
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

Image P rocess ing Too lk i t Use r ’ s Gu ide



Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA. 2001

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademark s of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

Table of Contents i

Table of Contents

Preface v

Intended Audience v

Typographical Conventions vi

Customer Support vi

Chapter 1: Getting Started 1
Starting PV-WAVE 1

Initializing the Image Processing Toolkit 3

Starting the Image Processing Navigator 4

Accessing Online Help for the Image Processing Toolkit 5

Stopping the Image Processing Toolkit 6

Image Processing: A Brief Overview 6

Chapter 2: Reference 17

BLEND Function 17

CANNY Function 19

CENTROID Function 20

DCT Function 22

DENSITY_SLICE Function 24

DIST_MAP Function 26

ENTROPY Function 31

FILT_DWMTM Function 32

FILT_FREQ Function 35

FILT_MMSE Function 39

FILT_NONLIN Function 42

ii PV-WAVE:Image Processing User’s Guide

FILT_NOTCH Function 51

FILT_SMOOTH Function 56

FILT_WIENER Function 58

GAUSS_KERNEL Function 62

GLCM Function 63

GLCM_STATS Function 65

GLRL Function 67

GLRL_STATS Function 69

HAAR Function 71

HIST_STATS Function 74

HIT_MISS Function 76

HOUGH Function 78

IPALOG Function 83

IPCLASSIFY Function 84

IPCLUSTER Function 88

IPCOLOR_24_8 Function 92

IPCONVOL Function 95

IPCORRELATE Function 99

IPCREATE_FILTER Function 102

IPCT Function 103

IPHISTOGRAM Function 105

IPLINEAR_GRAY Function 107

IPMATH Function 109

IPQMFDESIGN Function 113

IPREAD_FILTER Function 115

IPSCALE Function 117

IPSPECTRUM Function 120

Table of Contents iii

IPSTATS Function 124

IPWAVELET Function 126

IPWIN Function 129

IPWRITE_FILTER Function 133

IS_GRAY_CMAP Function 135

KURTOSIS Function 137

MAJOR_AXIS Function 138

MODE Function 139

MOMENT2D Function 140

MORPH_CLOSE Function 142

MORPH_OPEN Function 144

MORPH_OUTLINE Function 146

NOISE_GEN Function 149

NOISE_IMPULSE Function 156

NOISE_PERIODIC Function 158

NOISE_RAYLEIGH Function 159

PAD_IMAGE Function 161

PCT Function 163

PERIMETER Function 165

POLAR_FFT Function 166

RADON Function 169

RANGE Function 171

REGION_COUNT Function 172

REGION_FIND Function 173

REGION_GROW Function 175

REGION_MERGE Function 177

REGION_SPLIT Function 180

iv PV-WAVE:Image Processing User’s Guide

REGION_STATS Function 182

SHIFT_EDGE Function 185

SKELETONIZE Function 188

SKEWNESS Function 190

SLANT Function 191

THRESH_ADAP Function 193

THRESHOLD Function 196

TOP_HAT Function 198

UNIFORMITY Function 200

Appendix A: Bibliography A-1

Image Processing Index 1

v

PREFACE

Preface
This manual explains how to use PV-WAVE:Image Processing Toolkit; it contains
the following parts:

• Preface — Describes the contents of this manual, lists the
typographical conventions used, and explains how to obtain
customer support.

• Chapter 1, Getting Started — Introduces the PV-WAVE:Image
Processing Toolkit and explains the techniques and methods used
to process images.

• Chapter 2, Reference — Detailed descriptions of the
PV-WAVE:Image Processing functions.

• Appendix A, Bibliography — A complete bibliography of
technical literature cited in this manual.

• Image Processing Index

Intended Audience
This guide is for the experienced PV-WAVE user. Only minimal information on
using PV-WAVE is covered here. Some knowledge of image processing techniques
is helpful.

vi PV-WAVE:Image Processing User’s Guide

Typographical Conventions
The following typographical conventions are used in this guide:

• Courier font is used for program code examples, the names of
system files, and system messages.

• Names of routines are all uppercase letters; keywords are shown in
initial caps and italic font; and parameters are shown in all
lowercase and italic font.

Customer Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

 vii

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

viii PV-WAVE:Image Processing User’s Guide

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

1

CHAPTER

1

Getting Started
Image processing is widely used in engineering and scientific research and
development for representing, transforming, and manipulating images and the
information they contain. The functions in the Image Processing Toolkit are
designed for easy use, while providing many options for solving difficult problems.

Purpose of this Chapter
The purpose of this chapter is to establish terminology and provide a brief overview
of the functionality of the PV-WAVE:Image Processing Toolkit. It is assumed that
you have a basic working knowledge of image processing and filtering.

Starting PV-WAVE
If PV-WAVE isn’t already installed on your system, install it first. You also need
the following options installed in order to run the PV-WAVE:Image Processing
Toolkit: PV-WAVE IMSL Mathematics, PV-WAVE IMSL Statistics, and of
course, the PV-WAVE:Image Processing Toolkit. Once PV-WAVE and the options
are installed, you’re ready to begin.

Starting PV-WAVE Under Windows NT

Step 1 Double-click the PV-WAVE Home Window icon in the PV-WAVE
Program Group.

— OR —

Double-click the PV-WAVE Console icon in the PV-WAVE Program
Group.

2 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

After a brief pause, the corresponding PV-WAVE window appears displaying the
prompt:
WAVE>

When you see this prompt, PV-WAVE is ready for you to enter commands or
initialize the Image Processing Toolkit.

Step 2 Go to the section on Initializing the Image Processing Toolkit, and
perform the initialization.

Starting PV-WAVE Under Windows 95

Step 1 Using the Start button, select Start=>Programs=>
PV-WAVE 6.10=>PV-WAVE Home Window.

— OR —

Select Start=>Programs=>PV-WAVE 6.10=>
PV-WAVE Console.

After a brief pause, the corresponding PV-WAVE window appears displaying the
prompt:
WAVE>

When you see this prompt, PV-WAVE is ready for you to enter commands or
initialize the Image Processing Toolkit.

Step 2 Go to the section on Initializing the Image Processing Toolkit, and
perform the initialization.

Starting PV-WAVE Under UNIX

Step 1 Start PV-WAVE, by typing the following command at your UNIX
system prompt:

wave

The command line prompt, WAVE> appears in the terminal.

When you see this prompt, PV-WAVE is ready for you to enter commands or
initialize the Image Processing Toolkit.

Step 2 Go to the section on Initializing the Image Processing Toolkit, and
perform the initialization.

Initializing the Image Processing Toolkit 3

Initializing the Image Processing Toolkit
Now that you have PV-WAVE and the required options installed and started, the
remaining commands for initializing the toolkit and starting the Image Processing
Navigator are the same no matter what platform you’re using.

Step 1 At the WAVE> prompt, enter the following command to load and
initialize the PV-WAVE:Image Processing Toolkit:

WAVE> @ip_startup

Once you see the following series of messages, you are ready to use the
PV-WAVE:Image Processing Toolkit.

PV-WAVE:Image Processing is initialized.

Enter "IPNAVIGATOR" at the WAVE> prompt to start the PV-WAVE:Image
Processing Navigator.

Step 2 You are now ready to use the PV-WAVE:Image Processing Toolkit to
begin processing your images.

4 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

Starting the Image Processing Navigator
The Image Processing Navigator provides easy access to image file
I/O, as well as these Image Processing visual data analysis (VDA) tools:

WzIPImage — The Image Tool is used to display a variable containing
image data. The variable can be a 2D array containing 8-bit image data or
a 3D variable containing 24-bit RGB image data.

WzIPPlot — The Plot Tool tool is used to plot one or more variables.

WzIPHistogram — The Histogram Tool is used to visualize quantitative
trends in large amounts of 1D, 2D, or 3D data.

WzIPSurface — The Surface Tool is used to display one 2D variable con-
taining surface data.

WzIPContour — The Contour Tool is used to display one 2D variable con-
taining contour data. The Contour Tool also lets you display an image of
your data underneath the contour plot.

WzIPColorEdit — The Color Tool is used to select and set the image and
plot colors for displaying data.

To start the Image Processing Navigator, enter the following command at the
PV-WAVE prompt:

WAVE> ipnavigator

Once the Image Processing Navigator is running, you can use the Image Processing
VDA tools exclusively to perform your image processing, or you can use a
combination of Image Processing VDA tools and the PV-WAVE command line to
accomplish your goals.

Accessing Online Help for the Image Processing Toolkit 5

Accessing Online Help for the Image Processing Toolkit
Online help is provided on all platforms supported for image processing. The
online help comes in two forms, both of which are provided: as manuals online
(this User’s Guide), and context sensitive help for the Image Processing VDA
Tools.

The Manuals Online System

This User’s Guide is accessible online from the command line by typing HELP at
the WAVE> prompt. This initiates the main help files for PV-WAVE. When the
contents page is active, select the “Optional PV-WAVE Products” link, then select
the “PV-WAVE:Image Processing Toolkit” link.

In addition to the online manual documentation, there is a similar context-sensitive
online document provided. This context-sensitive help is accessible from the
Navigator, or any of the Image Processing VDA Tool windows by doing the
following:

• Select Help=>On PV-WAVE... from the Image Processing Navigator menu
bar.

This brings up the online help contents page, from which you can select the
PV-WAVE:Image Processing Toolkit.

Online Help for the Image Processing Navigator VDA Tools

To access the context-sensitive online help for the Image Processing VDA Tools
and the Image Processing Navigator, do the following:

• Select Help=>On Window... from the Image Processing Navigator or VDA
Tool window menu bar.

This initiates the contents page for the window from which Help was called. For
another way to access context-sensitive Help do the following:

• Select the Help button in any active dialog to activate the context-sensitive
help.

6 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

Stopping the Image Processing Toolkit
If the PV-WAVE:Image Processing Toolkit is loaded and you want to exit it,
perform the following procedure:

• At the WAVE> prompt, enter the following command to unload the
PV-WAVE:Image Processing Toolkit.

WAVE> @ip_unload

Unloading returns your system to the state it was in before using the Image
Processing Toolkit by doing the following three things:

• It unloads the PV-WAVE:Image Processing Toolkit functions from memory.

• It returns the Image Processing Toolkit license to the license manager, freeing
the license up for others to use.

• And it deletes all common variables in IP_COMMON.

Image Processing: A Brief Overview
Many techniques are typically used by scientists and engineers to alter or process
digital images, including: point operations, filtering, and image transforms. The
fields of computer vision and pattern recognition often overlap with digital image
processing (IP) and they use the following processing techniques: segmentation,
classification, and difference analysis. All of these operations are built upon a basic
set of IP routines, which are discussed in this chapter.

Point Operations

Point operations are a method of image processing in which each pixel in the output
image is only dependent upon the corresponding pixel in the input image. In
general, point operations are mathematical and/or logical operations performed on
a single image, or between two images of equal size on a point-by-point basis.

Image Processing: A Brief Overview 7

Algebraic and Logical Operations

Algebraic, or mathematical operations used in image processing include addition,
subtraction, multiplication, and, sometimes, a ratio of two images. Logical
operations such as AND, OR and exclusive–OR are also used to process images.
These mathematical and logical operations are performed between two images of
equal size, or between an image and a scalar value.

Differences and similarities between two images can be enhanced and examined
using algebraic operations. For instance, multiplying every pixel value in an image
by two can increase the overall contrast; image subtraction, on the other hand, is a
simple way to reveal image differences.

Algebraic and logical operations such as these can be performed using the
IPMATH function in the Image Processing Toolkit.

Algebraic operations are also used for dynamic range scaling or shifting; however,
you must keep the pixel-value range in mind when performing mathematical image
operations because of the possibility of negative values appearing in the result. For
example, when one image is subtracted from another, negative pixel values may
result. Since the display color of a negative value is typically undefined, the
negative image values in the result must be either clipped or scaled. Two images
multiplied together can also result in values for which no corresponding color
exists in the colormap.

Thresholding

Thresholding is another point operation method, and binary thresholding is a
specific type of thresholding. To perform binary thresholding, you first select a
range of pixel values and a logical operator to form the conditional equation. Any
pixel values that evaluate to “true” within the logical operation are set to white (or
black) and all other pixel values are set to black (or white).

Multilevel thresholding is similar to binary thresholding except that many
conditional equations and output levels are defined for a single input image. For
example, you may wish to set all pixels between 10 and 20 to black, all pixels
between 50 and 100 to medium gray, all pixels between 120 and 220 to white, and
leave all other pixels unchanged.

The routines provided in the Image Processing Toolkit to perform thresholding
operations are the DENSITY_SLICE, THRESH_ADAP, and THRESHOLD
functions.

8 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

Histogram Operations

Another point operation used frequently in image processing is the histogram
operation. A histogram is a plot of the number of pixels versus pixel values in an
image. It’s possible to improve the overall appearance of an image by modifying
its histogram. Two commonly used techniques to accomplish this are: histogram
equalization, and histogram stretching. These operations both serve to modify the
overall contrast and brightness of an image.

Two functions are used to perform these operations in the Image Processing
Toolkit: the HIST_STATS, and IPHISTOGRAM functions; in addition to the
HIST_EQUAL function found in PV-WAVE.

Filtering

Besides point operations, filtering is another commonly used image processing
operation. Basically, filtering is used either to remove unwanted information in an
image, or to enhance the information already present. There are several categories
of filters, such as linear filters, nonlinear filters, and adaptive filters.

The Image Processing Toolkit routines that perform filtering operations are listed
in the following table along with the filter category to which each belongs. For your
convenience, some associated PV-WAVE filter routines are also listed.

Filter Category
Image Processing Toolkit
Routines

PV-WAVE
Routines

Linear Filter - Spatial
Domain

CANNY,
FILT_SMOOTH,
GAUSS_KERNEL,
IPCONVOL,
IPCREATE_FILTER,
IPREAD_FILTER,
IPWRITE_FILTER

ROBERTS,
SOBEL

Linear Filter -
Frequency Domain

FILT_FREQ,
FILT_NOTCH,
FILT_WIENER

Nonlinear Filter FILT_NONLIN

Adaptive Filter FILT_DWMTM,
FILT_MMSE

Image Processing: A Brief Overview 9

Linear Filters

Linear filters are defined by a filter kernel, which is itself just a small image. Filter
kernels, also called windows, are usually 3-by-3, 5-by-5, or 7-by-7 pixels, which
contain values that mathematically define the characteristics of the linear
transform. Two broad categories of linear filtering operators for digital IP are the
spatial and frequency domain operators. The spatial domain refers to the original
image plane itself, whereas the frequency domain representation is a fast Fourier
transform (FFT) of that image.

The linear filters category can be divided into four subcategories: lowpass,
highpass, bandpass, and bandstop filters. Lowpass filters are typically used to
smooth or blur images. Highpass filters, on the other hand, enhance image edges
by eliminating low-frequency components. Bandstop filters are typically employed
to remove periodic noise; and bandpass filters are useful in image enhancement.

Spatial Domain

Linear filtering in the spatial domain is performed by convolution between the
image and a filter kernel. Convolution involves passing the filter kernel over the
entire input image. Pixel values in the output image are defined at the
corresponding location in the input image under the center pixel in the filter kernel.
Output values for the edges of the image can be ambiguous when part of the kernel
hangs off the image edge. Typical methods for dealing with undefined output pixels
are to simply copy the edge pixels from the input image directly to the output image
or to extend the boundary of the input image by the size of the filter kernel before
convolution is performed.

The PV-WAVE:Image Processing Toolkit comes with many spatial filter kernels
which are located in the following directory:

(UNIX) ip-1_0/data/kernel/*.ker

(Windows) ip-1_0\data\kernel*.ker

Typical spatial filters include the Gaussian filter, gradient masks, highpass spatial
filters, Laplacian, lowpass spatial filters, and the Roberts and Sobel filters. See the
table for the list of Image Processing Toolkit functions and associated PV-WAVE
routines for linear filtering in the spatial domain.

Frequency Domain

Spatial frequency filters are most often used for image restoration and
enhancement. Restoration algorithms remove degradation or noise that has
corrupted the image. The Wiener filter and any circularly symmetric filters are
good examples of this filtering technique.

10 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

Filtering in the frequency domain is performed by multiplying the frequency-
domain image with a frequency-domain filter. The product of the image and the
filter is then transformed back into the spatial domain by performing an inverse
FFT. This technique of using the spatial domain is often used for filters with large
kernels.

See the table for the list of Image Processing Toolkit functions and associated
PV-WAVE routines for linear filtering in the spatial domain.

Nonlinear Filters

Nonlinear filters are used for removal of so-called salt-and-pepper noise and
Gaussian noise, as well as edge detection in an image.

Nonlinear filters operate by passing a small window over an image and computing
an output image pixel based on a given nonlinear function of the input image pixels
under that window. Typical window sizes are 3-by-3, 5-by-5 or 7-by-7 pixels-
squared.

The FILT_NONLIN function in the Image Processing Toolkit offers the following
nine nonlinear filters via the use of function keywords:

FILT_NONLIN Function

Nonlinear Filter
Function
Keyword

Typical Image Processing Usage

Alpha-Trimmed Mean Atmeanf Removing salt-and-pepper,
Gaussian noise

Contra-Harmonic Mean Chmeanf Removing Gaussian noise
while preserving edge features

Geometric Mean Gmeanf Removing Gaussian noise

Maximum Maxf Removing outlying low or
negative values

Minimum Minf Removing outlying high values

Mode Modef Removing noise

Range Rangef Edge-detection

Rank Rankf Removing salt-and-pepper
noise

Yp Mean Ypmeanf Removing Gaussian noise
while preserving edge features

Image Processing: A Brief Overview 11

The characteristics of the image information can influences the relative success of
nonlinear filters which are not adaptive. Because adaptive filters alter their filtering
characteristics based on local image content, they often perform better than their
non-adaptive counterparts.

Adaptive Filters

Adaptive filters are particularly useful for noise reduction. By contrast, non-
adaptive filters require a priori knowledge of the image noise characteristics to
achieve similar optimal results.

The FILT_DWMTM and FILT_MMSE functions provide the adaptive filtering
operations in the PV-WAVE:Image Processing Toolkit.

Morphological Image Processing

Image preprocessing for pattern recognition and image analysis applications
involve morphological operations. Morphological image processing routines alter
or in some way act upon shapes within an image. Erosion and dilation are both
fundamental morphological operators that function to erode or dilate, respectively,
objects in an image.

The morphological opening operation is erosion followed by dilation, whereas the
morphological closing operation is just the opposite, dilation followed by erosion.
Opening is a useful processing tool for smoothing contours, eliminating narrow
extensions, and breaking thin links. Closing, on the other hand, is used to smooth
contours, to link narrow regions, and to fill small gaps or holes.

In addition to the opening and closing morphological operations, the hit-or-miss
transform is another morphological operation used primarily for shape definition.
This transform is particularly useful in pattern recognition.

The PV-WAVE:Image Processing Toolkit includes seven morphological routines
to perform morphological image processing, which compliments the ERODE and
DILATE routines already provided in PV-WAVE. The seven Image Processing
Toolkit routines are: DIST_MAP, HIT_MISS, MORPH_CLOSE,
MORPH_OPEN, MORPH_OUTLINE, SKELETONIZE, TOP_HAT.

Mensuration

For digital images, mensuration refers to the quantification, or measurement of
object features within an image. Mensuration is useful in classification and object
recognition, and is the image processing technique widely employed in the field of
medicine for tumor identification and surgical planning. Common measures

12 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

include computing the area, average graylevel, standard deviation, centroid,
circularity, and perimeter of a single object.

Another measure is the principal axes of a region. An object’s principle axes are
computed from the eigenvectors of the covariance matrix. This is known as the
Hotelling transform. Because the principal axis representation of an object is
insensitive to rotation, it is often used for target recognition and tracking.

Functions in the Image Processing Toolkit providing measurement operations are
CENTROID, IPSTATS, MAJOR_AXIS, MODE, MOMENT2D, PERIMETER,
and RANGE.

Representation and Description

Image representation and description operations are used to preprocess images for
pattern recognition and classification.

Texture

Texture analysis can be extremely important in describing regions in an image.
Quantitative texture descriptions, such as smoothness, coarseness, and regularity
are often used in image classification and pattern recognition. Texture values are
typically based on regional statistical properties such as the moments of the
regional histogram. Routines providing these types of statistical texture
measurements are the GLCM, GLCM_STATS, GLRL, GLRL_STATS, and the
HIST_STATS function.

Spectral analysis can also be used to describe texture. In a textural scale ranging
from rough to smooth, for instance, a region with high spatial frequencies may be
defined as rough, while a low spatial frequency area would be smooth. The
POLAR_FFT function is sued to implement spectral texture analysis in the Image
Processing Toolkit.

Correlation

The correlation between two images or between an image and a template is often
used in template or prototype matching for pattern recognition. Correlation can
also be used to facilitate automatic registration between images. The
IPCORRELATE function performs correlation between an image and a template.

Image Processing: A Brief Overview 13

Image Transforms

There are numerous transforms that can be applied to any image. The two most
common transforms are the fast Fourier transform (FFT) and its inverse. The FFT
converts an image from the spatial domain to the spatial frequency domain. Many
other transforms exist, however, and are useful for various applications.

The discrete cosine transform (DCT) is used in image compression. The Hough
transform is useful in contour linking and identification of geometric shapes and
lines in an image. It maps data from a Cartesian coordinate space into a polar
parameter space. The Slant transform uses sawtooth waveforms as a basis set and
reveals connectivity.

The principal components transform (PCT), also referred to as the Hotelling
transform or the Karhunen-Loève transform, is useful for image compression and
de-correlation and is widely used in remote sensing applications. The PCT is
applied to the covariance matrix of the different spectral bands of a remote sensing
image. Its output is an image that has a minimum amount of correlation. This
maximum variance image combines most of the information present in the total
spectral bands of the original image.

Image transforms provided in the Image Processing Toolkit include the DCT,
HAAR, HOUGH, IPCT, IPWAVELET, PCT, RADON, and SLANT functions;
in addition to the FFT function in PV-WAVE, and the FFTCOMP function in
PV-WAVE IMSL Mathematics.

Geometric Transforms

Geometric transforms such as image rotation, scaling, and warping are also
important in many applications. In particular multi-modal data can be registered to
a common coordinate system through the use of geometric transforms. Geometric
transforms modify the spatial relationships between image pixels. These functions
are sometimes referred to as “rubber-sheet transformations” because of their
likeness to stretching an image that has been transferred onto a sheet of rubber.

When a geometric transform is applied to an image, pixels in the input image don’t
always map directly to a position in the output image. For this reason, some form
of graylevel interpolation is necessary to determine the value at each pixel in the
output image. Several methods of interpolation exist, among them are the bilinear
and nearest neighbor methods.

In the nearest neighbor method, values in the output image are taken to be the value
of the closest matching pixel in the input image. The choice of interpolation
method is dependent on the application for which the image is being processed. For

14 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

example, nearest neighbor interpolation is often used if the image is to be
classified.

In the Image Processing Toolkit, the IPSCALE function performs geometric
operations. There is also interactive image warping capability in the Image Tool
(WzIPImage), as well as the following geometric operation routines found in
PV-WAVE: CONGRID, REBIN, ROT, and ROTATE.

Color Image Processing

There are two general categories of color image processing: full color and pseudo-
color processing. Full color images are acquired with a sensor that detects the full
visible range, such as a television camera. Pseudo-color images are artificially
formed from images that are representative of spectral information outside the
visible spectrum.

Color Models

The most common color models are the red, green, blue (RGB) model; and the hue,
saturation, and value (HSV) model; whereas color printers use the cyan, magenta,
yellow (CMY) model. The choice of a color model obviously depends on the origin
of the image information, the sensor used to obtain the information, and the desired
results of the image processing application. Additional information about color
models can be found in the PV-WAVE User’s Guide.

Density Slicing

Intensity or density slicing is an example of pseudo-color image processing. In
density slicing, planes parallel to the zero amplitude plane of the image are used to
slice the pixel amplitude levels into a discrete set of ranges, smaller than the
original dynamic range of the pixel values. The plane locations are chosen by the
user and between each plane, the pixel values are mapped into a different color. In
the Image Processing Toolkit, the DENSITY_SLICE function performs density
slicing on an image.

Classification and Segmentation

Segmentation and classification are closely related, and sometimes confused.
Segmentation is used to identify regions of common characteristics in an image.
For example, a medical image can be segmented into areas of soft tissue, bone, and
air; or a satellite image can be segmented into regions of vegetation, ground clutter,
and water. Thresholding techniques, edge detection, and region growing are also
commonly used for segmentation analysis.

Image Processing: A Brief Overview 15

Classification is a step beyond segmentation in which particular substances or
objects are identified within an image and then segmented. Classification usually
involves determining the number of separate classes contained within the image.
This can be performed by the user, in which case it is termed supervised
classification; or it can be performed automatically, also known as unsupervised
classification.

The Image Processing Toolkit routines for classification and segmentation
operations include IPCLASSIFY, IPCLUSTER, REGION_GROW,
REGION_MERGE, REGION_SPLIT, THRESH_ADAP, and THRESHOLD.

16 Chapter 1: Getting Started PV-WAVE:Image Processing User’s Guide

17

CHAPTER

2

Reference
This chapter describes each of the procedures and functions of the
PV-WAVE:Image Processing Toolkit. These descriptions are arranged in alphabet-
ical order by routine name.

BLEND Function
Blends two images together.

Usage

result = BLEND(img1, a, img2[, b])

Input Parameters

img1 — A 1D, 2D, or 3D array containing a signal; point or signal-interleaved sig-
nals; an image; image, row or pixel-interleaved images; or a volume.

a — An integer or array specifying a scaling factor for img1. When a is an array, it
specifies the scaling factors for an array of multi-layered images.

img2 — A 1D, 2D, or 3D array containing the second image. This parameter must
be an array of exactly the same size and dimensions as img1.

b — (optional) An integer or array specifying a scaling factor for img2. When b is
an array, it specifies the scaling factors for an array of multi-layered images.
(Default: 1.0 – a)

18 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Returned Value

result — An array, containing the blended image, that is the same dimensions and
size as img1 and img2. The result array equals img1 multiplied by the scale factor
a plus img2 multiplied by its scale factor b.

result = a[img1] + b[img2]

Keywords

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

No_Clip — If set, the result data type is larger than the input image data type.

TIP The No_Clip keyword prevents underflow or overflow conditions from
occurring.

Zero_Negatives — If set, all negative values in the result are set to zero.

Discussion

The two images, img1 and img2 are blended using the a and b scale factors to
produce an image that is the linear combination of img1 and img2. Blending is
sometimes used to produce a double exposure effect (e.g. fading one image out and
another image in), or to combine segmented images into a single image for further
analysis.

CANNY Function 19

Example

Blend two images together to produce a double exposure effect.

img1 = IMAGE_READ(!IP_Data + ’mandril.tif’)

img2 = IMAGE_READ(!IP_Data + ’aerial.tif’)

img3 = BLEND(img1(’pixels’), 0.5, img2(’pixels’))

See Also

IPMATH

CANNY Function
Applies the Canny edge-detection method to an image.

Usage

result = CANNY(image, ncoeffs, sigma)

Input Parameters

image — A 2D or 3D array of any type except string or complex.

ncoeffs — An integer value greater than 0 that specifies the number of coefficients
in the Canny filter.

sigma — A floating point value greater than 0.0 that specifies the standard devia-
tion used in the Canny operator.

Returned Value

result — A double array containing the filtered image.

Keywords

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-

20 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Discussion

The Canny edge operator finds the local maxima in the gradient of the Gaussian-
smoothed image. This is accomplished by applying a separable Gaussian gradient
filter to image, and then determining local maxima from each 3-by-3 neighborhood
of the gradient magnitude image. These maxima are returned in the output image,
result, with all non-maximal pixels set to 0.

Example
test_image = IMAGE_READ(!IP_Data +’objects.tif’)

; Read an image.

edge_image = CANNY(test_image(’pixels’), 40, 2.0)

; Apply the Canny edge detection method.

TVSCL, edge_image

; View the edges of the image.

See Also

FILT_NONLIN, SHIFT_EDGE

In the PV-WAVE Reference: ROBERTS, SOBEL

CENTROID Function
Calculates the centroid of a binary region in an image.

Usage

result = CENTROID(image, pixels)

Input Parameters

image — A 2D array containing a region.

CENTROID Function 21

pixels — A long array containing the element numbers of the pixels that compose
the region pixels in image. These pixels compose the region for which the centroid
is calculated.

