External
Development
Guide

IDL Version 6.2
July 2005 Edition
Copyright © RSI

All Rights Reserved

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any othersresulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software devel oped by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1

External Development OVEIVIEWciiiiiiiiiiiiii e eeeans 11
ADOUE TRISM@NUAE ...ttt eneeeeae e 12
Supported Inter-Language Communication Techniquesin IDLcccccecvvvvveeceecieenene 13
Dynamic Linking Terminology and CONCEPLScccceverieriiereiesiee e seeseeseeseesreesseesneens 20
When Is It Appropriate to Combine External Code with IDL?cccoeeevvveceececeenene 22
Skills Required to Combine External Code With DLcccevieveiienie e siee e 23
T]I @ o o (o] o ST 27
EXternal DEfINITIONSccoiiieiiee et e e e 29
Interpreting Logical BOOIEAN VAIUESccevviiuieieeieseceee et 30
Compilation and Linking DELAIIScccueieiiieriie ettt ee e sneesnee s 31
Recommended REBAINGccceviiiiiieiece ettt ens 32

External Development Guide 3

4

Part I: Techniques That Do Not Use IDL's Internal API

Chapter 2

Using SPAWN and UNIX PIPESouiiiiiiiiiiiiiieieeeee e 37
Chapter 3

Overview: COM and ActiveX in IDLcouuiiiiiiiiiiieeeeeeeeceeeeeeeii 41
(O(0 1Y @] 11= oi 5= 1o [5 SRS 42
Using COM ObJECISWIth IDLccueeieciicieceiese ettt 44
Skills Required to Use COM ODJECESoveeieiiiiieeieriese e 46
Chapter 4

Using COM Objects

T 5 USRS 47
About Using COM OBJECISIN IDLccvviiiiiecee et 48
IDLcomliDispatch Object Naming SChEMEccvcviieeie e 50
Creating IDLCOMIDISPatCh ODJECESccccoveieriirieieeeirie e 54
Method Calls on IDLcomIDispatCh ODJECEScecveeciereiiececiee e 55
Managing COM ODjJECt PrOPEITIESceoveeriiririereeeee e 63
References to Other COM ODBJECESc.vcviivieieie ettt 65
Destroying IDLcomIDiSpatCh ODJECLSeeoeierieieieere e 66
COM-IDL Data Type MapPiNg ...ccecveeverieereeeesiesresseeseessessesseessessessessesssessessessesssessessessens 67
Example: RSIDEMOCOMPONENccieriereeiererieeteenieseseesseeseeseesee e eeeneeseesnesseeneeseesaesns 69
Chapter 5

Using ActiveX Controls iN IDLceeiiiiiiiiiiiiviieeeeeee 73
About Using ActiveX ControlSin IDLcccvirireirienirereeeesese s 74
ActiveX Control Naming SChEMEcccce i 76
Creating ACHIVEX CONIOISccveivicieceesie sttt st sre e besreene s 77
Method Calls 0n ACtiVEX CONLIOISocueieieiesiesieet et 79
Managing ActiveX Control Properti€sScccccvvveeeeiene et 80
ACHVEX WiIAJEL EVENLS ..ottt sttt sne e eneesae e 81
Destroying ACVEX CONLIOIScceeiveiieiiieieie sttt e et e e resne s 84
Example: Calendar CONLIOLooeoieieieeiece et 85
Example: Spreadsheet CONLIoloovveiiiiece et 88
Chapter 6

The IDLDrawWidget ActiveX Controlccccceeeeiiieieeiiiiiieeeeeeeiinn 93
OVEIVIBIW ..t seieeee sttt este s e s teese e te st e sae e e e tessesse et e seesseeseensentesteeneensensensennenn 94

Contents External Development Guide

Creating an Interface and Handling EVENESccocviiiecece e 96
WOrking With IDL ProCEAUIEScceeiiiiiieieieese et 102
F o7 o ce e o] =R 105
Copying and Printing IDL GraphiCsScccceeeeeierireieeese e see e 106
XLoadCT Functionality Using Visual BaSICccceevueveiiiieieeseseceesee et s 110
XPalette Functionality Using Visual BaSICc.coeeeeeneiiniereereseeeeee e 112
Integrating Object GraphicSUSING VBc.ooeiiiiecee e 113
Sharing a Grid Control Array With IDLcoooiiieieee e 114
Handling Events within Visual BaSiCccccceeiiiiicieie e 116
Distributing Y our ACtiveX APPHICALIONceoeiriieeeee e 118
Chapter 7

IDLDrawWidget Control Referenceccccoeeevveeeiiiiiiiiieieeecceeee, 119
[DLDIAWWILGEL ..ottt 120
=210 LSRR 121
Do Methods (RUNEIME ONIY) ..ot 131
PrOPEITIES ...ttt e et b b e et b e nen e 133
Read ONlY PrOPErtiESoccveee ettt ne e e e e 137
AULO EVENE PrOPEITIES ..ottt 139
EVENLS e e e e e b b nre e sreenes 141
Chapter 8

Using Java ODJectS iN IDLociiiiiiiiiiiaeeeeeeee e 143
Overview of Using JAVAODJECEScccecieiiiicecece e 144
Initializing the IDL-JavaBridgecccovieieeee e 147
IDL-Java Bridge Data TYPe Mappingcccceeerreieieeiesiesieseeseesiesiesseesessesneeeesses e sneens 150
Creating IDL-JaVa ODJECLScceiiiieeeeiee et 156
Method Calls on IDL-Java ODJECESccceeeeiieiiecieceeieste ettt sreeneas 158
Managing IDL-Java ObjeCt ProOPertiesccooeeeieeeeee e 160
Destroying IDL-Java ObJECEScccveieiiiiieeiese et eeete ettt st sreeneas 162
Showing IDL-Java OUEPUL iN IDLoceeieie e 163
The IDLJavaBridgeSession ObJECEccccveveieiereeie sttt 164
JAVA EXCEPLIONS ...ttt sttt sttt ae e et st ne e e e nneneeenin 166
IDL-Java Bridge EXAMPIESccocceeiiiiiiiiiceeite ettt st 169
Troubleshooting Y our Bridge SESSIONccceiiiereeienese et 187

External Development Guide Contents

Chapter 9

Using CALL_EXTERNAL ..ooooeeeeieiie et 191
The CALL_EXTERNAL FUNCHONcoiiiiiiieiresieee st 192
[S gTa [== 0 £ T 202
USING AULO GIUE ..ottt sttt sttt s re et et e s ne e e e snesreeneenes 204
2 F S T ol O =] == U 206
WIEPPEr ROULINESoovieeieie sttt ettt e ettt e st e sresaaetesresteennensesaesreennas 210
[S gTa RS L gTo [- S 212
[S g Te [= Y D - S 216
[S g0 TS Tox LU = U 218
FOrtran EXAMPIESociieieeee ettt sttt b e nesreeneenes 220
Chapter 10

Remote Procedure CallSoouuuiiiiiiiiiiiie e 225
IDL and Remote Procedure CallSoocvivieieeie e 226
USING IDL @S @N RPC SEIVEN ..cuviiiecie ettt teeste e st s et ee e s sneesne e e 227
(O TS g A = o] =SOSR 228
Linking to the CHENt LIDIaryccccccvieriiee et 229
Compatibility with Older IDL COUEcovreririeieeririe e 231
THE IDL RPC LIBIaIY ..ocevieeeeieisesie et seenee s 233
RPC EXBMPIES ...ttt sttt st en e e 258

Part Il: IDL’s Internal API

Chapter 11

IDL Internals:

LY 015 T PRSPPI 261
L1377 0 L= 0o == 262
MapPING Of BESIC TYPES ...ueiviiiiieieesieriesie ettt sttt ene e enes 264
IDL_MEMINT and IDL_FILEINT TYPES ..ccorrureeeeiriririeieenerisieieesesesis e 267
Chapter 12

IDL Internals:

KeyWord ProCeSSING ..ocoviiiiiieeeiiiiiiiieie e et e e e e e e e 269
IDL and KeyWOrd PrOCESSINGcceeeeierieiieceeiisiestesee e ste e esae e sre e esesestesneesesnesneenes 270
Creating Routines that AcCept KEYWOISccoiieieiiiieee e 271
Overview Of IDL Keyword PrOCESSINGcccvcveieeiieriesieeeesiesie st esee e se e sre e seense e 272
The IDL_KW_PAR SIUCKUIEcueiiiieicieserisisie e 274

Contents External Development Guide

TheIDL_KW_ARR _DESC R SITUCIUIEccveivieeeeiee et 277
Keyword Processing OPLiONSccoerereeeeineneneeesesesseee s sressesessesnesneneas 278
The KW_RESULT SHTUCLUIEveeuveiecie ettt sttt sne s 280
Processing KEYWOITScoeiieiiiriieeerie sttt st esee e eeseeseesneenseseesneas 281
(@11 oo T TS 284
KeyWOrd EXAMPIES ...ttt e s e see e 285
The Pre-IDL 5.5 K@YWOrd APl ...ttt 292
Chapter 13

IDL Internals:

Variables ..o 299
IDL and INternal VariablESccocoi ittt ettt snee 300
The IDL_VARIABLE SITUCIUIEc.coeiiieeriesiesiece et 301
o o YT o] =SOSR 304
ATTAY VATADIES ... e 305
SIUCIUIE VAITADIES ...ttt s ens 307
HEAD VAITADIES ... 312
TeMPOrary VariableScccveiiieiiee ettt sne e ens 313
Creating an Array from EXiSting Datacceoeiiieieeiere e 320
Getting DYNAMIC MEMOTY ...o.vecieiisieceeies ettt aesae e ans 322
ACCESSING VATADIE DEIA ...c..eoeeieeeie ettt e e 324
(00 0) V1010 IV o) =P 325
SEOrNG SCAlAr VAIUES ..ottt st st neesee e 326
Obtaining the Name of aVariable ... 328
Looking Up Main Program Variablesccccccoeiieieeneii e 329
Looking Up Variablesin CUITENt SCOPEecvevverieeieeiiieiteceeieesteste e sse e sreeaensesreeneas 330
Chapter 14

IDL Internals:

SEHNG ProCESSING coiiiiiiiiiiii ittt 331
String Processing @nd IDLoouoieiiiieseeeses e 332
ACCeSSING IDL_STRING VAUEScooueeeiirienieieeeeee ettt s 333
COPYING SITTNGS vttt e st b e st b e b e st be e e e e e e besbeneneas 334
DE NG SIHNGS ..veeieeiecsiecse e e e s e s e e s re e sreesre e be e teeneeenreeeeennes 335
Setting an IDL_STRING VEIUEcooviiiieirise et 336
Obtaining a String of aGiven Length ... 337

External Development Guide Contents

Chapter 15

IDL Internals:

Error HANAIING oo 339
MESSAZE BIOCKS ...t re e nre e 340
[SSUING EITOr MESSAESc.ecveeiiiiieieieete sttt nne e 342
Looking Up A Message Code by NaMEcccccvvrier e 348
ChecKing ATQUMENTSceitiiiiieeeieeie ettt sttt b e e et b e e eb e e s 349
Chapter 16

IDL Internals:

TYPE CONVEISION oitiiiiiiiiiiiie e ettt e e e e e e e e e e e e eeee s 353
Converting ArgumentSt0 C SCAlAIScccovrerirerieeeiresreseeese e 354
General TYPE CONVEISIONeiuiiieeieeiesiesieeteesteste e et esaeste s e eseesaestesreeseesbessesreeseessessesseens 355
Converting to SPECITIC TYPEScvruerririeieieerie et 356
Chapter 17

IDL Internals:

UNIX SIGNAIS ceeiiiiiiii it e e e e 357
IDL @NA SIGNEIS ...veeeeeieeiesieeee et 358
o= oo 1= S 361
Establishing aSignal HanNQIer ... e 362
Removing aSignal HandIer ..o ieeieie et 363
UNIX SIGNal MESKScuecviiiieisieisieeseete sttt sae s et e st sesaeseseesanessensnes 364
Chapter 18

IDL Internals:

B L= TP PRPPPRRTR 369
1T To B I 0 1< PR 370
MaKiNg TimMEr REQUESEScoueiuiieieesiirieieeeie ettt e 371
Canceling Asynchronous TIMer REQUESEScovvvveieeieiieseeree e see e e see e s 373
BIOCKING UNEX TIMENS ...ttt e 374
Chapter 19

IDL Internals: Files and Input/Outputcoovrriiiiiiiiiiene e, 377
IDL and INPUL/OULPUL FITESoveeeieieieeeeeese e 378
FIle INFOrMELION ...ttt 380
OPENING FlES ... e n e 384
(O o1 e 1 1= 387

Contents External Development Guide

Preventing Fil@ CIOSINGccoeiiiiicecse ettt sttt sreeneas 388
CheCKiNg Fil@ SEALUSooveerierieieerierie et 389
Allocating and Freeing File UNItSccccovieieiiie et 391
Detecting ENG OF FIl@ ..ot 393
Flushing BUFfEred D@ccceiveeeeieiiesieceesesie ettt st st re et sreeneas 394
Reading a Single CharaCter ..o 395
Output Of IDL Variablescc.eeceiiieceeese ettt 396
Adding to the JOUrNal File ..o e 397
Chapter 20

IDL Internals: MIiSCellan@0ouUScccovvveeeiiiiiiiiiiieeeeeee e 399
(D)7l /= o] Y 400
Ll F= 00 1 £ 403
L0 LS o 101 (= (]]SSPSR 404
Functions for Returning System Variables ..o 405
Terminal INFOIMELIONcooiiiie et 406
ENSUNNG UNIX TTY SEAE ..ottt s 408
TYPE INFOIMEBLIONeeieeiee et e e e e s re e s e e sreesneesneenneens 409
USEN INFOMMALION ..ecuiiiieciece ettt st e st sr e s be e b e et e enreeresbeenras 411
CONSLANTS ...ttt et sttt st esae e sh e eae e she e saeesaeenreenreenree e 412
Y=ol 01 PSPPSR 413

Part Ill: Techniques That Use IDL's Internal API

Chapter 21

Adding System ROULINESccooiiiiiiieeecere e 417
IDL and SysStem ROULINEScccceieeeiiesiesieee sttt e ste et sae st sae e sne e e e se s 418
The System ROULING INTEITACEocueeeeereeeeere e 419
EXample: HEHOWOITA ...ttt et 420
Example: Doing aLittle More (MULTZ2) ..o 421
Example: A Complete Numerical Routine Example (FZ_ROOTS2)cccccvevevievinnene 424
Example: An Example Using Routine Design Iteration (RSUM)cccooovvviicinnneene 433
REQISLENING ROULINESc.viivieieieie sttt s re e enaennenresneas 443
Enabling and Disabling System ROULINEScooviiiieieese e 446
LINKIMAGE ..ottt 454
Dynamically Loadable MOAUIESccoiiiieee et 456

External Development Guide Contents

10

Chapter 22

(02 11 F= o] =3 | 5 PP PPUPPPPPPP 465
Calling IDL aSaSUDIOULINEcceiueeieiiecieeieeecs ettt sae et e et neene e 466
When is Callable IDL APPrOPriate?ccceoeeereeieenieneseeee e seesee e ses e ieeseeee e seeeneas 467
Licensing Issuesand Calabl@ IDLcccccveveieieceesese et 470
[0S T o = =o)L= 1 SR 471
Lo TR T2 o] o OSSPSR PRSTSRPRN 473
Diverting IDL OULPULcoveiieieeeeese e eeeiese st eee st eeseesae e aeseesreeseeneessesnesneeneenns 477
EXECUtiNg IDL SEALEMENESocviieicieeie ettt ettt sa e e ene e 479
Runtime IDL and Embedded IDLcccoiiieeeeeeee e 480
(@11~ L1 o TS 481
Issues and EXampleS: UNIX ...ttt 482
Issues and Examples: Microsoft WINAOWSccccoceveieeeeneie e 498
Chapter 23

Adding External Widgets tO IDLccoovvviiiiiiiiiiiiiiiieeeeeee 509
IDL and EXternal WIAJELScccooeiieirieriiieieee et 510
WIDGET _STUB ..ottt sttt st se e enestense e e e nsenseneas 511
WIDGET _CONTROL/WIDGET _STUBuoiiiiiiecie ettt e 512
Functions for Use With StUD WIAGELScceeovieiece e 514
Internal Callback FUNCLIONSc.ociiiiiiii e 517
UNIX WIDGET_STUB Example: WIDGET_ARROWSABcccoovviriireneneeeesienens 519
Appendix A

Obsolete Internal INterfaces ..o 525
Interfaces Obsoleted IN IDL 5.5 ... 526
Interfaces ObSoleted iN IDL 5.2.1ooioiiieeeeeee e 539
Simplified ROULINE INVOCALTIONcc.ecviiiciicieciece e st 542
Obsolete Error HandliNg APl ..ot 549
IO EX ettt 551

Contents External Development Guide

Chapter 1

External Development

Overview

This chapter discusses the following topics:

About This Manual

Supported I nter-Language Communication
TechniquesinIDL 13

Dynamic Linking Terminology and Concepts .
.................................... 20

When Is It Appropriate to Combine External
CodewithIDL? ...t 22

External Development Guide

Skills Required to Combine External Code
WIthIDL ... 23
IDL Organization 27
External Definitions 29
Interpreting Logical Boolean Values 30
Compilation and Linking Details 31
Recommended Reading 32
11

12 Chapter 1: External Development Overview

About This Manual

The External Devel opment Guide describes options for using code not written in the
IDL language alongside IDL itself. It is divided into three parts:

Part I: Techniques That Do Not Use IDL’s Internal API

This section discusses techniques that allow IDL to work together with programs
written in other programming languages, using IDL’s “public” interfaces. Little or no
familiarity with IDL’s internal interfacesisrequired. For many users, the techniques
in this section will solve most problems that require IDL to use — or be used by —
other programs. Topics covered in Part | include:

e Letting IDL programsinteract with UNIX programs via pipes.
* Incorporating COM objects and ActiveX controlsinto IDL programs.

e Giving Microsoft Windows programs access to IDL features viathe
IDLDrawWidget ActiveX contral.

e Incorporating Java objects into IDL programs.
e Using IDL as aRemote Procedure Call server on a UNIX system.

» Cdling routines written in other programming languages from within IDL
using the CALL_EXTERNAL function.

Part Il: IDL’s Internal API

This section describes IDL’s internal implementation in enough detail to alow you to
write an IDL system routine in another compiled programming language (usually C)
and link it with IDL.

Part Ill: Techniques That Use IDL’s Internal API

This section describes the process of combining IDL with code written in another
programming language. Topics covered in Part 111 include:

e Creating a system routine using the interface described in Part |1 and linking
that routineinto IDL at runtime.

e Cdling IDL as asubroutine from another program (“ Callable IDL™).
e Adding user-defined widgets to IDL widget applications.

About This Manual External Development Guide

Chapter 1: External Development Overview 13

Supported Inter-Language Communication
Techniques in IDL

IDL supports a number of different techniques for communicating with the operating
system and programs written in other languages. These methods are described, in
brief, below.

Options are presented in approximate order of increasing complexity. We
recommend that you favor the simpler options at the head of thislist over the more
complex ones that follow if they are capable of solving your problem.

It can be difficult to choose the best option — there is a certain amount of overlap
between their abilities. We highlight the advantages and disadvantages of each
method aswell as make recommendationsto help you decide which approach to take.
By comparing thislist with the requirements of the problem you are trying to solve,
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

All the benefits of using a high level, interpreted, array oriented environment
with high levels of platform independence.

Disadvantages
Not always possible.
Recommendation

Writing in IDL isthe easiest path. If you have existing code in another language that
is simple enough to translate to IDL, thisis the best way to go. You should
investigate the other optionsif the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardized
package. Another good reason for considering the techniques described in this book
isif you wishto access IDL ahilities from alarge program written in some other
language.

SPAWN

The simplest (but most limited) way to access programs external to IDL isto usethe
SPAWN procedure. Calling SPAWN spawns a child process that executes a specified

External Development Guide Supported Inter-Language Communication Techniques in IDL

14 Chapter 1: External Development Overview

command. The output from SPAWN can be captured in an IDL string variable.
Under UNIX, IDL can communicate with a child process through a bi-directional
pipe using SPAWN. More information about SPAWN can be found in Chapter 2,
“Using SPAWN and UNIX Pipes’ or in the documentation for “SPAWN” in the IDL
Reference Guide manual.

Advantages
e Simplicity
¢ Allows use of existing standalone programs.

¢ Under UNIX, data can be sent to and returned by the program via a pipe,
making sophisticated inter-program communication possible quickly and
easily.

Disadvantages

¢ Non-UNIX hosts are unable to use the pipe facility to communicate with the
program. Data can only be sent to the command via arguments to SPAWN.

Recommendation

SPAWN isthe easiest form of interprocess communication supported by IDL and
allows accessing operating system commands directly.

Microsoft COM and ActiveX

IDL supportsthe inclusion of COM objects and ActiveX controls within IDL
applications running on Microsoft Windows systems by encapsulating the object or
control in an IDL object. Full accessto the COM object or ActiveX control’s
methods is available in this manner, allowing you to incorporate features not
availablein IDL into IDL programs. For more information, see Chapter 3,
“Overview: COM and ActiveX in IDL".

IDL also provides the IDLDrawWidget ActiveX control. The IDLDrawWidget
control is built around IDL for Windows and provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in languages such as C,
C++, Visua Basic, Fortran, Delphi, and others. For more information, see Chapter 6,
“The IDLDrawWidget ActiveX Control”.

Advantages

e Integrates easily with an important interprocess communication mechanism
under Microsoft Windows.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 15

e May support ahigher level interface than the function call interfaces supported
by the remaining options.

Disadvantages
* Only supported under Microsoft Windows.
Recommendation

Incorporate COM abjects or ActiveX controls into your Windows-only IDL
application if doing so provides functionality you cannot easily duplicate in IDL.

Usethe IDL ActiveX control if you are writing a Windows-only applicationin a
language that supports ActiveX and you wish to use IDL to perform computation or
graphics within a framework established by this other application.

Sun Java

IDL also supports the inclusion of Java objects within IDL applications by
encapsulating the object or control inan IDL object. Full access to the Java object is
available in this manner, allowing you to incorporate features not available in IDL
into IDL programs. For more information, see Chapter 8, “Using Java Objectsin
IDL".

Advantages

* Integrates easily with all types of Java code.
e Caneasily leverage existing Java objectsinto IDL.

Disadvantages

¢ Only supported under Microsoft Windows, Linux, Solaris, and Macintosh
platforms supported in IDL.

Recommendation

Incorporate Java objectsinto your IDL application if doing so provides functionality
you cannot easily duplicatein IDL.

UNIX Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communication
between IDL and other programs. IDL isrun asan RPC server and your own program

External Development Guide Supported Inter-Language Communication Techniques in IDL

16

Chapter 1: External Development Overview

isrunasaclient. IDL's RPC functionality is documented in Chapter 10, “Remote
Procedure Calls”.

Advantages

» Code executes in a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

e APl issimilar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

* Possibility of overlapped execution on a multi-processor system.
Disadvantages

e Complexity of managing RPC servers.
e Bandwidth limitations of network for moving large amounts of data.

e Only supported under UNIX.
Recommendation

Use RPC if you are coding in a distributed UNIX-only environment and the amount
of data being moved is reasonable on your network. CALL_EXTERNAL might be
more appropriate for especially simple tasks, or if the external codeis not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL’s CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same memory and data space.
CALL_EXTERNAL ismuch easier to use than either system routines
(LINKIMAGE, DLMs) or Cdlable IDL and is often the best (and simplest) way to
communicate with other programs. CALL_EXTERNAL is also supported on al IDL
platforms.

While many of the topicsin this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found in Chapter
9,“Using CALL_EXTERNAL" and the documentation for “CALL _EXTERNAL” in
the IDL Reference Guide manual.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 17

Advantages

« Allows cdling arbitrary code written in other languages.

¢ Requireslittle or no understanding of IDL internals.
Disadvantages

» FErrorsin coding can easily corrupt the IDL program.
¢ Requires understanding of system programming, compiler, and linker.

« Datamust be passed to and from IDL in precisely the correct type and size or
memory corruption and program errors will result.

e System and hardware dependent, requiring different binaries for each target
system.

Recommendation

Use CALL_EXTERNAL to call code written for general use in another language
(that is, without knowledge of IDL internals). For safety, you should call your
CALL_EXTERNAL functionswithin special IDL procedures or functions that do
error checking of the inputs and return values. In this way, you can reduce the risks of
corruption and give your calers an appropriate |DL-like interface to the new
functionality. If you use this method to incorporate external codeinto IDL, RS
highly recommends that you also use the MAKE_DLL procedure and the
AUTO_GLUE keyword to CALL_EXTERNAL.

If you lack knowledge of IDL internals, CALL_EXTERNAL isthe best way to add
external code quickly. Programmers who do understand IDL internals will often
write a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, DLMs)

It is possible to write system routines for IDL using a compiled language such as C.
Such routines are written to have the standard IDL calling interface, and are
dynamically linked, aswith CALL_EXTERNAL. They are more difficult to write,
but more flexible and powerful. System routines provide access to variables and other
objectsinside of IDL.

This book contains the information necessary to successfully add your own code to
IDL asasystem routine. Especially important is Chapter 21, “Adding System
Routines’. Additional information about system routines can be found in Chapter 9,
“Using CALL_EXTERNAL” and in the documentation for “LINKIMAGE” in the
IDL Reference Guide manual.

External Development Guide Supported Inter-Language Communication Techniques in IDL

18 Chapter 1: External Development Overview

Advantages

e Thisisthe most fully integrated option. It allows you to write IDL system
routines that are indistinguishable from those written by RSI.

¢ Inuse, system routines are very robust and fault tolerant.

e Allowsdirect accessto IDL user variables and other important data structures.
Disadvantages

e All the disadvantages of CALL_EXTERNAL.

¢ Requiresin-depth understanding of IDL internals, discussed in Part 11 of this
manual.

Recommendation

Use system routines if you require the highest level of integration of your code into
the IDL system. UNIX users with RPC experience should consider using RPCsto get
the benefits of distributed processing. If your task is sufficiently simple or you do not
have the desire or timeto learn IDL internals, CALL_EXTERNAL is an efficient
way to get the job done.

Callable IDL

IDL is packaged in a shareable form that allows other programsto call IDL asa
subroutine. This shareable portion of IDL can be linked into your own programs.
Thisuse of IDL isreferred to as“Callable IDL” to distinguish it from the more usual
case of calling your code from IDL viaCALL_EXTERNAL or as a system routine
(LINKIMAGE, DLM).

This book contains the information necessary to successfully call IDL from your own
code.

Advantages

e Supported on all systems.

* Allows extremely low level accessto IDL.
Disadvantages
e All the disadvantages of CALL_EXTERNAL or IDL system routines.

* IDL imposes some limitations on programming techniques that your program
can use.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 19

Recommendation

Most platforms offer a specialized method to call other programs that might be more
appropriate. Windows users should consider the ActiveX control or COM
component. UNIX users should consider using the IDL RPC server. If these options
are not appropriate for your task and you wish to call IDL from another program, then
use Callable IDL.

External Development Guide Supported Inter-Language Communication Techniques in IDL

20 Chapter 1: External Development Overview

Dynamic Linking Terminology and Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into aform which is loadable by
programs at run time aswell aslink time. The ability to load them at run timeiswhat
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

e UNIX: Sharable Libraries
e Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such files sharable librariesin order to have a consistent
and uniform way to refer to them. It should be understood that thisis a generic usage
that applies equally to all of these systems. Sharable libraries contain functions that
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the linker
gives you control over which functions and data (often referred to as symbols) are
visible from the outside (public symbols) and which are hidden (private symbols).
Such control over the interface presented by a sharable library can be very useful.
Your system documentation discusses these options and explains how to build a
sharable library.

Dynamic linking is the enabling technology for many of the techniques discussed in
thismanual. If you intend to use any of these techniques, you should first be sure to
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL uses dynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as system routines.

Callable IDL

Most of IDL isbuilt as asharable library. The actual IDL program that implements
the standard interactive IDL program links to this library and uses it to do its work.
Since IDL isasharable library, it can be called by other programs.

Dynamic Linking Terminology and Concepts External Development Guide

Chapter 1: External Development Overview 21

Remote Procedure Calls (RPCs)

The IDL RPC server isaprogram that links to the IDL sharable library. The IDL
RPC client side library is also a sharable library. Your RPC client program links
against it to obtain access to the IDL RPC system.

External Development Guide Dynamic Linking Terminology and Concepts

22 Chapter 1: External Development Overview

When Is It Appropriate to Combine External
Code with IDL?

IDL is an interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys alarge amount of portability across these
platforms because IDL provides access to system abilities at arelatively high level of
abstraction. The large majority of IDL users have no need to understand itsinner
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

e Many sites have an existing investment in other code that they would prefer to
use from IDL rather than incurring the cost of rewriting it in the IDL language.

e |tisoften best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviorsto it, and incur the ongoing maintenance costs of supporting it.

« IDL may belargely suitable for a given task, requiring only the addition of an
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understand
the following caveats:

¢ RSl attempts to keep the interfaces described in this document stable, and we
endeavor to minimize gratuitous change. However, we reserve the right to
make any changes required by the future evolution of the system. Code linked
with IDL is more likely to require updates and changes to work with new
releases of IDL than programs written in the IDL language.

e Theact of linking compiled codeto IDL isinherently less portable than use of
IDL at the user level.

¢ Troubleshooting and debugging such applications can be very difficult. With
standard IDL, malfunctions in the program are clearly the fault of RSI, and
given areproducible bug report, we attempt to fix them promptly. A program
that combines IDL with other code makes it difficult to unambiguously
determine where the problem lies. The level of support RSI can providein
such troubleshooting is minimal. The programmer is responsible for locating
the source of the difficulty. If the problemisin IDL, asimple program
demonstrating the problem must be provided before we can address the issue.

When Is It Appropriate to Combine External Code with IDL? External Development Guide

Chapter 1: External Development Overview 23

Skills Required to Combine External Code
with IDL

There is alarge difference between the level at which atypical user sees|DL
compared to that of the internals programmer. To the user, IDL is an easy-to-use,
array-oriented language that combines numerical and graphical abilities, and runs on
many platforms. Internally, IDL is alarge C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, and a
large amount of operating system-dependent code.

The amount of knowledge required to effectively write internals code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have experience and proficiency in many of the
following areas:

Microsoft COM

To incorporate a COM object into your IDL program, you should be familiar with
COM interfaces in general and the interface of the object you are using in particular.

Microsoft ActiveX

To incorporate an ActiveX control into your IDL widget application, you should be
familiar with COM interfacesin genera and the interface of the control you are using
in particular.

To use the IDLDrawWidget ActiveX control, you should be familiar with the
programming environment in which you will be using the control (Visual Basic, for
example). A level of understanding of ActiveX and COM is necessary.

Sun Java

To incorporate a Java object into your IDL program, you should be familiar with Java
object classes in general and the methods and data members of the object you are
using in particular.

UNIX RPC

To use IDL as an RPC server, aknowledge of Sun RPC (Also known as ONC RPC)
isrequired. Sun RPC is the fundamental enabling technology that underlies the
popular NFS (Network File System) software available on all UNIX systems, and as
such, is universally available on UNIX. The system documentation on this subject
should be sufficient.

External Development Guide Skills Required to Combine External Code with IDL

24 Chapter 1: External Development Overview

ANSI C

IDL iswrittenin ANSI C. To understand the data structures and routines described in
this document, you must have a complete understanding of this language.

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand the
compilation tools being used as well as those used to build IDL and how they might
interact. IDL is built with the standard C compiler used (and usually supplied) by the
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions (C++, Fortran, ...)

It ispossibleto link IDL directly with code written in compiled languages other than
C athough the details differ depending on the machine, language, and compiler used.
It isthe programmer’s responsibility to understand the inter-language calling
conventions and rules for the target environment—there are too many possibilities
for RSl to actively document them all. ANSI C is a standard system programming
language on all systems supported by IDL, soitisusually straightforward to combine
it with code written in other compiled languages. You need to understand:

e The conventions used to pass parameters to functions in both languages. For
example, C uses call-by-value while Fortran uses call-by-reference. It is easy
to compensate for such conventions, but they must be taken into account.

* Any systematic name changes applied by the compilers. For example, some
compilers add underscores at the beginning or end of names of functions and
global data.

e Any run-timeinitialization that must be performed. On many systems, the real
initial entry point for the program is not main(), but a different function that
performs someinitialization work and then calls your main() function. Usually
these issues have been addressed by the system vendor, who has alarge
interest in allowing such inter-language usage:

* Ifyoucal IDL from aprogram written in alanguage other than C, has the
necessary initialization occurred?

e If youuseIDL to cal codewritten in alanguage other than C, do you need
to take steps to initialize the runtime system for that |anguage?

¢ Arethe two runtime systems compatible?

Alternatives to direct linking (Microsoft COM or Active X) exist on some systems
that smplify the details of inter-language linking.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 25

C++

We are often asked if IDL can call C++ code. Compatibility with C has always been
astrong design goal for C++, and C++ islargely a superset of the C language. It
certainly is possible to combine IDL with C++ code. Callable IDL is especially
simple, as all you need to do isto include the idl_export.h header filein your C++
code and then call the necessary IDL functions directly. Calling C++ code from IDL
(CALL_EXTERNAL, System Routines) is aso possible, but there are some issues
you should be aware of:

AsaC program, IDL isnot ableto directly call C++ methods, or use other
object-oriented features of the C++ language. To use these C++ features, you
must supply afunction with C linkage (using an extern “C” specification) for
IDL to call. That routine, which iswritten in C++ is then able to use the C++
features.

IDL does not initialize any necessary C++ runtime code. Your system may
reguire such code to be executed before your C++ code can run. Consult your
system documentation for details. (Please be aware that thisinformation can be
difficult to find; locating it may require some detective work on your part.)

Fortran

I ssues to be aware of when combining IDL with Fortran:

The primary issue surrounding the calling of Fortran code from IDL is one of
understanding the calling conventions of the two languages. C passes
everything by value, and supplies an operator that lets you explicitly take the
address of amemory object. Fortran passes everything by reference (by
address). Difficultiesin calling FORTRAN from C usually come down to
handling this issue correctly. Some people find it helpful to write a C wrapper
function to call their Fortran code, and then have IDL call the wrapper. Thisis
generally not necessary, but may be convenient.

IDL isaC program, and as such, does not initialize any necessary Fortran
runtime code. Your system may require such code to be executed before your
Fortran code can run. In particular, Fortran code that does its own input output
often requires such startup code to be executed. Consult your system
documentation for details. One common strategy that can minimize this sort of
problem isto use IDL’s /O facilities to do /O, and have your Fortran code
limit itself to computation.

External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: External Development Overview

Operating System Features and Conventions

With the exception of purely numerical code, the programmer must usualy fully
understand the target operating system environment in which IDL isrunning in order
to write code to link with it.

