Building IDL
Applications

IDL Version 6.2

July 2005 Edition
Copyright © RSI
All Rights Reserved

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RSI reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any othersresulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of ITT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

This product includes software devel oped by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Part I: Application Programming

Chapter 1

Overview of IDL ApPPlICAtIONS ...coiviiiiiiie e 17
What isan IDL APPHICALIONT ...ccveecieeeeie et see st e e reenreeneeenee s 18
About Building ApplicatioNSiN IDLccooiiiiieeneseeeeeee e 19
Chapter 2

Creating and Running Programs in IDLcoovviiiiiiiiiiiiiiiin e, 21
Overview Of IDL Program TYPESccueierieereeseeseesteesteesseesseessesstesssessessssssssssesssesssenss 22
Creating SMAINS Programscccccvceeiieiiii e eeesie st ee e sae et ssaeseste e eneese s e 24
ADOULt NaMEA Programsccceeiiieieciesie e ste e see e e es e e saeesaaesreestessreesreesreesseenseensesnns 27
Creating aSIMPIE PrOgraMcocv ettt st ae s ne e 28
RUNNING NamMed ProgramMSc.ccceeiieiie et eriessie et esseeseesteseesreesnassnessnaesnessneens 29
Compiling Y OUr PrOGIaMccveciee ettt sttt st sae e ne s ne e 31
Making Code REBAEDIEcoeeieiiie e e e e e 35

Building IDL Applications 3

Maximizing the Editor's CapabilitieScccceveieeieiese e 36
Command Line TipS and TrHICKSceciiriiieieeiesesie et s 42
Recording IDL Command Line INPULcoceieieiieese et 47
Interrupting or ADOIING EXECULIONcoiiiiieeieeee e 48
For More Information 0N Programmingcccccceeeevieneseseesiesie e e seesse s sseeeesee e snens 49
Chapter 3

Executing Batch JODS iN IDLouviiiiiiiiiiiieeeeeee e 51
OVErVIEW Of BAICh FIlESoceeiececeeese sttt 52
BaCh Fil@ EXECULION ..ottt sttt s st ne e 53
Interpretation Of BalCh SEAEMENTSccoviiieieeererieee s 55
A BatCh EXAMPIE ..ottt 56
Chapter 4

Creating SAVE Files of Programs and Dataccccevvvvvvvvvvvnennnnnnn. 57
OVENVIEW OF SAVE FIlES ..ottt 58
About Program and Data SAVE FlEScov oo 60
Creating SAVE Files of Program FilESc.vcveiieiiieeeesese et 62
Saving Variables from an IDL SESSIONcceeeeiiriiieieriese e see e see e 70
EXECULING SAVE FIIES ...ttt e 72
Changesto IDL 5.4 SAVE FIES ..ottt 75
Chapter 5

Creating Procedures and FUNCLIONScuvveiiiiiiiiiee e 77
Overview of Procedures and FUNCLIONScccooeieirinineecnese e s 78
DefiNiNG @PrOCEAUIEcoeiieieeeieee ettt et ne e e e seesae e 79
DefiNING @FUNCLION ..ottt st e e resne e 82
Automatic Compilation and EXECULIONcccoeiirieieeieniriesieeeesiesre e 83
PArBIMELENSottt b ettt b e bt ae e se et e bt e neenbeseesbe e e e 85
UsSiNg KeYWOrd Par@MELErScocoiiieeieie e seeiee s see et eseeseesseeneeseeseeseeeeeneens 89
Determining if a KeyWOrd IS SELcc.coviiiieeese e 20
Supplying Values for Missing KEYWOIdScccovieerereneniereeresie e 91
Supplying Values for Missing ArQUMENTScceivieeieerieseceeeesiesiesreesaesee e sreeaessesresneas 92
KeyWOrd INNEITANCEcoueeiiieieeeeee ettt et re e e e e ee e 93
Entering Procedure DEfiNItIONScoceiveeieie e 100
HOW IDL ReSOIVES ROULINESoiuieieieieieieerie sttt 101
Parameter Passing MeChaniSMccoeiueeieie ettt 102

Contents Building IDL Applications

(@ | 1T gTo AV =T o T o P 104
Calling Functions/ProcedureS INAIreCtlYcoovveoerireniienesereeese e 106
Chapter 6

Library AUTNOTMING .oueoiiii e 107
Overview of Library AULNOINGcooecerieie e s e e 108
Recognizing Potential Naming CONFlICtSccceoiiiiinirinireeeeeee e 109
Advice for Library AULNOIScooiiiiie et 112
Converting EXisting LIDIaIEScccoiviieieinisiesesese s 113
Chapter 7

Program CONtrolciiiiii e 115
Overview of Program CONIOlcceeceeieeieiie s see e see e se s e e s e s e e sseeneee e 116
COMPOUNG SEBEEMENTScueeuiriiieieieeieree sttt s et b e e e b sne e 118
IF.. THENLLELSE ..ottt ettt et 121
CASE .t 123
SWITCH ettt b et ne et e bt et b e b s 125
CASE VErSUS SWITCH ..ottt s 126
FOR...DO et bbbtttk b et b et e st e bt nnas 129
REPEAT..LUNTIL oottt 134
WHILE...DO ..ottt ettt 135
JUMP SEBLEMENTSveiieeiie ettt et et e s e eneesseesreesneesnaesrenns 137
Definition of True and FalSeoovieeeee e 140
Chapter 8

Debugging and Error-Handlingcceeeiiiiiiiiiiiiieeeeeeee 143
Debugging and Error-Handling OVENVIEWc.ccveieierieie e 144
What Happens When EXECULION SEOPSc..eeeereriiiee e 145
Working With BreakpOintScccceceeiiiiiiieeeie e seeeesee s ste st eree e s sre e e s s 147
Stepping Through @Programcoooeiiieeeeee e 151
Monitoring Variabl@ VAIUEScceceeiiiiieeee ettt sne s 153
Correcting Errors DUNNg EXECULIONcc.oouieieiieeeee e 158
Obtaining Traceback INfOrMELIONccceciiieieeriieceee et 159
Controlling and Recovering from EITOrSccooiieiierere e 160
Creating CUSLOM EFror MESSAJESccceevuerviiiieieriesiesteeiiesestesreeaestesreseessessessessenseseesnes 162
NOLiIfYiNg the USEr OF EITOISoiiieeee sttt nneas 164
IMBEN EITOTS ..ot ettt s a e 165

Building IDL Applications Contents

Chapter 9

Building Cross-Platform Applicationscccccvvviiiiiiiicciiie e, 171
Overview oOf Cross-PlatfOrm ISSUEScc.ccveirireieiririesie e 172
Which Operating System iS RUNNING?ccoiiiieieiesieere e 173
File and Path SPECITICAtiONScccccviiieeiee s 174
LTSS I L S 176
= o= o o] < U 178
Responding to Screen Size and COIOrSc.oovieeieiinineee et 179
11T o 180
SAVE aNd RESTOREooiiiiieietisiesieeee st e et se et saesaesessessessensnsenes 181
Widgets in Cross-Platform Programscccceceeeere e 182
USING EXEINEl COUReeeeeeeiieieiee ettt see e enes 185
DL DELAIMINET ISSUESeoverieneeiiriesieseeiesiestesee e st see s st s sse b st e e ese st sseeesesnes 186
Chapter 10

Writing Efficient IDL Programscccovoooiiiieeeeeicceeeceeeviiene s 187
Overview of Program EffiCIENCYcccvivvirieicecce e 188
Use Vector and Array OPEIAtiONSccceevueerieerieeiesiieseeseeseesessesssesssesssesssesssesssessseens 190
Use System Functions and PrOCEAUIESccccevererieireneniesieiee e 193
YT 0= 1Y = 0 T 194
THe IDL COUE PrOfIEN ...vvieeeeiee ettt eneas 199
Chapter 11

Multithreading N IDLccooiiiiiiiiiieeeee e 205
The IDL Thread POOIccoeiiiieieieese ettt nne s 206
Controlling the IDL Thread POQIcccooeeiiiiiiciese e 209
Routines that Use the Thread POOIcocoreiiiieieeeeeeee e e 215

Part Il: Components of the IDL Language

Chapter 12

EXPressions and OPEeratorsSeeeeeeiiiiiiiieeeeieee e 221
Overview of EXpressions and OPEratorscccerereriererereseseesesesee s seeeesenns 222
MathematiCal OPEIELOISccceceiieiiriee e see e s e s e eeste e sre e s e e te et e eeeeesneesnnesneesnee e 223
Minimum and Maximum OPEIELOISc.cceeererereeierrerieniereeesseseseeeeesee e seesessesseseenes 229
= (D@ = = o = 231
(oo [or= I @] 1< = o £SO P R P PRSPPI 233
TS SX @ 1= = (0] £ 236

Contents Building IDL Applications

REIatioNal OPEIELOISccvecvieeeiiiieiteeeste ettt et e et st e e e stesbe s e e e sresresraenneseenreas 240
Assignment and Compound ASSIGNMENToieeeierere e seeeeeeens 243
(@1 01C GO o= = (o] (= ST 246
(@ 0c = o gl 1= o= L= oo T 249
Chapter 13

Working with Data in IDLcoooviiiiiiiiciiiie e 253
D = R Y == TSP 254
Data Type and Structure of EXPreSSIONScccoeerererieneeesesieseeseeese e seeseeesseseessenens 258
DAt/ TIME DELAeceeeeiiieieeeieee ettt s e st b s eseestesneenseseesaeas 261
Defining and USING CONSEAINEScccvvereirierierieieesiesiesieseee e s seesenens 265
Accuracy and Floating POINt OPErationscccevveeveerieesieeseeseeseesreeseeseeeseesseessesneens 272
Type CONVErSiON FUNCLIONScccueiuirieieieesiesie ettt 275
RV = = =T 278
SYSEEM VATADIES ...t 280
Chapter 14

Y] Lo PR PR TRTPPP 281
OVENVIEW OF SITNQGS ...ttt e n e nene e 282
S g1 0o @] o= = 1o LS 283
Non-string and NON-SCalar ArQUIMENESc.eeierrreeeeeene e eeesee e see e seeeneeeeseesneas 284
S T a0 @0 g 0r= 1= g = 1o L P 285
UsiNg STRING t0 FOrMat Dataccovevierieeeeeiee e eieie et eee e nnea 286
Byte ArgumentS @and SEHNGSvocveieeieresie et sresneas 288
(0= S o] o[o T 290
LAY RS o= o= 291
Finding the Length of @ StNGeoeeereii e 293
U 015 T 0T 1P 294
Splitting and JOINING SEHNGS ..eoveriieeeeee e e e neeseeenes 297
(O0 001072 T a0 TS 1 e P 298
NON-Printing CharaClersooiieieeeerere et see e sneeeesee e 302
Learning About Regular EXPrESSIONScceeveeieieieeeesieseseeseessesresseessesresresseessessesnens 303
Chapter 15

N = | TP PPPPRUPPPIPPIN 307
OVEIVIEW OF ATTAYS ..eeeeeieeeieeeeeeesie sttt esee sttt e e e te e e eeseeseeeseeeesbeseesneeneessessesneenseseeanas 308
Understanding Array SUDSCHPLS ..ecvvcvecieiieieciere et e ettt nesresneas 312

Building IDL Applications Contents

Assignment OPerations @A ATTAYScceeeeriereirieeesesie e eeesee e e s sae e sressaesesresreeneas 316
Using Scalar Values @S SUDSCIIPLScoverveeeieriinieseeeeesiesrese e 318
USING ATTayS 8S SUDSCIIPLS ..voviiviieieiiesiesieeiee e sttt sttt sttt b e snesresneenes 320
Conditionally Altering Array EIEMENLSooceiieriiiieeeeese e 323
U101 o] 0 B = 110 1= 325
AVO0id USiNg RANGE SUDSCIIPLSveeieiiiieeeeienie st eee et eee et neenee e sneeneas 329
COMDINING SUDSCIIPLS ...veeuieiiieiceetese st eee ettt st se et s ne e snesresreensesens 330
=TT o0 = g To N 1 = YA 332
Columns, RowWs, and Array MaJOritycccceeveeriiiiierie e ceeee e 338
Chapter 16

SETUCTUIES ettt e e e e e e e eenaanns 343
OVENVIEW O SITUCIUIES ...ttt sttt sne e e e e nnenneens 344
Creating and DefiNiNg SLIUCLUIESc.cocueiiiieriie e see e e ee e e sreesre e steenee e e e 345
SETUCIUNE REFEIEINCESoveeieie ettt e st snesre e e e ntennenneens 348
USINg HELP With SETUCIUIESeeie ettt 350
Parameter Passing With SETUCIUIESocueiiiiinereeeeesie e s 351
ATTAYS OF SLIUCLUIES ...ttt ettt e e te st s ne e sneesneesneeenee e 353
SruCtUre INPUL/OULPULcoveeiieerieete ettt s en e e 355
AdvanCed SITUCIUIE USBJEccoveeiieeiiese ettt et esneesreesnee e 358
Automatic Structure DEfINITIONcovieeeeee e e 360
Relaxed Structure ASSINMENTociiieriee e e e e e sreesnee e 362
Chapter 17

o T =] RS 365
OVENVIEW OF POINTEISoviiiiitiieeeieeie ettt b e e 366
HEAD VAITADIES ... e 367
Creating HEap VariablEScov ittt 369
Saving and Restoring Heap Variablesccoov oo 370
Pointer HEap Variallesccvciieie ettt 371
IDL POINLESeeeiiieieeeieesiestee e ste sttt e e ste st s e e e e eesee e e e seeseeeseeneeneesaeeneensesesaeeneensessesnnenen 372
(@ 01c = (o]0 1Y 0] g1 =011 01 (= £ 375
Dangling REFEIENCESooueeiiiiee ettt e enes 379
Heap Variable LEAKAJEccviviieiiee ettt sttt 380
Lo TH 10 V=T [R 382
= L aTo o] 1 = £ 383
POINEEr EXAMPIES ...ttt ettt e e e e e eneenes 384

Contents Building IDL Applications

Chapter 18

Files and INPUL/OULPUL ...ccooeiiiieeeeeeee e 389
OVENVIEW OF FIIE ACCESSveiiiiiieieeiesie ettt 390
Formatted and Unformatted INPUY/OULPULccceoeeiriineieeeecneseeees e 392
(@7 0= o110 1 T - 395
L@ o= oo 1 =T 396
UNderstanding (LUNS) ..vocveceeece sttt st nresne s 397
Returning Information About aFile UNitccoooiiiiiiieee e 400
File UNnit ManipUIAtioNSccviieieie ettt sttt st naesreeneas 403
Reading and Writing Very Large Fil€Sooe oot 405
Using Free Format INPULY/OULPULc.eeveiieiiecieie ettt sresneas 407
Using Explicitly Formatted INPUL/OULPULocueeeererereeee e 412
FOIMAEL COUBSvotiieieieeiesieie ettt st b e sttt be b 417
Using Unformatted INPUE/OULPULccoiireeee e eeeas 454
Portable Unformatted INPUE/OULPULceveierieeeeeeiese et s 461
ASSOCiALe INPUL/OULPUL ...ttt see e ene e ee e e eeessesne e 466
File Manipulation OPErationsc.cevereeerineneneeesese s s sse e 472
Reading and Writing FORTRAN Dataccccceoiiieieiese e 473
Platform-Specific File /O INfOrMationccooeveirenenneese e 477
Chapter 19

Using Language Catalogs ...ueeeeeeiiiiiieeaieieeiieeceiiieeeee e 479
What IsaLanguage CatalOg?cocuverueeeinirierieieie s 480
Creating aLanguage Catalog FIleccoveieiiiii i 4381
Using the IDLFFLANGCEE CIESSccvirieerierierierieesiesiesie et 484
RVAV T [o e B e o o =SS 487
Chapter 20

Using the XML Parser Object Class ... 491
ADBOUE XIML ottt 492
USING the XIML PaISEN ..ottt teeneeneeneenneas 494
Example: Reading Data INt0 @n ATTAYeceeeeeieieceeiese et ste e s eneas 499
Example: Reading Data INt0 SEIUCLUIEScceeiuriieeeiee e 506
Building Complex Data SETUCLUIEScc.coueeieeieie e e eeere e eeeee e sre e ae e resreenesresneas 513

Building IDL Applications Contents

10

Chapter 21

Using the XML DOM Object ClaSSeScccovvvviiieeeeeiiiiciiiei e 515
About the Document ObJECt MOELcceeviiiiiieeeecec e 516
About the XML DOM ODJECE CIASSEScoururueueiririririeineresieseeseseses e sesesesssssnesessssesens 519
USING the XML DOM ClaSSESccceevieriiitieiiesiesieseeteeste st ste e e te s e seessestessesaesaeseesneenes 526
Tree-Walking EXAMPIEc.ooeeeee e eneas 532

Part Ill: Creating Applications in IDL

Chapter 22

Creating IDL PrOJECTS ..ooiiiiiiiieii et 537
OVENVIEW OF IDL PrOJECESocveueeeeieeiirieieeeiest sttt en e e 538
Where to Store the Filesfor @Projectcoovveriieiie i 542
Creating @ PTOJECE ...o.iiveieieeiesteeeeeeie ettt b e b e 544
Opening, Closing, and SavinNg ProjECESccoviiiiereie e 546
MOodifying ProjECt GIOUPSccceieeiieiiiiteeiesie st st etee e st sttt sttt sre s snesresneenes 547
Adding, Moving, and RemMOVING FIlEScoviiiiee e 549
Working With FII€SIN @PrOJECcccviieieeie sttt 553
Setting the OptioNS fOr @PIOJECEcceiieieeee e 557
Selecting the BUild OFEY ..ot 560
Compiling an Application from @Projectccoceoeiiieeiere e 562
(2 TU TN o g To = 0= U 563
Running an Application from @ Projectccoceoeriiieiere e 565
(o To (L aTo = W = AU 566
Chapter 23

Providing Online Help For Your Applicationccccceeeeiiiinnninnenennn. 573
Overview of Creating Application HEIPcooeiiiiee e 574
Providing Help Within the User INterfaceccooevvviiicce v 575
Displaying TEXE FIlESc.coiiiieeeeeeee e 578
USING @N EXTErNAl VIBWELo.viieiceee sttt sttt e 579
About IDL’SONINE HEIP SYSIEIM ... 580
Using Other Online HEIP VIBWESSc.oiveeieie ettt 591
Chapter 24

Distributing Runtime Mode Applicationsccccvvviiiiiiiiiiiiiiieeeeeee, 597
What Isan IDL Runtime Maode AppliCation?ccceeeeeiiesenieesese e 598
Limitations of RUNtime APPlICALIONScccveieeieereerecsee e 601

Contents Building IDL Applications

Steps to Distribute a Runtime AppliCationcccvieeceiiie e 602
Preferences for RUNtime APPlICALIONSceeieirie e 603
RUNGIME LICENSING ..ottt st e st st sresteeneennenrenneas 607
EmbBDedded LICENSING ...ooiieeieeeeeeee ettt sttt st eneeseenneas 611
Creating an Application DiStriDULIONccocceiiiiiicese e 612
Starting a RUNtIME APPLICALTIONooveieeiieie e 619
INstalling Y our APPHCALIONcoeeeeeiece et 623
Incorporating the IDL DataMIiNErc.ooiiieieieneeeee e 624
Chapter 25

Distributing Virtual Machine Applicationsccccccvvvviiicccicceneennn. 625
What IsaVirtual Machine AppliCaIONTccceeveeieereese e 626
Limitations of Virtual Machine AppliCationscoereierinenenierese e 627
Steps to Distribute Y our APPIICALIONc.ccceeiriiiiir e 628
Preferences for Virtual Machine AppliCationsccoeveerinenenenese e 629
Creating Application SAVE FIIESoccv it 631
Starting a Virtual Maching ApPliCaLIONccooeieierinereere e 633
Installing the IDL Virtual MaChingcccceeeviirie e ete et e s 637
Installing Your Virtual Machine AppliCationc.ccocevereirieneneneere e 639
Distributing Y our Application on @CD-ROMcccccceiiiiiivien e 640
Chapter 26

Distributing Callable IDL ApplicatioNsSccccceeeeeeiiieeeieeiiiieee e 647
What Isa Callable IDL APPlICAHIONTcooiiiiererierieee e 648
Limitations of Runtime Mode Callable IDL Applicationscccccoovreeiernseeeecesieeens 649
Steps to Distribute a Callable IDL APPlICALionccceeeeveie e 650
Preferences for Callable IDL APPliCALIONSccooveeeeiieieeee e 651
RUNLGIME LICENSING ..ottt st s sresteeneennenrenneas 652
EmDedded LICENSINGooveiieeeeesee ettt sttt seesneeneeneenneas 653
Creating an Application DiStribDULIONccooceiiiiiecese e 655
Starting a Callable IDL APPIICALIONoocueiiieieieereeee e 658
Installing Your Callable IDL APPlIiCALIONcceiveieeeie e 659
Chapter 27

Distributing ActiveX Applicationsccccoveiiiiiiiiiee 661
What [san ActiveX ApPPliCaLIONTccooiiiieeeee e 662
Limitations of Runtime Mode ActiveX ApPPlICaLioNSccccveveeveieiiece e 663

Building IDL Applications Contents

12

Steps to Distribute an ActiveX AppliCatioNccccceiieieieece e 664
Preferences for ActiveX APPliCALIONSccooiiieieiirireee e 665
RUNEIME LICENSING ..ottt sttt sttt sne e e snesresnnenes 666
[STpgleT=e (o S'o l I Lot 01 1 o RS 667
Creating an Application DiStriBULIONcccceiiiiiieiecc e 669
Starting Your ACtiVeX APPIICALIONcoeeieiiiieeiere et 670
Installing Your ActiveX APPliCALIONcccccveeiiiiiceese e 671

Part IV: Creating Graphical User Interfaces in IDL

Chapter 28

Creating Widget ApplicationSccooviiiiiiiiiicciccee e, 675
User Interface OPtioNS TN IDLocviiii et 676
ADOUL WILGELS ...ttt 678
ADOUt Widget APPlICALIONScooiviieeeieriisieseee e 679
TYPES OF WILGELS .ottt sttt esaesreeneas 680
Widget Programming CONCEPLScceierrereeirrerierieeeessessesseesre e s s e esesnesnennas 682
Example: A Simple Widget APpliCaHIONccccveeeveiiiiiiie e 685
Widget Application LITECYCIE ..o 687
Manipulating WIAQELSoceiueeeie ettt st ne e 690
WOrKing With WiIdQEL IDSooveeeeeeeee ettt eneas 695
WiAQEL USEN VAIUES ...ttt ettt sttt st saesreennas 697
Widget EVENE PrOCESSINGveiveiveeeieieriesieeeeriesie st e ettt seeseeseeseeeneeeeseesreeneenseseesneeneas 698
Example: Event Processing and USer ValUEScccovvveevevececeece e 704
Managing APPliCatioN SEALEcooeeieiiieeere et 706
Creating a Compound WIAGELceeveieiieeeece et 710
Example: Compound WIGGQELccooeiiieeere et 713
Debugging Widget APPlHICALIONSccvivieierie et 717
Chapter 29

Using the IDL GUIBUIIAErcoovuiiiiiiiiiiee e 719
Overview Of IDL GUIBUIIAENcccociiiirereeeereeeeeesie e 720
Starting the IDL GUIBUIIAEr ocueeeece e 722
Creating an Example APPHICALIONooiiiiieeee e 724
IDL GUIBUIIAEN TOOIS ..ottt 735
Using the PropertieS DIidlOgcccooeeereeierise et nee e 740
USING the WIdQEL BIOWSES ..ottt sttt sne e 743

Contents Building IDL Applications

USING the MENU EITOroceeeieeceeee ettt st sne s 745
Using the BitMap EQITOrc.ooiiiiieee et 749
USING the TrEE EQITOr ...cviviceeee ettt et srenre s 752
Widget OPEIrationSccooceeeieiiieeeeiee st e et esaeseesteeneesaeseesreeeensesneens 754
(€T aTc s L gTo T =SSP 757
IDL GUIBUIlAEr EXAMPIESoviieciieeeieeerie et 759
WidQEt PrOPEITIEScviieieeceeee et st ettt r e s e e b ne e 773
Chapter 30

Widget Application TEChNIQUEScooeeeiiiiiiiiiiiieeeeeeee e 775
Working With Widget EVENESccoiiiiienieeeree e 776
Using Multiple Widget HIErarChi€sccccccviivieriie et ee e e 781
Creating MENUSoouiiiiiiieiritste ettt et b et b e e e b b e e 784
RVAY T Lo = S 4 o RS 796
Tipson Creating Widget APPlICALIONScoeiireeieeiriererieeees e 802
USING BULON WIAGELSveeiececece ettt e e 804
USING DIraW WIGGELSooviiiieieiesieriee ettt 809
Using Property Sheet WIAQELSoccvveiriie ettt 817
USING TADIE WILGELS ...ttt 842
USING TaD WIAGELS ...oeeeeeece et e sttt ne e ne e e 860
USING TIrEE WITGELSeeeeiiieieeieete sttt 865
Enhancing Widget Application USabilitycccccieierieeiicieese e e 869
1o 1= S 885

Building IDL Applications Contents

14

Contents Building IDL Applications

Part |. Application
Programming

Chapter 1
Overview of IDL
Applications

This chapter includes information about the following topics:

What isan IDL Application?............ 18 About Building Applicationsin IDL

Building IDL Applications

17

18 Chapter 1: Overview of IDL Applications

What is an IDL Application?