Returned Value

result — A long scalar value that is the element number in image of the centroid of
the region.

Keywords

None.

Discussion

The centroid of a binary region, also known as the center of gravity, is a measure
of the region’s center. The centroid is expressed in pixel-coordinate values and is
calculated as the ratio of the first-order to the zeroth-order spatial moments:

centroidx = M(1, 0)/M(0, 0)

centroidy = M(0, 1)/M(0, 0)

The returned value, result is the element number (n, m) in the image array, such
that:

centroid = centroidx + centroidy*n

Example

Get the pixels for a region in image, where the region has an amplitude of 100.

region_pixels = WHERE(image EQ 100)

result = CENTROID(image, region_pixels)

See Also

MAJOR_AXIS, MOMENT2D, PERIMETER

22 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

DCT Function
Performs the discrete cosine transform on a 2D image or a 3D array of images.

Usage

result = DCT(array [, direction])

Input Parameters

array — A 2D or 3D array containing an image; or image, row or pixel-interleaved
images.

direction — (optional) A scalar value indicating the direction of the transform:

– 1 Forward transform (default)

1 Backward transform

Returned Value

result — A float array of the same size and dimensions as array.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Discussion

The discrete cosine transform (DCT) is often used in image compression and cod-
ing. A simple compression algorithm truncates a percentage of the coefficients in
the DCT result, and then performs an inverse DCT of the truncated array. The qual-
ity of the compressed image is related to the percentage of truncated coefficients.

DCT Function 23

The equation for the DCT is similar to that of the FFT. In two dimensions, the for-
ward transform is defined by the following equation:

where n and m are defined from 1 to N – 1 and M – 1, respectively and

The inverse transform is defined as:

Example

Take the forward DCT of an image.

image = IMAGE_READ(!IP_Data + ’face.tif’)

; Read in an image.

image_dct = DCT(image(’pixels’), -1)

; Take the direct cosine transform of the image.

TVSCL, IPALOG(image_dct)

; Display the result.

image_idct = DCT(image_dct, 1)

; Take the inverse DCT.

TVSCL, image_idct

See Also

HAAR, IPWAVELET, SLANT

In the PV-WAVE Reference: FFT

DCT n m(,) k n()k m() image(x,y)
πn 2x 1+()

2N
--------------------------- 

  πm 2y 1+()
2M

---------------------------- 
 coscos

x 0=

N 1–

∑
y 0=

M 1–

∑=

k n()

1
N
---- for n = 0

2
N
---- otherwise







=

k m()

1
M
----- for m = 0

2
M
----- otherwise







=

IDCT x y,() k n()k m()DCT n m,()
πn 2x 1–()

2N
--------------------------- 

 cos
πm 2y 1+()

2M
---------------------------- 

 cos
m 0=

M 1–

∑
n 0=

N 1–

∑=

24 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

DENSITY_SLICE Function
Performs color density slicing on individual 2D images.

Usage

result = DENSITY_SLICE(image, nbands)

Input Parameters

image — A 2D image array.

nbands — A scalar integer indicating the number of color bands with which to
slice image. (nbands ≥ 1)

Returned Value

result — An array of the same size, type, and dimensions as image.

Keywords

Bands — A scalar value or an array with the number of elements (up to nbands)
identifying the amplitude ranges for slicing the input image. If Bands is not used to
define the individual bands, the value of the Band_Step keyword is used as the step
size.

Band_Step — A scalar value specifying the step-size between bands, when the
number of bands defined is less than nbands. If Band_Step isn’t defined, the differ-
ence between the first two bands is used as the step size.

Levels — A scalar value or an array with the number of elements (up to nbands)
identifying the color values for the result image bands. If the keyword Levels is not
defined, then Levels = Bands. If a level number is not defined for each band, then
Level_Step is used as the step size.

Level_Step — A scalar value specifying the step-size between levels, when the
number of levels defined is less than nbands. If Level_Step is not defined, the dif-
ference between the first two levels is used as the step size. Otherwise, if only one
level is defined, the step size is the image (max – min + 1)/nbands.

DENSITY_SLICE Function 25

Discussion

NOTE Density slicing is defined for 2D images only.

Density slicing is a form of pseudo-color image processing in which the input
image is treated as a 2D intensity function. The output image is produced by “slic-
ing” the 2D intensity function using slicing planes that are parallel to the image
coordinate plane.

A different level, or color, is assigned to values in the input image that fall between
each slicing plane. Values on the face of the upper plane are assigned the color level
corresponding to the area between the plane and the one below it.

Example
image = IMAGE_READ(!IP_Data + ’xray.tif’)

; Read in an 8-bit color image.

density_image = DENSITY_SLICE(image(’pixels’), $
5, bands=[20, 60, 120, 160, 200])

; Density-slice the image into 5 bands.

DEVICE, pseudo = 8

; Set the device to 8 bit.

LOADCT, 6

; Load the prism color table.

TV, density_image

; Display the density image.

See Also

THRESH_ADAP, THRESHOLD

26 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

DIST_MAP Function
Computes the Euclidean distance map (EDM) for an image.

Usage

result = DIST_MAP(image[, threshold])

Input Parameters

image — A nonzero 2D or 3D byte array of any data type except string or complex.
This array contains an image; or image, row or pixel-interleaved images.

NOTE The image parameter must be a binary image containing only two gray-
scale levels, if threshold is not given.

threshold — (optional) Specifies the threshold value for the object in image; the
image object is assumed to be composed of pixels with values greater than or equal
to threshold.

Returned Value

result — A double array of the same size and dimensions as image, containing the
Euclidean distance map of image.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Value — Specifies a scalar value greater than 0 for the binary object in image.

DIST_MAP Function 27

Discussion

The Euclidean distance map is used to identify object boundaries. It is computed
by finding the shortest distance from each object-pixel in image to a background
pixel. The Euclidean distance is defined as follows:

where x = (xobject – xbackground) and y = (yobject – ybackground) .

Example 1
test_image = IMAGE_READ(!IP_Data + ’objects.tif’)

; Read a binary image.

edm_image = DIST_MAP(test_image(’pixels’), 100)

; Find the Euclidean distance map (EDM) of the image.

thresh_image = THRESHOLD(edm_image, 0, 2, $
/A_Neq, /Binary)

; Threshold the EDM to find the object outlines.

TVSCL, thresh_image

; View the object outlines.

Example 2
test_image = IMAGE_READ(!IP_Data +’blobs.tif’)

; Read a binary image of different blob shapes.

image = THRESHOLD(test_image(’pixels’), 5, 250, /Binary)

region_seeds = REGION_FIND(image, 255, 6)

; Find and fill the regions.

region_image = REGION_GROW(image, $
region_seeds, 2.0)

TVSCL, region_image

Euclidean distance = x2 y2+ ,

28 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-1 The test blobs with different grayscale colors.

edm_image = DIST_MAP(region_image, value = 2)

; Find the EDM of a single region.

TVSCL, edm_image

DIST_MAP Function 29

Figure 2-2 The distance map of a single blob.

thresh_image = THRESHOLD(edm_image, 0, 2, /A_Neq, /Binary)

; Threshold the EDM to find region outline.

TVSCL, thresh_image

; View the object outlines.

30 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-3 The isolated blob outline, or boundary.

See Also

HIT_MISS, MORPH_CLOSE, MORPH_OPEN,
MORPH_OUTLINE, SKELETONIZE, TOP_HAT

In the PV-WAVE Reference: DILATE, ERODE

ENTROPY Function 31

ENTROPY Function
Computes the entropy of an array.

Usage

result = ENTROPY(array)

Input Parameters

array — A 2D array.

Returned Value

result — A floating-point scalar value with the array entropy.

Keywords

None.

Discussion

Computes the entropy of array(k, l) as:

,

where array(k, l) > 0.

Values in array that are less than or equal to 0 don’t contribute to the entropy cal-
culation because the natural log function is undefined for these values. The entropy
of an array that is all zeros and/or negative values is undefined.

Example
image = IMAGE_READ(!IP_Data + ’noise_test.tif’)

; Read an image.

ent = ENTROPY(image(’pixels’))

; Compute the entropy of the image.

PRINT, ’Entropy = ’, ent

See Also

KURTOSIS, MODE, RANGE, SKEWNESS

H array k l,() ln array k l,()()⋅()
l 0=

M 1–

∑
k 0=

N 1–

∑=

32 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

FILT_DWMTM Function
Performs a 1D, 2D, or 3D adaptive double-window-modified trimmed mean filter.

Usage

result = FILT_DWMTM(image, noise_std, thresh_factor,
medxdim[, medydim[, medzdim]])

Input Parameters

image — A 1D, 2D or 3D array containing a signal; point or signal-interleaved sig-
nals; an image; image, row or pixel interleaved images; or a volume.

noise_std — The standard deviation of the noise in image.

thresh_factor — The factor used to compute the threshold range for points
included in the mean calculation. If thresh_factor = 0, then FILT_DWMTM is the
same as a median filter.

medxdim — The width of the median filtering window.

medydim — (optional) The height of the median filtering window. (Used for
images and volumes only.)

medzdim — (optional) The depth of the 3D median filtering window. (Used for vol-
umes only.)

Returned Value

result — An array of the same size and dimensions as image, unless otherwise
affected by using the Edge keyword.

Keywords

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’pad’ — The input image is padded before the filtering operation with
the value specified using the Pad_Value keyword.

’zero’ — Sets the border of the output image to zero. (Default)

’copy’ — Copies the border of the input image to the output image.

FILT_DWMTM Function 33

’reduce’— Returns a reduced-size image that is smaller than the input
image by the kernel dimensions.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Mxdim — The width of the mean filtering window. The value of Mxdim must be ≥
medxdim. (Default: medxdim + 2)

Mydim — The height of the mean filtering window. The value of Mydim must be
≥ medydim. (Used for images and volumes only.) (Default: medydim + 2)

Mzdim — The depth of the 3D mean filtering window. The value of Mzdim must
be ≥ medzdim. (Used for volumes only.) (Default: medzdim + 2)

NOTE Mzdim is only used for 3D volumes.

Pad_Value — The value to use for the image padding. (Default: 0)

NOTE The Pad_Value keyword is valid only when Edge = ’pad’.

34 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Spot — This keyword specifies explicit positioning of the element number of the
filter window “sweet spot.” The Spot keyword default depends on the setting of the
Edge keyword as shown in the following table:

Zero_Negatives — If set, all negative values in the result image are set to zero.

Discussion

The adaptive double-window-modified trimmed mean filter (DWMTM) is superior
to the mean filter for removing Gaussian noise in the presence of impulse noise.
The filter operation begins by computing the median value to use for the median
filter. An output pixel is then computed from the mean of the mean filtering win-
dow. Values in the mean filtering window lying outside the median plus or minus a
constant c (where, c = thresh_factor*noise_std) don’t contribute to the mean
calculation.

In this way, high and low outliers, such as impulse noise are eliminated from the
mean calculation. Typical values for thresh_factor are in the 1.5 to 2.5 range. If
thresh_factor = 0, then FILT_DWMTM is the same as a median filter.

Example
image = IMAGE_READ(!IP_Data + ’face.tif’)

; Read an image.

noise = NOISE_GEN(image(’width’), $
image(’height’), /Normal, High = 128.0, $
Low = 50.0)

; Corrupt the image with Gaussian noise.

noise_image = IPMATH(image(’pixels’), ’+’, noise)

status = NOISE_IMPULSE(0.15, noise_image)

; Corrupt the noise image with impulse noise.

Edge Keyword Spot Keyword
Spot Keyword
Default Setting

not used
(Default: ’zero’)

As specified, or the default. kernel center

’pad’ Ignored. kernel center

’zero’ As specified, or the default. kernel center

’copy’ As specified, or the default. kernel center

’reduce’ Ignored. Spot = 0

FILT_FREQ Function 35

dwmtm_image = FILT_DWMTM(noise_image, 1.0, 2.0, 3, 3)

; Try to remove the noise using the DWMTM filter.

TVSCL, dwmtm_image

; Display the image.

See Also

FILT_MMSE, FILT_NONLIN

FILT_FREQ Function
Generates a 2D Butterworth or ideal lowpass, bandpass, bandstop, or highpass spa-
tial frequency domain filter.

Usage

filter = FILT_FREQ(cutoff [, ucutoff][, order])

Input Parameters

cutoff — A scalar float value for the cutoff frequency of the filter.

ucutoff — (optional) A scalar float value for the upper cutoff frequency of the filter

NOTE The ucutoff parameter is only valid for the bandpass and bandstop filters.

order — (optional) A scalar float value for the filter order.

NOTE The order parameter is only valid for the Butterworth filter.

Returned Value

result — A filter object containing an “unshifted” spectral filter. A spectral filter
object is an associative array with the following keys:

’kernel’ — A 2D floating-point array of the filter values.

’cutoff’— The filter cutoff frequency or frequencies. For lowpass and
highpass filters, a scalar value. For bandpass and bandstop filters, a two-
element array containing the lower cutoff frequency and the upper cutoff
frequency.

36 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’pass’ — A string indicating one of the following kinds of filter:

low — A lowpass filter.
high — A highpass filter.
band — A bandpass filter.
stop — A bandstop filter.
notch — A notch filter.

’dc_offset’ — A floating point scalar value containing the DC offset
of the filter.

’maximum’— A floating point scalar value which is the maximum value
of the filter.

’type’ — One of the following strings indicating the type of filter.

ideal — An ideal filter.
butterworth — A Butterworth filter.

’domain’ — One of the following strings indicating the filter domain.

spectral — The filter is in the spectral (spatial frequency) domain.
spatial — The filter is in the spatial domain.

NOTE FILT_FREQ produces only spectral domain filters. For information about
spatial domain filters, see the IPCREATE_FILTER.

’xloc’ — A scalar value specifying the x-location of the filter center.
Valid for Notch filters only.

’yloc’ — A scalar value specifying the y-location of the filter center.
Valid for Notch filters only.

’center’— If set to 1, the filter center (DC value) is shifted to the array
(‘kernel’) center; otherwise, the filter is unshifted.

’order’ — A scalar value specifying the filter order. Valid for Butter-
worth filters only.

Keywords

Band — If set, generates a bandpass filter.

Butterworth — If set, generates a Butterworth filter instead of an ideal filter.

FILT_FREQ Function 37

Center — If set, shifts the output so that the center of the filter, the DC component,
is the same as the center of the array.

CO_Frac — A scalar float that is the fraction of the maximum value of the filter at
the cutoff frequency.

DC_Offset — A scalar float that is the DC offset of the filter.
(Default: 0.0)

High — If set, generates a highpass filter.

Low — If set, generates a lowpass filter. (Default: set)

Maximum — A scalar float that is the maximum value of the filter. (Default:
DC_Offset + 1.0)

Stop — If set, generates a bandstop filter.

Xdim — The x-dimension of the filter. (Default: ydim, if Ydim is specified; 256
otherwise)

Ydim — The y-dimension of the filter. (Default: xdim, if Xdim is specified; 256
otherwise)

Discussion

FILT_FREQ produces circularly symmetric spatial frequency domain filters which
can be applied to frequency domain images. Ideal filters are simplistic, but the fil-
tered spatial domain image displays ringing after an ideal filter is applied. The
Butterworth filter provides a smooth transition from the passband to the cutoff
band, reducing the ringing effect.

The following equations are used for a Butterworth filter:

Lowpass:

where n is the filter order and D0 is the cutoff frequency.

Default:
1

2.0
----------- 

 

H u v(,) 1

1
D0

u2 v2+

 
 
  2n

+

--=

38 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Highpass:

where n is the filter order and D0 is the cutoff frequency.

Bandstop:

where n is the filter order, and DL and DU are the lower and upper cutoff frequen-
cies, respectively.

Bandpass:

where n is the filter order, and DL and DU are the lower and upper cutoff frequen-
cies, respectively.

Example
image = IMAGE_READ(!IP_Data + ’noise_test.tif’)

; Read a noisy image.

image_fft = FFT(image(’pixels’), -1)

; Take the fast Fourier transform (FFT) of the image.

lpf = FILT_FREQ(30, 1.0, /Butterworth, /Low, $
Xdim = image(’width’), Ydim = image(’height’))

; Create a lowpass Butterworth filter.

image_filt = IPMATH(lpf(’kernel’), ’*’, image_fft)

; Apply the filter to the FFT of the image.

image_ifft = ABS(FFT(image_filt, 1))

; Take the inverse FFT of the filtered image.

TVSCL, image_ifft

; Display the filtered image.

H u v(,) 1

1
D0

u2 v2+

 
 
  2n–

+

---=

H u v(,) 1

1
DL

u2 v2+

 
 
  2n

+

-- 1

1
DU

u2 v2+

 
 
  2n–

+

---+=

H u v(,)
1

1
DL

u2 v2+

 
 
  2n

+

-- 1

1
DU

u2 v2+

 
 
  2n–

+

---×=

FILT_MMSE Function 39

See Also

FILT_NOTCH, IPMATH, IPWIN

In the PV-WAVE Reference: FFT

FILT_MMSE Function
Performs 1D, 2D or 3D adaptive minimum mean-squared error filtering.

Usage

result = FILT_MMSE(image, noise_var, wxdim[, wydim[, wzdim]])

Input Parameters

image — A 1D, 2D, or 3D array containing a signal; point or signal-interleaved sig-
nals; an image; image, row or pixel interleaved images; or a volume.

noise_var — A scalar float data type that is the variance of the noise in image.

wxdim — The width of the filtering window.

wydim — (optional) The height of the filtering window. (Used for images and vol-
umes only.)

wzdim — (optional) The depth of the 3D median filtering window. (Used for vol-
umes only.)

Returned Value

result — An array of the same size and dimensions as image, unless otherwise
affected by using the Edge keyword.

Keywords

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’pad’ — The input image is padded before the filtering operation with
the value specified using the Pad_Value keyword.

’zero’ — Sets the border of the output image to zero. (Default)

40 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’copy’ — Copies the border of the input image to the output image.

’reduce’— Returns a reduced-size image that is smaller than the input
image by the kernel dimensions.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Pad_Value — The value to use for the image padding. (Default: 0)

NOTE The Pad_Value keyword is valid only when Edge = ’pad’.

Spot — This keyword specifies explicit positioning of the element number of the
filter window “sweet spot.” The Spot keyword default depends on the setting of the
Edge keyword as shown in the following table:

Edge Keyword Spot Keyword
Spot Keyword
Default Setting

not used
(Default: ’zero’)

As specified, or the default. kernel center

’pad’ Ignored. kernel center

’zero’ As specified, or the default. kernel center

’copy’ As specified, or the default. kernel center

’reduce’ Ignored. Spot = 0

FILT_MMSE Function 41

Zero_Negatives — If set, all negative values in the result image are set to zero.

Discussion

The adaptive minimum mean-squared error (MMSE) filter is useful for removing
Gaussian or Rayleigh noise. Each pixel in the filtered result is computed from the
input image pixels in the filter window as follows:

where local_var and local_mean are the variance and mean, respectively, of the
pixels in the filter window.

Example
image = IMAGE_READ(!IP_Data + ’face.tif’)

; Read an image.

noise_var = 15.0

; Corrupt the image with Rayleigh noise that has a
; variance of 15.0.

noise = NOISE_RAYLEIGH(noise_var, $
image(’width’), image(’height’))

noise = noise + 128

noise_image = IPMATH(image(’pixels’), ’+’, $
noise, /No_Clip)

mmse_image = FILT_MMSE(noise_image, noise_var, $
3, 3)

; Remove the noise using the MMSE filter.

TVSCL, mmse_image

; Display the image.

See Also

FILT_DWMTM, FILT_NONLIN

result i j,() 1 noise_var
local_var
-----------------------– 

  image i j,()
noise_var
local_var
----------------------- local_mean ,⋅+=

42 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

FILT_NONLIN Function
Performs nonlinear filtering operations on 1D, 2D, or 3D image arrays.

Usage

result = FILT_NONLIN(image, wxdim[, wydim[, wzdim]])

Input Parameters

image — A 1D, 2D or 3D array containing a signal; point or signal-interleaved sig-
nals; an image; image, row or pixel-interleaved images; or a volume.

wxdim — The width of the filtering window.

wydim — (optional) The height of the filtering window. (Used for images and
volumes.)

wzdim — (optional) The depth of the filtering window. (Used for volumes.)

Returned Value

result — An array containing the filtered data that is of the same size and dimen-
sions as image, unless otherwise affected using the Edge keyword.

Keywords

Atmeanf — If set, applies an alpha-trimmed mean filter.

Chmeanf — If set, applies a contra-harmonic mean filter.

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’pad’ — The input image is padded before the filtering operation with
the value specified using the Pad_Value keyword.

’zero’ — Sets the border of the output image to zero. (Default)

’copy’ — Copies the border of the input image to the output image.

’reduce’— Returns a reduced-size image that is smaller than the input
image by the kernel dimensions.

FILT_NONLIN Function 43

Filt_Type — A scalar byte indicating which nonlinear filter (listed in the following
table) to apply. This keyword may be used in place of the corresponding filter key-
words (Maxf, Minf, ..., Ypmeanf). (Default: 0)

F_Order — A scalar value that specifies the order of the filter.

NOTE The F_Order keyword is only valid for the Yp mean and contra-harmonic
mean filters.

Gmeanf — If set, applies a geometric mean filter.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.
’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.
’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.
’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.
’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.
’volume’ — The input image array is treated as a single entity.

Filt_Type
(scalar)

Nonlinear Filter Type
Corresponding
Keyword

0 (default) Maximum Filter (default) Maxf

1 Minimum Filter Minf

2 Range Filter Rangef

3 Geometric Mean Filter Gmeanf

4 Mode Filter Modef

5 Rank Filter Rankf

6 Alpha-Trimmed Mean Filter Atmeanf

7 Contra-Harmonic Mean Filter Chmeanf

8 Yp Mean Filter Ypmeanf

44 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Maxf — If set, applies a maximum filter.

Minf — If set, applies a minimum filter.

Modef — If set, applies a mode filter.

Pad_Value — A scalar value to use for the image padding. (Default: 0)

NOTE The Pad_Value keyword is valid only when Edge = ’pad’.

Rangef — If set, applies a range filter.

Rankf — If set, applies a rank filter.

Rank_Num — The rank number of the rank filter. The value must be in the follow-
ing range: 0 ≤ Rank_Num < the number of elements in the filter window.

NOTE The Rank_Num keyword is required when the rank filter is specified.

Spot — This keyword specifies explicit positioning of the element number of the
filter window “sweet spot.” The Spot keyword default depends on the setting of the
Edge keyword as shown in the following table:

Trim — A scalar integer or long value specifying the number of array values to trim
from the mean calculation. The value must be in the following range:

0 ≤ Trim < 1/2 (N – 1) ,

where N is the number of elements in the filter window.

NOTE The Trim keyword is required when the alpha-trimmed mean filter is
specified.

Edge Keyword Spot Keyword
Spot Keyword
Default Setting

not used
(Default: ’zero’)

As specified, or the default. kernel center

’pad’ Ignored. kernel center

’zero’ As specified, or the default. kernel center

’copy’ As specified, or the default. kernel center

’reduce’ Ignored. Spot = 0

FILT_NONLIN Function 45

Ypmeanf — If set, a Yp mean filter is applied

Zero_Negatives — If set, all negative values in the result are set to zero.

Discussion

The filter type can be specified using the Filt_Type keyword, or any of the specific
filter keywords. No more than one filter type can be defined at one time. The default
filter type for the function is the Filt_Type keyword default of 0, meaning the max-
imum filter is applied.

Geometric Mean Filter

The geometric-mean filter is a nonlinear filter sometimes used for removing Gaus-
sian distributed noise. Each pixel in the result is computed as the product of the N
pixels to the N –1 power within the filter window of N elements defined by wxdim,
wydim, and/or wzdim.

Maximum Filter

The maximum filter is a nonlinear filter that can be used for removing outlying low
or negative values from an image. Each pixel in result is computed as the maximum
of the N pixels within the filter window of N elements defined by wxdim, wydim,
and/or wzdim.

Minimum Filter

The minimum filter is a nonlinear filter that can be used for removing outlying high
values from an image. Each pixel in result is computed as the minimum of the N
pixels within the filter window of N elements defined by wxdim, wydim, and/or
wzdim.

Mode Filter

The mode filter is a nonlinear filter that can be used for noise removal. Each pixel
in result is computed as the mode (the most frequent pixel value) of the N pixels
within the filter window of N elements defined by wxdim, wydim, and/or wzdim.

Range Filter

The range filter is a nonlinear filter that can be used for edge detection. Each pixel
in result is computed as the range (the maximum minus the minimum) of the filter
window of N elements defined by wxdim, wydim, and/or wzdim.

46 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Rank Filter

The rank filter is a nonlinear filter that can be used for removal of impulse noise.
Each pixel in result is computed as the rank of the filter window of N elements
defined by wxdim, wydim, and/or wzdim. The rank is defined as the value of the
pixel in the Rank_Num position when all pixels in the filtering window are arranged
in ascending order. The rank filter degenerates to the MEDIAN filter when

Alpha-Trimmed Mean Filter

The alpha-trimmed mean filter is used to remove noise from images corrupted with
both Gaussian and impulse noise. The output of the alpha-trimmed mean filter is
the mean of the pixels in the filter window, with a number of values, defined by
Trim, excluded. First, the pixels in the filter window are arranged in ascending
order according to grayscale value. The output is then calculated from:

where the filter window has N elements and Ai are the grayscale values in the win-
dow A1 ≤ A2 ≤ ... ≤ AN .

Contra-Harmonic Mean Filter

The contra-harmonic mean filter is useful for removing Gaussian noise without
destroying edge features. The output is calculated from:

for each pixel, Ai in the filter window of size N.

Yp Mean Filter

The Yp mean filter is useful for removing Gaussian noise, while preserving edge
features. For negative values of F_Order, the Yp mean filter removes positive out-
liers. For positive values of F_Order, the Yp mean filter removes negative outliers.
The output of the Yp mean filter is:

Rank_Num
N 1–

2
------------- .=

AT Mean
1

N 2 Trim()–
------------------------------ 

  Ai

i Trim=

N - Trim -1

∑=

CH Mean

Ai
F_Order 1+()

i 0=

N 1–

∑

Ai
F_Order()

i 0=

N 1–

∑
--------------------------------------=

FILT_NONLIN Function 47

Example 1

Use the Yp mean filter for removing Gaussian noise while preserving image edges.

image = IMAGE_READ(!IP_Data + ’face.tif’)

; Read an image.

noise = NOISE_GEN(image(’width’), image(’height’), $
/Normal, High = 128, Low = 50)

noise_image = IPMATH(image(’pixels’), ’+’, noise)

; Corrupt the image with Gaussian noise.

yp_image = FILT_NONLIN(noise_image, 3, 3, $
F_Order = 2.0, /Ypmeanf)

; Try to remove the noise using the Yp mean filter.

TVSCL, yp_image

; Display the image.

Example 2

The rank filter is the same as the median filter when the rank number is set to the
filter window center.

image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

IMAGE_DISPLAY, image

; Display the original image.

Yp Mean

Ai
F_Order()

i 0=

N 1–

∑
N

 
 
 
 
 
 
 

1 F_Order⁄()

=

48 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-4 The original image of the airplane.

pixels = image(’pixels’)

status = NOISE_IMPULSE(0.15, pixels)

; Corrupt the image with speckle noise.

image(’pixels’) = pixels

IMAGE_DISPLAY, image

FILT_NONLIN Function 49

Figure 2-5 The image corrupted with speckle noise.

rank_image = FILT_NONLIN(image(’pixels’), 3, 3, $
Rank_Num = 4, /Rankf)

; Remove the noise using a rank filter.

TVSCL, rank_image

; Display the image.

50 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-6 The filtered image.

See Also

FILT_DWMTM, FILT_MMSE

In the PV-WAVE Reference: MEDIAN

FILT_NOTCH Function 51

FILT_NOTCH Function
Generates a 2D ideal notch spatial frequency domain filter.

Usage

result = FILT_NOTCH(radius, xloc, yloc)

Input Parameters

radius — The filter cutoff region radius, in pixels.

xloc — The x-location of the center of the filter cutoff region.

yloc — The y-location of the center of the filter cutoff region.

Returned Value

result — A filter object containing a notch filter in the filter object format. A filter
object is an associative array with the following keys:

’kernel’— A 2D floating-point array of the filter values.