Microsoft Windows

You must be an experienced Windows programmer with an understanding of 32—bit
applications, WIN32, and DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, and
possibly even X Windows depending on the scope of the code being linked.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 27

IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understand a
little about itsinternal operation. This section isintended to give just enough
background to understand the material that follows. Traditional interpreted languages
work according to the following algorithm:

while (statements remaining) {
Get next statement.
Perform lexical analysis and parse statement.
Execute statement.

}

This description isaccurate at a conceptual level, and most early interpreters did their
work in exactly this way due to its simplicity. However, this scheme is inefficient
because:

¢ Themeaning of each statement is determined by the relatively expensive
operations of lexical analysis, parsing, and semantic analysis each and every
time the statement is encountered.

e Since each statement is considered in isolation, any statement that requires
jumping to a different location in the program will require an expensive search
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system is the interpreter.
Theinterpreter implements a simple, stack-based postfix language, in which each
instruction corresponds to a primitive of the IDL language. Thisinternal formisa
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into thisinternal form by the IDL compiler when the .RUN
executive command is issued, or when any other command requires a new routine to
be executed. Oncethe IDL routine is compiled, the original versionisignored, and al
references to the routine are to the compiled version. Some of the advantages of this
organization are;

e The expensive compilation processis only performed once, no matter how
often the resulting code is executed.

e Statements are not considered in isolation, so the compiler keeps track of the
information required to make jumping to a new location in the program fast.

e Thebinary internal form is much faster to interpret than the original form.

External Development Guide IDL Organization

28 Chapter 1: External Development Overview

e Theinterna formis compact, leading to better use of main memory, and
allowing more codeto fit in any memory cache the computer might be using.

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains pointers
to variables, which areimplemented by IDL_VARIABLE structures (see “The
IDL_VARIABLE Structure’ on page 301). Pointersto IDL_VARIABLEs are
referred to asIDL_VPTRs. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and then
pushing the IDL_VPTR to theresulting IDL_VARIABLE back onto the stack. The
removed items are the arguments to the instruction, and the new element represents
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routine is compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error if an
invalid number of arguments is specified.

At execution time, the interpreter instructions that execute system procedures and
functions operate as follows:

1. Look up the requested routine in the internal table of routines.
2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If theroutine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpreter
does al the work related to pushing and popping elements from the stack. The called
function need only worry about executing its operation and providing aresult.

IDL Organization External Development Guide

Chapter 1: External Development Overview 29

External Definitions

Thefileidl export.h, foundinthe external/include subdirectory of the IDL
distribution, supplies all the IDL-specific definitions required to write code for
inclusion with IDL. As such, thisfile defines the interface between IDL and your
code. It will be worth your while to examine thisfile, reading the comments and
getting ageneral idea of what is available. If you are not writing in C, you will have
to translate the definitions in thisfile to suit the language you are using.

Warning
idl export .h contains some declarations which are necessary to the compilation

process, but which are still considered private to RSI. Such declarations are likely to
be changed in the future and should not be depended on. In particular, many of the
structure data types discussed in this document have more fields than are discussed
here—such fields should not be used. For this reason, you should always include
idl_export .h rather than entering the type definitions from this document. This
will also protect you from changesto these data structuresin future releases of IDL.
Anythingin idl export .h that is not explicitly discussed in this document
should not be relied upon.

The following two lines should be included near the top of every C program file that
isto become part of IDL:

#include <stdio.h>
#include "idl export.h"

External Development Guide External Definitions

30

Chapter 1: External Development Overview

Interpreting Logical Boolean Values

IDL iswritten in the C programming language, and this manual therefore discusses C
language functions and data structures from the IDL program. In this documentation,
you will see referencesto logical (boolean) arguments and results referred to in any
of the following forms: True, False, TRUE, FALSE, IDL_TRUE, IDL_FALSE, and
possibly other permutations on these. In all cases, the meaning of true and falsein
this manual correspond to those of the C programming language: A zero (0) valueis
interpreted as “false”, and anon-zero value is “true”.

When reading this manual, please be aware of the following points:

Unless otherwise specified, the actual word used when discussing logical
valuesis not important (i.e. true, True, TRUE, and IDL_TRUE) all mean the
same thing.

Internally, IDL usesthe IDL_TRUE and IDL_FAL SE macros described in
“Macros’ on page 413, for hard-wired logical constants. These macros have
the values 1, and O respectively. This convention is nothing more than
reflection of the need for a consistent standard within our code, and adesire to
keep IDL names within a standard namespace to avoid collisions with user
selected names. Otherwise, any of those other alternative names might have
been used with equally good results.

We don’t usethe IDL_TRUE and IDL_FAL SE convention in the text of this
book because it would be unnecessarily awkward, preferring the more natural
True/TRUE and False/FAL SE.

The convention for truth valuesin the IDL Language differ from those used in
the C language. It isimportant to keep the language being used in mind when
reading code to avoid drawing incorrect conclusions about its meaning.

Interpreting Logical Boolean Values External Development Guide

Chapter 1: External Development Overview 31

Compilation and Linking Details

Once you've written your code, you heed to compileit and link it into IDL before it
can be run. Information on how to do thisis available in the various subdirectories of
the external subdirectory of the IDL distribution. Referencesto filesthat are useful
in specific situations are contained in this book.

In addition:

* ThelDL MAKE_DLL procedure, documented in the IDL Reference Manual,
provides a portable high level mechanism for building sharable libraries from
code written in the C programming language.

e ThelDL IMAKE DLL system variableisused by the MAKE_DLL procedure
to construct C compiler and linker commands appropriate for the target
platform. If you do not use MAKE_DLL to compile and link your code, you
may find the value of IMAKE _DLL.CC and 'MAKE DLL.LD helpful in
determining which options to specify to your compiler and linker, in
conjunction with your system and compiler documentation. For the C
language, the optionsin IMAKE_DLL should be very close to what you need.
For other languages, the 'MAKE_DLL options should still be helpful in
determining which options to use, as on most systems, all the language
compilers accept similar options.

e TheUNIX IDL distribution has abin subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with thesefilesisaMakefile that shows how to build IDL from
the shareable libraries present in the directory. The link line in this makefile
should be used as a starting point when linking your code with Callable IDL—
simply omit main .o and include your own object files, containing your own
main program.

e A more detailed description of the issuesinvolved in compiling and linking
your code can be found in this book under “Compiling Programs That Call
IDL” on page 482.

External Development Guide Compilation and Linking Details

32 Chapter 1: External Development Overview

Recommended Reading

There are many books written on the topics discussed in the previous section. The
following list includes books we have found to be the most useful over the yearsin
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are a so excellent. The absence of abook from thislist
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9.
Thisisthe original C language reference, and is essential reading for this subject.

In addition, you should study the vendor supplied documentation for your compiler.
Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applicationsthat call IDL in the Microsoft Windows environment.

Petzold, Charles. Programming Windows, The Definitive Guide to the Win32 API,
Microsoft Press, 1998. ISBN 157231995X (Supersedes: Programming Windows 95).

Richter, Jeffrey. Programming Applications for Microsoft Windows. Microsoft Press,
1999. ISBN 1572319968 (Supersedes: Advanced Windows, Third Edition).

The Microsoft Developer Network (MSDN) supplies essential documentation for
programming in the Windows environment. This documentation is part of the Visual
C++ environment. More information on the MSDN is available at
http://msdn.microsoft.com.

Sun Java

Flanagan, David. Java in a Nutshell, Fourth Edition, O’ Reilly & Associates, March
2002. ISBN 0596002831. This book provides an accelerated introduction to the Java
language and key APIs.

In addition, you should study the Java tutorials and documentation provided on the
Sun’s Java website (http://www.java.sun.com).

UNIX

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,
Massachusetts: Addison Wesley, 1992. ISBN 0-201-56317-7. Thisis the definitive

Recommended Reading External Development Guide

http://www.java.sun.com

Chapter 1: External Development Overview 33

reference for UNIX system programmers. It covers all the important UNIX concepts
and covers the mgjor UNIX variants in complete detail.

Rochkind, Marc J. Advanced UNIX Programming. Englewood Cliffs, New Jersey:
Prentice Hall, 1985. ISBN 0-13-011818-4. This volumeis also extremely well
written and does an excellent job of explaining and motivating the fundamental
UNIX conceptsthat underlie the UNIX system calls. Thisbook suffersin comparison
to the Stevens book in that it discusses older UNIX systems rather than current
systems and lacks discussion of networking. However, what it does cover is correct
and very readable, and it is much shorter than Stevens.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

X Windows

The X Windows series by O’ Rellly & Associates contains all the information needed
to program for the X Window system. There are several volumes—the ones you will
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys. X Window System. Digital Press. Thisis
purely areference manual, as opposed to the O’ Reilly books which contain alarge
amount of tutorial as well as reference information. This book is primarily useful for
those using XLIB to draw graphicsinto Motif Draw Widgets and for those who need
to understand the base layers of X Windows. Motif programmers may not require this
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of quality
and usefulness. Note that most X Windows books are updated with each version of
the system. (X Version 11, Release 6 is the current version at this printing.)

External Development Guide Recommended Reading

34

Recommended Reading

Chapter 1: External Development Overview

External Development Guide

Part I: Techniques
That Do Not Use IDL’s
Internal API

Chapter 2

Using SPAWN and
UNIX Pipes

IDL’s SPAWN procedure spawns a child process to execute a command or series of
commands. Cross-platform use of SPAWN is described in detail in the IDL Reference
Guide. This section describes a procedure available only on UNIX systems:
communicating with the spawned child process using UNIX pipes.

By default, calls to the SPAWN procedure cause the IDL processto wait until the
child process has finished before continuing. On UNIX systems, IDL can attach a
bidirectional pipe to the standard input and output of the child process, and then
continue without waiting for the child processto finish. The pipe created in this
manner appearsin the IDL process as anormal logical file unit.

Once a process has been started in this way, the normal IDL input/output facilities
can be used to communicate with it. The ability to use a child process in this manner
allows you to solve specialized problems using other languages and to take advantage
of existing programs.

External Development Guide 37

Chapter 2: Using SPAWN and UNIX Pipes

In order to start such a process, use the UNIT keyword to SPAWN to specify a named
variable in which the logical file unit number will be stored. Once the child process
has done itswork, use the FREE_LUN procedure to close the pipe and delete the
process.

When using a child processin this manner, it isimportant to understand the following
points:

e Closing the file unit causes the child process to be killed. Therefore, do not
close the unit until the child process completes its work.

A UNIX pipeissimply abuffer maintained by the operating system. It hasa
fixed length and can therefore become completely filled. When this happens,
the operating system puts the process that is filling the pipe to sleep until the
process at the other end consumes the buffered data. The use of a bidirectional
pipe can lead to deadlock situations in which both processes are waiting for the
other. This can happen if the parent and child processes do not synchronize
their reading and writing activities.

* Most C programs use the input/output facilities provided by the Standard C
Library (stdio). In situationswhere IDL and the child process are carrying on a
running dialog (as opposed to a single transaction), the normal buffering
performed by stdio on the output file can cause communications to hang. We
recommend calling the stdio setbuf() function asthe first statement of the child
program to eliminate such buffering.

(void) setbuf (stdout, (char *) 0);

It isimportant that this statement occur before any output operation is
executed; otherwise, it may not have any effect.

Example: Communicating with a Child Process
Under UNIX

The C program shown in the following example (test_pipe. c) accepts floating-
point values from its standard input and returns their average on the standard outpui.
In actual practice, such atrivial program would never be used from IDL, sinceitis
simpler and more efficient to perform the calculation within IDL itself. The example
does, however, serveto illustrate a method by which significant programs can be
called from IDL.

In the interest of brevity, some error checking that would normally be included in
such a program has been omitted. For example, areal program would need to check

External Development Guide

Chapter 2: Using SPAWN and UNIX Pipes

the non-zero return values from fread (3) and fwrite (3) to ensurethat the
desired amount of datawas actually transferred.

39

W J o0 Ul b WDN

WWNNMNMNOMNNMNMNOMNNMNMNONRRRRRRRRR R
P OWOWSOU D WNRFEOWO®DUOU D WN R O W

32
33
34
35
36

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.hs>

main ()

{
float *data, total = 0.0;
char *err str;
int i, n;

/* Make sure the output is not buffered */
setbuf (stdout, (char *) 0);

/* Find out how many points */
if (!fread(&n, sizeof(n), 1, stdin)) goto error;

/* Get memory for the array */
if (! (data = (float *) malloc(n * sizeof(*data)))) goto error;

/* Read the data */
if (!fread(data, sizeof (*data), n, stdin)) goto error;

/* Calculate the average */
for (i=0; 1 < n; i++) total += datali];
total /= (float) n;

/* Return the answer */
if (!fwrite(&total, sizeof(*data), 1, stdout)) goto error;
return;

error:
err str = strerror(errno) ;
if (lerr str) err str = "<unknown error>";
fprintf (stderr, "test pipe: %s\n", err str);

}

Table 2-1: test_pipe.c

This program performs the following steps:

1. Readsalong integer that tells how many data pointsto expect, becauseit is

desirable to be able to average an arbitrary number of points.

2. Obtains dynamic memory viathe malloc() function, and reads the datainto it.

External Development Guide

40

Chapter 2: Using SPAWN and UNIX Pipes

3. Calculatesthe average of the points.
4. Returnsthe answer as a single floating-point value.

Since the amount of input and output for this program is explicitly known and
becauseit reads all of itsinput at the beginning and writes all of its results at the end,
adeadlock situation cannot occur.

Thefollowing IDL statements use test_pipe to determine the average of the values 0
to O

;Start test pipe. The use of the NOSHELL keyword is not necessary,
;but speeds up the start-up process.
SPAWN, 'test pipe', UNIT = UNIT, /NOSHELL

;Send the number of points followed by the actual data.
WRITEU, UNIT, 10L, FINDGEN(10)

;Read the answer.
READU, UNIT, ANSWER

;Announce the result.
PRINT, "Average = ", ANSWER

;Close the pipe, delete the child process, and deallocate the
;logical file unit.
FREE_LUN, UNIT

Executing these statements gives the result:
Average = 4.50000

This mechanism provides the UNIX IDL user asimple and efficient way to augment
IDL with code written in other languages such as C or Fortran. It is, however, not as
efficient as writing the required operation entirely in IDL. The actual cost depends
primarily on the amount of data being transferred. For example, the above example
can be performed entirely in IDL using a simple statement such as the following:

PRINT, 'Average = ', TOTAL(FINDGEN(10))/10.0

External Development Guide

Chapter 3

Overview: COM and
ActiveX In IDL

This chapter discusses the following topics:

COM Objectsand IDL 42 Skills Required to Use COM Objects 46
Using COM ObjectswithIDL 44

External Development Guide 41

42 Chapter 3: Overview: COM and ActiveX in IDL

COM Objects and IDL

Microsoft’'s Component Object Model, or COM, is a specification for developing
modular software components. COM is not a programming language or an API, but
an implementation of a component architecture. A component architectureis a
method of designing software components so that they can be easily connected
together, reused, or replaced without re-compiling the application that uses them.
Other examples of this methodology include the Object Management Group’s
Common Object Request Broker Architecture (CORBA) and Sun’s JavaBeans
technologies.

ActiveX controls are a special class of COM object that follow a set of Microsoft
interface specifications; they are normally designed to present a user interface.

IDL for Windows supports three methods for using COM-based software
components in your applications:

e Exposing aCOM abject as an IDL object,
¢ Including an ActiveX control inan IDL widget hierarchy,

¢ Including the IDL DrawWidget ActiveX control in an application written in a
language other than IDL.

Note
While COM components can be developed for numerous platforms, most COM-
based software is written for Microsoft Windows platforms. IDL for Windows
supports the inclusion of COM technologies, but IDL for UNIX does not. The
chaptersin this section will discuss COM in the context of Microsoft Windows
exclusively.

What are COM Objects?

A COM object, or component, is a piece of software that:

e isalibrary, rather than a standalone application (that is, it runsinside some sort
of client application such as IDL, aVisua Basic application, or aweb
browser);

e isdistributed in a compiled, executable form;

e exposes agroup of methods and propertiesto its client application;

COM Objects and IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 43

In addition to these criteria, a component may also supply auser interface that can be
manipulated by the user. COM objects that supply a user interface and send events to
the programs that use them are generally packaged as ActiveX controls, athoughit is
not a requirement that an ActiveX control provide a user interface.

COM objects and ActiveX controls are nearly always packaged as Windows
executable (. exe), dynamic link library(.d11), or object linking and embedding
(.ocx) files.

Why Use COM Objects with IDL?

There are several reasons to use COM technologies alongside IDL:

e COM objects can be designed to use the facilities of the underlying Windows
operating system. If you need access to Windows features not exposed within
IDL, incorporating a COM object into your IDL program may provide the
functionality you need.

¢ COM objects have been written to provide custom user interface elements or
accomplish specific tasks. Many of these components are available to you free
or at minimal cost. If you work exclusively in a Windows environment,
incorporating a pre-written component in your IDL program may be faster
than coding the same functionality in IDL.

¢ Using the IDLDrawWidget ActiveX control, you can rapidly incorporate IDL
functionality into a Windows application created with any COM-aware
environment. COM-aware environments include Visual Basic, Visual C++,
and even VBScript.

External Development Guide COM Obijects and IDL

44

Chapter 3: Overview: COM and ActiveX in IDL

Using COM Objects with IDL

The three methods for using COM objects with IDL are:
e Exposing aCOM Object asan IDL Object,
¢ Including an ActiveX Control in an IDL Widget Hierarchy,

e Using the IDLDrawWidget ActiveX Control in an application writtenin a
language other than IDL.

Exposing a COM Object as an IDL Object

IDL’s IDLcomlDispatch object class creates an IDL object that communicates with
an underlying COM object using the COM object’s IDispatch interface. When you
create an | DL.coml Dispatch object, you provide the identifier for the COM object you
wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
The IDLcomlDispatch object is useful when you want to incorporate a generic
COM object into your IDL application. If the COM object you want to use is an
ActiveX control, use the WIDGET_ACTIVEX routine, discussed below.

For details on using the IDL comlIDispatch object class to incorporate COM objects
into your IDL applications, see Chapter 4, “Using COM Objectsin IDL”.

Including an ActiveX Control in an IDL Widget
Hierarchy

IDL’'s WIDGET_ACTIVEX routine incorporates an ActiveX control directly into an
IDL widget hierarchy. This allows you to place the ActiveX control in an IDL widget
interface, and to receive widget events directly from the control for handling by a
standard IDL widget event handler.

Internally, IDL uses the same mechanismsit uses when creating | DL coml Dispatch
objects when it instantiates an ActiveX control as part of an IDL widget hierarchy.
After the widget hierarchy has been realized, an object reference to the IDL object
that encapsulates the ActiveX control can be retrieved and used as an interface with
the ActiveX control. This allows you to call the ActiveX control’s methods and get
and set its properties using standard IDL object conventions and syntax.

Using COM Objects with IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 45

For details on using the WIDGET_ACTIVEX routine to incorporate ActiveX
controlsinto your IDL applications, see Chapter 5, “Using ActiveX Controlsin IDL”.

Using the IDLDrawWidget ActiveX Control

IDL for Windows distributions include an ActiveX control that makes DL
functionality available to other applications. Including the IDL DrawWidget control
in your Windows application allows you to create your own user interface using the
programming language of your choice, while using IDL’s data analysis and display
functionality.

Note
The IDLDrawWidget ActiveX control providesa COM interfaceto IDL, but

requires an IDL installation to function. This meansthat in order for an application
to use the IDL DrawWidget control, alicensed copy of IDL must be installed on the

same computer.

For details on using the IDL DrawWidget ActiveX control in your own Windows
applications, see Chapter 6, “ The IDLDrawWidget ActiveX Control”.

External Development Guide Using COM Objects with IDL

46 Chapter 3: Overview: COM and ActiveX in IDL

Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, you must be
familiar with some aspects of COM to successfully intertwine COM and IDL.

If You Are Using COM Objects

If you are using a COM object directly, viathe IDLcoml Dispatch object, you will
need a thorough understanding of the COM object you are using, including its
methods and properties. An understanding of the Windows tools used to discover
information about COM objects is useful.

If You Are Using ActiveX Controls

If you are incorporating an ActiveX control into an IDL widget hierarchy using
WIDGET_ACTIVEX, you will need athorough understanding of the ActiveX
control you are using, including its methods, properties, and the information returned
when an event is generated. An understanding of the Windows tools used to discover
information about ActiveX controlsis useful.

If You Are Using the IDLDrawWidget ActiveX Control

If you are incorporating the IDL DrawWidget ActiveX control in your own Windows
application, you will need athorough understanding of your own application
development tools, including how they are used to interact with ActiveX controls.
Details about the IDL DrawWidget control itself are provided in Chapter 6, “The
IDLDrawWidget ActiveX Control” and Chapter 7, “1DL DrawWidget Control
Reference’.

If You Are Creating Your Own COM Object

If you are creating your own COM object to be included in IDL, you will need a
thorough understanding of both your development environment and of COM itself. It
is beyond the scope of this manual to discuss creation of COM objects, but you
should be able to incorporate any component created by following the COM
specification into IDL by following the procedures outlined here.

Skills Required to Use COM Objects External Development Guide

Chapter 4

Using COM QObjects

In IDL

This chapter discusses the following topics:

About Using COM ObjectsinIDL 48
IDLcomlDispatch Object Naming Scheme . 50
Creating IDLcomlDispatch Objects 54
Method Calls on IDLcomlDispatch Objects 55
Managing COM Object Properties 63

External Development Guide

References to Other COM Objects. 65
Destroying IDLcomlDispatch Objects 66
COM-IDL DataTypeMapping 67
Example: RSIDemoComponent 69

47

48 Chapter 4: Using COM Objects in IDL

About Using COM Objects in IDL

If you want to incorporate a COM object that does not present its own user interface
into your IDL application, use IDL’s IDLcomlDispatch object class.

IDL’s IDLcomiDispatch object class creates an IDL object that uses the COM

I Dispatch interface to communicate with an underlying COM object. When you
create an |DLcomlIDispatch object, you provide information about the COM object
you wish to use, and IDL handlesinstantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
If the COM object you want to use in your IDL application is an ActiveX control,

use the WIDGET_ACTIVEX routine, discussed in Chapter 5, “Using ActiveX
Controlsin IDL".

Array Data Storage Format

COM, like C, stores array datain row-major format. IDL stores array datain column-
major format. See “Columns, Rows, and Array Magjority” in Chapter 15 of the
Building IDL Applications manual for a detailed discussion of thisissue and its
implications for IDL application design.

Object Creation

To create an IDL object that encapsulates a COM object, use the OBJ_NEW function
as described in “ Creating IDLcoml Dispatch Objects’ on page 54. IDL creates a
dynamic subclass of the IDLcomlDispatch object class, based on information you
specify for the COM object.

Method Calls and Property Management

Once you have created your IDLcoml Dispatch object within IDL, use normal 1DL
object method callsto interact with the object. (See Chapter 1, “The Basics of Using
Objectsin IDL" in the Object Programming manual for a discussion of IDL objects.)
COM object properties can be set and retrieved using the GetProperty and
SetProperty methods implemented for the IDLcoml Dispatch class. See “Method
Callson IDLcomlDispatch Objects’ on page 55 and “Managing COM Object
Properties’ on page 63 for details.

About Using COM Obijects in IDL External Development Guide

Chapter 4: Using COM Objects in IDL 49

Object Destruction

Destroy IDLcomlDispatch objects using the OBJ_DESTROY procedure. See
“Destroying IDLcomlDispatch Objects’ on page 66 for details.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually.

To register acomponent (.d11 or .exe) or acontrol (. ocx), use the Windows
command line program regsvr32, supplying it with name of the component or
control to register. For example, the IDL distribution includes a COM component
named RSIDemoComponent, contained in afile named RSIDemoComponent . d11
located in the examples\doc\bridges\coM subdirectory of the IDL distribution.
To register this component, do the following:

1. Open aWindows command prompt.

2. Change directoriesto the examples\doc\bridges\com subdirectory of the
IDL distribution.

3. Enter the following command:
regsvr32 RSIDemoComponent.dll

Windows will display a pop-up dialog informing you that the component has been
registered. (You can specify the® /s " parameter to regsvr32 to prevent the dialog
from being displayed.)

Note
You only need to register acomponent once on a given machine. It is not necessary
to register a component before each use.

External Development Guide About Using COM Obijects in IDL

50 Chapter 4: Using COM Objects in IDL

IDLcomIDispatch Object Naming Scheme

When you create an | DL.coml Dispatch object, IDL automatically creates a dynamic
subclass of the IDLcomlDispatch class to contain the COM object. IDL determines
which COM object to instantiate by parsing the class name you provide to the
OBJ_NEW function. You specify the COM aobject to use by creating a class name
that combines the name of the base class (IDLcoml Dispatch) with either the COM
classidentifier or the COM program identifier for the object. The resulting class
name looks like

IDLcomIDispatch$ID type$SID
where ID_type is one of the following:
e cLsIDIf the object isidentified by its COM class D, or
e PrOCID if the object isidentified by its COM program ID,
and ID isthe COM object’s actual class or program identifier string.

Note
While COM objectsincorporated into IDL are instances of the dynamic subclass
created when the COM object isinstantiated, they still expose the functionality of
the class IDLcoml Dispatch, which isthe direct superclass of the dynamic subclass.
All IDLcomlDispatch methods are available to the dynamic subclass.

Class Identifiers

A COM object’s classidentifier (generally referred to asthe CLSID) is a 128-hit
identifying string that is guaranteed to be unique for each object class. The strings
used by COM as class |IDs are al so referred to as Globally Unique Identifiers
(GUIDs) or Universally Unique Identifiers (UUIDs). It is beyond the scope of this
chapter to discuss how class IDs are generated, but it is certain that every COM
object has aunique CLSID.

COM class|Ds are 32-character strings of alphanumeric characters and numeral sthat
look like this:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52}

The above class identifier identifies the RSIDemoComponent class included with
IDL.

IDLcomIDispatch Object Naming Scheme External Development Guide

Chapter 4: Using COM Objects in IDL 51

When you create an | DL.coml Dispatch object using a CLSID, you must modify the
standard CLSID string in two ways.

1. You must omit the opening and closing braces ({ }).

2. You must replace the dash characters (-) in the CLSID string with
underscores (_).

See “Creating IDLcoml Dispatch Objects’ on page 54 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the class ID of the COM object you wish to expose asan IDL
object, you may be able to determine it using an application provided by Microsoft;
see “Finding COM Class and Program IDs” on page 52 for details.

Program Identifiers

A COM object’s program identifier (generally referred to as the PROGID) isa
mapping of the class identifier to a more human-friendly string. Unlike class IDs,
program IDs are not guaranteed to be unigue, so namespace conflicts are possible.
Program IDs are, however, easier to work with; if you are not worried about name
conflicts, use the identifier you are most comfortable with.

Program IDs are a phanumeric strings that can take virtually any form, although by
convention they look like this:

PROGRAM. Component .version

For example, the RSIDemoComponent class included with IDL has the following
program ID:

RSIDemoComponent .RSIDemoObjl.1

When you create an | DLcoml Dispatch object using a PROGID, you must modify the
standard PROGID string by replacing the dot characters (.) with underscores ().

See " Creating DL coml Dispatch Objects’ on page 54 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the program ID of the COM object you wish to expose as an
IDL object, you may be able to determine it using an application provided by
Microsoft; see“Finding COM Class and Program IDs’ on page 52 for details.

External Development Guide IDLcomIDispatch Object Naming Scheme

52 Chapter 4: Using COM Objects in IDL

Finding COM Class and Program IDs

In generdl, if you wish to incorporate a COM aobject into an IDL program, you will
know the COM class or program ID — either because you created the COM object
yourself, or because the devel oper of the object provided you with the information.

If you do not know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. You can download the OLE/COM Object Viewer at no
charge directly from Microsoft. As of thiswriting, you can locate the tool by pointing
your Web browser to:

http://www.microsoft.com/com
and then selecting “Downloads’ from the “ Resources’ menu.

The OLE/COM Object Viewer displays all of the COM objectsinstalled on a
computer, and allows you to view information about the objects and their interfaces.

5 OLE/COM Dbject Yiewer] 3

File ©hject Yiew Help

=3 £l P |

--égz RequestMakeCall Class | Hoicon FSIDemalbjl Class

@, Reveal Transition Akl (i 77RCR2-BBEC-4D 24 B2E 3 FE5RACEE2E 62}
¢ RevealTrans

--égz RichText Apppearance
[, RichText General Prope LS = -

"é'fz RIPBWizard Class L [ATTBC2EE-B0EC-402 A-B2E3-FS5S6ACES2ESS} = RSIDemacbil Class
-G Ripple

i X InprocServer3z [<no name>] = d:\RSIdd\RSIDEM-~1.DLL
"éz RM Enlls.tment Helper InprocServer3Z [ThreadingModel] = Apartment

"éﬁ RMGetLicense Class PraglD = RSIDemaComponent. RSIDemaohil. 1

--égz Role-based Security Po - Programmable

@ Rall Typelib = {62AD7BE6-8067-48F7-B392-7F458936 1DCE}

"@ RotateBvr Class - YersionIndependentProgIh = RSIDemoomponent.RSIDemochil
@, Route Class

--égz RowsetHelper

.08

Registry Implementationl Activationl Launch Permissionsl Access Permissions

R_SIDemoComponent.RSIDemoObjl.1 = RSIDemoObjl Class
| “ CLSID = {A7TBC2E2-30EC-402A-B2B3-FSS6ACES2ES2}
Typelib =

g, R
@, RSIDemoObj3 Class

B, RTP Class _I;I o =
4 I I »

Figure 4-1: Microsoft's OLE/COM Obiject Viewer Application

Note
You can copy an object’s class ID to the clipboard by selecting the object in the
leftmost panel of the object viewer, clicking the right mouse button, and selecting
“Copy CLSID to Clipboard” from the context menu.

IDLcomIDispatch Object Naming Scheme External Development Guide

http://www.microsoft.com/com

Chapter 4: Using COM Objects in IDL 53

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displays the full dynamic
subclass name, including the class ID or program ID that was used when the object

was created.

External Development Guide IDLcomIDispatch Object Naming Scheme

54 Chapter 4: Using COM Objects in IDL

Creating IDLcomIDispatch Objects

To expose a COM object asan IDL object, use the OBJ NEW function to create a
dynamic subclass of the IDLcoml Dispatch object class. The name of the subclass
must be constructed as described in “ DL coml Dispatch Object Naming Scheme” on
page 50, and identifies the COM aobject to be instantiated.

Note
If the COM object you want to use within IDL isan ActiveX control, use the
WIDGET_ACTIVEX routine as described in Chapter 5, “Using ActiveX Controls
in IDL". Instantiating the ActiveX control as part of an IDL widget hierarchy
allowsyou to respond to events generated by the control, whereas COM objects that
are instantiated using the OBJ_NEW do not generate eventsthat IDL is aware of.

For example, suppose you wish to include a COM component with the class ID
{A77BC2B2—88EC—4D2A—B2B3—F556ACB52E52}

and the program ID
RSIDemoComponent .RSIDemoObjl. 1

inan IDL program. Use either of the following calls to the OBJ_ NEW function:

ObjRef = OBJ NEW($
' IDLcomIDispatch$CLSIDSA77BC2B2 88EC 4D2A B2B3 F556ACB52E52')

or

ObjRef = OBJ NEW($
'IDLcomIDispatch$PROGIDSRSIDemoComponent RSIDemoObjl 1')

IDL’sinternal COM subsystem instantiates the COM object within an
IDLcomliDispatch object with one of the following the dynamic class names

IDLcomIDispatch$CLSIDSA77BC2B2 88EC 4D2A B2B3 F556ACB52ES2
or
IDLcomIDispatch$PROGIDSRSIDemoComponent RSIDemoObjl 1

and sets up communication between the object and IDL. You can work with the
IDLcomlDispatch object just as you would with any other IDL object; calling the
object’s methods, and getting and setting its properties.

See“IDLcomlIDispatch” in the IDL Reference Guide manual for additional details.

Creating IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 55

Method Calls on IDLcomIDispatch Objects

IDL alowsyou to call the underlying COM object’s methods by calling methods on
the IDLcomlDispatch object. IDL handles conversion between IDL data types and
the datatypes used by the component, and any results are returned in IDL variables of
the appropriate type.

Aswith all IDL objects, the general syntax is:
result = ObjRef -> Method ([Arguments])
or
ObjRef -> Method [, Arguments]

where objRef isan object reference to an instance of a dynamic subclass of the
IDLcomlDispatch class.

Function vs. Procedure Methods

In COM, all object methods are functions. IDL’s implementation of the

IDL comlDispatch object maps COM methods that supply areturn value using the
retval attribute as IDL functions, and COM methods that do not supply areturn
valueviathe retval attribute as procedures. See “Displaying Interface Information
using the Object Viewer” on page 59 for more information on determining which
methods use the retval attribute.

The IDL coml Dispatch::GetProperty and | DL coml Dispatch:: SetProperty methods are
special cases. These methods are IDL object methods — not methods of the
underlying COM object — and they use procedure syntax. The process of getting and
setting properties on COM objects encapsulated in IDLcoml Dispatch objectsis
discussed in “Managing COM Object Properties’ on page 63.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDLcomlDispatch
object implements Init or Cleanup methods, they will be overridden by IDL's
lifecycle methods — the COM aobject’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDLcomliDispatch object, so any methods of the underlying COM aobject that use
these names will be inaccessible from IDL.

External Development Guide Method Calls on IDLcomIDispatch Objects

56 Chapter 4: Using COM Objects in IDL

What Happens When a Method Call is Made?

When amethod is called on an IDL coml Dispatch object, the method name and
arguments are passed to the internal IDL COM subsystem, where they are used to
construct the appropriate I Dispatch method calls for the underlying COM aobject.

From the point of view of an IDL user issuing method calls on the IDLcomlDispatch
object, this process is completely transparent. The IDL user simply calls the COM
object’s method using IDL syntax, and IDL handles the translation.

Data Type Conversions

IDL and COM use different data types internally. While you should be aware of the
types of data expected by the COM object’s methods and the types it returns, you do
not need to worry about converting between IDL data types and COM data types
manually. IDL’s dynamic type conversion facilities handle al conversion of data
types between IDL and the COM system. The data type mappings are described in
“COM-IDL Data Type Mapping” on page 67.

For example, if the COM object that underlies an IDLcomlIDispatch object has a
method that requires avalue of type INT as an input argument, you would supply the
valueasan IDL Long. If you supplied the value as any other IDL datatype, IDL
would first convert the value to an IDL Long using its normal data type conversion
mechanism before passing the value to the COM object as an INT.

Similarly, if aCOM object returns aBOOL value, IDL will place the valuein a
variable of Byte type, with avalue of 1 (one) signifying True or avaue of O (zero)
signifying False.

Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is passed along to COM object methods called on DL comlDispatch
objects, and to the IDLcoml Dispatch::GetProperty method. This means that if an
argument is not required by the underlying COM object method, it can be omitted
from the method call used on the IDL coml Dispatch object.

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 57

Note
Only method arguments defined with the opt ional token in the object’s interface
definition are optional. See “Displaying Interface Information using the Object
Viewer” on page 59 for more information regarding the object’s interface definition
file.

Warning
If an argument that is not optional is omitted from the method call used on the
IDLcomlDispatch object, IDL will generate an error.

Argument Order

Like IDL, COM treats arguments as positional parameters. This means that it makes
adifference where in the argument list an argument occurs. (Contrast thiswith IDL’s
handling of keywords, which can occur anywhere in the argument list after the
routine name.) COM enforces the following ordering for arguments to object
methods:

1. Required arguments
2. Optiona arguments for which default values are defined
3. Optiona arguments for which no default values are defined

The same order applies when the method is called on an IDL coml Dispatch object.
Default Argument Values

COM adllows objects to specify a default value for any method arguments that are
optional. If acall to amethod that has an optional argument with a default value
omits the optional argument, the default valueis used. IDL behaves in the same way
as COM when calling COM object methods on IDLcoml Dispatch objects, and when
calling the IDL coml Dispatch::GetProperty method.

Method arguments defined withthe defaultvalue () tokenin the object’sinterface
definition are optional, and will use the specified default value if omitted from the
method call. See “ Displaying Interface Information using the Object Viewer” on
page 59 for more information regarding the object’s interface definition file.

Argument Skipping

COM allows methods with optional argumentsto accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL provides the same functionality for COM object methods called on

External Development Guide Method Calls on IDLcomIDispatch Objects

58

Chapter 4: Using COM Objects in IDL

IDLcomliDispatch objects, but not for the IDLcoml Dispatch:: GetProperty or
SetProperty methods.

To skip one or more arguments from alist of optional arguments, include the SKIP
keyword in the method call. The SKIP keyword accepts either a scalar or a vector of
numbers specifying which arguments are not provided.

Note
Theindices for the list of method arguments are zero-based — that is, the first

method argument (either optional or required) is argument O (zero), the next is
argument 1 (one), etc.

For example, suppose a COM object method accepts four arguments, of which the
second, third, and fourth are optional:

ObjMethod, argl, arg2-optional, arg3-optional, arg4-optional

To call this method on the IDLcoml Dispatch object that encapsul ates the underlying
COM abject, skipping arg2, use the following command:

objRef -> ObjMethod, argl, arg3, arg4, SKIP=1

Note that the SKIP keyword uses the index value 1 to indicate the second argument in
the argument list. Similarly, to skip arg2 and arg3, use the following command:

objRef -> ObjMethod, argl, arg4, SKIP=[1,2]

Finally, note that you do not need to supply the SKIP keyword if the arguments are
supplied in order. For example, to skip arg3 and arg4, use the following command:

objRef -> ObjMethod, argl, arg2

Finding Object Methods

In most cases, when you incorporate a COM object into an IDL program, you will
know what the COM aobject’s methods are and what arguments and data types those
methods take — either because you created the COM object yourself, or because the
developer of the object provided you with the information.

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Obijects in IDL 59

If for some reason you do not know what methods the COM object supports, you may
be able to determine which methods are available and what parameters they accept
using the OLE/COM Object Viewer application provided by Microsoft. (See* Finding
COM Class and Program IDs’ on page 52 for information on acquiring the
OLE/COM Ohbject Viewer.)

Warning
Finding information about a COM abject’s methods using the OLE/COM Object

Viewer requires a moderately sophisticated understanding of COM programming,
or at least COM interface definitions. While we provide some hints in this section
on how to interpret the interface definition, if you are not already familiar with the
structure of COM objects you may find this material inadequate. If possible, consult
the devel oper of the COM object you wish to use rather than attempting to
determine its structure using the object viewer.

Displaying Interface Information using the Object Viewer

You can use the OLE/COM Object Viewer to view the interface definitions for any
COM abject on your Windows machine. Select aCOM object in the leftmost panel of
the object viewer, click the right mouse button, and select “ View Type
Information...” A new window titled “I TypeLib Viewer” will be displayed, showing
all of the component’sinterfaces (Figure 4-2).

s ITypeLib Yiewer -3 x|
File Wiew
B o 2|
E" RSIDEMOCOMPOMENTLIb (RSIDemaComp |/ Generated .IDL file (by the OLE/COM Object Viewar) -
. Iy
@ coclass RSIDemoObil o
H £k 1lib £il w2: RSIDamolon t.dll
- o dispinterface [RSIDemoObiL vpsLib bilenans =mekerponan
w- § interface IRSIDemo0k]L [
@ roclass RSIDemoChj2 uuid{52ADTEEG-8D67-48F7-BE92-TF488936100E) ,
dispinterface IRSIDemoOkjz ;EISi?’::l-D']l;{SID - £ 1.0 Typs Lib .
. . elpstring (" ol omporEn: . = Library").
7 '”terFaCEIRSIDemDQbJZ custom (DE77BAS4-5170-1101-A20A-0000F87730E9, 83951780),
@ coclass RSIDemoObj3 custom (DET7BAG3-5170-1101-A2DA-0000F2773CE9, 1017680769

(dispinterface IRSIDemaoObj3

- ¢ interface IRSIDemoObj3 1
library RSIDEMOCOMPONENTLib
(

/4 TLib - /¢4 TLib : OLE Automation : (00020430-0000-
0000-Co00-000000000046)

importlib({"stdole2.t1b") ;

/¢ Forward declare all types defined in this typelib
interface IRSIDemctbil;
4 I I _’I interface IRSIDemctbiz;

interface IRSIDemoObid:

LER

Ready

Figure 4-2: Viewing a COM Object’s Interface Definition

External Development Guide Method Calls on IDLcomIDispatch Objects

60 Chapter 4: Using COM Objects in IDL

Note
Thetop lines in the right-hand panel will say something like:

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: RSIDemoComponent.dll

The“.IDL file” in this case has nothing to do with IDL, the Interactive Data
Language. Here “IDL" stands for Interface Description Language — alanguage
used to define component interfaces. If you are familiar with the Interface

Description Language, you can often determine what a component is designed to
do.

With the top-level object selected in the left-hand pane of the I Typelib Viewer, scroll
down in the right-hand pane until you find the section that defines the | Dispatch
interface for the object in question. The definition will look something like this:

interface IRSIDemoObjl : IDispatch {
[1d (0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr);
[1d (0x00000002), propput]
HRESULT MessageStr ([in] BSTR pstr);
[1d(0x00000002), propget]
HRESULT MessageStr ([out, retval] BSTR* pstr);
[1d (0x00000003)]
HRESULT DisplayMessageStr () ;
[1d(0x00000004)]
HRESULT Msg2InParams (
[in] BSTR str,
[in] long val,
[out, retval] BSTR* pVal) ;
[1d (0x00000005)]
HRESULT GetIndexObject (
[in] long ndxObj,
[out, retval] IDispatch** ppDisp) ;
[1d (0x00000006)]
HRESULT GetArrayOfObjects (
[out] long* pObjCount,
[out, retval] VARIANT* psaObjs) ;

}i
Method definitions look like this:

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr) ;

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 61

where the line including the id string is an identifier used by the object to refer to its
methods and the following line or lines (usually beginning with HRESULT) define the
method'’s interface.

Again, whileit is beyond the scope of this manual to discuss COM object methodsin
detail, the following points may assist you in determining how to use a COM object:

* Methods whose definitions include the retval attribute will appear in IDL as
functions.

[id(0x00000001)]
HRESULT GetCLSID([out, retval] BSTR* pBstr) ;

* Methods that do not include the retval attribute will appear in IDL as
procedures.

[id (0x00000003) 1
HRESULT DisplayMessageStr () ;

* Methods whose definitionsinclude the propget attribute allow you to retrieve
an object property using the IDLcoml Dispatch::GetProperty method. You
cannot call these methods directly in IDL; see “Managing COM Object
Properties’ on page 63 for additional details.

[1d(0x00000002), propget]
HRESULT MessageStr ([out, retval] BSTR* pstr);

e Methods whose definitions include the propput attribute allow you to set an
object property using the IDLcoml Dispatch::SetProperty method. You cannot
call these methodsdirectly in IDL; see*“Managing COM Object Properties’ on
page 63 for additional details.

[1d(0x00000002), propput]
HRESULT MessageStr ([in] BSTR pstr) ;

* Methods that accept optional input values will include the optional tokenin
the argument’s definition. For example, the following definition indicates that
the second input argument is optional:

[1d(0x00000004)]

HRESULT Msglor2InParams (
[in] BSTR str,
[in, optional] int wval,
[out, retval] BSTR* pVal) ;

¢ Methodsthat provide default values for optional arguments replace the
optional tokenwiththedefaultvalue () token, wherethe default value of
the argument is supplied between the parentheses. For example, the following
definition indicates that the second input argument is optional, and has a
default value of 15:

External Development Guide Method Calls on IDLcomIDispatch Objects

62 Chapter 4: Using COM Objects in IDL

HRESULT Msglor2InParams (
[in] BSTR str,
[in, defaultvalue(15)] int wval,
[out, retval] BSTR* pVal) ;

¢ While methods generally return an HRESULT value, thisis not a requirement.
Displaying Interface Information using the IDL HELP Procedure

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HELP command with the OBJECTS keyword. IDL displaysalist of objects, along
with their methods, with function and procedure methods in separate groups for each
object class.

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 63

Managing COM Object Properties

As aconvenience to the IDL programmer, COM object methods that have been
defined using the propget and propput attributes are accessible viathe
IDLcomlDispatch object’s GetProperty and SetProperty methods. This means that
rather than calling the COM aobject’s methods directly to get and set property values,
you use the standard IDL syntax.

Note
If a COM object method's interface definition includes either the propget or the
propput attribute, you must use the IDL GetProperty and SetProperty methods to
get and set values. IDL does not allow you to call these methods directly.

Aswith all IDL objects, the IDLcoml Dispatch object’s GetProperty and SetProperty
methods use procedure syntax. Keywords to the methods represent the names of the
properties being retrieved or set, and the keyword values represent either an IDL
variableinto which the property valueis placed or an IDL expression that isthe value
to which the property is set. You must use the procedure syntax when calling either
method, even if the underlying COM object methods being used are functions rather
than procedures.

Setting Properties

To set a property value on a COM object, use the following syntax:
ObjRef->SetProperty, KEYWORD=Expression

where objRref isthe IDLcomlDispatch object that encapsul ates the COM object,
KEYWORD is the COM object property name, and Expression is an IDL expression
representing the property value to be set.

You can set multiple property values in a single statement by supplying multiple
KEYWORD=Expression pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property setting method. The partial keyword name functionality provided by IDL
is not valid with IDLcoml Dispatch objects.

IDL letsyou to set multiple properties at once in the same SetProperty call. For
example:

ObjRef->SetProperty, OPTION=1, INDEX=99L

External Development Guide Managing COM Object Properties

64 Chapter 4: Using COM Objects in IDL

This command is equivalent to the following lines:

ObjRef->SetProperty, OPTION=1
ObjRef->SetProperty, INDEX=99L

If you pass parameters when setting multiple properties, the parameter or parameters
are sent to each property being set. For example:

ObjRef->SetProperty, 'Parml', 24L, oRef, OPTION=1, INDEX=99L
This command is equivalent to the following lines:

ObjRef->SetProperty, 'Parml', 24L, oRef, OPTION=1
ObjRef->SetProperty, 'Parml', 24L, oRef, INDEX=99L

Thus, when you are setting multiple properties at the same time and passing
parameters, all the properties that are set at the same time must be defined as
receiving the same sets of parameters.

Getting Properties

To retrieve a property value from a COM object, use the following syntax:
ObjRef->GetProperty, KEYWORD=Variable

where objRef isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Variable is the name of an IDL
variable that will contain the retrieved property value.

You can get multiple property valuesin asingle statement by supplying multiple
KEYWORD=Variable pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property getting method. The partial keyword name functionality provided by IDL
isnot valid with IDLcoml Dispatch objects.

Because some of the underlying COM aobject’s propget methods may require
arguments, the IDL.coml Dispatch object’s GetProperty method will accept optional
arguments. To retrieve a property using a method that takes arguments, use the
following syntax:

ObjRef->GetProperty, KEYWORD=Variable [, arg0, argl, ... argn]

Note, however, that if arguments are required, you can only specify one property to
retrieve.

Managing COM Object Properties External Development Guide

Chapter 4: Using COM Objects in IDL 65

References to Other COM Objects

It is not uncommon for COM objects to return references to other COM objects,
either as a property value or via an object method. If an IDLcomlDispatch object
returns a reference to another COM object’s I Dispatch interface, IDL automatically
creates an |DLcoml Dispatch object to contain the object reference.

For example, suppose the Getotherobject method to the COM object
encapsulated by the IDL comlDispatch object ob5 1 returns areference to another
COM object.

Obj2 = Objl->GetOtherObject ()

Here, ob42 isan IDLcomlDispatch object that encapsulates some other COM object.
Obj 2 behavesin the same manner as any |DLcomlIDispatch object.

Note that IDL coml Dispatch objects created in this manner are not linked in any way
to the object whose method created them. In the above example, this means that
destroying ob+ 1 does hot destroy ob+2. If the COM object you are using creates new
IDLcomlDispatch objectsin this manner, you must be sure to explicitly destroy the
automatically-created objects along with those you explicitly create, using the

OBJ DESTROQY procedure.

External Development Guide References to Other COM Objects

66 Chapter 4: Using COM Objects in IDL

Destroying IDLcomIDispatch Objects

Use the OBJ DESTRQY procedure to destroy and |DLcoml Dispatch object.

When OBJ DESTROY is called with an IDLcoml Dispatch object as an argument,
the underlying reference to the COM object isreleased and IDL resources relating to
that object are freed.

Note
Destroying an |DLcoml Dispatch object does not automatically cause the

destruction of the underlying COM object. COM employs a reference-counting
methodol ogy and expects the COM object to destroy itself when there are no
remaining references. When an | DL coml Dispatch object is destroyed, IDL simply
decrements the reference count on the underlying COM abject.

Destroying IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Obijects in IDL

COM-IDL Data Type Mapping

67

When data moves from IDL to a COM object and back, IDL handles conversion of

variable data types automatically. The data type mappings are shown in Table 4-1.

COM Type

IDL Type

BOOL (VT_BOOL)

Byte (true =1, false=0)

ERROR Long

(VT_ERROR)

CY (VT_CY) Double (see note below)
DATE (VT_DATE) Double

11(VT_I1) Byte

INT (VT_INT) Long

UINT (VT_UINT)

Unsigned Long

VT_USERDEFINED

The IDL typeis passed through.

VT _UIL Byte
VT I2 Integer

VT _UI2 Unsigned integer
VT_ERROR Long

VT_l14 Long

VT Ul4 Unsigned Long
VT_18 Long64

VT_UI8 Unsigned Long 64
VT R4 Float

VT_BSTR String

VT_R8 Double
VT_DISPATCH IDLcomlDispatch

Table 4-1: IDL-COM Data Type Mapping

External Development Guide

COM-IDL Data Type Mapping

68 Chapter 4: Using COM Objects in IDL

COM Type IDL Type

VT_UNKNOWN IDLcomlDispatch

Table 4-1: IDL-COM Data Type Mapping (Continued)
Note on the COM CY Data Type

The COM CY datatypeisascaled 64-bit integer, supporting exactly four digitsto the
right of the decimal point. To provide an easy-to-use interface, IDL automatically
scales the integer as part of the data conversion that takes place between COM and
IDL, alowing the IDL user to treat the number as a double-precision floating-point
value. When the value is passed back to the COM object, it will be truncated if there
are more than four significant digits to the right of the decimal point.

For example, the IDL double-precision value 234 . 56789 would be passed to the
COM object as234.5678.

COM-IDL Data Type Mapping External Development Guide

Chapter 4: Using COM Objects in IDL 69

Example: RSIDemoComponent

This example uses a COM component included in the IDL distribution. The
RSIDemoComponent is included purely for demonstration purposes, and does not
perform any useful work beyond illustrating how DL comlDispatch objects are
created and used.

The RSIDemoComponent is contained in afile named RSTDemoComponent . d11
located in the examples\doc\bridges\com subdirectory of the IDL distribution.
Before attempting to execute this example, make sure the component is registered on
your system as described in “ Registering COM Components on a Windows
Machine” on page 49.

There are three objects defined by the RSIDemoComponent. The example begins by
using RSIDemoObj1, which has the program ID:

RSIDemoComponent . RSIDemoObjl
and theclass ID:

{A77BC2B2-88EC-4D2A-B2B3-F556ACB52E52 }

Example Code
The following section develops an IDL procedure called | DispatchDemo that
illustrates use of the RSIDemoComponent. The complete . pro fileisincluded in
the examples\doc\bridges\com subdirectory of the IDL distribution as
IDispatchDemo.pro.

1. Begin by creating an IDLcoml Dispatch object from the COM object. You can
use either the class ID or the program ID. Remember that if you use the class
ID, you must remove the braces ({ }) and replace the hyphens with
underscores.

objl = OBJ NEW($
'IDLCOMIDispatch$PROGIDSRSIDemoComponent RSIDemoObjl')

or (with Class ID):

objl = OBJ NEW($
' TDLCOMIDi spatch$CLSTD$A77BC2B2 88EC_4D2A B2B3 F556ACB52E52 ')

2. The COM object implements the Get cL.sID method, which returns the class
ID for the component. You can retrieve thisvalue in and IDL variable and
print it. The string should be ' {A77BC2B2-88EC-4D2A-B2B3-
F556ACB52E52} .

External Development Guide Example: RSIDemoComponent

RSI_PROCODE/examples/doc/bridges/COM/IDispatchDemo.pro

70

Chapter 4: Using COM Objects in IDL

strCLSID = objl->GetCLSID()
PRINT, strCLSID
Note
The GetCL SID method returns the class identifier of the object using the
standard COM separators (-).

The COM object has a property named MessageStr. To retrieve the value of
the MessageStr property, enter:

objl -> GetProperty, MessageStr = outStr
PRINT, outStr

IDL should print 'RSIDemoObj1'.

You can also set the MessageStr property of the object and display it using
the object’'s Di splayMessageStr method, which displays the value of the
MessageStr property in a Windows dialog:

objl -> SetProperty, MessageStr = 'Hello, world'
objl -> DisplayMessageStr

TheMsg2InParams method takes two input parameters and concatenates
them into asingle string. Executing the following commands should cause IDL
toprint ' The value is: 25'.

instr = 'The value is: '

val = 25L

outStr = objl->Msg2InParams (instr, val)
PRINT, outStr

To view all known information about the IDL coml Dispatch object, including
its dynamic subclass name and the names of its methods, use the IDL HELP
command with the OBJECT S keyword:

HELP, objl, /OBJECTS

The Get IndexObiject () method returns an object reference to one of the
following three possible objects:

¢ RSIDemoObjil (index =1)
* RSIDemoObj2 (index = 2)

* RSIDemoObj3 (index = 3)

Note
If theindex isnot 1, 2, or 3, the Get Index0Object method will return an
error.

Example: RSIDemoComponent External Development Guide

Chapter 4: Using COM Objects in IDL 71

To get areference to RSIDemoOb] 3, use the following command:
0bj3 = objl->GetIndexObject (3)

8. All three objects have the cet cL.sID method. You can use this method to
verify that the desired object was returned. The output of the following
commands should be'{13AB135D-A361-4A14-B165-785B03AB5023} '.

obj3CLSID = obj3->GetCLSID ()
PRINT, obj3CLSID

9. Remember to destroy aretrieved object when you are finished with it:
OBJ DESTROY, obj3

10. Next, usethe COM object’'s GetArrayOfobjects () method to return a
vector of object referencesto RSIDemoObj 1, RSIDemoObs 2, and
RSIDemoObj 3, respectively. The number of elementsin the vector is returned
in the first parameter; the result should 3.

objs = objl->GetArrayOfObjects(cItems)
PRINT, cIlItems

11. Since each object implements the GetcLS1D method, you could loop through
all the object references and get its class ID:

FOR i = 0, cItems-1 do begin

objCLSID = objs[i] -> GetCLSID()

PRINT, 'Object[',i,'] CLSID: ', objCLSID
ENDFOR

12. Remember to destroy object references when you are finished with them:

OBJ_DESTROY, objs
OBJ_DESTROY, objl

External Development Guide Example: RSIDemoComponent

72 Chapter 4: Using COM Objects in IDL

Example: RSIDemoComponent External Development Guide

Chapter 5

Using ActiveX Controls

In IDL

This chapter discusses the following topics:

About Using ActiveX ControlsinIDL 74
ActiveX Control Naming Scheme 76
Method Callson ActiveX Controls 79

Managing ActiveX Control Properties 80

External Development Guide

ActiveX Widget Events 81
Destroying ActiveX Controls 84
Example: Calendar Control 85
Example: Spreadsheet Control 88

73

74 Chapter 5: Using ActiveX Controls in IDL

About Using ActiveX Controls in IDL

If you want to incorporate a COM object that presents a user interface (that is, an
ActiveX control) into your IDL application, use IDL’'s WIDGET_ACTIVEX routine
to place the control in an IDL widget hierarchy. IDL provides the same object method
and property manipulation facilities for ActiveX controls asit does for COM objects
incorporated using the IDL coml Dispatch object interface, but adds the ability to
process events generated by the ActiveX control using IDL’s widget event handling
mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows 2000/XP (and later)
platforms.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsulates the ActiveX control. IDLcomActiveX
objects are a subclass of the IDLcomlDispatch object class, and share al of the
DL coml Dispatch methods and mechanisms discussed in Chapter 4, “Using COM
Objectsin IDL". You should be familiar with the material in that chapter before
attempting to incorporate ActiveX controlsin your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActivexX
control, use the IDL coml Dispatch object class.

Warning: Modeless Dialogs

When displaying an ActiveX form or dialog box, it is the responsibility of the COM
object to pump messages. Modal dial ogs pump messages themselves, but modeless
dialogs do not. IDL's COM subsystem does not provide the ability to pump messages
explicitly, giving IDL no way to pump messages while amodeless dialog is
displayed. Asaresult, calling amodeless dialog from IDL will result in an error.

Registering COM Components on a Windows
Machine
Before a COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the

program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the

About Using ActiveX Controls in IDL External Development Guide

Chapter 5: Using ActiveX Controls in IDL 75

component manually. For a description of the registration process, see “ Registering
COM Components on a Windows Machine” on page 49.

External Development Guide About Using ActiveX Controls in IDL

76 Chapter 5: Using ActiveX Controls in IDL

ActiveX Control Naming Scheme

When you incorporate an ActiveX control into an IDL widget hierarchy using the
WIDGET_ACTIVEX routine, IDL automatically creates an IDLcomActiveX object
that instantiates the control and handles all communication between it and IDL. You
tell IDL which ActiveX control to instantiate by passing the COM class or program
ID for the ActiveX control to the WIDGET_ACTIVEX routine as a parameter.

IDL automatically creates a dynamic subclass of the IDLcomActiveX class (whichis
itself a subclass of the IDLcomlDispatch class) to contain the ActiveX control. The
resulting class name looks like

IDLcomActiveX$ID type$ID
where ID_type is one of the following:
e cLsIDif the object isidentified by its COM class D, or
* PROGID if the object isidentified by its COM program ID,
and ID isthe COM object’s actual class or program identifier string.

For more on COM class and program I1Ds see “ Class |dentifiers’ on page 50 and
“Program Identifiers” on page 51.

While you will never need to use this dynamic class name directly, you may seeiit
reported by IDL viathe HELP routine or in error messages. Note that when IDL
reports the name of the dynamic subclass, it will replace the hyphen charactersin a
class ID and the dot charactersin a program ID with underscore characters. Thisis
because neither the hyphen nor the dot character are valid in IDL object names.

Finding COM Class and Program IDs

In general, if you wish to incorporate an ActiveX object into an IDL widget
hierarchy, you will know the COM class or program ID — either because you created
the control yourself, or because the devel oper of the control provided you with the
information.

If you do now know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. For more information, see “Finding COM Class and Program
IDS’ on page 52.

ActiveX Control Naming Scheme External Development Guide

Chapter 5: Using ActiveX Controls in IDL 77

Creating ActiveX Controls

To include an ActiveX control in an IDL application, use the WIDGET_ACTIVEX
function, supplying the COM class or program ID of the ActiveX control asthe
COM _ID argument.

Note
If the object you want to use in your IDL application is not an ActiveX control, use
the IDLcoml Dispatch object class as described in Chapter 4, “Using COM Objects
in IDL". Instantiating a non-ActiveX component using the WIDGET_ACTIVEX
function is not supported, and may lead to unpredictable results.

Once the ActiveX object has been instantiated within an IDL widget hierarchy, you
can call the control’s native methods as described in “Method Calls on ActiveX
Controls’ on page 79, and access or modify its properties as described in “Managing
ActiveX Control Properties” on page 80. IDL widget events generated by the control
are discussed in “ActiveX Widget Events’ on page 81.

For example, suppose you wished to include an ActiveX control with the class ID:
{OOO2E510—OOOO—OOOO-COOO—OOOOOOOOOO46}

and the program ID:
OWC. Spreadsheet .9

inan IDL widget hierarchy. Use either of the following calls the
WIDGET_ACTIVEX function:

wAx = WIDGET ACTIVEX (wBase, $
'"0002E510-0000-0000-C000-000000000046")

or
wAx = WIDGET ACTIVEX (wBase, 'OWC.Spreadsheet.9', ID TYPE=1)

where wBase isthe widget ID of the base widget that will contain the ActiveX
control.

Note
When instantiating an ActiveX control using the WIDGET_ACTIVEX function,
you do not need to modify the class or program ID as you do when creating an
IDLcomliDispatch object using the OBJ_NEW function. Be aware, however, that
when IDL creates the underlying IDLcomActiveX object, the dynamic class name
will replace the hyphens from aclass ID or the dots from a program 1D with
underscore characters.

External Development Guide Creating ActiveX Controls

78 Chapter 5: Using ActiveX Controls in IDL

IDL’sinternal COM subsystem instantiates the ActiveX control within an
IDLcomActiveX object with one of the following dynamic class hames

IDLcomActiveX$CLSID$S0002E510_0000_0000_C000_000000000046
or
IDLcomActiveX$PROGIDSOWC Spreadsheet 9

and sets up communication between the object and IDL. IDL also places the control
into the specified widget hierarchy and prepares to accept widget events generated by
the control.

See“WIDGET_ACTIVEX” inthe IDL Reference Guide manual for additional
details.

Creating ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 79

Method Calls on ActiveX Controls

IDL allowsyou to call the underlying ActiveX control’s methods by calling methods
on the IDLcomActiveX object that is automatically created when you call the
WIDGET_ACTIVEX function. IDL handles conversion between IDL datatypes and
the data types used by the component, and any resultsare returned in IDL variables of
the appropriate type. Aswith all IDL objects, the genera syntax is:

result = ObjRef -> Method ([Arguments])

or
ObjRef -> Method [, Arguments]

where objRef isan object reference to an instance of a dynamic subclass of the
IDLcomActiveX class.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, method calls on
IDLcomActiveX objects follow the same rules as calls on IDL coml Dispatch objects.
You should read and understand “Method Calls on IDLcomliDispatch Objects’ on
page 55 before calling an ActiveX control’s methods.

Retrieving the Object Reference

Unlike IDLcoml Dispatch objects, which you create explicitly with a call to the
OBJ_NEW function, IDLcomActiveX objects are created automatically by IDL. To
obtain an object reference to the automatically created IDLcomActiveX object, use
the GET_VALUE keyword to the WIDGET_CONTROL procedure.

For example, consider the following lines of IDL code:

wBase = WIDGET BASE()

wAx = WIDGET ACTIVEX (wBase, 'myProgram.myComponent.l', ID TYPE=1)
WIDGET CONTROL, wBase, /REALIZE

WIDGET CONTROL, wAx, GET_ VALUE=0AX

Thefirst line creates a base widget that will hold the ActiveX control. The second
line instantiates the ActiveX control using its program ID and creates an
IDLcomActiveX object. The third line realizes the base widget and the ActiveX
contral it contains — note that the ActiveX widget must be realized before you can
retrieve areference to the IDLcomActiveX object. The fourth line uses the
WIDGET_CONTROL procedure to retrieve an object reference to the
IDLcomActiveX object in the variable oax. You can use this object reference to call
the ActiveX control’s methods and set its properties.

External Development Guide Method Calls on ActiveX Controls

80 Chapter 5: Using ActiveX Controls in IDL

Managing ActiveX Control Properties

As a convenience to the IDL programmer, ActiveX control methods that have been
defined using the propget and propput attributes are accessible viathe
IDLcomActiveX object’s GetProperty and SetProperty methods, which are inherited
directly from the IDL coml Dispatch object class. This means that rather than calling
the ActiveX control’s methods directly to get and set property values, you use the
standard IDL syntax.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, IDL’sfacilities for managing
the properties of ActiveX controlsfollow the same rules as for IDLcomiDispatch
objects. You should read and understand “Managing COM Object Properties’ on
page 63 before working with an ActiveX control’s properties.

Managing ActiveX Control Properties External Development Guide

Chapter 5: Using ActiveX Controls in IDL 81

ActiveX Widget Events

Events generated by an ActiveX control are dispatched using the standard IDL
widget methodology. When an ActiveX event ispassed into IDL, it is packaged in an
anonymous IDL structure that contains the ActiveX event parameters.

While the actual structure of an event generated by an ActiveX control will depend
on the control itself, the following gives an idea of the structure’s format:

{1ID : 0L,

TOP : 0L,

HANDLER : 0L,

DISPID : 0L, ; The DISPID of the callback method
EVENT NAME : "", ; The name of the callback method
<Paraml name> : <Paraml value>,

<Param2 name> : <Param2 value>,

<ParamN name> : <ParamN value>

}

Aswith other IDL Widget event structures, the first three fields are standard. ID is
the widget id of the widget generating the event, TOP isthewidget 1D of thetop level
widget containing ID, and HANDLER contains the widget ID of the widget
associated with the handler routine.

The DISPID field contains the decimal representation of the dispatch ID (or DISPID)
of the method that was called. Note that in the OLE/COM Object Viewer, this 1D
number is presented as a hexadecimal number. Other applications (Microsoft Visual
Studio among them) may display the decimal representation.

The EVENT_NAME field contains the name of the method that was called.

The Param name fields contain the values of parameters returned by the called
method. The actual parameter name or names displayed, if any, depend on the
method being called by the ActiveX control.

Using the ActiveX Widget Event Structure

Since the widget event structure generated by an ActiveX control depends on the
method that generated the event, it isimportant to check the type of event before
processing valuesin IDL. Successfully parsing the event structure requires adetailed
understanding of the dispatch interface of the ActiveX control; you must know either
the DISPID or the method name of the method, and you must know the names and
data types of the values returned.

External Development Guide ActiveX Widget Events

82 Chapter 5: Using ActiveX Controls in IDL

For example, suppose the ActiveX control you are incorporating into your DL

application includes two methods named Met hod1 and Method2 in adispatch
interface that looks like this:

dispinterface MyDisplInterface ({
properties:
methods:
[1d(0x00000270)]
void Methodl ([in] EventInfo* EventInfo) ;
[1d(0x00000272)]
HRESULT Method2 ([out, retval] BSTR* EditData) ;

}i

A widget event generated by a call to Method1, which has no return values, would
look something like:

** Structure <3fb7288>, 5 tags, length=32, data length=32:

ID LONG 13
TOP LONG 12
HANDLER LONG 12
DISPID LONG 624
EVENT_NAME STRING 'Methodl'

Note that the DISPID is 624, the decimal equivalent of 270 hexadecimal.

A widget event generated by a call to Method2, which has one return value, would
look something like:

** Structure <3fb7288>, 6 tags, length=32, data length=32:

ID LONG 13

TOP LONG 12

HANDLER LONG 12

DISPID LONG 626

EVENT NAME STRING 'Method2'
EDITDATA STRING 'some text value'

An DL event-handler routine could use the value of the DISPID field to check which

of these two ActiveX control methods generated the event before attempting to use
the value of the EDITDATA field:

PRO myRoutine event, event
IF (event .DISPID eq 626) THEN BEGIN
PRINT, event.EDITDATA
ENDIF ELSE BEGIN
<do something else>
ENDELSE
END

ActiveX Widget Events External Development Guide

Chapter 5: Using ActiveX Controls in IDL 83

Dynamic Elements in the ActiveX Event Structure

Parameter data included in an event structure generated by an ActiveX control can
take the form of an array. If this happens, the array is placed in an IDL pointer, and
the pointer, rather than the array itself, isincluded in the IDL event structure.
Similarly, an ActiveX control may return areference to another COM object, as
described in “References to Other COM Objects’ on page 65, in its event structure.

IDL pointers and objects created in this way are not automatically removed; it is the
IDL programmer’s responsibility free them using aroutine such as PTR_FREE,
HEAP_FREE, or OBJ DESTROY.

If it is unclear whether the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when your event-handler routine has finished with the event. Thiswill ensure that all
dynamic portions of the structure are released.

External Development Guide ActiveX Widget Events

84 Chapter 5: Using ActiveX Controls in IDL

Destroying ActiveX Controls

An ActiveX control incorporated in an IDL widget hierarchy is destroyed when any
of the following occurs:

* When the widget hierarchy to which the ActiveX widget belongs is destroyed.

* Whenacall to WIDGET_CONTROL, wAx, /DESTROY is made, where wAXx
isthe widget ID of the ActiveX widget.

¢ When the underlying IDLcomActiveX object is destroyed by acall to
OBJ DESTROY.

In most cases, cleanup of an application that includes an ActiveX control is not
different from an application using only IDL native widgets. However, becauseit is
possible for an ActiveX control to return references to other COM objectsto IDL,
you must be sure to keep track of all objects created by your application and destroy
them as necessary. See “ References to Other COM Objects’ on page 65 for details.

In addition, it is possible for the widget event structure generated by an ActiveX
control to include IDL pointers or object references. Pointers and object references
included in the event structure are not automatically destroyed. See “Dynamic
Elementsin the ActiveX Event Structure” on page 83 for more information.

Destroying ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 85

Example: Calendar Control

This example uses an ActiveX control that displays a calendar interface. The control,
contained inthe filemscal . ocx, isinstaled along with atypical installation of
Microsoft Office 97, and may also be present on your system if you have upgraded to
amorerecent version of Microsoft Office. If the control isnot present on your system
(you'll know the control is not present if the example code does not display a
calendar similar to the one shown in Figure 5-1 on page 87), you can download athe
control as part of a package of sample ActiveX controlsincluded in the file
actxsamp.exe, discussed in Microsoft Knowledge Base Article 165437.

