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How to Find More Supernovae with Less Work: Object
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ABSTRACT

We present the results of applying new object classification techniques to

difference images in the context of the Nearby Supernova Factory supernova

search. Most current supernova searches subtract reference images from new im-

ages, identify objects in these difference images, and apply simple threshold cuts

on parameters such as statistical significance, shape, and motion to reject objects

such as cosmic rays, asteroids, and subtraction artifacts. Although most static

objects subtract cleanly, even a very low false positive detection rate can lead to

hundreds of non-supernova candidates which must be vetted by human inspection

before triggering additional followup. In comparison to simple threshold cuts,

more sophisticated methods such as Boosted Decision Trees, Random Forests,

and Support Vector Machines provide dramatically better object discrimination.

At the Nearby Supernova Factory, we reduced the number of non-supernova can-

didates by a factor of 10 while increasing our supernova identification efficiency.

Methods such as these will be crucial for maintaining a reasonable false posi-

tive rate in the automated transient alert pipelines of upcoming projects such as

PanSTARRS and LSST.
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1. Introduction

Future large scale survey projects such as PanSTARRS1 and LSST2 are expected to

generate automated rapid turnaround transient alerts for objects such as supernovae, active

galactic nuclei, asteroids, Kuiper belt objects, and variable stars. They will do this by

comparing new images to coadded stacks of reference images taken previously. Repeat

observations of the same field will occur over timescales of minutes, hours, days, months,

and years. Robust rejection of spurious non-astrophysical objects will be crucial to avoid

excessive false positive alerts.

A major difficulty of current optical transient programs is the huge number of false

positive objects which are difficult to reject while maintaining high selection efficiency for

the real objects of interest. For example, the 2005 Sloan Digital Sky Survey II (SDSS-II)

supernova program (Becker et al. 2006) required objects to be detected within 0.6 arcsec in

at least two filters with signal-to-noise greater than 3, yet this generated ∼4,000 objects per

night which needed to be visually checked by humans for verification. Their 2006 search

drastically reduced this scanning load by requiring that all but the brightest objects be

identified at the same location on multiple nights before they are passed to a human for

verification. Although this reduced their scanning load, this method is not applicable to the

real-time transient alert pipelines of PanSTARRS and LSST. A “60-second transient alert”

would be meaningless if it really meant “N days plus 60 seconds after the first positive

identification.” Although PanSTARRS and LSST will have multiple exposures of a field

in the same night, this is equivalent to the multiple-filter requirement of the SDSS 2005

program which was still swamped by false positives.

This problem of false positives is not unique to nearby transient searches; it arises

whenever a large number of objects are imaged, either from a wide-field survey or a deep

narrow survey. The ESSENCE (Miknaitis et al. 2007) and SNLS (Astier et al. 2006) Cana-

dian pipeline supernova searches both result in 100–200 objects to scan per night of data3.

Although this is a manageable load for a current experiment, it would not scale to future

surveys which will image thousands of square degrees per night.4 If current methods were

used, the projects would need to drastically reduce their signal efficiency in order to maintain

1http://pan-starrs.ifa.hawaii.edu

2http://lsst.org

3private communication with W.M. Wood-Vasey (ESSENCE) and D. Balam (SNLS)

4For comparison, the SNLS supernova survey covers ∼ 1 square degree per night, SDSS covers 150 square

degrees per night, and SNfactory covers 350 to 850 square degrees per night.
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a manageable false-positive rate. The SNLS French pipeline uses multi-night data and an

artificial neural net to select candidates for verification, but as noted above, using multi-night

information is not applicable to rapid turnaround transient alert pipelines which intend to

produce alerts within a minute of the first positive detection.

False positives arise from a variety of sources including diffraction spikes, saturated

stars, optical ghosts, star halos, cosmic rays, satellite trails, CCD amplifier glow, other CCD

artifacts, and image processing artifacts. In principle all of these effects are best identified

and either fixed or masked at the image level. In practice there will always be effects which

produce spurious detections. This problem is especially bad at the start of a search when

covering new areas of sky, before consistent problems can be identified and masked. The

goal of a classifier is to identify the real candidates of interest (signal events) while rejecting

the spurious objects (background events).