’cutoff’— The filter cutoff frequency or frequencies. For lowpass and
highpass filters, a scalar value. For bandpass and bandstop filters, a two-
element array containing the lower cutoff frequency and the upper cutoff
frequency.

’pass’ — A string indicating one of the following kinds of filter:

low — A lowpass filter.

high — A highpass filter.

band — A bandpass filter.

stop — A bandstop filter

notch — A notch filter.

’dc_offset’ — A floating point scalar value containing the DC offset
of the filter.

’maximum’— A floating point scalar value which is the maximum value
of the filter.

52 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’type’ — One of the following strings indicating the type of filter.

ideal — An ideal filter.
butterworth — A Butterworth filter.

’domain’ — One of the following strings indicating the filter domain.

spectral — The filter is in the spectral (spatial frequency) domain.
spatial — The filter is in the spatial domain.

NOTE FILT_NOTCH produces only spectral domain filters. For information
about spatial domain filters, see the IPCREATE_FILTER.

’xloc’ — A scalar value specifying the x-location of the filter center.
Valid for Notch filters only.

’yloc’ — A scalar value specifying the y-location of the filter center.
Valid for Notch filters only.

’center’— If set to 1, the filter center (DC value) is shifted to the array
(‘kernel’) center; otherwise, the filter is unshifted.

’order’ — A scalar value specifying the filter order. Valid for Butter-
worth filters only.

Keywords

Center — If set, shifts the output so that the center of the filter, the DC component,
is the same as the center of the array.

DC_Offset — A scalar float containing the DC offset of the filter. (Default: 0.0)

Maximum — A scalar float that is the maximum value of the filter. (Default:
DC_Offset + 1.0)

Xdim — The x-dimension (width) of the filter. (Default: the value of Ydim, if spec-
ified; 256 otherwise)

Ydim — The y-dimension (height) of the filter. (Default: the value of Xdim, if spec-
ified; 256 otherwise)

Discussion

FILT_NOTCH produces a circularly symmetric, spatial frequency domain, ideal
notch filter which can be applied to a frequency domain image. Notch filters are

FILT_NOTCH Function 53

useful for removing narrow frequency ranges from images. Notch filtering is com-
monly used to remove periodic (coherent) noise.

Example
image = IMAGE_READ(!IP_Data + ’face.tif’)

; Read an image.

IMAGE_DISPLAY, image

Figure 2-7 The original image.

noise = NOISE_PERIODIC(image(’width’), $
image(’height’), F1 = 1.0, F2 = 3.5, $
Amp = 10.0, DC_Offset = 127.0)

noisy_image = image(’pixels’) + noise

; Corrupt the image with periodic noise.

TVSCL, noisy_image

54 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-8 The image corrupted with periodic noise.

notch_filter = FILT_NOTCH(6.0, 42, 12, $
Xdim = image(’width’), Ydim = image(’height’))

clean_image = FFT(noisy_image, -1) * notch_filter(’kernel’)

clean_image = ABS(FFT(clean_image, 1))

; Remove the noise from the image.

TVSCL, clean_image

; Display the clean image.

FILT_NOTCH Function 55

Figure 2-9 The cleaned up image.

See Also

FILT_FREQ

56 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

FILT_SMOOTH Function
Performs smoothing on 1D, 2D or 3D image arrays.

Usage

result = FILT_SMOOTH(image, wxdim [, wydim[, wzdim]])

Input Parameters

image — A 1D, 2D, or 3D array containing a signal; point or signal-interleaved sig-
nals; an image; image, row or pixel-interleaved images; or a volume.

wxdim — The width of the filtering window.

wydim — (optional) The height of the filtering window. (Required for images and
volumes.)

wzdim — (optional) The depth of the filtering window. (Required for volumes.)

Returned Value

result — An array containing the filtered data that is of the same size and dimen-
sions as image, unless otherwise affected using the Edge keyword.

Keywords

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’pad’ — The input image is padded before the filtering operation with
the value specified using the Pad_Value keyword.

’zero’ — Sets the border of the output image to zero. (Default)

’copy’ — Copies the border of the input image to the output image.

’reduce’— Returns a reduced-size image that is smaller than the input
image by the kernel dimensions.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

FILT_SMOOTH Function 57

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Pad_Value — A scalar value to use to pad the image. (Default: 0)

Spot — This keyword specifies explicit positioning of the element number of the
filter window “sweet spot.” The Spot keyword default depends on the setting of the
Edge keyword as shown in the following table:

Zero_Negatives — If set, all negative values in the result are set to zero.

Discussion

The smoothing filter is used to clear up image blurring, perform lowpass filtering,
and to remove noise. FILT_SMOOTH uses the same algorithm as the PV-WAVE
SMOOTH function, except that FILT_SMOOTH offers greater control over filter
window dimensions, edge effects, and interleaving.

Example
image = IMAGE_READ(!IP_Data + ’noise_test.tif’)

; Read an image.

Edge Keyword Spot Keyword
Spot Keyword
Default Setting

not used
(Default: ’zero’)

As specified, or the default. kernel center

’pad’ Ignored. kernel center

’zero’ As specified, or the default. kernel center

’copy’ As specified, or the default. kernel center

’reduce’ Ignored. Spot = 0

58 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

IMAGE_DISPLAY, image

; Look at the noisy image.

smooth_image = FILT_SMOOTH(image(’pixels’), 3,5)

; Use smoothing to remove noise.

TVSCL, smooth_image

; Display the smoothed image.

See Also

FILT_NONLIN

In the PV-WAVE Reference: MEDIAN, SMOOTH

FILT_WIENER Function
Computes and applies a parametric Wiener filter to an image that is either in the
spatial or the spatial frequency domain.

Usage

result = FILT_WIENER(gamma, image, degrad, noise [, original])

Input Parameters

gamma — A scalar float that controls the least-squared error constraint of the
Wiener filter.

image — The input corrupted image to be filtered as a 2D array containing a single
image, or a 3D array containing interleaved images in ‘image’ ‘row’ or ‘pixel’ form
(see intleave keyword below). This and the following three parameters must all be
in either the spatial or in the frequency domain.

degrad — The degradation function as a scalar, or as a 2D array of a single image,
or as a 3D array of interleaved images in ‘image’, ‘row’, or ‘pixel’ form.

noise — An estimate of the noise contained in the corrupted input image, as: a con-
stant scalar, or as a 2D array of a single image, or a 3D array of interleaved images
in ‘image’, ‘row’, or ‘pixel’ form.

original — Optional. An estimate of the original uncorrupted image as: a scalar
estimate of its magnitude, or as a 2D array of a single image, or as a 3D array of
interleaved images in ‘image’, ‘row’, or ‘pixel’ form.

FILT_WIENER Function 59

NOTE The input parameters: image, degrad, noise, and original must all be in
either the spatial or in the frequency domain. The input parameters: degrad, noise,
and original must all three be of the same size and dimensions. For example, if
degrad is a scalar, noise and original must also be scalars.

Returned Value

result — A complex array of the same size and dimensions as the corrupted image.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Imag — If set, returns only the imaginary portion of the result.

Mag — If set, the magnitude of the computed result is returned.

Real — If set, only the real portion of the computed result is returned.

Spatial — If set, parameters image, degrad, noise, and original are all assumed to
be in the spatial domain. Otherwise, they are all assumed to be in the spatial fre-
quency domain.

Wiener — Specifies a variable to receive the computed Wiener filter. The filter is
in the frequency domain and is a complex array.

60 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Discussion

The Wiener filter, also known as the least mean square (LMS) filter, is useful in
restoring an image when a priori knowledge of the degradation process is known.
The equation for the parametric Wiener filter, in the frequency domain, is

where (u, v) are the frequency coordinates, H(u, v) is the degradation function,
G(u, v) is the degraded image, Sf(u, v) is the spectrum of the original image esti-
mate, and Sn(u, v) is the noise spectrum.

Example

In this example, we work in the spatial domain. We create the corrupted image by
first blurring the original with a smoothing function and then adding noise to it in
the frequency domain. We then transform the result in the spatial domain.

IMAGE_DATA = getenv('VNI_DIR')+'/image-1_0/data/'

; Define the directory where the image resides.

test_image = IMAGE_READ(IMAGE_DATA + 'teluride24.jpg')

; Read an image. For example, teluride24.jpg is a 3D array in "image" form (p=3).

wd = test_image('width')

ht = test_image('height')

original = test_image('pixels')

WINDOW, 0, xsiz=wd, ysiz=ht, xpos=0, ypos=5, title='ORIGINAL'

TVSCL, original, true=3

; Display the original image.

degrad = FLTARR(wd, ht, 3)

FOR i=0,2 DO degrad(wd/2,ht/2,i) = 1.0

d=5

; each pixel value will be replaced by the box-car average of a 5x5 window.

degrad = SMOOTH(degrad,d,intleave='image')

; Provide an estimate of the degradation function h(x,y) in the spatial domain.
; For example, degrad = h(x,y) may be a smoothing function (such as a blurred point
; source).

freq_blurred = wd*ht*fft(degrad,-1,intleave='image')*$
fft(original,-1,intleave='image')

; Blur the original in the frequency domain:

F̂ u v(,)
H∗ u v(,)

H u v(,) 2 γ Sn u v,() S f u v,()⁄()+

 
 
 

G u v,() ,=

FILT_WIENER Function 61

high = 25.0

low = 0.00001

gauss_noise = low + (high-low) * RANDOMU(Seed,wd,ht,3)

freq_corrupted = freq_blurred + fft(gauss_noise, -1,
intleave='image')

; Generate the noise to add to the blurred image.

corrupted = fft(freq_corrupted, 1, intleave='image')

;Transform into spatial domain.

WINDOW, 1, xsiz=wd, ysiz=ht, xpos=0.5*wd, ypos=5, title='CORRUPTED'

TVSCL, shift(corrupted,wd/2,ht/2,0), true=3 ;

; Display the corrupted image.

gamma = 1.0

; In the cae that an estimate of the original is not provided gamma greater 1.
; For example for the teluride24.jpg gamma =300.

restored_image = FILT_WIENER(gamma, corrupted, degrad, $
gauss_noise, original, /Spatial)

; Now use Wiener filtering to restore the image.

WINDOW, 2, xsiz=wd, ysiz=ht, xpos=wd, ypos=5, title='RESTORED'

TVSCL, restored_image, true=3

; Display the result.

See Also

FILT_FREQ

62 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

GAUSS_KERNEL Function
Computes a 1D or 2D spatial Gaussian filter kernel.

Usage

result = GAUSS_KERNEL(xdim[, ydim])

Input Parameters

xdim — The width of the Gaussian filter kernel.

ydim — (optional) The height of the Gaussian filter kernel.

Returned Value

result — A Gaussian filter in the filter object format. (See the IPREAD_FILTER
function for more information on the filter object format.)

Keywords

Scale — If set, the values in result are normalized such that their sum is equal to
1.0.

Std — The standard deviation of the Gaussian distribution.

Discussion

Gaussian filters are used to remove high frequency noise and to blur images.

NOTE Use the IPCONVOL function to apply the filter after generating the Gaus-
sian kernel.

Example

In this example, a 7-by-7 Gaussian filter is generated and IPCONVOL is used to
apply the filter.

g = GAUSS_KERNEL(7, 7, /Scale)

; Generate the Gaussian filter.

Default:
xdim

2 2
------------ 

 

GLCM Function 63

blur_image = IPCONVOL(image, g)

; Apply the filter to an image to blur the image.

SURFACE, g(’kernel’)

Figure 2-10 Surface plot of the 2D Gaussian filter.

See Also

FILT_NONLIN, FILT_SMOOTH, IPCONVOL,
IPCREATE_FILTER, IPWRITE_FILTER

GLCM Function
Computes the graylevel co-occurrence probability matrix (GLCM) for a graylevel
image.

Usage

result = GLCM(image)

Input Parameters

image — A 2D array containing a graylevel image.

Returned Value

result — A floating-point array of the graylevel co-occurrence probabilities for
image.

64 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Keywords

Maxgray — The maximum graylevel in the image to consider. (Default:
MAX(image))

Mingray — The minimum graylevel in the image to consider. (Default:
MIN(image))

Sums — If set, returns a long array containing the graylevel co-occurrence sums
matrix instead of the probabilities.

Xoffset — The pixel position offset in the x-direction. (Default: 1)

NOTE Either Xoffset or Yoffset must be nonzero.

Yoffset — The pixel position offset in the y-direction. (Default: 1)

Discussion

Each element (a, b) of the graylevel co-occurrence matrix is the joint probability
that graylevel b is at a distance specified by Xoffset, and Yoffset from graylevel a.
Performing statistics on the graylevel co-occurrence probability matrix (GLCM)
provides quantitative information about image texture.

Example
image = IMAGE_READ(!IP_Data + ’texture.tif’)

; Read a grayscale image.

glcm_array = GLCM(image(’pixels’))

; Compute the GLCM.

TVSCL, glcm_array

; Display the glcm_array.

glcm_texture = GLCM_STATS(glcm_array)

; Compute the GLCM texture statistics for this image.

See Also

GLCM_STATS, GLRL, GLRL_STATS, HIST_STATS,
POLAR_FFT

GLCM_STATS Function 65

GLCM_STATS Function
Calculates five statistics on the graylevel co-occurrence matrix (the result of a call
to the GLCM function).

Usage

result = GLCM_STATS(glcm_matrix[, k])

Input Parameters

glcm_matrix — The graylevel co-occurrence matrix computed by GLCM.

k — (optional) A scalar float that is the order of the element difference moment and
the inverse element difference moment statistics. (Default: 1.0)

Returned Value

result — A five-element double array containing the following statistics: the max-
imum, the element difference moment of order k, the inverse element difference
moment of order k, the entropy, and the uniformity.

Keywords

None.

Discussion

The first statistic in the returned array is the maximum value of the graylevel co-
occurrence matrix (GLCM). The maximum is the greatest response to the Xoffset
and Yoffset used in the GLCM computation.

The second statistic returned is the element difference moment of order k. This sta-
tistic is lowest when large values of the GLCM are clustered near the matrix
diagonal. The element difference moment of order k is given by

 ,i j–()kglcm_matrix i j,()
j 0=

M 1–

∑
i 0=

N 1–

∑

66 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

where glcm_matrix is an N-by-M array.

The third statistic returned is the inverse element difference moment of order k. The
inverse element difference moment of order k is lowest when large GLCM values
are located away from the matrix diagonal. The inverse element difference moment
of order k is given by

and glcm_matrix is an N-by-M array.

The GLCM entropy, the fourth element of the returned array indicates the “ran-
domness” of the GLCM. The entropy is inversely proportional to the randomness;
that is, the entropy is smallest for the greatest amount of randomness in the matrix,
and is at a maximum when the elements of the GLCM are equal. (See the
ENTROPY function for the applicable equation.)

The fifth statistic returned is the GLCM uniformity. The uniformity is minimum
when all values of the GLCM are equal. (See the UNIFORMITY function for the
applicable equation.)

Example
image = IMAGE_READ(!IP_Data + ’texture.tif’)

; Read a grayscale image.

glcm_array = GLCM(image(’pixels’))

; Compute the graylevel co-occurrence matrix (GLCM).

TVSCL, glcm_array

; Display the glcm_array.

glcm_texture = GLCM_STATS(glcm_array)

; Compute the GLCM texture statistics for this image.

PRINT, glcm_texture

; Print the texture statistics.

See Also

ENTROPY, GLCM, GLRL, GLRL_STATS, HIST_STATS,
POLAR_FFT, UNIFORMITY

glcm_matrix i j),(
i j–()k

j 0=

M 1–

∑
i 0=

N 1–

∑ where i, j≠

GLRL Function 67

GLRL Function
Computes the graylevel run length (GLRL) matrix used for textural analysis of an
image.

Usage

result = GLRL(image[, theta])

Input Parameters

image — A 2D image of data type byte, integer, or long.

theta — (optional) A scalar integer specifying the angle (in degrees) at which to
measure run lengths. The following values are valid for the theta parameter: 0, 45,
90, and 135 degrees. (Default: 0)

Returned Value

result — A 2D long array, result(m, n), where m is the number of graylevels con-
sidered and n is the run length, ranging from 0 to N – 1 for an x-by-y image.

For theta = 45, or 135 degrees, N = (x2 + y2)1/2

For theta = 0, N = x

For theta = 90, N = y

The value at result(n, m) is the number of m-length runs at graylevel n + Mingray.

Keywords

Maxgray — The maximum gray value in the image to consider. (Default:
MAX(image))

Mingray — The minimum gray value in the image to consider. (Default:
MIN(image))

Omax — Specifies a variable to hold the maximum gray value used.

Omin — Specifies a variable to hold the minimum gray value used.

68 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Discussion

Graylevel run lengths indicate texture directionality and coarseness in an image.
Short graylevel runs indicate finer textures, whereas coarse textures result in long
graylevel runs. A diagonal texture produces long graylevel runs at theta = 45, and
135 degrees. Vertically and horizontally shifted textures produce long graylevel
runs when theta = 0 and 90 degrees.

Example
image = IMAGE_READ(!IP_Data + ’texture.tif’)

; Read a grayscale image.

glrl_array = GLRL(image(’pixels’))

; Compute the graylevel run length (GLRL).

SURFACE, glrl_array

; Display the glrl_array.

glrl_texture = GLRL_STATS(glrl_array, $
image(’width’), image(’height’))

; Compute the GLRL texture statistics for this image.

See Also

GLCM, GLCM_STATS, GLRL_STATS, HIST_STATS,
POLAR_FFT

GLRL_STATS Function 69

GLRL_STATS Function
Performs five statistical calculations on the graylevel run length matrix obtained by
a call to the GLRL function.

Usage

result = GLRL_STATS(glrl_matrix, xdim, ydim)

Input Parameters

glrl_matrix — The graylevel run length matrix computed by GLRL.

xdim — The x-dimension, the number of columns in the image from the call to
GLRL.

ydim — The y-dimension, the number of rows in the image from the call to GLRL.

Returned Value

result — A five-element double array containing the following GLRL statistics: the
short run emphasis, the long run emphasis, the graylevel distribution, the run-
length distribution, and the run percentages.

Keywords

None.

Discussion

The first statistic in the returned array is the short run emphasis. This is maximum
for fine textured graylevel runs. The short run emphasis is given by

and glrl_matrix is an N-by-M array.

1
T
--- 1

i2()
--------glrl_matrix i 1– j,()

j 0=

M 1–

∑
i 1=

N

∑ , where T glrl_matrix i j,()
j 0=

M 1–

∑
i 0=

N 1–

∑=

70 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

The second statistic returned is the long run emphasis. The long run emphasis is
maximum for coarse textured graylevel runs. The long run emphasis is given by

and glrl_matrix is an N-by-M array.

The third statistic returned is the graylevel distribution. The graylevel distribution
provides an indication of the number of runs relative to the number of graylevels in
the GLRL matrix. The graylevel distribution is given by

and glrl_matrix is an N-by-M array.

The fourth statistic returned is the run-length distribution. The run-length distribu-
tion indicates the occurrence of run-lengths relative to the number of graylevels in
the GLRL matrix. The run-length distribution is given by

and glrl_matrix is an N-by-M array.

The fifth statistic returned is the GLRL run percentages. The run percentages are
given by

and glrl_matrix is an N-by-M array.

Example
image = IMAGE_READ(!IP_Data + ’texture.tif’)

; Read a grayscale image.

glrl_array = GLRL(image(’pixels’))

; Compute the graylevel run length (GLRL).

TVSCL, glrl_array

; Display the glrl_array.

-- i2glrl_matrix i 1– j,()
j 0=

M 1–

∑
i 1=

N

∑ , where T glrl_matrix i j,()
j 0=

M 1–

∑
i 0=

N 1–

∑=

1-- glrl_matrix i j,()
j 0=

M 1–

∑ 
 
  2

i 0=

N 1–

∑ , where T glrl_matrix i j,()
j 0=

M 1–

∑
i 0=

N 1–

∑=

1-- glrl_matrix i j,()
i 0=

N 1–

∑ 
 
  2

j 0=

M 1–

∑ , where T glrl_matrix i j,()
j 0=

M 1–

∑
i 0=

N 1–

∑=

1
xdim ydim⋅
----------------------------- glrl_matrix i j,()

j 0=

M 1–

∑
i 0=

N 1–

∑

HAAR Function 71

glrl_texture = GLRL_STATS(glrl_array, $
image(’width’), image(’height’))

; Compute the GLRL texture statistics for this image.

PRINT, glrl_texture

; Print the texture statistics.

See Also

GLCM, GLCM_STATS, GLRL, HIST_STATS, POLAR_FFT

HAAR Function
Performs a Haar transform on a square image. If the input image is not square, it is
padded with zeros to make it square before the transform is performed. Images
whose dimensions are not a power of two are padded to have dimensions that are
the nearest power of two.

Usage

result = HAAR(image[, direction])

Input Parameters

image — A 2D or 3D array containing an image; or image, row, or pixel-inter-
leaved images.

direction — (optional) Specifies the direction of the transform.

–1 Forward transform (default)

 1 Backward transform

Returned Value

result — A 2D or 3D square floating-point matrix, whose dimensions are N-by-N
where N is the largest dimension of the input parameter image rounded to the near-
est larger power of two.

72 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Discussion

The Haar transform uses the Haar basis functions, hk(z), which are defined in the
interval z ∈ [0, 1], and for k = 0, 1, 2, ..., N – 1, where N is a power of 2. The fol-
lowing equations define the Haar functions:

where p is in the range 0 ≤ p ≤ n – 1; and q = 0 or 1 for p = 0; and
1 ≤ q ≤ 2p when p ≠ 0.

, and

 otherwise,

for z ∈ [0, 1].

k 2p q 1–+=

h0 z() h00 z() 1

N
--------= =

hk z() hpq z() 2p 2⁄

N
---------- for

q 1–

2p
------------ z

q 1 2⁄–

2p
-------------------<≤ 

 = =

hk z() hpq z() 2– p 2⁄

N
------------- for

q 1 2⁄–

2p
------------------- z

q

2p
-----<≤ 

 = =

hk z() hpq z() 0= =

HAAR Function 73

A Haar matrix is formed from the elements of h(z), with the j-th row of the matrix
formed from elements of hj(z) for z = 0/N , 1/N , 2/N , ..., (N – 1)/N.

For example, the 2-by-2 Haar matrix is:

 .

The Haar transform is then applied as:

T = H*image*H, where H is the Haar matrix and T is the transform result.

Example
image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

haar_image = HAAR(image(’pixels’))

; Compute the Haar transform.

TVSCL, IPALOG(haar_image)

; Display the transformed image.

See Also

DCT, SLANT

H
1

2
------- 1 1

1 1–
=

74 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

HIST_STATS Function
Computes six different statistical operations on image histograms.

Usage

result = HIST_STATS(hist_data)

Input Parameters

hist_data — A 1D or 2D long array containing one or more histograms.

Returned Value

result — A double array with six statistical results (mean, variance, skewness, kur-
tosis, energy, and entropy, respectively) for each histogram in the hist_data array.

Keywords

Binsize — The bin size used to compute the histogram. (Default: 1.0)

Maxgray — Specifies the maximum graylevel that was considered in computing
the histogram values (hist_data).
(Default: N_ELEMENTS(hist_data))

Mingray — Specifies the minimum graylevel that was considered in computing the
histogram values (hist_data). (Default: 0)

Discussion

Histogram statistics are useful for quantitative image feature descriptions. The sta-
tistics returned by HIST_STATS are computed for the normalized image
histogram, P, where P is the histogram divided by its total.

The statistics returned by HIST_STATS are defined as follows:

Mean:

M iP i()
i 0=

L 1–

∑=

HIST_STATS Function 75

Standard Deviation:

Skewness:

Kurtosis:

Energy:

Entropy:

Example
image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

image_hist = IPHISTOGRAM(image(’pixels’)

stats = HIST_STATS(image_hist)

PRINT, stats

; Compute the histogram statistics and print them
; to the screen.

See Also

IPHISTOGRAM

D i M–()
i 0=

L 1–

∑
1 2⁄

=

S
1

σ3
----- i M–()3P i()

i 0=

L 1–

∑=

K
1

σ4
----- i M–()4P i() 3–

i 0=

L 1–

∑=

N P i()[]2

i 0=

L 1–

∑=

E P i() log2 P i()[]
i 0=

L 1–

∑–=

76 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

HIT_MISS Function
Performs the morphologic hit-or-miss transform for shape processing.

Usage

result = HIT_MISS(image, hit_structure, miss_structure
[, xhit, yhit][, xmiss, ymiss])

Input Parameters

image — A 2D array.

hit_structure — A 1D or 2D array containing the structuring element to apply to
the original (un-complemented) image. The structuring elements are considered to
be binary values (either 0 or nonzero), unless the Gray keyword is specified.

miss_structure — A 1D or 2D array containing the structuring element to apply to
the complemented image. The structuring elements are considered to be binary val-
ues (either 0 or nonzero), unless the Gray keyword is specified.

xhit — (optional) The x-coordinate of the origin of hit_structure.

yhit — (optional) The y-coordinate of the origin of hit_structure.

xmiss — (optional) The x-coordinate of the origin of miss_structure.

ymiss — (optional) The y-coordinate of the origin of miss_structure.

Returned Value

result — The hit-or-miss transformed image, a byte array of the same size and
dimensions as image.

Keywords

Gray — If set, grayscale erosion is used rather than binary erosion.

Hit_Values — An array of the same dimensions and number of elements as
hit_structure, containing the hit-structuring element values.

Miss_Values — An array of the same dimensions and number of elements as
miss_structure, containing the miss-structuring element values.

HIT_MISS Function 77

Discussion

Morphological operations are defined for grayscale byte images. If image is not
originally of type byte, PV-WAVE makes a temporary copy of image that is of type
byte before using it for the morphological processing.

The morphological hit-or-miss transform is useful for object and character recog-
nition, because it can be used to identify features of a binary object. The hit-or-miss
operator is defined as the intersection between the eroded image (eroded using the
hit_structure parameter) with the eroded image complement (using the
miss_structure parameter). Optimum results are obtained when hit_structure and
miss_structure are disjoint. In other words, nonzero values of hit_structure are zero
in miss_structure, and vice-versa.

Example
hit_struct = BYTARR(5, 5)

hit_struct(*) = 1B

hit_struct(1:3, 1:3) = 0B

miss_struct = NOT(hit_struct) - 254B

; Make a structuring element pair.

test_image = IMAGE_READ(!IP_Data + ’squares.tif’)

; Read an image.

hitmiss_image = HIT_MISS(test_image(’pixels’), $
hit_struct, miss_struct)

; Find the squares matching the structuring elements.

See Also

MORPH_CLOSE, MORPH_OPEN, MORPH_OUTLINE,
SKELETONIZE, TOP_HAT

In the PV-WAVE Reference: DILATE, ERODE

78 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

HOUGH Function
Computes the line or circle Hough transform of an image.

Usage

result = HOUGH(image[, radius][, thresh])

Input Parameters

image — A 2D or 3D array containing an image; or image, row or pixel-interleaved
images.

radius — (optional) The radius of the circle for the Hough circle transform.

thresh — (optional) The threshold value for image, if image is not already a binary
image. Values in image that are greater than or equal to thresh are used for the
Hough transform calculation.

Returned Value

result — The Hough accumulator array.

For a 2D image input parameter, result is a 2D long array whose dimen-
sions are the diagonal of the original image by the value of the N_Angles
keyword.

For a 3D image array (an array of 2D images), result is a 3D long array
whose dimensions are the diagonal of the original image by the value of
the N_Angles keyword by the number of images in the array.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

HOUGH Function 79

N_Angles — Specifies the number of angles (0 ≤ N_Angles ≤ 360), to quantize for
the Hough accumulator array. (Default: 360)

Discussion

The line Hough transform is based on the parametric description of a line in the
polar coordinate system, as in the following equation:

ρ = x cos θ + y sin θ ,

where ρ is the distance of the line from the origin, θ is the angle of the line with
respect to the x-axis, and x and y are the Cartesian coordinates of a pixel in image.
The transformation consists of filling an accumulator array, H(ρ, θ), where ρ is cal-
culated for each nonzero xy-pixel in image for 0 ≤ θ < 360.

The circle Hough transform is based on the description of a circle, as in the follow-
ing equation:

ρ2 = (x – a)2 + (y – b)2 ,

where ρ is the radius of the circle, a and b are the center of the circle; and x and y
are the Cartesian coordinates of a pixel in image.