If you download the control, place thefilemscal . exe in aknown location and
execute the file; you will be prompted for adirectory in which to place mscal. ocx.
Open a command prompt window in the directory you chose and register the control
as described in “ Registering COM Components on a Windows Machine” on page 49.

The calendar control has the program ID:
MSCAL.Calendar.7
and the class ID:

{8E27C92B-1264-101C-8A2F-040224009C02}

Example Code
The following section develops an IDL routine called ActiveX Cal that illustrates
use of the calendar ActiveX control within an IDL widget hierarchy. The complete
.pro fileisincluded in the examples\doc\bridges\com subdirectory of the
IDL distribution as ActivexCal .pro.

1. Createthe ActiveXCal procedure. (Remember that inthe ActiveXcal.pro
file, this procedure occurs last.)

PRO ActiveXCal
2. Create atop-level base widget to hold the ActiveX control.

wBase = WIDGET BASE(COLUMN = 1, SCR XSIZE = 400, $
TITLE='IDL ActiveX Widget Calendar Control!')

3. Create base widgets to hold labels for the selected month, day, and year. Set
theinitial values of the labels.

wSubBase = WIDGET BASE (wBase, /ROW)
wVoid = WIDGET LABEL (wSubBase, value = 'Month: ')
wMonth = WIDGET LABEL (wSubBase, value = 'October')

External Development Guide Example: Calendar Control

RSI_PROCODE/examples/doc/bridges/COM/ActiveXCal.pro

86

10.

11.

Chapter 5: Using ActiveX Controls in IDL

wSubBase = WIDGET BASE (wBase, /ROW)

wVoid = WIDGET LABEL (wSubBase, VALUE = 'Day: ')
wDay = WIDGET LABEL (wSubBase, VALUE = '22')
wSubBase = WIDGET BASE (wBase, /ROW)

wVoid = WIDGET_ LABEL (wSubBase, VALUE = 'Year: ')
wYear = WIDGET LABEL (wSubBase, VALUE = '1999')

Instantiate the ActiveX Control, using the control’s class ID.

wAx=WIDGET ACTIVEX (wBase, $
'{8E27C92B—1264—101C—8A2F—040224009CO2}')

Realize the top-level base widget.
WIDGET CONTROL, wBase, /REALIZE

Set the top-level base's user value to an anonymous structure containing
widget IDs of the month, day, and year |abel widgets.
WIDGET CONTROL, wBase, S
SET UVALUE = {month:wMonth, day:wDay, year:wYear}
Retrieve the object ID of the IDLcomActiveX object that encapsulates the
ActiveX control. Use the GetProperty method to retrieve the current values of
the month, day, and year from the control.

WIDGET CONTROL, wAx, GET_VALUE = o0OAx
oAx->GetProperty, month=month, day=day, year=year

Set the values of the label widgetsto reflect the current date, as reported by the
ActiveX control.

WIDGET CONTROL, wMonth, SET VALUE=STRTRIM (month, 2)
WIDGET CONTROL, wDay, SET VALUE=STRTRIM (day, 2)
WIDGET CONTROL, wYear, SET VALUE=STRTRIM (year, 2)

Cal XMANAGER to manage the widget events, and end the procedure.

XMANAGER, 'ActiveXCal', wBase

END

Now create an event-handling routine for the calendar control. (Remember that
inthe activexcal.pro filg, this procedure occurs before the ActiveX Cal
procedure.)

PRO ActiveXCal_event, ev

The ActiveX widget isthe only widget in this application that generates widget
events, so the ID field of the event structure is guaranteed to contain the widget
ID of that widget. Use the GET_VALUE keyword to retrieve an object
reference to the IDLcomActiveX object that encapsulates the control.

Example: Calendar Control External Development Guide

Chapter 5: Using ActiveX Controls in IDL 87

WIDGET CONTROL, ev.ID, GET VALUE = oCal

12. The user value of the top-level base widget is an anonymous structure that
holds the widget I Ds of the month, day, and year |abel widgets (see step 6
above). Retrieve the structure into avariable named state.

WIDGET CONTROL, ev.TOP, GET_UVALUE = state

13. Use the GetProperty method on the IDLcomActiveX object to retrieve the
current values of the month, day, and year from the calendar contral.

ocal->GetProperty, month=month, day=day, year=year

14. Use WIDGET_CONTROL to set the values of the month, day, and year label
widgets.

WIDGET CONTROL, state.month, SET VALUE = STRTRIM (month,2)
WIDGET CONTROL, state.day, SET VALUE = STRTRIM (day, 2)
WIDGET CONTROL, state.year, SET_VALUE = STRTRIM(year,2)

15. Cal HEAP_FREE to ensure that dynamic portions of the event structure are
released, and end the procedure.

HEAP FREE, ev

END

Running the ActiveX Cal procedure displays awidget that looks like the following:

EJ/IDL ActiveX Widget Calendar Control I] 54
fonth: &
Day: 1
Year 2002
May 2002 May =] |2002 =l
Sun Mon Tue Wed Thu Fri Sat

28 28 a0 2 3 4

5 53 it g 9 10 11

12 13 14 15 16 17 15

19 20 21 22 23 24 25

26 7 28 28 30 1 1

2 i 4 & G [g

Figure 5-1: An IDL widget program using an ActiveX calendar control.

External Development Guide Example: Calendar Control

88 Chapter 5: Using ActiveX Controls in IDL

Example: Spreadsheet Control

This example uses an ActiveX control that displays a spreadsheet interface. The
control, contained inthefilemsowc . d11, isinstalled along with atypical installation
of Microsoft Office. If the control is not present on your system (you’ll know the
control is not present if the example code fails when trying to realize the widget
hierarchy), the example will not run.

The spreadsheet control has the program ID:
OWC.Spreadsheet .9

and the class ID:
{OOO2E510—OOOO—OOOO—COOO—OOOOOOOOOO46}

Information about the spreadsheet control’s properties and methods was gleaned
from Microsoft Excel 97 Visual Basic Sep by Step by Reed Jacobson (Microsoft
Press, 1997) and by inspection of the control’s interface using the OLE/COM Object
Viewer application provided by Microsoft. It is beyond the scope of this manual to
describe the spreadsheet control’s interface in detail.

Example Code
The following section develops an IDL routine called ActiveXExcel that illustrates
use of the spreadsheet ActiveX control within an IDL widget hierarchy. The
complete .pro fileisincluded in the examples\doc\bridges\coM subdirectory
of the IDL distribution as ActiveXExcel .pro.

1. Create afunction that will retrieve data from cells selected in the spreadsheet
control. The function takes two arguments: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control, and avariable
to contain the data from the selected cells.

FUNCTION excel getSelection, oExcel, aData

2. Retrieve an object that represents the selected cells. Note that when the
ActiveX control returnsthis object, IDL automatically creates an
IDLcomActiveX abject that makes it accessible within IDL.

oExcel->GetProperty, SELECTION=o0Sel
3. Retrieve the total number of cells selected.
0Sel->GetProperty, COUNT=nCells

4. If no cells are selected, destroy the selection object and return zero (the failure
code).

Example: Spreadsheet Control External Development Guide

RSI_PROCODE/examples/doc/bridges/COM/ActiveXExcel.pro

Chapter 5: Using ActiveX Controls in IDL 89

IF (nCells LT 1) THEN BEGIN
OBJ_DESTROY, oSel
RETURN, 0

ENDIF

5. Retrieve objects that represent the dimensions of the selection.
oSel->GetProperty, COLUMNS=0Cols, ROWS=oRoOwS
6. Get the dimensions of the selection, then destroy the column and row objects.

oCols->GetProperty, COUNT=nCols
OBJ_DESTROY, oCols
ORows->GetProperty, COUNT=nRows
OBJ_DESTROY, oORows

7. Create afloating point array with the same dimensions as the selection.
aData = FLTARR (nCols, nRows, /NOZERO) ;
8. Iterate through the cells, doing the following:

* Retrieve an object that represents the cell. Note that the numeric index of
the FOR loop is passed to the GetProperty method as an argument.

¢ Get the value contained in the cell.
e Set the appropriate element of the aData array to the cell's value.
¢ Destroy the object.

FOR i=1, nCells DO BEGIN
oSel->GetProperty, ITEM=oltem, i
oItem->GetProperty, VALUE=vValue

abDatal[i-1] = vValue
OBJ_DESTROY, oltem
ENDFOR

9. Destroy the selection object.
OBJ DESTROY, oSel
10. Return one (the success code) and end the function definition.

RETURN, 1

END

External Development Guide Example: Spreadsheet Control

90

Example: Spreadsheet Control

11.

12.

13.

14.

15.

16.

17.

18.

Chapter 5: Using ActiveX Controls in IDL

Next, create a procedure that sets the values of the cells in the spreadshest.
This procedure takes one argument: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control.

PRO excel setData, oExcel
Define the size of the data array.
nX = 20
Get an abject representing the active spreadsheet.
OoExcel->GetProperty, ActiveSheet=oSheet
Get an abject representing the cellsin the spreadsheet.
oSheet->GetProperty, CELLS=oCells
Generate some data.
im = BESELJ (DIST (nX))
Iterate through the elements of the data array, doing the following:

* Retrieve an object that represents the cell that corresponds to the data
element. Note that the numeric indices of the FOR loops are passed to the
GetProperty method as arguments.

* Set the value of the cell.
e Destroy the object.

FOR 1=0, nX-1 DO BEGIN
FOR j=0, nX-1 DO BEGIN
oCells->GetProperty, ITEM=oItem, i+1, j+1
oltem->SetProperty, VALUE=im (i, j)
OBJ_DESTROY, oItem
ENDFOR
ENDFOR

Destroy the spreadsheet and cell objects, and end the procedure.

OBJ_DESTROY, oSheet
OBJ_DESTROY, oCells

END
Next, create a procedure to handle events generated by the widget application.

PRO ActiveXExcel event, ev

External Development Guide

Chapter 5: Using ActiveX Controls in IDL 91

19.

20.

21.

22.

23.

24.

25.

26.

27.

The user value of the top-level base widget is set equal to a structure that
contains the widget ID of the ActiveX widget. Retrieve the structure into the
variable sState.

WIDGET CONTROL, ev.TOP, GET UVALUE=sState, /NO_COPY

Use the value of the DISPID field of the event structure to sort out “ selection
changing” events.

IF (ev.DISPID EQ 1513) THEN BEGIN

Place data from selected cellsin variable aData, using the
excel getSelection function defined above. Check to make sure that the
function returns a success value (one) before proceeding.

IF (excel getSelection(sState.oExcel, aData) NE 0) THEN BEGIN
Get the dimensions of the aData variable.
szData = SIZE (aData)
If aDataistwo-dimensional, display a surface, otherwise, plot the data.

IF (szDatal[0] GT 1 AND szDatal[l] GT 1 AND szDatal[2] GT 1) $
THEN SURFACE, aData $
ELSE $
PLOT, aData
ENDIF

ENDIF

Reset the state variable sState and end the procedure.

WIDGET CONTROL, ev.TOP, SET UVALUE=sState, /NO_COPY

END
Create the main widget creation routine.

PRO ActiveXExcel

I|EXCEPT=0 ; Ignore floating-point underflow errors.
Create atop-level base widget.

wBase = WIDGET_ BASE (COLUMN=1, $
TITLE="IDL ActiveX Spreadsheet Example")

Instantiate the ActiveX spreadsheet control in awidget.

wAx=WIDGET ACTIVEX (wBase, $
'{0002E510-0000-0000-C000-000000000046}"', $
SCR_XSIZE=600, SCR_YSIZE=400)

External Development Guide Example: Spreadsheet Control

92

28.

29.

30.

31.

32.

33.

Chapter 5: Using ActiveX Controls in IDL

Realize the widget hierarchy.
WIDGET CONTROL, wBase, /REALIZE

The value of an ActiveX widget is an object reference to the IDLcomA ctiveX
object that encapsulates the ActiveX control. Retrieve the object reference in
the variable oExcd.

WIDGET CONTROL, wAx, GET VALUE=oExcel
Turn off the TitleBar property on the spreadsheet control.
oExcel->SetProperty, DisplayTitleBar=0

Populate the spreadsheet control with data, using the excel setData
function defined above.

excel setData, oExcel

Set the user value of the top-level base widget to an anonymous structure that
contains the widget 1D of the spreadsheet ActiveX widget.

WIDGET CONTROL, wBase, SET UVALUE={oExcel:oExcel}
Cal XMANAGER to manage the widgets, and end the procedure.

XMANAGER, 'ActiveXExcel', wBase, /NO_BLOCK
END

Running the ActiveX Excel procedure display widgets that look like the following:

&l
Eal el s z [SEEY BB

i =101 x|

A B C D E
0785198 0.223891 -0.260052 -039715 -
0.765198 0.559134 0.080405 -0.310045 -0.386187 0.
0.2238591 0.090405 0196545 0352283 -0 326575
-0.260052 -0.310045 -0.392293 -0.370336 -0.177597
039715 -0 38R167 -0.326875 0177557 004563
0177597 0144665 -0.046336 0.101258 0.243877 0.29¢
0150645 0172848 0226344 0285837 029445
0.300079 0.299655 0.289804 0.249082 0156777
0171651 01586777 01102 0.029315 -0.076457 -
-0.080334 -0.103734 -0.140967 -0.191767 -0.236522 -0.24;
-0.245836 0 247752 024363 -0.240343 0207336 -0.13¢
-0.080334 -0.103734 -0.140967 0191767 -0.236522 -0.24;
0171651 0156777 01102 0.029915 -0.076487 -0.181
0.300079 0.299655 0.289804 0.249062 0.156777 0.017
0150645 0172848 0226344 0285837 029445 0.21:
0177597 0144665 -0.046336 0.101258 0.243877 0.29¢
039715 -0.386187 -0.326875 0177597 004583 0.24:
-0.260052 -0.310045 -0.392293 -0.370336 0177597 0.10°
0.223891 0.090405 -0.196548 0392293 -0.326875 -0.04k
0.765198 0.559134 0.080405 -0.310045 -0.3861687 -0.144665 0172849 0.299655 U.158_?,j
»

Figure 5-2: An IDL Widget Program Using an ActiveX Spreadsheet Control

Example: Spreadsheet Control External Development Guide

Chapter 6

The IDLDrawWidget
ActiveX Control

This chapter discusses the following topics:

OVEIVIBW ..ot 94
Creating an Interface and Handling Events . 96
Working with IDL Procedures. 102
Advanced Examples 105
Copying and Printing IDL Graphics 106

XLoadCT Functionality Using Visual Basic . 110

External Development Guide

XPalette Functionality Using Visual Basic 112

Integrating Object GraphicsUsingVB .. 113
Sharing a Grid Control Array with IDL .. 114
Handling Events within Visual Basic 116
Distributing Your ActiveX Application .. 118

93

94

Chapter 6: The IDLDrawWidget ActiveX Control

Overview

Overview

The Microsoft Windows version of IDL includes an ActiveX control that provides a
powerful way to integrate all the data analysis and visualization features of IDL with
other programming languages that support ActiveX controls. ActiveX is aset of
technologies that enabl es software componentsto interact, regardless of the language
in which they were written. This makes it possible, for example, to design a software
interface with Microsoft Visual Basic and have IDL respond to the events it
generates. The major features of the IDL ActiveX control include the following:

The IDL ActiveX control makesit possibleto display IDL direct and object
graphics within an OLE container that supports ActiveX controls;

The DL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itself;

The IDL ActiveX control greatly simplifies the process of moving datato and
from IDL and an external program;

And finaly, the interface to the IDL ActiveX control appears native to the
external application.

Other issues to note regarding the ActiveX control are:

The IDL ActiveX control isintended primarily for use in applications
developed with Visual Basic 5.0 or greater. The control can be included in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visual Basic-style
data types to exchange data between a Visua Basic application and IDL. A
Visua C++ programmer will need to use OLE'S VARIANT and SAFEARRAY
types. A discussion of how to usethe IDL ActiveX control with these
languages is beyond the scope of this manual.

The IDL ActiveX control does not support any non-blocking IDL widgets.
When you call awidget from an ActiveX Control, you will not have access to
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of awidget using the given functionality.
For an example, see “XLoadCT Functionality Using Visual Basic” on

page 110.

External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 95

The ActiveX interface to IDL consists of a single control called | DL DrawWidget.
When this control isincluded in a project, it exposes the features of IDL through its
properties and methods. The | DL DrawWidget can also trigger events. The
properties and methods of the IDL DrawWidget are listed in Chapter 7,
“IDLDrawWidget Control Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visua Basic. These technigues begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphicsin aVisual Basic
window.

A Note about Versions of the IDL ActiveX Control

Periodically, RSI releases a new version of the IDLDrawX ActiveX control. Older
versions of the control will continue to work as they always have, but the new
versions may include new features or other enhancements.

Why Are New Versions of the Control Created?

One of the features of COM isthat interfaces are immutable. That isto say that when
you create an interface, you “contractually” agree that the interface won’t change.
Changesto the way the control interacts with other components require that a new
interface — and thus a new version of the control — must be created. Since the IDL
ActiveX control isa COM object it is bound by this agreement. When RSI makes
improvements to the ActiveX control interface by adding new methods and
properties, we release a new ActiveX control with the new interface.

What Must You Change to Take Advantage of a New Control?

If you are a Visual Basic user, you need to add the new version of the control to your
project and remove the old versions. For example, if you are upgrading to the
“IDLDrawX3 ActiveX Control Module” included with IDL version 5.6 and later,
you would add this control to your project and remove the “IDLDrawX ActiveX
Control Module” or “IDLDrawX?2 ActiveX Control Module” from your project. The
source code need not change.

What About Previous ActiveX Controls?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, they are no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

External Development Guide Overview

96 Chapter 6: The IDLDrawWidget ActiveX Control

Creating an Interface and Handling Events

The goal of thisfirst exampleisvery simple: to create a user interface in Microsoft
Visua Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following figure:

. IDL OCX Control: Simple Example [O] X]

40 4 1600

% Compiled module: DIST. =]
‘ 2 4

|

Figure 6-1: A simple example showing the IDLDrawWidget and
text returned by IDL

Asthe figure shows, our first example program consists of two buttons (“Plot Data’
and "Exit”), agraphics area, and atext box. All of these elements reside on top of
what iscalled aform in Visual Basic parlance. (A formin Visual Basicissimilar to a
top level basein IDL.) Clicking the “Plot Data” button causes IDL to produce the
surface plot shown. Clicking “Exit” causes IDL and the Visua Basic program to free
memory and exit.

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control

97

1] Private Sub Form Load()
2 n = IDLDrawWidgetl.InitIDL (Forml.hWnd)
3 If n <= 0 Then
4 MsgBox ("IDL failed to initialize")
5 End
6 End If
7 IDLDrawWidgetl.CreateDrawWidget
8 IDLDrawWidgetl.SetOutputWnd (IDL Output_ Box.hWnd)
9§ End Sub
Visual °] ,
. 11| Private Sub Plot Button Click()
Basic 12 IDLDrawWidgetl.ExecuteStr ("Z = SHIFT(DIST(40), 20,
13 IDLDrawWidgetl.ExecuteStr ("Z = EXP(-(Z2/10)%2)™)
14 IDLDrawWidgetl.ExecuteStr ("SURFACE, Z")
15 IDLDrawWidgetl.ExecuteStr ("PRINT, SIZE(Z)")
16 End Sub
17
18] Private Sub Exit Button Click()
19 IDLDrawWidgetl.DoExit
20 End
21 End Sub

20) ||)

Table 6-1: Source code for a simple example

Drawing the Interface

Begin building the first example by creating a new Visual Basic project, adding the

IDL ActiveX control, and drawing the interface components.

Launch Microsoft Visual Basic and create a new project.

1. AddthelDL ActiveX component to the project. Visual Basic displays alist of
all available components when you select the Components from the Project

menu.

External Development Guide Creating an Interface and Handling Events

98 Chapter 6: The IDLDrawWidget ActiveX Control

Components E

Cantrols | Designers Insertable Objects |

[Index OLE Conkrol madule
[KeywardSearch ©OLE Control madule
[ILM Runtime Conkrol

[Media Clip

L N T T

mlemde A A

Figure 6-2: List of Available Components

Select the “IDLDrawX3 ActiveX Control module’ check box and close the
Components window. Visual Basic will display the IDLDrawWidget'siconin
the tool bar.

2. Begindrawing theinterface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display area was created with | DL DrawWidget.

Specifying the IDL Path and Graphics Level

Having added | DL DrawWidget to the Visual Basic project, we now have access to
IDL DrawWidget's properties and methods. Use the I dIPath and GraphicsL evel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and object graphics capahilities. Refer to Chapter 7,
“IDLDrawWidget Control Reference” for acomplete list of the properties and
methods to | DL DrawWidget.

1. UseVisua Basic's Properties window to select the I DL DrawWidget. All of
the IDL DrawWidget’s properties can be set using the Properties window.
Many properties can a so be set within the source code. These distinctions are
noted in Chapter 7, “IDLDrawWidget Control Reference”.

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 99

| IDLDrawwidget1 IDLDrawwidget =
Alphabetic | Cateqgarized I
-
[IDLDrawWidget 1
EackColor] &H=000000F 2
Easelarne IDLCrawiwidget 1 Base
Eorderstyle 0- Mone
BuffFerId -1
Causesvalidation True
Draglcon {Mone)
Crraghiode 0 - wbManual
CiravwidgetMame IDLDrawiwidget 1
Enablz True
Enabled True
GetialueMarne
GraphicsLeyvel 1
Height 2415
HelpContextID |0
1diPath =l
{Name)
Returns the name used in code ko identify an
object.

Figure 6-3: Visual Basic Properties window
2. Locate the I dIPath property and enter the directory path to your DL
installation. If you installed IDL in its default location, this path will be:
c:\rsi\idlxx
where xx isthe current IDL version.

3. Locate the GraphicsL evel property and set it equal to 1. ThisselectsIDL's
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the I DL DrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form Load ()
End Sub

External Development Guide Creating an Interface and Handling Events

100

Chapter 6: The IDLDrawWidget ActiveX Control

Visual Basic's Form_L oad routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the | DL DrawWidget,
and direct output from IDL to atext box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needsto beinitialized before Visual Basic can interact with the
IDLDrawWidget. Thisis done with the I nitl DL method. InitIDL takesthe hWnd
of the form containing the I DL DrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the | DL DrawWidget were not changed, IDL
can beinitialized with the following statement.

n = IDLDrawWidgetl.InitIDL (Forml.hWnd)

A conditional statement isincluded to display an error message and exit the program
if IDL failed toinitialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End If

Creating the Draw Widget

When a box is drawn with the “IDLDrawWidget” icon in the toolbar, an OCX frame
is created. Thisisa container for the IDL DrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. Thisisaccomplished with the CreateDrawWidget method, as shown in the
following statement:

IDLDrawWidgetl.CreateDrawWidget

Directing IDL Output to a Text Box

The example program displays any output returned by IDL in atext box created in
Visual Basic. Thisis accomplished with the SetOutputWnd method of the

IDL DrawWidget. The SetOutputWnd method takes the hwnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named | DL_Output_Box, hence the following statement.

IDLDrawWidgetl.SetOutputWnd (IDL_ Output Box.hWnd)
Note

Although thisis the last statement within the Form_L oad() subroutine, it could be
placed before the call to Initl DL to get standard IDL version information printed.

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 101

Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basic isto let Visual Basic manage the
events and passinstructions to IDL. Recall that our example program contains two
buttons. “Plot Data’ and “Exit”. When you double-click on “Plot Data’, Visual Basic
automatically creates the following subroutine:

Private Sub Plot Button Click()
End Sub

Visua Basic will execute any statements within this subroutine when the user clicks
“Plot Data’. Instructions are passed to IDL using the ExecuteStr method to the

DL DrawWidget. The ExecuteStr method takes a string as an argument. Thisstring
ispassed to IDL for execution asif it were entered at the IDL command line.

The five statements which follow instruct IDL to produce the surface plot shownin
the figure above.

IDLDrawWidgetl.ExecuteStr ("Z SHIFT (DIST(40), 20, 20)")
IDLDrawWidgetl.ExecuteStr ("Z = EXP(-(Z/10)"2)")
IDLDrawWidgetl.ExecuteStr ("SURFACE, Z")
IDLDrawWidgetl.ExecuteStr ("PRINT, SIZE(Z)")

Cleaning Up and EXxiting

This project exits when the user clicks “Exit”. Exiting is atwo step process. IDL is
given a chance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.
Private Sub Exit Button Click()
IDLDrawWidgetl.DoExit

End
End Sub

External Development Guide Creating an Interface and Handling Events

102 Chapter 6: The IDLDrawWidget ActiveX Control

Working with IDL Procedures

In this next example aproject is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It isimportant to realize that the ActiveX control
interacts with IDL at the main level. Thus, a Visual Basic program passing
instructionsto IDL isidentical to entering the sameinstructions at the IDL command
line. In this example Visual Basic isonly used to create the user interface and
dispatch events. The dataresides in memory controlled by IDL. IDL is used for al
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and resides in the
examples\doc\ActiveX\SecondExample directory.

. Second Example: Interacting with IDL Procedures [O] X]

Open

Scale Original |
IBIack #whhite VI

Roberts |
Exit |

Original Filtered

% Compiled module: SETCOLORS. ;I
% Compiled module: APPLYSOBEL.

*% Compiled module: APPLYROBERTS.

% Loaded DLM: JPEG.

% Compiled module: COMGRID.

% Compiled module: LOADCT.

% Compiled module: FILEPATH.

% LOADCT: Loading table B LINEAR LI

Figure 6-4: The User Interface with Two Draw Widgets

The user interface consists of two | DL DrawWidget objects. The one on the left will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 103

Creating the Interface

Theinterfaceis created asit was in the first example, by drawing the interface
componentsin Visual Basic. Two | DL DrawWidgets are created. Set the path

(c:\rsi\idlxx wherexx isthe current IDL version) and graphicslevel properties
(type 1) of both.

Initializing IDL

Although there are two | DL DrawWidget objects, only one instance of the ActiveX

control needs to be initialized. Both of the | DL DrawWidget objects do need to be
created, however.

Thisis done with the two statements below:

IDLDrawWidgetl.CreateDrawWidget
IDLDrawWidget2.CreateDrawWidget

Compiling the IDL Code

This example uses IDL procedures containedin a . pro file named
SecondExample.pro. Thisfile contains IDL procedures. Before these procedures
can be called from Visua Basic, SecondExample . pro heeds to be compiled.
This assumes that the . pro file resides in the same directory asthe Visual Basic
project. The path method of the App object returns the directory from which the
Visua Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, ‘" + App.Path + "’"
IDLDrawWidgetl.ExecuteStr (WorkingDirectory)

The .pro can then be compiled. A conditional statement is used to exit the program
if IDL wasunableto locate the .pro file.

Dispatching Button Events to IDL
Because Visual Basic isused primarily for the user interface components of the

application, IDL’s procedures have been created for processing the button eventsin
the application. Thisis accomplished through the ExecuteStr method of the

External Development Guide Working with IDL Procedures

104 Chapter 6: The IDLDrawWidget ActiveX Control

IDL DrawWidget, as caled in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.

) 1] Private Sub Open Button Click(Index As Integer)
Visual 2 IDLCommand = "OpenFile, " + Str (BaselID)
Basic 3 IDILDrawWidgetl.ExecuteStr (IDLCommand)

4] End Sub

Table 6-2: User Interface of Example Project

OpenFileisauser procedure that utilizes IDL’s DIALOG_PICKFILE function to
enabl e the user to select afile for display within the IDL DrawWidget.

Cleaning Up and EXxiting

Like the first example, this program exits when the user clicks “ Exit”. An additional
call has been made to DestroyDrawWidget. Thisisn’'t necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsL evel property of the | DL DrawWidget during program execution use this

method.

1] PRO OpenFile, TLB

2 WIDGET CONTROL, TLB, GET UVALUE = ptr

3 PathName = DIALOG PICKFILE (TITLE = $

4 'Select a JPEG file', FILTER = '*.jpg')
5 IF (PathName NE '') THEN BEGIN

6 DEVICE, DECOMPOSED = 0

7 READ_JPEG, PathName, Data, ColorTable

IDL 8 (* (*ptr) .OriginalArrayPTR) = Data

9 (* (*ptr) .OrigColorMapPTR) = ColorTable
10 TVLCT, (* (*ptr).OrigColorMapPTR)
11 TV, (*(*ptr).OriginalArrayPTR)
12 ENDIF ELSE BEGIN
13 Result = DIALOG MESSAGE('No JPEG file selected', /ERROR)
14 ENDELSE
15 END

Table 6-3: The Open File Procedure

Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 105

Advanced Examples

Each of the following examples builds on the concepts that you've already learned in
this chapter.

Example Code

The user interface and projects for each of the examples have been created and can
be found in the distribution in the examples\doc\ActiveX\project
directory where project is the name of the example.

These examples assume that you are already familiar with the following concepts:

Creating anew project in Visual Basic;

Adding the I DL DrawWidget control to the VB control toolbar;

Drawing the | DL DrawWidget on your form;

Initializing IDL with InitIDL;

Creating the draw widget with CreateDrawWidget;

Executing commands with ExecuteStr;

Using IDL . pro code to respond to auto-events within the | DL DrawWidget;
Setting properties for the | DL DrawWidget objects.

These examples demonstrate the following:

Copying and Printing IDL Graphics
XLoadCT Functionality Using Visual Basic
XPalette Functionality Using Visual Basic
Integrating Object Graphics Using VB
Sharing a Grid Control Array with IDL

Handling Events within Visual Basic

External Development Guide Advanced Examples

106 Chapter 6: The IDLDrawWidget ActiveX Control
Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphics to print the contents of an DL DrawWidget window.

This example illustrates the following concepts:
¢ Opening an existing project in Visual Basic;

e Copying an IDL graphic to the Windows clipboard using the CopyWindow
method;

e Executing IDL user routines;
e Printing an IDL graphic.
Opening the VBCopyPrint project
Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,

change to the examples\docs\ActiveX\VBCopyPrint directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

New Project HE

Mew Edisting | Recent|

Loak jn 2 VBCopyPrint j
Crsl =
VB CopyPr| 0 1453
(1 examples J
3 doc
0 Activex,
E=F /B CopyPrin
5= E_Diive E)
5= F_Drive [F] -
File name: I Open I
Files of pe: IF’lo\ect Files (*.vbp:" mak.".vba) j Cancel
Help

[~ Don't chow this diglog in the future

Figure 6-5: Opening the VBCopyPrint project

Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 107

Running the VBCopyPrint Example

Select “ Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Printing and Copying Direct Graphics

Copy

1DL Print

il

B Print

Figure 6-6: VBCopyPrint example

Copying IDL Graphic to the clipboard

To copy the graphic, click on “Copy”. The code for “Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as showninline
6 of the following table.

Private Sub cmdCopy Click/()
'Copy the direct graphics window to the clipboard
Screen.MousePointer = vbHourglass
'Erase anything currently on the clipboard
Clipboard.Clear
'Copy the draw widget to the clipboard
IDLDrawWidgetl.CopyWindow
Screen.MousePointer = vbDefault
MsgBox "Window copied to clipboard."

End Sub

Visual
Basic

O WOV 00 J 0 Ul b WN K

=

Table 6-4: Copy button Source Code

External Development Guide Copying and Printing IDL Graphics

108 Chapter 6: The IDLDrawWidget ActiveX Control
Printing the IDL Graphic using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The “IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.
1§ PRO VBPrintWindow, DrawId
2
3
4 .
5 ;Get the window index of the drawable to be printed
6 WIDGET CONTROL, DrawId, Get Value=Index
7
8
9 .

10 ;Create a Printer object and draw the graphic to it

IDL 11 oPrinter = OBJ NEW ('IDLgrPrinter')

12

13 ;Display a print dialog box

14 Result = DIALOG PRINTERSETUP (oPrinter)

15

16

17 .

18 oPrinter->Draw, oView

19

20

21 .

22 END ;VBPrintWindow

Table 6-5: IDL VBPrintWindow Code

Executing IDL user routines with Visual Basic

The VBCopyPrint example executes a user routine, written in IDL, to support the
printing of the | DL DrawWidget window. This is done with the ExecuteStr method,

Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control

109

as shown in line 4 below, by passing a string of the routine name along with the ID of

the IDL DrawWidget.

Visual
Basic

W 00 J 0 Ul i W N K

Private Sub cmdPrintIDL Click()
'Print the current drawable widget's window contents
'using IDL object graphics
Screen.MousePointer = vbHourglass
IDLDrawWidgetl.ExecuteStr "VBPrintWindow," &
Strs$ (IDLDrawWidgetl.DrawlId)
Screen.MousePointer = vbDefault
MsgBox "Window sent to printer."
End Sub

Table 6-6: Print Button Source Code

Printing the IDL Graphic Using Visual Basic

The VBPrint command uses the Windows clipboard and Visual Basic printer
support to print the IDL Graphic, as shown in the following table.

Visual
Basic

15

1] Private Sub cmdPrintVB_Click ()

2 CommonDialogl.CancelError = True

3 On Error GoTo ErrHandler

4 CommonDialogl.ShowPrinter

5§ '-- Copy the window's contents to the clipboard
6 'Erase anything currently on the clipboard
7 Clipboard.Clear

8 IDLDrawWidgetl.CopyWindow

9 '-- Send the picture located on the clipboard,
10 'to the printer
11 Printer.PaintPicture Clipboard.GetData, 0, 0
12 Printer.EndDoc 'Send it to the printer
13 Exit Sub
14] ErrHandler:
16 Exit Sub
17 End Sub

External Development Guide

Table 6-7: VBPrint Command

Copying and Printing IDL Graphics

110 Chapter 6: The IDLDrawWidget ActiveX Control

XLoadCT Functionality Using Visual Basic

The VBL0adCT example duplicates the XLOADCT functionality using aVB
interface. The VBLoadCT . pro source code (located in the
examples\docs\ActiveX\VBLoadcCt directory of the IDL installation directory)
isafunctional duplicate of XLOADCT with procedure calls replacing the
xloadct_event procedure aswell as IDL widgets being replaced by VB controls.
See the following figure for more information.

In addition, this example extends XLOADCT by adding the following features:
e Options menu by clicking the right mouse button on a color;
e Useof IDL syntax to create separate functions for red, blue and green;
e Ability to save user created color tables.

This example illustrates the following concepts:
* Modifying existing IDL library code for use with the | DL DrawWidget;
» IDL to Visual Basic color table conversion

XLoadCT Functionality Using Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 111

. VBLoadCT I[=] E3
Eile Edit
B LINEAR -
BLUE AWHITE
GRMN-RED-BLU-wHT
RED TEMPERATURE
BLUE/GREEM/REDAYELLOW
STD Gabdbda-
1} PRISH
RED-PURPLE
4 »
J—I J GREEMNAWHITE LINEAR
Stretch Bottomn GRAMAWHT EXPOMNEMTIAL
100 GREEN-PINK.
. » BLUE-RED
[l —IJ 16 LEVEL
Stretch Top RalMBOW
1 STEPS
STERM SPECIAL
4 3
J —I J Haze LI

Gamma Caomection

Figure 6-7: VBLoadCT example

External Development Guide XLoadCT Functionality Using Visual Basic

112 Chapter 6: The IDLDrawWidget ActiveX Control

XPalette Functionality Using Visual Basic

Like VBL 0adCT, VBPalette demonstrates how to duplicate IDL tool functionality
using aVisual Basic interface. The vBPalette.pro file (located in the
examples\docs\Activex\VBPalette directory of the DL installation
directory) isafunctional duplicate of the XPalette source with the event procedure
and IDL widgets replaced with auto-event procedures and VB controls.

