
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

D a t a b a s e T o o l k i t U s e r ’ s G u i d e



 i

Table of Contents

Chapter 1: Using the Database Toolkit 1
Introduction 1

Recommended Directory Structure 2

PV-WAVE Calls to the DB Connection Driver 3

Error Handling 4

PV-WAVE DB Connection API 4

Code Skeleton 6

Building PV-WAVE with the Driver 8

Testing Tips 9

Conclusion 9

ii Table of Contents PV-WAVE:Database Toolkit User’s Guide

1

CHAPTER

1

Using the Database Toolkit

Introduction
This document is intended for use by application developers, as opposed to
PV-WAVE users who want to exercise the Database Link functionality for
PV-WAVE. We assume that the reader is familiar with C code, compilers, linkers,
Makefiles and other generic tools used by application developers. We also assume
that the reader is familiar with programming with database vendors C interfaces,
like PRO*C for Oracle.

This document describes how to write a connection driver for a particular database.
Step by step, you will learn how to set up your file structure for development, the
API calls necessary to the database connection, the code structure, how to build and
link your database connection driver to PV-WAVE kernel. We will also provide a
few tips on how to test the connection driver.

VNI supplies

• dbms_api.h, an include file that describes a set of constants, error variables
used by the connection, and function definitions.

• template_ddl.c, a sample code from which the DB connection programmer can
use to derive more easily the DB connection code.

• This manual.

The DB Connection developer, to whom this manual is dedicated, writes the DB
connection code. The .c file will then be compiled and linked with the PV-WAVE
libraries to result in a new PV-WAVE executable.

2 Chapter 1: Using the Database Toolkit PV-WAVE:Database Tookit User’s Guide

The PV-WAVE user will then be able to call three functions, <dbms>_sql,
<dbms>_connect, and <dbms>_disconnect to retrieve and/or write data to/from the
DBMS.

NOTE The PV-WAVE:Database Connection User’s Guide explains the func-
tions available to PV-WAVE users from the drivers built using this manual.

Recommended Directory Structure
The developer must be able to develop a number of database connections for a vari-
ety of platforms.

We suggest the following file structure to avoid development problems:

dbtoolkits is the top level directory.

dbtoolkit-1_0

src bin

bin.hps700 bin.sun4

lib

bin.hps700 bin.sun4

oracle_ddl.o
sybase_ddl.o

oracle_ddl.o
sybase_ddl.o

oraclelib.a
sybaselib.a

oraclelib.a
sybaselib.a

dbms_api.h
sybase_ddl.c

oracle_ddl.c
Makefile

PV-WAVE Calls to the DB Connection Driver 3

The src directory contains the sybase_ddl.c, oracle_ddl.c, one for each driver. The
.ddl in these file names mean driver dependent layer, and is a historical naming con-
vention from the design of the database connection). These are the files the DB
Connection developer will have to write; to facilitate writing these files, we provide
template_ddl.c.

The dbms_api.h provided by VNI contains declarations and definitions of con-
stants, API DB connection external declarations, and error variables that will be
needed in the driver code. A Makefile can be set so as to be platform dependent, so
that building the DB connection driver object files is done according to the operat-
ing system specific flags and include files. We advise you to place them under the
src directory.

Let us assume you are building two drivers that will run under HP -UX 9.x and
SunOS 4.1.x: The bin directory would contain the object code for both drivers,
oracle_ddl.o and sybase_ddl.o. These objects files will be needed at link time.

The lib directory will contain the database vendors libraries: oraclelib.a could in
fact be a series of archive libraries needed to write a C program retrieving data from
a database. Oracle, for example, would require the following libraries installed: lib-
sql.a osntab.o libsqlnet.a libora.a. When linking the PV-WAVE libraries, you will
need to add these libraries to the link command.

Now that you have set up your directory structure, let us look at the hooks to the
DB connections and the API calls.

PV-WAVE Calls to the DB Connection Driver
The API calls allow the developer to create a PV-WAVE table and fill each one of
the cells in that table; it does not show how the driver itself is called.

This section describes the hooks from which the PV-WAVE commands
db_connect, db_sql and db_disconnect are called.

Eleven (11) database names have been chosen, to be called from the Command
Line in PV-WAVE: oracle, sybase, unify, rdb, ingres, informix, dbms1, dbms2,
dbms3, dbms4, dbms5. Let us assume that you want to build an INGRES database
connection link. When, at the PV-WAVE command line prompt, you type:

WAVE> db_handle = db_connect(’ingres’, ’scott/tiger’)

the ingres_connect function is called with the ’scott/tiger’ connection string (this
implies that only one connection of type ingres can be set at once; however, while
the Ingres connection is established, you can ask for an Oracle connection).

4 Chapter 1: Using the Database Toolkit PV-WAVE:Database Tookit User’s Guide

When then typing:

WAVE> table = db_sql (db_handle, ’select * from emp’)

the ingres_sql function is called with ‘select * from emp’ as an argument.
Similarly,

WAVE> db_disconnect, db_handle

will call the ingres_disconnect function.

