the standard parameters. It is not clear
whether this slight degradation is of great statistical
significance, but there is a plausible reason why the
cutsize might be worse: Once the acceptance rate drops
below MINPERCENT, our stopping criterion will

INITPROB
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")jich spends 8 times longer per temperature than
Q;95, 16) but makes only one temperature drop for
~ery 8 made by the latter, ends up taking almost

twice as long to freeze. Two factors seem to be working
,here. Compare Figure 18, which provides a time
~xposure of an annealing run with the pair (0.6634,
128), with the left half of Figure 14, which does the
same thing for (0.95, 16). First, we observe that our
~opping criterion, which requires 5 consecutive tem
peratures without an improvement, causes the frozen
rail of the time exposure to be much longer in the
iQ:6634, 128) case. Second, although this appears to

a more minor effect, the onset of freezing seems to
have been delayed somewhat, perhaps because so little
progress is made while the temperature is fixed.
• Table IX shows the average cut found for each
combination of the parameters. Unsurprisingly, in
creasing the running time tends to yield better
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Table IX
Dependence of Average Cutsize Found on SIZEFACTOR and TEMPFACTOR

TEMPFACTOR
SIZE

FACTOR 0.4401 0.6634 0.8145 0.9025 0.9500 0.9747 0.9873

0.25 234.8
0.5 222.1 230.9
1 235.0 225.2 221.4
2 230.1 224.9 220.1 217.2
4 232.4 225.1 220.3 216.0 214.1
8 229.9 223.8 218.7 215.2 214.2 212.4

16 228.1 223.3 219.6 215.0 213.6 210.8 209.7
32 229.5 220.8 215.3 214.7 211.9 211.0
64 219.6 217.0 212.9 211.0 211.4

128 216.1 213.4 212.3 211.9
256 216.2 212.0 211.3
512 215.2 212.6

1,024 210.6

100.(
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28.:
15A
8.f
4.S
2.9
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5. MODIFYING THE

. In choosing the stand;
we attempted to select
running time without
solutions found. We 1

alternatives by the fact
the framework of our
designed for constructi
rather than a final prod

tation time between the number of runs and time per
run? In simplest terms, suppose that we are currently
taking the best of k runs. Could we get better results
by performing 2k runs with the parameters set so that
each run takes half as long, or should we perhaps
perform k/2 runs, each taking twice as long?

There does not appear to be a simple answer. The
choice may vary, depending on the total time avail
able. For small time limits, it appears that it is best to
spend all the time on a single run. Consider our
standard random graph Gsoo . Experiments indicate
that if we allow annealing 3 seconds (say setting
SIZEFACTOR = 1 and TEMPFACTOR = 0.05),
the best we can hope for is that Annealing approxi
mate Local Opt in the quality ofsolution found. Thus,
if we only have 6 minutes available, the histograms of
Figure 9 indicate that it is better to spend that time
on a single 6-minute annealing run rather than on
120 runs of 3 seconds each. Suppose, however, that
we have 12 minutes or 24 hours. Does a point of
diminishing returns ever set in, or is it always better
to spend all the time in one run?

For a partial answer, see Table X, which summa·
rizes an experiment performed on the geometric graph
ofFigure 8. Fixing SIZEFACTOR at 1and the starting
temperature at a typical value corresponding to
INITPROB = 0.4, we ran a sequence of annealing
runs for various values of TEMPFACTOR (1,024
for TEMPFACTOR = 0.95, 512 for 0.9747, 256
for 0.9873, 128 for 0.99358, 64 for 0.99678, 32 for
0.99839, and 16 for 0.99920, where each value of
TEMPFACTOR is approximately the square root of
its predecessor). Normalizing the running times so
that the TEMPFACTOR = 0.99920 runs averaged
100 units, we compared the quality of solutions ex·
pected for each value of TEMPFACTOR under var·
ious time bounds, assuming that as many runs as
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Figure 18. Evolution of cutsize when TEMPFAC
TOR = 0.6634 and SIZEFACTOR = 128.

terminate a ruil if there are roughly 5 I V I . SIZE
FACTOR consecutive trials without an improvement,
and the smaller SIZEFACTOR is, the higher the prob
ability that this might occur prematurely. For this
paper, we have chosen to stick with our standard
parameter values, rather than risk solution degrada
tion for only a small improvement in running time.
In practice, however, one might prefer to gamble on
the speedup. In Section 6 we shall discuss how such
speedups (in conjunction with others) might effect the
basic comparisons of Section 4.

4.4. A Final Time/Quality Tradeoff

The final generic parameter to be investigated is
ITERNUM, the number ofiterations to be performed.
In previous sections, we saw that we could improve
on the results of a single run of annealing by perform
ing multiple runs and taking the best solution found.
The results just reported indicate that we can also
obtain improved cuts by allowing an individual run
to take more time. The question naturally arises: what
is the best way to allocate a given amount of compu-



5. MODIFYING THE GENERIC ALGORITHM

Table X
Results of Experiment Comparing the Effect of

.Allowing More Time Per Run Versus Performing
More Runs for the Geometric Graph of Figure 8

(Cutsize as a Function of Time Available)

I
0 Varying CUTOFF

• Varying INITPROB

200 400 600 800
RUNNING TIME IN SECONDS
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Figure 19. Comparison of the effects of cutoffs versus
lowering INITPROB.
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some of the options available to us if we are prepared
to modify the generic structure, and examine whether
they offer the possibility of improved performance.