This example illustrates the following concepts:
* Modifying existing IDL library code for use with the | DL DrawWidget;

e Converting an IDL event procedure to the | DL DrawWidget auto-event

procedures

. VBPalette
File Palette

Color Index | 115 B/ LINEAR
Eam GRN-AED-BLU-WHT
Fed el FED TEMPERATURE
BLUE /GREEN/RED/YELLOW
Green 55 57D GAMMA
PRISM
Blue 755 RED-PURPLE

1 colors].thl

50 100 150 200 250 300

50 100 150 200 250 300

50 100 150 200 250 300

[[Ofx]

Green

Blue

Create a Color Function
Start Index IDL Function

Red= | [0 [oytscl sin indgen (256F-10)

Green = | [0 [bytscl sin indgen (256F-05))

Blue= | [0 [bytscl fsin (indigen (256 025))

Reset Red
Reset Green
Reset Blue

Output Window

Figure 6-8: VBPalette Example

XPalette Functionality Using Visual Basic

External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 113

Integrating Object Graphics Using VB

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the | DL DrawWidget control. The I DL DrawWidget
can also use IDL’s object graphics sub-system by changing the
IDL DrawWidget.GraphicslL evel property as demonstrated with the VBObj Graph
example in the following figure. This example illustrates the following concepts:

e Setting the GraphicsL evel property to create an object graphics window;

e Trandating agraphics object using VB controls.

e Using IDLDrawWidget auto-events.

Dbject Graphics Example
File Edit

Left click and draq on surface to rotate.

l Auto Rotate

Figure 6-9: VBObjGraph example

Example Code
See thefileslocated in the examples\docs\Activex\VBObjGraph directory
of the IDL installation directory for example code.

External Development Guide Integrating Object Graphics Using VB

114 Chapter 6: The IDLDrawWidget ActiveX Control

Sharing a Grid Control Array with IDL

VBSharelD demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the | DL DrawWidget object. The datais
presented to the user in aVisual Basic grid control enabling the user to edit the data
and seetheresultsin real time. See the following figure.

This example illustrates the following concepts:

¢ Shows how to process mouse events within VB to get the data coordinates of
an IDL plot.

e Demonstrates how to convert (x,y) VB coordinates into IDL data coordinates,
to give the cursor location in data val ues rel ative to the current plot.

¢ Demonstrates how to use aVB grid control to edit data valuesthat are
reflected in the IDL plot after each keystroke

. VBShareld I[=] 3
Move the cursor over the plot. and type a number to edit the current
value. or click on the cell to edit.
1.0]
0.5 3
kel 2 E
—osf =
-1.0E =
[20 40 &0 a0 100
000 E] 909 14 - 757 -959 -279 E57 989 A2
- 544 -1.000 - 537 420 391 B5O -.288 - 961 - 751 150
13 a7 -009 - 545 -132 7E3 956 271 -BE4
-988 - 404 551 1.000 529 -428 -992 - E44 296 964
745 -159 -917 -|az 018 851 902 124 - 768 - 954
-262 E70 987 396 - 559 -1.000 -522 436 993 B37
-305 - 966 -739 167 1920 827 -027 - 856 -£98 -115
T4 851 254 -E77 -985 -,388 JBEE 1.000 514 - 444
- 994 -E30 13 968 73 -176 -923 -B22 035 850
894 106 - 779 -948 - 245 683 954 380 -573 -999
Reset | IblCaards

Figure 6-10: VBSharelD

Sharing a Grid Control Array with IDL External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 115

Example Code
Seethefileslocated inthe examples\docs\Activex\VBSharelD directory of
the IDL installation directory for example code.

External Development Guide Sharing a Grid Control Array with IDL

116 Chapter 6: The IDLDrawWidget ActiveX Control

Handling Events within Visual Basic

The VBPaint example uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will
get the (x,y) location within the window, and modify the color of the current pixel in
the image. See the following figure:.

This example illustrates the following concepts:
e Converting from aVB pixel coordinate system to the IDL coordinate system;

e Converting aVB color representation (long) into an IDL color representation
(RGB);

¢ Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color dialog;

¢ Processing mouse events within VB to draw into an IDL window

&, Exampled !EE
Hold Left button to draw. Right button to erase

Color H

B asic colors:

LCustom colors:

|0 .
FEEEEE..

Define Custom Colors »» |

Cancel |

Figure 6-11: VBPaint example

Handling Events within Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 117

Example Code
See thefileslocated in the examples\docs\Activex\VBPaint directory of
the IDL installation directory for example code.

External Development Guide Handling Events within Visual Basic

118 Chapter 6: The IDLDrawWidget ActiveX Control

Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 27, “Distributing ActiveX Applications’ in the Building IDL
Applications manual.

Distributing Your ActiveX Application External Development Guide

Chapter 7

IDLDrawWidget
Control Reference

This chapter describes the following topics:

IDLDrawWidget 120
Methodst 121
Do Methods (RuntimeOnly) 131
Properties........... 133

External Development Guide

Read Only Properties 137
Auto Event Properties 139
Events 141

119

120 Chapter 7: IDLDrawWidget Control Reference

IDLDrawWidget

The IDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visua
Basic, Fortran, Delphi, etc. Methods and properties of the I DL DrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the DL DrawWidget:

e Methods

* Do Methods (Runtime Only)
e Properties

¢ Read Only Properties

e Auto Event Properties

¢ Events

IDLDrawWidget External Development Guide

Chapter 7: IDLDrawWidget Control Reference 121

Methods

In ActiveX terminology, methods are special statements that execute on behalf of an
object in a program. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on a button in a Visual
Basic program. The syntax of a method statement is:

object .method value
where

¢ Object isthe name of an object you want to control, for example an
IDL DrawWidget.

¢ Method is the name of the method you want to execute.

¢ Valueisan optional parameter used by the method. The various methodsto the
IDL DrawWidget may require zero, one, or multiple parameters.

Note
When a method returnsaBOOL, the value TRUE isequal to 1 and FALSE is equal

to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.
Parameters

BSTR: The name of the array variable that you wish to copy.
Returns

VARIANT: Reference to the array.
Remarks

This function returns an array reference that islocal to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.

External Development Guide Methods

122 Chapter 7: IDLDrawWidget Control Reference

CopyWindow

This method copies the contents of the | DL DrawWidget window to the Windows
clipboard.

Parameters
None.
Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an | DL DrawWidget in an ActiveX control frame. When you
drag and drop the | DL DrawWidget, you are creating the frame that will contain the
actual draw widget. Drawing operations to the control cannot be made until this

method is called.
Parameters
None.
Returns
LONG: The widget ID of the created draw widget or -1 in the event of an error.

DestroyDrawWidget

This method destroys the | DL DrawWidget, but not the ActiveX control frame.
Parameters

None.
Returns

None.
DoEXxit

This method exits the ActiveX control and frees any resourcesin use by IDL.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 123

After all IDL ActiveX control use is complete, but before the EDE application exits,
you must call DoExit to alow the ActiveX control to shutdown IDL gracefully and

free any resourcesin use.
Parameters

None.
Returns

None.

Remarks

In spite of the name, DoEXxit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoEXxit is called, you are not allowed to call methods or set properties within

the IDL ActiveX control from the currently running EDE application, regardless of
which | DL DrawWidget the method was called on. Attempting to do so will result
in aruntime error subsequently causing the EDE application to crash.

ExecuteStr
This method passes a string to IDL which IDL then executes.

Parameters
BSTR: A string containing the command that IDL will execute.

Returns
LONG: 0 if successful or the IDL error codeif it fails.

Remarks
Most IDL commands that are executed with ExecuteStr run in the main level.
GetNamedData

This method returns the IDL data val ue associated with the named variable.

External Development Guide Methods

124 Chapter 7: IDLDrawWidget Control Reference

Parameters
BSTR: A string containing the name of an IDL variable.
Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn’t exist.

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT datatypes.

IDL Type Variant Type

IDL_TYP BYTE VT Ull
IDL_TYP_INT VT 12
IDL_ TYP_ LONG | VT I4
IDL_TYP_FLOAT |VT R4
IDL_TYP_DOUBLE | VT _R8
IDL_TYP_STRING |VT_BSTR

Table 7-1: Supported IDL data types and the corresponding
VARIANT data types

InitIDL

Thismethod initializes IDL. IDL only needs to be initialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL iscdled with the hwnd of the main window for the container
application. If thisvalue is null, the ActiveX control uses the hwnd of the ActiveX
control frame.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 125

Returns

LONG: Long value indicating status of IDL

Value Meaning
1 Successful
0 Failure
-1 IDL ActiveX control is
not licensed
-2 IDL isunlicensed (demo)

Table 7-2: Status of IDL

If your application contains more than asingle I DL DrawWidget (e.g.
IDL DrawWidget1 and | DL DrawWidget2) the Initl DL method should only be
called on one of the objects, not both.

The IDL ActiveX control relies on IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The I dIPath property can be set so the
control can find avalid IDL distribution (the id132.411). If avalid distribution is
not found in either the path as set in the I dIPath property or the current directory, a
dialog will be displayed giving the user the opportunity to specify the location of his
IDL distribution. This behavior may be overridden at runtime by locating and
specifying the path to the IDL distribution prior to calling either the I nitIDL or
SetOutputWnd methods.

InitIDLEX

This method initializes IDL. It isidentical to the InitiIDL method except that it has an
additional parameter, Flags, allowing initialization flagsto be passed on to IDL. See
the description of the “InitiIDL” on page 124 for details on the return value.

Parameters

LONG: InitIDL iscaled with the hWnd of the main window for the container
application. If thisvalue is null, the ActiveX control usesthe hwnd of the ActiveX
control frame.

External Development Guide Methods

126 Chapter 7: IDLDrawWidget Control Reference

LONG: Flags. A bitmask used to specify initiaization options. The allowed bit
values are:

Flag Meaning

IDL_INIT_RUNTIME | Setting thisbit causes IDL to check out aruntime
license instead of the normal license. In Visual C++
applications, the #define IDL INIT RUNTIME
value exported in export . h can be used. For Visual
Basic applications use the actual value of this
constant, IDL._INIT RUNTIME=4, since the defined
constant is not available.

IDL_INIT_STUDENT | Setting this bit causes IDL to check out a student
license instead of the normal license. In Visual C++
applications, the #define IDL_ INIT STUDENT
value exported in export . h can be used. For Visua
Basic applications use the actual value of this
constant, IDL._INIT STUDENT=128, Sincethe
defined constant is not available.

Table 7-3: InitIDLEx Flags
Returns

LONG: Long value indicating status of IDL. See the description of the return value
under “InitIDL” on page 124 for details.

Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of a Direct Graphics window at screen resolution (72-96 dpi). For
information about controlling print resolution of an object graphics window, see the
Bufferld property.

Note
In order to print the contents of an Object Graphics window, you must associate the
IDL graphicstree (an IDLgrView object) with the IDLgrWindow object used by the
underlying draw widget. Do this by setting the GRAPHICS_TREE property of the
IDLgrWindow object to the IDLgrView object:

;Retrieve the window object associated with the draw widget.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 127

IDLDrawWidget: :ExecuteStr ("Widget Control, IDLDrawWidget, $
Get Value =oWindow") ;
;Set the Graphics Tree property to the view object.
IDLDrawWidget: :ExecuteStr ("oWindow->SetProperty, $
Graphics Tree = oView");

Parameters

XOffset: The X offset to print the graphic in 0.01 of amillimeter.

Y Offset: The Y offset to print the graphic in 0.01 of a millimeter.
Width: The desired width of the printed graphic in 0.01 of a millimeter.
Height: The desired height of the printed graphic in 0.01 of a millimeter.

The X offset plus the width should be less than or equal to the width of a single page.
TheY offset plus the height should be less than or equal to the height of asingle
page. The origin of the offset 0,0 isin the upper left corner of a page. If these values
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns

BOOL: TRUE if printing succeeded.
RegisterForEvents

This method causes | DL DrawWidget to pass the specified events to the application.
These events only apply if the user hasn't set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning
0 Stop forwarding all events
1 Forward mouse move events
2 Forward mouse button events

Table 7-4: Forwarding Events

External Development Guide Methods

128 Chapter 7: IDLDrawWidget Control Reference

Value Meaning
4 Forward view scrolled events
8 Forward expose events

Table 7-4: Forwarding Events (Continued)

Note
Motion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you forward mouse move events, your event handler should
check the reported position of the mouse to determine whether it has in fact moved
before doing extensive processing.

Returns

BOOL: TRUE if successful.
SetNamedArray

This method creates anamed IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changesin either IDL or the EDE
will be reflected in both.

Parameters

BSTR: Name of array variableto create in IDL.
VARIANT: Array data to be shared with IDL.

BOOL: Trueif IDL should free a shared array when IDL releasesits reference, false
if not.

Returns
WORD: 1 if successful, O if set failed.

Remarks

Because SetNamedArray creates an array whose datais shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 129

The array parameter of SetNamedArray must have alifetime beyond the calling
function. Thus, in Visual Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

Note
In order to alow datato be shared between IDL and the external environment, the
lock count on the underlying array is incremented. Some external environments,
notably later versions of Delphi, do not allow array locking to extend beyond a
single method call and will signal an error when SetNamedArray() returns. If this
occurs, the data cannot be shared between IDL and the external environment using
SetNamedArray(). Use the SetNamedData() method to insert a copy of the array
into IDL.

The following table lists the accepted variant types and the corresponding IDL types.

Variant Types IDL Types
VT _UI1 - unsigned char IDL_TYP BYTE
VT _I1- signed char IDL_TYP BYTE
VT |2 - signed short IDL_TYP_INT
VT _14 - signed long IDL_TYP LONG
VT R4 - float IDL_TYP_FLOAT
VT _R8 - double IDL_TYP DOUBLE

Table 7-5: Accepted Variant Types and the Corresponding IDL Types
SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can a so be used
to change the value of an existing IDL variable.

Parameters

BSTR: Name of the variable to createin IDL.
VARIANT: Datato be copied in IDL.

External Development Guide Methods

130 Chapter 7: IDLDrawWidget Control Reference

Returns
WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.
Parameters

HWND: The hwnd of the edit control that will receive the output.
Returns

None.

Note
SetOutputWnd isthe only method that can be called prior to acall to I nitIDL.

VariableExists

This method determines if a specified variable is defined in IDL.
Parameters

BSTR: Name of variable to check.
Returns

BOOL:TRUE if variableisdefined in IDL at the main level. Falseif the variableis
not defined.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 131

Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress
This method callsthe IDL procedure specified in the OnButtonPress property.
Parameters
None.

Returns
None.
DoButtonRelease
This method callsthe IDL procedure specified in the OnButtonRelease property.
Parameters
None.
Returns
None.
DoExpose
This method calls the IDL procedure specified in the OnExpose property.
Parameters
None.
Returns

None.

External Development Guide Do Methods (Runtime Only)

132 Chapter 7: IDLDrawWidget Control Reference

DoMotion

This method callsthe IDL procedure specified in the OnM otion property.
Parameters

None.
Returns

None.

Do Methods (Runtime Only) External Development Guide

Chapter 7: IDLDrawWidget Control Reference 133

Properties

Properties are used to specify the various attributes of an | DL DrawWidget, such as
its color, width and height. Most properties may be set at design time by configuring
the properties sheet in Visual Basic, or a runtime by executing statements in the
program code.

The syntax for setting a property in the codeis:
object .property = value
where

* Object isthe name of the object you want to change, e.g. |DL DrawWidgetn
where nisthe number Visual Basic assigned to the I DL DrawWidget.

e Property isthe characteristic you want to change.
¢ Valueisthe new property setting.

Note
All properties relating to window size and/or position arein pixel units unless
otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. BackColor may be
specified at design time or runtime.

BaseName

This property names a variable that IDL will use for the pseudo base. If this property
isset, the IDL DrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not

destroy it. The BaseName property can be set at design time or at runtime prior to a
call to CreateDrawWidget.

Default=1DL DrawWidgetBase
Bufferld

The Bufferld controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

External Development Guide Properties

134 Chapter 7: IDLDrawWidget Control Reference

1. A valueof -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

A value of O will cause the graphicsto print at roughly two times the screen

resolution. Thisformat is suitable for shaded surfaces or vertex colored mesh
surfaces. Thisis the default.

3. A vaue greater then O will be construed a s an IDLgrBuffer object reference

whose datawill be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information, see “IDLgrBuffer” in the IDL Reference Guide manual.
Note

You must set the GRAPHICS_TREE property of the IDLgrwWindow object for
these print options to work.

DrawWidgetName

Returns or setsavariable that IDL will use for the draw widget. If this property is set,
the IDL DrawWidget will create an IDL variable with this name that containsthe ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to acall to CreateDrawWidget.

Default=1DL DrawWidget
Enabled

Returns or sets a value that determines whether aform or control can respond to user-
generated events such as mouse events.

Default=TRUE
GraphicsLevel (Runtime/Design time)

This property specifies the graphicslevel of the draw widget. Legal valuesare 1 or 2.
If you set the GraphicsL evel = 1 and call the CreateDrawWidget method, the
procedure will create an IDL direct graphics window. GraphicsL evel = 2 resultsin
an IDL object graphics window. The GraphicsL evel property can be set at design
time or at runtime prior to acall to CreateDrawWidget.

Default=1

Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 135

|dIPath

This property specifies the fully qualified path to the IDL32.DLL. The IdIPath
property can be set at design time or at runtime prior to acall to InitIDL or
SetOutputWnd.

Default=NULL
Renderer

This property specifies either the software or hardware renderer for object graphics
windows isto be used. It has no effect if the GraphicsLevel property isset to 1. Valid
values are:

¢ 0= Platform native OpenGL
e 1=IDL’s software implementation

By default, the setting in your IDL preferencesis used.
Retain (Runtime/Design time)

This property setsthe retain mode of the IDL DrawWidget: O, 1, or 2. The retain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifies that IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to acall to
CreateDrawWidget.

Default=1
Visible (Runtime/Design time)
Shows or hides the IDL DrawWidget. When Visibleis TRUE the IDLDrawWidget is

shown, when FAL SE the IDL DrawWidget is hidden. Hiding the IDLDrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended

for display.
Default=TRUE

Xsize (Design time)

Virtual width of | DL DrawWidget. If this value is greater than the Xviewport value,
scroll barswill be added.

External Development Guide Properties

136 Chapter 7: IDLDrawWidget Control Reference

Ysize (Design time)

Virtual height of IDL DrawWidget. If thisvalueis greater than the Yviewport value,
scroll barswill be added.

Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 137

Read Only Properties

Baseld (Runtime)

Widget ID of the pseudo base. The Basel d property is not valid until acall to
CreateDrawWidget has been made.

Drawld (Runtime)

Widget ID of the created draw widget. The Drawld property isnot vaid until acall
to CreateDrawWidget has been made.

hWnd (Runtime)

Window handle of the ActiveX control. The hwWnd property isnot valid until acall to
CreateDrawWidget has been made.

LastldIError (Runtime)

A string that containsthe last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Scroll

True if the widget will contain scroll bars.
Default=FALSE

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport

Set at design time when the control is dropped or moved. Represents the visible width
of the draw widget. If scroll bars are present Xviewport will include the width of the
scroll bars.

External Development Guide Read Only Properties

138 Chapter 7: IDLDrawWidget Control Reference

Yoffset

Set at design time when the control is dropped or moved. Represents the y offset of
the draw widget within the parent application.

Yviewport
Set at design time when the control is dropped or moved. Represents the visible

height of the draw widget. If scroll bars are present Yviewport will include the height
of the scroll bars.

Read Only Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 139

Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when a mouse button is pressed. The procedure
must bein the form:

pro button press, drawId, button, xPos, yPos

Default=NULL
OnButtonRelease

AnIDL procedure that will be called when a mouse button isreleased. The procedure
must be in the form:

pro button release, drawId, button, xPos, yPos

Default=NULL
OnDDbIClick

An IDL procedure that will be called when a mouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button dblclick, drawId, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid values
are:

» 1 — Left mouse button.
o 2 — Middle mouse button.
* 4 — Right mouse button.

xPos The horizontal position of the mouse when the button was clicked.

Table 7-6: OnDblClick Parameters

External Development Guide Auto Event Properties

140 Chapter 7: IDLDrawWidget Control Reference

Parameter Description

yPos The vertical position of the mouse when the button was clicked.

Table 7-6: OnDbIClick Parameters (Continued)
Default=NULL

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, drawlId

Default=NULL
Onlnit

An IDL procedure that will be called when adraw widget isinitially created. The
procedure must be in the form:

pro init, drawId, baseld

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

Default=NULL
OnMotion

An IDL procedure that will be called when the mouse is moved over the draw widget
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawId, button, xPos, yPos

Default=NULL

Note
Motion events may be generated continuously in response to certain operations in
IDL. Asaresult, if you provide an event-handler for mouse motion events, your
event handler should check the reported position of the mouse to determine whether
it hasin fact moved before doing extensive processing.

Auto Event Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 141

Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, | DL DrawWidget can respond to the following standard Visual Basic

events:
* MouseDown
* MouseMove
e MouseUp

OnViewScrolled

OnViewScrolled isan I DL DrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the
Scroll property is TRUE.

Note
You must call Register For Events passing the flags to indicate the events you want

to process. Neglecting this step will send the eventsto IDL for processing.

External Development Guide Events

142 Chapter 7: IDLDrawWidget Control Reference

Events External Development Guide

Chapter 8

Using Java Objects In

IDL

The following topics are covered in this chapter:

Overview of Using JavaObjects 144
Initializing the IDL-JavaBridge 147
IDL-Java Bridge Data Type Mapping 150
Creating IDL-JavaObjects 156

Method Callson IDL-JavaObjects 158
Managing |DL-Java Object Properties ... 160

External Development Guide

Destroying IDL-JavaObjects 162
Showing IDL-JavaOutput in IDL 163
The IDLJavaBridgeSession Object 164
JavaExceptions 166
IDL-JavaBridge Examples 169
Troubleshooting Your Bridge Session ... 187

143

144 Chapter 8: Using Java Objects in IDL

Overview of Using Java Objects

Javais an object-oriented programming language developed by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Javain detail. Numerous third-party
books and electronic resources are available. The Java website (http://java.sun.com)
may be useful.

The IDL-Java bridge allows you to access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. See “ Creating |DL-Java Objects’
on page 156 for more information. The IDL-Java bridge allows the arrow operator
(->) to be used to call the methods of these Java objects just as with other IDL
objects, see “Method Calls on IDL-Java Objects’ on page 158 for more information.
The public data members of a Java object are accessed through GetProperty and
SetProperty methods, see “Managing |DL-Java Object Properties’ on page 160 for
more information. These objects can also be destroyed with the OBJ DESTROY
routine, see “Destroying IDL-Java Objects’ on page 162 for more information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This
functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. Thisaccessis provided by the IDL JavaBridgeSession object, whichisa
Java object that maintains exceptions (errors) during a Java session, see “ The

IDL JavaBridgeSession Object” on page 164 for more information.

Note
Visua Java objects cannot be embedded into IDL widgets.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, IRIX
(32-bit), and Macintosh platforms supported in IDL. See “Requirements for This
Release” in Chapter 4 of the What's New in IDL 6.2 manual for more information.

Note
On Solaris, there are potential problems creating graphical windows from the IDL-
Java bridge using Java versions before 1.5. We recommend using the X Toolkit
option, which the IDL-Java bridge will use by default.

Overview of Using Java Objects External Development Guide

http://java.sun.com

Chapter 8: Using Java Objects in IDL 145

Java Terminology

You should become familiar with the following terms before trying to understand
how IDL works with Java objects:

Java Mirtual Machine (JVM) - A software execution engine for executing the byte
codes in Java class files on a microprocessor.

Java Native Interface (INI) - Standard programming interface for accessing Java
native methods and embedding the JVM into native applications. For example, NI
may be used to call C/C++ functionality from Java or JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An API by which one may embed the Java Virtual Machine
into your native application by linking the native application with the JVM shared
library.

Java Reflection API - Provides asmall, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

e construct new class instances and new arrays
e access and modify fields of objects and classes
¢ invoke methods on objects and classes

¢ access and modify elements of arrays.
IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (INI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ _NEW function can be used to create a Java abject. A Java-specific
classtoken identifies the Java class used to create a Java proxy object. IDL parsesthis
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Javaclassis aso
provided because Javaitself is case-sensitive while IDL isnot. IDL usesthe case-
insensitive form to create the object definition while Java uses the case-sensitive
form.

After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL abject, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.

External Development Guide Overview of Using Java Objects

146 Chapter 8: Using Java Objects in IDL

The OBJ_ DESTROY procedurein IDL isused to destroy the object. This process
releases the internal Java object and frees any resources associated with it.

Overview of Using Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 147

Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attempts to create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtua
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal | DL JavaBridgeSession object. See “ The IDL JavaBridgeSession Object” on
page 164 for more information on the session object.

Configuring the Bridge

The .idljavabrce fileon UNIX or id1javabrc on Windows contains the IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create a valid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If the environment variable IDLJAVAB_CONFIG is set, thefileit indicatesis
used.

Note
This environment variable must include both the path and the file name of

the configuration file.

2. If the environment variable IDLJAVAB_CONFIG is not set or thefile
indicated by that variableis not found in that location, the path specified in the
HOME environment variable is used to try to locate the configuration file.

3. If thefileisnot found in the path indicated by the HOME environment
variable, the<IDL_DEFAULT>/external/objbridge/java pathis used
to try to locate the configuration file.

The configuration file contains the following settings. With atext editor, open your
configuration file to verify these settings are correct for your system.

e ThegvM Classpath setting specifiesadditional locationsfor user classes. It
must point to the location of any class files to be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.

This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying '-classpath’ when running java or

External Development Guide Initializing the IDL-Java Bridge

148 Chapter 8: Using Java Objects in IDL

javac. You can also include the CLASSPATH environment variablein the
JVM Classpath!

JVM Classpath = $CLASSPATH:/home/johnd/myClasses.jar

which alows any class defined in the CLASSPATH environment variable to
be used in the IDL-Java bridge.

On Windows, an example of atypical JvM Classpath Settingis:
JVM Classpath = E:\myClasses.jar; SCLASSPATH

On UNIX, an example of atypical JvM Classpath Settingis:
JVM Classpath = /home/johnd/myClasses.jar:S$SCLASSPATH

* ThegvM LibLocation setting tellsthe Windows IDL-Java bridge which
JVM shared library within a given Java version to use. Various versions of
Java ship with different types of VM libraries. For example, Java 1.3 on
Windows shipswith a“classic” VM, a“hotspot” JVM, and a“server” VM.
Other versions and platforms have different VM types.

On Windows, an example of atypical JvM LibLocation Settingis:
JVM LibLocation = E:\jdkl.3.1 02\jre\bin\hotspot

On UNIX, you should not set JvM LibLocation in the configuration file.
Instead, set the IDLJAVAB_LIB_LOCATION environment variable for the
session that will use the IDL-Java bridge. The following is atypical command
to set the environment variable:

SETENV IDLJAVAB LIB LOCATION
/usr/java/j2rel.4.0_02/1lib/sparc/client

Note
You can also set the IDLJAVAB _LIB_LOCATION environment variable on
Windows platforms, rather than specifying the value in the configuration file.

Note
On Macintosh platforms, IDL is hard-coded to use the JavaVM 1.3.1, and so
the system ignores any value you placein IDLJAVAB_LIB_LOCATION.

* ThegvM Option# (Where # isany whole number) setting allows you to send
additional parametersto the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in theinitialization, the options are added to the end of the options
that the bridge sets by default.

Initializing the IDL-Java Bridge External Development Guide

Chapter 8: Using Java Objects in IDL 149

e TheLog Location setting indicates the directory where IDL-Java bridgelog
fileswill be created. The default location provided by the IDL installer is /tmp
on Unix and ¢ : \ temp on Windows.

* TheBridge Logging Setting indicates the type of bridge debug logging to be
sentto afilecalled jb_log<pids>.txt (Where <pid>isaprocess|D
number) located in the directory specified by the .og Location setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFIG,
CONFIGFINE. The default valueis SEVERE, which specifies that bridge errors
are logged. The conri1c value indicates the configuration settings are also
logged. The coNFIGFINE valueisthe same as CONFIG, but provides more
detail.

No log fileis created if this setting is set to OFF.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. Thefile is used when the first instance of the IDLjavaObject classis created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made
to thefile.

External Development Guide Initializing the IDL-Java Bridge

150

Chapter 8: Using Java Objects in IDL

IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts

variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Javalang.String String Java has the notion
of aNULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both areidentically
converted.

Arrays of the above types IDL array of the same

dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 8-1: Java to IDL Data Type Conversion

IDL-Java Bridge Data Type Mapping

External Development Guide

Chapter 8: Using Java Objects in IDL

151

Java Type (# bytes)

IDL Type

Notes

Java.lang.Object (or array of
javalang.Object) and any
subclass of java.lang.Object

IDL array of
primitives or IDL
array of
IDLjavaObjects

In Java, everythingis
asubclass of Object.
If the Java object is
an array of
primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in this table)
iscreated. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objectsto an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL createsan object
reference of the
IDLjavaObject class.

Null object

IDL Null object

Table 8-1: Java to IDL Data Type Conversion (Continued)

External Development Guide

IDL-Java Bridge Data Type Mapping

152 Chapter 8: Using Java Objects in IDL

The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes
Byte byte (1) IDL bytes range from 0 to 255,
Java bytes are-128 to 127. IDL
bytes converted to Java bytes

will retain their binary
representation but values greater
than 127 will change. For
example, BY TE(255) becomesa
Javabyteof -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from O to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
aJavashort of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 8-2: IDL to Java Data Type Conversion

IDL-Java Bridge Data Type Mapping External Development Guide

Chapter 8: Using Java Objects in IDL

153

IDL Type

Java Type (# bytes)

Notes

Unsigned long

int (4)

IDL unsigned longs range from
0to 4294967295, Javaints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Javaints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
aJavaint of -1. If ULONG is
converted to wider Javavalue,
the sign and value is preserved.

Long64

long (8)

Unsigned Long64

long (8)

IDL unsigned long64 range from
0 to 18446744073709551615,
Javaints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Javalongs will retain their
binary representation values
greater than
9223372036854775807 will
change. For example,

UL ONG64(1844674407370955
1615) becomes a Javalong of -1.

Float

float (4)

Double

double (8)

String

Java.lang.String

Arrays of the above
types

Java array of the same
dimensions and
corresponding type

Table 8-2: IDL to Java Data Type Conversion (Continued)

External Development Guide

IDL-Java Bridge Data Type Mapping

154 Chapter 8: Using Java Objects in IDL

IDL Type Java Type (# bytes) Notes
IDLjavaObject Object of corresponding
Javaclass

Arrays of objects Javaarray of the same Only objects of type
dimensions, consisting of | IDLjavaObject are converted.
corresponding Java proxy
objects

Null object Javanull

Table 8-2: IDL to Java Data Type Conversion (Continued)

When calling a Java method or constructor from IDL, the data parameters are
promoted as little as possible based on the signature of the given method. The
following table shows how data types are promoted within Javarelative to IDL.

Note
When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may be time intensive. Care
should be taken to minimize array copying.

Java Type (to order of

ke desired promotion) MO
Byte byte, char, short, int, long,
float, double, boolean
Integer short, int, long, float, double,
boolean
Unsigned integer short, int, long, float, double,
boolean
Long int, long, float, double, boolean
Unsigned Long int, long, float, double, boolean
Long64 long, float, double, boolean

Table 8-3: Java Data Type Promotion Relative to IDL

IDL-Java Bridge Data Type Mapping External Development Guide

Chapter 8: Using Java Objects in IDL 155

Java Type (to order of

desired promotion) NS

IDL Type

Unsigned Long64 | long, float, double, boolean

Float float, double
Double double
String Java.lang.String

IDLjavaObject Java.lang.Object

Table 8-3: Java Data Type Promotion Relative to IDL (Continued)

External Development Guide IDL-Java Bridge Data Type Mapping

156 Chapter 8: Using Java Objects in IDL

Creating IDL-Java Objects

Aswith all IDL objects, a Java object is created using the IDL OBJ_NEW function.
Keying off the provided Java class name, the underlying implementation uses the
IDL Java subsystem to call the constructor on the desired Java object. The following
line of code demonstrates the basic syntax for calling OBJ_NEW to create a Java
object within IDL:

oJava = OBJ _NEW(IDLjavaObject$JAVACLASSNAME, JavaClassName, $
[Argl, Arg2, ..., ArgN])

where JavacLASSNAME is the class name token used by IDL to create the object,
JavaClassName isthe class name used by Javato initialize the object, and Argl
through ArgN are any data parameters required by the constructor. See “ Java Class
Namesin IDL” for more information.

Example Code
Seethehellojava.pro fileinthe external/objbridge/java/examples
directory of the IDL distribution for a simple example of an IDL-Java object
creation.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge a so provides the ability to access static Java methods and data
members. See “ Java Static Access’ on page 157 for more information.

Java Class Names in IDL

The underlying Javainterpreter recognizes the Java class nameincluding all objects
contained within the Java interpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referredto asjava.lang.String.

Inthe IDL class name, the Java class separator (*.') should be replaced with an
underscore (). If aJava class of type String were created, the following IDL
OBJ NEW call would be used:

oJString = OBJ_ NEW ('IDLJavaObject$JAVA LANG STRING',$
'java.lang.String', 'My String')

Creating IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 157

The class name is provided twice because IDL is case-insensitive whereas Javais
case-sensitive, see “1DL-Java Bridge Architecture” on page 145 for more
information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object
lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUR,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a special wrapper object type for calling static methods. This DL
object wrapper references the underlying Java class, allowing the object to call static
methods on the class or allowing the object to use the Get/Set Property callsto access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ_NEW to create a static proxy within IDL:

oJava = OBJ NEW(IDLjavaObjects$Static$JAVACLASSNAME, JavaClassName)

where JAvAcLASNAME is the class name token used by IDL to create the object and
JavaClassName isthe class name used by Javato initialize the object. See“ Java
ClassNamesin IDL” on page 156 for more information.

A special static object would not need to be created to call an instantiated
IDLJavaObject With static methods:

oNotStatic = OBJ_NEW('IDLjavaObject$JAVACLASSNAME', $
'JavaClassName')
oNotStatic -> aStaticMethod ; this is OK
Example Code
Seethe javaprops.pro fileinthe external /objbridge/java/examples
directory of the IDL distribution for an example of working with static data
members.