In some cases, real astrophysical variable objects are the background events for other

analyses. For example, asteroids, variable stars, and active galactic nuclei form a background

for nearby supernova searches, yet they are the core science for other programs. This paper

is written from the context of a nearby supernova search and thus these other astrophysical

events are treated as background to reject, but the methods presented here are generally

applicable to many object classification problems.

This paper presents the results of applying modern machine learning techniques to the

supernova search pipeline of the Nearby Supernova Factory (SNfactory, Aldering et al. 2002).

§2 presents a variety of machine learning techniques. §3 describes the Nearby Supernova

Factory search, and §§ 4 and 5 present the training data and classification software used.

§6 compares the various methods. We find that methods such as Boosted Trees, Random

Forests, and Support Vector Machines perform dramatically better than the threshold cuts

which are typically used by supernova search programs.

2. Classification Methods

Classification methods identify signal vs. background events based upon a set of features

(also called variables, attributes, or scores) which describe the events. For example, objects

in photometric images can be described by their magnitude, signal-to-noise, and shape pa-

rameters such as width and ellipticity. These features can be used to distinguish stars from

galaxies, cosmic rays, or imaging artifacts.

The optimum separation of two classes of events is application dependent, depending

upon the desired tradeoff between purity (the fraction of selected events which are real
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signal), completeness (the fraction of real signal events which are selected), and the total

sample size selected. For example, a measurement which depends upon a statistical fit to

both signal and background events might optimize the signal-to-noise ratio ∼ S/
√

S + B

where S and B are the number of real signal and background events which the classifier

selects for the fit. A supernova search algorithm, on the other hand, might maximize the

purity with the constraint that the completeness remain above 90%.

Some methods, such as threshold cuts (§2.1), produce a boolean signal/background

decision and the cuts themselves must be adjusted to optimize the separation. Other methods

have an automated training procedure and produce a single statistic which rates how signal-

like or background-like a new event is. The user may then cut on that statistic to optimize

the desired figure of merit.

Classifier parameters are tuned using a training dataset of known signal and background

events to optimize the separation power. Since the results are influenced by the particular

statistical fluctuations of the training dataset, the separation power on the training data

itself cannot be used as a fair measure of the power of a classifier. Instead, a separate

validation set is used to assess the performance. If enough training data is available, one

uses one dataset to train a variety of classifiers with different parameters, a second dataset

to select which set of parameters produces the best classifier, and a third dataset to validate

the final performance. Ideally one trains and validates using real data; in practice simulated

data are often used for training and validation before applying the classifier to real data.

It is important to note that the quality and power of any classifier will be affected by the

accuracy of the training sample. One must be careful to minimize and measure any biases

introduced through a simulated training sample which does not completely reflect real data.

2.1. Threshold Cuts

Automated supernova searches have typically operated by applying simple threshold

cuts to the features describing objects. For example, a supernova search might keep objects

which have a signal-to-noise ratio S/N > 5, astrometric positions that agree to within 1

arcsec on 2 or more images, and a width consistent with stars on the images (e.g., within a

factor of 2 of the median width of stars). If an object fails any of these cuts, it is rejected.

These cuts are easy to understand but do not reflect the subtleties of a multidimensional

space. An object which just barely fails one of the cuts is still rejected the same as an object

which fails many cuts. It also does not naturally handle correlations between the variables,
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e.g., between the S/N and the astrometric accuracy.5 To use threshold cuts, one must find

uncorrelated variables without significant outliers such that every cut maintains a high signal

efficiency while rejecting background.

Compared to curved boundary selections, threshold cuts are also an inefficient way to

select a subset of a hyperspace as the number of dimensions grows large (Köppen 2000), even

for dimensions as few as 5. e.g., for 3 dimensions, the volume ratio of a cube to its embedded

sphere is 1.9; for 5 dimensions it is 6.1, and for 10 dimensions it is 401.5. This ratio goes to

infinity as the number of dimensions increases. Thus if a set of signal events is distributed as

an ellipsoid in some feature space, an ellipsoid shaped selection contains much less volume

(and thus likely much less background) than the equivalently dimensioned hypercube.

Although commonly used in supernova searches, threshold cuts are widely recognized

as being a non-optimal method for signal/background separation problems. The following

sections describe a variety of more powerful techniques for identifying supernovae in difference

images.