We use the term “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the very
simple (aMAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing asmall program to analyze asingle data set or a
large-scale application for commercial distribution, it isuseful to understand the
programming concepts used by the IDL language.

Can | Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and otherswho use IDL. (If you intend to distribute your applications, it is a good
ideato avoid any code that depends on the qualities of a specific platform. See
“I'VERSION” in the IDL Reference Guide manual and “ Tips on Creating Widget
Applications’ on page 802 for some hints on writing platform-independent code.) Of
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have accessto an IDL license.

If you would like to distribute your I DL application to people who do not have access
toan IDL license, you have several options. Many IDL applications will run in the
freely-available IDL Virtual Machine. If your application uses features not available
in the virtual machine, you may wish to consider aruntime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. See Chapter 24, “ Distributing Runtime Mode Applications’ for a
complete discussion of the different ways you can distribute an application written in
IDL.

What is an IDL Application? Building IDL Applications

Chapter 1: Overview of IDL Applications 19

About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL isatime-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

IDL isacomplete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

IDL’sflexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including
BMP, JPEG, and XWD) and scientific data formats (CDF, HDF, and
NetCDF).

IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

IDL programs run the same across all supported platforms (Microsoft
Windows and awide variety of Unix systems) with little or no modification.
This application portability allows you to easily support avariety of
computers.

Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine”.

Building IDL Applications About Building Applications in IDL

20 Chapter 1: Overview of IDL Applications

About Building Applications in IDL Building IDL Applications

Chapter 2

Creating and Running
Programs in IDL

The following topics are covered in this chapter:

Overview of IDL Program Types 22
Creating SMAINS$ Programs 24
About Named Programs 27
CreatingaSimpleProgram 28
Running Named Programs 29
Compiling Your Program 31

Building IDL Applications

Making Code Readable
Maximizing the Editor’'s Capabilities.
Command Line Tipsand Tricks
Recording IDL Command Linelnput
Interrupting or Aborting Execution
For More Information on Programming . . .

21

22

Chapter 2: Creating and Running Programs in IDL

Overview of IDL Program Types

In addition to being a useful interactive data analysistool, IDL is a powerful
programming language. Many of IDL’s programming language features and
constructs can be used either interactively at the IDL command line or as part of a
larger program — which can itself be invoked at the IDL command line or by other
programs. A program may or may not be compiled before execution. The type of
programs you usein IDL will depend upon your tasks.

Program Type

Description

iTools State File
(.isv)

Restore or share an i Tools session — you can save the current
state of aniTool asan iTools Sate (*.1sv) file. Whenever you
close an iTool window, you are prompted to save the current
state asan *.isv file so that you can return to the current state
of the data later when you open the *.isv file. Other IDL
users running the same version or a newer version of IDL can
open *.isv files. TheiTool State file includes the data
visualized at the time it was created. Thereis no need to
provide a separate data file to support the visualization. See
theiTool User’s Guide for details.

SMAINS$
Program

Repeat a series of command line statements or interactively
change variable valuesin aprogram file. These short programs
or procedures are called $SMAINS$ (main-level) programs.
They are not explicitly named, and cannot be called from other
programs. See “ Creating SMAIN$ Programs’ on page 24 for
details.

Named Program
File (.pro)

Create programs and applications — you can create programs
for data analysis or visualization using one or more named
programfiles (*.pro). Program files are created in the IDLDE
Editor window or atext editor of your choice. See “About
Named Programs’ on page 27.

Overview of IDL Program Types

Table 2-1: IDL Program Types

Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 23

Program Type Description

Batch File Automate processing tasks — you can automate routine or
lengthy processing tasks using a batch file, which contains one
or more IDL statements or commands. Each line of thefileis
read and executed before proceeding to the next line. See
Chapter 3, “Executing Batch Jobsin IDL” for additional
information on batch files.

SAVE File Share programs and distribute applications— you can create a
(.sav) SAVE file containing data or named program filesto share
with other users who may or may not have afull IDL
installation. See Chapter 4, “Creating SAVE Files of Programs
and Data” for details.

Table 2-1: IDL Program Types (Continued)

Building IDL Applications Overview of IDL Program Types

24 Chapter 2: Creating and Running Programs in IDL

Creating $MAINS$ Programs

A $MAINS (main-level) program can be created in two ways:. at the command line
and in atext editor. You typically create a$MAIN$ program at the IDL command
line when you have afew commands you want to run without creating a separate file
to contain them. Creating a$ MAIN$ program in atext file allows you to combine
the functionality of named procedures and functions with the ability to have
command line access to variable data that is defined in the $SMAIN$ scope.

$MAINS programs are not explicitly named; they consist of a series of statements
that are not preceded by a procedure (PRO) or function (FUNCTION) heading. They
do, however, require an END statement. Since there is no heading, the program
cannot be called from other routines and cannot be passed arguments. When IDL
encounters a main program either as the result of a . RUN executive command, or in a
text file, it compilesit into the special program named sMATNS and immediately
executes it. Afterwards, it can be executed again using the . co executive command.

Creating a $SMAINS$ Program at the Command Line

To create a$MAINS level program at the command line, start IDL and complete the
following steps:

1. Initializeavariable. At the IDL command line, enter the following:
A =2

2. Designate a command line $M AIN$ program. Enter .RUN at the IDL
command line:

.RUN
The command line prompt changes from IDL> to -.

3. Enter the program statements. Create a $SMAINS level program consisting
of the following statements:

A=A * 2
PRINT, A
END

The $MAINS program isimmediately compiled and executed when you enter
the END statement. IDL prints 4.

4. Re-executethe SMAIN program. Enter .GO at the IDL command line:
.GO

The $SMAINS program is executed again, and now IDL prints 8.

Creating $SMAIN$ Programs Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 25

Creating a $SMAINS$ Program in a Text File

When you create a SMAINS$ program in a named text file, you can execute the
program and have command line access to variables. Thisis an easy way to run and
test various variable values without having to modify the code and rerun the entire
program, or set breakpoints. The following example allows you to

1. Createthe SMAINS$ program file. Enter the following into the Editor
window. This example consists of afunction that modifies the image data, and
a$MAINS program. The SMAIN program displays the original image, solicits
athreshold value, passes this to the function, and displays the new image data:

FUNCTION stretchImage, img, value

; Stretch image by input amount.
image = img > value
RETURN, image

End

; --- Begin $MAINS program.---------------------
; Display the image, solicit threshold value and
; display new results.

; Set up display.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, O

; Access image data and display.

img = READ PNG(FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'l))

dims = SIZE(img, /DIMENSIONS)

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]

TVSCL, img

; Ask for a threshold value and stretch image.
READ, threshold, PROMPT='Enter Numerical Value: '
newImg = stretchImage (threshold, img)

; Display the results.
TVSCL, newImg

END

2. Savethe$MAINS$ program. Savethefileasinteractivestretch.pro. It
isimportant to note that a SMAINS program is not given aname that is the
same as any internal procedures or functions.

Building IDL Applications Creating $SMAINS$ Programs

26 Chapter 2: Creating and Running Programs in IDL

3. Runthe$MAIN program. Typethe following at the command line to run the
program:

.RUN interactiveStretch.pro

This compilesinternal functions and procedures, and executes the SMAIN
program. The command line prompt changes from IDL> to -.

4. Enter athreshold value. Enter 67 (or any value between 0-255) at the
command line and press Enter. This scales the image so that the remaining
pixel values are stretched across al possible intensities (0 to 255).

5. Test another threshold value. Enter .GO at the IDL command line:
.GO

Enter adifferent value and press enter to see the results. These two final steps
can be repeated as many times as you like.

Creating $SMAIN$ Programs Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 27

About Named Programs

Longer routines and programs, consisting of more than afew lines, are typically
given their own explicit names, allowing them to be called from other programs as
well as executed at the IDL command line. Named programs are stored in disk files
created using atext editor. The IDL Development Environment includes a built-in
text editor, but any text editor can be used to create named IDL programs. Files
containing IDL programs, procedures, and functions are assumed to have the
filename extension .pro.

Note
Although any text editor can be used to create an IDL program file, the IDL Editor
contains features that simplify the process of writing IDL code. See “Maximizing
the Editor’s Capabilities’ on page 36 for details on using the IDL Editor.

Most IDL applications consist of one or more IDL procedures, functions, object
definitions, and object method routines:

e Procedures— aprocedure is a self-contained sequence of IDL statements
with an unique name that performs awell-defined task. Procedures are defined
with the procedure definition statement, PRO.

¢ Functions— afunction is a self-contained sequence of IDL statements that
performs a well-defined task and returns a value to the calling program unit
when it is executed. Functions are defined with the function definition
statement, FUNCTION.

¢ Object definitions— an object definition describes an IDL object, which can
encapsul ate both instance data and method routines. For additional
information on IDL’s object-oriented programming features, see Chapter 1,
“The Basics of Using Objectsin IDL” in the Object Programming manual.

¢ Object methods — these routines are procedures and functions that act on
object instance data. See “Acting on Objects Using Methods” in Chapter 1 of
the Object Programming manual for additional information.

See the following section for a simple procedure that calls afunction. See Chapter 5,
“Creating Procedures and Functions” for details on creating and calling procedures
and functions, defining argument and keyword parameters, and using keyword
inheritance.

Note
See Chapter 6, “Library Authoring” for information on procedure naming.

Building IDL Applications About Named Programs

28

Chapter 2: Creating and Running Programs in IDL

Creating a Simple Program

In this section, we'll create asimple “Hello World” program consisting of two . pro
files. Start the IDLDE and complete the following steps.

1

Open anew Editor window. Start the IDL Editor by selecting File — New or
clicking the New File button on the toolbar.

Create a procedure. Type the following in the IDL Editor window:

PRO hello main
name = "'
READ, name, PROMPT='Enter Name: '
str = HELLO_ WHO (name)
PRINT, str
END

Savethe procedure. To save thefile, select File — Save or click Save button
on the toolbar. Save the filewith thenamehello main.prointhemain DL
directory (which the Save As dialog should already show).

Create a function. Open anew Editor window by selecting File — New, and
enter the following code:

FUNCTION hello who, who
RETURN, 'Hello ' + who
END

Savethefunction. Savethefileashello who.pro inthemain DL
directory. This simple program, consisting of a user-defined procedure, callsa
user-defined function.

Compilethe programs. Compilehello main.proandhello who.pro
programs by selecting Run — Compile All.

Note
You can also type . COMPILE hello who.pro, hello main.pro atthe
IDL command prompt to compile the files. With functions, the compilation
order does matter. See “ Compiling Your Program” on page 31 for details.

Run the program. Select Run — Run hello_main.

Enter a name. Type aname at the IDL command line, which now reads
“Enter Name” and press the Enter key. This passes the text to the function
hello who. The“Hello name” string is returned to the procedure and printed
in the Output window.

Creating a Simple Program Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 29

Running Named Programs

IDL program files, identified with a . pro extension, can be compiled and executed
using the following methods:

¢ Running Programs Using the IDLDE Interface
¢ Running Programs From the IDL Command Line

* Running Programs Using Executive Commands
Running Programs Using the IDLDE Interface

To run an IDL program using the IDLDE interface, do the following:

1. Openthefileinthe IDLDE editor. For example, select:
File - Open — RSI\IDL 62\examplesidemo\demosr c\d_uscensus.pro

2. Compilethefile by selecting Run — Compile filename

where filename is the name of the file opened in the IDLDE editor
(d_uscensus.pro, inthisexample).

3. Executethefile by selecting Run — run filename

where filename is the name of the file opened in the IDLDE editor
(d_uscensus.pro, in this example).

Running Programs From the IDL Command Line

When afileis specified by typing only the filename at the IDL prompt, IDL searches
the current directory for filename.pro (where filename is the file specified) and then for
filename.sav. If no file is found in the current directory, IDL searchesin the same way
in each directory specified by !PATH. If afileisfound, IDL automatically compiles
the contents and executes any functions or procedures that have the same name as the
file specified (excluding the extension). See “Automatic Compilation” on page 31 for
additional details.

Using the previous example, run the US Census Data demo by entering the following
at the command line:

d_uscensus

Building IDL Applications Running Named Programs

30 Chapter 2: Creating and Running Programs in IDL

Running Programs Using Executive Commands

When afileis specified using either the .RUN, .RNEW, .COMPILE, or @ command
followed by the filename, IDL searches the current directory for £i1ename.pro
(wherefilenameisthefile specified) and then for £i1ename.sav. If nofileisfoundin
the current directory, IDL searches in the same way in each directory specified by
IPATH. If afileisfound, IDL compiles or runs the file as specified by the executive
command used. Executive commands can be entered only at the IDL command
prompt, and are often used when executing $SMAIN$ program files. See “About
Executive Commands’ on page 44 for more information.

If you are compiling files that do not exist in your path, make sure to compile
functions before procedures. This keeps IDL from misinterpreting afunction call as
subscribed variable or array definition. See “Compiling Your Program” on page 31
for details.

Warning
If the current directory contains a subdirectory with the same name as filename, IDL
will consider the file to have been found and stop searching. To avoid this problem,
specify the extension (. pro or . sav, usually) when entering the run, compile, or
batch file executive command.

The details of how 'PATH isinitialized and used differ between the various operating
systems, although the overall concept isthe same. See“!PATH” in Appendix D of the
IDL Reference Guide manual for more information.

Running Named Programs Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 31

Compiling Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (afunction or procedure built into IDL, such asiPLOT) is called, either from
the command line or from another procedure, IDL already knows about this routine
and compiles it automatically. When a user-defined function or procedureis called,
IDL must find the routine and then compileit. Compilation can be either automatic or
manual, as described below.

Warning

User-written functions must be defined before they are referenced, unless they:

1) Existinthe IDL 'PATH.

2) Existina . pro file named the same as the function.

3) Arereserved using the FORWARD_FUNCTION statement.
Thisrestriction is necessary in order to distinguish between function calls and
subscripted variable references. See “About Calling and Compiling Functions’ on
page 83 for detalls.

Automatic Compilation

When you enter the name of an uncompiled user-defined routine at the command line
or call the routine from another routine, IDL searches the current directory for
filename.pro, then filename. sav, where filenameis the name of the specified
routine. If no fileis found in the current directory, IDL searches each directory
specified by 'PATH. (For more on the IDL path, see“!PATH” in the IDL Reference
Guide manual.)

If no file matching the routine nameis found, IDL issues an error:
% Attempt to call undefined procedure/function: 'routine'
where routine is the name of the routine you specified.

If afileisfound, IDL automatically compilesthe contents of the file up to the routine
whose name matches the name of the file (excluding the suffix), and then executes the
routine. If the file does not contain the definition of aroutine whose name matches
the name of thefile, IDL issues the same error as when the no file with the correct
name s found.

For example, suppose afile named proci . pro contains the following procedure
definitions:

PRO procl
PRINT, 'This is procl!'

Building IDL Applications Compiling Your Program

32

Chapter 2: Creating and Running Programs in IDL

END

PRO proc2
PRINT, 'This is proc2'
END

PRO proc3
PRINT, 'This is proc3'
END

If you enter proc1 at the IDL command line, only the proc1 procedure will be
compiled and executed. If you enter proc2 or proc3 at the command line, you will
get an error informing you that you attempted to call an undefined procedure.

In general, the name of the IDL program file should be the same as the name of the
last routine within the file. Thislast routine is usually the main routine, which calls
all the other routines within the IDL program file (or, in the case of object classes, the
class definition). Using this convention for your IDL program files ensures that all
the related routines within the file are compiled before being called by the last main
routine.

Program fileswithin the IDL distribution use this formatting style. For example, open
the program file for the XLOADCT procedure, x1oadct .pro, inthe IDL Editor.
Thisfileisinthe1ib/utilities subdirectory of the IDL distribution. Thisfile
contains several routines. The main routine (XLOADCT) is at the bottom of thefile.
When thisfile is compiled, the IDL Output Log notes all the routines within thisfile
that are compiled:

IDL> .COMPILE XLOADCT

Compiled module: XLCT PSAVE.
Compiled module: XLCT ALERT CALLER.
Compiled module: XLCT SHOW.
Compiled module: XLCT DRAW CPS.
Compiled module: XLCT_TRANSFER.
Compiled module: XLOADCT_EVENT.
Compiled module: XLOADCT.

Note that the main XLOADCT procedure is compiled last.

Tip
When editing a program file containing multiple functions and/or proceduresin the
IDL Editor, you can easily move to the desired function or procedure by selecting

its name from the Functions/Procedures Menu. See “ Navigating Among Procedures
and Functions’ on page 36 for more information.

o°

o°

o° o o o

o°

Compiling Your Program Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 33

Manual Compilation

There are several ways to manually compile a procedure or function.

*+ Usethe .COMPILE executive command at the IDL command line:

.COMPILE myFile

where myFileisthe name of a . pro file located either in IDL’s current
working directory or in one of the directories specified by 'PATH. All the
routines included in the specified file will be compiled, but none will be
executed automatically. If you are using the IDL Devel opment Environment,
the . pro file will also be opened in the IDL Editor.

» Ifthefileisopeninthe IDL Editor, select Run — Compile or click the
Compile button on the toolbar. All routines within the file will be compiled,
but none will be executed automatically.

¢ Usethe .RUN or .RNEW executive command at the IDL command line;
.RUN myFile

where myFileisthe name of a . pro file located either in IDL’s current
working directory or in one of the directories specified by 'PATH. All the
routines included in the specified file will be compiled, and any SMAINS$ level
programs will be executed automatically. If you are using the IDL
Development Environment, the . pro file will aso be opened in the IDL
Editor.

¢ Usethe .RUN, .RNEW, OF . COMPILE executive command with no filename
argument. Invoking any of these executive commands with no filename allows
you to interactively create and compile a $SMAINS level program. See
“Creating $SMAINS Programs’ on page 24 for additional details.

Note
Only . pro files can be compiled using the manual compilation mechanisms.
Attempting to compile a SAVE (. sav) file using one of these mechanisms will
result in an error.

In the “Hello World” example shown in “Compiling Your Program” on page 31, we
have a user-defined procedure that contains a call to a user-defined function. If you
enter the name of the user-defined procedure, hello main, a the command line,
IDL will compile and execute thehello main procedure. After you provide the
requested input, acall to thehello who function is made. IDL searches for

hello who.pro, and compiles and executes the function.

Building IDL Applications Compiling Your Program

34 Chapter 2: Creating and Running Programs in IDL

Compilation Errors

If an error occurs during compilation, the error is reported in the Output Log of the
IDLDE. For example, because the END statement is commented out, the following
user-defined procedure will result in a compilation error:

PRO procedure_without_ END

PRINT, 'Hello World'

; END
When trying to compile this procedure (after saving it into afile named
procedure without END.pro), you will receive the following error in the IDL
Output Log:

IDL> .COMPILE procedure_without_ END

% End of file encountered before end of program.
% 1 Compilation errors in module PROCEDURE WITHOUT END.

Note
Under Microsoft Windows, the IDL Editor window displays ared dot to the left of
each line that contains an error.

Setting Compilation Options

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears. The syntax of COMPILE_OPT isas
follows:

COMPILE_OPT opt, [,0pt,, ..., Opt,]

where opt,, is any of the available options documented in “COMPILE_OPT” in the
IDL Reference Guide manual. These options allow you to change default values of
true and false, hide routines from HEL P, and reserve the use of parentheses for
functions. See COMPILE_OPT for complete details.

Compiling Your Program Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 35

Making Code Readable

Commenting code and limiting line length both promote readability. See the
following sections for details.

Using Code Comments

In IDL, the semicolon (;) isthe comment character. When IDL encounters the
semicolon, it ignores the remainder of the line. It is good programming practice to
fully annotate programs with comments. There are no execution-time or space
penalties for commentsin IDL.

A comment can exist on aline by itself, or can follow another IDL statement, as

shown below:

; This is a comment

COUNT = 5 ; Set the variable COUNT equal to 5.
Note

You can a'so comment or uncomment blocks of codein the IDL Editor window.
See “Commenting Blocks of Code” on page 37 for details.

Using Line Continuations

The line continuation character ($) allows you to break asingle IDL statement into
multiple lines. The dollar sign at the end of aline indicates that the current statement
is continued on the following line. The dollar sign character can appear anywhere a
space islegal except within astring constant or between afunction name and the first
open parenthesis. Any number of continuation lines are allowed.

Building IDL Applications Making Code Readable

36 Chapter 2: Creating and Running Programs in IDL
Maximizing the Editor’s Capabilities

Although any text editor can be used to create an IDL program file, the IDL Editor
included in the IDL Development Environment contains features that simplify the
process of writing IDL code. For example, if you indent aline using the Tab key, the
following lines will be indented as well.