5.1. Cutoffs

One commonly used speedup option is the cutoff,
included in Kirkpatrick's original implementations.
Cutoffs are designed to remove unneeded trials from
the beginning ofthe schedule. On the assumption that
it is the number of moves accepted (rather than the
number of trials) that is important, the processing at
a given temperature is terminated early if a certain
threshold of accepted moves is passed. To be specific,
we proceed at a given temperature until either
SIZEFACTOR * N moves have been tried or
CUTOFF * SIZEFACTOR * N moves have been
accepted. This approach was orginally proposed in
the context of annealing runs that started at high
temperatures (lNITPROB ;a. 0.9 rather than the
INITPROB = 0.4 of our standard implementation).
It is, thus, natural to compare the effect of using high
starting temperatures and cutoffs versus the effect of
simply starting at a lower temperature.

Figure 19 plots the (running time, cutsize) pairs for
annealing runs made using both approaches. The
points marked by *s were obtained from 10 runs
each with CUTOFF = 1.0 (i.e., no cutoff), and with
INITPROB E {0.1, 0.2, ... , 0.9} (the same data
used to generate Figures 16 and 17). The points
marked by Os came from 20 runs each with INIT
PROB = 0.95 and CUTOFF E {0.5, 0.25, 0.125,
0.0625,0.03125,0.015625}.

There appears to be little in the figure to distinguish
the two approaches. Ifthere is any correlation present,
it seems to be between running time and cutsize, no
matter which method for reducing running time is
used. More extensive experimentation might reveal
some subtle distinctions, but tentatively we conclude
that the two approaches are about equally effective.
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possible within the bound were made and the best
result taken. (The actual number of runs used was
the integer nearest to (TIME LIMIT)/(RUNNING
TIME).) Note that a point ofdiminishing returns sets
in at around TEMPFACTOR = 0.99678. It is better
to run once at this TEMPFACTOR than a propor
tionately increased number of shorter runs at lower
TEMPFACTORs, but it is also better to run 2 or 4
times at this value than a proportionately decreased
number of longer runs at higher TEMPFACTORs.

It is interesting to note that, by analogy with
the results displayed in Tables VIII and IX, the
(SIZEFACTOR,TEMPFACTOR) pair (1, 0.99678)
should correspond roughly to the (16, 0.95) pair we
used in our experiments in the quality of solutions
found. Similar experiments with SIZEFACTOR = 16
and TEMPFACTOR = 0.95, 0.9747, and 0.9873 sup
ported the conclusion that multiple runs for the (16,
0.95) pair were to be preferred over fewer longer runs.
Analogous experiments with our standard random
graph Gsoo were less conclusive, however, showing no
statistically significant difference between the three
TEMPFACTORs when running time was taken into
account. Thus, the tradeoff between ITERNUM and
TEMPFACTOR appears to be another variable that
can differ from application to application, and possi
bly, from instance to instance.

In choosing the standard values for our parameters,
we attempted to select values that yielded the quickest
running time without sacrificing the quality of the
solutions found. We were, however, limited in our
alternatives by the fact that we were operating within
the framework of our generic algorithm, which was
designed for constructing prototype implementations
rather than a final product. In this section, we consider
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In particular, using INITPROB = 0.95 and CUTOFF
= 0.125 is roughly equivalent in running time and
quality of solution to our standard choice of INIT
PROB =0.4 and CUTOFF = 1.0. Reducing CUTOFF
below 0.125 has the same effect as reducing INIT
PROB below 0.4: running time is saved but the aver
age solution quality deteriorates. Limited experimen
tation also indicated that little was to be gained by
using cutoffs in conjunction with INITPROB = 0.4.

5.2. Rejection-Free Annealing

In the previous section, we investigated the effect of
shortcuts at the beginning of the annealing schedule.
Alternatively, one might attempt to remove unneces
sary computations from the end of the schedule. At
low temperatures almost all our time is spent in
considering moves that we end up rejecting. Viewing
this as wasted time, Green and Supowit (1986) pro
pose that we reorganize the computation as follows.
Compute for each possible move the probability Pi
that it would be accepted if chosen. Let the sum of all
these probabilities be P. We construct a probability
distribution over the set of all moves where the prob
ability of move i is pJP, select a move randomly
according to this distribution, and accept it automat
ically. Green and Supowit show that this is equivalent
to doing annealing in the ordinary way. Moreover, for
the generalization of graph partitioning that they con
sider, the probabilities can be updated efficiently. Con
sequently, the procedure runs more quickly than the
ordinary method as soon as the percentage of accept
ances drops below some cutoff (11-13 % in Green and
Supowit's experiments). Although we did not investi
gate this approach ourselves, it appears that for low
values of INITPROB, a time savings of up to 30%
might be obtainable. Note, however, that this ap
proach may not be generally applicable, as the efficient
updating ofthe p;'s depends in large part on the nature
of the cost function used.

we temporarily modified our generic algorithm to
apportion its time amongst temperatures adaptive/yo
At each temperature we repeat the following loop.

I. Run for SIZEFACTOR * N trials, observing the
best solution seen and the average solution value.

2. If either of these is better than the corresponding
values for the previous SIZEFACTOR * N trials,
repeat.
Otherwise, lower the temperature in the standard
way.

This adaptive technique approximately tripled the
running time for a given set of parameters. Its effect
on solutions could not, however, be distinguished
from that of tripling the running time by changing
SIZEFACTOR or TEMPFACTOR. See Figure 20 for
a display ofsolutions found using the adaptive method
(indicated by Os) and the standard method (indicated
by *s) as a function of running time. SIZEFACTOR
was fixed at 16 and each method was run for the range
of values of TEMPFACTOR used in Tables VIII and
IX, with the smallest value omitted in the nonadaptive
case and the largest value omitted in the adaptive case.
All other parameters were set to their standard values,
with the starting temperature fixed at 1.3. Ten trials
were performed for each value.