2.2. Multi-dimensional Probability Measures

A more sophisticated approach models the probability distribution function (PDF) for

the signal and the background for each of the features. The combined probability of all

of the feature values for an object is used to make the signal/background decision. This

improves over threshold cuts by eliminating rejections based upon a slightly marginal value

of a single feature, but it requires a detailed modeling of the PDF of each feature, including all

correlations and outliers in the distributions. This suffers from the “curse of dimensionality”

(Bellman 1961): since the volume of a hyperspace grows exponentially with the number

of dimensions, the size of a training sample must also grow exponentially to adequately

determine the PDFs.

If the signal and background features are Gaussian distributed with only linear cor-

relations, Fisher Discriminant Analysis (Fisher 1936) finds the best linear combination of

features to maximize the separation of the two classes. Figure 1 shows a toy example of

data which would be well separated using Fisher Discriminant Analysis. The two classes of

events (blue triangles and red squares) are not well separated by either feature A or B, but

their correlation is such that the combination A + B provides very good separation of the

5In a simple case such as this, one could combine S/N and astrometric positions to form an uncorrelated

variable; accomplishing this in the general case for a large number of variables is non-trivial.
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two classes.

More generally, if a set of events {x} in some feature space have means µ0,1 and covari-

ances Σ0,1 for classes 0 and 1, then a linear combination w · x will have means w · µ0,1 and

covariances wT Σ0,1w, where w is a set of coefficients defining a linear combination of the

features. The separation of the two classes may be defined as

∆ =
(w · µ0 − w · µ1)

2

wT Σ0w + wT Σ1w
, (1)

i.e., the separation of the means is measured in units of the variances. Fisher showed that

the maximum separation is achieved when

w = (Σ0 + Σ1)
−1(µ1 − µ0) (2)

The means and covariances of the signal (1) and background (0) classes may be estimated

from a training sample, and thus the calculation of the best linear combination for separating

the classes is simply a matrix inversion. This method breaks down when there are non-linear

correlations or when there are significant outliers or otherwise non-Gaussian variances such

that a simple mean and covariance is not a good descriptor of the feature distributions for

the two classes. In practice, Fisher Discriminant Analysis is most often used to combine

several linearly correlated features into a single feature to reduce the dimensionality of a

problem before applying another classification method.

2.3. Decision Trees

Decision trees (Breiman et al. 1984) separate signal from background events by making

a cascading set of event splits as shown in Figure 3. This forms a generalization of threshold

cuts by selecting many hypercubes in the multi-dimensional feature space rather than a

single hypercube of cuts. The training procedure described below automatically selects the

features and cut values to generate a tree with maximal separation of signal and background

events.

The training procedure begins with a sample of training events and considers all features

and cut values to form two subsets with the best separation of signal and background. The

procedure is recursively applied to each of the subsets to form further branches. The recursion

is stopped when some condition is met, e.g., the subset is entirely signal or background,

or the subset has reached a minimum allowed size (a minimum size requirement prevents

overtraining on statistical fluctuations of small samples). The terminal nodes which are

not further split are called leaves, and are assigned as either signal or background leaves

depending upon the training events which ended up on those leaves.
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There are a variety of ways to define the best separation at each split; for this study we

used the Gini parameter (Gini 1921; Breiman et al. 1984), which is widely used and provides

robust performance. Define the purity of a sample of training events as

P =

∑
S wS∑

S wS +
∑

B wB

(3)

where the sums are over the signal events S and background events B and wi are a set of

event weights. Typically all of the weights are the same and their absolute normalization

is arbitrary. If needed, relative weights may be used to increase the influence of an under-

represented subsample of the training data. The role of weights will be more important in

the Boosted Trees method described in §2.3.1. Note that P = 1 for a sample of pure signal

events, P = 0 for a sample of pure background events, and P (1−P ) = 0 for a sample which

is either purely signal or purely background.

Define

Gini = P (1 − P )
n∑

i=1

wi (4)

where the sum is over all events in that sample. At each node, the training procedure

considers all possible features and cut values to minimize the quantity

Ginileft child + Giniright child (5)

to find the best separation of events. If this split would not increase the overall quality of

the tree, i.e.,

Giniparent < Ginileft child + Giniright child (6)

then the node is left as a leaf node, assigning it as a signal leaf if P > 0.5 and a background

leaf otherwise. If the split would increase the overall quality of the tree, the events are split

into two nodes and the procedure is recursively applied to each of those nodes until the

stopping conditions are met (e.g., minimum leaf sizes) or no splits can be found which would

improve the overall quality of the tree.