If you click the right mouse button while positioned over an editor window, a context
menu appears allowing you to quickly access severa of the most convenient
commands. The context menu changes to display common debugging commands if
IDL isrunning a program. When you create programs in the Editor window, you also
have access to the following features:

¢ “Navigating Among Procedures and Functions’ on page 36

¢ “Commenting Blocks of Code” on page 37

e “Searching” on page 38

e “Changing Text Selection Modes (Windows Only)” on page 38
e “Modifying Chromacoding (Windows Only)” on page 39

e “Editor Window Keyboard Shortcuts” on page 39

If aprogram error or breakpoint is encountered, IDLDE displays the relevant file,
opening it if necessary. The line at which the breakpoint or error occurred is marked.
See Chapter 8, “Debugging and Error-Handling” for more on IDL’s debugging
commands.

If you use the IDL Development Environment, files are opened in the IDL Editor by
default. On UNIX platforms, you can simplify the process of using another editor;
see“Creating a Macro to Call a Text Editor in IDL for UNIX” in Chapter 4 of the
Using IDL manual for details.

If you have afile openin the IDL Editor and you modify the file using another editor
(on any platform), IDL will warn you that the filein the IDL Editor window has
changed, and give you a chance to reload thefile.

Navigating Among Procedures and Functions
When you open afilein the IDL Editor, all functions and procedures defined in that
file are listed in the Functions/Procedures Menu. On Windows, this feature appears

as a pull-down menu located on the IDLDE toolbar. On Moatif, this menu is accessed
through the () button in the upper left corner of the Editor window.

Maximizing the Editor's Capabilities Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 37

Select a procedure or function from the drop-down list to move the cursor to the
beginning of that procedure or function. Thisis especially useful for navigating large
program files containing multiple procedures and functions.

[HeslimieeesNnEs]
I example3_manippalette::Init
example3_manippalette:: SelectSinglePlanslmages :3_manippalette ;Iglll
exampled_ manlppalett 2 OnbdouzeD own ;I
exampleS manlppalett Onk.eyboard " EUp. oWin., =. v. iButton
example3_manippalette::DoRegisterCurzor
exampled_manippalette:: Cleanup
Configure mouse mnotion method. _I
pro exanpleld_manippalette: OnMouseMotion., oWin, =. v. KeyMods=
there i= not a walid image cobject, return.
IF (”OBJ VALID{=elf olmage)) THEN EEGIH
; Call our superclass.
=zelf->IDLitHanipulator: OnMouseMotion., oWin, =. v. KeyvMods=
RETURN
ENDIF hd
4 3 4

Figure 2-1: Function/Procedure Menu
Commenting Blocks of Code

The IDLDE provides methods to quickly comment and uncomment blocks of code
lines. To comment or uncomment lines of code, you may either select the lines to be
commented/uncommented or you may simply places the cursor somewhere on the
desired line. Commenting and uncommenting can be performed using:

Method Description

Toolbar Click the Comment or Uncomment tool bar items.

Comment [(1 [F— uncomment

Menu Use the Edit - Comment or Edit — Uncomment menu
items.
Context menu Right click over aline (or block of selected lines) to display

the context menu. Select Comment or Uncomment.

Table 2-2: Block Comment Methods

Building IDL Applications Maximizing the Editor’'s Capabilities

38 Chapter 2: Creating and Running Programs in IDL

Searching

The IDL Editor window provides a comprehensive search-and-replace mechanism,
allowing you to search for occurrences of atext string in one or more open files. See
“Search Menu” in Chapter 2 for detalils.

Changing Text Selection Modes (Windows Only)

Under Microsoft Windows, the IDL Editor provides three ways of selecting text:
stream mode, line mode, and column mode.

e Stream mode selects text in a stream, beginning with the first character
selected and ending with the last character, just asif you were reading the text.

iputing environment for the
Ehls] visualization of data.

Figure 2-2: A selected stream of text.

* Linemode selects full lines of text.

L rerful, arrav—oriented language
thematical analvy=i= and graphical
display technigues.

Figure 2-3: Text selection using Line Mode.

» Box mode selects text from one screen column to the next. Selecting text in
column mode is similar to drawing a rectangle around the text you wish to
select.

Maximizing the Editor's Capabilities Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 39

O ARl cnvironment for the
VolugReEl=115] ization of data.
SR - 1oy —oriented language
Fnalvsi= and graphical

Figure 2-4: Column Mode text selection.

Switch between the three modes by clicking the right mouse button while positioned
over an Editor window. Select the “ Selection Mode” option to access a pull-down
menu with the three text selection modes. The option with a check mark by it isthe
currently selected text selection mode. If you have text already selected, the selected
areawill change to reflect the new mode.

Modifying Chromacoding (Windows Only)

The IDL Editor in IDL for Windows supports chromacoding — different types of
IDL statements appear in different colors. To change the default colors used for
different types of IDL statements, select File — Preferences, and select the Editor

tab.
Turning Chromacoding Off

By default, the Windows IDL Editor uses chromacoding. To turn off chromacoding,
select File — Preferences, select the Editor tab, and uncheck the Enable colored

syntax checkbox. Alternately, you can specify a

Editor Window Keyboard Shortcuts

The DL Editor window supports a number of useful keyboard shortcuts, described in
the following table.

Note
See “Enabling Alt Key Accelerators on Macintosh” on page 33 for information on

using keyboard accel erators on the Macintosh platform.

Building IDL Applications Maximizing the Editor’'s Capabilities

40

Chapter 2: Creating and Running Programs in IDL

(Wirlfsgws) (|\I/T§t¥f) SETEN
«->MN «->MN Move cursor |eft or right one character, up or
down oneline.
Ctrl+« Ctrl+B Move left one word.
Ctrl+— Ctrl+F Move right one word.
End CtrI+E Move to end of current line.
Home Ctrl+A or Move to beginning of current line.
Home
Page Down Page Down Move to next screen.
Page Up Page Up Move to previous screen.
Shift+Tab Move cursor one tab-stop |eft.
Ctrl+Home Ctrl+Home Move to beginning of file.
Ctrl+End Ctrl+End Moveto end of file.
Ctrl+Vv Delete word to the | eft of the cursor.
Ctrl+K Delete word to the right of the cursor.
Ctrl+K Delete everything in the current line to the right
of the cursor.
Ctrl+U Delete everything in the current line to the | eft of
the cursor.
Delete Ctrl+D Delete the next character.
Ctrl+U Make selected text (or the character to the right of
the cursor) lower-case.
Ctrl+Shift+U M ake selected text (or the character to theright of
the cursor) upper-case.
Ctrl+z Alt+Z Undo last action.
Ctrl+Y Alt+Y Redo last undone action.

Table 2-3: IDL Editor Window Key Definitions

Maximizing the Editor's Capabilities

Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 41

(Wi r|1<degws) (I\l/Tc?t);f) gy
Ctrl+X Alt+X Cut selection to clipboard.
Ctrl+Shift+Y Cut line containing cursor to clipboard.
Ctrl+C Alt+C Copy selection to clipboard.
Ctrl+Vv Alt+V Paste contents of clipboard at current cursor
location.
Ctrl+] Find matching (, {, or [character.
Tab Indent highlighted lines one tab-stop right.

Table 2-3: IDL Editor Window Key Definitions (Continued)

Building IDL Applications

Maximizing the Editor’'s Capabilities

42 Chapter 2: Creating and Running Programs in IDL

Command Line Tips and Tricks

Entering text at the command line allows you to perform ad hoc analysis, compile
and launch applications, and create $SMAINS$ programs. IDL provides some valuable
command line functionality to support these tasks. See the following sections for
details.

e “Copying and Pasting Multiple IDL Code Lines’ on page 42
¢ “Recaling Commands’ on page 43

e “Specia Command Line Characters’ on page 44

e “Specia Command Line Key Combination” on page 45

Note
Also see “Recording IDL Command Line Input” on page 47 for information on
maintaining the history of an IDL session in afile.

Copying and Pasting Multiple IDL Code Lines

You can paste multiple lines of text from the clipboard to the command line. You
simply need to place some text in the clipboard and paste it into the command line.
Any source of text is valid, with emphasis on the requirement that the text be
convertible to ASCII. When copying text from an IDE editor, the selection mode can
be stream, line, or box. See “ Changing Text Selection Modes (Windows Only)” on
page 38 for details.

Note
Line and box modes automatically put atrailing carriage return at the end of the
text. When pasted, the last line is executed.

Be sure when you paste multiple lines that they only contain asingle IDL command
or are lines which include statements that utilize line continuation characters ($).
Multi-line statements will produce unintended IDL interpreter behavior or errors.
Lines are transferred to the command line as is. Namely, leading white space is not
removed and comment lines are sent to the IDL interpreter without distinction.

Note
Under Micorosfot Windows, tabs are converted to white space based on the value
of theIDL_WDE_EDIT_TAB_WIDTH preference.

Command Line Tips and Tricks Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 43

Recalling Commands

By default, IDL savesthe last 20 commands entered in arecall buffer. These
command lines can be recalled, edited, and re-entered. The up-arrow key (T) on the
keypad recalls the previous command you entered to IDL, moving backward through
the command history list. Pressing it again recalls the previous line, and so on. The
down-arrow key (4) on the keypad moves forward through the command history.
When acommand isrecalled, it is displayed at the IDL prompt and can be edited
and/or entered.

You can view the contents of the recall buffer in the following ways:
¢ Usethe arrow keysto view the entries in the buffer one at atime.

e Usethe HELP procedure with the RECALL_COMMANDS keyword to
display the entire contents of the recall buffer in the IDL Output Log.

* Right-click on the Command Linein the IDL Development Environment.
The 20 most recent commandsin the command recall buffer are displayed, and
can be selected and re-executed.

The command recall featureis enabled by setting the IDL_EDIT_INPUT preference
to true, which setsthe system variable 'EDIT_INPUT to anon-zero value (the default
isl). See“!EDIT_INPUT” in Appendix D of the IDL Reference Guide manual for
details.

Changing the Number of Lines Saved

You can change the number of command lines saved in the recall buffer by setting the
IDL_RBUF_SIZE preference equal to a number other than one (in the IDL
Development Environment, you can set this value viathe General tab of the IDLDE
Preferences dialog aswell.) In order for the change to take effect, IDL must be ableto
process the assignment statement before providing a command prompt. This means
that you must put the assignment statement in the IDL startup file. See“ Startup Files’
in Chapter 1 of the Using IDL manual for more information on startup files.

For example, placing the line
!EDIT_INPUT = 50

inyour IDL startup file changes the number of lines saved in the command recall
buffer to 50.

See“!EDIT_INPUT” in Appendix D of the IDL Reference Guide manual and
“Genera Preferences’ in Chapter 3 of the Using IDL manual for additional details.

Building IDL Applications Recalling Commands

44 Chapter 2: Creating and Running Programs in IDL

Special Command Line Characters

Commands entered at the IDL prompt are usually interpreted as | DL statementsto be
executed. Other interpretations include executive commands that control execution

and compilation of programs, shell commands, and so on. Input to the IDL prompt is
interpreted according to the first character of the line, as shown in the following table.

Note
The information in this section applies equally to IDL used in command-line mode
or viathe IDL Development Environment.

First Character Action

Executive command. See “About Executive
Commands’ on page 44 for details.

? Help inquiry.

$ Send an operating system commands to a subprocess.

Note - SPAWN procedure is amore flexible
aternative. It need not be used interactively and the
standard output of the command can be saved in an
IDL string array. See“ SPAWN” inthe IDL Reference
Guide manual for details.

@ Batch fileinitiation.
Tord key Recall/edit previous commands.
CTRL+D In UNIX command-line mode, exits IDL, closes all
files, and returns to operating system.
CTRL+Z In UNIX command-line mode, suspends IDL.
All others IDL statement.

Table 2-4: Interpretation of the First Character in an IDL Command
About Executive Commands

IDL executive commands compile programs, continue stopped programs, and start
previously compiled programs. All of these commands begin with a period and must
be entered in response to the IDL prompt. Commands can be entered in either

Special Command Line Characters Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 45

uppercase or lowercase and can be abbreviated. Under UNIX, filenames are case
sensitive; under Microsoft Windows, filenames can be specified in any case. See
“Executive Commands’ in the IDL Quick Reference manual for a descriptions of the
available executive commands.

Note
Comments (prefaced by the semicolon character in IDL code) are not allowed
within executive commands.

Executive commands are used to create SMAINS$ programs. See “ Creating SMAINS$
Programs’ on page 24 for details.

Special Command Line Key Combination

When working at the command line, key combinations can be used to quickly edit a
command. The line-editing abilities and the keys that activate them differ somewhat
between the different operating systems. To access the history of commands entered
at the command line, see “Recalling Commands’ on page 43.

Note
The behavior can a so differ within the same operating system, between the
Command prompt for IDL and the Command line on the IDLDE.

The table below lists the edit functions and the corresponding keys.

Function UNIX Windows

Move cursor to start of line | CTRL+A or Home Home

Move cursor to end of line | CTRL+E or End End

Move cursor |eft one L eft arrow Left arrow

character

Move cursor right one Right arrow Right arrow

character

Move cursor left oneword | CTRL+B, CTRL+l€eft arrow
(R13 on Sun Keyboard)

Move cursor right oneword | CTRL+F, CTRL+right arrow
(R15 on Sun Keyboard)

Table 2-5: Command Recall and Line Editing Keys

Building IDL Applications Special Command Line Characters

46

Chapter 2: Creating and Running Programs in IDL

Function UNIX Windows
Delete from current to start | CTRL+U
of line
Deletefrom currenttoend | CTRL+K
of line
Delete entire line
Delete current character CTRL+X or CTRL+D Delete
Delete previous character CTRL+H, or Backspace, | Backspace
or Delete
Delete previous word CTRL+W, or Esc-Delete
Generate IDL keyboard CTRL+C CTRL+break
interrupt
Move back onelinein CTRL+N, Up arrow Up arrow
recall buffer
Move forward onelinein Down arrow Down arrow
recall buffer
Redraw current line CTRL+R
Overstrike/l nsert Esc-l
EOF if current lineis CTRL+D
empty, else EOL
Search recall buffer for text | Available only in
command-line mode.
Enter |, then input
search string at prompt.
Insert the character at the any character any character

current Executive
Commands position

Table 2-5: Command Recall and Line Editing Keys (Continued)

Special Command Line Characters

Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 47

Recording IDL Command Line Input

Journaling provides arecord of an interactive session by saving in afile al text
entered from the terminal in responseto aprompt. Injournaling, all text entered to the
IDL prompt is entered directly into the file, and any text entered from the terminal in
response to any other input request (such aswith the READ procedure) isentered asa
comment. Theresult is afile that contains a complete description of the IDL session.
JOURNAL has the form:

JOURNAL [, Argument]

where Argument is either afilename (if journaling is not currently in progress) or an
expression to be written to the file (if journaling is active). The first call to
JOURNAL starts the logging process. If no argument is supplied, ajournal file
named idlsave.pro is started.

Warning
Under all operating systems, creating a new journal file will cause any existing file
with the same name to be lost. Supply afilename argument to JOURNAL to avoid
destroying desired files.

When journaling is not in progress, the value of the system variable |l JOURNAL is
zero. When the journal file is opened, the value of this system variable is set to the
number of the logical file unit on which the fileis opened. Thisalows IDL routines
to check if journaling is active. You can send any arbitrary datato thisfile using the
normal IDL output routines. In addition, calling JOURNAL with an argument while
journaling isin progress results in the argument being written to the journal file as if
the PRINT procedure had been used. In other words, the statement,

JOURNAL,
isequivalent to
PRINTF, !JOURNAL, Argument

with one significant difference—the JOURNAL statement is not logged to the file,
only its output; while the PRINTF statement will be logged to thefile in addition to
its output.

Journaling ends when the JOURNAL procedure is called again without an argument
or when IDL is exited. The resulting file serves as arecord of the interactive session
that went on while journaling was active. It can be used later as an IDL batch input
file to repeat the session, and it can be edited with any text editor if changes are
necessary. See “JOURNAL” in the IDL Reference Guide manual for examples.

Building IDL Applications Recording IDL Command Line Input

48 Chapter 2: Creating and Running Programs in IDL

Interrupting or Aborting Execution

To manually stop programs that are running, issue a keyboard interrupt by typing
Ctrl+C (UNIX) or Ctrl+Break (Windows). A message indicating the statement
number and program unit being executed is issued on the terminal or IDL Command
L og acknowledging the interrupt. The values of variables can be examined,
statements can be entered from the keyboard, and variables can be changed. The
program can be resumed by issuing the .CONTINUE executive command to resume
or the .STEP executive command to execute the next statement and stop.

Variable Context After Interruption

The variable context after a keyboard interrupt is that of the program unit in which
the interrupt occurred. By typing the statement RETURN, the program context will
revert to the next higher calling level. The RETALL command returns control to the
main program level. If any doubt arises as to which program unit in which the
interrupt occurred, the HEL P procedure can be used to determine the program
context. IDL checks after each statement to seeif an interrupt has been typed.
Execution does not stop until the statement that was active finishes; thus,
considerable time can elapse from the time the interrupt is typed to the time the
program interrupts.

Aborting IDL

If you find it necessary to abort IDL rather than exiting cleanly using the EXIT
command, do one of the following:

e UNIX: Aswith any UNIX process, IDL can be aborted by typing Ctrl+\.This
isavery abrupt exit—all variables are lost, and the state of open files will be
uncertain. Thus, although it can be used to exit of IDL in an emergency, itsuse
should be avoided.

Note
After aborting IDL by using Ctrl+\, you may find that your terminal isleft in the
wrong state. You can restore your terminal to the correct state by issuing one of the
following UNIX commands:

[}

% reset or % stty echo -cbreak

* Windows: Thereis no abort character for IDL for Windows.

Interrupting or Aborting Execution Building IDL Applications

Chapter 2: Creating and Running Programs in IDL 49

For More Information on Programming

Here we have just touched on the possibilities that IDL offers for programmers. For
more information on how to prepare and run programs, see Chapter 5, “Creating
Procedures and Functions’, which describes creating and calling procedures and
functions. It also describes argument and keyword parameters, and keyword
inheritance.

Building IDL Applications For More Information on Programming

50

For More Information on Programming

Chapter 2: Creating and Running Programs in IDL

Building IDL Applications

Chapter 3

Executing Batch Jobs
In IDL

The following topics are covered in this chapter:

Overview of Batch Files 52 Interpretation of Batch Statements
Batch File Execution 53 ABatcchExample

Building IDL Applications

51

52 Chapter 3: Executing Batch Jobs in IDL

Overview of Batch Files

A batch file contains one or more IDL statements or commands. Each line of the
batch fileis read and executed before proceeding to the next line. This makes batch
files different from main-level programs, which are compiled as a unit before being
executed, and named programs, in which all program modules are compiled as an
unit before being executed. A file created by the JOURNAL routine is an example of
an batch file. Program types and more information on journaling are described in
Chapter 2, “ Creating and Running Programsin IDL".

Note
Batch files are sometimes referred to as include files, since they can be used to
“include” the multiple IDL statements contained in the file in another file.

See the following topics for more information on batch files:
e “Batch File Execution” on page 53
¢ “Interpretation of Batch Statements’ on page 55
e “A Batch Example’ on page 56

Tip
For information on how to specify a batch file as a startup file that is automatically
executed when IDL is started, see “ Startup Files’ in Chapter 1 of the Using IDL
manual.

Overview of Batch Files Building IDL Applications

Chapter 3: Executing Batch Jobs in IDL 53

Batch File Execution

You can run IDL in non-interactive mode (batch mode) by entering the character @
followed by the name of afile containing IDL executive commands and statements.
Commands and statements are executed in the order they are contained in thefile, as
if they had been entered at the IDL command prompt.

Batch execution can be terminated before the end of thefile, with control returning to
interactive mode without exiting IDL, by calling the STOP procedure from the batch
file. Calling the EXIT procedure from the batch procedure has the usual effect of
terminating IDL.

Executing a Batch File

To execute a batch file, enter the name of thefile, prefaced with the* @” character, at
the IDL prompt:

@batchfile

where batchfile is the name of the file containing IDL statements. Note that the @
symbol must be thefirst character on the line in order for it to be interpreted properly.

Note
This syntax can also be used within an IDL program file.

The cntouro1 batch file contains the following lines:

; Restore Maroon Bells data into the IDL variable "elev".
RESTORE, FILEPATH('marbells.dat', SUBDIR=['examples', 'data'])

; Make the x and y vectors giving the column and row positions.
X = 326.850 + .030 * FINDGEN(72)

Y = 4318.500 + .030 * FINDGEN(92).

Enter the following at the IDL command line to execute the batch file:
@cntour0l

IDL reads statements from the specified file until the end of thefile is reached.
Variables ELEV, X, and Y appear in the variable watch window. Batch files can also
be nested by placing a call to one batch file within another. For example, the surfo1
batch file callsthe cntouro1 batch file and uses the variable data to create a surface
display. To see the results, enter the following at the command line:

@surfol

Building IDL Applications Batch File Execution

54 Chapter 3: Executing Batch Jobs in IDL

Naming and Locating Batch Files

If filename does not include afile extension, IDL searches the current working
directory and the directories specified by the |PATH system variable for afile with
filename as its base, with the file extension . pro. If filename.pro isnot found in a
given directory, IDL searches for filename with no extension in that directory. If
filename is found (with or without the . pro extension), thefile is executed and the
search ends. If filename includes afull path specification, IDL does not search the
directoriesin 'PATH.

Batch File Execution Building IDL Applications

Chapter 3: Executing Batch Jobs in IDL 55

Interpretation of Batch Statements

Each line of abatch fileisinterpreted exactly asif it was entered from the keyboard.
In batch mode, IDL compiles and executes each statement before reading the next
statement. Thisdiffersfrom theinterpretation of main-level programs compiled using
.RNEW or .RUN, inwhich all statementsin a program are compiled as a single unit
and then executed.

GOTO statements are illegal in the batch mode because each batch file statement is
compiled and executed sequentialy.

Multiline statements must be continued on the next line using the $ continuation
character, because IDL terminates every interactive mode statement not ending with
$ by an END statement. A common mistake is to include a multiple-line block
statement in a batch file as shown below.

; This will not work in batch mode.
FOR I = 1, 10 DO BEGIN
A = X[I]

ENDFOR
In batch mode, IDL compiles and executes each line separately, causing syntax errors
in the above exampl e because no matching ENDFOR is found on the line containing
the BEGIN statement when the line is compiled. The above example could be made

to work by writing the block of statements as a single line using the $ (continuation)
and & (multiple commands on a single line) characters.

Building IDL Applications Interpretation of Batch Statements

56 Chapter 3: Executing Batch Jobs in IDL

A Batch Example

You can create a batch filein the IDL Editor or other text editor program. An
example of an IDL executive command line that initiates batch execution:

@myfile

This command causes the filemyfile to be used for statement and command input.
If thisfileis not in the current directory, the directories specified by 'PATH are also
searched.