Note how solution quality correlates much more
strongly with running time than with method (adap
tive or nonadaptive). On the basis of these observa
tions and similar ones for geometric graphs, we saw
no need to add the extra complication of adaptive
annealing schedules to our algorithm. Further studies
ofadaptive cooling may, however, be warranted, both
for this and other problems. The approach we took,
although easy to implement, is rather simple-minded.
More sophisticated adaptive cooling schedules have
been proposed recently in which the cooling rate
is adjusted based on the standard deviation of the
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5.3. Adaptive Cooling Schedules

Although much of the time spent by Annealing at
very high and very low temperatures seems unproduc
tive, we saw in Section 4.3 that the amount of time
spent at temperatures between these limits had a large
effect on the quality of solution obtained. The follow
ing alternative method for increasing this time was
suggested by Kirkpatrick, Gelatt and Vecchio Based
on their reasoning about the physical analogy, they
proposed spending more time at those temperatures
where the current average solution value is dropping
rapidly, arguing that more time was needed at such
temperatures to reach equilibrium. To investigate this,



lperature in the standard

adaptive and nonadaptive
l function of running time.

Figure 22. Probability that a given uphill move will
be accepted as a function of the number
of times the temperature has been lowered
under geometric cooling.

Number of Temperature Reductions

A be the size of an uphill move accepted with proba
bility INITPROB at temperature To. The ith temper·
ature T; is then chosen so that the probability Pi thal
an uphill move of size A will be accepted equal~

«C - i)C) * INITPROB. (This is guaranteed by set·
ting T i = -Aj(ln«C - i)C) * INITPROB), or more
precisely the minimum of this figure and 0, since the
solution may still be improving at temperature Two,
in which case, we will need additional temperature~

to ensure freezing according to our standard criterion
of five temperatures without improvement.)

This cooling method is intriguing in that it yielill
time exposures that approximate straight lines (see
Figure 23), further confirming our hypothesis that the
shapes of such time exposure curves are determined
by the cooling schedule. Based on limited experi
ments, it appears that this cooling technique is far
more sensitive to its starting temperature than is geo
metric cooling. For To = 1.3 (corresponding to INIT·
PROB = 0.4 for the graph Gsoo ), we were unable to
distinguish the results for this cooling method from
those for the geometric method when the parameten
were adjusted to equalize running time. In particular,
for C = 100 and SIZEFACTOR = 8, the running time
for linear probability cooling was roughly the same ~
that for geometric cooling under ourstandard param
eters (346 seconds versus 330), while averaging a
cutsize of 213.5 over 50 runs, compared to 213.3 for
the standard parameters. However, if we set To = 11.3
(corresponding to INITPROB = 0.9), the average cut
increased significantly (to 220.4), even if we doubled
C to take account of the fact that we were starting at
a higher temperature. Recall that under geometric
cooling, increasing INITPROB above 0.4, although it
led to increased running time, had no significant effect
on cutsizes found.

]00

solution values seen at the current temperature.
Promising initial results for such approaches have
been reported by Aarts and Van Laarhoven (1984),
Lam and Delosme (1986), and Huang, Romeo, and
Sangiovanni-Vincentelli (1986).

5.4. Alternative Cooling Schedules

Returning briefly to Figure 13, we note that some
authors have suggested that the shape of this cooling
curve, in particular the points at which its slope under
goes a major change, may in some way reflect a
process analogous to the phase transitions that H20
undergoes when it is cooled from a gaseous to a solid
state. For these experiments, however, there seems to
be a much better explanation for the shape of the
curve. First note, as displayed in Figure 21, that there
is a direct correlation between cutsize and the per
centage of moves currently accepted when the cutsize
is encountered, with cutsize improving essentially lin
early as the probability ofacceptance goes down. Since
the percentage of acceptance presumably is deter
mined by the temperature, it is natural to ask how our
cooling schedule affects the probability of acceptance.
Figure 22 displays the probability P(t) that an uphill
move of size 1 will be accepted when the temperature
is To(0.95)', where To is chosen so that P(1) = 0.99.
Note how similar this curve is to that in Figure 13.

A natural question to ask is how important is the
nature of this curve? What about other possible meth
ods of temperature reduction, and the curves they
inspire? To investigate this question, we considered
three proposed alternatives.

The first is what we shall call linear probability
cooling. We first fix INITPROB and the number C of
temperature reductions that we wish to consider. Next
we choose a starting temperature To at which approx
imately INITPROB of the moves are accepted, letting

Percentage of Accepted Moves

Figure 21. Correlation between cutsize and percent
age of acceptance for the annealing run
depicted in Figure 13.
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at step i be C/O + log(i» for come constant C, and if
one is willing to wait long enough, then the process
will almost surely converge to an optimal solution.
The catch is that waiting long enough may well mean
waiting longer than it takes to find an optimal solution
by exhaustive search. It is, thus, unlikely that such
results have anything to tell us about annealing as it
can be implemented in practice.

Nevertheless, for completeness, we performed lim
ited experiments with such logarithmic cooling sched
ules, executing logarithmic cooling runs of 1,000,000
steps for Gsoo and various values of C. This seems to
give logarithmic cooling the benefit of the doubt,
because a typical geometric cooling run on Gsoo using
the standard parameters took about 400,000 steps.
Note, however, that under logarithmic cooling the
temperature only drops by about 5% during the last
half of the schedule; indeed, after the first 0.1 % of the
schedule it drops only by a factor of 2. Thus, the
choice of C seems to be crucial. Too high a value of
C will cause the annealing run to finish at too high a
temperature for the solution to be frozen in the normal
sense. Too Iowa value will result in almost all the
time spent at near-zero temperatures, thus yielding
results that are little better than Local Opt. For Gsoo ,
the best value of C we could find was one that yielded
a schedule for which the last 80% of the time was
spent with an acceptance ratio between 2 and 3%, and
for which the average cutsize found (over 20 runs) was
219.7, significantly above the 213.3 that our standard
method averaged while using less than half the time.