Of course, the same is valid for the 11 names mentioned above. Writing the DB
Link driver consists in writing three functions, corresponding to the three
PV-WAVE functions, using the API calls to format the resulting table in
PV-WAVE.

Error Handling

Each one of these functions must return a short, containing either a TRUE for suc-
cess, FALSE for error; TRUE and FALSE are defined in dbms_api.h. The errors
must be contained in a string described in dbms_api.h: extern char
sql_error_string[] or extern char sql_warning_string[]. At the beginning of each of
the hooks, these strings needs to be reset to “\0”, so as to avoid repeating the pre-
vious errors. The messages passed in these strings will be printed as a PV-WAVE
error message, when the return value of the function is FALSE.

The role of the Database connection driver writer is to code a .c file, e.g.
oracle_ddl.c, that contains these three hooks, e.g. oracle_connect, oracle_sql and
oracle_disconnect, using the API calls provided in the following section, and the
database vendor own C interface, like PRO*C for Oracle.

PV-WAVE DB Connection API
A total of four API calls are needed to ease the transformation of data resulting
from an SQL request to a PV-WAVE table variable. Even though you never actu-
ally refer to the table in the API calls, a table will be created, and instantiated with
these calls. You will see how these calls are used in template_ddl.c.

void wave_struct_init():

• input: (long) number of columns.

• output: (void)

PV-WAVE DB Connection API 5

• description: the primary space for the PV-WAVE table will be internally
reserved. The internal structure for the table will be used by subsequent calls
through the API.

void wave_define_dbms_tag():

• input: (int) column index, (char*) column name, (unsigned char) type. The
internal table is further defined for each column. The column index must be
within 0 (zero) and the number of columns parameter given to the
wave_struct_init call. The column name is a NULL terminated string, and
needs to be allocated/deallocated in the calling driver. The type is one of the
values TYP_BYTE,..., TYP_STRUCT given in the dbms_api.h file.

• output: (void)

• description: the internal PV-WAVE structure for the table is further formed.

void wave_make_sql_table()

• input: (int) number of rows for the PV-WAVE table.

• output: (void)

• description: the total internal space for the PV-WAVE structure is finalized.
This call needs to be done after the wave_define_dbms_tag call for all of the
columns.

void put_in_cell()

• input: (long) row, (long) column, (char *) value. The cell location is given by
its row and column coordinate. The row and column values are within 0 (zero)
and the parameters given respectively to wave_struct_init and
wave_make_sql_table.

• output: (void)

• description: At the row, column location, given the type of the column speci-
fied in the wave_define_dbms_tag call previously, put_in_cell will format the
string as PV-WAVE data.

6 Chapter 1: Using the Database Toolkit PV-WAVE:Database Tookit User’s Guide

Code Skeleton
Now that you are acquainted with the hooks to your driver code from PV-WAVE,
and with the API calls that allow you to create and fill a PV-WAVE table, we
present a code skeleton that your particular database connection can follow. We
consider the case where you want to write a Sybase driver, to avoid confusion. The
same is applicable to any other database. You will find the actual skeleton in the
template_ddl.c file. Template_ddl.c will give you a general sense of the possible
code for your database connection.

short sybase_connect(char * connect_string)

• reset the sql_error_string, sql_error_string[0]=’\0’;

• Initialize a Sybase type to PV-WAVE type conversion array, so that
wave_define_dbms_tag, and put_in_cell will be able to create and transform
data correctly in sybase_sql().

• check that there is no other sybase connection established (with a static flag for
example).

• install Sybase own error and message handling routines

• parse the connect_string, and set the Sybase data structure for the Sybase con-
nection; call the Sybase connection routine.

• Check for errors, report them if necessary in sql_error_string, and clean up.

• return a TRUE or FALSE status.

This routine does not use any API call to PV-WAVE. It really sets up the structure
for the Sybase connection calls (dbopen, dbuse,...)

short sybase_sql(char * command);

• Reset the sql_error_string, and any associated error variable.

• Checks that there is a connection to the database server.

• Make sure that any pending database request has been flushed, especially those
that might have caused errors.

• Send the command string to the Sybase server, checking for errors at all step
in the process.

• Get the number of columns returned from the select command, and call
wave_struct_init. Make sure there is at least one column returned.

Code Skeleton 7

• Get each column name, and the Sybase type. For each column, call
wave_define_dbms_tag with the proper parameter, using the conversion array
initialized in sybase_connect to provide the correct PV-WAVE type to the
column.

• Get the number of rows returned from the SQL select query. Make sure it is at
least one. Call wave_make_sql_table with number of rows as its argument. You
now have set up the table internal data structure and reserved the necessary
space for it.

• For each cell returned, call put_in_cell with the row, column and value as a
string. until no more cell is available. (A cell is an element, addressable via a
row and a column).

• Check for any error either from your code, or from Sybase calls, and set
sql_error_string accordingly.

• Return either TRUE or FALSE. If FALSE is returned, the sql_error_string
string will be shown from PV-WAVE.

NOTE The db_sql function has been set up for importing data into PV-WAVE.
However, exporting data to the database can be done, since you can pass any SQL
strings to db_sql. When the SQL command is not a query, you will need to set up
a pseudo-table: we suggest you create a one column, one row table, and pass a
TRUE FALSE value into the single cell. That way, you will be able to assess the
status of the call.