An example of the contents of a batch file follows:

; Run program A:

.RUN proga

; Run program B:

.RUN progb

; Print results:
PRINT, AVALUE, BVALUE
; Close unit 3:
CLOSE, 3

The batch file should not contain complete program units. Complete program units
should be compiled and run by using the .RUN and .RNEW commands in the batch
files, asillustrated above.

Example Code
Severa working batch files are included in the distribution. For an example, type
@sigprc09 a the IDL prompt to run the batch file. The source code for this
exampleislocated in sigprc09, inthe examples/doc/signal directory.

A Batch Example Building IDL Applications

RSI_PROCODE/examples/doc/signal/sigprc09

Chapter 4

Creating SAVE Files of
Programs and Data

The following topics are covered in this chapter:

Overview of SAVEFiles 58 Saving Variablesfroman IDL Session ... 70
About Program and DataSAVE Files 60 Executing SAVEFiles 72
Creating SAVE Filesof Program Files 62 ChangestoIDL 5.4 SAVEFiles......... 75

Building IDL Applications 57

58 Chapter 4: Creating SAVE Files of Programs and Data

Overview of SAVE Files

You can create binary files containing data variables, system variables, functions,

procedures, or objects using the SAVE procedure. These SAVE files can be shared

with other users who will be able to execute the program, but who will not have

access to the IDL code that created it. Variables that are used from session to session

can be saved as and recovered from a SAVE file.

Tip
A startup file can be set up to execute the RESTORE command every time IDL is
started. See“ Startup Files” on page 30 for information on specifying a startup files.

Note
Files containing IDL routines and system variables can only be restored by versions
of IDL that share the same internal code representation. Since the internal code
representation changes regularly, you should always archive the IDL language
source files (. pro files) for routines you are placing in IDL SAVE files so you can
recompile the code when anew version of IDL isreleased.

What Can be Stored in a SAVE File

A SAVE file can contain system variables, data variables, or named program files.
See the following topics for details:

« Named routines — store one or more routinesin asingle SAVE file and
distribute it other IDL users. See “About Program and Data SAVE Files’ on
page 60.

e Variable data— store system or session variable datain a SAVE file. See
“Saving Variables from an IDL Session” on page 70.

Warning
Variables and routines cannot be stored in the same SAVE file.

Save Files and Application Development

For distributable applications, IDL does not compile .pro files. Therefore, any
procedures or functions used by an application must be resolved and contained in a
SAVE file. For IDL applications, these routines can be part of the main SAVE file
that is restored when your application is started. The following are examples of cases
in which you might use SAVE to create . sav files:

Overview of SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 59

e Tocreate SAVE filesfor any procedures or functions that are not contained in
the main SAVE file that is restored when a native IDL application is started

e To create SAVE filesfor any procedures or functions used by a Callable IDL
or ActiveX application

» Tocreate SAVE filesfor any variables used by your application, such as
custom ASCI| templates

If your application is composed of a number of procedures and other types of files, it
would likely be easier to create a SAVE file using the IDL Projects interface. See
Chapter 22, “Creating IDL Projects’ for details. See Chapter 24, “ Distributing
Runtime Mode Applications’ for more information on creating applicationsin IDL,
including how to license your application and package it for distribution.

Accessing and Running SAVE Files

Depending upon the name and contents of the SAVE file, there are a number of ways
to restore the file. SAVE files containing routines can be executed in afully licensed
version of IDL, through the IDL Virtual Machine (if created in IDL version 6.0 or
later), or using the IDL_Savefile object. SAVE files containing variable data can be
restored using the RESTORE procedure or the IDL_Savefile object. You may also be
able to automatically compile and restore the file by typing the name of the file at the
command line. See “Executing SAVE Files’ on page 72 for details.

Building IDL Applications Overview of SAVE Files

60 Chapter 4: Creating SAVE Files of Programs and Data

About Program and Data SAVE Files

The SAVE procedure can be used to quickly save IDL routines and datavariablesin a
binary format that can be shared with other IDL users, or with others who have
installed the IDL Virtual Machine. If you are developing an application for
distribution to users who do not have aversion of IDL installed, you should also see
Chapter 24, “ Distributing Runtime Mode Applications’.

Warning
Variables and routines cannot be stored in the same SAVE file.

Note
While IDL routines or data can be saved in afile with any extension, it is common
to use the extension . sav for SAVE files. Using the . sav extension has two
benefits: it makesit clear to another IDL user that the file contains IDL routines or
data, and it allows IDL automatically locate and compile the routines in the file as
described in “Automatic Compilation” on page 31.

If your program or utility consists of multiple routines, each procedure or function
used by your program must be resolved and contained in a SAVE file. You have the
following options:

¢ Includeall routinesin amain SAVE filethat isrestored first. This makes all
routines available without having to restore any additional SAVE files. You
can do this manually, by compiling al of the routines yourself (possibly with
the assistance of the RESOLVE_ALL or ITRESOLVE routines). You can also
add all of your . pro filesto an IDL Project and build the project, which
createsasingle . sav file. See Chapter 22, “ Creating IDL Projects’ for
additional information.

¢ Create aseparate SAVE file for each routine used by your application.
Assuming each SAVE file uses the . sav extension and has the same name as
the procedure or function it contains, this allows you to simply place the files
in adirectory included in 'PATH; IDL will compile all of thefiles
automatically when needed.

If your program also contains variable data, you must create a separate SAVE fileto
contain the data. Variable data must be explicitly restored before any routine attempts
to use the variables contained in the file. See “Executing SAVE Files’ on page 72 for
more information.

About Program and Data SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 61

Note
A SAVE file containing data will always be restorable. However, SAVE files
created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portabl e between different versions of IDL. If you created
your SAVE filewith aversion of IDL earlier than 5.5, you will need to recompile
your origina .pro files and re-create the SAVE file using the current version of
IDL.

Building IDL Applications About Program and Data SAVE Files

62 Chapter 4: Creating SAVE Files of Programs and Data

Creating SAVE Files of Program Files

The following examples create SAVE files that are stand-alone IDL applications that
can be run on any Windows, UNIX or Mac OS X computer containing the IDL
Virtual Machine or alicensed copy of IDL. See the following examples:

« Example: A SAVE File of a Simple Routine below creates two SAVE files.
One SAVE file contains variable data, the other SAVE file contains a
procedure uses RESTORE to access the variable datain the first SAVE file.

« “Example: A Save File of a Simple Widget Application” on page 65 displays
an image in asimple widget application.

e “Example: Creating a SAVE File of an Object” on page 66 shows the special
steps that must be taken when creating a SAVE file of an object that has
dependencies upon other objects.

e “Example: A SAVE File of a Custom iPlot Display” on page 68 restores
variable dataand plotsit in aniPlot display.

Note
If you want your customersto run your application on acomputer without IDL, you
will need to include aruntime version of IDL with aruntime or embedded licensein
your application distribution. See Chapter 24, “ Distributing Runtime Mode
Applications’ for details.

Example: A SAVE File of a Simple Routine

The following example creates two SAVE files. One SAVE file contains variable
data, loaded from an image file. This SAVE fileisthen restored by the program in the
main SAVE file, which uses asimple call to the ARROW procedure to point out an
area of interest within the image.

Save Image Variable Data
1. Start afresh session of IDL. This avoids saving unwanted session
information.

2. Read image datainto a variable. Open an image file containing an MRI
proton density scan of a human thorax, and read the datainto a variable named
image:

READ JPEG, (FILEPATH ('pdthorax124.jpg', SUBDIRECTORY= $
['examples', 'data'])), image

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 63

3. Create a SAVE file containing the image data. Use the SAVE procedure to
save the image variable in a SAVE file by entering the following:

SAVE, image, FILENAME='imagefile.sav'

This stores the SAVE file in your current working directory.

Note
When using the SAVE procedure, some users identify binary files containing
variable data using a . dat extension instead of a . sav extension. While any
extension can be used to identify files created with SAVE, it is recommended that
you use the . sav extension to easily identify files that can be restored.

Save a Procedure that Restores Variable Data

1. Createtheprogram file. Create the following IDL program that first restores
the image variable contained within the imagefile.sav file. Thisvariableis
used in the following program statements defining the size of the window and
in the TV routine which displays the image. The ARROW routine then draws
an arrow within the window. Enter the following linesin atext editor.

PRO draw_arrow

; Restore image data.
RESTORE, 'imagefile.sav'

; Get the dimensions of the image file.
s = SIZE(image, /DIMENSIONS)

; Prepare display device and display image.

DEVICE, DECOMPOSED = 0

WINDOW, 0, XSIZE=s[0], YSIZE=s[1], TITLE="Point of Interest"
TV, image

; Draw the arrow.
ARROW, 40, 20, 165, 115

; The IDL Virtual Manchine exits IDL when the end of a

; program is reached if there are not internal events. The
; WAIT statement here allows the user to view the .sav file
; results for 10 seconds when executed through the IDL

; Virtual Machine.

WAIT, 10

END

2. Savethefile. Namethe saved file draw_arrow.pro.

Building IDL Applications Creating SAVE Files of Program Files

64

Chapter 4: Creating SAVE Files of Programs and Data

Reset the I DL session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET SESSION
Compilethe program. Enter the following at the IDL prompt:
.COMPILE draw_arrow

Resolve dependencies. Use RESOLVE _ALL (or ITRESOLVE if theroutine
has any dependencies on iTools components) to iteratively compile any
uncompiled user-written or library procedures or functions that are called in
any already-compiled procedure or function:

RESOLVE_ALL

Note
RESOLVE_ALL does not resolve procedures or functions that are called via
guoted strings such as CALL_PROCEDURE, CALL_FUNCTION, or
EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO. You must manually compile these
routines.

Createthe SAVE file. Create afilecalled draw arrow.sav that containsthe
user-defined draw_arrow procedure. When the SAVE procedureis called with
the ROUTINES keyword and no arguments, it create a SAVE file containing
all currently compiled routines. Because the procedures within the
draw_arrow procedure arethe only routinesthat are currently compiled in the
IDL session, create the SAVE file asfollows:

SAVE, /ROUTINES, FILENAME='draw_arrow.sav'

Note
When the name of the SAVE file usesthe . sav extension and has the same
base name as the main level program, it can be automatically compiled by
IDL. This meansthat it can be called from another routine or restored from
the IDL command line using only the name of the saved routine. See
“Automatic Compilation” on page 31 for details.

Test the SAVE file. Select Start — Programs — RSI IDL 6.2 — IDL
Virtual Machine. Click on the splash screen and open draw_arrow. sav.
You could also test the SAVE file from IDL, enter the following at the
command prompt.

RESTORE, 'draw_arrow.sav'
draw_arrow

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 65
See “Executing SAVE Files’ on page 72 for all the available waysto run aSAVE file.
Example: A Save File of a Simple Widget Application

The following example creates a native IDL application that displaysanimagein a
simple widget interface. When any application runsin the IDL Virtual Machine,
there must some element (such as widget or interface events, or aWAIT statement)
that keeps the application from immediately exiting with the END statement is
reached. This example includes a Done button for this reason. The examplein
“Example: A SAVE File of a Simple Routing” on page 62 includes a WAIT
statement.

1. Createa .profile. Enter thefollowinginthe IDL Editor, and saveit as
myApp .pro.

PRO done_event, ev
; When the 'Done' button is pressed, exit
; the application.

WIDGET CONTROL, ev.TOP, /DESTROY
END
PRO myApp

; Read an image file.
READ_ JPEG, (FILEPATH('endocell.jpg', SUBDIRECTORY = $
['examples', 'data'l])), image

; Find the dimensions of the image.
info = SIZE (image, /DIMENSIONS)

xdim = info[0]

ydim = info[1]

; Create a base widget containing a draw widget

; and a 'Done' button.

wBase = WIDGET BASE (/COLUMN)

wDraw = WIDGET DRAW (wBase, XSIZE=xdim, YSIZE=ydim)
wButton = WIDGET_BUTTON(wBase, VALUE="'Done',
EVENT_PRO='done_event')

; Realize the widgets.
WIDGET CONTROL, wBase, /REALIZE

; Retrieve the widget ID of the draw widget.
WIDGET_CONTROL, wDraw, GET_VALUE:indeX

Building IDL Applications Creating SAVE Files of Program Files

66

Chapter 4: Creating SAVE Files of Programs and Data

; Set the current drawable area to the draw widget.
WSET, index

; Display some data.
TV, image

; Call XMANAGER to manage the event loop.
XMANAGER, 'myApp', wBase, /NO_BLOCK

END

Reset the | DL session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET SESSION
Compilethe application. Select Run — Compileto compile the . pro file.

Resolve dependencies. Type RESOLVE_ALL at the command line to resolve
all procedures and functions that are called in the application:

RESOLVE_ALL
Note

If your program relies on iTools components, use ITRESOLVE instead of
RESOLVE_ALL.

Createthe SAVE file. Enter the following to save the compiled application as
aSAVE file:

SAVE, /ROUTINES, FILENAME = 'myApp.sav'

See “Executing SAVE Files’ for ways to run the SAVE file.
Example: Creating a SAVE File of an Object

When you create a SAVE file that contains an object defined ina . pro file, you must
savethe . pro file asa SAVE file, just like any other procedure you wish to
distribute. However, it isimportant to note that if the object has any inherited
properties from superclasses or other objects, and the object definitionsexist in . pro
files, you must also compile and include these object definition filesin your SAVE
file. Objectsusing a . pro extension typically exist in the IDL distribution’'s1ib
subdirectory and its subdirectories.

The IDL distribution includes and example of a composite object composed of an
image, a surface, and a contour, which are combined into a single object called the
IDLexShow3 object. To see this object being used in an application, run the

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 67

show3_track.pro fileinthe examples/doc/objects directory. This procedure
has dependencies on two objects (t rackball .pro and

IDLexShow3 define.pro). You must use RESOLVE_ALL and explicitly
include these two objects in the CLASS keyword string array in order to creste a
valid SAVE file.

If you fail to resolve all object dependencies, you will receive an error stating that
there was an attempt to call and undefined procedure or function when you run the
SAVE file. If the error references an object, add the object name to the CLASS
keyword string array to resolve the problem. Undefined procedure or function errors
are more likely to appear when you restore a SAVE file using the IDL Virtual
Machine, which does not search !PATH to resolve routines. Using RESTORE at the
command line does search |PATH. Therefore, a SAVE file that can be successfully
executed using RESTORE may not succeed when called from the IDL Virtual
Machine. If you are distributing SAVE files to users running the IDL Virtual
Machine, make sure to test the SAVE file in the Virtual Machine.

Complete the following steps to create a save file of an object:

1. Reset you session. Either start anew IDL session or enter the following at the
IDL prompt to ensure that no unwanted session information is saved along
with the program:

.FULL_RESET SESSION

2. Open the main procedure. Open and compile show3_track.pro file by
entering the following at the IDL command prompt:

.Compile Show3_Track.pro

3. Resolve object dependencies. Use the CLASS keyword to resolve
dependencies to other object . pro filesby passing it astring or string array
containing the name(s) of the objects:

RESOLVE ALL, CLASS=['Trackball', 'IDLexShow3']
4. Createthe SAVE file. Enter the following at the IDL command prompt:
SAVE, /ROUTINES, FILENAME='show3 track.sav'

5. Test the SAVE file. Select Start —» Programs — RS IDL 6.2 — IDL
Virtual Machine. Click on the splash screen and open show3 _track.sav.
You could also test the SAVE file from IDL. Enter the following at the
command prompt.

RESTORE, 'show3 track.sav'
show3_track

See “Executing SAVE Files’ on page 72 for all the available waysto run aSAVE file.

Building IDL Applications Creating SAVE Files of Program Files

68 Chapter 4: Creating SAVE Files of Programs and Data

Example: A SAVE File of a Custom iPlot Display

The following example configures a custom iPlot display and stores the program in a
SAVE file. Restoring the SAVE file opens iPlot with the specified data.

Note
When working with iTools, you can create an iTool State (.isv) file that contains
data and application state information.You can share this file with other IDL users
who have the same version or a newer version of IDL. SeetheiTool User’s Guide
for details. Thisis not the same as packaging i Tools functionality into a SAVE file,
which is described in this example. When iTools functionality is packaged into a
SAVE file, it can be accessed by IDL users or through the IDL Virtual Machine.

1. Accessand save data. Save variable data from a batch file into a SAVE file:

@plot0l
SAVE, FILENAME='plotdataOl.sav'

2. Createthe program file. This program restores data, and creates a plot
display in aniPlot display. Enter the following linesin atext editor:

PRO ex saveiplot

; Define variables.
RESTORE, 'plotdataOl.sav'

; Use the LINFIT function to fit the data to a line:
coeff = LINFIT(YEAR, SOCKEYE)

;YFIT is the fitted line:
YFIT = coeff[0] + coeff[l]*YEAR

; Plot the original data points with PSYM 4, for diamonds:

iPLOT, YEAR, SOCKEYE, /YNOZERO, SYM INDEX 4, S
SYM_COLOR=[255,0,0], LINESTYLE=6, $
TITLE = 'Quadratic Fit', XTITLE = 'Year',K $

YTITLE = 'Sockeye Population'

; Overplot the smooth curve using a plain line:
iPLOT, YEAR, YFIT, /OVERPLOT

END

3. Reset you session. Enter the following at the IDL prompt to ensure that no
unwanted session information is saved along with the program:

.FULL_RESET SESSION

Creating SAVE Files of Program Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 69

4. Compilethe program. Use the .Compile executive command as follows:
Compile the main program file:

.Compile ex saveiplot

5. Resolve dependencies. Use ITRESOLVE to resolve dependencies upon i Tool
components:

ITRESOLVE

6. Createthe SAVE file. Usethe /ROUTINES keyword to include all currently
compiled routines:

SAVE, /ROUTINES, FILENAME:'ex_saveiplot.sav'

7. Test the SAVE file. Select Start —» Programs — RS IDL 6.2 — IDL
Virtual Machine. Click on the splash screen and open ex_saveiplot.sav.
You could aso run the SAVE file from IDL. Enter the following at the
command prompt.

RESTORE, 'ex_saveiplot.sav'
ex_saveiplot

See “Executing SAVE Files’ on page 72 for all the available waysto run aSAVE file.
Other Examples of SAVE File Creation

See the following topics for additional SAVE file examples:

e “ASCIl_TEMPLATE” inthe IDL Reference Guide manual contains Example:
Create a SAVE File of a Custom ASCII Template

e “XROI" inthe IDL Reference Guide manual contains the following SAVE file
examples:

e “Example: Save ROI Data’
e “Example: Save the XROI Utility with ROI Data’

Building IDL Applications Creating SAVE Files of Program Files

70 Chapter 4: Creating SAVE Files of Programs and Data

Saving Variables from an IDL Session

In addition to distributing IDL code in binary format, you can also create SAVE files
that contain variable data. The state of variablesin an IDL session can be saved
guickly and easily, and can be restored to the same point. This feature allows you to
stop work, and later resume at a convenient time. Variables that you may wish to
create a SAVE file of include frequently used data files or system variable definitions.

Saving Data Variables in a SAVE File

Data can be conveniently stored in SAVE files, relieving you of the need to remember
the dimensions of arrays and other details. It is very convenient to store imagesthis
way. For instance, if the three variables Red, Green, and Blue hold the color table
vectors, and the variable Image holds the image variable, the IDL statement,

SAVE, FILENAME = 'image.sav', Red, Green, Blue, Image

will save everything required to display the image properly in afile named
image.sav. At alater date, the simple command,

RESTORE, 'image.sav'

will recover the four variables from the file. See “ Save Image Variable Data’ on
page 62 for an additional example.

Saving Heap Variables in a SAVE File

The SAVE procedure works for heap variables just as it works for al other supported
types. By default, when IDL saves a pointer or object reference in a SAVE file, it
recursively saves the heap variables that are referenced by that pointer or object
reference.

In some cases, you may want to save the pointer or object reference, but not the heap
variable that are referenced by that pointer or object reference. You can specify that
the heap variable associated with a pointer or object reference not be saved using the
HEAP_NOSAVE procedure or the HEAP_SAVE function. See the documentation
for HEAP_SAVE for additional detalils.

Saving System Variables in a SAVE File
System variables can also be saved and later applied to another session of IDL. For

instance, you may choose to customize |PATH, the system variable defining the
directories IDL will search for libraries, batch/include files, and executive commands

Saving Variables from an IDL Session Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 71

or ! P, the system variable that controls the definition of graphic elements associated
with plot procedures. You can save these definitionsin a SAVE file and later
automatically restore or selectively restore the variables to apply the settings to other
IDL sessions.

To save and restore the state of al current and system variables within an IDL
session, you could use the following statement:

SAVE, /ALL, FILENAME = 'myIDLsession.sav'

The ALL keyword saves al system variables and local variables from the current
IDL session. See Chapter 13, “Working with Datain IDL” for information on these
elements of an IDL session.

Note
Routines and variables cannot be saved in the same file. Setting the ALL keyword
does not save routines.

To restore the session information, enter:

RESTORE, 'myIDLsession.sav'

Note

If thefileisnot located in your current working directory, you will need to define
the path to thefile.

Long iterative jobs can save their partial resultsin a SAVE format to guard against
losing data if some unexpected event such as a machine crash should occur.

Note
A SAVE file containing data will always be restorable. However, SAVE files
created prior to IDL version 5.5 that contain IDL procedures, functions, and
programs are not always portabl e between different versions of IDL. If you created
your SAVE filewith aversion of IDL earlier than 5.5, you will need to recompile
your origina .pro files and re-create the SAVE file using the current version of
IDL.

Building IDL Applications Saving Variables from an IDL Session

72 Chapter 4: Creating SAVE Files of Programs and Data

Executing SAVE Files

IDL SAVE files (created using the SAVE procedure) can contain one or more
routines that have been packaged into asingle binary file. SAVE files can aso
contain system or data variables.

Note
While IDL routines or data can be saved in afile with any extension, it is common
to use the extension . sav for SAVE files. Using the . sav extension has two
benefits: it makesit clear to another IDL user that the file contains IDL routines or
data, and it allows IDL to locate routines with the same base name asthefilein
SAVE fileslocated in IDL’s path.

This section describes various ways to restore files created with the SAV E procedure.
In order of increasing complexity and flexibility, your options are:

e “Using theIDL Virtual Machineto Run SAVE Files’, described below
e “Executing SAVE Filesby Name” on page 72

e “Using RESTORE to Access SAVE Files’ on page 73

* “Using the IDL_Savefile Object to Access SAVE Files’ on page 74

Using the IDL Virtual Machine to Run SAVE Files

Users without an IDL license can usethe IDL Virtual Machine to access programs
contained in SAVE files created in IDL version 6.0 or later. See “ Starting a Virtual
Machine Application” in Chapter 25 of the Building IDL Applications manual for
instructions.

Note
There are afew limitations to SAVE file contents discussed in “ Limitations of
Virtual Machine Applications’ in Chapter 25 of the Building IDL Applications
manual.