Decision trees are a generalization of threshold cuts and thus have more flexibility to

optimally select a set of signal events within a feature space. However, single decision trees

tend to be unstably dependent upon the details of the training set. A small change in

the training set can produce a considerably different tree and thus a considerably different

performance on the validation set.
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2.3.1. Boosted Trees

Boosting algorithms improve the performance of a classifier by giving greater weight to

events which are hardest to classify. In the case of decision trees, a tree is trained on a set

of data, misclassified events are identified and their weights are increased, and the process

is repeated to form new trees. This iteratively produces a set of increasing quality decision

trees. The final classifier uses the weighted ensemble average of all of the trees to make a

classification decision. The boosting provides decision trees with better separation power,

and the ensemble average washes out the training instabilities associated with single decision

trees. In applications with ∼20 or more input features, Boosted Decision Trees can provide

significantly better results than Artificial Neural Networks (Roe et al. 2005); see also §2.5.

There are a variety of boosting algorithms used to increase the weights of misclassified

events (Freund & Schapire 1996; Friedman 2001; Friedman, Hastie, & Tibshirani 2000). We

describe here the commonly used Discrete AdaBoost method (Freund & Schapire 1996).

Define the error rate for tree m as

errm =

∑N

i=1 wiIi∑N

i=1 wi

(7)

where Ii = 0 if event i is correctly classified and Ii = 1 if it is incorrectly classified. Typically

the first tree is trained with the same weight for all events. Then adjust each of the event

weights using

αm = β × ln[(1 − errm)/errm] (8)

wi → wi × eαmIi (9)

This increases the weights of misclassified events; the weights are increased more when the

tree has a low error rate. These new weights are then used to generate a new decision tree.

The standard AdaBoost algorithm uses β = 1 but this can be adjusted to vary how quickly

the weights are updated with each iteration.

After generating M individual trees with weights αm, the final classifier answer for an

event described by a set of features x is

T (x) =
M∑

m=1

αmTm(x) (10)

where Tm(x) is the result for tree m: 0 if x lands on a background leaf and +1 for a signal

leaf. The absolute normalization of T (x) is arbitrary; we chose to renormalize the αm weights

such that 0 ≤ T (x) ≤ 1.
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2.3.2. Random Forests

Random Forests (Breiman 2001) also generate multiple decision trees for a given training

set and use a weighted average of the trees as the final decision metric. When training a tree,

at each branch the training cycle only considers a random subset of the possible features

available to use. This has the effect of washing out the typical training instabilities of decision

trees and produces a classifier which is fast to train and robust against outliers.

2.4. Support Vector Machines

The Support Vector Machine (SVM) algorithm is a classification method that has suc-

cessfully been applied to many pattern recognition problems and is founded on principles of

statistical learning theory (Vapnik 1998; Chen et al. 2005). It nonlinearly maps data points

from the original input space to a higher-dimensional feature space in which an optimal

hyperplane parameterized by a normal vector w and offset b is computed such that the

separation between events in different classes is maximized. The linear decision boundary

is defined as f(x) = w · φ(x) + b, where x is a vector in the feature space which describes

objects and φ is a mapping which embeds the problem into a higher-dimensional space in

which classes are more easily separable than in the original feature space.

An optimization problem is constructed to find the unknown hyperplane parameters,

and the optimal hyperplane normal w is found to be entirely determined by the subset of

events nearest to the optimal decision boundary (also called support vectors, xi) as follows:

w =
∑

i ciφ(xi), where the coefficients ci are the Lagrange multipliers used in solving the

nonlinear optimization and are a byproduct of the optimization.

The hyperplane parameters are solved by maximizing the margin (the distance between

the hyperplane and the example events in each class), which is formulated as a nonlinear

constrained optimization problem, where the constraints enforce that examples from different

classes lie on opposite sides of the hyperplane. The objective function to be minimized is

convex, i.e., it is guaranteed to have a global minimum and no local minima. The linear

decision boundary corresponds to a nonlinear (and possibly disjoint) decision boundary in

the original feature space. Once the hyperplane is found, a set of features x is typically

classified into one of the two classes by applying a threshold cut to f(x).