Note
All restrictions on creating Java objects apply to this static object.

External Development Guide Creating IDL-Java Objects

158 Chapter 8: Using Java Objects in IDL

Method Calls on IDL-Java Objects

When amethod is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Javadatatypes. Any resultsarereturnedin
IDL variables of the appropriate type.

Aswith all IDL objects, the general syntax in IDL for an underlying Java method that
returns avalue (known as afunction method in IDL) is:

result = ObjRef -> Method ([Arguments])

and the general syntax in IDL for an underlying Java method that does not return a
value, avoid method, (known as a procedure method in IDL) is:

ObjRef -> Method [, Arguments]

where objRef isan object reference to an instance of a dynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call Is Made?

When amethod is called on an instance of IDLjavaObject, IDL uses the method
name and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the translation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java's ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an agorithm to match the IDL method name and parameters to the
corresponding Java object method.

Method Calls on IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 159

Beforethe algorithm starts, IDL provides a case-insensitive <METHODNAME> and
areference to the Java object. For a given object and its parent classes, the Java
bridge obtains alist of al the public method names, including static methods. This
algorithm performs the following steps:

1. If the Javaclass has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Java class has several method names that differ only in case and oneis
all uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge
issues an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion agorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Javais preferred and only
widening promotion is allowed. If no match isfound, an error is issued.

Data Type Conversions

IDL and Java use different datatypes. IDL’s dynamic type conversion facilities
handle al conversion of datatypes between IDL and the Java system. The datatype
mappings are described in “IDL-Java Bridge Data Type Mapping” on page 150.

For example, if the Java object has a method that requires a value of type int asan
input argument, IDL would supply the value as an IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal datatype
conversion mechanism before passing the value to the Java object asan int.

External Development Guide Method Calls on IDL-Java Objects

160 Chapter 8: Using Java Objects in IDL

Managing IDL-Java Object Properties

Property names and arguments are al so passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection APl to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) areidentified through arguments to the GetProperty and SetProperty
methods. See “ Getting and Setting Properties” on page 161 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the agorithm starts, IDL provides a case-insensitive <PROPERTY NAME>
and areference to the Java object. For the given object and its parent classes, the Java
bridge obtains alist of al the public data membersincluding static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTY NAME> (except for case insensitivity), this Java data member is
used. At this point, data types are not yet taken into account; this algorithm
only matches the data member names.

2. If the Javaclass has severa member names that differ only in case, the data
member name that exactly matches the IDL < PROPERTYNAME > (i.e. the
onethat isall caps) is caled. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTY NAME >.

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error isissued.

When retrieving a property with the GetProperty method, this step is skipped
and the valueisreturned to IDL.

Example Code
Seethe allprops.pro and publicmembers.pro filesinthe
external/objbridge/java/examples directory of the IDL distribution for
IDL routines that provide information about data members associated with given
Java classes.

Managing IDL-Java Object Properties External Development Guide

Chapter 8: Using Java Objects in IDL 161

Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:
ObjRef -> GetProperty, PROPERTY=variable

where objRref isan instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variable is
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:
ObjRef -> SetProperty, Property=value

where objRef isan instance of IDLjavaObject that encapsulates the Java abject,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property valuesin a single statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routinesis assumed to be afully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDLJavaObject, or an array of an IDL primitive type. See“IDL-Java Bridge Data
Type Mapping” on page 150 for more information.

Note
Besides other Java-based objects, no complex types (structures, pointers, etc.) are
supported as parameters to property calls.

External Development Guide Managing IDL-Java Object Properties

162 Chapter 8: Using Java Objects in IDL

Destroying IDL-Java Objects

The OBJ_DESTROY routine is used to destroy instances of |DLjavaObject. When
OBJ DESTROY is called with a Java-based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine's garbage
collector runs.

Destroying IDL-Java Objects External Development Guide

Chapter 8: Using Java Objects in IDL 163

Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the system.out and System.err
output streams).

For example, given the following Java code:

public class helloWorld

{

// ctor

public helloWorld() {
System.out.println("helloWorld ctor") ;

}

public void sayHello() {
System.out.println("Hello! (from the helloWorld object)");

}

}
The following output occursin IDL:

IDL> oJHello = OBJ NEW('IDLjavaObject$HelloWorld', 'helloWorld')

% helloWorld ctor

IDL> oJHello -> SayHello

% Hello! (from the helloWorld object)

IDL> OBJ DESTROY, oJHello

Example Code

This example code is also provided in thehelloJava.java and
hellojava2.pro files, which areinthe
external/objbridge/java/examples directory of the IDL distribution.

Note
Dueto restrictionsin IDL concerning receiving standard output from non-main
threads, the bridge will only send system.out and System.err information to
IDL from the main thread. Other threads' output will be ignored.

Note
A print () inJavawill not have a carriage return at the end of the line (as opposed
toprintiln (), which does). However, when outputting to Java both print () and
println () will print to IDL followed by a carriage return. You can change this
result by having the Java-side application buffer its data up into the lines you wish
to seeon the IDL-side.

External Development Guide Showing IDL-Java Output in IDL

164 Chapter 8: Using Java Objects in IDL

The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an IDL-Java bridge session object,
IDLJavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is aproxy to aninternal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an |DL JavaObject to this
object using OBJ NEW:

oJSession = OBJ_NEW('IDLjavaObject$IDLJAVABRIDGESESSION’)
Note

Only one Java session object needsto be created during an DL session. Subsequent
callsto this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

oJException = oJSession -> GetException()

where oJSession isareferenceto the session object and oJException iSaproxy
object to ajava.lang.Throwable object, which isthe class used in Javato
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDL JavaBridgeSession object also has the GetVersionObject method, which
retrieves the IDL JavaVersion object:

oJVersion = oJdSession -> GetVersionObject ()

where oJSession isareference to the session object and oJversion isaproxy
object to an IDL JavaVersion object. This object determines version information
about the IDL-Java bridge and the underlying Java system.

The IDLJavaBridgeSession Object External Development Guide

Chapter 8: Using Java Objects in IDL 165

The IDLJavaVersion abject provides the following function methods, which do not
require any arguments.

e GetBuildDate() - ajavalang.String object specifying the build date. For
example, apr 1 2003.

* GetJavaVersion() - ajavalang.String object specifying the Java version. For
example, 1.3.1_02.

e GetBridgeVersion() - ajava.lang.String object specifying the IDL-Java bridge
version.

Example Code
An example of the version object isprovided inthebridge version.profile,
whichisin IDL’'sexternal/objbridge/java/examples directory.

External Development Guide The IDLJavaBridgeSession Object

166 Chapter 8: Using Java Objects in IDL

Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an IDLjavaObject, caling methods, setting properties, or getting
properties. Typically, these errors will be fixed by changing your IDL or Java code
(or by changing the bridge configuration). Java bridge errors operate like other IDL
errorsin that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create ajava.lang.StringBuffer of negative length, a
java.lang.NegativeArraySizeException is issued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing a line number. In addition, a
mechanism is provided to grab the exception object (a subclass of
javalang.Throwable) via the session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handleit, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetExpection method to the
IDL JavaBridgeSession abject. See “ The | DL JavaBridgeSession Object” on page 164
for more information about this object.

Uncaught Exceptions

If aJavaexception isnot caught, IDL will stop execution and display an Exception
thrown error message. For example, when the following program is saved as
ExceptIssued.pro, compiled, and raninIDL:

PRO ExceptIssued

; This will throw a Java exception

oJStrBuffer = OBJ NEW($
'IDLJavaObject$java_lang StringBuffer', $
'java.lang.StringBuffer’, -2)

END

Java Exceptions External Development Guide

Chapter 8: Using Java Objects in IDL 167

IDL issues the following output:

IDL> ExceptIssued

Exception thrown

Execution halted at: EXCEPTISSUED 4 ExceptIssues.pro
SMAINS

o o

o°

From the IDL command line, you can then use the session object to help debug the
problem:

IDL> oJSession = OBJ NEW ('IDLJavaObject$IDLJAVABRIDGESESSION')
IDL> oJExc = oJSession -> GetException ()

IDL> oJExc -> PrintStackTrace

% java.lang.NegativeArraySizeException:

o

% at java.lang.StringBuffer.<inits (StringBuffer.java:116)

Example Code
A similar example is also provided in the exception.pro file, which isin the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept . pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept .pro fileis
also provided in the external /objbridge/java/examples directory of the
IDL distribution.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classes that you are using to ensure IDL is catching any expected exceptions.
For example:

PRO ExceptCaught

; Grab the special IDLJavaBridgeSession object
oJBridgeSession = OBJ_NEW ('IDLJavaObject$IDLJAVABRIDGESESSION')

bufferSize = -2
; Our Java constructor might throw an exception, so let’s catch it
CATCH, error_ status
IF (error status NE 0) THEN BEGIN
; Use session object to get our Exception
oJExc = oJBridgeSession -> GetException()
; should be of type
; IDLJAVAOBJECTS$JAVA LANG NEGATIVEARRAYSIZEEXCEPTION
HELP, oJExc
; Now we can access the members java.lang.Throwable
PRINT, 'Exception thrown:', oJExc -> ToString()
oJExc -> PrintStackTrace

External Development Guide Java Exceptions

168

Example Code

Chapter 8: Using Java Objects in IDL

; Cleanup
OBJ_DESTROY, oJExc
; Increase the buffer size to avoid the exception.
bufferSize = bufferSize + 100
ENDIF

; This throws a Java exception the 1st time, but pass the 2nd time.

oJStrBuffer = OBJ NEW('IDLJavaObject$java lang StringBuffer',6 $
'java.lang.StringBuffer', bufferSize)

OBJ_DESTROY, oJStrBuffer
OBJ_DESTROY, oJBridgeSession

END

A similar exampleisalso provided in the exception.pro file, which isin the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept .pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept .pro fileis
also provided inthe external/objbridge/java/examples directory of the
IDL distribution.

Java Exceptions

External Development Guide

Chapter 8: Using Java Objects in IDL 169

IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

e “Accessing Arrays Example”

e “Accessing URLs Example’ on page 172

e “Accessing Grayscale Images Example’ on page 174
e “Accessing RGB Images Example” on page 177

Note
If IDL isnot able to find any Java class associated with these examples, make sure
your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 147 for more information.

Accessing Arrays Example

This exampl e creates atwo-dimensional array within a Java class, which is contained
inafilenamed array2d.java. IDL then accesses this data through the ArrayDemo
routing, which isin afile named arraydemo . pro.

Example Code
Thesefilesarelocated in the external/objbridge/java/examples directory
of the IDL distribution.

The array2d. java file contains the following text for creating atwo-dimensional
array in Java:

public class array2d

{

short [] [] m as;
long[] [1] m aj;
// ctor

public array2d() ({
int SIZEl = 3;
int SIZE2 = 4;

// default ctor creates a fixed number of elements

m_as = new short [SIZEl] [SIZE2];
m _aj = new long[SIZE1l] [SIZE2];

External Development Guide IDL-Java Bridge Examples

170 Chapter 8: Using Java Objects in IDL

for (int i=0; i<SIZE1l; i++)
for (int j=0; j<SIZE2; j++) {
m_as[i] [j] = (short) (i*10+7j);
m_aj[i] []] (long) (i*10+7) ;

}

}

public void setShorts (short([][] _as) {
m as = _as;
}
public short[] [] getShorts() {return m as;}

public short getShortByIndex(int i, int j) {return m as[i] [§];}

public void setLongs (longl[] [] _aj) {
m_aj = _aj;
}
public longl[] [] getLongs() {return m_aj;}

public long getLongByIndex (int i, int j) {return m_aj[i] [j];}

}

The arraydemo . pro file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDemo

; The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. We can interrogate and
; change this array.

oJArr = OBJ_NEW('IDLJavaObject$ARRAY2D', 'array2d')

; First, let’s see what is in the short array at index
;o (2,3).
PRINT, 'array2d short(2, 3) ="', $

oJArr -> GetShortByIndex(2, 3), $

! (should be 23)’

; Now, let’s copy the entire array from Java to IDL.

shortArrIDL = oJArr -> GetShorts()

HELP, shortArrIDL

PRINT, 'shortArrIDLI[2, 3] = ', shortArrIDL[2, 3], S
! (should be 23)'!

; Let’s change this value...

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 171

shortArrIDL[2, 3] = 999
; ...and copy it back to Java...
oJArr -> SetShorts, shortArrIDL
; ...now its value should be different.
PRINT, 'array2d short(2, 3) ="', 8
oJArr -> GetShortByIndex(2, 3), ' (should be 999)'

; Let’s set our array to something different.
oJArr -> SetShorts, INDGEN (10, 8)

PRINT, 'array2d short(0, 0) = ', $

oJArr -> GetShortByIndex (0, 0), ' (should be 0)'
PRINT, 'array2d short(i, 0) = ', 8

oJArr -> GetShortByIndex(l, 0), ' (should be 1)
PRINT, 'array2d short(2, 0) = ', $

oJArr -> GetShortByIndex(2, 0), ' (should be 2)'
PRINT, 'array2d short(0, 1) ="', $

oJArr -> GetShortByIndex (0, 1), ' (should be 10)'

; Array2d has a setlLongs method, but b/c arrays do not
; (currently) promote, the first call to setLongs works
; but the second fails.

oJArr -> SetLongs, L64INDGEN (10, 8)

PRINT, 'array2d long(0, 1) = ', $
oJArr -> GetLongByIndex(0, 1), ' (should be 10)'
;PRINT, '(expecting an error on the next line...)'

;oJArr -> SetLongs, INDGEN (10, 8)

; Cleanup our object.
OBJ_DESTROY, oJArr

END

After saving and compiling the above files (array2d.java in Javaand
ArrayDemo.pro in IDL), update the jbexamples.jar filein the
external/objbridge/java directory with the new compiled class and run the
ArrayDemo routinein IDL. The routine should produce the following results:

array2d short (2, 3) = 23 (should be 23)
SHORTARRIDL INT = Array[3, 4]
shortArrIDL[2, 3] = 23 (should be 23)
array2d short (2, 3) = 999 (should be 999)
array2d short (0, 0) = 0 (should be 0)
array2d short (1, 0) = 1 (should be 1)
array2d short (2, 0) = 2 (should be 2)
array2d short (0, 1) = 10 (should be 10)
array2d long(0, 1) = 10 (should be 10)

External Development Guide IDL-Java Bridge Examples

172 Chapter 8: Using Java Objects in IDL

Accessing URLs Example

This example finds and reads a given URL, which is contained in afile named
URLReader . java. IDL then accessesthis data through the URL Read routine, which
isinafilenamed urlread.pro

Example Code
Thesefilesarelocated in the external/objbridge/java/examples directory
of the IDL distribution.

The URLReader . java file contains the following text for reading a given URL in
Java

import java.io.*;
import java.net.*;

public class URLReader

{

private ByteArrayOutputStream m buffer;

// LR R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEE SRS

!/

// Constructor. Create the reader

!/

// LR R RS SRS RS SRR SRR EEE SRS SRS RS SRS SRR SRR EEEEEEEESS

public URLReader ()
m_buffer = new ByteArrayOutputStream() ;
}

// LR R RS R S RS R RS R R SRR SR R R RS SR SRR RS E RS SRS SRR EEEEEE RS S

//
// readURL: read the data from the URL into our buffer

// returns: number of bytes read (0 if invalid URL)

// NOTE: reading a new URL clears out the previous data

//

// LR R R SRS S SRS SRS R SRR EEEEEEEE S EE SR SRR SRS EREEEEEEEEEEEE S

public int readURL(String sURL) {
URL url;
InputStream in = null;
m _buffer.reset(); // reset our holding buffer to 0 bytes
int total bytes = 0;

byte[] tempBuffer = new byte[4096];

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 173

try {
url = new URL (sURL) ;
in = url.openStream() ;

int bytes_read;

while ((bytes_read = in.read(tempBuffer)) !=
m_buffer.write (tempBuffer, 0, bytes read);
total bytes += bytes read;

-1) {

}

} catch (Exception e) ({
System.err.println ("Error reading URL: "+sURL) ;
total_bytes = 0;

} finally {
try {
in.close() ;

m _buffer.close() ;
} catch (Exception e) {}

return total bytes;

}

// LR R R R R SRR EEESE RS

//
// getData: return the array of bytes

//

// LR R R RS R R R R R R R R R R R R R RS SR SRR R SRR SRS SRR SRR EEEEEE RS S

public byte[] getData() {
return m buffer.toByteArray() ;

}

// LR R R S RS S R S R R R R R R R R R R R R RS SR SRR R SRR SRS SRR SRR EEEEEE RS S

//

// main: reads URL and reports # of byts reads
//

// Usage: java URLReader <URL>

//

// LR R R SRS R R RS R R R R SRR R R R RS SR SRS E SR SRS SRR SRR EREEEE RS S

public static void main(String[] args) {

if (args.length != 1)
System.err.println("Usage: URLReader <URL>") ;
else {

URLReader o = new URLReader () ;
int b = o.readURL(args[0]) ;
System.out.println ("bytes="+b) ;

External Development Guide IDL-Java Bridge Examples

174 Chapter 8: Using Java Objects in IDL

}

Theurlread.pro file contains the following text for inputting an URL asan IDL
string and then accessing its data within IDL:

FUNCTION URLRead, sURLName

; Create an URLReader.
oJURLReader = OBJ NEW('IDLjavaObject$URLReader', 'URLReader')

; Read the URL data into our Java-side buffer.
nBytes = oJURLReader -> ReadURL (sURLName)

;PRINT, 'Read ', nBytes, ' bytes'

; Pull the data into IDL.
byteArr = oJURLReader -> GetData()

; Cleanup Java object.
OBJ DESTROY, oJURLReader

; Return the data.
RETURN, byteArr

END

After saving and compiling the above files (URLReader . java in Javaand
urlread.pro inIDL), you can run the URLRead routinein IDL. Thisroutineis a
function with one input argument, which should be aIDL string containing an URL.
For example:

address = 'http://www.RSInc.com'
data = URLRead (address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, which is
contained in afile named GreyBandsImage. java. IDL then accesses this data
through the ShowGreylmage routine, which isin the showgreyimage . pro file.

Example Code
Thesefiles arelocated inthe external/ocbjbridge/java/examples directory
of the IDL distribution.

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 175

ThecreyBandsImage . java file containsthe following text for creating agrayscale
image in Java:

import java.awt.*;
import java.awt.image.*;

public class GreyBandsImage extends BufferedImage
{

// Members

private int m_height;

private int m width;

//
// ctor
//
public GreyBandsImage () {
super (100, 100, BufferedImage.TYPE INT ARGB) ;
generateImage () ;
m_height = 100;
m width = 100;

}
//

// private method to generate the image
//
private void generateImage () {
Color c;
int width = getWidth();
int height = getHeight () ;
WritableRaster raster = getRaster();
ColorModel model = getColorModel () ;

int BAND PIXEL WIDTH = 5;

int nBands = width/BAND PIXEL WIDTH;

int greyDelta = 255 / nBands;

for (int i=0 ; i < nBands; i++) {
¢ = new Color (i*greyDelta, i*greyDelta, i*greyDelta) ;
int argb = c.getRGB() ;
Object colorData = model.getDataElements (argb, null);

for (int j=0; j < height; j++)

for (int k=0; k < BAND PIXEL WIDTH; k++)
raster.setDataElements (j, (i*5)+k, colorData);

External Development Guide IDL-Java Bridge Examples

176 Chapter 8: Using Java Objects in IDL

//

// mutators

//

public int[] getRawData() {
Raster oRaster = getRaster();
Rectangle oBounds = oRaster.getBounds() ;
int [] data = new int[m height * m width * 4];

data = oRaster.getPixels(0,0,100,100, data);
return data;

}
public int getH() {return m height; }
public int getW() {return m width; }

}
The showgreyimage . pro file contains the following text for accessing the
grayscale image within IDL:

PRO ShowGreyImage

; Construct the GreyBandImage in Java. This is a sub-class of

; BufferedImage. It is actually a 4 band image that happens to
display bands in greyscale. It is 100x100 pixels.

oGrey = OBJ NEW('IDLjavaObject$GreyBandsImage', 'GreyBandsImage')

; Get the 4 byte pixel wvalues.
data = oGrey -> GetRawData ()

; Get the height and width.
h = oGrey -> GetH()

w = oGrey -> GetW()

; Display the graphic in an IDL window
WINDOW, 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; Cleanup
OBJ_DESTROY, oGrey

END

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 177

After saving and compiling the abovefiles (GreyBandsImage.java in Javaand
showgreyimage.pro in IDL), you can run the ShowGreylmage routinein IDL.
The routine should produce the following image:

Figure 8-1: Java Grayscale Image Example

Accessing RGB Images Example

This example imports an RGB (red, green, and blue) image from the IDL distribution
into aJavaclass. Theimageisintheglowing gas.jpg file, whichisin the
examples/data directory of the IDL distribution. The Java class also displays the
image in a Java Swing user-interface. Then, theimageis accessed into IDL and
displayed with the new ilmage tool.

Example Code
The Javaand IDL code for this example is provided in the
external/objbridge/java/examples directory, but the Java code has not
been built as part of the jbexamples.jar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note
Dueto a Javabug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

External Development Guide IDL-Java Bridge Examples

178

Chapter 8: Using Java Objects in IDL

Thefirst and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the glowing gas. jpg file. Copy and paste the
following text into afile, then save it as FrameTest . java:

import java.awt.*;

import java.awt.image.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.File;

public class FrameTest extends JFrame {

RSIImageArea c_imgArea;
int m xsize;
int m_ysize;

IDL-Java Bridge Examples

Box c_controlBox;
public FrameTest ()

super ("This is a JAVA Swing Program called from IDL") ;
// Dispose the frame when the sys close is hit
setDefaultCloseOperation (DISPOSE ON CLOSE) ;

m xsize = 350;

m ysize = 371;

buildGUI () ;

}
public void buildGUI ()
c_controlBox = Box.createVerticalBox() ;

JLabel 11 = new JLabel ("Example Java/IDL Interaction") ;
JButton bLoadFile = new JButton("Load new file");
bLoadFile.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
JFileChooser chooser = new JFileChooser (new
File ("c:\\RSI\\IDL62\\EXAMPLES\\DATA")) ;
chooser.setDialogTitle ("Enter a JPEG file");
if (chooser.showOpenDialog (FrameTest.this) ==
JFileChooser.APPROVE_OPTION)

java.io.File fname = chooser.getSelectedFile() ;
String filename = fname.getPath() ;
System.out.println(filename) ;
c_imgArea.setImageFile(filename) ;

}
}

External Development Guide

Chapter 8: Using Java Objects in IDL 179

s

JButton bl = new JButton("Close this example");

bl.addActionListener (new ActionListener () {

public void actionPerformed (ActionEvent e) {
dispose() ;

P

c_imgArea = new
RSIImageArea ("c:\\rsi\\idle2\\examples\\data\\glowing gas.jpg",
new Dimension(m xsize,m ysize));

Box mainBox = Box.createVerticalBox () ;
Box rowBox = Box.createHorizontalBox() ;
rowBox.add (bl) ;

rowBox.add (bLoadFile) ;

c_controlBox.add (11) ;
c_controlBox.add (rowBox) ;
mainBox.add (c_controlBox) ;
mainBox.add (c_imgArea) ;

getContentPane () .add (mainBox) ;

pack() ;
setVisible (true) ;
c_imgArea.displayImage () ;
c_imgArea.addResizelistener (new RSIImageAreaResizeListener () {
public void areaResized(int newx, int newy) {
Dimension cdim = c_controlBox.getSize (null) ;
Insets 1 = getInsets();
newx = i.left + i.right + newx;
newy = i.top + cdim.height + newy + i.bottom;
setSize (new Dimension (newx, newy)) ;

)
}

public void setImageData(int [] imgData, int xsize, int ysize) ({
MemoryImageSource ims = new MemoryImageSource (xsize, ysize,
imgData, 0, ysize);
Image imgtmp = createImage (ims) ;
Graphics g = c_imgArea.getGraphics() ;
g.drawImage (imgtmp, 0, 0, null);

External Development Guide IDL-Java Bridge Examples

180 Chapter 8: Using Java Objects in IDL

public void setImageData (byte [][][] imgData, int xsize,
int ysize) ({

System.out.println("SIZE = "+xsize+"x"+ysize);
int newArray [] = new int [xsize*ysize];

int pixi = 0;

int curpix = 0;

short [] currgb = new short[3];
for (int i=0;i<m xsize;i++) {
for (int j=0;j<m ysize;j++) {
for (int k=0;k<3;k++) {
currgb[k] = (short) imgDatal[k] [1] []j];
currgb[k] = (currgblk] < 128) ? (short) currgblk] : (short)
(currgb [k] -256) ;
}

curpix = (int) currgb[0] * +
((int) currgb[l] * (int) Math.pow(2,8)) +
((int) currgb([2] * (int) Math.pow(2,16));

if (pixi % 1000 == 0)
System.out.println("PIXI = "+pixi+" "+curpix) ;
newArray [pixi++] = curpix;

}
}

MemoryImageSource ims = new MemoryImageSource (xsize, ysize,
newArray, 0, ysize);
c_imgArea.setImageObj (c_imgArea.createImage (ims)) ;

}

public bytel] []1[] getImageData ()
{

int width = 1;

int height = 1;

PixelGrabber pGrab;

width = m xsize;
height = m_ysize;

// pixarray for the grab - 3D bytearray for display

int [] pixarray = new int[width*height];
byte []1[][] bytearray = new byte[3] [width] [height];

// create a pixel grabber
pGrab = new PixelGrabber (c_imgArea.getImageObj(),0,0,

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 181

width,height, pixarray, 0, width);

// grab the pixels from the image

try {

boolean b = pGrab.grabPixels() ;

} catch (InterruptedException e)
System.err.println("pixel grab interrupted");
return bytearray;

}

// break down the 32-bit integers from the grab into 8-bit bytes
// and fill the return 3D array
int pixi = 0;
int curpix = 0;
for (int j=0;j<m _ysize;j++) {
for (int i=0;i<m xsize;i++) {
curpix = pixarrayl[pixi++];

bytearray[0] [i] [J] = (byte) ((curpix >> 16) & O0xff);
bytearray[1] [i] [J] = (byte) ((curpix >> 8) & O0xff);
bytearray[2] [i] [J] = (byte) ((curpix) & Oxff);

}
}

return bytearray;

}

public static void main(String [] args) {
FrameTest f = new FrameTest () ;

}
}

Note
The above text isfor the FrameTest class that accessesthe glowing gas.jpg file
inthe examples/data directory of adefault installation of IDL on a Windows
system. Thefile'slocation is specified as ¢: \\RSI\\IDL62\ \EXAMPLES\ \DATA
in the abovetext. If theglowing gas.jpg fileisnot in the same location on
system, edit the text to change the location of thisfile to match your system.

External Development Guide IDL-Java Bridge Examples

182 Chapter 8: Using Java Objects in IDL

The FrameTest class uses two other user-defined classes, RSlImageArea and
RSIImageAreaResi zeL istener. These classes help to define the viewing area and
display theimagein Java. Copy and paste the following text into afile, then saveit as
RSIImageArea.java.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;
import java.io.File;

public class RSIImageArea extends JComponent implements
MouseMotionListener, MouselListener {

Image c_img;

int m _boxw = 100;

int m _boxh = 100;

Dimension c_dim;

boolean m _pressed = false;

int m_button = 0;

Vector c_resizelisteners = null;

public RSIImageArea (String imgFile, Dimension dim) {

c_img = getToolkit () .getImage (imgFile) ;
c_dim = dim;

setPreferredSize (dim) ;

setSize (dim) ;
addMouseMotionListener (this) ;
addMouseListener (this) ;

}

public void addResizelListener (RSIImageAreaResizeListener 1) {
if (c_resizelisteners == null) c resizelisteners = new Vector();
if (! c_resizelisteners.contains(l)) c_resizelisteners.add(l);
}
public void removeResizeListener (RSIImageAreaResizeListener 1)
if (c_resizelisteners == null) return;
if (c_resizelisteners.contains(l)) c_resizelisteners.remove(l) ;

}

public void displayImage () {
repaint () ;

}

public void paint (Graphics g) {

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 183

int xsize = c¢_img.getWidth(null) ;
int ysize = c¢_img.getHeight (null) ;
if (xsize != -1 && ysize != -1) {
if (xsize != c_dim.width || ysize != c_dim.height) ({
c_dim.width = xsize;
c_dim.height = ysize;
setPreferredSize (c_dim) ;
setSize(c_dim) ;
if (c_resizelisteners != null) {
RSIImageAreaResizelListener 1 = null;
for (int j=0;j<c_resizelisteners.size();j++) {
1 = (RSIImageAreaResizeListener)
c_resizelisteners.elementAt (j) ;
1l.areaResized(xsize, ysize);
}
}
}
}
g.drawImage (c_img, 0, 0, null);

}

public void setImageFile (String fileName)
c_img = null;
c_img = getToolkit () .getImage (fileName) ;
repaint () ;

}

public Image getImageObj () {
return c_img;

}

public void setImageObj (Image img) {
c_img = img;
repaint () ;

}

public void drawZoomBox (MouseEvent e)

int bx = e.getX() - m _boxw/2;
bx = (bx >=0) ? bx :0;
int by = e.getY() - m boxh/2;

by = (by >=0) ? by :0;
int ex = bx + m_boxw;

if (ex > c_dim.width)
ex = c_dim.width;

bx = ¢ _dim.width-m boxw;
}

int ey = by + m_boxh;

if (ey > c_dim.height) {

External Development Guide IDL-Java Bridge Examples

184 Chapter 8: Using Java Objects in IDL

ey = c_dim.height;
by = c¢_dim.height-m boxh;

}

repaint () ;

Graphics g = getGraphics() ;

g.drawImage (c_img, bx, by, ex, ey, bx+(m boxw/4), by+(m boxh/4),
ex- (m_boxw/4) ,ey- (m boxh/4), null);

g.setColor (Color.white) ;

g.drawRect (bx, by, m boxw, m boxh) ;

}

public void mouseDragged (MouseEvent e) {
drawZoomBox (e) ;

}

public void mouseMoved (MouseEvent e) {

Graphics g = getGraphics() ;

if (m_pressed && (m button == 1)) {
drawZoomBox (e) ;

g.setColor (Color.white) ;
g.drawString ("DRAG", 10,10) ;

} else {

g.setColor (Color.white) ;

String s = "("+e.getX()+","+e.getY()+")";
repaint () ;
g.drawString (s, e.getX(), e.getY());

}
}

public void mouseClicked (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}

public void mousePressed (MouseEvent e) {
m pressed = true;

m _button = e.getButton() ;

repaint () ;

if (m_button == 1) drawZoomBox(e) ;

}

public void mouseReleased (MouseEvent e)
m_pressed = false;
m _button = 0;

}

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 185

}

And copy and paste the following text into afile, then saveit as
RSIImageAreaResizelListener.java:

public interface RSIImageAreaResizeListener ({
public void areaResized (int newx, int newy) ;

}

Compile these classes in Java. Then either update the jbexamples.jar filein the
external/objbridge/java directory with the new compiled class, place the
resulting compiled classesin your Java class path, or edit the VM Classpath setting
in the IDL-Java bridge configuration file to specify the location (path) of these
compiled classes. See “ Configuring the Bridge” on page 147 for more information.

With the Java classes compiled, you can now accessthemin IDL. Copy and paste the
following text into the IDL Editor window, then save it as ImageFromJava. pro:
PRO ImageFromJava

; Create a Swing Java object and have it load image data
; into IDL.

; Create the Java object first.
oJSwing = OBJ NEW('IDLjavaObject$FrameTest', 'FrameTest')

; Get the image from the Java object.
image = oJSwing -> GetImageData ()
PRINT, 'Loaded Image Information:'
HELP, image

; Delete the Java object.
OBJ_DESTROY, oJSwing

; Interactively display the image.
IIMAGE, image

END

External Development Guide IDL-Java Bridge Examples

186 Chapter 8: Using Java Objects in IDL

After compiling the above routine, you can run it in IDL. This routine produces the
following Java Swing application.

Figure 8-2: Java Swing Application Example

Then, the routine produces the following ilmage tool.

E P
Dl@E@] o+ |=|e fo=s W lal o] AlNslolsle|

300

200 |7

ek 10 et . ek and kgt

Figure 8-3: ilmage Tool from Java Swing Example

Note

After IDL starts the Java Swing application, the two displays are independent of
each other. If anew image isloaded into the Java application, the IDL ilmage tool

is not updated. If the ilmage tool modifies the existing image or opens a new image,
the Java Swing application is not updated.

IDL-Java Bridge Examples External Development Guide

Chapter 8: Using Java Objects in IDL 187

Troubleshooting Your Bridge Session

The IDL-Java bridge provides error messages for specific types of operations. These
messages can be used to determine when these errors occur, how these errors happen,
and what solutions can be applied. The following sections pertain to these error
messages and their possible solutions for each type of operation:

e “Cadling System.exit”

e “Errors When Initializing the Bridge’

e “Errors When Creating Objects’ on page 188

e “Errors When Calling Methods’ on page 189

e “Errors When Accessing Data Members’ on page 190

Calling System.exit

The Javamethod System. exit terminates the process in which the Java Virtual
Machineis running. When the Java Virtual Machineisinitialized by IDL,
terminating its process also terminates I DL.

Errors When Initializing the Bridge

The IDL-Java bridge initializes when the first Java object in IDL is created. If the
bridgeis not configured correctly, an error message isissued and the IDL stops. The
following errors occur because the IDL-Java bridge cannot find the Java Virtual
Machine on your system. On UNIX, check the IDLJAVAB_LIB_L OCATION
environment variable, and on Windows, check the IDLJAVAB_LIB_LOCATION
environment variable. If this environment variable does not exist on your system,
create it and set it equal to the location of the Java Virtual Machine on your system.
See " Configuring the Bridge” on page 147 for details:

* Bad JVM Home value: 'path', where path isthelocation of Java Virtual
Machine on your system.

e JVMsharedlib not found in path 'JVM LibLocation', where JVM
shared lib isthe location of the Java Virtual Machine shared library and JVM
LibLocation is the value of the IDLJAVAB_LIB_LOCATION environment
variable.

e No valid JVM shared library exists at location pointed to
by $ IDLJAVAB LIB LOCATION

External Development Guide Troubleshooting Your Bridge Session

188

Chapter 8: Using Java Objects in IDL

idljavab.jar not found in path 'path', where pathisthelocation of
the external/objbridge/java directory inthe IDL distribution.

Bridge cannot determine which JVM to run
Java virtual machine failed to start

Failure loading JVM: path/JvM shared 1ib name, Where pathisthe
location of the Java Virtual Machine and JVM shared lib name is the name of
the main Java shared library, which isusually 1ibjvm.so on UNIX and
jvm.d11 on Windows.