Executing SAVE Files by Name

You can execute a program stored in a SAVE file from the IDL command line by
typing in the name of the routine if the file meets the following conditions:

e The SAVE file has the same base name as the routine you wish to run

Executing SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 73

* The SAVE file hasthe extension . sav
e« The SAVE fileis stored in adirectory included in the 'PATH system variable

Call the procedure with the same name as the . sav file to restore the program and
execute it immediately using IDL’s automatic compilation mechanism. IDL will
search the current directory then the path specified by !PATH for a . sav file with the
name of the called routine and, if it findsthe . sav file, it restores, compiles and
executes it automatically.

For example, to restore and execute the draw _arrow routine contained in the file
draw_arrow.sav (created in “Example: A SAVE File of a Simple Routine” on
page 62), enter the following at the command line:

draw_arrow

IDL will search for afile named either draw _arrow.pro Of draw_arrow.sav,
beginning in the current working directory and then searching in each directory
specified by 'PATH. When it finds a file whose name matches (in this case,
draw_arrow.sav), it will compile the routinesin the file up to and including the
routine whose name matches the filename. IDL then executes the routine with the
matching name. See “Automatic Compilation” on page 31 for additional details.

Using RESTORE to Access SAVE Files

Use the RESTORE procedure to explicitly restore the entire contents of a SAVE file
that contains variable data or program files. Because calling a procedure with the
same name as a SAVE file allows IDL to automatically find and restore the SAVE
file, itisn't always necessary to explicitly restore a . sav fileusing RESTORE. Cases
in which you must use RESTORE include the following:

* When you are restoring a SAVE file containing variable data.

* When your SAVE file contains multiple routines, and you need to first call a
routine that uses a different name than the . sav file. For example, if you have
aSAVE filenamed rout ines . sav that contains the ARROW and
BAR_PLOT procedures, you would need to restore rout ines . sav before
calling ARROW or BAR_PLOT.

Using RESTORE is more powerful and flexible than relying on IDL's rules for
automatic compilation, for the following reasons:

* Therestored SAVE file can contain IDL variable data

* |f therestored SAVE file contains IDL routines, all routines contained in the
file will be restored, and none will be executed

Building IDL Applications Executing SAVE Files

74

Chapter 4: Creating SAVE Files of Programs and Data

e Therestored SAVE file can have any filename and extension
e Therestored SAVE file can be located in any directory

For example, in “Example: A SAVE File of a Simple Routing” on page 62, we
created two SAVE files: imagefile.sav and draw_arrow.sav. The
imagefile.sav file containsimage variable data. To restore the image data, enter
the following at the IDL command line:

RESTORE, 'imagefile.sav'
IDL creates the variable image in the current scope using the saved variable data.

If the file you are attempting to restore is not located in your current working
directory, you will need to specify a path to the file. RESTORE does not search for
SAVE filesin any other directory. For example, if draw arrow.sav islocated in
myappdir, restore it using the following statement:

RESTORE, 'myappdir/draw_arrow.sav'

Using the IDL_Savefile Object to Access SAVE Files

You can usethe IDL_Savefile object classto gain information about the contents of a
SAVE file, and to selectively restore items from the save file. Once aroutine has been
restored via callsthe IDL_Savefile object, you can execute it simply by typing its
name at the IDL command prompt. For example, if an IDL program named
myroutine isstored in myroutine. sav, which islocated in a directory that is not
in 'PATH, entering the following at the IDL command line will restore the routine
and execute it:

obj = OBJ_NEW('IDL Savefile', 'path/myroutine.sav')
0bj->RESTORE, 'myroutine'
myroutine

where path isthe full path to themyroutine. sav file. See“ Getting Information
About SAVE Files’ in Chapter 7 of the Using IDL manual for additional details.

Executing SAVE Files Building IDL Applications

Chapter 4: Creating SAVE Files of Programs and Data 75

Changes to IDL 5.4 SAVE Files

With IDL 5.4, RSl released aversion of IDL that was 64-bit capable. The original
IDL SAVE/RESTORE format used 32-bit offsets. In order to support 64-bit memory
access, the IDL SAVE/RESTORE file format was modified to allow the use of 64-bit
offsets within the file, while retaining the ability to read old files that use the 32-bit
offsets.

The SAVE command always begins reading any SAVE file using 32-bit offsets. If the
64-bit offset command is detected, 64-hit offsets are then used for any subsequent
commands.

« InIDL versions capable of writing large files
('VERSION.FILE_OFFSET_BITSEQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-hit.

e SAVE aways starts reading any SAVE file using 32-bit offsets. If it seesthe
64-bit offset command, it switches to 64-hit offsets for any commands
following that one.

This configuration is fully backward compatible, in that any IDL program can read
any SAVE fileit has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
fileswritten by newer IDL versionsto sites where they are restored by older versions
of IDL. It isnot generally reasonable to expect this sort of forward compatibility, and
it does not fit the usual definition of backwards compatibility. RSl has always strived
to maintain this compatibility. However, in IDL 5.4 this was not the case. The
following steps were taken in IDL 5.5 to minimize the problems caused by the IDL
5.4 save format:

e 64-bit offsets encoding has been improved. SAVE fileswritten by IDL 5.5 and
later should be readable by any previous version of IDL, if the file data does
not exceed 2.1 GB in length.

« IDL 5.5 and later versions will retain the ability to read the 64-bit offset files
produced by IDL 5.4.x, thus ensuring backwards compatibility.

e SAVEfileswritten by IDL 5.5 or later versions that contain file data exceeding
2.1GB in length are not readabl e by older versions of IDL, but will be readable
by IDL 5.5 and later versions of IDL that have 'VERSION.MEMORY _BITS
equal to 64.

Building IDL Applications Changes to IDL 5.4 SAVE Files

76 Chapter 4: Creating SAVE Files of Programs and Data

e The CONVERT_SR54 procedure, a part of the IDL 5.5 user library, can be
used to convert SAVE files written within IDL 5.4 into the newer IDL 5.5
format. This alows existing datafiles to become readable by previous IDL
versions. The CONVERT_SR54 procedure islocated in the
RSI-DIR/1lib/obsolete.

Changes to IDL 5.4 SAVE Files Building IDL Applications

Chapter 5

Creating Procedures
and Functions

The following topics are covered in this chapter:

Overview of Procedures and Functions 78
DefiningaProcedure 79
DefiningaFunction 82
Automatic Compilation and Execution 83
Parameters oo 85
Using Keyword Parameters 89
Determining if aKeywordisSet 90

Supplying Values for Missing Keywords .. 91

Building IDL Applications

Supplying Values for Missing Arguments . 92

Keyword Inheritance 93
Entering Procedure Definitions 100
How IDL ResolvesRoutines 101
Parameter Passing Mechanism 102
Cdling Mechanism 104

Calling Functions/Procedures Indirectly . 106

77

78 Chapter 5: Creating Procedures and Functions

Overview of Procedures and Functions

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the command prompt or from
other programs. When a procedure or function is finished, it executesa RETURN
statement that returns control to its caller. Functions always return an explicit result.

A procedureis called by a procedure call statement, while afunction iscalled by a
function reference. For example, if myproaBcC isaprocedure and myfuncxyzisa
function, the calling syntax is:

; Call procedure with two parameters.
myproABC, A, 12

; Call function with one parameter. The result is stored
; 1n variable A.
A = myfuncXYZ(C/D)

Note
See Chapter 6, “Library Authoring” for information on naming procedures to avoid
conflictswith IDL routine names. It isimportant to implement and consistently use
a naming scheme from the earliest stages of code development.

Procedures and functions are collectively referred to as routines. An IDL program
file may contain one or many routines, which can be amix of procedures and
functions.

Overview of Procedures and Functions Building IDL Applications

Chapter 5: Creating Procedures and Functions 79

Defining a Procedure

A sequence of one or more IDL statements can be given aname, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

The general format for the definition of a procedureis as follows:

PRO Name, Parameterl, ..., Parametern
; Statements defining procedure.
Statementl
Statement2

; End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that isin adirectory in the IDL search path (!PATH)
and has the same name as the prefix of the . sav or .pro file, causesthe procedure
to be read from the disk, compiled, and executed without interrupting program
execution.

Calling a Procedure

The syntax of the procedure call statement is as follows:
Procedure_Name, Parameterl ’ Parameter2, oo ey Parametern

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:
e System procedures provided with IDL.

e User-written procedures written in IDL and compiled with the .RUN
command.

e User-written proceduresthat are compiled automatically becausethey residein
directories in the search path. These procedures are compiled the first time
they are used. See “Automatic Compilation and Execution” on page 83.

Building IDL Applications Defining a Procedure

80

Chapter 5: Creating Procedures and Functions

* Procedureswrittenin IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

¢ Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Procedure Examples

Some procedures can be called without any parameters. For example:
IPLOT

Thisisaprocedure call to launch theiPlot iTool. There are no explicit inputs or
outputs. You can also call iPlot with parameters including data and color
specifications:

data = RANDOMU (Seed, 45)
IPLOT, data, COLOR=[255,0,0]

This openstheiPlot tool and passes it random plot data. The data parameter isan
argument and the COLOR parameter is a keyword. These elements are described in
more detail in “Parameters’ on page 85.

You can aso create a named program consisting of a procedure. For example,
suppose you have afilecalled hello world.pro containing the following code:

PRO hello world
PRINT, 'Hello World'
END

ThisIDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension . pro or the extension . sav.
When IDL searches for a user-defined procedure or function, it searchesfor files
consisting of the name of the procedure or function, followed by the .pro or .sav
extension. Procedures and functions can also accept arguments and keywords. Both
arguments and keywords allow the program that calls the routine to pass data in the
form of IDL variables or expressions to the routine.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

PRO hello world, name, INCLUDE NAME = include
IF (KEYWORD_SET(inClude) && (N_ELEMENTS(name) NE 0)) THEN BEGIN
PRINT, 'Hello World From '+ name
ENDIF ELSE PRINT, 'Hello World'
END

Defining a Procedure Building IDL Applications

Chapter 5: Creating Procedures and Functions 81

Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the name variable if avalue was
supplied for the name argument. Enter the following procedure call at the command
line:

hello world, name, /INCLUDE NAME
IDL prints,
Hello World
Now define a string name and repeat the procedure call:

name = "Horton"
hello world, name, /INCLUDE NAME

IDL prints:

Hello World From Horton

This example uses the KEYWORD_SET and N_ELEMENTS functions in order to
handle the possibility of missing information in a procedure or function call. See
“Determining if a Keyword is Set” on page 90 for more information.

Building IDL Applications Defining a Procedure

82 Chapter 5: Creating Procedures and Functions

Defining a Function

A function is aprogram unit containing one or more IDL statements that returns a
value. This unit executes independently of its caler. It hasits own local variables and
execution environment. Referencing a function causes the program unit to be
executed. All functions return a function value which is given as a parameter in the
RETURN statement used to exit the function. Function names can be up to 128
characters long.

The genera format of afunction definition is as follows:

FUNCTION Name, Parameter;, ..., Parametery
Statement;
Statement,

RETURN, Expression
END

Function Example

To define afunction called AV ERAGE, which returns the average value of an array,
use the following statements:

FUNCTION AVERAGE, arr
RETURN, TOTAL (arr)/N_ELEMENTS (arr)
END

Once the function AV ERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRINT, AVERAGE (X"2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. To return the result in a variable, use afunction call as follows;

vAvg = AVERAGE (X*2)

Parameters passed to functions are identified by their position or by a keyword. See
“Using Keyword Parameters’ on page 89. If afunction has no parameters, you must
specify empty parentheses in the function call.

Defining a Function Building IDL Applications

Chapter 5: Creating Procedures and Functions 83

Automatic Compilation and Execution

IDL automatically compiles and executes a user-written function or procedure when
itisfirst referenced if:

1. The source code of the function isin the current working directory or in a
directory in the IDL search path defined by the system variable |PATH.

2. The name of the file containing the function is the same as the function name
suffixed by .pro or .sav. The suffix should be in lowercase |etters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be lowercase | etters.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation, or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For more information on how to access routines, see “ Running Named Programs” on
page 29.

About Calling and Compiling Functions

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable !PATH, must be compiled before the first reference to the
function is encountered. Thisis necessary because the IDL compiler is unableto
distinguish between areference to a variable subscripted with parentheses and a call

Building IDL Applications Automatic Compilation and Execution

84

Chapter 5: Creating Procedures and Functions

to a presently undefined user function with the same name. For example, in the
Statement:

A = XYZ(5)

itisimpossible to tell by context doneif XYZ isan array or afunction.

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()" on page 314 for additional
details.

When IDL encounters references that may be either afunction call or a subscripted
variable, it searches the current directory, then the directories specified by |PATH,
for files with names that match the unknown function or variable name. If one or
more files matching the unknown name exist, IDL compiles them before attempting
to evaluate the expression. If no function or variable with the given name exists, IDL

displays an error message.
There are several ways to avoid this problem:

e Compilethe lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

¢ Placethe function in afile with the same name as the function, and place that
file in one of the directories specified by PATH.

¢ Usethe FORWARD_FUNCTION definition statement to inform IDL that a
given name refers to afunction rather than a variable. See
“FORWARD_FUNCTION” inthe IDL Reference Guide manual.

e Manually compile al functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.

Automatic Compilation and Execution Building IDL Applications

Chapter 5: Creating Procedures and Functions 85

Parameters

The variables and expressions passed to the function or procedure from its caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the following,

; Call procedure with two parameters.
myproABC, A, 12

; Call function with one parameter. The result is stored
; in variable A.
A = myfuncXYZ(C/D)

the actual parametersin the procedure call are the variable A and the constant 12,
while the actual parameter in the function call isthe value of the expression (¢/D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
anumber of placesin other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters (Arguments)

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=") that identifies which
parameter is being passed.

When calling aroutine with akeyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can aso be specified by
the caller with the syntax /KEY WORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

For example, a procedure is defined with a keyword parameter named TEST.

Building IDL Applications Parameters

86

Chapter 5: Creating Procedures and Functions

PRO XYz, A, B, TEST =T

The caller can supply avalue for the formal (keyword) parameter T with the
following calls:

; Supply only the value of T. A and B are undefined inside the
; procedure.
XYZ, TEST = A

; The value of A is copied to formal parameter T (note the
; abbreviation for TEST), Q to A, and R to B.
XYZ, TE = A, Q, R

; Variable Q is copied to formal parameter A. B and T are undefined
; inside the procedure.
XYZ, Q
result = FUNCTION (Argl, Arg2, KEYWORD = value)
Note
When supplying keyword parameters for a function, keywords are specified inside
the parentheses.

Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, viaa RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of thecall. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

Parameters

A procedure or afunction can be called with fewer arguments than were defined in
the procedure or function. For example, if aprocedure is defined with 10 parameters,
the user or another procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into
parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parametersin the calling list can be found

Building IDL Applications

Chapter 5: Creating Procedures and Functions 87

by using the system function N_PARAMS. Usethe N_ELEMENTS function to
determineif avariableis defined.

Determining Variable Scope

The ARG_PRESENT function returns TRUE if its parameter will be passed back to
the caller. Thisfunction is useful in user-written procedures to determine if a created
value remains within the scope of the calling routine. ARG_PRESENT helpsthe
caller avoid expensive computations and prevents heap leaks. For example, assume
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i

If the caller does not specify i, the program may not function properly. You can check
to make sure that an argument was specified by using the following statement:

IF ARG PRESENT (i) THEN BEGIN
Function Parameters Example

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTION GRAD, image
; Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy) .

; Evaluate and return the result.
RETURN, ABS(image - SHIFT (image, 1, 0)) + $
ABS (image-SHIFT (image, 0, 1))

; End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within amodule (i.e., they are not parameters and
are not contained in common blocks).

The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

; Store gradient of B in A.
A = GRAD (B)

Building IDL Applications Parameters

88

Parameters

Chapter 5: Creating Procedures and Functions

; Display gradient of IMAGE.
; Access image data and pass to GRAD function.

; Display the gradient.
file=FILEPATH('endocell.jpg', SUBDIRECTORY=['examples', 'data'l)

READ JPEG, file, image, /GRAYSCALE
result=GRAD (image)
IIMAGE, result

Building IDL Applications

Chapter 5: Creating Procedures and Functions 89

Using Keyword Parameters

A short example of afunction that exchanges two columns of a4 x 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

Function to swap columns of T. XYEXCH swaps columns 0 and 1,

; XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTION SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

I

; Swap columns 0 and 1 if keyword XYEXCH is set.
IF KEYWORD_SET(XY) THEN S=[0,1] $

; Check to see if xz is set.
ELSE IF KEYWORD_SET(XZ) THEN S=[0,2] S

; Check to see if yz is set.
ELSE IF KEYWORD_SET(YZ) THEN S=[1,2] $

; If nothing is set, return.
ELSE RETURN, T

; Copy matrix for result.
R =T
; Exchange two columns using matrix insertion operators and
; subscript ranges.
R[S[1], 0] = T[s[ol, *]
R[s[0], 0] = T[s[1], *]

; Return result.
RETURN, R

END
Typical calsto SWAP are asfollows:

Q = SWAP(!P.T, /XYEXCH)

Q = SWAP(Q, /XYEX)

Q = SWAP(INVERT(Z), YZ = 1)

Q = SWAP(Z, XYE = I EQ 0, XZE = I EQ 1, YZE = I EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variable 1.

Building IDL Applications Using Keyword Parameters

90 Chapter 5: Creating Procedures and Functions

Determining if a Keyword is Set

The previous function example (in “ Using Keyword Parameters’ on page 89) usesthe
system function KEYWORD_SET to determine if a keyword parameter has been
passed and if it is nonzero. Thisis similar to using the condition:

IF N ELEMENTS (P) NE 0 THEN IF P THEN ...

to test if keywords that have atrue/false value are both present and true. The
N_ELEMENTS function returns the number of elements contained in any expression
or variable. Scalars aways have one element. The N_ELEMENTS function returns
zero if its parameter is an undefined variable. The result is always alongword scalar.
Thefollowing example determinesif avariableisdefinedusingN_ELEMENTS. It sets
the variable abc to zero if it is undefined; otherwise, the variable is not changed.

IF N_ELEMENTS (abc) EQ 0 THEN abc = 0

The KEYWORD_SET function returnsa 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedureis
written which performs and returns the result of acomputation. If the keyword PLOT
is present and nonzero, the procedure also plotsits result as follows:

; Procedure definition.
PRO XYZ, result, PLOT = plot

; Compute result.
; Plot result if keyword parameter is set.
IF KEYWORD SET (PLOT) THEN PLOT, result

END
A call to this procedure that produces a plot is shown in the following statement.

XYZ, R, /PLOT

Determining if a Keyword is Set Building IDL Applications

Chapter 5: Creating Procedures and Functions 91

Supplying Values for Missing Keywords

N_ELEMENTS s frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. (See * Supplying
Valuesfor Missing Arguments’ on page 92.) An exampleof using N_ELEMENTSto
check for a keyword parameter is as follows:

; Display an image with a given zoom factor.
; If factor is omitted, use 4.
PRO ZOOM, image, FACTOR = factor

; Supply default for missing keyword parameter.
IF N _ELEMENTS (factor) EQ 0 THEN factor = 4

Note
If you use this method, the variable factor is defined has having the value 4, even
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variable factor would be defined for that routine and
for any other routines also called by the routine that called ZOOM. This can lead to
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a default
zoom factor in the example above, but did not want to change the value of factor,
you could use an approach similar to the following:

IF N_ELEMENTS (factor) EQ 0 THEN zoomfactor = 4 $
ELSE zoomfactor = factor

You would then set the zoom factor internally using the zoomfactor variable,
leaving factor itself unchanged.

Building IDL Applications Supplying Values for Missing Keywords

92 Chapter 5: Creating Procedures and Functions

Supplying Values for Missing Arguments

The N_PARAMS function returns the number of positional arguments (not keyword
arguments) present in a procedure or function call. A frequent useisto call
N_PARAMSto determine if al arguments are present and if not, to supply default
values for missing parameters. For example:

; Print values of XX and YY. If XX is omitted, print
; values of YY versus element number.
PRO XPRINT, XX, YY

; Check number of arguments.
CASE N_PARAMS () OF

; Single-argument case.
1: BEGIN

First argument is y values.
= XX

Ko~e

; Create vector of subscript indices.
X = INDGEN(N_ELEMENTS(Y))

END

Two-argument case.
2: BEGIN

; Copy parameters to local arguments.
Y = YY & X = XX

END

; Print error message.
ELSE: MESSAGE, 'Wrong number of arguments'

ENDCASE

; Remainder of procedure.

END

Supplying Values for Missing Arguments Building IDL Applications

Chapter 5: Creating Procedures and Functions 93

Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to the routines that they
call. Routines are able to accept keywords on behalf of the routines they call without
explicitly processing each individual keyword. The resulting code is ssimple, and
requires significantly less maintenance. Keyword inheritance is of particular value
when writing:

e Wrapper routines, which are variations of a system or user-provided routine.
Such wrappers usually augment the behavior of another routinein asmall way,
largely passing arguments and keywords through without interpretation.
Keyword inheritance allows such wrappersto be very simple, and benefit from
not having to specify all the details of the underlying routine's interface.
Maintenance of the wrapper is also greatly simplified, because the wrapper
does not require modification every time the underlying routine changes.

« Methods for an object. In an object hierarchy, each subclass has the option of
overriding the methods provided by its superclasses. Often, the subclass
method calls the superclass version. Keyword inheritance makesit simple to
pass on keywords without having to be explicitly aware of them, and without
having to be concerned with filtering out those keywords that are not accepted
by the superclass method. In addition to enhancing maintainability, this allows
subclassing from a base class without having detailed knowledge of itsinternal
implementation, an important consideration for object oriented programming.

There are two steps required to use keyword inheritance in an IDL routine:

1. Theroutine must declare that it accepts inherited keywords. Thisis done by
specifying either the EXTRA or _REF EXTRA keyword in the formal
parameter list of the routine (note the leading underscore in these names). IDL
will use one of its two available keyword inheritance mechanisms depending
on which of these keyword parameters is used. The first inheritance
mechanism (_EXTRA) passes keywords by value, while the other
(_LREF_EXTRA) passes them by reference. The difference between these
methods is explained in “Keyword Inheritance Mechanisms’ on page 94.
Advice on how to choose the best one for your needs can be found in
“Choosing a Keyword Inheritance Mechanism” on page 96. Only one of these
two keywords can be specified for a given routine.

Building IDL Applications Keyword Inheritance

94 Chapter 5: Creating Procedures and Functions

2. Theroutine passes the inherited keywords to a called routine, by including
either the EXTRA or _STRICT_EXTRA keyword in the call to that routine.
_EXTRA and _STRICT_EXTRA differ only in how IDL behaves when an
inherited keyword is not accepted by the called routine. _EXTRA causes such
keywords to be quietly ignored, while _STRICT_EXTRA causes DL to issue
an error and stop execution. _EXTRA isthe usual choice, while
_STRICT_EXTRA isused primarily for wrapper routines.