Rather than calculating φ(x) explicitly while evaluating w · φ(x) =
∑

i ciφ(xi) · φ(x),

the actual embedding is achieved through a kernel function defining an inner product in the

embedding space, k(x1,x2) = φ(x1)·φ(x2). This “kernel trick” makes class prediction easy to

implement and fast to compute. Several common kernel mappings are given in Chen et al.
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(2005). In practice, the kernel function is typically chosen empirically via training and

testing, and the simplest function giving the desired performance is used. The Gaussian

kernel used in this analysis

k(x1,x2) = exp(−||x1 − x2||2/2σ2) (11)

is commonly used because it only has one free parameter to be tuned (σ) and empirically

performs as well as, if not better than, more complex kernels which may overfit the data.

For this analysis we used a soft-boundary SVM method called C-SVM, which handles

noisy data with high class overlap by adding a regularization term to the objective func-

tion. This term allows but penalizes training points lying on the wrong side of the decision

boundary. The regularization parameter, C, controls the trade-off between maximizing the

separation and allowing some amount of training error while finding the hyperplane which

maximally separates signal from background.

The advantages of SVMs include the existence of a unique solution, the simple geomet-

ric interpretation of the margin maximization function, the capacity to compute arbitrary

nonlinear decision boundaries while controlling over-fitting with soft margins, the low num-

ber of parameters to be tuned (as few as two, depending on the choice of kernel), and the

dependence of the solution on only a small number of data points (the support vectors)

which define the boundary of the class separation hypersurface. For SVM implementation

details, see Vapnik (1998).

2.5. Artificial Neural Networks

Artificial Neural Networks (ANNs) are a broad category of classification methods orig-

inally inspired by the interconnected structure of neurons and synapses in the brain. These

methods map a set of input variables to one or more output results via one or more “hidden

layers” of intermediate nodes. For a supernova search, the inputs would be the features

describing each object and the desired output would be 1(0) for signal (background). For an

overview of these methods, see Bishop (1996).

ANNs can be powerful classifiers and have been used in many applications, though

they are slow to train and require some experimentation to optimize the number of hidden

layers and nodes to match a given problem. They also do not scale well with an increasing

number of input features, and their results become unstable when there are significant outliers

or otherwise irrelevant input data. For these reasons, ANNs were not deemed to be an

appropriate classification method for our dataset and this method was not pursued for this

study.
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3. Nearby Supernova Factory Search

The Nearby Supernova Factory (SNfactory, Aldering et al. 2002) search uses data from

the Near Earth Asteroid Tracking (NEAT) program6 and the Palomar QUEST consortium7

using the 112 CCD QUEST-II camera (Baltay et al. 2007) on the Palomar Oschin 1.2-m

telescope. The NEAT observing pattern obtains triplets of 60-second exposures spread over

a time period of ∼1 hour using a single RG610 filter, which is a long pass filter redward of

610 nm. This allows the search to distinguish between asteroids, whose motion is typically

detectable on that timescale, and spatially static objects such as supernovae. The QUEST

data are obtained in 4 filters in driftscan mode; our search uses the two filters which cover

the best quality CCDs (either Bessel R and I or Gunn r and i depending upon camera

configuration). The QUEST data cover less area and tend to be cosmetically cleaner than the

NEAT data, resulting in fewer spurious detections overall. Since the false positive background

events are much worse in the NEAT data, our study of alternative classification methods

has focused on the NEAT dataset.

Coadded stacks of images taken from 2000 to 2003 are used as references. The new

and reference images are convolved to match their point-spread-functions (PSFs), the fluxes

are normalized by matching stars, and the reference is subtracted from the new images.

Objects in the subtraction are identified based upon contiguous pixels with S/N > 3 with

at least one pixel with S/N > 5. Objects are described by features such as position, full-

width-half-max (FWHM) in x and y, aperture photometry and associated uncertainties in 3

apertures, distance to nearest object in the reference coadd, and measures of the roundness

and irregularity of the object contour based upon Fourier descriptors (Zahn & Roskies 1972).

Additional features are formed as combinations of features from the same object observed

on multiple images. Combined features include the object motion between two images and

the consistency of the statistical significance of the measurements in different images. The

features are used by a classification method (originally threshold cuts, more recently Boosted

Decision Trees) to select supernova candidates of interest which are then visually scanned

by humans to select the best candidates for spectroscopic confirmation and followup by the

SuperNova Integral Field Spectrometer (SNIFS) (SNfactory, Aldering et al. 2002), on the

University of Hawaii 2.2-m telescope on Mauna Kea.