5.5. Choosing Moves According to Random
Permutations

In our description of the basic annealing process in
Figure 3, the neighboring solution Sf to be tested is
simply chosen randomly from the set of all neighbors
of the current solution. In terms ofgraph partitioning,
we randomly choose a vertex as a candidate for mov
ing from one side of the partition to the other, inde
pendently of all previous choices. Although this has
the appeal of simplicity, there are reasons to think it
might be inefficient, Suppose, for instance, that just
one of the N vertices in the graph will yield an accept
able new solution if moved. Then there is a nonnegli
gible probability that we may have to perform sub
stantially more than N trials before we encounter that
special vertex. Thus, it has been suggested that, instead
of picking our moves independently at each iteration,
we should introduce enough dependence so that each
vertex is chosen once in each successive block of N
moves. This can be done while still maintaining a
high degree of randomness, simply by choosing a
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Figure 23. Time exposure for linear probability
cooling.
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The second cooling method we shall call linear
temperature cooling, and it has apparently been used
by some experimenters (e.g., Golden and Skiscim
1986). In this method we choose C and derive a
starting temperature To from INITPROB as before.
The ith temperature T; is then simply «C - O/C) *
To. Time exposures for this cooling method (see Fig
ure 24) again reflect the curve of acceptance proba
bility values. This technique proved to be equally
sensitive to the choice of To. For our standard in
stance Gsoo , setting C = 100, SIZEFACTOR = 8, and
To = 1.3 again yielded an average cutsize over 50 runs
of 213.5 (again using approximately the same time as
geometric cooling), whereas increasing To to 11.3 and
Cto 200 yielded an average cutsize of219.9. Because
of this lack of robustness, it appears that neither linear
probability cooling nor linear temperature cooling is
to be preferred to geometric cooling.

The final alternative we considered was suggested
by the mathematical proofs of convergence for simu
lated annealing that were discussed in Section 1.4. In
the papers cited there, it is shown that if one changes
the temperature at every step, letting the temperature
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Figure 24. Time exposure for linear temperature
cooling.
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random permutation of the vertices at the beginning
ofeach block, and using that permutation to generate
the next N moves.

Using this modification, but otherwise making no
changes from the standard parameters and starting
time, we performed 100 annealing runs on our stand
ard geometric graph Gsoo . The average running time
was essentially unchanged, but the average cutsize
found was 212.5, as compared to 213.3 for 1,000 runs
of the standard algorithm. This seems significant
because none ofthe 10 groups of 100 runs that made
up that 1,000 yielded an average better than 212.9. In
view of the results summarized in Table IX, the re
duction in cutsize obtained by using permutations to
generate moves seems to be almost as much as one
would obtain by doubling the running time and stay
ing with the standard method. This conclusion was
further supported by experiments with the geometric
graph of Figure 8. Here the average cutsize found
during 100 trials dropped from 22.6 for the standard
method to 20.4 using permutation generation, without
a significant change in running time. If we used per
mutation generation but reduced the value of SIZE
FACTOR from 16 to 8, the average cutsize went
back up to 22.8 but we only used half the time of
the standard implementation. Based on these limited
experiments, it seems that move generation by
permutation is a promising approach.

5.6. Using Better-Than-Random Starting Solutions

Many authors have suggested the possibility of using
better-than-random starting solutions, and lower than
normal starting temperatures, to obtain better results,
or at least better running times. We studied this
possibility, and our results indicate that the source of
the better-than-random solutions may be of crucial
significance.

We first studied the effect on annealing of using
partitions generated by K-L, which are far better than
random, as our starting solutions. We revised our
Initial_Solution routine to return the result of K-L
running on a random partition, rather than a random
partition itself. (Since K-L works only on bal
anced partitions, we actually started from a random
balanced partition, as we normally did for K-L, rather
than a general random partition, as we normally did
for annealing.) We then ran experiments analogous to
those in Figures 16 and 17 to find an appropriate,
presumably lower than normal, value of INITPROB.
Surprisingly, it turned out that the boxplots for these
good starts looked just like the boxplots for random
starts in Figures 16 and 17. The best values ofINIT
PROB were still 0.3 or 0.4 for our standard random
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graph Gsoo , and so no significant speedup could be
expected. Furthermore, for Gsoo the average cutsize
found over 100 runs was exactly the same as the
average for random starts. There also seems to be no
significant benefit to using K-L starts on the 16 stand
ard random graphs covered by Tables II-V, although
this conclusion is based only on 20 runs with and
without the K-L starts for each graph. (We also did
not attempt to determine optimal values of INIT
PROB for each graph separately, but stuck with the
value of 0.4 indicated by our experiments with Gsoo .)