This equation can be broken down into the parametric equations:

a = ρ cos θ + x

b = ρ sin θ + y

The circle Hough transform consists of an accumulator array H(a, b) where a and
b are computed for each nonzero xy-pixel in image for
0 ≤ θ < 360 that is filled.

Edge linking is one useful chore that the line Hough transform can perform. Local
maxima in the Hough accumulator array correspond to straight lines in the trans-
formed image. By locating maxima in the Hough array, the edge-enhanced image
is placed on top of the corresponding straight lines, thus linking any unclosed
edges.

The circle Hough transform, on the other hand, allows you to identify points in an
image which lie on a circle of a given radius. Again, these points correspond to
local maxima in the Hough accumulator array.

80 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Example 1

The following example illustrates the use of the Hough line transform.

image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

hough_line = HOUGH(image(’pixels’), 100)

; Compute the line Hough transform.

TVSCL, hough_line

; Display the Hough transform.

max_hough = THRESHOLD(hough_line, 0.95 * $
MAX(hough_line), /Binary)

; Find the maximum values in the Hough line transform,
; corresponds to straight lines.

TVSCL, max_hough

; Display only the maximums.

Example 2

This example illustrates the use of the Hough circle transform.

image = IMAGE_READ(!IP_Data + ’cells.tif’)

; Read an image.

IMAGE_DISPLAY, image

Figure 2-11 The image of cells.

HOUGH Function 81

hough_circle = HOUGH(image(’pixels’), 11.0, 75, /Circle)

; Compute the circle Hough transform at a radius of 20 pixels.

hough_circle = NOT(BYTSCL(hough_circle))

TVSCL, hough_circle

; Display the Hough transform.

Figure 2-12 The circle Hough transform with a 20 pixel radius.

max_hough = THRESHOLD(hough_circle, 0.90 * $
MAX(hough_circle), /Binary)

; Find the maximum values in the Hough circle transform,
; corresponds to circles in the image of radius 20.0.

TVSCL, max_hough

; Display only the maximums.

82 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-13 The Hough transform maxima.

See Also

HAAR, RADON, SLANT

IPALOG Function 83

IPALOG Function
Computes the natural logarithm of an image, excluding zero values.

Usage

result = IPALOG(image)

Input Parameters

image — An array of any data type except string.

Returned Value

result — The logarithm to the base e (the natural log) of image, excluding zero val-
ues. For double-precision floating-point and complex values result is returned with
the same data type. All other valid data types are converted to single-precision
floating-point and result is returned as a floating-point data type.

Keywords

None.

Discussion

The IPALOG function is useful for displaying images with wide dynamic range
and is defined as follows:

y = logex

Values in image which are zero are left as zero.

The IPALOG function handles complex numbers in the following way:

IPALOG(image) ≡ Complex(loge(|image|, arctan(image)))

TIP When error messages regarding the handling of zero values in the input are
not wanted, you should use the IPALOG function instead of the PV-WAVE ALOG
function.

84 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Example
x = DIST(256)

; Generate a test image.

f = FFT(x, -1)

; Take the fast Fourier transform of x.

TVSCL, IPALOG(ABS(f))

; Display the log magnitude of the image FFT,
; with zero values retained as zeros.

See Also

In the PV-WAVE Reference: ALOG

IPCLASSIFY Function
Performs supervised classification using the maximum likelihood classifier.

Usage

result = IPCLASSIFY(image, training_pixels[, threshold,
probability])

result = IPCLASSIFY(image, class_params)

Input Parameters

image — A 2D or 3D array of any type except string or complex that contains an
image; or image, row, or pixel-interleaved images.

training_pixels — Training information for the desired classification. This param-
eter is an associative array with the following keys:

’pixels’ — A list of pixel-element number arrays, each defining a sep-
arate training region.

’class_numbers’— An integer array of class numbers greater than 0
corresponding to the training regions listed in ’pixels’.

threshold — (optional) A floating-point array containing the threshold for each
class.

IPCLASSIFY Function 85

probability — (optional) A floating-point array containing the probability for each
class.

class_params — The statistical parameters for each class. This parameter is an
associative array with the following keys:

’class’ — An integer array containing the class number (greater than
0) for each class.

’covariance’ — A list of floating-point arrays (for 3D input images)
or an array of floating-point values (for 2D input images) that are the cova-
riances for each class.

’mean’ — A list of floating-point arrays (for 3D input images) or an
array of floating-point values (for 2D input images) that are the mean vec-
tors for each class.

’probability’ — (optional) A floating-point array containing the
probability for each class.

’threshold’ — (optional) A floating-point array containing the
threshold for each class.

Returned Value

result — A 2D array of byte or integer data type containing the class number of
each pixel in image.

Keywords

Class_Stats — Specifies a variable to hold the classification statistics determined
for the image. The Class_Stats keyword is an associative array with the following
keys:

’class’ — An integer array containing the class number (greater than
0) for each class.

’covariance’ — A list of floating-point arrays (for 3D input images)
or an array of floating-point values (for 2D input images) that are the cova-
riances for each class.

’mean’ — A list of floating-point arrays (for 3D input images) or an
array of floating-point values (for 2D input images) that are the mean vec-
tors for each class.

86 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’probability’ — A floating-point array containing the probability
for each class.

’threshold’ — A floating-point array containing the threshold for
each class.

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Discussion

IPCLASSIFY uses the maximum likelihood decision rule to classify each pixel in
an image. The decision-rule is based on discriminant functions, gi(x) for each pixel
position x and each class ωi:

gi(x) = ln (p(x|ωi)) + ln (p(ωi))

Classification is performed according to:

x ∈ ωi if p(ωi|x) > p(ωj|x) for all j ≠ i

and

gi(x) > Ti .

Assuming normal statistics, the discriminant function for maximum likelihood
classification is represented as follows:

 ,

where Σi is the covariance matrix, mi is the mean vector, p(ωi) is the probability,
and Ti is the threshold for class i. The default case is for equal prior probabilities.
In other words, for M total classes,

p(ωi) = 1.0/M for all i

gi x() p ωi()()ln
1
2
--- Σi

1
2
---– x mi–()

t
Σi

1– x mi–()ln–=

IPCLASSIFY Function 87

The default threshold values are chosen such that 95% of all pixels in a class will
be classified, based on a Chi-squared distribution:

Example
image = IMAGE_READ(!IP_Data + ’boulder_image.tif’)

; Read an image.

training_pixels = ASARR(’pixels’, LIST(region1, $
region2, region3), ’class_numbers’, [1, 2, 3])

; Make an associative array of training information.
; Region1, region2, and region3 are long arrays
; that contain pixel numbers. Equal prior probabilities
; will be used as well as default class thresholds.

class_image = IPCLASSIFY(image(’pixels’), $
training_pixels, class_stats = class_stats)

; Classify the image using a maximum likelihood classifier.

TVSCL, class_image

; Display the classified image.

land_image = IMAGE_READ(!IP_Data + ’landsat.tif’)

class_image2 = IPCLASSIFY(land_image(’pixels’, $
Class_Stats)

; New images can now be classified using the
; Class_Stats keyword.

TVSCL, class_image2

; Display the newly classified image.

See Also

IPCLUSTER, REGION_GROW, REGION_MERGE,
REGION_SPLIT, THRESH_ADAP, THRESHOLD

T i 4.744–
1
2
--- Σiln p ωi()()ln+–=

88 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

IPCLUSTER Function
Performs image segmentation using K-means clustering based on regional
statistical measures of the mean, mode, minimum, maximum, and/or range of the
image pixels.

Usage

result = IPCLUSTER(image, cluster_seeds)

Input Parameters

image — A 2D or 3D array of any data type, except string or complex, containing
an image; or image, row, or pixel-interleaved images.

cluster_seeds — A long array containing the pixel element numbers in image.
These are used as the seed points with which individual clusters are identified. (2
≤ cluster_seeds ≤ total pixels in image)

Returned Value

result — A 2D or 3D array of byte or integer data type containing the cluster num-
ber of each pixel in image.

Keywords

Fill_Mean — If set, clusters are filled with the mean value of the image pixels in
that cluster.

Fill_Values — An array of values greater than 0 and less than or equal to the num-
ber of cluster seeds which are used to fill the clusters.

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Maximum — If set, the maximum of each window (as defined using the Wxdim
and Wydim keywords) in image is used as a statistic for the clustering algorithm.

IPCLUSTER Function 89

Max_iter — The maximum number of iterations to use in the clustering algorithm.
(Default: 30)

Mean — If set, the mean of each window (as defined using the Wxdim and Wydim
keywords) in image is used as a statistic for the clustering algorithm.

Minimum — If set, the minimum of each window (as defined using the Wxdim and
Wydim keywords) in image is used as a statistic for the clustering algorithm.

Mode — If set, the mode of each window (as defined using the Wxdim and Wydim
keywords) in image is used as a statistic for the clustering algorithm.

Range — If set, the range of each window (as defined using the Wxdim and Wydim
keywords) in image is used as a statistic for the clustering algorithm.

Value — If set, the pixel value is used as a statistic for the clustering algorithm.

Wxdim — The window width used for computing the image statistics. (Default: 3)

Wydim — The window height used for computing the image statistics. (Default: 3)

Discussion

The IPCLUSTER function computes a measurement vector for each individual
pixel in image. The following keywords control the statistical measures used for the
clustering algorithm: Mean, Mode, Minimum, Maximum, Range, and Value. If no
statistical keywords are specified, the Mean and Mode are used as the default.

The IPCLUSTER function is a wrapper for the K_MEANS function. The
K_MEANS function is a PV-WAVE:IMSL Statistics routine used to identify clus-
ters in image based on similar statistical features. The K_MEANS function
computes Euclidean metric clusters for the measurement vectors. This begins with
initial estimates of the mean values of the clusters determined from the
cluster_seed points.

NOTE The K_MEANS function requires that each cluster seed have a unique sta-
tistical property. The following informational message may appear when using the
IPCLUSTER function:

% Number of clusters reduced due to

identical statistical measures.

This indicates that some of the statistical measures for the cluster seeds are identi-
cal and have been eliminated from the clustering process.

90 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Example
image = IMAGE_READ(!IP_Data + ’xray.tif’)

; Read an image.

IMAGE_DISPLAY, image

Figure 2-14 A chest X-ray image.

IPCLUSTER Function 91

cluster_seeds = [20L, 15L + image(’width’) * 30L, $
137L + image(’width’) * 200L, $
12L + 190 * image(’width’)]

; Pick some random points for cluster seeds.

seg_image = IPCLUSTER(image(’pixels’), $
cluster_seeds, /Mean, /Mode, /Maximum, $
/Fill_Mean)

; Segment the image using K_MEANS clustering.

TVSCL, seg_image

; Display the segmented image.

Figure 2-15 The segmented X-ray image.

See Also

REGION_GROW, REGION_MERGE, REGION_SPLIT,
THRESH_ADAP, THRESHOLD

In the PV-WAVE: IMSL Statistics Reference: K_MEANS

92 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

IPCOLOR_24_8 Function
Converts a 24-bit color image to an 8-bit color image; or, converts an 8-bit color
image to a 24-bit color image.

Usage

result = IPCOLOR_24_8(image[, in_cmap])

Input Parameters

image — A 2D or 3D array containing an image; or image, row or pixel-interleaved
images.

in_cmap — (Used for 8 to 24-bit conversion only.) A 3-by-n_colors array contain-
ing the colormap for image, where n_colors ≤ 256.

Returned Value

result — A 2D or 3D byte array containing the converted image.

If image is 3D, it is assumed to contain a 24-bit color image; therefore, the
conversion is from 24-bit color to 8-bit color, and result is an 8-bit color
image (a 2D byte array of the same x and y-dimensions as image).

If image is 2D, it is assumed to contain an 8-bit color image; therefore, the
conversion is from 8-bit color to 24-bit color, and result is an 24-bit color
image (a 3D byte array of the same x and y-dimensions as image).

Keywords

Valid For Both Types of Conversion:

Bmap — Specifies a variable to hold the blue colormap created for the converted
image.

Gmap — Specifies a variable to hold the green colormap created for the converted
image.

Intleave — (For 3D image: 24-bit to 8-bit conversion) A scalar string indicating the
type of interleaving of the 3D input array.
(For 2D image: 8-bit to 24-bit conversion) A scalar string specifying the interleav-

IPCOLOR_24_8 Function 93

ing of the 24-bit result image. Valid strings and the corresponding interleaving
methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Noloadct — If set, the colormap created during conversion is not automatically
loaded.

Rmap — Specifies a variable to hold the red colormap created for the converted
image.

For 24 to 8-Bit Conversion Only:

N_Colors — The number of colors used in the 8-bit result image. (Default:
!D.Table_Size)

One of the following keywords should be set; the MedCut keyword is the default,
if none is selected.

Floyd — If set, Floyd-Steinberg dithering is used to quantize a 24-bit image to 8
bits.

MedCut — Is set, the median cut algorithm is used to quantize a 24-bit image to 8
bits. (Default: set)

Pctrans — If set, the principle components transform is used to quantize a 24-bit
image to 8 bits.

For 8 to 24-Bit Conversion Only:

Linear — If set, specifies linear ramps from 0 to 255 for the red, green, and blue
color tables; otherwise, the current PV-WAVE color table is used. Valid only if the
in_cmap parameter is not specified.

Discussion

Converting an image from 24-bit to 8-bit is called color quantization and is useful
for displaying 24-bit images on 8-bit displays. It’s also convenient to compress the
image information from three planes into a single plane to reduce the computation
time needed for image processing operations.

94 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

NOTE Information is lost during the conversion from 24-bit to 8-bit, which means
the conversion is not fully reversible.

Conversion from 8-bit to 24-bit is sometimes a useful trick for processing the image
as three separate planes. It is also useful for loading a mixture of 8-bit and 24-bit
images into the Image Tool on the Image Processing Navigator by converting the
8-bit images to 24-bit before starting the Image Tool.

Example 1: 8-Bit to 24-Bit Conversion

Converting an image from 8-bit to 24-bit is sometimes convenient as a “trick” for
processing the image as separate layers. For example, you can conveniently apply
three different threshold ranges to a 24-bit image as follows:

image_8bit = IMAGE_READ(!IP_Data + ’photo.tif’)

; Read in an 8-bit image.

image_24bit = IPCOLOR_24_8(image_8bit(’pixels’),$
image_8bit(’colormap’))

; Convert the 8-bit image to 24 bit.

thresh_planes = THRESHOLD(image_24bit, $
[20, 30, 25], [50, 45, 100], Intleave = ’image’)

; Threshold each plane separately as follows:
; Plane 1: 20 <= x <= 50
; Plane 2: 30 <= x <= 45
; Plane 3: 25 <= x <= 100.

WINDOW, 0

TVSCL, thresh_planes(*, *, 0)

WINDOW, 1

TVSCL, thresh_planes(*, *, 1)

WINDOW, 2

TVSCL, thresh_planes(*, *, 2)

; Now, display each plane separately.

Example 2: 24-Bit to 8-Bit Conversion
image_24bit = IMAGE_READ(!IP_Data + $

’boulder_image.tif’)

; Read in a 24 bit image

image_8bit = IPCOLOR_24_8(image_24bit(’pixels’),$
/Floyd, Rmap = r, Gmap = g, Bmap = b)

IPCONVOL Function 95

; Convert the image to 8 bit for display, using the
; median cut algorithm and Floyd-Steinberg dithering.

TVLCT, r, g, b

; Set the device to 8-bit pseudocolor.

TV, image_8bit

; Display the image.

See Also

PCT

In the PV-WAVE Reference: IMAGE_COLOR_QUANT

IPCONVOL Function
Performs 1D, 2D, or 3D convolution on signals, images, and volumes.

Usage

result = IPCONVOL(image, kernel[, scale_factor])

Input Parameters

image — A 1D, 2D, or 3D array of any data type except string or complex that con-
tains a signal; point or signal-interleaved signals; an image; image, row or pixel
interleaved images; or a volume.

kernel — The array used to convolve each value in image. This parameter can be
of any data type except string. The kernel parameter can also be a spatial filter
object. (See the Returned Value description for the IPREAD_FILTER function for
information about the filter spatial object.) The dimensions of kernel must be less
than the dimensions of image.

scale_factor — (optional) A scale factor used to reduce the size of the output result
by scaling the weighting factors in the filter kernel. This parameter is ignored if ker-
nel is a filter object.

96 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Returned Value

result — An array of the same dimensions and size as image; however, the size of
the array may be affected by using the Edge keyword, or the scale_factor
parameter.

Keywords

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’pad’ — The input image is padded before the filtering operation with
the value specified using the Pad_Value keyword.

’zero’ — Sets the border of the output image to zero. (Default)

’copy’ — Copies the border of the input image to the output image.

’reduce’— Returns a reduced-size image that is smaller than the input
image by the kernel dimensions.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

No_Clip — If set, clipping is avoided by setting the output image type large enough
to contain the maximum of the two combined images.

TIP The No_Clip keyword prevents underflow or overflow conditions from
occurring.

IPCONVOL Function 97

No_Mirror — If set, the kernel is not mirrored for the convolution operation.
(Default: kernel mirrored before convolution)

Pad_Value — The value to use for the image padding. (Default: 0)

NOTE The Pad_Value keyword is only valid when Edge = ’pad’.

Spot — This keyword specifies explicit positioning of the element number of the
filter window “sweet spot.” The Spot keyword default depends on the setting of the
Edge keyword as shown in the following table:

Zero_Negatives — If set, all negative values in the result image are set to zero.

Discussion

Convolution is a general purpose method used for smoothing and blurring an
image, as well as edge detection, shifting, and other filtering functions. Convolu-
tion is often performed in conjunction with other image processing functions such
as the FILT_NONLIN and FILT_SMOOTH functions.

NOTE Equations describing the convolution process can be found in the CON-
VOL function description in the PV-WAVE Reference.

The kernel parameter can be either a filter object (see the Returned Value descrip-
tion for the IPREAD_FILTER function for information about the filter object) or
an array. The dimensions of the filter kernel describe the size of the neighborhood
surrounding each value in image that is analyzed. The filter kernel also includes
weighting values for each point in the array. These weighting values are used to
determine the average value returned in the result array.

Edge Keyword Spot Keyword
Spot Keyword
Default Setting

not used
(Default: ’zero’)

As specified, or the default. kernel center

’pad’ Ignored. kernel center

’zero’ As specified, or the default. kernel center

’copy’ As specified, or the default. kernel center

’reduce’ Ignored. Spot = 0

98 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

When kernel is a filter object, the scale_factor parameter is not used; however,
there is a scale factor key in the kernel associative array. A typical use of the
scale_factor parameter is to set it equal to the sum of the filter kernel values. In this
way, the amplitude gain of the filter is normalized to 1.0.

In many image processing applications, the kernel “sweet spot,” that is, the posi-
tioning of the filter kernel with respect to the underlying image pixels, is important.
The Spot keyword allows exact positioning of the filter kernel as it is convolved
with the image pixels, and is typically located at the center of the filter kernel. Other
commonly used kernel sweet spots are the first element or the last element of the
kernel array.

Controlling edge effects is important in many image processing applications as
well, and this can be accomplished by specifying a control method with the Edge
keyword. Edge effects occur where the filter kernel array “overhangs” the image.
Two methods most commonly used to deal with edge effect behavior are copying
the input image edges to the result image, or zeroing the edges of the result image:
accomplished with the ’copy’ and ’zero’ strings, respectively, for the Edge
keyword. Padding the input image before convolution and reducing the size of the
result image are other methods for edge effects. These methods are accomplished
with the ’pad’ and ’reduce’ strings, respectively, for the Edge keyword.

The filter kernel array is always mirrored before the convolution operation. To dis-
able this behavior, use the No_Mirror keyword.

Example
image = IMAGE_READ(!IP_Data + ’dollars.tif’)

; Read in an image.

kernel = IPREAD_FILTER(!IP_Data + ’kernel/kirsch_sw3.ker’)

; Read in a filter kernel for edge detection.

edge_image = IPCONVOL(image(’pixels’), kernel, $
Spot = 0, Edge = ’reduce’)

; Apply the kernel, with a sweet spot in the upper left
; corner. Reduce the output image, getting rid of edge
; effects.

TVSCL, edge_image

; Display the edge-enhanced image.

See Also

FILT_NONLIN, FILT_SMOOTH, IPCORRELATE,
IPCREATE_FILTER, IPREAD_FILTER

IPCORRELATE Function 99

IPCORRELATE Function
Performs direct (spatial domain) or indirect (spatial frequency domain) correlation
between an array and a template.

Usage

result = IPCORRELATE(image, template)

Input Parameters

image — A 1D, 2D, or 3D array of any data type except string or complex that con-
tains a signal; point or signal-interleaved signals; an image; image, row or pixel
interleaved images; or a volume.

template — A 1D, 2D, or 3D array of any data type except string containing the
template used for correlation. The template parameter can also be a filter object.
(See the IPREAD_FILTER function for information about the filter objects.)

Returned Value

result — An array of the same dimensions and size as image, unless otherwise
affected by use of the Edge keyword.

Keywords

Direct — If set, direct method correlation is performed in the spatial domain using
convolution. For the direct method, the template parameter may be either an array
or a spatial filter object (see the IPREAD_FILTER function for more information
on the spatial filter object associative array format).

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’)

NOTE The Edge keyword is only valid when using the direct method.

Valid strings are:

’pad’ — The input image is padded before the filtering operation with
the value specified using the Pad_Value keyword.

’zero’ — Sets the border of the output image to zero. (Default)

100 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’copy’ — Copies the border of the input image to the output image.

’reduce’— Returns a reduced-size image that is smaller than the input
image by the kernel dimensions.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

No_Clip — If set, clipping is avoided by setting the output image type large enough
to contain the maximum of the two combined images.

TIP The No_Clip keyword prevents underflow or overflow conditions from
occurring.

NOTE The No_Clip keyword is only valid when using the direct method.

Pad_Value — The value to use for the image padding. (Default: 0)

NOTE The Pad_Value keyword is only valid when Edge = ’pad’, and when
using the direct method.

IPCORRELATE Function 101

Spot — This keyword specifies explicit positioning of the element number of the
filter window “sweet spot.” The Spot keyword default depends on the setting of the
Edge keyword as shown in the following table:

NOTE The Spot keyword is only valid when using the direct method.

Zero_Negatives — If set, all negative values in the result image are set to zero.

Discussion

Correlation is often used for template matching in conjunction with other Image
Processing Toolkit functions such as THRESHOLD to locate maxima in the corre-
lation output. Correlation is computed in either the spatial or the spatial frequency
domain. The spatial frequency domain computation is the default method for
IPCORRELATE. This method is used most often, and performs correlation as the
multiplication of the FFT of the image with the conjugate of the FFT of the corre-
lation template. The spatial domain computation, also called the direct method,
performs correlation as the convolution operation without mirroring the filter ker-
nel. The spatial domain computation is accomplished by using the Direct keyword
in the calling sequence.

NOTE For equations describing the direct method correlation process, see CON-
VOL in the PV-WAVE Reference.

Example
image = IMAGE_READ(!IP_Data + ’vnitext.tif’)

; Read in an image.

Edge Keyword Spot Keyword
Spot Keyword
Default Setting

not used
(Default: ’zero’)

As specified, or the default. kernel center

’pad’ Ignored. kernel center

’zero’ As specified, or the default. kernel center

’copy’ As specified, or the default. kernel center

’reduce’ Ignored. Spot = 0

102 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

template = IMAGE_READ(!IP_Data + ’letter_n.tif’)

; Create a template for object recognition.

corr_image = IPCORRELATE(image(’pixels’) / $
MAX(image(’pixels’), $
template(’pixels’)/ MAX(image(’pixels’)))

; Correlate the image with the template.

TVSCL, corr_image

; Display the correlation image.

max_value = MAX(corr_image, object_loc)

; The maximum value in the correlation image corresponds
; to the location of the template in the image.

PRINT, object_loc

See Also

FILT_NONLIN, FILT_SMOOTH, IPCONVOL,
IPCREATE_FILTER, IPREAD_FILTER

In the PV-WAVE Reference: CONVOL

IPCREATE_FILTER Function
Creates a spatial filter object, given a kernel and other appropriate fields.

Usage

result = IPCREATE_FILTER(kernel [, scale_factor])

Input Parameters

kernel — A 2D array containing the filter kernel.

scale_factor — (optional) A scalar float containing the scaling factor of the filter.

Returned Value

result — An associative array containing a spatial filter object. (See the Returned
Value description for the IPREAD_FILTER function for information about the spa-
tial filter object.)

IPCT Function 103

Keywords

None.

Discussion

The IPCREATE_FILTER function takes an input array and puts it into the spatial
filter object format. Spatial filter objects are used with the IPCONVOL and
IPCORRELATE functions, in addition to the IPREAD_FILTER and
IPWRITE_FILTER functions.

Example
kernel = BYTARR(3,3)

kernel(*) = 1B

; Create a 3-by-3 low pass filter.

scale_factor = FLOAT(TOTAL(kernel))

; Use a scaling factor to normalize the kernel
; during convolution.

filter = IPCREATE_FILTER(kernel, scale_factor)

; Create a filter object.

status = IPWRITE_FILTER(filter, ’my_lpf.ker’)

; Save the filter to a file.

See Also

IPREAD_FILTER, IPWRITE_FILTER

IPCT Function
Performs the inverse principle components transform on a multi-layered image.

Usage

result = IPCT(pct_images, pct_trans)

Input Parameters

pct_images — A 3D real or complex array containing image, row or pixel-inter-
leaved images.

104 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

pct_trans — An n-by-n real or complex array where n is the number of images in
the pct_images array. This is the principle components transform matrix for
pct_images, usually resulting from a previous call to PCT.

Returned Value

result — A 3D complex array containing the transformed images.

Keywords

Imaginary — If set, returns only the imaginary portion of the result.

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Mx — The mean of the sample array formed from the images. This keyword is a
1D, n-element array.

Offset — If set, result is offset by its minimum value so that the returned result has
a minimum of zero.

Real — If set, returns only the real portion of the result.

Discussion

The inverse principle components transform (IPCT) differs from most inverse
transforms in that the transformation matrix is not generic. The inverse transform
can’t be performed without the transformation matrix, in this case the pct_trans
input parameter. The pct_trans input parameter is generated by calling the PCT
function with the Pct_trans keyword. The returned matrix is used as the pct_trans
input parameter in the IPCT function.

Example

The image in this example is image-interleaved, which is the default for the Intle-
ave keyword.

IPHISTOGRAM Function 105

rgb_i = IMAGE_READ(!IP_Data + ’boulder_image.tif’)

rgb_i = rgb_i(’pixels’)

; Read a 24-bit image.

pct_i = PCT(rgb_i, Pct_trans = itrans, Mx = imx)

; Compute the principle components transform (PCT).

FOR I = 0, 2 DO BEGIN & $

TVSCL, pct_i(*, *, I) & $

HAK, /Mesg

ipct_i = IPCT(pct_i, itrans, Mx = imx)

; Compute the inverse transform.

FOR I = 0, 2 DO BEGIN & $

TVSCL, ipct_i(*, *, I) & $

HAK, /Mesg

See Also

PCT

IPHISTOGRAM Function
Computes the density function or the cumulative density function for an image.

Usage

result = IPHISTOGRAM(image)

Input Parameters

image — A 2D or 3D array containing an image; image, row, or pixel-interleaved
images; or a volume.

Returned Value

result — A 1D or 2D long array.

Keywords

Cumulative — If set, the cumulative density function is returned.

106 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Intleave — A scalar string indicating the type of interleaving of 3D image arrays.
Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Max — The maximum value to consider. This keyword can be a scalar when image
is 2D or 3D; or an array when image is a 3D image, row or pixel-interleaved array.
(Default: MAX(image))

Min — The minimum value to consider. This keyword can be a scalar when image
is 2D or 3D; or an array when image is a 3D image, row or pixel-interleaved array.
(Default: MIN(image))

Omax — Specifies a variable to hold the maximum value or values considered.

Omin — Specifies a variable to hold the minimum value or values considered.

Discussion

When the Cumulative keyword is set, the histograms of image are first computed.
The cumulative histogram or histograms are then calculated by summating succes-
sive values in the histogram array.

NOTE For more information on the density function calculation, see the HISTO-
GRAM function Discussion section in the PV-WAVE Reference.