Based on the command string, you can then either create the status pseudo-table or
a real table filled with data from the database server. Your PV-WAVE application
needs to manage the strings passed to the SQL command of db_sql. PV-WAVE
variables do not possess any attribute that bind them to actual database table; hence
the PV-WAVE application will build strings from PV-WAVE variables and tables
to update the corresponding values in the database.

A PV-WAVE call could look like:

WAVE> status = db_sql(db_handle, $
”insert into dept values (50, ’PRODUCTION’, ’SAN FRANCISCO’)”)

The PV-WAVE programmer will have build the SQL command string “insert into
dept values (50, ‘PRODUCTION’, ‘SAN FRANSICO’)” from PV-WAVE
variables.

8 Chapter 1: Using the Database Toolkit PV-WAVE:Database Tookit User’s Guide

short sybase_disconnect()

• Check that there is a connection

• reset the error string

• clean up your data structures

• Disconnect the Sybase connection (in Sybase, dbexit()

• Check for errors, set the error string

• Return TRUE or FALSE.

This skeleton is only given as an example of how to write the code. For example,
you could write a conversion function from Sybase to PV-WAVE types, or have a
static array predefined.

It is necessary that you verify the values passed to the PV-WAVE API calls, and
that these calls are in sequence as each one rely on the previous for the correct
information.

Building PV-WAVE with the Driver
For each one of the driver, an object file will be generated for a platform. For exam-
ple, a database connection driver for Oracle on HP 9000 series 700 object file will
be created as oracle_dll.o under the dbtoolkit-1_0/bin/bin.hp700 directory.

To link this object file with PV-WAVE, you will need to modify quick.mk, or your
own linking command, to make sure that oracle_ddl.o is linked in the proper order:

The link command must have the following order:

1: wave libraries except dbms.hps700.a and wave.hps700.a

2: your driver or drivers, for example oracle_ddl.o, sybase_ddl.o

3: dbms.hps700.a

4: the database vendor’s libraries, for example the hps700 libora.a, libsqlnet.a, lib-
sql.a, onstab.o

5: wave.hps700.a

6: the other required libraries, Xm, Xt, X11 and so on.

The link command will indicate that there some symbols are defined more than
once. That is because the database driver that you have written contains and over-

Testing Tips 9

rides the same symbols that are used in dbms.hps700.a; in dbms.hps700.a are some
stub functions for the ten database hooks. For example, oracle_connect belonging
to the oracle hooks. As you can see, you can link in up to ten drivers with
PV-WAVE code, each based on some particular vendor’s library.

Testing Tips
This section suggests some particular areas that the database connection driver pro-
grammer may want to test in depth. We assume in this section that you have just
built an Oracle connection on HP.

Each database vendor has its way to access databases. To test the db_connect rou-
tine, make sure that you have access to SQLPLUS. The connection string you parse
in oracle_connect should be able to specify a remote system accessible from
SQLPLUS.

Test the connection with a user that does not exist to make sure that the error string
is set properly from the driver.

Connect twice in a row to make sure you are not allowing this.

Connect, disconnect, and reconnect to the server.

Retrieving data from the database needs to be tested for each type of data: we sug-
gest you create a table containing all the types from supported by the Oracle, and
try to retrieve that table in its entirety. This will test that the conversion you built
from Oracle types to PV-WAVE types is correct.

Create a table that contains only one row and one column, to test the boundary, and
retrieve the table for boundary testing.

Create a table that does not contain any row to make sure you are testing that case.

Query a table that does not exist to make sure the error string is set properly.

Conclusion
You now have created a database connection for PV-WAVE. Let us pretend it was
a Sybase link. PV-WAVE users are now able to call

sybase=DB_CONNECT(’Sybase’, ’<connection_string>’),

which in turns calls your sybase_connect code to initiate a connection.

PV-WAVE users are also able to call

10 Chapter 1: Using the Database Toolkit PV-WAVE:Database Tookit User’s Guide

TABLE=DB_SQL(sybase, ’<select_string>’)

which calls your sybase_sql code, which in turns calls the API functions to set up
the PV-WAVE variable returned to the user.

Similarly, PV-WAVE users can now disconnect from the Sybase DBMS by calling

DB_DISCONNECT, sybase

which will call your sybase_disconnect function.

DB_CONNECT, DB_DISCONNECT and DB_SQL are all described in more
detail in the PV-WAVE:Database Connection User’s Guide.

	PV-WAVE Database Toolkit User's Guide
	Table of Contents
	Ch. 1 - Using the Database Toolkit
	Introduction
	Recommended Directory Structure
	PV-WAVE Calls to the DB Connection Driver
	Error Handling

	PV-WAVE DB Connection API
	void wave_struct_init():
	void wave_define_dbms_tag():
	void wave_make_sql_table()
	void put_in_cell()

	Code Skeleton
	short sybase_connect(char * connect_string)
	short sybase_sql(char * command);
	short sybase_disconnect()

	Building PV-WAVE with the Driver
	Testing Tips
	Conclusion