6http://neat.jpl.nasa.gov

7http://hepwww.physics.yale.edu/quest/palomar.html
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4. Training Dataset

To generate signal events for training, fake supernovae were introduced into the images

by moving real stars of a desired magnitude to locations distributed about known galaxies on

the SNfactory search images. By using real stars from the same images as the galaxies, we

realistically model the point-spread-function, noise, and possible image artifacts present in

that image. These images with fake supernovae were processed with the same data analysis

pipeline as real images to identify objects and measure their features for classification.

The stars are sampled in a circular region of 20 pixels in diameter. The typical FWHM

of stars on these images is about 3 pixels, so this samples the PSF out to ∼ 8σ. The average

sky level of the image is subtracted from the sampled pixels before they are added in the

new location, which implicitely assumes that the sky level is uniform over the image. This

is valid in most cases, and it is simple to reject fakes created from cases that violate this

assumption. Typically these fakes will have a FWHM that differs very significantly from

the average (∼20 pixels vs. ∼3). Most stars are sufficiently isolated that they do not bring

along portions of other objects, and we identify and reject cases where this does happen.

The spatial variation of the PSF is minimal compared to the night-to-night variations which

much be addressed by the image subtraction pipeline, thus this fake supernova generation

procedure does not attempt to correct for the small spatial variations of the PSF across the

CCD.

Background events were randomly selected from 4.1 million other objects identified on

the subtractions with fake supernovae. These subtractions covered a month of data taking

including bright and dark times and a variety of seeing conditions. Objects within 20 pixels

of a fake supernova were excluded to avoid any artifacts which might be introduced through

an ill-formed fake. These background events form a randomly selected subset of the genuine

backgrounds faced by the supernova search in the real data, and thus represent the real

fractions of each type of background event faced.

The signal and background samples were split into training and validation subsets.

Several training sets were formed with 5,000 signal and 5,000 background events each. The

final validation was performed using 20,000 signal and 200,000 background events. The

training dataset for the Support Vector Machine method was augmented with real supernova

discoveries in an attempt to improve its overall performance. The original training set used

19 features; an additional 13 features were then added which improved the performance of

the Boosted Trees and Random Forests but decreased the performance of the SVM. The

results shown in §6 are for the best performance achieved for each classifier (i.e., using 19

features for SVM and 32 features for the other methods).
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5. Classification software

For Fisher Discriminant Analysis, Boosted Trees, and Random Forests, we used the

open-source C++ software package StatPatternRecognition.8 Training a set of 200 boosted

trees using 10,000 training events with 19 features each with a minimum leaf size of 15 events9

takes ∼3 minutes (wallclock) on a 2 GHz AMD Opteron CPU. Training with 32 features

takes ∼45 minutes. Once the trees are trained, it takes approximately 0.6 ms (wallclock) to

evaluate the results for an object. Random Forests took less than 2 minutes to train on the

dataset with 32 features, using the same parameters as above. Evaluation of a new event

takes approximately 0.2 ms. Fisher Discriminant analysis took 1 second to train on the 32

feature dataset and 0.07 ms to evaluate results for a new object.

For SVM, we used the LIBSVM C++ package.10 Training a C-SVM using 10,000

training events with 19 features each takes from 5 to 15 seconds (wallclock) on a 2 GHz

AMD Opteron CPU, depending on the settings of the two parameters used (if the parameters

overfit the data, more support vectors are needed so training time increases). Evaluating

the SVM on a new data point takes approximately 0.6 ms (wallclock).

6. Comparison of Methods

In the end, most classification methods produce a single classification statistic with

arbitrary normalization which rates how signal-like or how background-like the candidate is.

A threshold cut on this statistic can be used to select a subsample of events with desired

signal vs. background purity. A useful way to visualize the power of a classifier is to plot the

fraction of false positives (i.e., background events incorrectly classified as signal) vs. fraction

of true positives (i.e., signal events correctly identified) for various selection values on the

classification statistic.

Figure 4 shows the performance of several classification methods applied to the SNfac-

tory dataset. The red square shows the performance of the original threshold cuts upon which

we were working to improve. The curves show that SVM, Random Forests, and Boosted

Trees all performed dramatically better than the threshold cuts across a wide range of signal

and background efficiencies. The object features in our data have significant outliers which

8 http://sourceforge.net/projects/statpatrec

9The selection of the number of trees and minimum leaf size are described in section 6.1.