When using keyword inheritance, the following points should be kept in mind:

¢ The mechanism used by aroutine for inherited keywords is solely determined
by which keyword (_ EXTRA or _REF_EXTRA) isused in the formal
parameter list for that routine. Hence, REF _EXTRA isonly usedin the
formal parameter list of aroutine, and never in acall to that routine. This also
means that you can change an existing routine from using one mechanism to
the other by simply changing the name of the keyword. There is no need to
change any of the calls to the routine, just the formal parameter list of the
routine itself.

e Attemptingto useboththe EXTRA and _REF_EXTRA keywordstogether in
the formal parameter list of afunction or procedure will cause an error to be
issued. You can only use one or the other.

e Only the caller of aroutine can dictate whether keywords that are not
understood by the called routine should be ignored (_ EXTRA) or should
generate an error (_STRICT_EXTRA). For thisreason, _STRICT_EXTRA is
only used in acall to aroutine, and not in the formal parameter list for the
routine.

e Attempting to use boththe EXTRA and _STRICT_EXTRA keywords
together in acall to afunction or procedure will cause an error to be issued.
You can only use one or the other.

Keyword Inheritance Mechanisms

Asdescribed above, there are two possible mechanisms used by IDL to passinherited
keywords. The one used by aroutine is determined by the formal parameter list of the
routine.

_EXTRA: Passing Keyword Parameters by Value

You can cause inherited keyword parameters to be passed to aroutine by value by
adding the keyword parameter EXTRA to the formal argument list of that routine.
Passing parameters by value means that you are giving the called routine a copy of

Keyword Inheritance Building IDL Applications

Chapter 5: Creating Procedures and Functions 95

the value of the passed parameter, and not the original. As such, any changes made to
the value of such akeyword is not passed back to the caller.

When aroutine is defined with the formal keyword parameter EXTRA, and
keywords that are not recognized by that routine are passed to itinacall, IDL
constructs an anonymous structure to contain the keyword inheritance information.
Each tag in this structure has the name of an inherited keyword, and the value of that
tag is a copy of the value that was passed to that keyword. If no unrecognized
keywords are passed in acall, the value of the EXTRA keyword will be undefined,
indicating that no inherited keyword parameters were passed.

Modifying Inherited Keyword Values

If extra keyword parameters have been passed by value, their values are stored in an
anonymous structure. The inheriting routine has the opportunity to modify these
values and/or to filter them prior to passing them to another routine. The
CREATE_STRUCT, N_TAGS, and TAG_NAMES functions can all be of usein
performing such operations. For example, here is an example of adding a keyword
named COLOR with value 12 to an _EXTRA structure:

PRO SOMEPROC, EXTRA = ex
if (N _ELEMENTS (ex) NE 0) $
THEN ex = CREATE STRUCT ('COLOR’, 12, ex) $
ELSE ex = { COLOR : 12 }
SOME_UNDERLYING PROC, EXTRA=ex
END

Theuse of N_ELEMENTS is necessary because if the caller does not supply any
inherited keyword, the variable EX will have an undefined value, and an attempt to
use that value with CREATE_STRUCT will cause an error to be issued. Hence, we
only use CREATE_STRUCT if we know that inherited keywords are present.

_REF_EXTRA: Passing Keyword Parameters by Reference

You specify that a routine accepts inherited keywords by reference, by adding the
keyword REF EXTRA to the formal argument list of the routine. When aroutineis
defined with _REF_EXTRA, inherited keywords are passed using IDL’s standard
parameter passing mechanism, as with any other variable. Unlike regular variables
however, the values of these keywords are not available within the routine itself.
Instead, the names of these keywords are passed as a string array to the routine asthe
value of the REF EXTRA keyword. The presence of anameinthe REF EXTRA
value indicates that a keyword of that name was passed, and its value is available to
be passed on in afunction or procedure call (using either _EXTRA or
_STRICT_EXTRA). If no unrecognized keywords are passed in a call, the value of

Building IDL Applications Keyword Inheritance

96

Chapter 5: Creating Procedures and Functions

the EXTRA keyword will be undefined, indicating that no inherited keyword
parameters were passed.

If inherited keywords passed by reference are modified by a called routine, those
changes will be passed back to the caller.

The pass by reference keyword inheritance mechanism is especially useful when
writing object methods.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names viathe _EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:
PRO SOMEPROC, _REF EXTRA = ex
ONE, EXTRA=['MOOSE', 'SQUIRREL']

TWO, _EXTRA='SQUIRREL'
END

If we call the SOMEPROC routine with three keywords:
SOMEPROC, MOOSE=moose, SQUIRREL=3, SPY=PTR NEW (moose)

e itwill passthe keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

e itwill passthe keyword SQUIRREL and its value to procedure TWO,

e it will do nothing with the keyword SPY, or any other keyword that might be
passed to it.

Choosing a Keyword Inheritance Mechanism

The two available keyword inheritance mechanisms have different strengths and
weaknesses. The one to choose depends on the requirements of your routine:

e |If your routine needs to see the values of the inherited keywords, and you do
not need to pass modified values back to the caller, use _EXTRA (pass by
value).

» If your routine does not need to see the values of the inherited keywords, and it
is OK to pass back modified keyword values, use REF_ EXTRA (pass by
reference).

e |If your routine is an object method, REF EXTRA ismost likely the correct
choice for your application.

Keyword Inheritance Building IDL Applications

Chapter 5: Creating Procedures and Functions 97

e If either mechanism will serve your needs, asis often the case, then RS
recommends REF EXTRA, which has aminor efficiency advantage over
_EXTRA, dueto the fact that it does not have to construct an anonymous
structure and copy the original valuesinto it.

Example: Writing a Wrapper Routine

One of the most common uses for the keyword inheritance mechanism is to create
wrapper routines that extend the functionality of existing routines. This example
shows how to write such a wrapper, using both avail able inheritance mechanisms.

By Value

In most wrapper routines, thereis no need to return modified keyword values back to
the calling routine — the aim is simply to provide the complete set of keywords
available to the existing routine from the wrapper routine. Hence, the by value form
(_EXTRA) of keyword inheritance can be used.

For example, suppose that procedure TEST is awrapper to the PLOT procedure. The
text of such a procedure is shown below:

PRO TEST, a, b, EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, EXTRA = e
END

Thiswrapper passes all keywords it does not accept directly to PLOT using keyword
inheritance. If such akeyword is not accepted by the PLOT procedure, it is quietly
ignored. If you wish to catch such errors, you would re-write TEST to use the
_STRICT_EXTRA keyword in the call to PLOT:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _STRICT EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be placed into an anonymous structure assigned to the variable
e. If there are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5
variable e, within TEST, contains an anonymous structure with the value:

{ LINESTYLE: 4, THICK: 5 }

Building IDL Applications Keyword Inheritance

98

Chapter 5: Creating Procedures and Functions

These keyword/value pairs are then passed from TEST to the PLOT routine using the
_EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into aroutine via_ EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, EXTRA = {COLOR: 12}

specifiesacolor index of 12 to PLOT.

By Reference

It is extremely simple to modify the by value (EXTRA) version of the TEST
procedure from the previous section to use by reference keyword inheritance. It
sufficesto changethe EXTRA keywordto REF _EXTRA inthe formal parameter
list:

PRO TEST, a, b, REF EXTRA = e, COLOR = color

PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be passed to TEST using the normal IDL parameter passing
mechanism. However, their values are not visible within TEST itself. Instead, astring
array containing the inherited keyword names is assigned to the variable e. If there
are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable e, within TEST, contains an anonymous structure with the value:
[‘LINESTYLE', ‘THICK']

These inherited keywords are then passed from TEST to the PLOT routine using the
EXTRA keyword. Note that keywords passed into aroutine via EXTRA override
previous settings of that keyword. For example, the call:

PLOT, a, b, COLOR = color, EXTRA = {COLOR: 12}

specifies acolor index of 12 to PLOT. Also note that we are passing a structure (the
by value format used by EXTRA) as the value of the extra keyword to aroutine that
uses the by reference keyword inheritance mechanism (_REF_EXTRA). Thereisno
problem in doing this, because each routine establishes its own inheritance
mechanism independent of any other routines that may be calling it. However, any
keyword values that are changed within PLOT will fail to be returned to the caller
due to the use of the by-value mechanism.

Keyword Inheritance Building IDL Applications

Chapter 5: Creating Procedures and Functions 99

Example: By Value Versus By Reference

The pass by reference keyword inheritance mechanism allows you to change the
value of avariable in the calling routine’s context from within the routine, whereas
the pass by value mechanism does not. To demonstrate this difference between
_EXTRA and REF _EXTRA, consider the following simple example procedures.

PRO HELP BYVAL, EXTRA = ex
HELP, _EXTRA = ex
END

PRO HELP BYREF, REF EXTRA = ex
HELP, _EXTRA = ex
END

Both HELP BYVAL and HELP_BY REF are simple wrappers to the HELP
procedure. The HEL P procedure accepts a keyword named OUTPUT that passes
back avalueto the caller. Observe the result when we call each wrapper, specifying
OUTPUT as an inherited keyword parameter:

HELP BYVAL, OUTPUT = out & HELP, out

IDL prints:
% At HELP_BYVAL 2 /dev/tty
% SMAINS
EX UNDEFINED = <Undefineds>

Compiled Procedures:
SMAINS HELP_ BYVAL

Compiled Functions:

ouT UNDEFINED = <Undefined>

This occurs because the HELP call within HELP_BY VAL is passed a variable that
cannot be used to return a value, due to the use of by value keyword inheritance. It
therefore reverts to the default of writing to the user’s screen, and no valueis returned
to the caller for the OUTPUT keyword.

Now run HELP_BY REF:

HELP_ BYREF, OUTPUT = out & HELP, out

IDL prints:
ouT STRING = Array[8]

HELP_BY REF returns the value of the HELP OUTPUT keyword as desired.

Building IDL Applications Keyword Inheritance

100 Chapter 5: Creating Procedures and Functions

Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commandsis as follows:

.RUN [File; , File,, ...]
.COMPILE [File; , File,, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see “.RUN” and “.COMPILE” in the IDL Reference Guide
manual.

To enter program text directly from the keyboard, simply enter .RUN at the

IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
adirectly entered program. Aslong as IDL requires more text to complete a program
unit, it prompts with the “-" character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as awhole. See “ Creating
$MAINS Programs’ on page 24 for more information.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

Thefirst non-empty line the IDL compiler reads determines the type of the program
unit; procedure, function, or main program. If the first non-empty lineis not a
procedure or function definition statement, the program unit is assumed to beamain
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is already
compiled, it is replaced by the new program unit.

Entering Procedure Definitions Building IDL Applications

Chapter 5: Creating Procedures and Functions 101

How IDL Resolves Routines

When IDL encountersacall to afunction or procedure, it must find the routine to
call. To do this, it goes through the following steps. If a given step yields a callable
routine, IDL arranges to cal that routine and the search ends at that point:

1

If the routine is known to be a built-in intrinsic routine (commonly referred to
as asystemroutine), then IDL calls that system routine.

If auser routine written in the IDL language with the desired name has already
been compiled, IDL callsthat routine.

If afile with the name of the desired routine (and ending with the filename
suffix . pro) existsin the current working directory, IDL assumes that thisfile
contains the desired routine. It arranges to call a user routine, but does not
compilethefile. Thefilewill be compiled when IDL actually needsit. In other
words, it is compiled at run time when IDL actually attemptsto call the
routine, not when the code for the call is compiled.

IDL searchesthe directories given by the |PATH system variable for afile with
the name of the desired routine ending with the filename suffix .pro. If sucha
fileexists, IDL assumesthat thisfile containsthe desired routine. It arrangesto
call auser routine, but does not compile the file, as described in the previous

step.

If the above steps do not yield a callable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parentheses to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 15, “Arrays’ for adiscussion of this ambiguity). In either case,
theresult is not a callable routine.

Building IDL Applications How IDL Resolves Routines

102

Chapter 5: Creating Procedures and Functions

Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It isimportant to recognize the distinction between these two
methods.

¢ Expressions, constants, system variables, and subscripted variable references
are passed by value.

e Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:
PRO ADD, A, B
A=A+ B

RETURN
END

This procedure adds its second parameter to the first, returning the result in the first.
Thecall

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A
No error messageisissued. Similarly, if ARR is an array, the call
ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as
follows:

TEMP = ARRI[5]

ADD, TEMP, 4
ARR[5] = TEMP

Parameter Passing Mechanism Building IDL Applications

Chapter 5: Creating Procedures and Functions 103

Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “ Parameter
Passing with Structures’ on page 351 for additional details.

Building IDL Applications Parameter Passing Mechanism

104

Chapter 5: Creating Procedures and Functions

Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1. All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

2. Theactual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

3. Thefunction or procedureis executed until aRETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
auser-written function is passed back to the caller by specifying it asthe value
of aRETURN statement. RETURN statements in procedures cannot specify a
return value.

4. All locd variablesin the procedure, those variables that are neither parameters
nor common variables, are deleted.

5. The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actua parameters that were passed by
value are deleted.

6. Control resumesin the calling procedure after the procedure call statement or
function reference.

Recursion
Recursion (i.e., aprogram calling itself) is supported for both procedures and
functions.

Example

Hereis an example of an IDL procedure that reads and plots the next vector from a
file. This example illustrates using common variables to store values between calls,
aslocal parameters are destroyed on exit. It assumes that the file containing the data
isopen on logica unit 1 and that the file contains a number of 512-element, floating-
point vectors.

Calling Mechanism

; Read and plot the next record from file 1. If RECNO is specified,
; set the current record to its value and plot it.
PRO NXT, recno

; Save previous record number.

Building IDL Applications

Chapter 5: Creating Procedures and Functions 105

COMMON NXT COM, lastrec

; Set record number if parameter is present.
IF N _PARAMS(0) GE 1 THEN lastrec = recno

; Define LASTREC if this is first call.
IF N _ELEMENTS (lastrec) LE 0 THEN lastrec = 0

; Define file structure.
AA = ASSOC(1, FLTARR(512))

; Read and plot record.
PLOT, AA[lastrec]

; Increment record for next time.
lastrec = lastrec + 1

END

Once the user has opened thefile, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.

Building IDL Applications Calling Mechanism

106 Chapter 5: Creating Procedures and Functions

Calling Functions/Procedures Indirectly

The CALL_FUNCTION and CALL_PROCEDURE routines are used to indirectly
call functions and procedures whose names are contained in strings. The
CALL_METHOD routine can be used to indirectly call an object method whose
name is contained in a string. Although not as flexible as the EXECUTE function
(see “EXECUTE" in the IDL Reference Guide manual), the CALL_* routines are
much faster, and should be used in preference to EXECUTE whenever possible.

Example

This example code fragment, taken from the routine SYDFIT, calls a function whose
name is passed to SVDFIT viaakeyword parameter as a string. If the keyword
parameter is omitted, the function POLY is called.

; Function declaration.
FUNCTION SVDFIT, ..., FUNCT = funct

; Use default name, POLY, for function if not specified.

IF N _ELEMENTS (FUNCT) EQ 0 THEN FUNCT = 'POLY'
; Make a string of the form "a = funct(x,m)", and execute it.
7Z = EXECUTE('A = '4+FUNCT+' (X,M)")

The above exampleis easily made more efficient by replacing the call to EXECUTE
with the following line:

A = CALL FUNCTION (FUNCT, X, M)

Calling Functions/Procedures Indirectly Building IDL Applications

Chapter 6

Library Authoring

The following topics are covered in this chapter:

Overview of Library Authoring 108 Advicefor Library Authors
Recognizing Potential Naming Conflicts . 109 Converting Existing Libraries

Building IDL Applications

107

108 Chapter 6: Library Authoring

Overview of Library Authoring

Library authors provide an invaluable resource to the IDL community — they
develop domain-specific programs and applications that implement knowledge far
beyond RSI’s level of expertise. User library code is often freely available,
supported, and documented. However, as the number of library authors and routines
continues to grow, it becomes increasingly important for authorsto adhereto a
routine naming convention within their libraries that avoids conflicts with core IDL
functionality.

Most user libraries start out as small collections of code, and then grow. Initially, the
naming issue is not very important. Over time, the library grows in complexity and
number of users. Because thisis often agradual process, the importance of namingis
not obvious until thereis a conflict with IDL system functionality, or a conflict with
another library author’s code.

An understanding of the way IDL resolves routines during program execution reveal s
why new IDL system procedures and functions may periodically conflict with pre-
existing routines written by usersin the IDL community. (See “How IDL Resolves
Routines’ on page 101 for step-by-step routine resolution details.)

Thefact that IDL system routines always take precedence over user routines provides
the following benefits:

e ThelDL environment remains reliable and consistent — a call to FFT always
returnsthe IDL version of the FFT function.

e Iteliminates agreat deal of path searching, which trandates into faster
execution speed.

In contrast, if user routinestook precedence over system routines, agiven installation
could radically alter the meaning of common and basic IDL constructs ssimply by
creating user routines with the names of IDL system routines. Thiswould result in
conflicts when sharing code, degradation of the common IDL language core, and
ultimately, the reduced usefulness of IDL.

Although the way IDL handles the search for routines is simple, efficient, and
reliable, it is not perfect. The potential for namespace conflicts exists. It isimportant
to recognize and take steps to avoid these naming conflicts as described in the
following sections:

e “Recognizing Potential Naming Conflicts’ on page 109
e “Advicefor Library Authors’ on page 112
e “Converting Existing Libraries’ on page 113

Overview of Library Authoring Building IDL Applications

Chapter 6: Library Authoring 109

Recognizing Potential Naming Conflicts

IDL favors simple names, and it blurs the user level distinction between system
routines and user routines. The reason for this has everything to do with IDL’s
orientation towards ad hoc analysis. The primary goal is transparency. Names should
make sense, be easy to remember, and not require too much typing. Language
transparency also results in very human-readable code. In conjunction with the way
IDL searchesfor routines, this may cause either user level or system level conflicts.

User Level Conflicts

In the user level case, an IDL user writes aroutine that is not part of the base release
of IDL, and placesitin aloca library. At some later date, a new version of IDL is
installed that contains anew IDL library routine with the same name as the user's
routine. Depending on the order of the directories in the user’s path, one of these two
routines is executed. If the user’sroutine is used, IDL library code that callsthe
routine will get the wrong version and fail in strange and mysterious ways. If the IDL
routine isused, the IDL library will be satisfied, but the user'slibrary will get the
wrong version, also with bad results.

System Level Conflicts

The system level caseis similar, but harder to work around. In this case, the user
creates alocal routine, as before. However, the new version of IDL contains a system
routine with the same name. In this case, IDL will always choose to use the system
routine, and the user routine simply vanishes from view never to be called again. The
order of the search path is meaningless in this case because the search path is not
even consulted. A system routine always has precedence over a user routine.

Choosing Routine Names to Avoid Conflicts

Naming conflicts can result in costly and time consuming problems; carefully
considered names make everything easier. On the surface, naming routines seems
like atrivia issue, but names are very important. It is crucial to adopt and
consistently adhere to a routine naming strategy to avoid conflict. The core idea of
this convention (described in detail in “Advice for Library Authors’ on page 112) is
to prefix al library routine names with a unique identifier, one indicative of your
organization or project. Research Systems reserves routine names that are generic,
and those with an“IDL” or “RSI” prefix on behalf of the entire IDL community.
Prefixing your user library routines significantly reduces the risk of namespace
collisions with IDL routines.

Building IDL Applications Recognizing Potential Naming Conflicts

110 Chapter 6: Library Authoring

Asalibrary author, your decision to follow aroutine prefixing strategy benefits the
entire IDL community. This convention translates into simplicity and reliability,
allowing IDL system routines to always take precedence over user routines. It also
raises the visibility of your routines, readily distinguishing them as part of your
library.

Note

For instructions on how to prefix an existing user library, see “ Converting Existing
Libraries’ on page 113.

Cross-Platform Naming of IDL .pro Files

When naming IDL .pro files used in cross-platform applications, be aware of the
various platforms’ file naming conventions and limitations. For example, the “:”
character is not allowed in afilename under Microsoft Windows.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insensitive.
Under Unix, file names are case sensitive—file.pro isdifferent fromrile . pro.

When writing cross-platform applications, you should avoid using filenames that are
different only in case. The safest course isto use filenames that are all lower case.

Remember, too, that IDL commands are themselves case-insensitive. If entered at the
IDL command prompt, the following are equivalent:

IDL> command
IDL> COMMAND
IDL> CommanD

Automatic Compilation and Case Sensitivity

On UNIX platforms, where filename case matters, IDL |ooks for alower-case
filename when you enter the name of a user-written routine at the IDL command

prompt. Thus, if you save your program file asmyprogram. pro and enter the
following at the IDL command prompt:

IDL> MyProgram

IDL will compilethe file myprogram.pro and attempt to execute a procedure
named myprogram.

If you save your program file asMyProgram. pro and enter the following at the IDL
command prompt:

IDL> MyProgram

Recognizing Potential Naming Conflicts Building IDL Applications

Chapter 6: Library Authoring

111

o\°

IDL will not compile the file MyProgram. pro and will issue an error that looks like:

Attempt to call undefined procedure/function: 'MYPROGRAM'.
Execution halted at: S$MAINS

)
o

You can compile and run a program with a mixed- or upper-case file name on a

UNIX platform by using IDL's .COMPILE or .RUN executive commands:

IDL> .COMPILE MyProgram

IDL> MyProgram

or, if MyProgram.pro contains amain-level program:

IDL> .RUN MyProgram

In general we recommend that you use |ower-case file names on platforms where
case matters.

Building IDL Applications Recognizing Potential Naming Conflicts

112 Chapter 6: Library Authoring

Advice for Library Authors

An ordinary IDL programmer needs only to solve his or her own problemsto the
desired level of quality, reusability, and robustness. Life is more difficult for an
author of alibrary of IDL routines. In addition to the challenges facing any
programmer, library authors face additional challenges:

¢ The structure and organization of the library needs to encourage reuse and
generality.

e Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

e Errors must be gracefully handled whenever possible. See Chapter 8,
“Debugging and Error-Handling” for more on error control.

e Themost useful libraries are written to work correctly on awide variety of
platforms, without requiring their users to be aware of the details.

« Documentation must be provided, or the library will not find users.

e Libraries must be able to co-exist with other code over which they have no
control. Authors must not alter the global environment in ways that cause
conflicts, and they must also take care to prefix the names of al routines,
common blocks, systems variables, and any other global resources they use.
This prevents alibrary from conflicting with other libraries on the same
system, and protects the library from changesto IDL that may occur in newer
releases.

Prefixing Routine Names

The use of aproper prefix minimizestherisk of anamespace collision as described in
“Recognizing Potential Naming Conflicts’ on page 109. In selecting a prefix for your
library, you should select a name that is short, mnemonic, and unlikely to be chosen
by others. For example, such a name might use the name of your organization or
project in an abbreviated form.

Non-prefixed names and names prefixed by “IDL” or “RS|” are reserved by RSI.
New names of these forms can and will appear without warning in new versions of
IDL, and should be avoided when naming new library routines.