The situation for geometric graphs was somewhat
better. Although, once again, the optimal value of
INITPROB was around 0.4 and so no speedup could
be obtained, the use of starting solutions generated
by K-L yields better solutions on average, as seen in
Table XI. As shown in the table, however, for these
geometric graphs there proved to be an even better
starting solution generator, a simple heuristic we shall
call the Line Algorithm. This heuristic is tailored
especially to the geometric nature of these instances.
Recall that a geometric graph is based on a model in
which vertices correspond to points in the unit square,
and there is an edge between two vertices if and only
if the vertices are sufficiently close to each other. In
terms of this underlying model, one might expect a
good partition to divide the unit square into two
regions, and the size of the cut to be roughly propor
tional to the length of the boundary between the two

Table XI
Average Cutsizes Found for Line, K-L, and

Annealing (the Latter Two With and Without
Good Starting Solutions Compared to Best Cuts

Ever Founda

IVI 5 10 20 40 Algorithm

500 4 26 178 412 (Best Found)

38.1 89.4 328.4 627.8 Line
36.1 89.7 221.0 436.3 K-L
12.5 45.0 200.8 442.8 Line + K-L

21.1 65.8 247.0 680.3 Anneal
22.2 52.4 192.4 507.4 K-L + Anneal
12.9 48.6 217.0 501.1 Line + Anneal

1000 3 39 222 737 (Best Found)

47.2 123.7 381.8 1128.7 Line
70.7 157.5 316.7 857.8 K-L
15.7 64.6 272.0 825.5 Line + K-L

41.2 120.4 355.3 963.8 Anneal
38.1 99.9 295.0 833.8 K-L + Anneal
15.8 54.7 262.5 839.6 Line + Anneal

a These figures do not take running time into account, and
thus, overestimate the relative efficacy of annealing.
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regions. Since the shortest such boundary is a straight
line, this suggests looking at those partitions that are
formed by straight lines.

The Line Algorithm is given as input the coordi
nates of the points Pi, 1 .,;; i .,;; n, in the model for a
geometric graph and proceeds as follows.

1. Pick a random angle fJ, 0 .,;; fJ .,;; 1r.

2. For each point Pi, compute the y-intercept Yi ofthe
straight line through Pi with a slope equal to tan(fJ).

3. Sort the points according to their values of Yi, and
form a partition between the vertices correspond
ing to the first nl2 points and those corresponding
to the last n12.

Compared to our more sophisticated algorithms, the
running time for the O(n log n) Line Algorithm was
negligible, e.g., 1.5 seconds for the I,OOO-vertex, ex
pected degree 5 graph. (Note that by using a linear
time, median-finding algorithm instead of the sorting
in Step 3, we could reduce the overall time to O(n),
although for the size of problems we consider here,
the time saving is not worth the programming effort.)

Table XI shows the average cuts found for our eight
standard geometric graphs by 20 runs of Annealing
starting from random partitions, K-L partitions, and
Line partitions. For comparison purposes, it also
shows the best cuts ever found by any method and
the averages of 1,000 runs of Line, 2,000 runs of
K-L, and 1,000 runs of K-L from a Line start. Note
that Line by itself is as good or better than K-L for
the sparser graphs, but that the true value of Line
appears to be as an initial partition generator. Even
more intriguing than the averages reported in the table
are the cutsizes of the best partitions found by the
various algorithms for the 1,000-vertex graph with
ntrd 2 = 5: The best partition ever found by random
start K-L has cutsize 26 (compared to 30 for random
start Annealing), the best Line partition found had
cutsize 19, and both Line + K-Land Line + Annealing
found cuts ofsize 3. Moreover, with Line starts, it was
possible to begin Annealing at a very low temperature
(INITPROB = 0.025) without losing on solution qual
ity, and so substantial speedups (as big as a factor of
5) were possible. (The combination of Line with K-L
was also slightly faster than K-L by itself, no doubt
because fewer K-L iterations were needed, given the
good start.)

Note that the results in Table XI do not take run
ning time into account. If one equalizes for running
time, Line beats Annealing (usually substantially) on
all but the 500-vertex graph with ntrd2 = 20, and beats
K-L on all the graphs with ntrd2

.,;; 10. Moreover, Line
+ K-L passes Line + Annealing on the two graphs

where it does not already beat it without accounting
for running time. (The especially good value for K-L
+ Annealing on the 500-vertex, ntrd2 = 20 graph
appears to be a statistical anomaly, arising from the
fact that the starting solutions generated by K-L for
these 20 runs had a much better than normal per
centage of very good cutsizes.)

We conclude from these experiments that there is
value to be gained by using good starting solutions,
but that the nature ofthe starting solutions can make
a crucial difference. It is especially helpful if the start
ing solutions are in some sense orthogonal to the kinds
ofsolutions generated by annealing, as is the case with
the Line solutions for geometric graphs, which make
use of geometric insights into the nature of the in
stances that are not directly available to a general
algorithm like annealing that must work for all in
stances. (One might hypothesize that the reason that
K-L starting solutions were also helpful for geometric
graphs is that the detailed operation ofK-L is adapted
to take advantage of the local structure of geometric
graphs in ways that annealing is less likely to find. See
Section 7 for a brief description of how K-L works.)
Moreover, good starts may be equally or more useful
when used with approaches other than annealing.

The above results mirror practical experience we
had with certain real-life instances. The real-life in
stances came from a related problem, that of hyper
graph partitioning. In a hypergraph the edges are sets
ofvertices, not just pairs, and the cutsize for a partition
V = VI U V2 is the number of edges that contain
vertices from both VI and V2 • A scheme for designing
"standard-cell VLSI circuits," developed at AT&T
Bell Laboratories and described by Dunlop and
Kernighan, performs cell layout by repeated calls to a
hypergraph partitioning algorithm. Traditionally the
K-L algorithm has been used for this (it was originally
defined in general hypergraph terms). On real circuits,
it gives its best results when started from a partition
provided by the circuit designers or a slightly random
ized variant thereof. Such starting partitions were
significantly better than the partitions typically found
by K-L when it was started from a purely random
partition. They made use of instance-specific inside
information, just as the Line starting partitions
did for our geometric instances of ordinary graph
partitioning.