Example
image = IMAGE_READ(!IP_Data + ’boulder_image.tif’)

; Read a 24-bit image.

hists = IPHISTOGRAM(image(’pixels’),$
Intleave = ’image’, Min = 0, Max = 255, $
/Cumulative)

; Compute the cumulative histogram of each
; plane in the image.

IPLINEAR_GRAY Function 107

TEK_COLOR

PLOT, hists(*,0), wocolorconvert = 1

OPLOT, hists(*,1), wocolorconvert = 2

OPLOT, hists(*,2), wocolorconvert = 3

; Plot the histograms.

See Also

HIST_STATS

IPLINEAR_GRAY Function
Transforms an image with a nonlinear grayscale or pseudocolor colormap to a lin-
ear grayscale image.

Usage

result = IPLINEAR_GRAY(image, in_cmap)

Input Parameters

image — A 2D array containing an image.

in_cmap — A 3-by-n_colors array containing the colormap for image, where
n_colors ≤ 256.

Returned Value

result — A 2D byte array containing the image transformed to a linear grayscale
colormap.

Keywords

Colormap — Specifies a variable to receive the output linear grayscale colormap.

The following three keywords control the IPLINEAR_GRAY function behavior for
image values falling outside the colormap range. The Clip keyword is the default if
none is specified.

Clip — If set, clips values outside the colormap range to the range
{0, ..., to n_colors – 1}. (Default)

108 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Scale — If set, scales values lying outside the colormap range into the range {0, ...,
n_colors – 1}.

Wrap — If set, uses the MOD operator to wrap values lying outside the colormap
range into the range {0, ..., n_colors – 1}.

Discussion

The Scale, Clip, and Wrap keywords are particularly useful when image is not a
byte array, because they specify how values outside the colormap range are trans-
lated into the colormap.

The transformation process for IPLINEAR_GRAY works differently for grayscale
than for pseudocolor input images. If the input colormap is already a grayscale col-
ormap, the input colormap is used as a translation table to form the output image
from the input image. If the input colormap is not a grayscale colormap, it is first
transformed to the HSV (Hue Saturation Value) color model. The value compo-
nent, which represents brightness, is then used as the translation table to form the
output image from the input image.

Example

This example illustrates how to convert an 8-bit pseudocolor image to linear gray-
scale. First, read an image using the appropriate path name for your operating
system as shown.

(UNIX) image = IMAGE_READ(!Data_Dir + ’../..’ + $
’/image-1_0/data/multi_dogs.gif’)

(Windows) image = IMAGE_READ(!Data_Dir + ’..\..’ + $
’\image-1_0\data\multi_dogs.gif’)

; Read an image.

gray_image = IPLINEAR_GRAY(image(’pixels’), $
image(’colormap’), /Clip, Colormap = cmap)

; Transform the image to grayscale.

TVLCT, REFORM(cmap(0,*)), REFORM(cmap(1,*)), $
REFORM(cmap(2,*))

; Load the new colormap.

TV, gray_image

; Display the image.

See Also

IPCOLOR_24_8, IS_GRAY_CMAP

IPMATH Function 109

IPMATH Function
Performs mathematical and logical operations on a single image or between two
images.

Usage

result = IPMATH(image, operation[, operand])

Input Parameters

image — A 3D array containing image, row, or pixel-interleaved images. This
parameter is the first operand for the mathematical operation.

operation — A scalar string specifying the mathematical or logical operation to
perform (see Discussion section).

operand — (optional) The second operand for the mathematical operation. This
parameter may be a scalar or an array exactly the same size as image.

Returned Value

result — An array or scalar value which is the result of the mathematical or logical
operation performed.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. When both image and operand are used, Intleave specifies the interleaving
method for both parameters. Valid strings and the corresponding interleaving meth-
ods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

No_Clip — If set, the result data type is larger than the input image data type.

110 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

TIP The No_Clip keyword prevents underflow or overflow conditions from
occurring.

Plane_Num — Specifies a single plane number for the function operation, where
0 ≤ Plane_Num < the number of planes in either image or operand arrays. This key-
word is valid when image and/or operand are 3D arrays.

Zero_Negatives — If set, all negative values in result are set to zero.

Discussion

The operation parameter specifies the logical or mathematical operation to apply
to one or two operands. The following two tables contain the lists of valid scalar
strings for the operation parameter: the first table contains the list of strings which
apply existing PV-WAVE operators; the second table contains a list of the existing
PV-WAVE routines which can be applied to the operands.

Operation
 Operands
Required

Operation Performed

’+’ 2 image + operand, (addition)

’-’ 2 image – operand, (subtraction)

’*’ 2 image x operand, (multiplication)

’/’ 2 image ÷ operand, (division)

’#’ 2 [image] x [operand], (matrix multiplication)

’^’ 2 (image)operand , (exponentiation)

’<’ 2 comparison of image and operand to find
minimum

’>’ 2 comparison of image and operand to find
maximum

’AND’ 2 image AND operand, (Boolean AND)

’MOD’ 2 image MOD operand, (modulo operator)

’NOT’ 1 compliment of image, (Boolean compliment)

’OR’ 2 image OR operand, (Boolean inclusive OR)

’XOR’ 2 image XOR operand, (Boolean exclusive OR)

IPMATH Function 111

Example 1

In this example, a portion of an existing image is masked using the Boolean AND
operator. To do this, the mask image is first created, and then specified in the
IPMATH calling sequence.

image = BYTARR(512,512)

OPENR, unit, !Data_Dir + ’mandril.img’,$
/Stream, /Get_Lun

READU, unit, image

CLOSE, 1

FREE_LUN, unit

mask = BYTARR(512, 512)

mask(100:300, 250:300) = 255

operation
 Operands
Required

Operation Performed

’ABS’ 1 | image |, (absolute value)

’ALOG’ 1 ln image, (natural logarithm)

’ALOG10’ 1 log10 image, (logarithm to base 10)

’COS’ 1 cos(image), (cosine)

’EXP’ 1 eimage , (natural exponential function)

’MAX’ 1 maximum value of image

’MEDIAN’ 1 statistical median of the image values

’MIN’ 1 minimum value of image

’MODE’ 1 statistical mode of image

’RANGE’ 1 range of values in image

’SIN’ 1 sin(image), (sine)

’SQRT’ 1 (image)1/2 , (square root)

’STDEV’ 1 statistical standard deviation of image

’TAN’ 1 tan(image), (tangent)

’VARIANCE’ 1 statistical variance of image

112 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

result = IPMATH(image, ’AND’, mask)

TVSCL, result

Example 2

In this example, the IPMATH calling sequence is used to improve the brightness of
an image by adding a scalar value.

result = IPMATH(image, ’+’, 50, /No_Clip)

TVSCL, result

Example 3

In this example, a common background is subtracted from several images to reveal
a moving object. Any negative values in the result are set to 0.

background = IMAGE_READ(!IP_Data + ’frame.tif’)

result1 = IPMATH(image1, ’-’, $
background(’pixels’), /Zero_Negatives)

result2 = IPMATH(image2, ’-’, $
background(’pixels’), /Zero_Negatives)

result3 = IPMATH(image3, ’-’, $
background(’pixels’), /Zero_Negatives)

TVSCL, result1

TVSCL, result2

TVSCL, result3

; Display each image to see the object without
; the background.

Example 4

In this example, a 24-bit color image is “tinted” red.

image = IMAGE_READ(!IP_Data + ’boulder_image.tif’)

red_image = IPMATH(image(’pixels’), ’+’, $
10, Plane_Num = 0, Intleave = ’image’)

TV, red_image, True = 3

; Display the “tinted” image.

See Also

Operators — PV-WAVE Programmer’s Guide.

Routines — PV-WAVE Reference.

IPQMFDESIGN Function 113

IPQMFDESIGN Function
Generates one of several quadrature mirror filters for use with the IPWAVELET
function. A four-coefficient Daubechies wavelet filter is returned by default.

Usage

result = IPQMFDESIGN()

Input Parameters

None.

Returned Value

result — A filter object containing a 1D QMF filter as the kernel for use with the
IPWAVELET function. (See IPREAD_FILTER for more information on the filter
object format.)

Keywords

Only one of the following keywords may be set at a time:

Biorthogonal — A one or two-digit number: the first number specifies the number
of vanishing moments in the reconstruction scaling function, and the second num-
ber (if present) specifies the number of vanishing moments in the decomposition
scaling function for a one moment symmetric/antisymmetric, two moment sym-
metric/symmetric or three moment symmetric/antisymmetric biorthongal wavelet
filter. Valid values are:

Symmetric/Antisymmetric, one moment: 1, 13, 15

Symmetric/Symmetric, two moments: 2, 22, 24, 26, 28

Symmetric/Antisymmetric, three moments: 3, 31, 33, 35, 37, 39

Coifman — Specifies the number of coefficients in the Coifman wavelet filter.
Valid numbers are 6, 12, 18, 24, 30.

Daubechies — Specifies the number of coefficients in the Daubechies wavelet fil-
ter. Valid numbers are: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20. (Default: 4)

114 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Discussion

A quadrature mirror filter H(z) is defined by the following equation:

|H(z)|2 + |H(–z)|2 = 1 .

IPQMFDESIGN generates three different types of wavelet filters as specified by
using one of the following keywords: Daubechies, Coifman, and Biorthogonal. If
none of these keywords are specified, the default is Daubechies = 4.

NOTE The Daubechies, Coifman, and Biorthogonal keywords can’t be used
together in the same calling sequence.

Example
image = DIST(256)

daub6 = IPQMFDESIGN(Daubechies = 6)

; Generate a 6-coefficient Daubechies wavelet filter.

coif12 = IPQMFDESIGN(Coifman = 12)

; Generate a 12-coefficient Coifman wavelet filter.

bior13 = IPQMFDESIGN(Biorthogonal = 13)

; Generate a 1, 3 Biorthogonal wavelet filter.

wvlt_daub6 = IPWAVELET(image, daub6, -1)

wvlt_coif12 = IPWAVELET(image, coif12, -1)

wvlt_bior13 = IPWAVELET(image, bior13, -1)

; Apply the wavelet transform to an image using each of
; the different filters, separately.

Window, 0

TVSCL, wvlt_daub6

Window, 1

TVSCL, wvlt_coif12

Window, 2

TVSCL, wvlt_boir13

; Display the results.

See Also

IPWAVELET

IPREAD_FILTER Function 115

IPREAD_FILTER Function
Reads an ASCII text or XDR file depending on whether the file contains a spatial
or spectral filter (respectively).

Usage

result = IPREAD_FILTER(filename)

Input Parameters

filename — A scalar string containing the name of the filter file.

Returned Value

result — An associative array containing the filter object. The filter object
associative array is described as follows:

For a spatial filter, the filter object has three strings containing the key names of
elements of the associative array:

’kernel’ — A 2D array of the filter spatial values.

’domain’ — A string set to ’SPATIAL’.

’scale’ — The scale factor.

For a spectral filter, the filter object has ten strings containing the key names of
elements of the associative array:

’kernel’ — A 2D array of the filter spectral values.

’domain’ — A string set to ’SPECTRAL’.

’cutoff’ — A one-element array (for highpass and lowpass filters), or
a two-element array (for bandpass and bandstop filters) containing the fil-
ter cutoff frequency, or frequencies.

’pass’ — A string indicating the filter type: ’low’, ’high’,
’stop’, ’band’, or ’notch’.

’dc_offset’ — A float value containing the filter DC offset.

’co_frac’ — A float value containing the fraction of the maximum
filter value at the cutoff frequency.

116 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’maximum’ — A float value containing the maximum filter amplitude.

’type’ — A string indicating the filter type: ’ideal’, or
’Butterworth’.

’xloc’ — (For notch filters only.) The x-location of the filter center.

’yloc’ — (For notch filters only.) The y-location of the filter center.

’center’ — If set, the filter center is at the center of the array.

’order’— (For Butterworth filters only.) A floating point value indicat-
ing the filter order.

Keywords

None.

Discussion

There are many filter files provided with the Image Processing Toolkit. The files
are located in the following directories:

(UNIX) ip-1_0/data/kernel/*.ker

(UNIX) ip-1_0/data/filter/*.flt

(Windows) ip-1_0\data\kernel*.ker

(Windows) ip-1_0\data\filter*.flt

The file format for the spatial filter files provided and for user-written spatial filter
files must conform to the following conventions:

• Comments begin with a semicolon.

• The first un-commented line in the file is the data type of the filter weights.
This line is one of the following valid strings: ’byte’, ’int’, ’long’,
’float’, or ’double’.

• The next un-commented line contains the dimensions of the kernel, with the x-
dimension listed first, followed by the y-dimension.

• Next is the list of space and/or line feed-separated kernel values.

• Finally, the scale factor, if present, appears. The scale factor is a floating point
value.

For spectral filters, the file format is simply the associative array saved in XDR
format.

IPSCALE Function 117

Example

In this example, the IPREAD_FILTER function is used to read in the Frei-Chen
column edge gradient kernel from the directory of files provided with the Image
Processing Toolkit.

freichen = IPREAD_FILTER(!IP_Data + $
’/kernel/’ + ’freichen_c3.ker’)

result = IPCONVOL(image, freichen)

; Apply the Frei-Chen column edge gradient filter to an image.

See Also

FILT_FREQ, IPCONVOL, IPWRITE_FILTER

IPSCALE Function
Scales an image by shrinking or expanding it.

Usage

result = IPSCALE(image, xscale, yscale[, zscale])

Input Parameters

image — A 2D or 3D array of any data type except complex or string containing
an image; image, row or pixel-interleaved images; or a volume.

xscale — A scalar value specifying the scaling factor for the image width.

yscale — A scalar value specifying the scaling factor for the image height.

zscale — (optional) A scalar value specifying the scaling factor for the image
depth. (Valid only for volumes when using the pixel replication or depletion scaling
method.)

Returned Value

result — An array of the same data type as image.

118 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Keywords

Bilinear — If set, the bilinear interpolation scaling algorithm is used. (Valid for
images only; not valid for volumes.)

Intleave — A scalar string indicating the type of interleaving of 3D image arrays.
Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Neighbor — If set, the nearest neighbor interpolation scaling algorithm is used.
This is the default scaling algorithm for the IPSCALE function. (Valid for images
only; not valid for volumes.)

Pixel — If set, the pixel replication or depletion scaling algorithm is used. In this
method, the xscale, yscale, and zscale input parameters are converted to their near-
est integer values.

Shrink — If set, shrinks the image by the xscale, yscale, and zscale scaling factors.

Discussion

The IPSCALE function shrinks or expands the number of elements in image. If the
Pixel keyword is used for selecting pixel replication/depletion, image can only be
scaled by integer factors. New values in the expanded image are formed from rep-
licated pixels in the original input image. This method provides expansion of the
pixel size and has the advantage of exactly replicating existing information in the
image instead of forming new values through interpolation. When expanding the
image, the result will always appear as individual blocks.

If nearest neighbor or bilinear interpolation are selected using the Neighbor or
Bilinear keywords, respectively, the image can be scaled by floating-point factors.
New values in the expanded image are interpolated from original values at inter-
vals, and appear where there might not have been values before.

The nearest-neighbor interpolation method is the default interpolation method.
This is not a linear method, because new values that are needed are merely set equal

IPSCALE Function 119

to the nearest existing value of image. Therefore, when increasing the image size,
the result may appear as individual blocks.

Example 1
image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

IMAGE_DISPLAY, image

; Display the image.

image_scale = IPSCALE(image(’pixels’), 3, $
3, /Pixel)

; Expand the image using pixel replication.

TV, image_scale

; Display the expanded image.

image_scale = IPSCALE(image(’pixels’), 3, $
3, /Pixel, /Shrink)

; Shrink the original image using pixel depletion.

TV, image_scale

; Display the smaller image.

Example 2
image = IMAGE_READ(!IP_Data + ’photo.tif’)

; Read an image.

IMAGE_DISPLAY, image

; Display the image.

image_scale = IPSCALE(image(’pixels’), 1.5, 1.5)

; Expand the image.

TV, image_scale

; Display the expanded image.

See Also

In the PV-WAVE Reference: CONGRID

120 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

IPSPECTRUM Function
Estimates the power spectrum (power spectral density) of an image.

Usage

result = IPSPECTRUM(image[, width, height, overlap])

Input Parameters

image — A 2D array of any data type except string containing an image.

width — (optional) The width of the subsections of image. (Default: xdim/5, where
xdim is the width of image)

height — (optional) The height of the subsections of image. (Default: ydim/5,
where ydim is the height of image)

overlap — (optional) The fraction of the window size that successive subsections
of image overlap. (Default: 0.5)

Returned Value

result — A 2D array containing the power spectrum of image.

Keywords

Squared — If set, computes the power spectral density as the magnitude squared
of the FFT of image.

NOTE The Squared keyword cannot be used with any other keyword, or with the
optional parameters width, height, and overlap.

Window_Param — A scalar float used only when computing either the Kaiser or
Chebyshev windows.

IPSPECTRUM Function 121

Window_Type — A scalar value (see the following table) used to specify a window
type to use when computing the spectrum of subsections of image.

NOTE For descriptions and equations for the seven window types, see the Discus-
sion section for the IPWIN function.

Discussion

IPSPECTRUM computes one of several different power spectrum estimates P(f)
depending on the input parameters. Specific estimates available include the peri-
odogram, the modified periodogram, Bartlett’s method, and Welch’s method. In all
cases uniform samples of the power spectrum are returned. The equations shown
below are for the case of a 1D signal, x, with a length, L. (The derivation of the 2D
equations is not shown here, but is found in most Image Processing references.)

The frequency sample values are

fk = k/L , k = 0, 1, ..., M for real data.

where M = [(L + 2)/2] for L even and M = [(L + 1)/2] for L odd for real data.

For complex data, M = L.

The periodogram is defined as

,

Window_Type Window

1 Rectangular

2 Triangular

3 Hanning

4 Hamming

5 Kaiser

6 Blackman

7 Chebyshev

p f()
1
L
--- x l()e jπfl–

l 0=

L 1–

∑
2

=

122 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

where the frequency variable f is normalized to the Nyquist frequency of 1.0. To
obtain uniform samples of the periodogram using IPSPECTRUM, set length equal
to the length of the data x, and set Window_Type to rectangular.

The modified periodogram is defined as

,

where w(l) is a data window sequence. To obtain uniform samples of the modified
periodogram using IPSPECTRUM, set length equal to the length of the data x and
set Window_Type to any of the seven window types.

NOTE Window types are discussed in the IPWIN function.

Bartlett’s method breaks the data into non-overlapping data segments represented
as

xi(n) = x(n + iL) n = 0, 1, ... , L – 1 i = 0, 1, ... , I – 1.

A periodogram

is computed for each data segment and averaged to obtain the Bartlett estimate

.

To obtain uniform samples of Bartlett’s estimate using IPSPECTRUM, set length
to be less than the data length, set overlap to 0 and set Window_Type to rectangular.

The Welch method breaks the data into length L overlapping data segments repre-
sented as (n + iL).

xi(n) = x(n + iQ) n = 0, 1, ... , L – 1 i = 0, 1, ... , I – 1

where Q = (L – overlap).

A modified periodogram is then computed for each data segment given by

mp f()
1
L
--- w l()x l()e jπfl–

l 0=

L 1–

∑
2

=

Pi f() xi n()e jπfn–

n 0=

L 1–

∑
2

=

PB f() 1
I
--- Pi f()

i 1=

I 1–

∑=

Pi f()
1

Lu
------ xi n()w n()e jπfn–

n 0=

L 1–

∑
2

=

IPSPECTRUM Function 123

where

.

The Welch power spectrum estimate is the average of the modified periodogram of
each data segment, given by

.

To obtain uniform samples of the Welch estimate using IPSPECTRUM, set length
less than the data length, set overlap to a nonzero value and set Window_Type to the
desired window type.

NOTE In estimating the power spectrum it is assumed that the input signal is sta-
tionary (i.e., the frequency content does not change with time). If the signal is non-
stationary, the IPWAVELET function can often provide better results than
IPSPECTRUM.

Example
image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

IMAGE_DISPLAY, image

; Display the image.

image_spectrum = IPSPECTRUM(image(’pixels’), $
/Squared)

; Compute the power spectrum.

TVSCL, image_spectrum

; Display the power spectrum.

See Also

IPWAVELET, IPWIN

u
1
L
--- w2 n()

n 0=

L 1–

∑=

Pw f()
1
I
--- Pi f()

i 1=

I 1–

∑=

124 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

IPSTATS Function
Computes up to eight different statistical operations on an array, including the
mean, variance, standard deviation, skewness, kurtosis, minimum, maximum, and
range.

Usage

result = IPSTATS(array)

Input Parameters

array — An array.

Returned Value

result — Returns either a scalar statistical value or an array of the requested statis-
tical values.

Keywords

All — If set, computes all eight statistical calculations.

Kurtosis — If set, computes the kurtosis of array.

Maximum — If set, finds the maximum value in array.

Mean — If set, computes the mean of array.

Minimum — If set, finds the minimum value in array.

Range — If set, determines the range of values in array.

Skewness — If set, computes the skewness of array.

Std — If set, computes the standard deviation of array.

Var — If set, computes the variance of array.

Discussion

If no keywords are specified, the mean of the array is computed and returned as a
scalar value. If more than one keyword is specified, or if All is specified, a floating
point array containing the requested statistics is returned.

The values in the result array will be in the following order: mean, variance, stan-
dard deviation, skewness, kurtosis, minimum, maximum, range.

IPSTATS Function 125

Example 1

Compute statistics on an image.

texture = IMAGE_READ(!IP_Data + ’texture.tif’)

; Read an image.

stats = IPSTATS(texture(’pixels’), /All)

; Compute statistics for the image.

PRINT, stats

; Print the statistics.

Example 2

Compute statistics on a series of images.

image1 = IMAGE_READ(!IP_Data + ’frame1.tif’)

image2 = IMAGE_READ(!IP_Data + ’frame2.tif’)

image3 = IMAGE_READ(!IP_Data + ’frame3.tif’)

image4 = IMAGE_READ(!IP_Data + ’frame4.tif’)

image5 = IMAGE_READ(!IP_Data + ’frame5.tif’)

; Read in some images.

stats = FLTARR(5, 8)

stats(0,*) = IPSTATS(image1(’pixels’), /All)

stats(1,*) = IPSTATS(image2(’pixels’), /All)

stats(2,*) = IPSTATS(image3(’pixels’), /All)

stats(3,*) = IPSTATS(image4(’pixels’), /All)

stats(4,*) = IPSTATS(image5(’pixels’), /All)

; Compute statistics on the frames.

PLOT, stats(*, 3)

; Plot the skewness of the frames.

See Also

KURTOSIS, RANGE, SKEWNESS

126 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

IPWAVELET Function
Computes the separable wavelet transform for an image.

Usage

result = IPWAVELET(image, qmfilt, n_stages [, direction])

Input Parameters

image — A 2D or 3D array containing an image; or image, row, or pixel-inter-
leaved images.

qmfilt — A 1D quadrature mirror filter designed using the IPQMFDESIGN
function.

n_stages — The number (greater than or equal to 1) of wavelet transform stages to
perform.

direction — (optional) A scalar indicating the direction of the transform as follows:

– 1 Forward transform (default)

1 Backward transform

Returned Value

result — A 2D or 3D double array containing the wavelet transform.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

IPWAVELET Function 127

Discussion

Computing the wavelet transform of an image using a compactly supported
orthonormal wavelet is equivalent to applying the quadrature mirror filter-bank
structure to the image as shown in the following figure.

Figure 2-16 Filter structure for computing the forward wavelet transform.

The details of how and why the structure shown in the figure is connected to a com-
pactly supported orthonormal wavelet are found in Akansu and Haddad, 1992;
Daubechies, 1988, and 1992; Rioul and Vetterli, 1991; and Vaidyanathan, 1993.

The input and output sequences of each block in the figure represent the inputs and
output of the forward part of the quadrature mirror filtering technique. The specific
input-output relation between each block and the quadrature mirror filter is shown
in the following figure.

Figure 2-17 Basic computational cell in the forward wavelet transform structure.

IPWAVELET requires a quadrature mirror filter to be supplied. Such a filter is
obtained by using the IPQMFDESIGN function.

The input parameter n_stages specifies the number of levels of the wavelet trans-
form structure to compute.

The backwards wavelet transform is computed using the filter bank structure
shown in the following figure.

y 1

y 2

y 3

1

0

1

0
1

0 y 4

Input
Image

QMF

QMF
QMF

level 1 level 2 level 3

. . .

. . .

1

0

QMF
x(n)

x 0(n)

x 1(n)

128 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-18 Filter structure for computing the backward wavelet transform.

Example

This example illustrates how to compute the wavelet transform of an image.

image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

qmfilt = IPQMFDESIGN(Daubechies = 4)

wvlt = IPWAVELET(image(’pixels’), qmfilt, 2, -1)

; Compute the 2-stage forward wavelet transform with
; the Daubechies 4 wavelet.

TVSCL, wvlt

; Display the wavelet transform.

iwvlt = IPWAVELET(wvlt, qmfilt, 2, 1)

; Compute the inverse transform.

wvlt_error = iwvlt - image(’pixels’)

; There will be some distortion due to machine noise.

PRINT, MAX(wvlt_error)

See Also

DCT, HAAR

y 1

y 2

y3

1

0

1

0
1

0y 4

Output
Image

QMF

QMF
QMF. . .

. . . level 3 level 2 level 1

IPWIN Function 129

IPWIN Function
Computes one of several different data windows: Blackman, Chebyshev, Ham-
ming, Hanning, Kaiser, rectangular, or triangular.

Usage

result = IPWIN(n[, m] [, a])

Input Parameters

n — The first dimension of the window sequence.

m — (optional) The second dimension of the window sequence. If m is not given,
a one-dimensional window of length n is returned.

a — (optional) A scalar float parameter used only when computing either the Kai-
ser or Chebyshev windows.

Returned Value

result — A 1D or 2D array containing the requested window.

Keywords

Blackman — If set, a Blackman window is returned.

Center — If set, the window is shifted such that its center is at the center of the
result array.

Chebyshev — If set, a Chebyshev window is returned. If Chebyshev is set, input
parameter a (a is θ0 in the Chebyshev window equation) is also required.

Hamming — If set, a Hamming window is returned.

Hanning — If set, a Hanning window is returned.

Kaiser — If set, a Kaiser window is returned. If Kaiser is set, input parameter a (a
is α in the Kaiser window equation) is also required.

Rectangular — If set, a rectangular window is returned. This is also known as a
boxcar window.

Triangular — If set, a triangular window is returned.

130 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Window_Type — A scalar value (see the following table) used to specify a window
type. This keyword may be used in place of the particular window keywords.

Discussion

A listing of the applicable time domain equations is given below, where (w(n), 0 <
n < N – 1) for each of the windows.

Blackman window:

Chebyshev window:

for N = 0,

for N = 1,

Window_Type Window

1 Rectangular

2 Triangular

3 Hanning

4 Hamming

5 Kaiser

6 Blackman

7 Chebyshev

w n() 0.42 0.5
2π n N 1–

2
-------------–()

N 1–
------------------------------cos– 0.08

4π n N 1–
2

-------------–()
N 1–

------------------------------cos+=

w0 k()
1, for k = 0

0, otherwise
=

w1 k()

x0 1,– for k = 0

x0

2
-----, for |k| = 1

0, otherwise






=

IPWIN Function 131

for N > 1,

where

and θ0 is the IPWIN input parameter a.

Hamming window:

Hanning window:

Kaiser window:

,

where I0(x) is the zeroth order Bessel function of the first kind, and α is the IPWIN
input parameter a.

Rectangular (or boxcar) window:

w(n) = 1, for all n.

wN k() 2 x0
2 1–()wN 1– k()=

x0
2() wN 1– k 1–() wN 1– k 1+()+[] wN 2– k()–+

x0
1
θ0 2⁄()cos

--------------------------=

w n() 0.54 0.46
2π n N 1–

2
-------------–()

N 1–
------------------------------cos–=

w n() 0.5 0.5
2π n N 1–

2
-------------–()

N 1–
------------------------------cos–=

w n()

I0 α 1 2
n

N 1–
2

-------------– 
 

N 1–

2

–
 
 
 
 

I0 α()
--=

132 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Triangular window:

, for all n.