10 http://www.csie.ntu.edu.tw/∼cjlin/libsvm

http://sourceforge.net/projects/statpatrec
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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prevented Fisher Discriminant Analysis from being a useful classification method.

The overall best performance was obtained using Boosted Decision Trees, with Random

Forests providing nearly as good performance with faster training and evaluation times.

Although SVM performed considerably better than threshold cuts, it was not as successful

as Random Forests or Boosted Trees. A possible explanation is that the SVM proved to be

more sensitive to signal events that lie close to background events in the feature space, and

could not strike a balance between modeling such events vs. overfitting to noise. For example,

a dim young supernova on a bright galaxy can be very similar to a statistical fluctuation or a

modest subtraction error in the images. Robustness against overfitting is a known strength

of boosted classifiers (Freund & Schapire 1999), and the issue of overfitting noisy data is an

area of active research within the machine learning community. Further details of applying

SVM to the SNfactory dataset are described in Romano et al. (2006).

Boosted Trees, Random Forests, and SVM successfully reduced the false-positive rate

for all types of background events in our data. The three most common remaining back-

ground types are faint optical ghosts from scattered light, fluctuations in charge trails from

bright stars due to CCD charge transfer inefficiency, and leftover dipoles from subtracting as-

trometrically misaligned objects. The optical ghosts can be genuinely difficult to distinguish

from dim supernovae near our detection threshold. The charge trails and dipoles are easy to

distinguish by eye but we currently do not have specific features which directly address these

two backgrounds, thus all classification methods have difficulty with them, given the input

features currently available. These backgrounds are somewhat described by a roundness

feature and comparison of the flux in small vs. large apertures. Adding features to directly

address these backgrounds would improve the power of any classification method. Projects

with higher quality CCDs and optical designs to minimize scattered light will naturally have

fewer backgrounds as well.

The optimum selection criterion is dependent upon the tradeoff between true positive

selection efficiency (horizontal axis) and the false positive selection efficiency (vertical axis).

At the SNfactory we seek to maximize our signal efficiency within the realistic constraints

of the personnel and telescope time available to vet false positives. For the Fall 2006 search,

we used Boosted Decision Trees and choose a point with 10 times less background than we

had previously faced. This corresponds to an average efficiency of ∼78% for identification of

a supernova with a single filter and one night of imaging.
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6.1. Optimizing Boosted Tree Parameters

Since Boosted Trees provided the best classification performance, we describe here how

the performance changed with various input parameters to the Boosted Tree training. The

performance of Boosted Trees depends upon the number of trees generated and the amount

of branching which is done before finishing each tree.

For controlling the amount of branching per tree, the StatPatternRecognition package

has an adjustable limit on minimum number of events per leaf in the final tree. Our training

sample contained 5,000 signal and 5,000 background events. We found the best performance

with a minimum leaf size of 15 events, which results in a set of boosted trees with 250–300

leaves each. Figure 5 shows the relative performance of 200 trees with a mininum leaf size

of n = 5, 25, 50, 100 relative to the n = 15 case.

Figure 6 shows the relative performance of N = 25, 50, 100, 200 trees in comparison to

the N = 400 case, using a minimum leaf size of 50 events. For the Fall 2006 SNfactory

supernova search we choose to use 200 trees with a minimum of 15 events per leaf out of the

10,000 training events.

7. Combining Methods

As expected, the various methods provided correlated output; i.e., events ranked highly

by one classifier tended to be ranked highly by another. But even through Boosted Trees

provided the best classification performance overall, there were good signal events which

were found by SVM which were missed by the Boosted Trees (for a given set of thresholds

on the SVM and Boosted Tree outputs). We attempted to recover these events by combining

the output of these two methods. Several combinations were tried:

• Keep events which passed thresholds for either classifier.

• Perform Fisher Discriminant Analysis on the output of the two classifiers.

• Split the SVM vs. Boosted Tree output space into sub-regions of signal and background.

This is conceptually similar to forming a decision tree in this 2D space and accounts

for non-linear correlations in the SVM vs. Boosted Tree output.

• Use the output of SVM as an additional feature input for Boosted Trees.