The same behavior was observed with an imple
mentation of annealing for hypergraph partitioning.
In a victory for our generic approach, this implemen
tation was obtained from our graph partitioning im
plementation in a few hours by just making some
minor changes to the problem-specific routines. If
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started from a random partition, annealing was not
competitive with the designers; starting from their
partition, with a low initial temperature, it made
substantial improvements. On certain graphs the im
provements were more substantial than those made
by K-L, on others they were less. Overall, the compe
tition between the two algorithms for this application
was inconclusive, so long as one did not take running
time into account.

As a final comment on our experiments with good
starting solutions, we note that they also indicate a
further dimension to the superiority ofAnnealing over
K-L when running time is ignored. For the graph G500 ,

the solutions found by Annealing averaged 9% better
than the initial K-L solutions when INITPROB = 0.4.
They were still averaging 1% better than the initial
K-L solutions when INITPROB was set to 0.025,
which reduced the running time of Annealing by a
factor of 4. In contrast, when we performed limited
experiments in which K-L was started from the final
solution found by Annealing, K-L never yielded an
improvement.

5.7. Approximate Exponentiation

In looking for other savings, a natural candidate for
streamlining is the exponentiation e-t>./T that takes
place once each time through the inner loop of the
code. On a VAX 11-750, even with a floating point
accelerator, this is an expensive operation. Under our
standard parameters, Annealing will perform approx
imately 400,000 such exponentiations in handling
G500 , and these will take almost one third of the
running time. It thus seems appealing to use some
other function than e-D./T to determine the probability
of acceptance. Although there are mathematical mo·
tivations for using the exponential, they only apply in
certain asymptotic senses (e.g., see Anily and
Federgruen, and Mitra, Romeo and Sangiovanni
Vincentelli). There is no a priori reason why some
other, simpler to compute function might not serve
just as well or better in the context of the algorithm
as actually used. One appealing possibility is the func
tion 1 - b./T, which involves just one division and at
least approximates the exponential. It takes less than
1125 as much time to compute on our system, thus
presumably offering about a 33% speedup. On the
basis of 300 runs with this function and our standard
parameters, we can confirm the speedup, and notice
no significant difference in the quality of the solution
(an average cutsize of 213.2 versus 213.3 for e-D./T).

We did not investigate this approximation further
however, as an equivalent speedup can be obtained
by an alternative and better approximation to e-t>./T.

Graph Partitioning by Simulated Annealing / 887

This better approximation uses the following table
lookup scheme. First note that the ratio between the
smallest uphill move that has a nonnegligible chance
of rejection and the largest uphill move that has a
nonnegligible chance of acceptance is no more than
1,000 or so (an uphill move of size T/200 has an
acceptance probability 0.9950 whereas one of size 5T
has an acceptance probability 0.0067). Thus, to obtain
the value of e-t>./T to within a half percent or so, all we
need do is round 200b./T down to the nearest integer,
and use that as an index into a table of precomputed
exponentials (if the index exceeds 1,000, we automat
ically reject). Implementing this latter scheme saved
113 the running time, and had no apparent effect on
quality of solution. We have used it in all our subse
quent experiments with Annealing on other problems,
choosing it over the linear approximation so that we
could still claim to be analyzing what is essentially the
standard annealing approach.

Had we used this approximation in our graph par
titioning experiments, it would skew the results
slightly more in Annealing's favor, but not enough to
upset our main conclusions, even if we combine it
with the two other major potential speedups uncov
ered in this study. Table XII shows the reduction in
running time obtained by: 1) using table lookup ex
ponentiation, 2) doing more generation by random
permutation while halving the temperature length,
as suggested in Section 6.5, and 3) combining a
further reduction in the temperature length (SIZE
FACTOR = 1) with a corresponding decrease in the
cooling rate (TEMPFACTOR = 0.99358 = (0.95) 1/8)

for smoother cooling, as suggested in Section 5.3. Five
runs of this modified Annealing algorithm were per
formed for each of the 16 random graphs in our
ensemble, and Table XII reports the ratios of the
resulting average running times to the averages for our
original implementation, as reported in Table IV.

Note that the running time was reduced by a factor
of at least two in all cases, with significantly more
improvement as the graphs became sparser and/or

Table XII
Average Speedups Using Approximate

Exponentiation, Permutation Generation, and
Smoother Cooling (Running Time Ratios)

Expected Average Degree

IVI 2.5 5.0 10.0 20.0

124 0.29 0,28 0.38 0.40
250 0.31 0.36 0.35 0.41
500 0.34 0.39 0.41 0.47

1000 0.34 0.37 0.39 0.49
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Table XIII
Comparison of K-L and C-K-L With Sped-up

Annealing (Percent Above Best Cut Ever Found)

Expected Average Degree

IVI 2.5 5.0 10.0 20.0 Algorithm

124 0.0 0.0 0.0 0.0 K-L's
0.0 0.1 0.0 0.0 C-K-L's
0.0 0.4 0.1 0.2 5 Anneals

250 0.1 0.9 0.5 0.2 K-L's
0.0 0.4 0.6 0.2 C-K-L's
1.8 0.6 0.3 0.0 5 Anneals

500 4.0 3.3 1.1 0.7 K-L's
1.9 2.2 1.2 0.8 C-K-L's
5.7 0.8 0.2 0.2 5 Anneals

1,000 5.2 4.5 1.8 1.0 K-L's
2.0 3.5 1.6 1.1 C-K-L's
3.2 0.8 0.2 0.1 5 Anneals

smaller. The running time reductions for our eight
geometric graphs were similar, with ratios ranging
from 0.33 to 0.45 in all but one case (the ratio for the
500-vertex geometric graph with mrd 2 = 40 was 0.76).
These running time savings were obtained with no
appreciable loss in solution quality: the average cut
sizes were roughly the same for both implementations.
These speedups for both types ofgraphs alter the time
equalized comparison of Annealing and K-L reported
in Tables V and VII, as fewer runs of K-L could be
performed in the time it takes to do 5 anneals. The
typical change, however, involves only a minor in
crease in K-L's expected excess over the best cutsize
found, and K-L still has a significant lead over An
nealing for all the geometric graphs and for the ran
dom 250- and 500-vertex graphs with expected degree
2.5. (To see the effect on random graphs, compare
Table XIII with Table V.) Moreover, if we are willing
to go to such efforts to optimize our annealing imple
mentation, we should also consider attempts to
improve on K-L by more traditional means. We do
this in the next section.