Example

This example illustrates how to generate each of the different window types for a
128-by-128 window.

n = 128

m = 128

rect = IPWIN(n, m, /Rectangular, /Center)

TVSCL, rect

; Generate and view a rectangular window.

tri = IPWIN(n, m, /Triangular, /Center)

TVSCL, tri

; Generate and view a triangular window.

hann = IPWIN(n, m, /Hanning, /Center)

TVSCL, hann

; Generate and view a Hanning window.

hamm = IPWIN(n, m, /Hamming, /Center)

TVSCL, hamm

; Generate and view a Hamming window.

kaiser = IPWIN(n, m, 0.5, /Kaiser, /Center)

TVSCL, kaiser

; Generate and view a Kaiser window.

black = IPWIN(n, m, /Blackman, /Center)

TVSCL, black

; Generate and view a Blackman window.

cheby = IPWIN(n + 1, m + 1, 0.15, /Chebyshev, $
/Center)

TVSCL, cheby

; Generate and view a Chebyshev window.

See Also

In the PV-WAVE Reference: HANNING

w n() 1
2 n N 1–

2
-------------–

N 1–
------------------------–=

IPWRITE_FILTER Function 133

IPWRITE_FILTER Function
Saves a 2D convolution kernel to an ASCII text file.

Usage

status = IPWRITE_FILTER(kernel, filename)

Input Parameters

kernel — A 2D array containing the convolution kernel to be saved.

filename — A scalar string containing the name of the kernel file.

Returned Value

status — A scalar value indicating the success of the write operation. Expected val-
ues are:

1 Indicates a successful write.

0 Indicates an error such as an invalid filename.

Keywords

Comment — A scalar string or an array of comment strings to be printed at the top
of the kernel file.

Scale — The scale factor to apply to the filter kernel. (Default: 1.0)

Discussion

There are many filter files provided with the Image Processing Toolkit. The files
are located in the following directories:

(UNIX) ip-1_0/data/kernel/*.ker

(UNIX) ip-1_0/data/filter/*.flt

(Windows) ip-1_0\data\kernel*.ker

(Windows) ip-1_0\data\filter*.flt

The file format for the spatial filter files provided and for user-written spatial filter
files must conform to the following conventions:

134 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

• Comments begin with a semicolon.

• The first un-commented line in the file is data type of the filter weight. This line
is one of the following valid strings: ’byte’, ’int’, ’long’, ’float’,
or ’double’.

• The next un-commented line contains the dimensions of the kernel, with the x-
dimension listed first, followed by the y-dimension.

• Next is the list of space and/or line feed-separated kernel values.

• Finally, the scale factor, if present, appears. The scale factor is a floating point
value.

The format for spectral filters is simply the associative array passed to the routine
and saved in XDR format.

Example 1
gauss = GAUSS_KERNEL(5, 5)

; Create a spatial Gaussian filter.

status = IPWRITE_FILTER(gauss, ’gauss_5.ker’)

; Save the filter in a file.

Example 2
lpf = FILT_FREQ(30, /Low, Xdim = 300, $

Ydim = 300)

; Create an ideal lowpass filter.

status = IPWRITE_FILTER(lpf, ’lpf_300.flt’)

; Save the filter to a file.

See Also

IPCREATE_FILTER, IPREAD_FILTER

IS_GRAY_CMAP Function 135

IS_GRAY_CMAP Function
Determines if a colormap is grayscale.

Usage

result = IS_GRAY_CMAP(colormap)

Input Parameters

colormap — A 3-by-n_colors array containing the colormap, where n_colors is the
number of colors in the colormap.

Returned Value

result — A value indicating if the colormap is grayscale as follows:

1 Grayscale colormap

0 Colormap not grayscale

Keywords

Linear — If set, determines if the colormap is monotonically increasing.

Discussion

In a grayscale colormap, the red, green, and blue components are equal to each
other for each element in the colormap. Therefore, to test for a grayscale colormap,
the following equation is true:

red(i) EQ blue(i) EQ green(i), for 0 ≤ i < n_colors

where n_colors is the number of colors in the colormap.

A grayscale colormap is said to be linear if the grayscale value is monotonically
increasing. To determine linearity for a grayscale colormap, it is sufficient to test
only the red component as follows:

red(i – 1) < red(i), for 1 ≤ i < n_colors

where n_colors is the number of colors in the colormap.

136 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Example
TVLCT, r, g, b, /Get

; Get the current colormap.

cmap = BYTARR(3, N_ELEMENTS(r))

cmap(0, *) = r

cmap(1, *) = g

cmap(2, *) = b

; Put it into a colormap array.

result = IS_GRAY_CMAP(cmap, /Linear)

IF result EQ 1 THEN PRINT, ”Colormap is ” + $
”linear grayscale.” $ &

ELSE PRINT, ”Colormap is not linear grayscale.”

; Check to see if it is linear grayscale.

See Also

IPLINEAR_GRAY

KURTOSIS Function 137

2
Reference

KURTOSIS Function
Computes the kurtosis of an array.

Usage

result = KURTOSIS(array)

Input Parameters

array — An array of any data type except string.

Returned Value

result — A double array containing the kurtosis of array.

Keywords

None.

Discussion

Kurtosis is a useful measure for statistical texture analysis. The KURTOSIS func-
tion computes the kurtosis of array(k, l) as:

where mean = AVG(array) and std = STDEV(array).

Example
image = IMAGE_READ(!IP_Data + ’noise_test.tif’)

; Read an image.

kurt = KURTOSIS(image(’pixels’))

PRINT, ’Kurtosis = ’, kurt

; Compute the kurtosis of the image.

See Also

ENTROPY, MODE, RANGE, SKEWNESS, UNIFORMITY

kurtosis
array k l,() mean–

std
-- 

  4

3.0–
l 0=

L 1–

∑
k 0=

K 1–

∑=

138 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

MAJOR_AXIS Function
Computes the major axis of a region in an image.

Usage

result = MAJOR_AXIS(image, pixels)

Input Parameters

image — A 2D array containing a region.

pixels — A long array containing the element numbers of the pixels in image that
compose the region.

Returned Value

result — A double scalar value that is the angle defined by the horizontal axis and
the major axis through the region.

Keywords

Eigval — Specifies a variable to receive the eigenvalues of the region.

Eigvect — Specifies a variable to receive the eigenvectors of the region.

Discussion

The major axis of a region describes the direction of maximal dispersion. Specifi-
cally, the major axis of a region is determined from the eigenvectors of the
covariance matrix of the pixel location array, where the pixel location array is com-
posed of the row and column values of the region pixel locations. The eigenvector
corresponding to the maximum eigenvalue of the covariance matrix is the major
axis angle.

Example
image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

one_blob = THRESHOLD(image(’pixels’), 20, $
25, /Binary)

; Segment the image using thresholding.

blob_pixels = WHERE(one_blob NE 0)

major = MAJOR_AXIS(one_blob, blob_pixels)

MODE Function 139

; Find the major axis of the remaining blob.

PRINT, ’Major axis angle = ’, major

; Print the major axis.

See Also

CENTROID, PERIMETER

MODE Function
Determines the mode of an array.

Usage

result = MODE(array)

Input Parameters

array — An array of any data type except string.

Returned Value

result — An array of the same data type as array containing the mode of array.

Keywords

None.

Discussion

The mode of an array is the most frequently occurring value in the array.

Example
image = IMAGE_READ(!IP_Data + ’objects.tif’)

; Read an image.

image_mode = MODE(image(’pixels’))

; Compute the mode of the image.

PRINT, image_mode

; Print the mode. This is the value of the largest region.

thresh_image = THRESHOLD(image(’pixels’), $
image_mode, /Binary)

; Threshold the image for the largest region.

140 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

TVSCL, thresh_image

; Display the image.

See Also

ENTROPY, KURTOSIS, RANGE, SKEWNESS, UNIFORMITY

MOMENT2D Function
Computes the 2D moments of an array.

Usage

result = MOMENT2D(image[, p, q])

Input Parameters

image — A 2D or 3D array containing an image; or image, row or pixel-interleaved
images.

p — (optional) The p-order of the moment M(p, q).

q — (optional) The q-order of the moment M(p, q).

Returned Value

result — For 2D image arrays, result is a scalar double containing the computed
moment.

For 3D image arrays result is a double array containing the computed moments.

Keywords

CCentroid — If set, computes the column centroid M(0, 1)/M(0, 0).

Central — If set, computes the central moment MC(p, q).

CInertia — If set, computes the column inertia MCS(0, 2).

Column — If set, computes the column moment M(0, 1).

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-

MOMENT2D Function 141

interleaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

RCentroid — If set, computes the row centroid M(1, 0)/M(0, 0).

RCInertia — If set, computes the row-column cross inertia MCS(1, 1).

RInertia — If set, computes the row inertia MCS(2, 0).

Row — If set, computes the row moment M(1, 0).

Scaled — If set, computes the central moment MS(p, q).

Surface — If set, computes the surface moment M(0, 0).

Discussion

Spatial moments are used in shape analysis. Moments describe the distribution of
grayscale values in an image. The equation for a two-dimensional moment is as
follows:

The calculation of a central moment, MC, involves the subtraction of the image cen-
troid from each pixel as shown in these equations:

Scaled moments, MS, are divided by I p *J q for moment Mpq computed for an I-
by-J image.

pq ip jqimage i j,()
j 0=

J 1–

∑
i 0=

I 1–

∑=

x
M10

M00
---------= y,

M01

M00
---------=

µpq i x–()p j y–()qimage i j,()
j 0=

J 1–

∑
i 0=

I 1–

∑=

142 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Example
image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

thresh_image = THRESHOLD(image(’pixels’), 20, $
30, /Binary)

; Threshold the image for a single blob.

moment = MOMENT2D(thresh_image, /CCentroid)

; Compute the column centroid.

PRINT, moment

; Print the centroid.

See Also

CENTROID, MAJOR_AXIS

MORPH_CLOSE Function
Performs the morphologic-close operation for shape processing. The close opera-
tion is defined as dilation followed by erosion

Usage

result = MORPH_CLOSE(image, structure[, x0, y0])

Input Parameters

image — The array to be eroded and dilated.

structure — A 1D or 2D array of structuring elements. The elements are inter-
preted as binary elements (values are either zero or nonzero), unless the Gray
keyword is used.

x0 — (optional) The x-coordinate of the structure’s origin.

y0 — (optional) The y-coordinate of the structure’s origin.

Returned Value

result — The closed image that is of the same size and dimensions as image.

MORPH_CLOSE Function 143

Keywords

Gray — If set, uses grayscale dilation and erosion. (Default: binary dilation and
erosion)

Values — An array of values of the structuring element. The Values array must
have the same dimensions and number of elements as the structure parameter.

Discussion

Morphological operations are defined for grayscale byte images. If image is not
originally of type byte, PV-WAVE makes a temporary copy of image that is of type
byte before using it for the morphological processing.

The morphological closing operation is defined as dilation followed by erosion.
These operations are defined for byte data type images only. Closing is typically
used to fill in small artifacts in images such as small gaps or holes. Larger gaps and
holes can be filled by applying the morphological closing operation multiple times
in succession.

Example
morph_struct = BYTARR(3, 3)

morph_struct(*) = 1B

morph_struct(1, 1) = 0B

; Make a square structuring element.

test_image = IMAGE_READ(!IP_Data + ’vnitext.tif’)

; Read an image.

close_image = MORPH_CLOSE(test_image(’pixels’), $
morph_struct)

; Remove the thin parts of the letters.

TVSCL, close_image

; Display the image.

See Also

HIT_MISS, MORPH_OPEN, MORPH_OUTLINE,
SKELETONIZE, TOP_HAT

In the PV-WAVE Reference: DILATE, ERODE

144 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

MORPH_OPEN Function
Performs the morphologic-open operation for shape processing. The open opera-
tion is defined as erosion followed by dilation.

Usage

result = MORPH_OPEN(image, structure[, x0, y0])

Input Parameters

image — The array to be opened.

structure — A 1D or 2D array of structuring elements. The elements are inter-
preted as binary elements (values are either zero or nonzero), unless the Gray
keyword is used.

x0 — (optional) The x-coordinate of the structure’s origin.

y0 — (optional) The y-coordinate of the structure’s origin.

Returned Value

result — The opened image that is of the same size and dimensions as image.

Keywords

Gray — If set, uses grayscale erosion and dilation. (Default: binary erosion and
dilation)

Values — An array of values of the structuring element. The Values array must
have the same dimensions and number of elements as the structure parameter.

Discussion

Morphological operations are defined for grayscale byte images. If image is not
originally of type byte, PV-WAVE makes a temporary copy of image that is of type
byte before using it for the morphological processing.

The morphological opening operation is defined as erosion followed by dilation.
These operations are defined for byte data type images only. Opening is typically
used to smooth the boundaries of objects in images while removing noise spikes.
Opening can by applied multiple times in succession to achieve greater degrees of
smoothing or noise reduction.

MORPH_OPEN Function 145

Example
morph_struct = BYTARR(3, 3)

morph_struct(*) = 1B

morph_struct(1, 1) = 0B

; Make a square structuring element.

test_image = IMAGE_READ(!IP_Data + ’vnitext.tif’)

; Read an image.

open_image = MORPH_OPEN(test_image(’pixels’), morph_struct)

; Smooth the letters.

TVSCL, open_image

; Display the image.

See Also

HIT_MISS, MORPH_CLOSE, MORPH_OUTLINE,
SKELETONIZE, TOP_HAT

In the PV-WAVE Reference: DILATE, ERODE

146 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

MORPH_OUTLINE Function
Performs morphologic outlining for shape processing.

Usage

result = MORPH_OUTLINE(image, structure [, x0, y0])

Input Parameters

image — The array to be morphologically outlined.

structure — A 1D or 2D array containing the structuring element. The array ele-
ments are interpreted as binary values (either zero of nonzero), unless the Gray
keyword is used.

x0 — (optional) The x-coordinate of structure’s origin.

y0 — (optional) The y-coordinate of structure’s origin.

Returned Value

result — An array of the same size and dimensions as image.

Keywords

Dilation — If set, performs outlining by subtracting the original image from the
dilated image; otherwise, the eroded image is subtracted from the original image.

Gray — If set, uses grayscale, rather than binary closing.

Values — An array of the same dimensions and number of elements as structure,
containing the values of the structuring element.

Discussion

Morphological operations are defined for grayscale byte images. If image is not
originally of type byte, PV-WAVE makes a temporary copy of image that is of type
byte before using it for the morphological processing.

The morphological outline operation is defined as the difference between either the
dilated or eroded image and itself. These operations are defined for byte data type
images only. Outlining produces an output image in which all pixels are the back-
ground gray-level value except those pixels that lie on an object’s boundary. The
thickness of the boundary is determined by the dimensions of the structuring
element.

MORPH_OUTLINE Function 147

Example
morph_struct = BYTARR(3, 3)

morph_struct(*) = 1B

morph_struct(1, 1) = 0B

; Make a square structuring element.

test_image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

IMAGE_DISPLAY, test_image

Figure 2-19 A collection of differently shaped blobs.

outline_image = MORPH_OUTLINE(test_image(’pixels’), $
morph_struct, values = morph_struct)

; Find the blob outlines.

LOADCT, 0

TVSCL, outline_image

148 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-20 The outlines of the blobs.

See Also

HIT_MISS, MORPH_CLOSE, MORPH_OPEN,
SKELETONIZE, TOP_HAT

In the PV-WAVE Reference: DILATE, ERODE

NOISE_GEN Function 149

NOISE_GEN Function
Returns an m-dimensional array of the desired noise distribution.

Usage

result = NOISE_GEN(d1[, d2, ..., d8])

Input Parameters

d1, ..., d8 — The dimensions of the result output array.

Returned Value

result — An m-dimensional array of the desired noise distribution, where m is from
1 to 8.

Keywords

A — A positive scalar float that is the shape parameter for a gamma distribution.

Background — The desired background value of the result array.

NOTE The Background keyword is only valid for impulse noise.

Beta — If present and nonzero, the beta distribution is used.

Binary — If present and nonzero, returns a binary distribution.

NOTE The Binary keyword is only valid for impulse distribution.

Covariances — A 2D, square variance-covariance matrix defined for the
Mvar_Normal distribution.
The 2D result is of size n-by-N_ELEMENTS(Covariances(*, 0)).

NOTE Both the Covariances and Mvar_Normal keywords must be specified to
return numbers from a multivariate normal distribution.

Double — If present and nonzero, double precision is used.

Exponential — If present and nonzero, uses the exponential distribution.

150 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

F1, ..., F8 — (Used with the Periodic keyword.) The frequency for dimension i (i
= 1, ..., 8) used for the periodic noise distribution.

Gamma — If present and nonzero, uses the gamma distribution.

High — The desired maximum of the returned values.

Impulse — If present and nonzero, uses the impulse distribution.

Low — The desired minimum of the returned values.

Mvar_Normal — If present and nonzero, uses the multivariate normal distribution.

NOTE Both the Mvar_Normal and Covariances keywords must be specified to
return numbers from a multivariate normal distribution.

Normal — If present and nonzero, uses the normal distribution.

Periodic — If present and nonzero, uses the periodic distribution.

Pin — The first parameter of the beta distribution, a positive value.

Poisson — If present and nonzero, uses the Poisson distribution.

Prob — The noise probability for the impulse distribution.

Qin — The second parameter of the beta distribution, a positive value.

Rayleigh — If present and nonzero, uses the Rayleigh distribution.

S_Amp — A seed for the random number generator.

NOTE The S_Amp keyword is only valid for use with the Impulse, Rayleigh, and
Periodic keywords.

S_Index — A seed for the index random number generator.

NOTE The S_Index keyword is valid for use with the impulse distribution only.

Sine_Amp — The amplitude of sinusoidal (periodic) noise.

Theta — The mean value of the Poisson distribution, a positive value.

Type — A string indicating the desired data type of result. Valid strings include:
’byte’, ’fix’, ’float’, or ’double’.

Uniform — If present and nonzero, uses the uniform distribution.

Var — The noise variance for the Rayleigh distribution.

NOISE_GEN Function 151

Discussion

NOTE The PV-WAVE:Image Processing Toolkit NOISE_GEN function is a
wrapper for the noise generators which are already available in PV-WAVE Advan-
tage. Specifically, these include the RANDOM and RANDOMOPT routines in
PV-WAVE IMSL Statistics.

NOISE_GEN returns an array of noise with the probability distribution specified
by the Normal, Poisson, Uniform, Impulse, Rayleigh, Exponential, Mvar_Normal,
Beta, Gamma, and Periodic keywords. If NOISE_GEN is called without any key-
words, then the returned array contains random numbers from a uniform (0, 1)
distribution.

Uniform (0,1) Distribution

The default action of NOISE_GEN generates pseudo-random numbers from a uni-
form (0, 1) distribution using a multiplicative, congruent method. The form of the
generator follows:

xi ≡ cxi–1mod(231–1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by using
the RANDOMOPT procedure with the Gen_Option keyword. The choice of 16807
results in the fastest execution time. If no selection is made explicitly, the functions
use the multiplier 16807.

The RANDOMOPT procedure called with the Set keyword is used to initialize the
seed of the random-number generator.

You can select a shuffled version of these generators. In this scheme, a table is filled
with the first 128 uniform (0,1) numbers resulting from the simple multiplicative
congruent generator. Then, for each xi from the simple generator, the low-order bits
of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table
is then delivered as the random number, and xi, after being scaled into the unit inter-
val, is inserted into the j-th position in the table.

The values returned are positive and less than 1.0. Some values returned may be
smaller than the smallest relative spacing; however, it may be the case that some
value, for example r(i), is such that 1.0 – r(i) = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output.

152 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Normal Distribution

Calling RANDOM with keyword Normal generates pseudorandom numbers from
a standard normal (Gaussian) distribution using an inverse CDF technique. In this
method, a uniform (0, 1) random deviate is generated. Then, the inverse of the nor-
mal distribution function is evaluated at that point using the PV-WAVE function
NORMALCDF with keyword Inverse.

Deviates from the normal distribution with mean specific mean and standard devi-
ation can be obtained by scaling the output from RANDOM.

Exponential Distribution

Calling RANDOM with keyword Exponential generates pseudorandom numbers
from a standard exponential distribution. The probability density function is f(x) =
e–x, for x > 0. RANDOM uses an antithetic inverse CDF technique. In other words,
a uniform random deviate U is generated, and the inverse of the exponential cumu-
lative distribution function is evaluated at 1.0 – U to yield the exponential deviate.

Poisson Distribution

Calling RANDOM with keywords Poisson and Theta generates pseudorandom
numbers from a Poisson distribution with positive mean Theta. The probability
function (with θ = Theta) follows:

f(x) = (e–θθx)/x! , for x = 0, 1, 2, ...

If Theta is less than 15, RANDOM uses an inverse CDF method; otherwise, the
PTPE method of Schmeiser and Kachitvichyanukul (1981) is used. (See also
Schmeiser, 1983.) The PTPE method uses a composition of four regions, a triangle,
a parallelogram, and two negative exponentials. In each region except the triangle,
acceptance/rejection is used. The execution time of the method is essentially insen-
sitive to the mean of the Poisson.

Gamma Distribution

Calling RANDOM with keywords Gamma and A generates pseudorandom num-
bers from a Gamma distribution with shape parameter
a = A and unit scale parameter. The probability density function follows:

f x()
1

Γ a()
----------xa 1– e x–= for x 0≥

NOISE_GEN Function 153

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates
are used; for the special case of a = 1.0, exponential deviates are generated. Other-
wise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, described
in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a 10-region rejection
procedure developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard Gamma distribution with the shape parameter
having a value equal to a positive integer; hence, RANDOM generates pseudoran-
dom deviates from an Erlang distribution with no modifications required.

Beta Distribution

Calling RANDOM with keywords Beta, Pin, and Qin generates pseudorandom
numbers from a beta distribution with parameters Pin and Qin, both of which must
be positive. With p = Pin and q = Qin, the probability density function is

where Γ(⋅) is the Gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases
of p = 1 or q = 1, in which the inverse CDF method is used, all the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is
used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng
(1978), which requires very little setup time, is used if x is less than 4, and algo-
rithm B4PE of Schmeiser and Babu (1980) is used if x is greater than or equal to 4.

NOTE Note that for p and q both greater than 1, calling RANDOM to generate
random numbers from a beta distribution a loop getting less than four variates on
each call yields the same set of deviates as executing one call and getting all the
deviates at once.

The values returned are less than 1.0 and greater than ε, where ε is the smallest pos-
itive number such that 1.0 – ε < 1.0.

Multivariate Normal Distribution

Calling RANDOM with keywords Mvar_Normal and Covariances generates pseu-
dorandom numbers from a multivariate normal distribution with mean array

f x()
Γ p q+()
Γ p()Γ q()
----------------------xp 1– 1 x–()q 1–=

154 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

consisting of all zeros and variance-covariance matrix defined using keyword
Covariances. First, the Cholesky factor of the variance-covariance matrix is com-
puted. Then, independent random normal deviates with mean zero and variance 1
are generated, and the matrix containing these deviates is post-multiplied by the
Cholesky factor. Because the Cholesky factorization is performed in each
invocation, it is best to generate as many random arrays as needed at once.

Deviates from a multivariate normal distribution with means other than zero can be
generated by using RANDOM with keywords Mvar_Normal and Covariances,
then adding the arrays of means to each row of the result.

Rayleigh Distribution

Calling NOISE_GEN with keywords Rayleigh and Var generates pseudorandom
numbers from a Rayleigh distribution. With α = Var, the probability density func-
tion for Rayleigh noise is:

.

Impulse Distribution

Calling NOISE_GEN with the Impulse and Prob keywords generates an array of
impulse, or salt-and-pepper noise. Impulse noise appears as bright and dark spots
within an image. The High and Low keywords control the graylevel values for the
salt (bright) and pepper (dark) noise, respectively. Salt and pepper noise are gener-
ated with equal probabilities, 0.5 each. In other words, one half of the noise is
expected to be pepper noise and one half is expected to be salt noise. The Prob key-
word indicates the probability that a given pixel in the resulting image will be
corrupted by noise. Typical values for Prob are from 0.05 to 0.3.

Periodic Distribution

Calling NOISE_GEN with the Periodic and F1, ..., F8 keywords generates an array
of periodic noise. Periodic, or coherent, noise is composed of 2D sinusoidal func-
tions. This is often seen in the form of electrical noise at 60 (or 50) Hz. In the spatial
frequency domain, periodic noise corruption is easily seen as bright spot in the
spectrum. A notch filter is generally useful in eliminated periodic noise from an
image.

The formula for periodic noise is as follows:

n(i, j) = A sin(f0i + f1j) .

f x()
G x()

α2
-----------e G x()–()2 2α2⁄ for 0 G x() ∞<≤=

NOISE_GEN Function 155

Example
rayleigh = NOISE_GEN(256, 256, /Rayleigh, Var = 30.0)

normal = NOISE_GEN(256, 256, /Normal)

gamma = NOISE_GEN(256, 256, /Gamma, a = 0.7)

TVSCL, rayleigh

TVSCL, normal

TVSCL, gamma

; Generate several noise images and view them.

image = IMAGE_READ(!IP_Data + ’face.tif’)

image_rayleigh = IPMATH(image(’pixels’), $
’+’, rayleigh + 128.0, /No_Clip)

image_normal = IPMATH(image(’pixels’), $
’+’, normal + 128.0, /No_Clip)

image_gamma = IPMATH(image(’pixels’), $
’+’, gamma + 128.0, /No_Clip)

; Corrupt an image with the noise and view the noisy images.

See Also

NOISE_IMPULSE, NOISE_PERIODIC, NOISE_RAYLEIGH

In the PV-WAVE: IMSL Statistics Reference: RANDOM,
RANDOMOPT

156 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

NOISE_IMPULSE Function
Generates an array of impulse noise, also known as salt-and-pepper noise, in a
blank array with a specified background; or applies the impulse noise to an existing
image array.

Usage

result = NOISE_IMPULSE(probability, d1[, d2, ... , d8])

status = NOISE_IMPULSE(probability, image)

Input Parameters

probability — A floating point scalar, which is the probability of noise in the array.
The probability parameter values are between 0.0 and 1.0.

d1, ..., d8 — The dimensions of the noise array.

NOTE The d1, ..., d8 input parameters are ignored for the status usage with the
image parameter.

image — An array to corrupt by replacing its pixels with noise values.

Returned Value

result — An array corrupted with salt-and-pepper impulse noise in a solid back-
ground. The value of background is set using the Background keyword. The array
data type is specified with the Type keyword. (Default: byte).

status — A value indicating the status of the noise corruption of image.
1 Indicates successful noise corruption.
0 Indicates a failed attempt.

Keywords

Amp_Seed — A scalar long value used as the seed for generating random-impulse
amplitudes.

Background — A scalar setting for the desired background value of the result
array. (Default = 127)

NOTE The Background keyword is ignored for the status usage with the image
parameter. 2

NOISE_IMPULSE Function 157

Binary — If set and nonzero, the generated noise is binary, containing only the
high and low values.

High — A scalar value setting for the high, “salt” noise. (Default: 255)

Index_Seed — A scalar long value used as the seed for generating random-impulse
noise locations.

Low — A scalar value setting for the low, “pepper” noise. (Default: 0)

Type — A string indicating the desired data type of result. Valid strings include:
’byte’, ’fix’, ’float’, or ’double’.

NOTE The Type keyword is ignored for the status usage with the image parameter.

Discussion
Impulse noise is often referred to as salt-and-pepper noise, and usually appears as
bright and dark spots within an image. The High and Low keywords control the
gray-level values for the salt (bright) and pepper (dark) noise, respectively. Salt and
pepper noise are generated with equal probabilities, 0.5 each. In other words, one
half of the noise is expected to be pepper noise and one half is expected to be salt
noise. The probability parameter indicates the probability that a given pixel in the
resulting image will be corrupted by noise. Typical values for probability are from
0.05 to 0.3.

Example
image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

pixels = image(’pixels’)

status = NOISE_IMPULSE(0.15, pixels)

; Corrupt the image with impulse noise.

image(’pixels’) = pixels

IMAGE_DISPLAY, image

; Display the corrupted image.

filt_image = FILT_NONLIN(image(’pixels’), 3, $
3, /Rankf, Rank_Num = 4)

; Attempt to remove the noise with a rank filter.

TVSCL, filt_image

; Display the filtered image.

See Also

NOISE_GEN, NOISE_PERIODIC, NOISE_RAYLEIGH

158 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

NOISE_PERIODIC Function
Generates an array of periodic (coherent) noise.

Usage

result = NOISE_PERIODIC(d1[, d2, ... , d8])

Input Parameters

d1, ..., d8 — The dimensions of the noise array.