Advice for Library Authors Building IDL Applications

Chapter 6: Library Authoring 113

Converting Existing Libraries

Many libraries that already exist do not follow the naming guidelines provided in
“Advicefor Library Authors’ on page 112. Such libraries are bound to experience an
occasiona conflict with new versions of IDL. The best solution to avoid conflictsis
to perform a systematic one-time conversion to a prefixed naming scheme.

Any existing library islikely to aready have users. Assuming that non-prefixed
nameswere used in such libraries, it is not possible to smply change the names. Such
conversions require time to carry out, and once that has happened, it takes time for
users to adjust and alter their usage. However, the actual conversion can go very
quickly, and with proper planning it is easy to offer a backwards compatibility option
for your users. Use the following steps to convert an existing library:

1

Generate alist of al files containing routines to be renamed.
Using thislist, build an IDL batch file that uses .COMPILE on each file.

Start afresh IDL session, execute the batch file, and use HELP, /ROUTINES
to get acomplete list of all compiled routines. Only IDL user library routines
(those .pro files shipped with the IDL distribution) should not contain a
prefix.

Asyou rename each routine to its prefixed form, write a non-prefixed wrapper
routine with the old name that callsthe new version. Such wrappers are easy to
writein IDL, using the_ REF EXTRA keyword to pass keywords through to
the real routine. See “Keyword Inheritance” on page 93 for details.

Use the COMPILE_OPT OBSOLETE compilation directive in such wrappers
so that IDL will recognize them as obsolete routines. See COMPILE_OPT in
the IDL Reference Guide for more information on COMPILE_OPT. These
compatibility wrappers serve the following purposes:

e You can use them to migrate your library to fully prefixed form over time,
since the wrapper will be used any place you failed to changeto calling the
new name. This enhances the stability of the library and gives you timeto
do acareful job.

¢ Onceyou are finished, you can provide them to your customers as a
bridge, so that their old code continues to work.

« Asyou change the names of routines, use grep (or asimilar file searching
tool) to locate uses of that name, and convert them to the new form aswell.

Iterate, using the batch file mentioned above to find any remaining non-
prefixed uses of the library names. Since your wrappers specified the

Building IDL Applications Converting Existing Libraries

114

Chapter 6: Library Authoring

COMPILE_OPT OBSOLETE directive, you can set the 'WARN system
variable to help you pinpoint such uses. You are done when your batch file
reveals no more unprefixed names.

Once the conversion is done, you can use the compatibility wrappers to smoothly
transition your users to the new names. You should keep the wrappers in a separate
subdirectory, and even consider making them optional. Doing this raises the end
user’'s awareness of the issue and may convince them to convert to using the new
names sooner rather than later.

When you add new routinesto your library, ensure that they use the proper prefix. Do
not provide non-prefixed wrapper routines for new routines. Thereis no backward
compatibility issuein this case, and they are not needed.

Although the onetime hit of prefixing an existing library can consume some time and
effort, there are benefits that accrue from doing it. When new versions of IDL are
released, the odds of the library working with the new version without encountering
any name clashes are extremely high. Use of a consistent prefix also raises the profile
of the library to the end user, raising their level of understanding and appreciation for
the work it does.

Converting Existing Libraries Building IDL Applications

Chapter 7

Program Control

The following topics are covered in this chapter:

Overview of Program Control 116
Compound Statements 118
IF.THEN..ELSE 121
CASE ... 123
SWITCH ... 125
CASEVersusSWITCH 126

Building IDL Applications

FOR.DO i 129
REPEAT..UNTIL 134
WHILE..DO 135
Jump Statements 137
Definition of Trueand False........... 140

115

116 Chapter 7: Program Control

Overview of Program Control

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and looping mechanisms. These constructs include the

following.
Compound Statements
Use BEGIN and END to create a block of statements, which is simply a group of

statements that are the subject of a conditional or repetitive statement.
* BEGIN..END

Conditional Statements

Most useful applications have the ability to perform different actions in response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

« |FR.THEN...ELSE
« CASE
e SWITCH

Loop Statements

L oop statements perform the same set of statements multiple times. Rather than
repeat a set of statements again and again, aloop can be used to perform the same set
of statements repeatedly.

* FOR..DO
* REPEAT..UNTIL
e WHILE..DO

Note
IDL’s array capabilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same cal culation on
each element of an array, you could write aloop to iterate over each array element:

array = INDGEN(10)

FOR 1 = 0,9 DO BEGIN
array[i] = array[i] * 2

Overview of Program Control Building IDL Applications

Chapter 7: Program Control 117
ENDFOR
Thisis much less efficient than using IDL’s built-in array capabilities:

array = INDGEN(10)
array = array * 2

See " Use Vector and Array Operations’ on page 190 for details.

Jump Statements

Jump statements can modify the behavior of conditional and iterative statements.

* BREAK
« CONTINUE
« GOTO

Building IDL Applications Overview of Program Control

118 Chapter 7: Program Control

Compound Statements

Many of the language constructs that we will discuss in this chapter evaluate an
expression, then perform an action based on whether the expression is true or false,
such as with the |F statement:

IF expression THEN statement
For example, we would say “If X equals 1, then set Y equal to 2" asfollows:
IF (X EQ 1) THEN Y = 2

But what if we want to do more than one thing if X equals 1? For example, “If X
equals 1, set Y equal to 2 and print the value of Y.” If wewrote it asfollows, then the
PRINT statement would always be executed, not just when X equals 1:

IF (X EQ 1) THEN Y = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container iscalled a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create a block of statements, which issimply
agroup of statements that are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEGIN
Y =2
PRINT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statementsis composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:

IF (X EQ 1) THEN BEGIN
Y = 2
PRINT, Y

ENDIF

Compound Statements Building IDL Applications

Chapter 7: Program Control 119

Thisisto ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN is used. The
following table lists the correct END identifiers to use with each type of statement.

Statement IdeEnl\tli[f)ier Example

ELSE BEGIN ENDEL SE IF (0) THEN A=1 ELSE BEGIN
ENDSZEE

FOR variable=init, limit DO ENDFOR FOR i=1,5 DO BEGIN

BEGIN PRINT, arrayl[i]
ENDFOR

IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
END?El

REPEAT BEGIN ENDREP REPZh;AT iEfIg

ENDREP UNTIL A GT B

WHILE expression DO BEGIN | ENDWHILE | WHILE ~ EOF (1) DO BEGIN
READF, 1, A, B, C

ENDWHILE
LABEL: BEGIN END LABEL1: BEGIN
PRINT, A
END
case_expression: BEGIN END CASE name OF

'Moe': BEGIN
PRINT, 'Stooge'
END
ENDCASE

switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN

PRINT, 'Stooge'
END
ENDSWITCH

Table 7-1: Types of END Identifiers

Note
CASE and SWITCH also have their own END identifiers. CASE should aways be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Building IDL Applications Compound Statements

120 Chapter 7: Program Control

The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spaces to the right of
the previous level to make the program structure easier to read. (See “.RUN” in the

IDL Reference Guide manual for details on producing program listings with the IDL
compiler.)

Compound Statements Building IDL Applications

Chapter 7: Program Control 121

IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the IF statement is as follows:

IF expression THEN statement [ELSE statement]
or

IF expression THEN BEGIN
statements

ENDIF [ELSE BEGIN
statements

ENDELSE]

The expression after the “IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN?" is executed. (See “ Definition of True and False” on page 140 for details on
how the “truth” of an expression is determined.)

For example:

A =2
IF A EQ 2 THEN PRINT, 'A is two'

Here, IDL prints“a is two”.

If the expression evaluates to afalse value, the statement following the “EL SE”
clause is executed:

A =3
IF A EQ 2 THEN PRINT, 'A is two' ELSE PRINT, 'A is not two'

Here, IDL prints“a is not two”.

Control passesimmediately to the next statement if the condition is false and the
EL SE clause is hot present.

Note
Another way to write an IF... THEN...EL SE statement is with a conditional
expression using the ?: operator. For more information, see “Working with
Conditional Expressions’ on page 247.

Tip
Programs with vector and array expressions run faster than programs with scalars,
loops, and | F statements. See “ Use Vector and Array Operations’ on page 190 for a
discussion on increasing efficiency of these expressions.

Building IDL Applications IF...THEN...ELSE

122 Chapter 7: Program Control

Using Statement Blocks with the IF Statement

The THEN and EL SE clauses can be in the form of ablock (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 118). To ensure
proper nesting of blocks, you can use ENDIF and ENDEL SE to terminate the block,
instead of using the generic END. Below is an example of the use of blockswithin an
| F statement.

IF (I NE 0.0) THEN BEGIN
ENDIF ELSE BEGIN
ENDELSE

Nesting IF Statements

| F statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

IF PN THEN SN ELSE SX

If condition P1 istrue, only statement S1 is executed; if condition P2 istrue, only
statement S2 is executed, etc. If none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
issimilar to the CASE statement except that the conditions are not necessarily
related.

IF...THEN...ELSE Building IDL Applications

Chapter 7: Program Control 123

CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CASE
statement is as follows:

CASE expression OF
expression: statement

expression: statement
[ELSE: statement]
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If amatch is
found, the statement is executed and control resumes directly below the CASE
Statement.

The EL SE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usualy
written as the last clause in the CASE statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an EL SE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example — Case Statement Use

An example of the CASE statement follows:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe' : PRINT, 'Stooge 2'
"'Curly': PRINT, 'Stooge 3'
ELSE: PRINT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. Oneis equivalent to true and is matched against each of the
conditionals.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 * X + 5

Building IDL Applications CASE

124 Chapter 7: Program Control

(X GT 50) AND (X LE 100): Y = 13 * X + 4
(X LE 200) : BEGIN
Y =14 * X - 5
Z =X+ Y
END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause isthefirst one
whose valueis equal to the value of the case selector expression.

Tip
Each clause istested in order, so it is most efficient to order the most frequently
selected clauses first.

CASE Building IDL Applications

Chapter 7: Program Control 125

SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SWITCH Expression OF
Expression: Statement

Expression: Statement
[ELSE: Statement]
ENDSWITCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If amatch
is found, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statementsin the SWITCH block. Once a
match is found in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.

The EL SE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the switch statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an EL SE clause is not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

Building IDL Applications SWITCH

126 Chapter 7: Program Control

CASE Versus SWITCH

The CASE and SWITCH statements are similar in function, but differ in the
following ways:
e Execution exits the CASE statement at the end of the matching statement. By

contrast, execution within a SWITCH statement falls through to the next
statement. The following table illustrates this difference:

CASE SWITCH
xX=2 x=2
CASE x OF SWITCH x OF
1: PRINT, 'one' 1: PRINT, 'one'
2: PRINT, 'two' 2: PRINT, 'two'
3: PRINT, 'three' 3: PRINT, 'three'
4: PRINT, 'four' 4: PRINT, 'four'
ENDCASE ENDSWITCH
IDL Prints: IDL Prints:
two two
three
four

Table 7-2: CASE versus SWITCH

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 137.) For example, we
can add aBREAK statement to the SWITCH examplein the above table to
make the SWITCH example behave the same as the CASE example:

x=2
SWITCH x OF
1: PRINT, 'one'
2: BEGIN
PRINT, 'two'
BREAK
END
3: PRINT, 'three'
4: PRINT, 'four'
ENDSWITCH

IDL Prints:;

CASE Versus SWITCH Building IDL Applications

Chapter 7: Program Control 127

two

¢ |If there are no matches within a CASE statement and there is no EL SE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

The decision on whether to use CASE or SWITCH comes down deciding which of
these behaviors fits your code logic better. For example, our first example of the
CASE statement |ooked like this:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe' : PRINT, 'Stooge 2'
"Curly': PRINT, 'Stooge 3'
ELSE: PRINT, 'Not a Stooge'
ENDCASE

We could write this example using SWITCH:

SWITCH name OF
'Larry': BEGIN
PRINT, 'Stooge 1'
BREAK
END
'Moe' : BEGIN
PRINT, 'Stooge 2'
BREAK
END
'Curly': BEGIN
PRINT, 'Stooge 3'
BREAK
END
ELSE: PRINT, 'Not a Stooge'
ENDSWITCH

Clearly, this code can be more succinctly expressed using a CASE statement.

There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS OF XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmasto start on. It starts on the specified day,
and prints the presents for al previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fitsthis problem nicely. Thefirst day of Christmas requires special
handling, so we use a BREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1.

Building IDL Applications CASE Versus SWITCH

128 Chapter 7: Program Control

PRO DAYS OF XMAS, day

IF (N_ELEMENTS (day) EQ 0) THEN DAY = 12
IF ((day LT 1) OR (day GT 12)) THEN day = 12

day name = ['First', 'Second', 'Third', 'Fourth', 'Fifth',6 $
'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth',$
'Eleventh', 'Twelfth']

PRINT, 'On The ', day name[day - 1], $

' Day Of Christmas My True Love Gave To Me:'

SWITCH day of

12: PRINT, ' Twelve Drummers Drumming'
11: PRINT, ' Eleven Pipers Piping'
10: PRINT, ' Ten Lords A-Leaping'
9: PRINT, ' Nine Ladies Dancing'
8: PRINT, ' Eight Maids A-Milking'
7: PRINT, ' Seven Swans A-Swimming'
6: PRINT, ' Six Geese A-Laying'
5: PRINT, ' Five Gold Rings'
4: PRINT, ' Four Calling Birds'
3: PRINT, ' Three French Hens'
2: BEGIN
PRINT, ' Two Turtledoves'
PRINT, ' And a Partridge in a Pear Tree!'
BREAK
END
1: PRINT, ' A Partridge in a Pear Tree!'
ENDSWITCH

END

If we pass the value 3to the DAYS OF XMAS procedure, we get the following
output. Achieving this behavior with CASE would be difficult.

On The Third Day Of Christmas My True Love Gave To Me:
Three French Hens
Two Turtledoves
And a Partridge in a Pear Tree!

CASE Versus SWITCH Building IDL Applications

Chapter 7: Program Control 129

FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until aconditionis
met. It is analogous to the DO statement in FORTRAN.

In DL, there are two types of FOR statements: one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed. See the following
topicsfor details:

¢ “FOR Statement with an Increment of One” on page 129
¢ “FOR Statement with Variable Increment” on page 132
e “Sequence of the FOR Statement” on page 133

Avoid Invariant Expressions

When using FOR loops, you can increase program efficiency by avoiding invariant
expressions. Expressions whose values do not change inside aloop should be moved
outside the loop. For example, in the loop:

FOR I = 0, N - 1 DO arr[I, 2*J-1] = ..

.

the expression (2* J-1) isinvariant and should be evaluated only once before the loop
is entered:

temp = 2*J-1
FOR I = 0, N-1 DO arr[I, temp] =

See Chapter 15, “Arrays’ for details on working with arrays.
FOR Statement with an Increment of One

The FOR statement with an implicit increment of one iswritten as follows:
FOR Variable = Expression, Expression DO Statement

The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variableis
incremented by 1 until the index variable islarger than the second expression. This
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.

Building IDL Applications FOR...DO

130 Chapter 7: Program Control

Warning
The data type of the index variable is determined by the type of theinitial value
expression. Keep this fact in mind to avoid the following:

FOR I = 0, 50000 DO ...

This loop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields —15,536 because of truncation. The loop is not
executed. The index variable'sinitial valueislarger than the limit variable. The
loop should be written as follows:

FOR I = 0L, 50000 DO ...

Note also that changing the data type of an index variable within aloop is not
alowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial datatype (and sois
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:
FOR i = OB, 240, 16 DO PRINT, i

The problem occurs because the variablei isinitialized to abyte type with OB. After
the index reaches the limit value 240B, i isincremented by 16, causing the value to
go to 256B, which isinterpreted by IDL as 0B, because of the truncation effect. As
aresult, the FOR loop “wraps around” and the index can never be exceeded.

Example — FOR Statement with Increment of One

A simple FOR statement:
FOR I = 1, 4 DO PRINT, I, I™2
This statement produces the following output:

1 1
4
3 9

FOR...DO Building IDL Applications

Chapter 7: Program Control 131

4 16

Theindex variable | isfirst set to an integer variable with avalue of one. The call to
the PRINT procedure is executed, then the index isincremented by one. Thisis
repeated until the value of | is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of ablock structure (instead of a single statement)
as the subject of the FOR statement. The example is a common process used for
computing a count-density histogram. (Note that a HISTOGRAM functionis
provided by IDL.)

FOR K = 0, N - 1 DO BEGIN
C = A[K]
HIST(C) = HIST(C)+1
ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to afloating-point variable and steps through the values
(15,25, ..., 10.5):

FOR X = 1.5, 10.5 DO S = S + SQRT(X)

Theindexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of theindex variable is determined by the type of the first
expression after the “=" character.

Warning
Due to the inexact nature of | EEE floating-point numbers, using floating-point
indexing can cause “infinite loops’ and other problems. This problemisaso
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORMAT='(£f20.10)"'

IDL prints the following approximations to the numbers we requested:
.1000000015

.0099999998

.6000000238
.7000000477

R B O O

See “Accuracy and Floating Point Operations’ on page 272 for more information
about floating-point numbers.

Building IDL Applications FOR...DO

132 Chapter 7: Program Control

FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:

FOR Variable = Expression;, Expression,, Increment DO Statement
This form is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Example — FOR Statement with Variable Increment

The following examples demonstrate the second type of FOR statement.

;Decrement, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO ...

;Increment by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO ...

;Divide range from bottom to top by 4.
FOR mid = bottom, top, (top - bottom)/4.0 DO ...
Warning
If the value of the increment expression is zero, an infinite loop occurs. A common
mistake resulting in an infinite loop is a statement similar to the following:

FOR X = 0, 1, .1 DO
The variable X isfirst defined as an integer variable because theinitial value
expression is an integer zero constant. Then the limit and increment expressions are

converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer typeis 0. The correct form of the statement is:

FOR X = 0., 1, .1 DO

which defines X as a floating-point variable.

FOR...DO Building IDL Applications

Chapter 7: Program Control 133

Sequence of the FOR Statement

The FOR statement performs the following steps:

1

The value of the first expression is evaluated and stored in the specified
variable, which is called the index variable. The index variable is set to the
type of this expression.

The value of the second expression is evaluated, converted to the type of the
index variable, and saved in atemporary location. Thisvalueis called the limit
value.

The value of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, avalue of 1 is assumed.

If the index variable is greater than the limit value (in the case of apositive
step value) the FOR statement is finished and control resumes at the next
statement. Similarly, in the case of a negative step value, if the index variable
islessthan the limit value, control resumes after the FOR statement.

The statement or block following the DO is executed.
The step value is added to the index variable.
Steps 4, 5, and 6 are repeated until the test of Step 4 fails.

Building IDL Applications FOR...DO

134 Chapter 7: Program Control

REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition istrue. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once. (See “ Definition of
True and False” on page 140 for details on how the “truth” of an expressionis
determined.)

The syntax of the REPEAT statement is as follows:
REPEAT statement UNTIL expression
or

REPEAT BEGIN
statements
ENDREP UNTIL expression

Examples — REPEAT...UNTIL

The following example finds the smallest power of 2 that is greater than B:

A =1
B =10
REPEAT A = A * 2 UNTIL A GT B

The subject statement can also be in the form of a block:

A 1
B 10
REPEAT BEGIN
A=A * 2
ENDREP UNTIL A GT B

The next exampl e sorts the elements of ARR using the inefficient bubble sort
method. (A more efficient way to sort elementsisto use IDL's SORT function.)

;Sort array.
REPEAT BEGIN
;Set flag to true.
NOSWAP = 1
FOR I = 0, N - 2 DO IF arr[I] GT arr[I + 1]THEN BEGIN
;Swapped elements, clear flag.
NOSWAP = 0
T = arr[I] & arr[I] = arr[I + 1] & arr[I + 1] =T
ENDIF
;Keep going until nothing is moved.
ENDREP UNTIL NOSWAP

REPEAT...UNTIL Building IDL Applications

Chapter 7: Program Control 135

WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remainstrue. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.
(See “Definition of True and False” on page 140 for details on how the “truth” of an
expression is determined.)

The syntax of the WHILE...DO statement is as follows:
WHILE expression DO statement
or

WHILE expression DO BEGIN
statements
ENDWHILE

When the WHILE statement is executed, the conditional expression istested, and if it
istrue, the statement following the DO is executed. Control then returnsto the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition isinitially
false.

Examples — WHILE...DO

The following example reads data until the end-of-file is encountered:
WHILE ~ EOF(1) DO READF, 1, A, B, C
The subject statement can also be in the form of a block:

WHILE ~ EOF (1) DO BEGIN
READF, 1, A, B, C
ENDWHILE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:

array = [2, 3, 5, 6, 10]
i = 0 ;Initialize index
n = N_ELEMENTS (array)

;Increment i until a point larger than 5 is found or the end of the
;array is reached:

Building IDL Applications WHILE...DO

136

WHILE...DO

Chapter 7: Program Control

WHILE (array[i] LT 5) AND (i LT n) DO i =1 + 1

PRINT, 'The first element >= 5 is element ', i
IDL Prints:

The first element >= 5 is element 2
Tip

Another way to accomplish the same thing is with the WHERE command, whichis
used to find the subscripts of the points where ARR]I] is greater than or equal to X.
P = WHERE (arr GE X)
;Save first subscript:
I = P(0)

Building IDL Applications

Chapter 7: Program Control 137

Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit aloop, start the next iteration of aloop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well asthe ON_ERROR and
ON_IOERROR procedures. The label field is ssimply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 aphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after the first character. Some examples of labels are as follows:

LABEL1:
LOOP_BACK: A = 12
ISQUIT: RETURN ;Comments are allowed.

BREAK

The BREAK statement provides a convenient way to immediately exit from aloop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This exampleillustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from 0 to 9999, ordered randomly. Then we use aloop to find where in the array the
value 5 islocated. If the value is found, we BREAK out of the loop because thereis
no need to check the rest of the array:

Note
This example could be written more efficiently using the WHERE function. This

example isintended only to illustrate how BREAK might be used.

; Create a randomly-ordered array of integers
; from 0 to 9999:

array = SORT (RANDOMU (seed, 10000))
n = N_ELEMENTS (array)

; Find where in array the value 5 in located:

Building IDL Applications Jump Statements

138 Chapter 7: Program Control

FOR i = 0,n-1 DO BEGIN
IF (array[i] EQ 5) THEN BREAK
ENDFOR

PRINT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we're looking for (or resort to
using a GOTO statement):

FOR 1 = 0, n-1 DO BEGIN
IF (array[i] EQ 5) THEN found=i
ENDFOR

PRINT, found
CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from aloop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note
Do not confuse the CONTINUE statement described here with the . CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not alowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does allow this.