6. MORE ON THE COMPETITORS

Simulated annealing is not the only challenger to the
Kernighan-Lin graph partitioning throne. Alternative
algorithms for graph and hypergraph partitioning re
cently have been proposed by a variety of researchers,
including Fiduccia and Mattheyses (1982), Goldberg
and Burstein (1983), Bui et al. (1984), Goldberg
and Gardner (1984), Krishnamurthy (1984), Bui,
Leighton and Heigham (1986), and Frankle and Karp
(1986). Some of this work in fact has been stimulated
by the reported success of annealing on certain graph

partitioning problems, researchers having concluded
that the true message in this relative success is not that
annealing is good, but that K-L is a much poorer
algorithm than previously thought.

We have done limited tests of two of the most
promising approaches. The first is based on the
Fiduccia-Mattheyses algorithm, a variant of K-L. The
K-L algorithm operates only on balanced partitions,
and is based on a repeated operation of finding the
best pair ofas-yet-unmoved vertices (one from VI and
one from V2 ) to interchange (best in the sense that
they maximize the decrease in the cut, or if this is
impossible, minimize the increase). If this is done for
a total of I VI/2 interchanges, one ends up with the
original partition, except that VI and V2 are reversed.
One then can take the best of the 1 VI 12 partitions
seen along the way as the starting point for another
pass, continuing until a pass yields no improvement.
For a fuller description, see Kernighan and Lin.

Fiduccia and Matheyses (F-M) proposed to speed
up the process by picking just the best single vertex to
move at each step. This reduces the number of possi
bilities from 1 V 12 to I V I and, with the proper data
structures (adjacency lists, buckets, etc.) can reduce
the total worst case running time (per pass) to
O( I V I + IE I) from what looks like Q( I V 13

) for
K-L. In practice, this speedup is illusory, as K-L
runs in time O( I V I + IE I) per pass in practice when
implemented with the same proper data structures,
and the two algorithms had comparable running times
in our limited tests. Nor were we able to get F-M to
outperform K-L in the quality of solutions found.
F-M was actually slightly worse under the standard
implementation in which vertices are chosen alter
nately from VI and from V2 , to ensure that every other
partition encountered is in balance. If instead we
choose to move the best vertex in either VI or V2 , and
use the imbalance squared penalty function of our
Annealing algorithm, F-M improved to parity with
K-L, but no better. (As remarked in Section 4.3, lo
cal optimization based on this penalty function is
substantially better than local optimization based on
pairwise interchanges: The average of 1,000 runs of
the former on G500 was 276 versus 290 for the latter.)

The second approach has been embodied in algo
rithms due to Goldberg and Burstein and to Bui,
Leighton, and Heigham, and involves coalescing ver
tices to form a smaller graph, and applying K-L to
this. Based on our implementation ofboth algorithmS,
the Bui, Leighton, and Heigham algorithm seems to
be superior and can offer a significant improvement
over basic K-L. In this algorithm, one first finds a
maximal matching on the vertices of the graph, and
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forms a new graph by coalescing the endpoints ofeach
edge in the matching (or all but one of them, if the
number of edges in the matching is not divisible by
4). The result is a graph with an even number of
vertices, upon which K-L is performed. The resulting
partition is expanded by uncoalescing the matched
vertices, and, if necessary, modified by random shifts
so that it becomes a balanced partition of the original
graph. This is then used as the starting solution for a
run of K-L on the entire graph, the result of which is
the output of the algorithm. We shall refer to this
algorithm as coalesced Kernighan-Lin and abbreviate
it as C-K-L.

Despite the two calls to K-L, the running time of
C-K-L is less than twice that of K-L, ranging between
1.1 and 1.9 times that for K-L by itself on our test
graphs (the first call to K-L is on a smaller graph, and
the second is from a good starting partition). The
excess over K-L's running time tends to go up as the
density of the graph increases. Taking this increased
running time into account, however, C-K-L outper
forms basic K-L on all our geometric test graphs and
on the sparser of our random ones. It did not outper
form Line + K-L on the geometric graphs, however.
Table XIII is the analog of Table V for our test bed of
random graphs. Both K-L and C-K-L are compared
to our original estimate for the best of 5 anneals, with
the time equalization taking into account the speedups
for Annealing reported in Table XII. The K-L data
are derived from our original suite of 2,000 runs per
graph; data for C-K-L are based on 1,000 runs
per graph.

Note that C-K-L dominates our sped-up Annealing
implementation on all the graphs with expected av
erage degree 2.5 (except the smallest, where all three
algorithms are tied). In comparison, K-L loses out on
the 1,OOO-vertex graph of this type, even when com
pared to the slower Annealing implementation, as in
Table V. Annealing still seems to be pulling away,
however, as the graphs become larger and denser.