If IDL catches an error and continues, subsequent attempts to call the bridge will
generate the following message:

IDL-Java bridge is not running

If this message occurs, fix the error and restart IDL.

Errors When Creating Objects

Thefollowing error messages can occur while creating a Javaobject in IDL. Possible
solutions for these errors are al so provided:

Wrong number of parameters - occursif OBJ NEW does not have 2 or
more parameters. Make sure you are specifying the class name twice; oncein
uppercase with periods replaced by underscores for IDL, and another with
periods for Java. See “Java Class Namesin IDL” on page 156 for details.

Second parameter must be the Java class name - occursif 2nd
parameter isnot an IDL string. When using OBJ_NEW, make sure the Java
class name parameter is an IDL string. In other words, the class name has a
single quote mark before and after it. See“ Java Class Namesin IDL” on
page 156 for details.

Class classname not found, Where classname isthe class name you
specified in the first two parameters to OBJ NEW - occursif the IDL-Java
bridge cannot find the class name specified. Check the spelling of each class
name parameter and make sure the class name specified for IDL isreferring to
the same type of object specified for the Java class name. If the parameters are
correct, check the Classpath setting in the IDL-Java bridge configuration file.
Make sure the Classpath is set to the correct path for the class files containing
the classname class. See “ Configuring the Bridge” on page 147 for details.

Class classname is not a public class, whereclassnameisthe class
name you specified in the first two parametersto OBJ NEW - occursif

Troubleshooting Your Bridge Session External Development Guide

Chapter 8: Using Java Objects in IDL 189

specified classisnot apublic class. Edit your Java code to make sure the class
you want to accessis public.

Constructor class: :class(signature) not found, whereclassistheclass
name - occursif the IDL-Java bridge cannot find the class constructor with the
given parameters. Check the spelling of the specified parameters and look in
your Java code to seeif you are specifying the correct arguments for the class
you are trying to create. Also check to ensure your IDL data can be promoted
to the data typesin the Java signature. See “ Java Class Namesin IDL” on
page 156 for details.

Illegal IDL value in parameter N, wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structureis not allowed as a parameter to an IDLjavaObject.

Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the

I DL JavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 164 for details.

Errors When Calling Methods

Thefollowing error messages can occur while calling methodsto Javaobjectsin IDL.
Possible solutions for these errors are a so provided:

Illegal IDL value in parameter N, wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structure are not allowed as a parameter to an IDLjavaObject.

Class class has no method named method, where classisthe class name
and method is the method name specified when trying to call the Java method -
occursif the method of given name does not exist. Check the spelling of the
method name. Also compare the method name in the Java class source file with
the method name provided when calling the method in IDL. See “What
Happens When aMethod Call Is Made?’ on page 158 for details.

class: : method (signature) is a void method. Must be called as a
procedure, Where classis the class name and method is the method name
specified when avoid Java method is called as an IDL function. Change the
syntax of the method call. See “Method Calls on IDL-Java Objects’ on

page 158 for details.

Method class: : method (signature) not found, where classisthe class
name and method is the method name specified when trying to call the Java
method - occursif the IDL-Java bridge cannot find the method with a matching

External Development Guide Troubleshooting Your Bridge Session

190 Chapter 8: Using Java Objects in IDL

signature. Check the spelling of the method name. Also compare the method
name in the Java class source file with the method name provided when calling
the method in IDL. Also check to ensure your IDL data can be promoted to the
Java signature. See “What Happens When a Method Call Is Made?’ on

page 158 for details.

e Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 164 for details.

Errors When Accessing Data Members

The following error messages can occur while accessing data membersto Java
objectsin IDL. Possible solutions for these errors are al so provided:

e TIllegal IDL value in parameter N, wheren isthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structureis not allowed as a parameter to an IDLjavaObject.

e Class Class has no data member named property, whereclassisthe
class name and property is the data member name specified when trying to
access the Java data member - occurs if the data member of the given name
does not exist. Check the spelling of the property name. Also compare the data
member name in the Java class source file with the property name provided
when accessing itin IDL. See “Managing | DL-Java Object Properties’ on
page 160 for details.

e Property class::property of type type not found, whereclassisthe
class name, property is the data member name specified, and typeis property’s
data type when trying to access the Java data member - occursif the IDL-Java
bridge cannot find the Java data member of the given type. Check the data type
of Java datamember and make sure you are trying to use asimilar typein IDL.
See “Getting and Setting Properties’ on page 161 for details.

e Exception thrown - occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDL JavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 164 for details.

Troubleshooting Your Bridge Session External Development Guide

Chapter 9

Using

CALL_EXTERNAL

This chapter discusses the following topics:

The CALL_EXTERNAL Function 192
Passing Parameters 202
Using AutoGlue 204
BasicCExamples 206
Wrapper Routines 210

External Development Guide

Passing StringData 212
Passing ArrayData.................. 216
Passing Structures 218
FortranExamples 220

191

192 Chapter 9: Using CALL_EXTERNAL

The CALL _EXTERNAL Function

IDL allows you to integrate programs written in other languages with your IDL code,
either by calling a compiled function from an IDL program or by linking a compiled
function into IDL’s internal system routine table:

¢ TheCALL_EXTERNAL function allowsyou to call external functions
(written in C/C++ or Fortran, for example) from your IDL programs. You
should be comfortable writing and building programs in the external language
being used, but significant knowledge of IDL’s internals beyond basic type
mapping between the languages is generally not necessary.

¢ Anadternativeto CALL_EXTERNAL isto write an IDL system routine and
merge it with IDL at runtime. Routines merged in this fashion are added to
IDL’'sinternal system routine table and are available in the same manner as
IDL built-in routines. This technique is discussed in Chapter 21, “Adding
System Routines’. To write a system routine, you will need to understand the
IDL internals discussed in later sections of this book.

This chapter covers the basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX and Windows versions of IDL. It
can be helpful to refer to the documentation for “CALL_EXTERNAL” inthe IDL
Reference Guide manual when reading this material.

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. Arguments passed to IDL are passed to this external code, and
returned data from the external code is automatically presented as the result from
CALL_EXTERNAL asan IDL variable. IDL and the called routine share the same
process address space. Because of this, CALL_EXTERNAL avoids the overhead of
process creation of the SPAWN routine. In addition, the shareable object library is
only loaded the first time it is referenced, saving overhead on subsequent calls.

CALL_EXTERNAL is much easier to use than writing a system routine. Unlike a
system routine, however, CALL_EXTERNAL does not check the type or number of
parameters. Programming errors in the external routine are likely to result in
corrupted data (either in the routine or in IDL) or to cause IDL to crash. See
“Common CALL_EXTERNAL Pitfalls” on page 199 for help in avoiding some of
the more common mistakes.

Example Code in the IDL Distribution

This chapter contains examples of CALL_EXTERNAL use. All of the code for these
examples, along with additional examples, can befoundinthe call external

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 193

subdirectory of the external directory of the IDL distribution. The C language
examples use the MAKE_DLL procedure, and can therefore be easily run on any
platform supported by IDL. To build the sharable library containing the external C
code and then run all of the provided examples, execute the following IDL

statements:
PUSHD, FILEPATH('’, SUBDIRECTORY=['external’,’call external’,’'C’'])
ALL CALLEXT EXAMPLES
POPD

Additional information on these examples, including details on running the
individual examples, can be found in the README file located in that directory.

CALL_EXTERNAL Compared to UNIX Child Process

In many situations, a UNIX IDL user has a choice of using the SPAWN procedure to
start a child process that executes external code and communicates with IDL viaa
pipe connecting the two processes. The advantages of this approach are:

* Simplicity.

e The processes do not share address space, and are therefore protected from
each other’s mistakes.

The advantages of CALL_EXTERNAL are;

« IDL and the called routine share the same memory and data space. Although
this can be a disadvantage (as noted above) there are times where sharing
address space is advantageous. For example, large data can be easily and
cheaply shared in this manner.

e CALL_EXTERNAL avoids the overhead of process creation and parameter
passing.

¢ The shareable object library containing the called routine is only loaded the
first timeit is referenced, whereas a SPAWNed process must be created for
each use of the external code.

Compilation and Linking of External Code

Each operating system requires different compilation and link statements for
producing a shareable object suitable for usage with CALL_EXTERNAL. Thisis
even true between different implementations of a common operating system family.
For example, most UNIX systems require unigue options despite their shared
heritage. You must consult your system and compiler documentation to find the
appropriate options for your system.

External Development Guide The CALL_EXTERNAL Function

194

Chapter 9: Using CALL_EXTERNAL

The DL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
a portable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can completely
handle the task of building sharable libraries to be used with CALL_EXTERNAL.
MAKE_DLL requiresthat you have a C compiler installed on your system that is
compatible with the compiler described by the IDL MAKE_DLL system variable.

The DL 'MAKE_DLL system variable is used by the MAKE_DLL procedure to
construct C compiler and linker commands appropriate for the target platform. If you
do not use MAKE_DLL to compile and link your code, you may find the contents of
IMAKE_DLL.CC and 'MAKE_DLL.LD helpful in determining which options to
specify to your compiler and linker, in conjunction with your system and compiler
documentation. For the C language, the optionsin IMAKE_DLL should be very
close to what you need. For other languages, the 'MAKE_DL L options should be
helpful in determining which options to use, as on most systems, all the language
compilers accept similar options.

AUTO_GLUE

As described in “Passing Parameters’ on page 202, CALL_EXTERNAL usesthe
IDL Portable Calling Convention to call external code. This convention uses an
(argc, argv) styleinterface to allow CALL_EXTERNAL to call routines with
arbitrary numbers and types of arguments. Such an interface is necessary, because
IDL, like any compiled program, cannot generate arbitrary function calls at runtime.

Of course, most C functions are not written to the IDL portable convention. Rather,
they are written using the natural form of argument passing used in compiled
programs. It is therefore common for IDL programmersto write so-called glue
functionsto match the IDL calling interface to that of the target function. On systems
that have a C compiler installed that is compatible with the one described by the IDL
IMAKE_DLL system variable, the AUTO_GLUE keyword to CALL_EXTERNAL
can be used to instruct IDL to automatically write, compile, and load this glue code
on demand, and using a cache to preserve this glue code for future invocations of
functions with the same interface.

AUTO_GLUE thusalows CALL_EXTERNAL to call functions with a natural
interface, without requiring the user to write or compile additional code.
AUTO_GLUE isdescribed in the documentation for “CALL_EXTERNAL” in the
IDL Reference Guide manual, aswell asin “Using Auto Glue” on page 204. The
examples given in “Basic C Examples’ on page 206 show CALL_EXTERNAL used
with and without AUTO_GLUE.

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 195

Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using IDL_M essage(). Performing input/output from
code external to IDL, especially to the user console or tty (e.g. stdin Or stdout),
may generate unexpected results.

Memory Cleanup

IDL hasastrict internal policy that it never performs memory cleanup on memory
that it did not allocate. This policy is necessary so that external code which alocates
memory can use any memory allocation package it desires, and so that thereis no
confusion about which code is responsible for releasing allocated memory.

Note
The code that allocates memory is always responsible for freeing it. IDL allocates
and frees memory for itsinternal needs, and external codeis not allowed to release
such memory except through a proper IDL function documented for that purpose.
Similarly, IDL will never intentionally free memory that it did not allocate.

Assuch, IDL does not perform any memory cleanup calls on the values returned
from external code called viathe CALL_EXTERNAL routine. Because of this, any
dynamic memory returned to IDL will not be returned to the system, which will result
in amemory leak. Users should be aware of this behavior and design their
CALL_EXTERNAL routinesin such amanner as not to return dynamically allocated
memory to IDL. The discussion in “Passing String Data’ on page 212 contains an
example of doing this with strings.

Memory Access

IDL and your external code share the same address space within the same running
program. This means that mistakes common in compiled languages, such as awild
pointer altering memory that it does not own, can cause problems elsewhere. In
particular, external code can easily corrupt IDL’s data structures and otherwise cause
IDL to fail. Authors of such code must be especially careful to guard against such
errors.

Argument Data Types

When using CALL_EXTERNAL to call external code, IDL passes its argumentsto
the called code using the data types that were passed to it. It has no way to verify

External Development Guide The CALL_EXTERNAL Function

196 Chapter 9: Using CALL_EXTERNAL

independently that these types are the actual types expected by the external routine. If
the data types passed are not of the types expected by the external code, the results
are undefined, and can easily include memory corruption or even crashing of the IDL
program.

Warning
You must ensure that the arguments passed to external code are of the exact type
expected by that routine. Failure to do so will result in undefined behavior.

Mapping IDL Data Types to External Language Types

When writing external code for use with CALL_EXTERNAL, your code must use
data types that are compatible with the C data types used internaly by IDL to
represent the IDL datatypes. Thismapping isthetopic of Chapter 11, “IDL Internals:
Types'.

By-Value and By-Reference Arguments

There are two basic forms in which arguments can be passed between functionsin
compiled languages such as C/C++ and Fortran. To use CALL_EXTERNAL
successfully, you should be comfortable with these terms and their meanings. In
particular, Fortran programmers are often unaware that Fortran code passes
everything by reference, and that C code defaults to passing everything by value. By
default, CALL_EXTERNAL passes arguments by reference (unless this behavior is
explicitly altered by the use of the ALL_VALUE or VALUE keywords), so ho special
action istypically required to call Fortran code viaCALL_EXTERNAL.

Warning
You must ensure that the arguments passed to external code are passed using the
correct method — by value, or by reference. Failure to do so will result in undefined
behavior.

Arguments Passed by Value

A copy of the value of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are local to that routine, and do not change
the original value of the variable in the calling routine. C/C++ pass everything by
value, but have an explicit address-of operator (&) that is used to pass addresses of
variables and get by-reference behavior.

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 197

Arguments Passed by Reference

The machine address of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are immediately visible to the caller,
because both routines are actually modifying the same memory addresses. Fortran
passes everything by reference, but most Fortran implementations support intrinsic
operators that allow the programmer control over this (sometimes called %L OC and
%VAL, or just LOC and VAL). Consult your compiler documentation for details.

Microsoft Windows Calling Conventions

All operating system/hardware combinations define an inter-routine calling
convention. A calling convention defines the rules used for passing arguments
between routines, and specifies such details as how arguments of different types are
passed (i.e. in registers or on the system stack) and how and when such arguments are
cleaned up.

A stable and efficient calling convention is critical to the stability of an operating
system, and can affect most aspects of the system:

« Theefficiency of the entire system depends on the efficiency of the core
calling convention.

e Backwards compatibility, and thus the longevity of binary software written for
the platform depends on the stability of the calling convention.

e Cadlling routines from different languages within a single program depends on
all the language compilers adhering to the same calling convention. Even
within the same language, the ability to mix code compiled by different
compilers requires those compilers to adhere to the same conventions. For
example, at the time of thiswriting, the C++ language standard lacks an
Application Binary Interface (ABI) that can be targeted by all C++ compilers.
This can lead to situationsin which the same compiler must be used to build all
of the code within a given program.

Microsoft Windows is unique among the platforms supported by IDL in that it has
two distinct calling conventions in common use, whereas other systems define a
single convention. On single-convention systems, the calling conventionis
unimportant to application programmers, and of concern only to hardware designers
and the authors of compilers, and operating systems. On a multiple convention
system, application programmers sometimes need to be aware of the issue, and
ensure that their code is compiled to use the proper convention and that callsto that
code use the same convention. The Microsoft Calling Conventions are:

External Development Guide The CALL_EXTERNAL Function

198 Chapter 9: Using CALL_EXTERNAL

STDCALL

STDCALL isthe caling convention used by the magjority of the Windows
operating system API. InaSTDCALL cal, the calling routine places the
arguments in the proper registers and/or stack locations, and the called routine
isresponsible for cleaning them up and unwinding the stack.

CDECL

CDECL isthe calling convention used by C/C++ code by default. This default
can be changed via compiler switches, declspec declarations, or #pragmas.
With CDECL, the caller isresponsible for both setup and cleanup of the
arguments. CDECL is able to call functions with variable numbers of
arguments (varargs functions) because the caller knows the actual number of
arguments passed at runtime, whereas STDCALL cannot call such functions.
Thisis because the STDARGS routine cannot know efficiently at compiletime
how many arguments it will be passed at runtime in these situations.

The inconvenience of having two distinct and incompatible calling conventionsis
usually minor, because the header files that define functions for C/C++ programs
include the necessary definitions such that the compiler knows to generate the proper
code to call them and the programmer is not required to be aware of the issue.
However, CALL_EXTERNAL does have a problem: Unlike a C/C++ program, IDL
determines how to call afunction solely by the arguments passed to
CALL_EXTERNAL, and not from a header file.

IDL therefore has no way to know how your external code was compiled. It uses the
STDARG convention by default, and the CDECL keyword can be used to change the
default. CALL_EXTERNAL therefore relies on the IDL user to tell it which
convention to use. If IDL calls your code using the correct convention, it will work
correctly. If it calls using the wrong convention, the results are undefined, including
memory corruption and possible crashing of the IDL program.

Warning
The default calling convention for CALL_EXTERNAL is STDCALL, whereas the
default convention for the Microsoft C compiler is CDECL. Hence, Windows users
must usually specify the CDECL keyword when calling such code from IDL. Non-
Windows versions of IDL ignore the CDECL keyword, so it is safe to always
include it in cross platform code.

Here iswhat happens when external codeis called via the wrong calling convention:

« If aSTDARG call ismadeto a CDECL function, the caller placesthe
arguments in the proper registers/stack locations, and relies on the called

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 199

routine to cleanup and unwind the stack. The called routine, however, does not
do these things because it isa CDECL routine. Hence, cleanup does not

happen.
If aCDECL call is made to a STDARG function, the caller places the

arguments in the proper register/stack locations. The called routine cleans up
on exit, and then the caller cleans up again.

Either combination is bad, and can corrupt or kill the program. Sometimes this
happens, and sometimes it doesn’t, so the results can be random and mysterious to
programmers who are not aware of the issue.

Note

When the wrong calling convention is used, it is common for the process stack to
become confused. A “smashed stack” visible from the C debugger following a
CALL_EXTERNAL isusualy indicative of having used the wrong calling
convention.

Common CALL_EXTERNAL Pitfalls

Following are alist of common errors and mistakes commonly seen when using
CALL_EXTERNAL.

The number of arguments and their types, as passed to CALL_EXTERNAL,
must be the exact types expected by the external routine. In particular, it is
common for programmersto forget that the default IDL integer is a 16-hit
value and that most C compilers define the int type as being a 32-bit value.
You should be careful to use IDL LONG integers, which are 32-bit, in such
cases. See “Argument Data Types’ on page 195 for additional details.

Passing data using the wrong form: Using by-value to pass an argument to a
function expecting it by-reference, or the reverse. See" By-Value and By-
Reference Arguments’ on page 196 for additional details.

Under Microsoft Windows, using the incorrect calling convention for agiven
external function. See “Microsoft Windows Calling Conventions’ on page 197
for additional details.

Failure to understand that IDL uses IDL_STRING descriptors to represent
strings, and not just a C style NULL terminated string. Passing a string value
by reference passes the address of the IDL_STRING descriptor to the external
code. See Chapter 14, “IDL Internals: String Processing” for additional details.

Attempting to make IDL data structures use memory allocated by external
code rather than using the proper IDL API for creating such data structures.

External Development Guide The CALL_EXTERNAL Function

200

Chapter 9: Using CALL_EXTERNAL

For instance, attempting to give an IDL _STRING descriptor a different value
by using C malloc() to allocate memory for the string and then storing the
address of that memory inthe | DL_STRING descriptor is not supported, and
can easily crash or corrupt IDL. Although IDL uses malloc()/free() internally
on most platforms, you should be aware that thisis not part of IDL’s public
interface, and that RSl can change this at any time and without notice. Even on
platforms where IDL does use these functions, its use of them is not directly
compatible with similar calls made by external code because IDL allocates
additional memory for bookkeeping that is generally not present in memory
allocations from other sources. See Chapter 14, “IDL Internals: String
Processing” for information on changing the value of an IDL_STRING
descriptor using supported IDL interfaces. See Chapter 9, “Memory Cleanup”
for more on memory alocation and cleanup.

IDL iswritten in the C language, and when IDL starts, any necessary runtime
initialization code required by C programsis automatically executed by the
system before the IDL main() function is called. Hence, calling C code from
IDL usually does not require additional runtime initialization. However, when
calling external code written in languages other than C, you may find that your
code does not run properly unless you arrange for the necessary runtime
support for that language to run first. Such details are highly system specific,
and you must refer to your system and compiler documentation for details.
Codethat islargely computational rarely encounters thisissue. It is more
common for code that performs Input/Output directly.

Programming errorsin the external code. It is easy to make mistakesin
compiled languages that have bad global consequences for unrelated code
within the same program. For example, awild memory pointer can lead to the
corruption of unrelated data. If you are lucky, such an error will immediately
kill your program, making it easy to locate and fix. Less fortunateisthe
situation in which the program dies much later in aseemingly unrelated part of
the program. Finding such problems can be difficult and time consuming.
When IDL crashes following a call to external code, an error in the external
code or inthecall to CALL_EXTERNAL isthe cause in the vast majority of
Cases.

Some compilers and operating systems have a convention of adding leading or
trailing underscore characters to the names of functions they compile. These
conventions are platform specific, and as they are of interest only to system
linker and compiler authors, not generally well documented. Thisis usually
transparent to the user, but can sometimes be an issue with inter language
function calls. If you find that a function you expect to call from alibrary isnot
being found by CALL_EXTERNAL, and the obvious checks do not uncover

The CALL_EXTERNAL Function External Development Guide

Chapter 9: Using CALL_EXTERNAL 201

the error (usually a simple misspelling), this might be the cause. Under UNIX,
the nm command can be helpful in diagnosing such problems.

e C++ compilers use a technique commonly called name munging to encode the
types of method arguments and return values into the name of the routine as
written to their binary object files. Such names often have only a passing
resemblance to the name seen by the C++ programmer in their source code.
IDL can only call C++ code that has C linkage, as discussed in “ C++” on
page 25. C linkage code does not use name munging.

¢ When calling external code written in other languages, there are sometimes
platform and language specific hidden arguments that must be explicitly
supplied. Such arguments are usually provided by the compiler when you work
strictly within the target language, but become visible in inter-language calls.
An example of this can be found in “Hidden Arguments’ on page 221. In this
example, the Fortran compiler provides an extra hidden length argument when
aNULL terminated string is passed to a function.

External Development Guide The CALL_EXTERNAL Function

202 Chapter 9: Using CALL_EXTERNAL

Passing Parameters

IDL callsroutines within a shareable library using the IDL portable calling
convention, in which the routine is passed two arguments:

argc
A count of the number of arguments being passed to the routine
argv

An array of argc memory pointers, which are the addresses of the arguments
(by reference) or the actual value of the argument (by value) depending on the
types of arguments passed to CALL_EXTERNAL and the setting of the
VALUE keyword to that function. You should note that while all types of data
can be passed by reference, there are limitations on data types that can be
passed by value, as described in the documentation for “CALL_EXTERNAL”
in the IDL Reference Guide manual.

The CALL_EXTERNAL portable convention is necessary because IDL, like any
program written in a compiled language, cannot generate arbitrary function calls at
runtime. Only calls to interfaces that were known to it when it was compiled are
possible. Naturally, most existing C functions are not written to use thisinterface.
Calling such functions typically requires IDL usersto write glue functions, the sole
purpose of which isto be called by CALL_EXTERNAL with the portable
convention, and then to take the arguments and pass them to the real target function
using the natural interface for that function. The AUTO_GLUE keyword to
CALL_EXTERNAL can be used to generate, compile, and load such glue routines
automatically and on demand, without requiring user intervention. Auto Glueis
described in “Using Auto Glue” on page 204. AUTO_GLUE does not eliminate the
need for, or use of, the portable convention, but it can relieve the IDL user of the
requirement to handle it explicitly. The end result is that calling existing function
interfacesis easier to do, and less error prone.

Routines called by CALL_EXTERNAL with the portable convention are defined
with a prototype similar to the following:

return type example (int argc; void *argv([])

where return_type isone of the datatypeswhich CALL_EXTERNAL can return. If
this return typeisnot IDL_LONG, akeyword must be used in the
CALL_EXTERNAL call to indicate the actual type of the result.

Passing Parameters External Development Guide

Chapter 9: Using CALL_EXTERNAL 203

The parameter argc gives the number of arguments passed to the external routine by
CALL_EXTERNAL inthe argv array, while argv is an array containing the
arguments. Arguments are passed either by value or by reference. Those passed by
value are copied directly into the argv array, with the exception of scalar strings,
which place a pointer to anull-terminated string in argv [1]1. All arrays are passed
by reference. Scalar items passed by reference (the default) place a pointer to the
datuminargv[i]. Stringsand string arrays passed by reference place a pointer to an
IDL_STRING structurein argv [1]. This structure is defined as follows:

typedef struct ({

IDL STRING SLEN T slen; /* Length of string */
short stype; /* type of string: (0) static, (!0) dynamic */
char *s; /* Addr of string, invalid if slen == 0. */

} IDL STRING;

See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additiona details
about passing parameters by value.

It isimportant to note that DL integer variables correspond to a 16-bit integer (aC
signed short integer). For example, an integer variable could be defined in an IDL
routine as follows:

IDL> A =5 ;default type of integer, not LONG

The variable could then be passed by referencein a CALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be:

short *a;
a = (short *) argv[0];

or

IDL _INT *a;
a = (IDL_INT *) argv[O0];

IDL_INT corresponds to a C short (16-bit integer), so either form is correct. The
corresponding type in Fortran would be INTEGER* 2.

External Development Guide Passing Parameters

204 Chapter 9: Using CALL_EXTERNAL

Using Auto Glue

Usersof CALL_EXTERNAL freguently write small functions with the sole purpose
of matching the CALL_EXTERNAL portable calling convention with its (argc,
argv) interface to the actual interface presented by some existing function that they
wish to call. Such functions are often called glue functions.

It quickly becomes obvious to anyone who has written afew glue functions that there
isn't much to them, and that producing such functionsis a purely mechanical
operation. As you read the examples in this chapter, you will see many such
functions, and will notice that they are all essentially the same. Further examination
should serve to convince you that IDL already has al of the information, in the form
of the arguments and keywords specified to the CALL_EXTERNAL function, to
generate such functions without requiring human intervention. Examining the
CALL_EXTERNAL routine's interface, we see that:

e the number and types of arguments to the CALL_EXTERNAL function
provide the same information about the arguments for the target external
function;

¢ the VALUE keyword, and CALL_EXTERNAL's built in rules for deciding
whether or not to pass arguments by value or by reference determine how the
arguments should be passed;

e inthe case of Microsoft Windows, the CDECL keyword tells it which system
calling convention to employ;

¢ keywordsto CALL_EXTERNAL determine the result type.

Furthermore, other than the actual name of the user function being called, these glue
functions are generic in the sense that they could be used to call any function that
accepted arguments of the same types and produce a result of the same type.

The AUTO_GLUE keyword to CALL_EXTERNAL exploitsthese factsto allow you
to call functions with natural interfaces, without the need to write, compile, and load
aglue function to do the job. The sole requirement is that your system must havea C
compiler installed that is compatible with the compiler described by the IDL
IMAKE_DLL system variable. Thisisalmost awaysthe caseif you areinterested in
calling external code, since acompiler is necessary to compile such code.

Using Auto Glue External Development Guide

Chapter 9: Using CALL_EXTERNAL 205

AUTO_GLUE automatically writes the C code for the glue function, uses the
MAKE_DLL procedure to build a sharable library containing it, loads that library,
and then callsthe glue function, passing it apointer to the target function and al of its
arguments. It maintains a cache of glue functions that have been built previously, and
never builds the same glue function more than once. From the user perspective, there
isasdlight pause the first time a given glue function is used. In that brief moment,
AUTO_GLUE performs the steps described above, and then makes the call to the
user function. All of this happens transparently to the IDL user — no user interaction
isrequired, and no output is produced by the process. Subsequent calls to the same
glue function happen instantaneously, as IDL loads the existing glue function from
the MAKE_DLL cachewithout rebuilding it. In principle, it is similar to the way IDL
automatically compiles IDL language programs on demand, only with C code instead
of IDL code.

See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additiona details
about how AUTO_GLUE works, and the options for controlling its use.

Generating Glue Without Executing It

AUTO_GLUE isthe preferred option for most calls to functions with natural
interfaces, due to it's simplicity and ease of use. However, you might find yourself in
a situation where you would like your glue functions to be automatically generated,
but wish to ssmply get the resulting C code so that you can modify it or incorporate it
into alarger library. For example, you might have alarge library of IDL specific
code, and wishto giveit al IDL callable interfaces without requiring the overhead of
AUTO_GLUE for al of them.

The WRITE_WRAPPER keyword to CALL_EXTERNAL can be used to produce
such code without compiling or using the results. See “CALL_EXTERNAL” inthe
IDL Reference Guide manual for additional information on this keyword.

External Development Guide Using Auto Glue

206 Chapter 9: Using CALL_EXTERNAL

Basic C Examples

All of the code for the examplesin this section can be found in the

/external/call external/cC subdirectory of the IDL distribution. Please read
the README filein that directory for details on how to run the examples. In many
cases, the filesin that directory go into more detail, and are more fully commented
than the versions shown here. Also, the examples provide IDL wrapper routines that
perform the necessary CALL_EXTERNAL calls, while the examples shown here use
CALL_EXTERNAL directly in order to explain how it isused. It isworth reading the
contents of the . c and IDL . pro filesin that directory in addition to reading the code
shown here.

Example: Passing Parameters by Reference to IDL

Thefollowing routine, found in simple vars.c, accepts severa of IDL'sbasic
data types as arguments. The parameters are passed in by reference and the new
squared values of the numbers are passed back to IDL. Thisisimplemented as a
function with anatural C interface, and a second glue routine that implements the

Basic C Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 207

IDL portable convention, using the one with the natural interface to do the actual
work.

W J o0 Ul b WDN

[
NP O W

@]
=
w

14
15
16
17
18
19
20
21
22
23
24
25
26

#include <stdio.h>
#include "idl_export.h" /* IDL external definitions */

int simple vars_natural (char *byte var, short *short var,
IDL LONG *long var, float *float var,

double *double var)

/* Square each variable. */

*byte var *= *byte var;
*short_var *= *ghort_var;
*long_ var *= *long var;
*float var *= *float var;
*double var *= *double var;
return 1;

}

int simple vars(int argc, void* argvl[])
/* Insure that the correct number of arguments were passed in */
if (argc != 5) return 0;

return simple vars natural ((char *) argv[0], (short *) argv[1l],
(IDL_LONG *) argv[2], (float *) argv[3],
(double *) argv([4]);

}

Table 9-1: Passing Parameters by Reference to IDL — simple_vars.c

The IDL statements necessary to call the simple vars () function from IDL can be
written:

B=2B & T=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL (GET CALLEXT EXLIB(), ’‘simple vars’, $
b,i,1,f,d, /CDECL)

Note
GET_CALLEXT EXLIB () isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Using the AUTO_GLUE keyword to CALL_EXTERNAL, you can call the function
with the natural C interface directly:

External Development Guide Basic C Examples

208 Chapter 9: Using CALL_EXTERNAL

B=2B & I=3 & L=3L & F=0.0 & D=0.0D
R = CALL EXTERNAL (GET_ CALLEXT EXLIB(), ‘simple vars_natural’, $
b,i,1,f,d, /CDECL, /AUTO GLUE)

Example: Calling a C Routine to Perform
Computation

The following example demonstrates an external function that returns the sum of a
floating point array. It issimilar in function to the TOTAL functionin IDL. The code
for thisexampleisfound in thefile sum_array.c inthelDL distribution. Aswith
the previous example, this function isimplemented by a function that has anatural C
interface, and a second glue function is provided that matches the IDL portable
calling convention to the natural interface:

#include <stdio.h>
#include "idl_ export.h"

float sum_array natural (float *fp, IDL LONG n)

{

float s = 0.0;

W J O Ul b WDN

while (n--) s += *fp++;
return(s) ;

}

bR R
NP O W

float sum array(int argc, void *argv([])

{

14 return sum array natural((float *) argv[0], (IDL LONG) argv[1l]);

}

=
w

=
(O3]

Table 9-2: Calling a C routine — example.c

The IDL statements necessary to call the sum_array () function from IDL can be

written:
X = FINDGEN(10)
S = CALL_EXTERNAL (GET CALLEXT EXLIB(), ’'sum array’$
X, N_ELEMENTS (X),VALUE=[0,1], /F _VALUE, /CDECL)
Note

GET CALLEXT EXLIB () isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Basic C Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 209

Using the AUTO_GLUE keyword, you can call the function with the natural C
interface directly:

X = FINDGEN(10)

S = CALL EXTERNAL (GET CALLEXT EXLIB(), ’sum array natural’s
X, N_ELEMENTS (X),VALUE=[0,1], /F_VALUE,/CDECL,$
/AUTO_GLUE)

In thisexample, sum_array and sum_array natural arethe names of the entry
points for the external functions, and x and N_ELEMENTS (X) are passed to the called
routine as parameters. The ¥ vALUE keyword specifies that the returned valueis a
floating-point number rather than an IDL_LONG.

External Development Guide Basic C Examples

210

Chapter 9: Using CALL_EXTERNAL

Wrapper Routines

CALL_EXTERNAL routines are very sensitive to the number and type of the
arguments they receive. Calling a CALL_EXTERNAL routine with the wrong
number of arguments or with arguments of the wrong type can cause IDL to crash.
For this reason, it isagood practice to provide an IDL wrapper routine that is used to
make the actual CALL_EXTERNAL call. The job of thiswrapper, which iswritten
inthe IDL language, is to ensure that the arguments that are passed to the external
code are always of the correct number and type. The following IDL procedure isthe
wrapper used in the simple_vars() example of the previous section (“ Example:
Passing Parameters by Referenceto IDL” on page 206).

Example Code
Thisfile, simple vars.pro,islocated intheexternal/call external/C
subdirectory of the IDL installation directory.

W J o0 U1 WwN

bR R R
wN oW

IDL

NN NNNRRPRRP R PR
B W NR O WO U

25

N
()}

PRO SIMPLE VARS, b, i, 1, £, 4, AUTO GLUE=auto glue, DEBUG=debug, S
VERBOSE=verbose
if ~ (KEYWORD_ SET (debug)) THEN ON_ERROR, 2

; Type checking: Any missing (undefined) arguments will be set
; to a default value. All arguments will be forced to a scalar
; of the appropriate type, which may cause errors to be thrown
; 1f structures are passed in. Local variables are used so that
the values and types of the user supplied arguments don’t change.