None of these methods produced results which outperformed the Boosted Trees alone. Al-

though the combined classifiers could identify signal events which would have been missed
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by just one classifier, the combination also brought in an increased number of background

events such that the overall performance was the same or worse than the Boosted Trees

alone. This result is not generally true, however. In other contexts, multiple classifiers

have been successfully combined to produce overall more powerful results (Dietterich 2002;

Kittler et al. 1998).

8. Discussion and Conclusion

This work has shown a variety of object classification methods which provide signifi-

cantly better performance than is possible with the method of threshold cuts used by most

current supernova searches. The implementations studied here used common defaults, such

as using the Gini parameter for optimizing Boosted Decision Trees and the Gaussian kernel

for SVM. There are many variations of these methods, some of which might provide fur-

ther improved performance. But even these “out of the box” implementations with minimal

tuning provided much better performance than threshold cuts.

Any classifier will be limited by the quality and power of the input features provided. In

practice, after an initial round of training and validation, one should study the misclassified

events and introduce additional features that distinguish these. Such iterations are helpful

regardless of which classification method is used; the main point of this work is to point to

new classification methods which will maximize the classification power possible given a set

of features.

As with any analysis, there is no substitute for clean data and a well understood detector.

Problems which arise from false-positive detections should first be addressed at the level of

the detector and data processing pipeline. Future projects will hopefully have the resources to

address spurious detections at this level to make the process easier for their object classifiers.

But even high quality, well understood detectors and advanced image processing pipelines

such as SDSS will face signal vs. background classification problems, and this is where the

methods described in this paper come into play.

In addition to improved background rejection power, these new methods also have the

advantage of generating a single number which ranks the quality of an object rather than

a boolean pass/fail decision. One may then adjust a threshold cut on that single number

to tune the desired tradeoff between purity and completeness. Future surveys may publish

transient alerts using relatively loose quality requirements; subscribers to these alerts can

then place their own cuts on this quality rank to adjust the purity, completeness, and input

data rate as needed.
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Boosted Trees, Random Forests, and Support Vector Machines all provide much bet-

ter object classification performance than traditional threshold cuts. When applied to the

SNfactory supernova search pipeline, Boosted Trees enabled us to find more supernovae with

less work: Our efficiency for finding real supernovae increased while our workload for scan-

ning non-supernova objects dramatically decreased. Methods such as these will be crucial

for maintaining reasonable false positive rates at the automated transient alert pipelines of

upcoming projects such as PanSTARRS and LSST.
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Fig. 1.— Example data which would be well separated using Fisher Discriminant Analysis.

The two classes of events (open and filled circles) are not well separated by either feature A

or B, but their correlation is such that the combination A+B provides very good separation

of the two classes.
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φ(x)

Fig. 2.— Support Vector Machines map an input space of features into a higher dimensional

space where the separation of classes becomes easier. The separation boundary in the original

space may be quite complex, even disjoint. In the higher dimensional space, the separation

surface is a hyperplane whose parameters are entirely determined by the subset of events

(the support vectors) nearest to the boundary.
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S/N > A

motion < B

FWHM < D RejectReject

RejectSupernova

FWHM < C
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Fig. 3.— Example decision tree which would treat high signal-to-noise objects differently

than low signal-to-noise objects. In practice, a real decision tree has many more branches

and the same variable can be used to branch at many different locations with different cut

values.
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Fig. 4.— Comparison of Boosted Trees (cyan solid line), Random Forest (blue dashed

line), SVM (green dotted line), and threshold cuts (red dash-dotted line) for false positive

identification fraction vs. true positive identification fraction. For the threshold cuts, the

signal-to-noise ratio, motion, and shape cuts were varied to adjust signal and background

rates. The red diamond shows the performance of the threshold cuts used during the SNfac-

tory Summer 2006 search; the cyan square shows the performance achieved with Boosted

Trees which were used for the Fall 2006 SNfactory search. The lower right corner of the plot

represents ideal performance.
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Fig. 5.— A comparison of the performance of 200 boosted trees with varying leaf sizes.

10,000 training events were used; the plot shows the comparison of leaves with a minimum

of N = 5, 25, 50, 100 events in comparison to the performance of the N = 15 case.
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Fig. 6.— A comparison of the performance of Ntree = 25, 50, 100, 200 boosted trees with a

minimum of 50 events per leaf (out of 10,000 training events) in comparison to the Ntree = 400

case.
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