Returned Value

result — An array containing periodic noise. The array data type is specified using
the Type keyword.

Keywords

Amp — A scalar float that is the maximum amplitude of the periodic noise.
(Default: 1.0)

DC_Offset — A scalar float containing the DC offset (also known as the zero fre-
quency) of the periodic noise. (Default: 0.0)

F1, ..., F8 — The spatial frequency of the noise in dimensions d1, ..., d8, respec-
tively. (Default: 0.0)

Type — A scalar string specifying the data type of the returned noise array. Valid
strings are: ’byte’, ’fix’, ’long’, ’float’, and ’double’. (Default:
’float’)

Discussion

Periodic, or coherent, noise is composed of 2D sinusoidal functions. This is often
seen in the form of electrical noise at 60 (or 50) Hz. In the spatial frequency
domain, periodic noise corruption is easily seen as bright spot in the spectrum. A
notch filter is generally useful in eliminated periodic noise from an image.

The formula for periodic noise is as follows:

n(i, j) = A sin(f0i + f1j)

NOISE_RAYLEIGH Function 159

Example
noise = NOISE_PERIODIC(128, 128, F1 = 30.0, $

F2 = 100.0, Amp = 15.0, DC_Offset = 128.0)

First, get an array of periodic noise.

corrupt_image = IPMATH(image, ’+’, noise, $
/No_Clip)

Now, corrupt an image with the generated periodic noise.

See Also

FILT_NOTCH, NOISE_GEN, NOISE_IMPULSE,
NOISE_RAYLEIGH

NOISE_RAYLEIGH Function
Generates an array of Rayleigh distribution noise.

Usage

result = NOISE_RAYLEIGH(variance, d1[, d2, ... , d8])

Input Parameters

variance — The desired noise variance.

d1, ..., d8 — The dimensions of the result array.

Returned Value

result — An array of Rayleigh-distributed random numbers. The result array data
type is set using the Type keyword.

Keywords

Seed — A scalar long value specifying the seed used for the random number
generator.

Type — A string indicating the desired data type of result. Valid strings include:
’byte’, ’fix’, ’long’, ’float’, or ’double’. (Default: ’byte’)

160 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Discussion

Rayleigh noise is derived from uniform noise and is commonly seen in radar and
velocity images. The probability density function for Rayleigh noise is:

NOISE_RAYLEIGH computes a Rayleigh distributed noise array from a uniform
noise array as follows:

Example
image = IMAGE_READ(!IP_Data + ’objects.tif’)

; Read an image.

noise = NOISE_RAYLEIGH(15.0, image(’width’), $
image(’height’))

; Generate some Rayleigh noise with a variance of 15.0.

noise_image = IPMATH(noise + 128.0, ’+’, $
image(’pixels’), /No_Clip)

; Add the noise to the image.

filt_image = FILT_MMSE(noise_image, 15.0, $
3, 3, Edge = ’copy’)

; Test the MMSE filter for removing the noise.

TVSCL, filt_image

; Display the filtered image.

See Also

NOISE_GEN, NOISE_IMPULSE, NOISE_PERIODIC

f x()
G x()

α2
-----------e G x()–()2 2α2⁄ for 0 G x() ∞<≤=

rayleigh 2.0 2.3299 σ2 1.0 uniform–()ln⋅ ⋅ ⋅–=

PAD_IMAGE Function 161

PAD_IMAGE Function
Places a constant border around a volume, image, or signal.

Usage

result = PAD_IMAGE(image, xdim[, ydim[, zdim]])

Input Parameters

image — A 1D, 2D, or 3D array containing a signal; point or signal-interleaved
signals; an image; image, row or pixel interleaved images; or a volume.

xdim — The width setting for the padded volume, image or signal.

ydim — (optional) The height setting for the padded volume or image. (Required
for images and volumes.)

zdim — (optional) The depth setting for the padded volume. (Required for
volumes.)

Returned Value

result — An array of the same data type as image, whose dimensions are set using
the xdim and, optionally, the ydim, and zdim parameters.

Keywords

Center — If set, the original image is centered in the padding.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

162 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Pad_Value — A scalar constant used for padding the image.
(Default: 0)

Discussion

It is often useful to increase the dimensions of an image before applying image pro-
cessing operations to the image. The PAD_IMAGE function surrounds an image
with a constant valued border. The image may be either centered or placed in the
upper left hand corner of the border, by using the Center keyword.

Example
image = IMAGE_READ(!IP_Data + ’photo.tif’)

; Read in an image.

square_image = PAD_IMAGE(image(’pixels’), $
512, 512, /Center)

; Zero-pad the image to a square size that is a
; power of 2 before computing the FFT.

image_fft = FFT(square_image, -1)

; Compute the image FFT.

See Also

IPCONVOL

PCT Function 163

PCT Function
Performs the principle components transform on a multi-layered image.

Usage

result = PCT(images)

Input Parameters

images — A 3D array of byte, integer or float data type that contains image, row
or pixel-interleaved images.

Returned Value

result — A 3D complex array.

Keywords

Covar — Specifies a variable which holds the covariance matrix of the sample
array formed from the images.

Eigvals — Specifies a variable which holds the Eigenvalues of the covariance
matrix, a complex array.

Eigvects — Specifies a variable which holds the Eigenvectors of the covariance
matrix, a complex array.

Imaginary — If set, returns only the imaginary portion of result.

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Mx — Specifies a variable which holds the mean of the sample array formed from
the images.

164 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Offset — If set, result is offset by its minimum value so that the returned result has
a minimum of zero.

Pct_trans — Specifies a variable which holds the principle components transfor-
mation matrix, a complex array.

Real — If set, returns only the real portion of result.

Discussion

The principle components transform (also known as the Hotelling Transform, or
the Karhunen-Loève Transform) is commonly used in remote sensing applications.
It de-correlates the input images, and the result contains the de-correlated images
arranged according to the sample variance; that is, the image with the largest sam-
ple variance is first, and so on to the image with the smallest sample variance.

The principle components transform is computed by building a sample matrix, X,
from the input image array. Each sample of X is a vector comprised of the corre-
sponding pixels in each image of the array. The transformation matrix specified
using the Pct_trans keyword is then computed from the eigenvectors of the corre-
lation matrix of X.

Example

This example illustrates a principle components transform applied to a pixel-inter-
leaved image.

rgb_i = IMAGE_READ(!IP_Data + ’boulder_image.tif’)

rgb_i = rgb_i(’pixels’)

; Read in a 24 bit image.

pct_i = PCT(rgb_i, Pct_trans = itrans, Mx = imx, $
Intleave = ’image’)

; Compute the principle components transform (PCT).

FOR I = 0,2 DO BEGIN & $

TVSCL, pct_i(*, *, I)) & $

HAK, /Mesg

; The first image contains most of the information.

See Also

IPCT

PERIMETER Function 165

PERIMETER Function
Computes the perimeter of a region in an image.

Usage

result = PERIMETER(image, region)

Input Parameters

image — A 2D array.

region — A long array containing the pixel element numbers in image that com-
pose the region.

Returned Value
result — A long scalar value, in units of pixels, that is the perimeter of the region.

Keywords
None.

Discussion
The perimeter of a region is defined as the number of pixels in its boundary. The
boundary of a specified region in image is computed by considering the 8-neigh-
bors of every pixel in image. Any pixel having an 8-neighbor that is not a member
of the region is marked as a boundary pixel. The total number of boundary pixels
in the image is the region perimeter.

Example
image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

thresh_image = THRESHOLD(image(’pixels’), 20, 30, /Binary)

; Threshold the image for a single blob.

region = WHERE(thresh_image EQ 255)

; Find the pixel number of the object.

perim = PERIMETER(thresh_image, region)

; Calculate the perimeter and print it to the screen.

PRINT, perim

See Also
CENTROID, MAJOR_AXIS, MOMENT2D

166 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

POLAR_FFT Function
Transforms the FFT of an image or images from a rectangular-coordinate space
into a polar-coordinate space, and then sums the polar FFT along ρ and θ.

Usage

result = POLAR_FFT(image)

Input Parameters

image — A 2D or 3D array containing an image; or image, row, or pixel-inter-
leaved images.

Returned Value

result — A complex array of the same dimensions and interleaving as the image
array, which contains the FFT in a polar-coordinate system.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

Rho — Specifies a variable, ρ to hold the radial FFT magnitude summation.

Theta — Specifies a variable, θ to hold the angular FFT magnitude summation.

Discussion

The POLAR_FFT function is a spectral approach to texture description. Periodic
patterns within an image typically appear as peaks in the Fourier spectrum of the
image. These peaks provide information about the periodic patterns, or texture, of
the image, such as the direction and the spatial period. Determining pattern direc-

POLAR_FFT Function 167

tion and spatial period, however, is simplified by expressing the spectrum in a polar
coordinate system. The summation of the polar spectrum along either the radius or
the angle component, (ρ and θ, respectively) provides global textural information
in a 1D signal. The polar spectrum can also be evaluated for a constant ρ or θ,
which also produces a 1D signal. Statistical properties, such as the maximum,
mean, and variance, of the 1D signals are useful textural descriptors.

Example
image = IMAGE_READ(!IP_Data + ’texture.tif’)

; Read an image.

IMAGE_DISPLAY, image

Figure 2-21 The texture image.

image_fft = POLAR_FFT(image(’pixels’), $
Theta = theta_sum, Rho = rho_sum)

; Compute the polar FFT of the image. Get the
; summation along θ and ρ as output variables.

PLOT, rho_sum

168 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Figure 2-22 The plot of the summation of the polar rho variable.

PLOT, theta_sum

; Plot the 1D signals. Peaks in the signals indicate
; texture periodicity and direction.

Figure 2-23 The plot of the summation of the polar theta variable.

RADON Function 169

texture_stats = FLTARR(3)

texture_stats(0) = MAX(rho_sum)

texture_stats(1) = AVG(rho_sum)

texture_stats(2) = STDEV(rho_sum, /Variance)

; Compute statistics for this textural feature.

PRINT, texture_stats

See Also

GLCM, GLRL, HIST_STATS

RADON Function
Computes the forward radon transform of an image.

Usage

result = RADON(image)

Input Parameters

image — A 2D or 3D array containing an image; or image, row or pixel-interleaved
images.

Returned Value

result — A 2D or 3D array containing the radon transformation. If image is a byte
or integer data type, result is a long; otherwise, result is a double array.

For a 2D image input parameter, result is a 2D long array whose dimen-
sions are the diagonal of the original image by the value of the N_Angles
keyword.

For a 3D image array (an array of 2D images), result is a 3D long array
whose dimensions are the diagonal of the original image by the value of
the N_Angles keyword by the number of images in the array, p.

170 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D input image
arrays. Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

N_Angles — Specifies the number of angles, between 0 and 360, to quantize in the
transform calculation. (Default: 360)

Discussion

The Radon transform is composed of the combined projections of an image over
all possible angles. Specifically, the image is rotated about its center by a rotation
angle. The columns of the rotated image are then summed to form the radon trans-
form result for that particular rotation angle. The rotation angle begins at zero
degrees and is increased on each iteration by the angle step size, where the step size
is the number of requested angles (N_Angles) divided by 360. The rotation and
summing technique is continued until the rotation angle reaches 360 degrees. The
Radon transform is commonly used in image reconstruction and machine vision.

Example
image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

image(’pixels’) = THRESHOLD(image(’pixels’), $
30, 40, /Binary)

; Threshold the image.

radon_image = RADON(image(’pixels’), $
N_Angles = 180)

; Compute the Radon transform over 180 projections.

TVSCL, radon_image

; Display the radon transform.

See Also

HAAR, HOUGH, SLANT

RANGE Function 171

RANGE Function
Computes the range of values in an array.

Usage

result = RANGE(array)

Input Parameters

array — An array of any data type except string.

Returned Value

result — The range of values in array.

Keywords

None.

Discussion

The range of an array is the maximum value in the array minus the minimum value
of the array.

Example
image = IMAGE_READ(!IP_Data + ’objects.tif’)

; Read an image.

image_range = RANGE(image(’pixels’))

; Find the range of the image.

PRINT, image_range

See Also

ENTROPY, KURTOSIS, MODE, SKEWNESS

172 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

REGION_COUNT Function
Computes the number of regions in an image.

Usage

result = REGION_COUNT(image)

Input Parameters

image — A 2D array containing binary regions. Each binary region must be filled
with a different value.

NOTE If image does not contain binary regions, the Search_Values keyword must
be specified.

Returned Value

result — The number of separate regions in image.

Keywords

Search_Values — A scalar value greater than zero, or an array containing values
greater than zero to search for in image. These values are then used as seed points
for growing regions. The number of regions grown are then counted.

Seeds — A 1D long array of n_region points specifying a variable to receive the
element-number of a point in each region.

Discussion

When the Search_Values or Seeds keywords are defined, regions in the array are
grown based on the amplitude values specified with the Search_Values keyword;
or, regions are grown based on the seed values in Seed. The number of regions
grown from the seeds are then counted; otherwise, the separate regions in image
are counted.

Example
image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

REGION_FIND Function 173

values = INDGEN(250) + 1

; Look for a maximum of 250 regions.

n_regions = REGION_COUNT(image(’pixels’), $
search_values = values, seeds = region_seeds)

; Grow and count regions in the image based on the
; amplitude values in the values array.

PRINT, n_regions

; Print the actual number of regions found.

PRINT, region_seeds

; Print the seed pixel for each region.

See Also

REGION_FIND, REGION_GROW, REGION_STATS

REGION_FIND Function
Locates a possible seed point for a region in an image.

Usage

result = REGION_FIND(image, values, n_regions)

Input Parameters

image — A 2D array containing a homogeneous region.

values — An array containing the amplitude values used to search for regions in
image.

n_regions — The maximum number of regions to search for in image. (0 <
n_regions < 255)

Returned Value

result — A long array of seed points for regions found in image. Each seed point
corresponds to an element number in image.

Keywords

Fill_Values — A scalar byte value or byte array of amplitudes with which to fill
regions in image. (0 < Fill_Values < 255)

174 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Region_Image — Specifies a variable to hold an array in which the regions found
in image are identified and filled with the values Fill_Values.

Discussion

It is not always convenient to interactively indicate region seeds in an image. The
REGION_FIND function provides an automated method for locating seed points
and growing the regions at those locations. The region finding process begins by
searching the image for pixels with amplitudes equal to an element of the values
array. When a pixel with the specified value is located, it is grown, using the
REGION_GROW function. In this way, the pixels belonging to the region for
which the located pixel is a seed are eliminated from the next search. The image is
continuously searched in this way until either no more region seeds can be located
or the number of regions, indicated by the n_regions parameter, is reached.

Example

Find connected regions in a thresholded image.

image = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

thresh_image = THRESHOLD(image(’pixels’), 10, $
200, /Binary)

; Look for at least 20 regions of value 255
; in thresh_image.

fill_values = BINDGEN(20) + 1B

; Fill regions with 1, ..., 20.

seeds = REGION_FIND(thresh_image, 255, $
20, Region_Image = region_image, $
Fill_Values = fill_values)

TVSCL, region_image

; Display the filled regions.

PRINT, seeds

; Print the region seed locations.

See Also

REGION_COUNT, REGION_GROW, REGION_STATS

REGION_GROW Function 175

REGION_GROW Function
Grows homogeneous regions in an image, where the homogeneity is based on the
region average.

Usage
result = REGION_GROW(image, region_seeds[, threshold])

Input Parameters
image — A 2D or 3D array with homogenous regions that contains an image;
image, row or pixel-interleaved images; or a volume of any data type except string
or complex.

region_seeds — A long array containing the element numbers of pixels in image
to be used as seed points for growing individual regions. The number of elements
in this parameter, n_regions must be < 255 elements.

threshold — (optional) A floating point scalar value that is the threshold around
the region average used in determining whether or not a pixel belongs to a given
region. (Default: 0.1)

Returned Value
result — A 2D or 3D byte array containing filled regions.

Keywords

Fill_Mean — If set, each region is filled with the mean of the image pixels in the
region.

Fill_Values — A byte array of values used to fill the regions which were grown,
where the values are 0 < Fill_Valuesi < 255. The number of values in Fill_Values
is {1, ..., n_regions}, where n_regions is the number of elements in the
region_seeds input parameter.

Intleave — A scalar string indicating the type of interleaving of 3D image arrays.
Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.
’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.
’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.
’volume’ — The input image array is treated as a single entity.

176 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Max_Iter — Specifies the maximum number of iterations used to grow a region.
A region is grown until it converges (i.e., no more pixels can be added to the region)
or Max_Iter is reached. (Default: 1000)

Discussion
Region growing is a segmentation method which uses the local pixel amplitude as
the segmentation criteria. The REGION_GROW function performs image segmen-
tation by pixel aggregation. Each region begins with a “seed” point as the initial
region point. Neighboring pixels within a 3-by-3 area of each region point are then
successively added to the region if the pixel value does not alter the region average
by more than the value specified using the threshold parameter. When a new pixel
is added to the region, the region average is updated to reflect all region members.
The region growing process ends when no additional neighbors of the region pixels
can be added to the region.

NOTE The REGION_MERGE function should be used in place of
REGION_GROW when the region seed points are unknown.

Example
seeds = LONARR(3)

TVSCL, image

imgdims = SIZE(image, /Dimensions)

CURSOR, x, y, /Device

seeds(0) = LONG(x) + LONG(y)*imgdims(1)

CURSOR, x, y, /Device

seeds(1) = LONG(x) + LONG(y)*imgdims(1)

CURSOR, x, y, /Device

seeds(2) = LONG(x) + LONG(y)*imgdims(1)

region_image = REGION_GROW(image, seeds, 1.0, $
Fill_Values = [10B, 20B, 30B])

; Fill homogenous regions in the image.

See Also
IPCLASSIFY, IPCLUSTER, REGION_COUNT,
REGION_FIND, REGION_STATS

REGION_MERGE Function 177

REGION_MERGE Function
Merges homogeneous regions in an image, where the homogeneity is based on the
region average.

Usage

result = REGION_MERGE(image, max_n_regions[, threshold])

Input Parameters

image — A 2D or 3D array of any data type except string or complex that has
homogeneous regions containing an image; image, row or pixel-interleaved
images; or a volume.

max_n_regions — An integer greater than 0 and less than 255, specifying the max-
imum number of regions for subdividing image.

threshold — (optional) A floating-point scalar threshold value used to determine
whether or not a pixel belongs to a given region.
(Default: 0.1)

Returned Value

result — A 2D or 3D byte array containing filled regions.

Keywords

Fill_Mean — If set, each region is filled with the mean of the image pixels in the
region.

Fill_Values — A byte array of values used to fill the regions which were merged,
where the values are 0 < Fill_Valuesi < 255. The number of values in Fill_Values
is {1, ..., max_n_regions}.

Intleave — A scalar string indicating the type of interleaving of 3D image arrays.
Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

178 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Discussion

The algorithm for REGION_MERGE analyzes each pixel in the image and
attempts to add it to a region. The pixel may be added to a region, if its value does
not change region average by more than the threshold.

The REGION_MERGE function is useful for image segmentation and object iden-
tification and counting. This function can be used in place of, or in conjunction
with, the REGION_GROW function. When the region seed points needed for the
REGION_GROW function are unknown, the REGION_MERGE function should
be used instead.

When using REGION_MERGE in conjunction with REGION_GROW, use the
REGION_GROW function first, making sure that the Fill_Mean keyword is set.
Then, to reduce the number of regions grown, apply REGION_MERGE with an
appropriate threshold value.

Example 1
image = IMAGE_READ(!IP_Data + ’sagknee.tif’)

; Read an image.

region_image = REGION_MERGE(image(’pixels’), 254, 2.0)

; Find separate regions using merging technique.

n_regions = REGION_COUNT(region_image)

; Count the number of objects.

TEK_COLOR

TVSCL, region_image

; Display the region image.

Example 2
image = IMAGE_READ(!IP_Data + ’sagknee.tif’)

; Read an image.

region_image = REGION_GROW(image(’pixels’), region_seeds, 0.5)

; Grow separate regions.

n_regions = REGION_COUNT(region_image)

; Count the number of individual regions.

REGION_MERGE Function 179

region_image = REGION_GROW(image(’pixels’), $
region_seeds, 0.5, /Fill_Mean)

; Fill the regions with their means.

merge_image = REGION_MERGE(region_image, n_regions, 2.0)

; See if any regions can be merged.

TEK_COLOR

TVSCL, merge_image

; Display the final image.

See Also

IPCLUSTER, REGION_GROW, REGION_SPLIT,
THRESH_ADAP, THRESHOLD

180 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

REGION_SPLIT Function
Splits homogeneous regions in an image, where the homogeneity is based on the
region range.

Usage

result = REGION_SPLIT(image[, threshold])

Input Parameters

image — A 2D or 3D array of any data type except string or complex having homo-
geneous regions containing an image; image, row or pixel-interleaved images; or a
volume.

threshold — (optional) A floating-point scalar threshold value used to determine
whether or not a pixel belongs to a given region.
(Default: 0.1).

Returned Value

result — A 2D or 3D byte array containing filled regions.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D image arrays.
Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Max_Iter — Specifies the maximum number of iterations used to split a region.
(Default: 1000)

REGION_SPLIT Function 181

Discussion

REGION_SPLIT works best on images with separate square or rectangularly
shaped regions. It is a recursive algorithm that subdivides the image into smaller
and smaller units until either a homogeneous region is left or the maximum number
of iterations has been reached.

NOTE Because the algorithm is recursive, Max_Iter should be kept reasonably
small to avoid stack overflow problems.

Example
image = IMAGE_READ(!IP_Data + ’objects.tif’)

; Read an image.

region_image = REGION_SPLIT(image(’pixels’), 1.0)

; Find separate regions using splitting technique.

TEK_COLOR

TVSCL, region_image

; Display the region image.

See Also

IPCLUSTER, REGION_GROW, REGION_MERGE, THRESH_ADAP,
THRESHOLD

182 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

REGION_STATS Function
Performs several statistical calculations on specified regions in an image.

Usage

result = REGION_STATS(image[, region_image])

Input Parameters

image — An image with binary regions. This parameter must be a byte array data
type, if region_image is not given.

region_image — (optional) A 2D byte array with binary regions. This parameter
is used as a mask to identify the pixels that compose each region in image.

Returned Value

result — A 2D double array of statistics with dimensions 11-by-n_regions, where
n_regions is the number of regions for which the statistics are computed. The 11
statistics of the regions in image are as follows:

area — The number of pixels in the region.

mean — The average of pixels in the region.

min — The minimum pixel value in the region.

max — The maximum pixel value in the region.

stdev — The standard deviation of the pixel values in the region.

mode — The most frequent pixel value in the region.

range — The difference between the minimum and the maximum value in
the region.

perimeter — The distance around the border of the region in pixels.

compactness — A measure of the compactness of the region. Defined as
the perimeter squared over the area.

major axis angle — The angle of the major axis through the region. The
major axis is directed in the area of maximal region dispersion.

REGION_STATS Function 183

centroid — The centroid of the region, given as the element number in the
image.

Keywords

Region_Values — A 1D byte array specifying the regions in image or
region_image for which to compute statistics. (Default: all regions in image or
region_image)

Discussion

Statistical measures on regions within an image provide valuable quantitative
descriptions of segmented objects. The statistical measures performed by the
REGION_STATS function for each region value, i, are defined as follows:

Areai = N, where N is the number of elements in region_image equal to i.

Meani = TOTAL(x)/N, where N is the number of elements in region_image
equal to i, and x is the subset of pixels in image where region_image is
equal to i.

Mini = MIN(x), where x is the subset of pixels in image where
region_image is equal to i.

Maxi = MAX(x), where x is the subset of pixels in image where
region_image is equal to i.

Stdevi = STDEV(x), where x is the subset of pixels in image where
region_image is equal to i.

Modei = MODE(x), where x is the subset of pixels in image where
region_image is equal to i.

Rangei = RANGE(x), where x is the subset of pixels in image where
region_image is equal to i.

Perimeteri = PERIMETER(x, e), where x is the subset of pixels in image
where region_image is equal to i, and e is an array of the element numbers
in region_image that are equal to i.

Compactnessi = [PERIMETER(x, e)*PERIMETER(x, e)]/Areai, where x
is the subset of pixels in image where region_image is equal to i, and e is
an array of the element numbers in region_image that are equal to i.

Major Axisi = MAJOR_AXIS(x, e), where x is the subset of pixels in image

184 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

where region_image is equal to i, and e is an array of the element numbers
in region_image that are equal to i.

Centroidi = CENTROID(x, e), where x is the subset of pixels in image
where region_image is equal to i, and e is an array of the element numbers
in region_image that are equal to i.

Example
knee = IMAGE_READ(!IP_Data + ’sagknee.tif’)

; Read an image.

cluster_seeds = [20, 30, 500, 1000, 2000]

region_image = IPCLUSTER(knee(’pixels’), $
cluster_seeds, Fill_Values = [1, 2, 3, 4, 5])

; Find the regions in the image using K-mean
; segmentation. Choose random points for the
; cluster seeds.

result = REGION_STATS(knee(’pixels’), region_image)

; Compute the statistics of the original image pixels
; underlying the identified regions.

PRINT, result

; View the statistics for each region.

See Also

CENTROID, IPCLUSTER, MAJOR_AXIS, MODE,
PERIMETER, RANGE, REGION_COUNT,
REGION_FIND, REGION_GROW

SHIFT_EDGE Function 185

SHIFT_EDGE Function
Performs edge enhancement on an image using either the shift and subtract, or the
shift and XOR technique.

Usage

result = SHIFT_EDGE(image[, subt_or_xor])

Input Parameters

image — A 2D or 3D array containing an image; image, row or pixel-interleaved
images; or a volume.

subt_or_xor — (optional) A scalar specifying the enhancement technique to use:

0 Exclusive OR technique
1 Subtraction technique (default)

When the exclusive OR shift technique is used (subt_or_xor = 0), the input param-
eter image must be a byte, integer, or long data type; no other data types are valid
for the exclusive OR technique. (Default: 1, the subtraction technique)

Returned Value

result — An array containing the enhanced data.

Keywords

Intleave — A scalar string indicating the type of interleaving of 3D image arrays.
Valid strings and the corresponding interleaving methods are:

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

186 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

ShiftArr — An array of shift parameters. For an image parameter of m dimensions,
ShiftArr contains m elements specifying the shift parameter for each dimension.
The ShiftArr keyword can be used in place of the Xshift and Yshift keywords.

Xshift — The distance, in pixels, to shift image in the x-direction. The Xshift key-
word can also be used as an array defining the shift in the x-direction for each image
when image is a 2D array or 3D image-interleaved array. (Default: 1 pixel)

Yshift — The distance, in pixels, to shift image in the y-direction. The Yshift key-
word can also be specified as an array defining the shift in the y-direction for each
image when image is a 2D array or 3D image-interleaved array. (Default: 1 pixel)

Discussion

When the subtraction operation is used, the SHIFT_EDGE function creates an
embossing effect on grayscale images.

The direction and amount of the shift reveals specific details in an otherwise jum-
bled image. For example, a horizontal shift can highlight a specific pattern in an
image; likewise, for a vertical shift.

Typically, a single-element (one pixel) shift produces more pronounced edges,
while shifts of more than ten elements begin to blur features in the image.

Examples

These examples are a collection of partial code designed to illustrate the many uses
of the SHIFT_EDGE function and its keywords.

In this example, the SHIFT_EDGE function is used to highlight the edges to the
left of each feature in the mandrill image.

mandril_edge = SHIFT_EDGE(mandril, Yshift = 0)

Here, SHIFT_EDGE is used to highlight the edges below and to the left of each
feature:

mandril_edge = SHIFT_EDGE(mandril)

To perform edge enhancement on a group of images in one function call, do the
following:

edge_set = SHIFT_EDGE(images, $
Intleave = ’images’)

edge_image = SHIFT_EDGE(image, 0, $
Xshift = 2, Yshift = 2)

Another way to do this is:

SHIFT_EDGE Function 187

edge_image = SHIFT_EDGE(image, 0, $
ShiftArr = [2, 2])

Here is an example using a 5D array:

arr5D = INDGEN(20, 5, 7, 3, 2)

edge_5D = SHIFT_EDGE(arr5D, ShiftArr = $
[1, 2, 1, 1, 2])

See Also

CANNY, IPCONVOL

In the PV-WAVE Reference: ROBERTS, SOBEL

188 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

SKELETONIZE Function
Performs the morphologic skeletonizing operation for shape processing.