1 = (SIZE(b,/TYPE) EQ 0) ? 2b : byte(b[0])
i 1 = (SIZE(i,/TYPE) EQ 0) ? 3 : fix(i[0])
11 = (SIZE(1,/TYPE) EQ 0) ? 4L : long(1[0])
£ 1 = (SIZE(f,/TYPE) EQ 0) ? 5.0 : float(£[0])
d 1 = (SIZE(d,/TYPE) EQ 0) ? 6.0D : double(d[0])

PRINT, ’‘Calling simple vars with the following arguments:’
HELP, b 1, 1 1, 1.1, £1, 41
func = keyword_ set (auto _glue) ? ’simple vars natural’ : ‘simple vars’
IF (CALL EXTERNAL (GET CALLEXT EXLIB(VERBOSE=verbose), func, $
b1, i1, 11, £1, 4 1, /CDECL, $
AUTO_GLUE=auto_glue, VERBOSE=verbose, $
SHOW ALL OUTPUT=verbose) EQ 1) then BEGIN
PRINT, 'After calling simple vars:’
HELP, b 1, 11, 11, £1, 41
ENDIF ELSE MESSAGE, 'External call to simple vars failed’
END

Table 9-3: Wrapper Routine — simple_vars.pro

Wrapper Routines External Development Guide

Chapter 9: Using CALL_EXTERNAL 211

Theroutine simple vars.pro usesthe system routine SIZE() to examine the
arguments that are passed in by the user to the simple vars routine. If one of the
arguments is undefined, a default value will be used in the call to the externa routine.
Otherwise, the argument will be converted to a scalar of the appropriate type.

Note
GET_CALLEXT_ EXLIB () isafunction provided with the CALL_EXTERNAL

examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

External Development Guide Wrapper Routines

212

Chapter 9: Using CALL_EXTERNAL

Passing String Data

IDL represents strings internally as IDL_STRING descriptors. For more information
about IDL_STRING, see Chapter 13, “IDL Internals: Variables’ and Chapter 14,
“IDL Internals. String Processing”. These descriptors are defined in the C language

as

typedef struct ({

IDL_STRING SLEN T slen;
unsigned short stype;
char *s;

} IDL STRING;

To pass a string by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

The s1en field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

The stype fieldisused internally by IDL to keep track of how the memory for
the string was abtained, and should be ignored by CALL_EXTERNAL users.

s isthe pointer to the actual C string represented by the descriptor. If the string
iSNULL, IDL representsit asaNULL (0O) pointer, not as apointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

You must use the functions discussed in Chapter 14, “IDL Internals: String
Processing” to allocate the memory for an IDL_STRING. Attempting to do
this directly by alocating dynamic memory and assigning it to the
IDL_STRING descriptor isacommon pitfall, as discussed in “ Common
CALL_EXTERNAL Pitfalls’ on page 199.

Returning a String Value

When returning a string value, a function must allocate the memory used to hold it.
Onreturn, IDL will copy this string. You can use a static buffer or dynamic memory,
but do not return the address of an automatic (stack-based) variable.

Passing String Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 213

Note
IDL will not free dynamically-allocated memory for this use.

Example

Thefollowing routine, found in string array.c, demonstrates how to handle
string variablesin external code. Thisroutinetakesastring or array of strings asinput
and returns a copy of thelongest string that it received. It isimportant to note that this
routine uses a static char array asits return value, which avoids the possibility of a
memory leak, but which must be long enough to handle the longest string required by
the application. Thisisimplemented as afunction with anatural C interface, and a
second glue routine that implements the IDL portable convention, using the one with
the natural interface to do the actual work:

External Development Guide Passing String Data

214 Chapter 9: Using CALL_EXTERNAL
1] #include <stdio.h>
2 #include <string.h>
3] #include "idl export.h"
af /*
5 * IDL_STRING is declared in idl_export.h like this:
6 ~* typedef struct ({
7 * IDL _STRING SLEN T slen; Length of string, 0 for null
8 * short stype; Type of string, static or dynamic
9 * char *s; Address of string
10 * } IDL_STRING;
11 * However, you should rely on the definition in idl export.h instead
12 * of declaring your own string structure.
13 */
14
15Q char* string array natural (IDL_STRING *str descr, IDL LONG n)
16 {
17 /*
18 * IDL will make a copy of the string that is returned (if it is
19 * not NULL). One way to avoid a memory leak is therefore to return
20 * a pointer to a static buffer containing a null terminated string.
C 21 * IDL will copy the contents of the buffer and drop the reference
22 * to our buffer immediately on return.
23 */
24f #define MAX OUT_LEN 511 /* truncate any string
25 longer than this */
26 static char result [MAX OUT_LEN+1]; /* leave a space for a ’\0’
27 on the longest string */
28 int max_index; /* index of longest string */
29 int max_sofar; /* length of longest string*/
30 int 1i;
31
32 /* Check the size of the array passed in. n should be > 0.%/
33 if (n < 1) return (char *) 0;
34 max_ index = 0;
35 max sofar = 0;
36 for(i=0; i < n; i++) {
37 if (str descr[i] .slen > max_sofar) {
38 max_index = ij;
39 max_sofar = str descr[i].slen;
40 }
a1 }
Figure 9-1: Handling String Variables in External Code — string_array.c

Passing String Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 215
42 /*
43 * If all strings in the array are empty, the longest
44 * will still be a NULL string.
45 */
46 if (str_descr[max_index].s == NULL) return (char *) 0;
47
48 /*
49 * Copy the longest string into the buffer, up to MAX OUT LEN
50 * characters.
51 * Explicitly store a NULL byte in the last byte of the buffer,
52 * because strncpy () does not NULL terminate if the string copied
53 * is truncated.
54 */

C 55 strncpy (result, str_descr([max_index].s, MAX OUT_LEN) ;

56 result [sizeof (result)-1] = '\0';
57 return (result) ;
58] #undef MAX OUT_ LEN
59 }
60
61 char* string array(int argc, void* argvl[])
62 {
63 /*
64 * Make sure there are the correct # of arguments.
65 * IDL will convert the NULL into an empty string (’’).
66 */
67 if (argc != 2) return (char *) NULL;
68 return string array natural ((IDL STRING *) argv[0], (IDL LONG) argv[1l]);
69 }

Figure 9-1. Handling String Variables in External Code — string_array.c (Continued)

External Development Guide

Passing String Data

216

Chapter 9: Using CALL_EXTERNAL

Passing Array Data

When you passan IDL array into a CALL_EXTERNAL routine, that routine gets a
pointer to the first memory location in the array. In order to perform any processing
on the array, an external routine needs more information—such as the array’s size
and number of dimensions. With CALL_EXTERNAL, you will need to pass this
information explicitly as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needs to know the size of the array at
compile time. In most cases, this means that you will need to treat multi-dimensional
arrays passed in from IDL as one dimensional arrays. However, you can still build
your own indices to access an array asif it had more than one dimension in C. For
example, the IDL array index:

array [x,V]
could be represented in a CALL_EXTERNAL routine as:
array ptr[x + x size*y];

Thefollowing routine, found in sum_2d_array.c, caculates the sum of a
subsection of atwo dimensional array. Thisisimplemented as a function with a
natural C interface, and a second glue routine that implements the IDL portable
convention, using the one with the natural interface to do the actual work:

Passing Array Data External Development Guide

Chapter 9: Using CALL_EXTERNAL 217

1f #include <stdio.h>
2f #include "idl_export.h"
3 double sum 2d array natural (double *arr, IDL LONG x_start, IDL LONG x_end,
4 IDL_LONG x size, IDL_LONG y start,
5 IDL_LONG y_end, IDL_LONG y_size)
6 /* Since we didn’t know the dimensions of the array at compile time, we
7 * must treat the input array as if it were a one dimensional vector. */
8 IDL_LONG X,Y;
9 double result = 0.0;

10

11 /* Make sure that we don’t go outside the array.strictly speaking, this
12 *is redundant since identical checks are performed in the IDL wrapper
13 * routine.IDL_MIN() and IDL_MAX() are macros from idl_export.h */

14 x_start = IDL_MAX(x_ start,0);

15 y_start = IDL_MAX(y start,0);

16 x_end = IDL_MIN(x_end,x_size-1);

C 17 y_end = IDL MIN(y end,y size-1);

18

19 /* loop through the subsection */

20 for (y = y start;y <= y end;y++)

21 for (x = x start;x <= x_end;x++)

22 result += arr[x + y*x sizel; /* build the 2d index: arr[x,y] */

23 return result;

24 }

25

26 double sum 2d_array(int argc,void* argv[])

27f {

28 if (argc != 7) return 0.0;

29 return sum_2d_array natural ((double *) argv([0], (IDL_LONG) argv[1l],

30 (IDL_LONG) argv[2], (IDL_LONG) argv[3],

31 (IDL_LONG) argv[4], (IDL_LONG) argvI[5],

32 (IDL_LONG) argv([6]);

33 }

Table 9-4: Adding the Elements of a 2D IDL Array — sum_2d_array.c

External Development Guide

The IDL system routine interface provides much more support for the manipulation
of IDL array variables. See Chapter 21, “Adding System Routines’ for more
information.

Passing Array Data

218 Chapter 9: Using CALL_EXTERNAL

Passing Structures

IDL structure variables are stored in memory in the same layout that C uses. This
makes it possible to pass IDL structure variablesinto CALL_EXTERNAL routines,
aslong as the layout of the IDL structure is known. To access an IDL structure from
an external routine, you must create a C structure definition that has the exact same
layout as the IDL structure you want to process.

For example, for an IDL structure defined as follows:
s = {ASTRUCTURE, zero:0B,one:0L,two:0.0,three:0D, four: intarr(2)}
the corresponding C structure would look like the following:

typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short four([2];

} ASTRUCTURE;

Then, cast the pointer from argv to the structure type, as follows:

ASTRUCTURE* mystructure;
mystructure = (ASTRUCTURE*) argv[0];

Thefollowing routing, found in incr struct.c, increments each field of an IDL
structure of type ASTRUCTURE. Thisisimplemented as afunction with anatural C
interface, and a second glue routine that implements the IDL portable convention,
using the one with the natural interface to do the actual work:

Passing Structures External Development Guide

Chapter 9: Using CALL_EXTERNAL 219

W J o0 Ul b WDN

[
= o w

12
13
14
15
16
17
18
C 19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <stdio.h>
#include "idl export.h"

/*
* C definition for the structure that this routine accepts.The
* corresponding IDL structure definition would look like this:
* s = {zero:0B,one:0L,two:0.,three:0D, four: intarr(2)}
*/
typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short four([2];
} ASTRUCTURE;

int incr struct natural (ASTRUCTURE *mystructure, IDL LONG n)
{
/* for each structure in the array, increment every field */
for (; n--; mystructure++)
mystructure->zero++;
mystructure->one++;
mystructure->two++;
mystructure->three++;
mystructure->four [0] ++;
mystructure->four [1]++;

}

return 1;

}

int incr struct (int argc, void *argv([])

{

if (argc != 2) return 0;
return incr struct natural ((ASTRUCTURE*) argv[0], (IDL_LONG)
argv([1l]);

}

Table 9-5: Accessing an IDL Structure from a C Routine — incr_struct.c

It is not possible to access structures with arbitrary definitions using the
CALL_EXTERNAL interface. The system routine interface, discussed in Chapter
21, “Adding System Routines’, does provide support for determining the layout of a
structure at runtime.

External Development Guide Passing Structures

220 Chapter 9: Using CALL_EXTERNAL

Fortran Examples

Example: Calling a Fortran Routine Using a C
Interface Routine

Cdlling Fortran is similar to calling C, with the significant difference that Fortran
code expects all argumentsto be passed by reference and not by value (the C default).
This means that the address of the argument is passed rather than the argument
itself. Thisissueis discussed in “By-Vaue and By-Reference Arguments’ on

page 196.

A Cinterface routine can easily extract the addresses of the arguments from the argv
array and pass them to the actual routine which will compute the sum. The arguments
f, n, and s are pointers that are being passed by value. Fortran expects al argumentsto
be passed by reference — that is, it expectsall argumentsto be addresses. If C passes
apointer (an address) by value, Fortran will interpret it correctly as the address of an
argument. The following code segmentsiillustrate this. The example c2f.c file
contains the C interface routine, which would be compiled asillustrated above. The
example. f file contains the Fortran routine that actually sums the array.

In these exampl es, we assume that the routines are being compiled under Sun Solaris.
The object name of the Fortran subroutinewill be sum_array1 to match the output
of the Solaris Fortran compiler. The following are the contents of example c2f.c
and example. f:

1] #include <stdio.h>

2

3] void sum array(int argc, void *argv[])

af {

5 extern void sum_arrayl ();/* Fortran routine */

6 int *n;

C 7 float *g, *f;

8

9 f = (float *) argv[O0]; /* Array pntr */
10 n = (int *) argv([1]; /* Get # of elements */
11 s = (float *) argv[2]; /* Pass back result a parameter */
12
13 sum_arrayl (f, n, s); /* Compute sum */
14 }

Table 9-6: C Wrapper Used to Call Fortran Code (example_c2f.c)

Fortran Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 221

1] ¢ This subroutine is called by SUM_ARRAY and has no IDL-specific code.
2 c
3} SUBROUTINE sumarrayl (array, n, sum)
4 INTEGER*4 n
5 REAL*4 array(n), sum
6
78 sum=0.0
fr7 8 DO i=1,n

9f sum = sum + array (i)

10§ PRINT *, sum, array (i)

11§ ENDDO

12

13 RETURN

14y END

Table 9-7: Fortran Code Called from IDL via C Wrapper (example.f)

This example is compiled and linked in a manner similar to that used in the C
example above. For moreinformation on compiling and linking on your platform, see
the README file contained inthe external/call external/Fortran
subdirectory of the IDL distribution. This directory also contains a makefile, which
builds this example on UNIX platforms. To call the example program from within
IDL:

;Make an array.

X = FINDGEN(10)

;A floating result

SUM = 0.0

S = CALL EXTERNAL('example.so',6 $
'sum_array', X, N _ELEMENTS (X), sum)

In this example, example. so iSthe name of the sharable imagefile, sum_array is
the name of the entry point, and x and v_Er.emenTS (x) are passed to the called routine
as parameters. The returned value is contained in the variable sum.

Hidden Arguments

When passing C null-terminated character strings into a Fortran routine, the C
function should also passin the string length. This extra parameter is added to the end
of the Fortran routine call in the C function, but does not explicitly appear in the
Fortran routine.

For example, in C:

char * strl= 'IDL';
char * str2= 'RSI';

External Development Guide Fortran Examples

222

Chapter 9: Using CALL_EXTERNAL

int lenl=3;

int len2=3;

double data, info;

/* Call a Fortran sub-routine named examplel */
examplel (strl, data, str2, info, lenl, len2)

In Fortran:

SUBROUTINE EXAMPLEL (STR1, DATA, STR2, INFO)
CHARACTER* (*) STR1, STR2
DOUBLE PRECISIONDATA, INFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Calling Fortran is similar to calling C, with the significant difference that Fortran
expects al arguments to be passed by reference. This means that the address of the
argument is passed rather than the argument itself. See “ By-Va ue and By-Reference
Arguments’ on page 196 for more on this subject.

A Fortran interface routine can be written to extract the addresses of the arguments
from the argv array and pass them to the actual routine which will compute the sum.
Passing the contents of each argv element by value has the same effect as converting
the parameter to anormal Fortran parameter.

This method uses the OpenVMS Extensions to Fortran, %L OC and %VAL. On IBM
AlX, the LOC function is an intrinsic operator. The syntax of the call, which differs
from that used on other platforms, is:

y=1loc (x)

Some Fortran compilers may not support these extensions. If your compiler does not,
use the method discussed in the previous section for calling Fortran with a C interface
routine.

The contents of the file examplel. £ are shown in the following figure. This
example is compiled, linked, and called in amanner similar to that used in the C
example above. For moreinformation on compiling and linking on your platform, see
the README file contained in the external/fortran subdirectory of the IDL
distribution. This directory also contains a makefile, which builds this example on
UNIX platforms.

Fortran Examples External Development Guide

Chapter 9: Using CALL_EXTERNAL 223

Note
This example is written to run under a 32-bit operating system. To run the example
under a 64-bit operating system would require modifications; most notably, to
declare argv as INTEGER* 8 rather than INTEGER*4.

f77

W J 0 Ul b WDN

NNMNNNMNNNMNNRRRPR BRPR B PR Rp R
AUl WNROWVWOOWNUOU A WNR O W

SUBROUTINE SUM_ARRAY (argc, argv) !Called by IDL
INTEGER*4 argc, argv(*) |Argc and Argv are integers
j = LOC(argc) 10btains the number of arguments (argc)

I|Because argc is passed by VALUE.

¢ Call subroutine SUM ARRAY1l, converting the IDL parameters
¢ to standard Fortran, passed by reference arguments:

CALL SUM_ARRAY1 (%VAL(argv(l)), $%VAL(argv(2)), $%VAL(argv(3)))
RETURN

END

¢ This subroutine is called by SUM _ARRAY and has no

c IDL specific code.

c

SUBROUTINE SUM ARRAY1 (array, n, sum)
INTEGER*4 n

REAL*4 array(n), sum

sum=0.0

DO i=1,n

sum = sum + array (i)
ENDDO

RETURN

END

Table 9-8: Fortran Code Called Directly From IDL

To call the example program from within IDL:

X = FINDGEN(10) ; Make an array.

sum = 0.0

S = CALL_EXTERNAL ('examplel.so', $
'sum_array ', X, N_ELEMENTS(X), sum)

In thisexample, examplel . so isthe name of the sharable imagefile, sum_array
is the name of the entry point, and x and N_ ELEMENTS (X) are passed to the called
routine as parameters. The returned value is contained in the variable sum.

External Development Guide Fortran Examples

224 Chapter 9: Using CALL_EXTERNAL

Note
The entry point name generated by the Fortran compiler may be different than that
produced by the C compiler. One of the best ways to find out what name was
generated is to use the UNIX nm utility on the object file. See your system’s man
page for nm for details.

Fortran Examples External Development Guide

Chapter 10

Remote Procedure

Calls

This chapter discusses the following topics:

IDL and Remote Procedure Calls 226
UsingIDL asanRPC Server 227
ClientVariables 228
LinkingtotheClient Library 229

External Development Guide

Compatibility with Older IDL Code 231
ThelDL RPCLibrary 233
RPCExamples 258

225

226 Chapter 10: Remote Procedure Calls

IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caler
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of Clanguage routinesisincluded to handle communication between client programs
and the IDL server.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your own
program to be run asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

With the release of IDL version 5.0, IDL's RPC functionality has been completely
revised and an new API created. The new RPC interface mirrors the API used by
callable IDL. See “Compatibility with Older IDL Code” on page 231 for details.

IDL and Remote Procedure Calls External Development Guide

Chapter 10: Remote Procedure Calls 227

Using IDL as an RPC Server

The IDL RPC Directory

All of thefiles related to using IDL’s RPC capabilities are found in the rpc
subdirectory of the external subdirectory of the main IDL directory. Themain IDL
directory isreferred to here asidldir.

Running IDL in Server Mode

To use IDL asan RPC server, run IDL in server mode by using the id1rpc
command. The RPC server can be invoked one of two ways:

idlrpc
or
idlrpc -server=server number

where server_number is the hexadecimal server 1D number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If aserver ID number is not supplied, IDL uses the default,
IDL_RPC_DEFAULT_ID, defined in thefileidldir /external /rpc/idl_rpc.h.
Thisvalueisoriginaly set to 0xX2010CAFE.

External Development Guide Using IDL as an RPC Server

228 Chapter 10: Remote Procedure Calls

Client Variables

The IDL RPC client API uses the same data structure as IDL to represent a variable,
namely an IDL_VARIABLE structure. By not using a unique data structure to
represent avariable, the IDL RPC client API can follow aformat that is similar to the
API of Callable IDL.

When avariable s created by the IDL RPC client API (when avariableis returned
from the IDL_RPCGetM ainVariable function, for example) dynamic memory is
allocated for the variable and for its value. These dynamic variables are similar to
temporary variableswhich are used in IDL.

The IDL RPC client API provides routines to create, manipulate and delete dynamic
or IDL RPC client temporary variables. These API routines follow the same format
asthe Callable IDL API and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RPC
client program, usethe IDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete a client temporary variable could result
amemory “leak” in the client program.

Client Variables External Development Guide

Chapter 10: Remote

Procedure Calls 229

Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:

Includethefile id1l rpc.h inyour application.

Haveacopy of id1 export .h in theinclude path when you compile the
client application.

Link your client application to the IDL client shared object library
(1ibidl rpc).

If the client library is linked as a shared object, you must set the shared
object search path environment variable so that it includes the directory
that containsthe IDL client library.

The name of thisvariableisnormally LD_LIBRARY_PATH, except on HP
and IBM systems, where the variable names are:

HP: SHLIB_PATH
IBM: LIBPATH

If thisvariable is not set correctly, an error message will be issued by the
system loader when the client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -o example $(PRE_FLAGS) example.o -1idl rpc

$ (POST_FLAGS)

where PRE_FLAGS and POST_FLAGS are platform dependent. The proper flags for
each UNIX operating system supported by IDL are contained in the file
rpc_link.txt, located inthein the rpc subdirectory of the external
subdirectory of the main IDL directory.

Example of IDL RPC Client API

To use the IDL client side API, execute the following sequence of steps:
1. Cdl IDL_RPCInit() to connect to the server
2. Perform actions on the server—get and set variables, run IDL commands, etc.
3. Cdl IDL_RPCCleanup() to disconnect from the server.

External Development Guide Linking to the Client Library

230

Chapter 10: Remote Procedure Calls

The code shown in the following figure is an example that can be used to set up a
remote session of IDL using the RPC features. Note that this C program will need to
be linked against the supplied shared library 1ibidl rpc. Thiscodeisincluded in
theidldir/external/rpc directory asexample.c.

W J o0 U1 W N

NNMNNNRRRERER BRPR B PR R
WN R OW®TIOU B WNKFH O W

24
25
26
27
28

#include "idl rpc.h"

int main()

{
CLIENT *pClient;
char cmdBuffer [512] ;
int result;

/* Connect to the server */

if ((pClient = IDL RPCInit (0, (char*)NULL)) == (CLIENT*)NULL) {
fprintf (stderr, "Can't register with IDL server\n") ;
exit (1) ;

}

/* Start a loop that will read commands and then send them to idl */
for (; ;) {
printf ("RMTIDL> ") ;
cmdBuffer [0]="\0";
gets (cmdBuffer) ;
if (emdBuffer([0] == '\n' || cmdBuffer[0] == '\0')
break;
result = IDL RPCExecuteStr(pClient, cmdBuffer);

}

/* Now disconnect from the server and kill it. */
if (!IDL_RPCCleanup (pClient, 1))
fprintf (stderr, "IDL RPCCleanup: failed\n");
exit (0) ;

Table 10-1: Remote Execution of IDL via RPC

Compile example.c with the appropriate flags for your platform, as described in
“Linking to the Client Library” on page 229. Once this example is compiled, execute
it using the following commands:

o

% idlrpc
Then, in another process:

o

% example

Linking to the Client Library External Development Guide

Chapter 10: Remote Procedure Calls 231

Compatibility with Older IDL Code

With the release of IDL 5.0, IDL’'s Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantages:

« Thenew API mirrorsthe Callable IDL API.

e TheRPC client-sidelibrary is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

e TheRPC server-side executable, id1rpc, ishbuilt using Callable IDL,
providing an example of how Callable IDL can be used.

e Sourcecodeis provided for both the Server and Client side programs, allowing
you to enhance IDL’s RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. This layer is contained in thefiles
idl rpc_obsolete.c and idl rpc obsolete.h

To use the compatibility routines, includethefile 1ib rpc obsolete.hinyour
application and use the following link statement as a template:

% cc -o old example $(PRE_FLAGS) old _example.o \
idl_rpc_obsolete.o -1idl_rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those described
in “Linking to the Client Library” on page 229.

External Development Guide Compatibility with Older IDL Code

232 Chapter 10: Remote Procedure Calls

While the compatibility layer covers most of the old IDL RPC functionality, some of
the more obscure operations have either been modified or are no longer supported.
The features which have changed are as follows:

e idl_server_interactive: Thisfunction isno longer supported.

» get_idl_variable: Thefollowing return values are no longer supported:

Value Description
-2 Illegal variable name (for example, “213xyz”, “#a’,
“IDEVICE")
-3 Variable not transportable (for example, the variable
isastructure or associated variable)

Table 10-2: get_idl_variable Unsupported Values

e set_idl_timeout: thetv_usec field of the timeval struct isignored.
e idl_set_verbosity(): Thisfunction isno longer supported.

All other functionality is supported.

Compatibility with Older IDL Code External Development Guide

Chapter 10: Remote Procedure Calls 233

The IDL RPC Library

The IDL RPC library contains severa C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are:

» IDL_RPCCleanup * IDL_RPCSetMainVariable
» IDL_RPCDeltmp » IDL_RPCSetVariable

» |IDL_RPCExecuteStr » IDL_RPCStoreScalar

¢ IDL_RPCGetMainVariable ¢ IDL_RPCStrDelete

¢ |DL_RPCGettmp ¢ IDL_RPCStrDup

* IDL_RPCGetVariable e IDL_RPCStrEnsurel ength
e |DL_RPCImportArray e |DL_RPCStrStore

» IDL_RPCInit » IDL_RPCTimeout

¢ IDL_RPCMakeArray e |IDL_RPCVarCopy

* IDL_RPCOutputCapture * IDL_RPCVarGetData

e IDL_RPCOutputGetStr e Variable Accessor Macros

External Development Guide The IDL RPC Library

234 Chapter 10: Remote Procedure Calls

IDL_RPCCleanup

Calling Sequence

int IDL RPCCleanup(CLIENT *pClient, int 1Kill)

Description

Use this function to rel ease the resources associated with the given CLIENT structure
or tokill the IDL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

iKill
Set iKill to anon-zero value to kill the server when the connection is broken.
Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCCleanup External Development Guide

Chapter 10: Remote Procedure Calls 235

IDL_RPCDeltmp

Calling Sequence

void IDL RPCDeltmp(IDL VPTR vTmp)

Description

Use thisfunction to de-allocate all dynamic memory associated withtheIDL_VPTR
that is passed into the function. Once this function returns, any dynamic portion of
vTmp is deallocated and should not be referenced.

Parameters

vimp
The variable that will be de-allocated.
Return Value

None.

External Development Guide IDL_RPCDeltmp

236

Chapter 10: Remote Procedure Calls

IDL_RPCEXxecuteStr

Calling Sequence

int IDL_ RPCExecuteStr (CLIENT *pClient, char * pCommand)

Description
Use this function to send IDL commands to the IDL RPC server. The command is
executed just asif it had been entered from the IDL command line.

This function cannot be used to send multiple line commands and will return an error
if a“$” is detected at the end of the command string. It will also return an error if “$”
isthe first character, since this would spawn an interactive process and hang the IDL
RPC server.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
pCommand

A null-terminated IDL command string.
Return Value

This function returns the following values:
1 — Success.
0 — Invalid command string.

For al other errors, the value of 'ERROR_STATE.CODE isreturned. This number
could be passed as an argument to the IDL function STRM ESSAGE() to determine
the exact cause of the error.

IDL_RPCExecuteStr External Development Guide

Chapter 10: Remote Procedure Calls 237

IDL_RPCGetMainVariable

Calling Sequence

IDL_VPTR IDL RPCGetMainVariable (CLIENT *pClient, char *Name)

Description

Cadll thisfunction to get the value of an IDL RPC server main level variable
referenced by the name contained in Name. IDL_RPCGetM ainVariable will then
return apointer to an IDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC main level variable, On failure this
function returns NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 228.

External Development Guide IDL_RPCGetMainVariable

238 Chapter 10: Remote Procedure Calls

IDL_RPCGettmp

Calling Sequence

IDL,_VPTR IDL_RPCGettmp (void)

Description
Use thisfunction to create an IDL_VPTR to adynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, passit to
IDL_RPCDetmp() to free any memory allocated by the variable.
Parameters
None.

Return Value

On success, this function returnsan IDL_VPTR. On failure, it returns NULL.

IDL_RPCGettmp External Development Guide

Chapter 10: Remote Procedure Calls 239

IDL_RPCGetVariable

Calling Sequence

IDL_VPTR IDL RPCGetVariable (CLIENT *pClient, char *Name)

Description

Use this function to get a pointer to an IDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced by Name. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC variable. On failure this function returns
NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 228.

External Development Guide IDL_RPCGetVariable

240 Chapter 10: Remote Procedure Calls

IDL_RPCIimportArray

Calling Sequence

IDL_VPTR IDL RPCImportArray (int n dim, IDL MEMINT diml],
int type, UCHAR *data, IDL_ARRAY FREE CB free cb)

Description

Use this function to create an IDL array variable whose data the server supplies,
rather than having the client API allocate the data space.

Parameters

n_dim
The number of dimensionsin the array.

dim
Anarray of IDL_MAX_ARRAY_DIM eements, containing the size of each
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in “ Type
Codes’ on page 262.

data
A pointer to your array data.
free_cb

If non-NULL, free _cb isapointer to afunction that will be called whenthe IDL RPC
client routines frees the array. This feature gives the caller a sure way to know when
the datais no longer referenced. Use the called function to perform any required
cleanup, such as freeing dynamic memory or releasing shared or mapped memory.

Return Value

AnIDL_VPTR that pointsto an IDL_VARIABLE structure containing a reference
to the imported array. This function returns NULL if the operation was unsuccessful.

IDL_RPCImportArray External Development Guide

Chapter 10: Remote Procedure Calls 241

IDL_RPCInit

Calling Sequence

Client *IDL RPCInit (long ServerId, char* pHostname)

Description

Use this function to initialize an IDL RPC client session.

Theclient program is registered as aclient of the IDL RPC server. The server that the
client is registered with depends on the values of the parameters passed to the
function.

Parameters

Serverld

The ID number of the IDL server that the program isto be registered with. If this
valueis 0, the default server ID (0x2010CAFE) is used.

pHostname

Thisis the name of the machine where the IDL server isrunning. If thisvalueis
NULL or “”, the default, “localhost”, is used.

Return Value
A pointer to the new CLIENT structure is returned upon successful completion. This

opaque data structure is then later used by the client program to perform operations
with the server. This function returns NULL if the operation was unsuccessful.

External Development Guide IDL_RPCInit

242

Chapter 10: Remote Procedure Calls

IDL_RPCMakeArray

Calling Sequence

char * IDL RPCMakeArray(int type, int n dim, IDL MEMINT dim[],
int init, IDL VPTR *var)

Description

This function creates an IDL RPC client temporary array variable with a data area of
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in “ Type
Codes’ on page 262.

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

dim
A Carray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init
This parameter specifies the sort of initialization that should be applied to the
resulting array. init must be one of the following:

 IDL_ARR_INI_NOP— Noinitialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.

¢ IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

Theaddressof an IDL_VPTR containing the address of the resulting IDL RPC client
temporary variable.

IDL_RPCMakeArray External Development Guide

Chapter 10: Remote Procedure Calls 243

Return Value

On success, this function returns a pointer to the data area of the alocated array. The
value returned is the same as is contained in the var->value.arr->data field of the
variable. On failure, it returns NULL.

Aswith variables returned from IDL_RPCGettmp(), the variable allocated viathis
function must be de-allocated using IDL_RPCDeltmp() when the variableis no
longer needed.

External Development Guide IDL_RPCMakeArray

244 Chapter 10: Remote Procedure Calls

IDL_RPCOutputCapture

Calling Sequence

int IDL_RPCOutputCapture(CLIENT *pClient, int n lines)

Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server was
started. This function can be used to save thisinformation so that the client program
can request the lines sent to the output buffer.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
n_lines

If thisvalueislessthan or equal to zero, no output lineswill be buffered in the IDL
RPC server and output will be sent to the normal output device on the IDL RPC
server. If the value of this parameter is greater than zero, the specified number of
lineswill be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCOutputCapture External Development Guide

Chapter 10: Remote Procedure Calls 245

IDL_RPCOutputGetStr

Calling Sequence

int IDL_RPCOutputGetStr(CLIENT *pClient, IDL_RPC LINE S *pLine,
int first)

Description

Use this function to get an output line from the line queue being maintained on the
RPC server. The routine IDL_RPCOutputCapture() must have been called to
initialize the output queue on the RPC server before this routine is called.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
pLine

A pointer toavalid IDL_RPC_LINE_Sstructure. The buf field of this structure will
contain the output string returned from the IDL RPC server and the flagsfield will be
set to one of thefollowing (from 1d1_export . h):

e« IDL_TOUT_F STDERR — Send the text to stderr rather than stdout, if that
distinction means anything to your output device.

e |DL_TOUT_F NLPOST — After outputting the text, start a new output line.
On atty, thisis equivalent to sending anew line (‘ \n) character.

first

If first is set equal to anon-zero value, thefirst line is popped from the output buffer
on the IDL RPC server (the output buffer istreated like astack). If first is set equal to
zero, thelast line is de-queued from the output buffer (the output buffer istreated like
aqueue).

Return value

A true value (1) isreturned upon success. A false value (0) isreturned when there are
no more lines available in the output buffer or when an RPC error is detected.

External Development Guide IDL_RPCOutputGetStr

246 Chapter 10: Remote Procedure Calls

IDL_RPCSetMainVariable

Calling Sequence

int IDL_RPCSetMainVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Usethisroutine to assign avalue to amain level IDL variablein the IDL RPC server
session referred to by pClient. If the variable does not already exist, a new variable
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
main level variable referenced by Name should be set to. For more information on
creating this variable, see “Client Variables’ on page 228.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCSetMainVariable External Development Guide

Chapter 10: Remote Procedure Calls 247

IDL_RPCSetVariable

Calling Sequence

int IDL_RPCSetVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Use thisroutine to assign avalueto an IDL variable in the IDL RPC server session
referred to by pClient. If the variable does not already exist, a new variable will be
created. Unlike IDL_RPCSetM ainVariable(), this routine sets the variable in the
current IDL program scope.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
variable referenced by Name should be set to. For more information on creating this
variable, see“Client Variables’ on page 228.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide IDL_RPCSetVariable

248 Chapter 10: Remote Procedure Calls

IDL_RPCStoreScalar

Calling Sequence

void IDL_RPCStoreScalar (IDL _VPTR dest, int type,
IDL ALLTYPES *value)

Description

Use this function to store a scalar value into an IDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existing IDL_VARIABLE isde-
allocated.

Parameters
dest
AnIDL_VPTR tothe DL_VARIABLE in which the scalar should be stored.

type

The type code for the scalar value. IDL type codes are discussed in “ Type Codes’ on
page 262.

value

The address of an IDL_ALLTYPES union that contains the value to store.
Return Value

None.

IDL_RPCStoreScalar External Development Guide

Chapter 10: Remote Procedure Calls 249

IDL_RPCStrDelete

Calling Sequence

void IDL_RPCStrDelete (IDL STRING *str, IDL MEMINT n)

Description

Use this function to delete a string. See the description of IDL_StrDelete() in
“Deleting Strings” on page 335.

External Development Guide IDL_RPCStrD