Finally, all three algorithms (K-L, C-K-L, and An
nealing) can be beaten badly on special classes of
graphs. We have seen the efficacy of the Line Algo
rithm for geometric graphs. Bui et al. report on an
approach based on network flow that almost surely
finds the optimal cut in certain regular graphs with
unique optimal cuts. Neither Annealing nor K-L
matches its performance on such graphs. For espe
cially sparse graphs, another possibility suggests itself.
Such graphs may not be connected, and it is thus
possible that some collection of connected compo
nents might contain a total of exactly I V I/2 vertices,
yielding a perfect cut. Theoretically this is unlikely
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unless the graph is very sparse; normally there should
still be one monster component that contains most of
the vertices, and this was indeed the case for all the
test graphs studied. We were, however, able to generate
a 500-vertex geometric graph with this property by
taking d = 0.05 (expected average degree slightly less
than 4). This graph had an optimum cutsize of 0 that
was found by using a connected components algo
rithm with an O(n 2

) dynamic programming algorithm
for solving the resulting subset sum problem. Neither
K-L nor Annealing, however; ever found such a cut,
despite thousands of runs of the former and hundreds
of the latter.

7. CONCLUSIONS

In light of the above, simulated annealing seems to be
a competitive approach to the graph partitioning prob-·
lem. For certain types of random graphs, it appears to
beat such traditional heuristics as Kernighan-Lin, as
well as more recent improvements thereon, even when
running time is taken into account. It was substan
tially outclassed on other types of graphs, however.
Generalizing from the results we observed for random
and geometric graphs, it appears that if the graph is
particularly sparse or has some local structure, it may
well be better to spend an equivalent amount of time
performing multiple runs of K-L or C-K-L, or using
heuristics specially tuned to the instances at hand.

In addition to evaluating annealing's performance
on the graph partitioning problem, our experiments
may also provide some preliminary insight into
how best to adapt our generic annealing algorithm to
other problems. In particular, we offer the following
observations.

Observation 1. To get the best results, long annealing
runs must be allowed.

Observation 2. Of the various ways to increase the
length of an annealing run, adding time to the begin
ning or end of the schedule does not seem to be as
effective as adding it uniformly throughout the sched
ule. The latter can be accomplished by increasing
TEMPFACTOR, increasing SIZEFACTOR, or using
adaptive temperature reduction. It is not clear which
of these methods is to be preferred, although a TEMP
FACTOR increase seems to yield a slight running
time advantage in our implementation.

Observation 3. It may not be necessary to spend much
time at very high temperatures (ones where almost all
moves are accepted). One can reduce the time spent
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Observation 11. In adapting annealing to a particular
problem, it may pay to expand the definition of solu
tion. One can allow violations of some of the basic
constraints of the problem definition, so long as a
penalty for the violation is included in the cost func
tion. This allows for a smoother solution space in
which local optima are easier to escape. The smaller
the penalty, the smoother the space, and surprisingly
small penalties may still be enough to ensure that final
solutions are legal, or close to it.

Observation 10. The best values of the annealing
parameters may depend not only on the problem
being solved, but also on the type and size of instance
at hand. One must beware of interactions between the
generic parameters, and between these and any prob
lem specific parameters that may exist in the imple
mentation. Given this warning, however, the generic +'
parameter values we derived for our graph partitioning
implementation seem like a good starting point,
assuming they result in feasible running times.

Although based on the study of a single application
of annealing, these observations have been supported
by our subsequent work on other applications. In
particular, they will be USed and elaborated on in the
two companion papers (Johnson et al. 1990a, b),
which report on our experiments adapting simulated
annealing to graph coloring, number partitioning and
the traveling salesman problem.

As a service to readers who would like to replicate "••
or improve upon our graph partitioning experiments .
and desire a common basis for comparison, we are '
prepared, for a limited time, to make electronic copies
available of the graphs used as instances in this study.
Interested readers should contact the first author (elec
tronic mail address: dsj@research.att.com).
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Observation 6. It appears that better solutions can be
found subject to a given bound on running time, if
one does not simply generate candidate moves one at
a time, independently, but instead uses random per
mutations to generate sequences of N successive
moves without repetition.

Observation 5. There seems no reason to replace the
standard geometric cooling method by any of the
nonadaptive alternatives we have examined (logarith
mic cooling, linear temperature cooling, etc.).

Observation 7. Even with long runs, there can still be
a large variation in the quality of solutions found by
different runs. However, up to a certain point, it seems
to be better to perform one long run than to take the
best of a time-equivalent collection of shorter runs.

Observation 4. Simple minded adaptive scheduling
appears to yield no improvement beyond that to be
expected due to the increase in overall running time
it provides. We do not rule out the possibility that
more sophisticated adaptive schedules or schedules
hand-tuned to particular types of instances might be
more effective, especially if instances exhibit evidence
of the "phase transitions" alluded to by Kirkpatrick,
Gelatt and Vecchio No such transitions were evident
in our graph partitioning instances, however. For
these, the shape of a time exposure ofcurrent solution
values seems to be determined mostly by the curve of
declining move probabilities, with no unexplained
irregularities that an adaptive scheduler might attempt
to exploit.
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at such temperatures by using cutoffs, or simply by
starting at a lower temperature. It is not clear if it
makes a difference which technique is used, so long
as the value of the cutoff/starting temperature is
properly chosen. For this, experimentation may be
required.

Observation 8. There can be an advantage to starting
at a good solution rather than a randomly generated
one (an advantage in quality ofsolution, running time,
or both), but this depends strongly on the nature of
the good solution. Starting solutions that take advan
tage of some special structure in the instance at hand
seem to be preferable to those obtained by general
heuristics.

Observation 9. Replacing the computation of the ex
ponential e-t>IT with a table lookup approximation
seems to be a simple way to speed up the algorithm
without degrading its performance.
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