Usage

result = SKELETONIZE(image, structure[, x0, y0])

Input Parameters

image — The array to be skeletonized.

structure — A 1D or 2D array containing the structuring elements. The structure
elements are interpreted as binary elements with values of either zero or nonzero,
unless the Gray keyword is used.

x0 — (optional) The x-coordinate of the structure’s origin.

y0 — (optional) The y-coordinate of the structure’s origin.

Returned Value

result — A skeletonized image of the same size and dimensions as image.

Keywords

Gray — If set, indicates that gray-scale erosion and dilation is to be used. (Default:
binary erosion and dilation)

Max_Iter — Specifies the maximum number of iterations to perform in the skele-
tonization process. (Default: 100)

Values — An array of values of the structuring element. The Values array must
have the same dimensions and number of elements as the structure parameter.

Discussion

Morphological operations are defined for grayscale byte images. If image is not
originally of type byte, PV-WAVE makes a temporary copy of image that is of type
byte before using it for the morphological processing.

The optional parameters x0 and y0 specify the row and column coordinates of the
structuring element’s origin. If these parameters aren’t used, the structuring ele-

SKELETONIZE Function 189

ment origin is set to the center, (Nx/2, Ny/2), where Nx and Ny are the dimensions
of the structuring element.

The skeletonization of an object describes its structure. Skeletonization is also
referred to as the medial axis transform. The result of a call to SKELETONIZE is
an image consisting of the set of points that are equidistant from the boundary of
an object. These points are the “medial axis” of the object.

The skeletonization process is performed using loops in which image is logically
ORed with the difference of the erosion and morphological opening operations.
The looping process ends when either the maximum iteration is reached, or the next
pass through the loop would result in a completely eroded (null) image. In other
words, skeletonization is the union of the difference between the i-th eroded image
and the opening of the i-th eroded image. Where i is the minimum of Max_Iter or
the iteration which produces the null image. The image returned by the skeleton-
ization process is then the union of all i difference images.

Example
blobs = IMAGE_READ(!IP_Data + ’blobs.tif’)

; Read an image.

blobs = THRESHOLD(blobs(’pixels’), 20, /Binary)

; Threshold the objects to form a binary image.

str_ele = BYTARR(3, 3)

str_ele(*) = 1B

str_ele(1, 1) = 0B

str_ele(0, 0) = 0B

str_ele(0, 2) = 0B

str_ele(2, 0) = 0B

str_ele(2, 2) = 0B

; Create a structuring element.

skel_image = SKELETONIZE(blobs, str_ele)

; Skeletonize the objects using the circular structuring element.

TVSCL, skel_image

; Display the skeletonized image.

See Also

HIT_MISS, MORPH_CLOSE, MORPH_OPEN, TOP_HAT

In the PV-WAVE Reference: ERODE, DILATE

190 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

SKEWNESS Function
Computes the skewness of an array.

Usage

result = SKEWNESS(array)

Input Parameters

array — An array of any data type except string.

Returned Value

result — A scalar value containing the skewness of the array.

Keywords

None.

Discussion

Computes the skewness of array(k, l) as:

 ,

where mean = AVG(array) and std = STDEV(array).

The skewness is a useful measure for statistical texture analysis.

Example
image = IMAGE_READ(!IP_Data + ’noise_test.tif’)

; Read an image.

skew = SKEWNESS(image(’pixels’))

PRINT, ’Skewness = ’, skew

; Compute the skewness of the image.

See Also

ENTROPY, KURTOSIS, MODE, RANGE, UNIFORMITY

skewness
1

K L⋅()
----------------- array k l,() mean–

std
-- 

  3

l 0=

L 1–

∑
k 0=

K 1–

∑=

SLANT Function 191

SLANT Function
Performs a Slant transform on a 2D square image. Images which are not already
square, are zero-padded to have square dimensions before the transform is applied.
Images whose dimensions are not a power of two are padded to have dimensions
that are the nearest power of two.

Usage

result = SLANT(image[, direction])

Input Parameters

image — A 2D array.

direction — (optional) A parameter specifying the direction of the transform.
(Default: –1)

– 1 The forward Slant transform is applied (default).

1 The reverse Slant transform is applied.

Returned Value

result — A 2D floating-point matrix with dimensions N-by-N, where N is the larg-
est dimension of the input image rounded to the nearest larger power of two.

Keywords

None.

Discussion

The Slant transform uses sawtooth shaped basis functions, sk(z), which are defined
recursively from the 2-by-2 basis. The equations for the Slant transform matrix
generation are found in Gonzalez and Woods, p. 147.

The Slant Transform is then applied as:

T = S*image*S, where S is the Slant transform matrix and T is the trans-
form result.

192 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

Example
image = IMAGE_READ(!IP_Data + ’airplane.tif’)

; Read an image.

slant_image = SLANT(image(’pixels’))

; Compute the Slant transform.

TVSCL, IPALOG(slant_image)

; Display the transformed image.

See Also

DCT, HAAR

THRESH_ADAP Function 193

THRESH_ADAP Function
Performs adaptive thresholding on an array.

Usage

result = THRESH_ADAP(image, wxdim[, wydim[, wzdim]])

Input Parameters

image — A 1D, 2D, or 3D array containing a signal; point or signal-interleaved
signals; an image; image, row or pixel interleaved images; or a volume.

wxdim — The width of the threshold window. This value is wxdim ≤ the width of
image.

wydim — (optional) The height of the threshold window. This value is wydim ≤ the
height of image. (Required for images and volumes.)

wzdim — (optional) The depth of the threshold window. This value is wzdim ≤ the
depth of image. (Required when image is a volume.)

Returned Value

result — An array of data type byte, if binary thresholding is performed; otherwise,
the array returned is the same data type as image.

Keywords

Binary — If set, binary thresholding is performed.

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-

194 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Lower_Tol — The lower tolerance used for the threshold comparison. Either Tol-
erance, or both Upper_Tol and Lower_Tol must be specified. (Default: Tolerance)

Set_False — The value that the result is set to when the comparison is false.
(Default: 0)

NOTE The Set_False keyword is ignored if Binary = 0.

Set_True — The value that the result is set to when the comparison is true.
(Default: 255)

Stat_Type — A scalar string indicating the statistical function to compute within
the threshold window. Valid strings are: ’avg’, ’min’, ’max’, ’median’,
’stdev’, or ’range’. (Default: ’avg’)

Tolerance — The tolerance around the statistical calculation used for the threshold
comparison. Either Tolerance, or both Upper_Tol and Lower_Tol must be
specified.

Upper_Tol — The upper tolerance used for the threshold comparison. Either Tol-
erance, or both Upper_Tol and Lower_Tol must be specified. (Default: Tolerance)

Discussion

The purpose of image segmentation is to separate the image into regions possessing
similar characteristics. General thresholding uses only the pixel amplitude as the
segmentation characteristic. Some difficulties arise with using only the pixel
amplitude for thresholding, such as: choosing an absolute pixel amplitude at which
to threshold can be tough, and sometimes noise or other undesired artifacts are
incorrectly grouped with the desired objects. Using the THRESH_ADAP function
is one way around such difficulties.

Adaptive thresholding provides a method for rejecting local pixel values based on
a tolerance around a statistical measure within a local image window. Adaptive
thresholding also does not require an absolute pixel amplitude threshold value.
Instead, the threshold value is constantly changed based on a local image statistical
measure.

THRESH_ADAP Function 195

For all statistical measures (using the keyword Stat_Type) except the standard devi-
ation, a pixel is set to Set_True if it is within ± the upper and lower tolerances,
respectively, of the local statistical measure. For the standard deviation, a pixel is
set to Set_True if it is within ± the upper and lower tolerances of the local mean ±
the local standard deviation.

Example 1
image = IMAGE_READ(!IP_Data + ’xray.tif’)

; Read an image.

seg_image = THRESH_ADAP(image(’pixels’), $
5, 5, /Binary, Stat_Type = ’avg’, $
Tolerance = 1.5)

; Segment the image using adaptive thresholding
; based on the average value in a 5-by-5 window.
; The tolerance around the window average will
; be ± 1.5.

TVSCL, seg_image

; Display the binary segmented image.

Example 2
image = IMAGE_READ(!IP_Data + ’objects.tif’)

; Read an image.

seg_image = THRESH_ADAP(image(’pixels’), $
3, 3, /Binary, Stat_Type = ’stdev’, $
Tolerance = 2.0)

; Segment the objects using the standard deviation.
; The tolerance will be ± 2.0 of the window
; average ± the standard deviation.

TVSCL, seg_image

; Display the binary segmented image.

See Also

THRESHOLD

196 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

THRESHOLD Function
Performs either binary or grayscale global thresholding on an image.

Usage

result = THRESHOLD(image, a[, b])

Input Parameters

image — A 1D, 2D or 3D array containing a signal; point or signal-interleaved sig-
nals; an image; image, row, or pixel-interleaved images; or a volume.

a — The value on the left-hand side of the threshold equation. This parameter is a
scalar for a single signal, image, or volume; or an array for an interleaved arrange-
ment of signals or images.

b — (optional) The value on the right-hand side of the threshold equation. This
parameter is a scalar for a single signal, image, or volume; or an array for an inter-
leaved arrangement of signals or images.

Returned Value

result — An array of data type byte (for binary thresholding), or of the same data
type as image (grayscale thresholding). The data is thresholded in the following
manner:

For two input parameters, image and a, all values in image which are
greater than or equal to a are set to the value of the Set_True keyword.

For three input parameters, image, a, and b, all values in image which are
greater than or equal to a and are less than or equal to b are set to the value
of the Set_True keyword.

Keywords

A_Neq — If set, the comparison on the left-side of the threshold equation does not
include the value of a.

Binary — If set, binary thresholding is performed; otherwise, grayscale threshold-
ing is performed. (Default: 0)

B_Neq — If set, the comparison on the right-side of the threshold equation does
not include the value of b.

THRESHOLD Function 197

Intleave — A scalar string indicating the type of interleaving of 2D input signals
and 3D image arrays. Valid strings and the corresponding interleaving methods are:

’point’ — The 2D input array arrangement is (p, x) for p point-inter-
leaved signals of length x.

’signal’ — The 2D input image array arrangement is (x, p) for p sig-
nal-interleaved signals of length x.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Inverse — If set, the comparison relationships of image, and a, and (optionally) b
are reversed. This creates disjoint regions for thresholding as follows:

For the two input parameters, image and a, all values in image which are
less than or equal to a are set to the value of the Set_True keyword.

For the three input parameters, image, a, and b, all values in image which
are less than or equal to a, or are greater than or equal to b are set to the
value of the Set_True keyword.

Set_False — The amplitude of result where the comparison is false. (Default: 0)

NOTE The Set_False keyword is used only for binary thresholding.

Set_True — The amplitude of result where the comparison is true. (Default: 255)

Discussion

Thresholding is used as a simple segmentation method for identifying objects or
regions within an image that have consistent graylevels.

Example

To threshold an image, x, such that values between, but not including, 30 and 55
are set to190, and all other values in x are 10, do the following:

198 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

result = THRESHOLD(x, 30, 55, Set_True = 190, $
Set_False = 10, /Binary, /A_Neq, /B_Neq)

This is conceptually the same as the following logic statement:

If 30 < x (i, j) < 55, then x (i, j) = 190, else x (i, j) = 10, where 0 ≤ i < N and
0 ≤ j < M for all x (N, M).

See Also

DENSITY_SLICE, THRESH_ADAP

TOP_HAT Function
Performs the morphologic top-hat transform for shape processing.

Usage

result = TOP_HAT(image, structure[, x0, y0])

Input Parameters

image — A 2D array.

structure — A 1D or 2D array containing the structuring element. The elements
are interpreted as binary values (either zero of nonzero), unless the Gray keyword
is used.

x0 — (optional) The x-coordinate of the structuring element’s origin.

y0 — (optional) The y-coordinate of the structuring element’s origin.

Returned Value

result — An array of the same size and dimensions as image containing the top-hat
transformed image.

Keywords

Gray — If set, grayscale, rather than binary erosion is used.

Valley — If set, the valley detector top-hat transform is performed; otherwise, the
peak detector transform is used.

TOP_HAT Function 199

Values — An array of the same dimensions and number of elements as structure
containing the values of the structuring element.

Discussion

Morphological operations are defined for grayscale byte images. If image is not
originally of type byte, PV-WAVE makes a temporary copy of image that is of type
byte before using it for the morphological processing.

The morphological top-hat transform is used to identify small pixel clusters and
edges. The peak detection top-hat operator is defined as the original image minus
the opened image. The valley detection top-hat operator is defined as the closed
image minus the original image.

Example
morph_struct = BYTARR(3, 3)

morph_struct(*) = 1B

morph_struct(1, 1) = 0B

; Make a square structuring element.

test_image = IMAGE_READ(!IP_Data + ’objects.tif’)

; Read an image.

tophat_image = TOP_HAT(test_image(’pixels’), morph_struct)

; Perform the top-hat transform to find regional peaks.

TVSCL, tophat_image

See Also

HIT_MISS, MORPH_CLOSE, MORPH_OPEN,
MORPH_OUTLINE, SKELETONIZE

In the PV-WAVE Reference: DILATE, ERODE

200 Chapter 2: Reference PV-WAVE:Image Processing User’s Guide

UNIFORMITY Function
Computes the uniformity of an array.

Usage

result = UNIFORMITY(array)

Input Parameters

array — An array of any data type except string.

Returned Value

result — A floating point scalar value that is the array uniformity.

Keywords

None.

Discussion

The uniformity of an array is defined as:

for an array, array(N, M).

Uniformity is a useful statistical measure for textural analysis.

Example
image = IMAGE_READ(!IP_Data + ’noise_test.tif’)

; Read an image.

uniform = UNIFORMITY(image(’pixels’))

PRINT, ’Uniformity = ’, uniform

; Compute the uniformity of the image.

See Also

ENTROPY, KURTOSIS, MODE, RANGE, SKEWNESS

U array k l,()()2 ,
l 0=

M 1–

∑
k 0=

N 1–

∑=

A-1

APPENDIX

A

Bibliography
Ahrens, J. H., and Dieter, U. (1974), Computer methods for sampling from gamma,

beta, Poisson, and binomial distributions, Computing, 12, 223–246.

Akansu, A.N, and Haddad, R. A. (1992), Multiresolution Signal Decomposition:
Transforms, Subbands, and Wavelets, Academic, Boston, MA.

Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141–145.

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters,
Communications of the ACM, 21, 317–322.

Chui, C. K., (1992) An Introduction to Wavelets, Academic Press, New York, NY.

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of
complex Fourier series, Mathematics of Computation, 19, 297–301.

Daubechies, I. (1988), Orthonormal Bases of Compactly Supported Wavelets,
Communications on Pure Applied Mathematics, 41, 909–996.

Daubechies, I. (1992), Ten Lectures on Wavelets, Society for Industrial and
Applied Mathematics, Philadelphia, PA.

Harris, F. J. (1978), On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform, Proceedings of the IEEE, 66, 1, 51–83

Jackson, L. B. (1991), Signals, Systems, and Transforms, Addison-Wesley,
Reading, MA.

A-2 Appendix A: Bibliography PV-WAVE:Image Processing User’s Guide

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-
zahlen, Metrika, 8, 5–15.

Kay, S. M. (1987), Modern Spectral Estimation: Theory and Application, Prentice-
Hall, Englewood Cliffs, NJ.

Marple, S. L. (1987), Digital Spectral Analysis with Applications, Prentice-Hall,
Englewood Cliffs, NJ.

Rioul, O, and Vetterli, M., (1991) Wavelets and Signal Processing, IEEE Signal
Processing Magazine, October, 14–38.

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete
random variates, Computer Science and Statistics: Proceedings of the Fifteenth
Symposium on the Interface, (edited by James E. Gentle), North-Holland
Publishing Company, Amsterdam, 154–160.

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via
exponential majorizing functions, Operations Research, 28, 917–926.

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random
Variate Generation, Research Memorandum 81-4, School of Industrial
Engineering, Purdue University, West Lafayette, IN.

Vaidyanathan, P. P. (1993), Multirate Systems and Filter Banks, Prentice-Hall,
Englewood Cliffs, NJ.

Welch, P. D. (1967), The Use of Fast Fourier Transform for the Estimation of
Power Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms, IEEE Transactions on Audio Electroacoustics, AU-15, 2, 70–73.

Index - A 1

Image Processing Index

A
adaptive filters 11, 32, 39
algebraic operations 7, 110
alpha-trimmed mean filter 42
AT mean filter

See alpha-trimmed mean filter

B
bandpass filter 9, 35
bandstop filter 9, 35
Bartlett’s method

estimate for rectangular window 122
non-overlapping data segments 122
power spectrum estimate 121

beta distribution 153
biorthogonal wavelet filter 114
Blackman window 129, 130
BLEND function 17
boxcar window

See rectangular window
Butterworth filter 35

C
CANNY function 19
centroid computation 140
CENTROID function 20
CH mean filter

See contra-harmonic mean filter
Chebyshev window 129, 130
Cholesky factor 154
classification

maximum likelihood 84
overview 15

CMY color model 14

coherent noise 158
Coifman wavelet filter 113
color conversion 92, 107, 135
color image processing techniques 14
color models 14
Color Tool 4
common variables

See IP_COMMON
Contour Tool 4
contra-harmonic mean filter 42
correlation 99

D
Daubechies wavelet filter 113
DCT function 22
density function 105
density slicing 14
DENSITY_SLICE function 24
dilation 142, 144, 146
discrete cosine transform 13
DIST_MAP function 26

E
edge detection 14, 19, 27, 42, 146, 185,

199
ENTROPY function 31
Erlang distribution 153
erosion 142, 144, 146
Euclidian distance map 26
exiting the Toolkit 6
expanding an image 117
exponential

deviate 152
distribution 152

2 Index - F PV-WAVE:Image Processing User’s Guide

F
fast Fourier transform 13, 166
FFT 13, 166
FILT_DWMTM function 32
filter

alpha-trimmed mean 42
Canny 19
circularly symetric 37, 52
contra-harmonic mean 42
geometric mean 43
least mean square 60
linear 9, 19, 56, 58, 102
maximum 44
minimum 44
mode 44
nonlinear 10, 42
objects 115
overview 8
quadrature mirror 114
range 44
rank 44
reading from a file 115
saving in a file 133
spatial 62, 115
spectral 115
Wiener 58
Yp mean 45

filter method
adaptive 11, 32, 39
edge detection 10, 19
frequency domain 9, 35, 51, 58
spatial domain 9, 19, 42, 56, 95, 102,

115
spectral domain 35, 51, 58, 115

FILT_FREQ function 35
FILT_MMSE function 39
FILT_NONLIN function 42
FILT_NOTCH function 51
FILT_SMOOTH function 56
FILT_WEINER function 58
forward radon transform 169
frequency domain filtering 9, 35, 51

G
gamma distribution 152
gamma function 153
Gaussian distribution 152

GAUSS_KERNEL function 62
geometric mean filter 43
geometric transforms 13
GLCM function 63
GLCM_STATS function 65
GLRL function 67
GLRL_STATS function 69
graylevel co-occurence matrix 63
graylevel run length matrix 67

H
HAAR function 71
Hamming window 129, 131
Hanning window 129, 131
help

context-sensitive online 5
manuals online 5

highpass filter 9
histogram operations 8, 74, 106
Histogram Tool 4
HIST_STATS function 74
HIT_MISS function 76
Hotelling transform 12, 13, 164
HOUGH function 78
HSV color model 14

I
Image Processing Navigator help 5
Image Processing Toolkit

Navigator 4
online documentation 5
online help 5
starting (loading) 3
stopping (unloading) 6

Image Tool 4
initializing the Toolkit 3
intensity slicing 24
inverse CDF method

beta distribution 153
Poisson distribution 152

IPALOG function 83
IPCLASSIFY function 84
IPCLUSTER function 88
IPCOLOR_24_8 function 92
IP_COMMON, common variables 6
IPCONVOL function 95
IPCORRELATE function 99

Index - K 3

IPCREATE_FILTER function 102
IPCT function 103
IPHISTOGRAM function 105
IPLINEAR_GRAY function 107
IPMATH function 109
ipnavigator 4
IPQMFDESIGN function 113
IPREAD_FILTER function 115
IPSCALE function 117
IPSPECTRUM function 120
ip_startup 3
IPSTATS function 124
ip_unload 6
IPWAVELET function 126
IPWIN function 129
IPWRITE_FILTER function 133
IS_GRAY_CMAP function 135

K
Kaiser window 129, 131
Karhunen-Loève transform 13, 164
K-means clustering 88
KURTOSIS function 137

L
least mean square filter 60
linear filters 9
logical operations 7
lowpass filter 9, 35, 57

M
MAJOR_AXIS function 138
maximum filter 44
mean filter

alpha-trimmed 42
contra-harmonic 42
geometric 43
Yp 45

medial axis transform 189
mensuration 11
minimum filter 44
mode filter 44
MODE function 139
MOMENT2D function 140
moments 20, 140
MORPH_CLOSE function 142

morphological operation
closing a shape 142
hit-or-miss transform 76
opening a shape 144
outlining 146
overview 11
shape definition 76
skeletonizing 188
top-hat transform 198

MORPH_OPEN function 144
MORPH_OUTLINE function 146
multivariate normal distribution 153

N
Navigator

online help 5
starting 4
VDA tools 4

noise
generating 149, 158
impulse 156
periodic 158
Rayleigh distribution 159
removing 11, 32, 39, 42, 53, 57

NOISE_GEN function 149
NOISE_IMPULSE function 156
NOISE_PERIODIC function 158
NOISE_RAYLEIGH function 159
nonlinear filters 10, 42
non-stationary input signals 123
normal distribution 152
notch filter 51
Nyquist normalized frequency 122

O
online documentation system 5
online help 5

P
PAD_IMAGE function 161
PCT function 163
PERIMETER function 165
periodogram

Bartlett’s method 122
equation 121, 122
power spectrum estimate 121

4 Index - Q PV-WAVE:Image Processing User’s Guide

Welch’s method 122
Plot Tool 4
point operation

blending 17
math and logic 109
overview 6

Poisson distribution 152
polar-coordinate space 166
POLAR_FFT function 166
power spectrum estimate

Bartlett’s method 121
modified periodogram 121
periodogram 121
Welch’s method 121

principle components transform 13, 103,
163

pseudo-color image processing 14
PTPE method 152

Q
quadrature mirror filter 114

R
RADON function 169
Radon transform 170
random numbers

beta distribution 153
exponential distribution 152
Gamma distribution 152
generator seed 151
multivariate normal distribution 153
normal distribution 152
Poisson distribution 152

range filter 44
RANGE function 171
rank filter 44
Rayleigh distributed noise 160
rectangular window 122, 129, 131
rectangular-coordinate space 166
REGION_COUNT function 172
REGION_FIND function 173
REGION_GROW function 175
REGION_MERGE function 177
regions

counting 172
growing 175
merging 177

merging versus growing 178
overview 14
seed points 173
splitting 180
statistical calculations 182
texture analysis 12
thresholding graylevels 197

REGION_SPLIT function 180
REGION_STATS function 182
RGB color model 14
rubber-sheet transformations 13

S
salt-and-pepper noise 10, 156
scaling 117
segmentation

growing regions 175
intensity slicing 24
K-means clustering 88
locating seed points 173
merging homogeneous regions

177
overview 14
region counting 172
region statistics 182
splitting regions 180
thresholding 24, 193, 196

shape analysis 76, 141, 142, 144, 146,
188, 198

SHIFT_EDGE function 185
shrinking an image 117
skeletonization 189
SKELETONIZE function 188
SKEWNESS function 190
SLANT function 191
Slant transform 13, 191
spatial filtering

convolution 95
creating a filter object 102
noise removal 42, 56
overview 9

spatial moments 20, 141
spectral filtering

bandpass filter 35
bandstop filter 35
Butterworth filter 35
design 37
lowpass filter 35

Index - T 5

notch filter 52
starting the Navigator 4
starting the Toolkit 3
stationary input signals 123
statistical measures 31, 65, 69, 74, 124,

137, 138, 139, 140, 165, 171, 172, 173,
175, 177, 180, 182, 190, 200

stopping the Toolkit 6
Surface Tool 4

T
template matching 99
texture

overview 12
spectral 166
statistical 63, 65, 67, 69, 74, 190, 200

THRESH_ADAP function 193
THRESHOLD function 196
thresholding

adaptive 193
global binary or grayscale 196
intensity slicing 24
overview 7, 14
segmentation 24

TOP_HAT function 198
top-hat transform 198
transforms

discrete cosine 13, 22
fast Fourier 13
forward radon 169
geometric 13
Haar 71
Hotelling 13, 164
Hough 78
inverse principle components 103
Karhunen-Loève 13, 164
medial axis 189
overview 13
polar FFT 166
power spectrum 120
principle components 13, 163
Slant 13, 191
top-hat 198
wavelet 126

triangular window 129, 132

U
UNIFORMITY function 200

V
variance-covariance matrix 154
VDA tools

Color Tool 4
Contour Tool 4
Histogram Tool 4
Image Tool 4
online help 5
overview 4
Plot Tool 4
Surface Tool 4

visual data analysis tools 4

W
wavelet filters

biorthogonal 114
Coifman 113
Daubechies 113

wavelet transform 126
Welch’s method

modified periodogram 122
overlapping data segments 122
power spectrum estimate 121

Wiener filter 58
windows

Blackman 129, 130
Chebyshev 129, 130
Hamming 129, 131
Hanning 129, 131
Kaiser 129, 131
rectangular 129, 131
sequence 129
triangular 129, 132

WzIPColorEdit 4
WzIPContour 4
WzIPHistogram 4
WzIPImage 4
WzIPPlot 4
WzIPSurface 4

Y
Yp mean filter 45

6 Index - Y PV-WAVE:Image Processing User’s Guide

	PV-WAVE Image Processing Toolkit User's Guide
	Table of Contents
	Preface
	Intended Audience
	Typographical Conventions
	Customer Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - Getting Started
	Purpose of this Chapter
	Starting PV�WAVE
	Starting PV-WAVE Under Windows NT
	Starting PV-WAVE Under Windows 95
	Starting PV-WAVE Under UNIX

	Initializing the Image Processing Toolkit
	Starting the Image Processing Navigator
	Accessing Online Help for the Image Processing Toolkit
	The Manuals Online System
	Online Help for the Image Processing Navigator VDA Tools

	Stopping the Image Processing Toolkit
	Image Processing: A Brief Overview
	Point Operations
	Filtering
	Morphological Image Processing
	Mensuration
	Representation and Description
	Image Transforms
	Geometric Transforms
	Color Image Processing
	Classification and Segmentation

	2 - Reference
	BLEND Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CANNY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CENTROID Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DCT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DENSITY_SLICE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DIST_MAP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	ENTROPY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FILT_DWMTM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FILT_FREQ Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FILT_MMSE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FILT_NONLIN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	FILT_NOTCH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FILT_SMOOTH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FILT_WIENER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	GAUSS_KERNEL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	GLCM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	GLCM_STATS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	GLRL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	GLRL_STATS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	HAAR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	HIST_STATS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	HIT_MISS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	HOUGH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	IPALOG Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPCLASSIFY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPCLUSTER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPCOLOR_24_8 Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1: 8-Bit to 24-Bit Conversion
	Example 2: 24-Bit to 8-Bit Conversion
	See Also

	IPCONVOL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPCORRELATE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPCREATE_FILTER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPCT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPHISTOGRAM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPLINEAR_GRAY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPMATH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	See Also

	IPQMFDESIGN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPREAD_FILTER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPSCALE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	IPSPECTRUM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPSTATS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	IPWAVELET Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPWIN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IPWRITE_FILTER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	IS_GRAY_CMAP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	KURTOSIS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MAJOR_AXIS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MODE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MOMENT2D Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MORPH_CLOSE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MORPH_OPEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MORPH_OUTLINE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	NOISE_GEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	NOISE_IMPULSE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	NOISE_PERIODIC Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	NOISE_RAYLEIGH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	PAD_IMAGE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	PCT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	PERIMETER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLAR_FFT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	RADON Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	RANGE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	REGION_COUNT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	REGION_FIND Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	REGION_GROW Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	REGION_MERGE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	REGION_SPLIT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	REGION_STATS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SHIFT_EDGE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	SKELETONIZE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SKEWNESS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SLANT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	THRESH_ADAP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	THRESHOLD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TOP_HAT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	UNIFORMITY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	Index