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:

FOR I=1,10 DO BEGIN
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration
PRINT, I
ENDFOR

Jump Statements Building IDL Applications

Chapter 7: Program Control 139

GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that leads to unwieldy programs. Its use should be avoided.
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middie of aloop resultsin an error.
The syntax of the GOTO statement is as follows:

GOTO, Label
Warning
You must be careful in programming with GOTO statements. It is not difficult to

get into aloop that will never terminate, especialy if thereis not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMPL is executed after the GOTO
statement, skipping any intermediate statements:

GOTO, JUMP1

PRINT, 'Skip this' ; This statement is skipped
PRINT, 'Skip this' ; This statement is also skipped
JUMP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refersto the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of |F statements, asin the following statement:

IF A NE G THEN GOTO, MISTAKE

Building IDL Applications Jump Statements

140

Definition of True and False

Chapter 7: Program Control

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates predicate
expressions in the following contexts:

e IF...THEN...ELSE Statements

* 2 :inline conditional expressions

* WHILE...DO Statements

¢ REPEAT...UNTIL Statements

The definition of true and false for the different data typesis as follows:

Data Type True False
Byte, integer, and Odd integers Zero or even integers
long
Floating point and Non-zero values Zero
complex
String Any string with non- | Null string (" ")

zero length

Heap variables Non-null values Null values
(pointers and object
references)

Table 7-3: Default Definitions of True and False

If the LOGICAL_PREDICATE compile option is set:

Data Type True False
Numerical values Non-zero values Zero
String or heap Non-null values Null values
variables

Table 7-4: True and False Definitions with LOGICAL_PREDICATE

See “COMPILE_OPT” in the IDL Reference Guide manual for additional details on
the LOGICAL_PREDICATE compilation option.

Definition of True and False

Building IDL Applications

Chapter 7: Program Control 141

In the following example, the logical statement for the condition is a conjunction of
two conditions:

IF (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than —40 and less than or equal to —20) aretrue,
the statement following the THEN is executed.

Building IDL Applications Definition of True and False

142 Chapter 7: Program Control

Definition of True and False Building IDL Applications

Chapter 8

Debugging and
Error-Handling

The following topics are covered in this chapter:

Debugging and Error-Handling Overview 144
What Happens When Execution Stops . .. 145

Working with Breakpoints 147
Stepping ThroughaProgram........... 151
Monitoring VariableValues 153
Correcting Errors During Execution 158

Building IDL Applications

Obtaining Traceback Information 159
Controlling and Recovering from Errors . 160

Creating Custom Error Messages.. 162
Notifying the User of Errors........... 164
MathErrorso 165

143

144 Chapter 8: Debugging and Error-Handling

Debugging and Error-Handling Overview

There are several tools you can useto help you find errorsin your IDL code. The Run
menu item in the IDL Development Environment provides several ways to access
IDL’s built-in debugging and executive commands. The Variable Watch Window
helps you keep track of the variables used in your program.

This chapter explains the debugging commands and contains short examples using
the IDLDE interface to debug afile. This section also discusses error-handling
routines and methods used to check and handle errorsthat occur in IDL programs.
The routines covered here are rarely used interactively.

Note
The !ERROR_STATE system variable is updated when errors occur. At the
beginning of an IDL session, |ERROR_STATE contains default information. To see
thisinformation, you can either view ERROR_STATE from the System field of the
Variable Watch Window (see * The Variable Watch Window” on page 154) or you
can enter PRINT, 'ERROR_STATE at the Command Line. After an error has
occurred, all of the fields of |ERROR_STATE display their updated status. Refer to
“IERROR_STATE” in the IDL Reference Guide manual for details.

Debugging and Error-Handling Overview Building IDL Applications

Chapter 8: Debugging and Error-Handling 145

What Happens When Execution Stops

In the default case, whenever an error is detected by IDL during the execution of a
program, program execution stops and an error message is printed. The execution
context is that of the program unit (procedure, function, or main program) in which
the error occurred. When execution isinterrupted, a current-line indicator is placed
next to the line that will be executed when processing resumes. The routine being
compiled need not already be shown in an editor window. If aroutine compiled with
the .RUN, .RNEW, Or . COMPILE executive commands contains an error, IDLDE will
display the file automatically.

When execution stops, you can take the following steps:

¢ Correct the problem and continuing program execution (see “ Correcting Errors
During Execution” on page 158)

e Anticipate and handle errors to avoid execution halt (“Controlling and
Recovering from Errors’ on page 160)

To understand what is happening during program execution, consider setting
breakpoint and stepping through the code. See “Working with Breakpoints” on
page 147.

Example: Correcting Undefined Variable

A simple procedure, called BROKEN, has been included in the IDL distribution. An
error occurs when BROKEN is executed. Start the IDLDE. Call the BROKEN
procedure by entering:

BROKEN

at the IDL command line. An error isreported in the Output Log window and an
editor window containing the file BROKEN.PRO appears and contains the following
code:

; $Id: broken.pro,v 1.1 1996/10/01 22:01:54 doug Exp $

PRO BROKEN
PRINT, i
PRINT, 1*2
PRINT, 1*3
PRINT, i*4

END

A “Variableis undefined” error has occurred. Since execution stopped at line 4, that
lineis highlighted with an arrow.

Building IDL Applications What Happens When Execution Stops

146 Chapter 8: Debugging and Error-Handling

There are severa ways of fixing this error. We could edit the program file to
explicitly define the variable i, or we could change the program so that it accepts a
parameter at the command line. We can also define the variable i on the fly and
continue execution of the program without making any changes to the program file.
We'll do thisfirst, then go back and edit the program to accept a command-line
parameter. To define the variable i and assign it the value 10, enter at the command
line:

i =10

And select run to continue execution.

What Happens When Execution Stops Building IDL Applications

Chapter 8: Debugging and Error-Handling 147

Working with Breakpoints

When afile displayed in an IDL editor window has been compiled (by selecting
Compile or Memory Compile from the Run menu, or by entering . COMPILE,
.COMPILE -f,Or .RUN at the IDL command prompt), a number of debugging
commands become available for selection. You can suspend execution of a program
temporarily by setting breakpoints in the code. To use the test file, broken . pro to
test breakpoints, enter the following lines at the command line:

.EDIT broken
Edit the first program line to read as follows and then save and compile the program:
PRO BROKEN, 1

This allows you to passavaluefor i to the program. Set a breakpoint at the fifth line
of broken . pro by placing the cursor in the line that reads:

PRINT, i*2

and selecting Set Breakpoint from the Run menu. A breakpoint dot appears next to
the line. Now enter the following to execute the program:

BROKEN, 10
The Output Log window displays the following:

10
% Breakpoint at: BROKEN 5

and a current line indicator arrow marks line 5. Select Run to resume execution. To
list the breakpoints, enter HELP, /BREAKPOINT at the command line.

Setting a breakpoint allows you to inspect (or change) variable definitions as the
program executes. Since our example does not set any variables, setting a breakpoint
inbroken.pro isnot very informative. Breakpoints can be extremely helpful,
though, when debugging complex programs, or programs that call other routines. For
more information on working with breakpoints, see the following section.

Using Breakpoints
You can select to edit, enable/disable, and change breakpoint properties using
Breakpoint Toolbar buttons. Additionally, through the Edit Breakpoints dialog,

breakpoints can be set for execution dependent upon a condition or enabled after the
breakpoint has been encountered a specific number of times.

Building IDL Applications Working with Breakpoints

148 Chapter 8: Debugging and Error-Handling

The Breakpoint Toolbar Buttons
There are three buttons in the main menu bar. These are;

EI The Toggle Breakpoint button creates or deletes a breakpoint. Create a

breakpoint at the line where your cursor is positioned by clicking the Toggle
Breakpoint button. If a breakpoint already existsin the line where your cursor
is positioned, clicking this button removes the breakpoint.

@ The Enable/Disable Breakpoint button enables or disables a breakpoint. If a

breakpoint is enabled, afilled circle appears next to the line in the IDL Editor
window. If disabled, the circleis not filled. Disabled breakpoints are ignored
when you run thefile.

gThe Edit Breakpoints button displaysthe Edit Breakpoints dialog. In previous

releases, this printed alisting of the current breakpoints. From this dialog, you
can list your current breakpoints, create new breakpoints, enable or disable
breakpoints, change breakpoint options, or delete breakpoints.

The Windows Edit Breakpoints Dialog

The Edit Breakpoints dialog allows you to add, remove, and remove all breakpoints
in afile aswell asthe ability to move to the line in the source file that contains the
breakpoint. The following figure shows the Edit Breakpoints dialog:

Edit Breakpoints E

E/D| Madule [Line | File [after [Ong Condition |
O

Add | Remove | HemoveAIIl Goto |

Figure 8-1: Edit Breakpoints Dialog

To create a breakpoint using the Edit Breakpoints dialog, complete the following
steps:
1. Open thefileyou in which you want to set a breakpoint.

Working with Breakpoints Building IDL Applications

Chapter 8: Debugging and Error-Handling 149

2. Display the Edit Breakpointsdialog by clicking the %] button in the IDLDE
toolbar or by selecting Run — Edit Breakpoints...

3. Placethe cursor in the line in which you want to create the breakpoint in the
Editor window.

4. Select Add in the Edit Breakpoints dialog box. You will see anew entry
display in the dialog. The following table describes each property of a

breakpoint:

Item

Description

E/D

Specifies whether a breakpoint is enabled or
disabled. If acheck mark is displayed, the
breakpoint is enabled and execution will stop
when the al criteriafor the breakpoint is met.

Module

Specifies the procedure or function where the
breakpoint is set.

Note - Thisitem will not be displayed until the
file has been compiled with the new breakpoint.

Line

Specifies the line number where the breakpoint
OCCUrs.

File

Specifies the filename where the breakpoint
occurs.

After

Specifies how many times the execution must
pass the breakpoint before stopping execution.
For example, if thisitem is set to 0, execution will
stop the first time this breakpoint is encountered.
If itisset to 9, execution will not stop until the
breakpoint has been encountered for the ninth
time.

Once

The breakpoint is removed after it is encountered
for the first time.

Building IDL Applications

Table 8-1: Edit Breakpoints Dialog Fields

Working with Breakpoints

150 Chapter 8: Debugging and Error-Handling

Iltem Description

Condition Specifies a condition to be met for the execution
to stop. The condition is astring containing an
IDL expression. When a breakpoint is
encountered, the expression is eval uated. If the
expression istrue (if it returns a non-zero value),
program execution is interrupted. The expression
is evaluated in the context of the program
containing the breakpoint.

Table 8-1: Edit Breakpoints Dialog Fields

5. At thispoint, you can modify any of the items (except Module and Line) by
double-clicking in the entry.

When you run your program, execution halts at the breakpoints you have specified.

Working with Breakpoints Building IDL Applications

Chapter 8: Debugging and Error-Handling 151

Stepping Through a Program

Once execution halts at a breakpoint, you can step through the program manually, or
continue execution automatically. When stepping through amain program, if the next
line calls another IDL procedure or function, you have three options with which to
handle execution of the nested program:

e Step Into executes statementsin order by successive Step commands

* Step Over executes statements to the end of the called function, without
interactive capability

e Step Out to continue processing until the main program returns.

Manually Stepping Through Code

Select Step Into from the Run menu (or use the F8 shortcut) to execute line
containing the breakpoint and stop on the following line. For example, if you enter
broken at the command line, execution stops on line 4. Provide avalue for i by
entering i=10 at the command line and then select Step Into. This executes line 4
with the new value of i and steps to the next program line.

The Output Log reports:
10

The current-line pointer advances to the next line in the window containing the file
broken.pro. You could continue stepping through the program by choosing Step
Into repeatedly (or by entering . sTEP at the IDL command prompt).

Continuing Program Execution

You can also continue execution of the program without stepping through the code
line by line. Select Run from the Run menu, noting that the Output Log shows that
IDL calls broken. Define the variable i in the Command Line. Select Run again. The
Output Log now shows that IDL calls . CONTINUE. IDL prints the resulting output
to the Output Log window:

10

20

30
40

Building IDL Applications Stepping Through a Program

152 Chapter 8: Debugging and Error-Handling

Automatically Stepping Through Code

The Trace Execution dialog offers an opportunity to automatically step through the
program. Select Trace... from the Run menu. The Trace Execution dialog appears.

Trace Execution E3 |
1 1 1 :‘. 1 1 1 | El:l I
St
Step eveny 1.0 zecond 20
¥ Step jnto routines
Q.

™ Step over routines =

Figure 8-2: Trace Execution Dialog (Windows)

Step Interval (sec)

A Full Speed _|lse Step Ower

Run i o | Dismissl __ﬂElE_J

Figure 8-3: Trace Execution Dialog (Unix)

Click Go or Run to automatically issuethe . sTEP command until the END statement
is encountered, or click Stop to halt trace execution. Moving the dlider in the Trace
Execution dialog controls the length of the pauses between step commands. You can
also select whether to step into routines, executing successive .STEP commands at
each line (Windows only), or to step over routines, issuing successive .STEPOVER
commands. For more information, see “.STEP” and “.STEPOVER” inthe IDL
Reference Guide manual. Click OK or Dismissto dismissthe dialog.

Stepping Through a Program Building IDL Applications

Chapter 8: Debugging and Error-Handling 153

Monitoring Variable Values

When execution halts, there are several ways to see the values of program variables.
Theseinclude:

¢ Check variable values from the command line — see * Showing Variable
Values During Execution” below

¢ Usethe Variable Watch window — see “ The Variable Watch Window” on
page 154

¢ Recover “missing” variables — see “Disappearing Variables’ on page 157
Showing Variable Values During Execution

When execution stops you can query the values of current variables in the program
scope using the PRINT and HEL P routines. For instance, suppose you have created
the following program:

FUNCTION hello who, who
RETURN, 'Hello ' + who
END

PRO hello main
name = ''
READ, name, PROMPT='Enter Name: '
str = HELLO WHO (name)
PRINT, str
END

Place a breakpoint on the PRINT, str lineand then compile and run the program.
Enter aname at the IDL command line when prompted. When execution halts, return
the value of the name variable by entering,

PRINT, name
The Output Log shows the name you have entered.
Return information about the st r variable by entering:
HELP, str

The Output Log shows the variable name, data type and value. Thisinformation is
also available in the Variable Watch window, described in the following section.

Building IDL Applications Monitoring Variable Values

154 Chapter 8: Debugging and Error-Handling

Tip
You can also place PRINT and HEL P statements in your program to see variable
values without pausing program execution. As these statements are encountered,
values are printed to the Output Log.

Note
When working in the IDLDE, you can also use the macros, Print Variable or Help
on Variable, to return information on a selected variable. See “Macros Menu” in
Chapter 2 of the Using IDL manual for details.

The Variable Watch Window

The Variable Watch window displays current variable values after IDL has
completed execution. If the calling context changes during execution — as when
stepping into a procedure or function — the variable tableis replaced with atable
appropriate to the new context. While IDL is at the main program level, the Variable
Watch window remains active and displays any variables created.

I <]
MName Type Yalue Y

BA FLOAT Arraylz2, 3]

«|[0,1] FLOAT |5.000000

Al

LocalslParamslCDmmDnsngsteml

Figure 8-4: Variable Watch Window

Customizing Variable Watch Window Layout

To hide the Variable Watch window, select Window — Hide Variable Watch.
Select Show Variable Watch to make it reappear. Changing the Window menu will
only affect the current IDL session.

To apply your changes to future sessions, select File — Preferences and click the
L ayout tab. In the section labeled Show Windows, select or clear check boxes
associated with the windows you want to appear. Click Apply to save your changes
for future IDL sessions and OK to exit.

Monitoring Variable Values Building IDL Applications

Chapter 8: Debugging and Error-Handling 155

Note
Selection or clearing of Window menu items reflects changes in the L ayout

preferences and vice versa.

The Variable Watch Interface Description

The Variable Watch window is refreshed after the IDLDE has completed execution.
Each Variable Watch window contains the following folders:

Locals — Thistab contains descriptions of local variables. Local variables are
created from IDL’s main program level. For example, entering a=1 at the
Command Line lists the integer a in the Locals tab.

Params — Thistab contains descriptions of parameters. The variables and
expressions passed to a function or procedure are parameters. For more
information, see “Parameters’ on page 85.

Commons — Thistab contains descriptions of variables contained in common
blocks. The name of each common block is shown in parentheses next to the
variable contained within it. For more information, see“COMMON" in the
IDL Reference Guide manual.

System — Thistab contains descriptions of system variables. System variables are a
special class of predefined variables available to all program units. For more
information about system variables, see Appendix D, “ System Variables’ in
the IDL Reference Guide manual.

Each tab contains atable listing the attributes of the variables included in the
category. You can size the columns by clicking on the line to the right of the title of
the column you wish to expand or shrink. Drag the mouse either left or right until you
are satisfied with the width of the column. For example, to change the width of the
Name column, click and drag on the line separating the Name field from the Type
field.

The following fields describe variable attributes:

Name — Thisfield showsthe hame of the variable. Thisfield is read-only, except for
array subscript descriptions (see example in Example: Using the Variable
Watch Window below).

For compound variables such as arrays, structures, pointers, and objects, click
the“+” symbol to the left of the name to show the variables included in the
compound variable. Click the “-" symbol to collapse the description.

Type — Thisfield shows the type of the variable. Thisfield is read-only.

Building IDL Applications Monitoring Variable Values

156 Chapter 8: Debugging and Error-Handling

Value — Thisfield shows the value of the variable. To edit avaluein UNIX,
highlight the cell by clicking onit, press the function key F2 to enter editing
mode, and enter the new value. To edit avalue in Windows, double click on
the cell to highlight it and enter the new value.

The Name, Type, and Value fields are displayed as when using the HEL P procedure.
For more information about variables, see “ Variables’ on page 278.

The Variable Watch Window and Objects

Object references are expanded only if they reference non-null objects. Object data
are expanded only if the object method has finished running. Object data are read-
only and cannot be changed with the Variable Watch window.

Example: Using the Variable Watch Window

Arrays are expanded to show one array element. Click on the “+” symbol next the

name of the array to display the initial array subscript. You can change thisfield to
display the characteristics of any other array element.

Note

To enter editing mode in Motif, press F2 after clicking on the cell to be edited. In
Windows, double-click on the cell.

To edit the subscript, highlight the cell by clicking on it, and modify the name using
the arrow keys to maneuver. For example, enter the following:

; Create an array with 2 columns and 3 rows.
A=MAKE ARRAY (2, 3)

; Show the values of array A in the Output Log. They will all be
jzero.

PRINT, A

; Assign the value of 5 to the value in the array subscripted as 2.
; This is the same as entering A(0,1)=5.
A(2)=5

; Show the new values of array A.

PRINT, A

IDL prints:
0.00000 0.00000
5.00000 0.00000
0.00000 0.00000

Monitoring Variable Values Building IDL Applications

Chapter 8: Debugging and Error-Handling 157

It is easy to manipulate variables within the Variable Watch window. Click on the “ +"
expansion symbol next to the array A. The subscript [0,0] will be reveal ed beneath
the description of A. Enter editing mode and change [0,0] to [0,1].

Press Enter to effect the change. Notice that the value of the subscript is displayed as
5, asyou entered from the command line. Press the Tab key to highlight the value of
the subscript [0,1]. You can change it to another number. Enter [1,0] in the subscript

name field. You can also change the value from 0.00000 to ancther number.

For more information about arrays, see Chapter 15, “Arrays’.

Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety isthat after the
error occurs, IDL’s context isinside the called procedure, not in the main level. All
variablesin procedures and functions, with the exception of parameters and common
variables, are local in scope. Typing RETURN or RETALL will make the lost
variables reappear.

RETALL isbest suited for use when an error is detected in aprocedure and it is
desired to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURN commands until the main program level is reached.

The HEL P command can be used to see the current call stack (i.e., which program
unit IDL isin and which program unit called it). For more information, see “HELP”
in the IDL Reference Guide manual.

Building IDL Applications Monitoring Variable Values

158 Chapter 8: Debugging and Error-Handling

Correcting Errors During Execution

Sometimesiit is possible to recover from an error by manually entering statements to
correct the problem. Possibilities include setting the values of variables, closing files,
etc., and then entering the command .CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

Asan example, if an error occurs because an undefined variable is referenced, you
can simply define the variable at the command prompt and then continue execution
with .CONINUE. Of course, thisis atemporary solution. You should till edit the
program file to fix the problem permanently.

See " Example: Correcting Undefined Variable” on page 145 for a simple example.

Correcting Errors During Execution Building IDL Applications

Chapter 8: Debugging and Error-Handling 159

Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The SCOPE_TRACEBACK function returns astring array describing the
contents of the procedure stack. The first element of the resulting array contains
information for the IDL main program ($MAINS$). Each subsequent element contains
information for the next routine in the call stack. The final element contains the
information for the currently running routine. Each element of this array contains the
module name, source filename, and line number of the routine it describes.

For example, the following code fragment prints the name of its caller, followed by
the source filename and line number of the call:

A = SCOPE_TRACEBACK()

; Print next to last element: caller of the current routine
PRINT, 'Called from: ', A[N_ELEMENTS (A) -2]

This results in a message of the following form:
Called from: DIST </usr/local/rsi/idl/lib/dist.pro (27)>

SCOPE_TRACEBACK can also provide more detailed information for the call stack.
See “SCOPE_TRACEBACK?" in the IDL Reference Guide manual for more
information about the function’s capabilities.

Building IDL Applications Obtaining Traceback Information

160

Chapter 8: Debugging and Error-Handling

Controlling and Recovering from Errors

IDL divides possible execution errors into three categories: input/output, math, and
al others. There are three main error-handling routines; CATCH, ON_ERROR, and
ON_IOERROR. CATCH is ageneralized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
allows you to change the default way in which input/output errors are handled. The
FINITE and CHECK_MATH routines provide control over math errors.

You can also write code in such a manner asto anticipate and handle potential errors,
especially when you are writing your own routines. See the following topicsin
Chapter 5, “ Creating Procedures and Functions’ for details:

e “Determining Variable Scope” on page 87

* “Determining if aKeyword is Set” on page 90

e “Supplying Vaues for Missing Keywords’ on page 91
e “Supplying Values for Missing Arguments’ on page 92

Interaction of CATCH, ON_ERROR, and
ON_IOERROR

Error handlers established by callsto CATCH supersede callsto ON_ERROR.
However, callsto ON_IOERROR made in the procedure that causes an 1/O error
supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.

Controlling and Recovering from Errors Building IDL Applications

Chapter 8: Debugging and Error-Handling

Thefollowing figure is aflow chart of how errors are handled in IDL.

Error or Exception is Generated

Isitan /O error?

No s ON_IOERROR

Isthere an error handler
defined by the CATCH
routine?

Handle error as

indicated by setting of
ON_ERROR routine or
use default error handling.

routine in use?

Yes

Handle error with
CATCH-defined error
handler and continue
program execution.

|

Handle error as
indicated by
ON_IOERROR setting.

Figure 8-5: Error Handling in IDL

Building IDL Applications

161

Controlling and Recovering from Errors

162 Chapter 8: Debugging and Error-Handling

Creating Custom Error Messages

To generate an exception and cause control to return to the error handler, use the
MESSAGE procedure. Calling MESSAGE generates an exception that setsthe
IERROR_STATE system variable. '[ERROR_STATE.MSG is set to the string used
as an argument to MESSAGE.

The MESSAGE procedureis used by user procedures and functions to issue errors. It
has the form:
MESSAGE, Text

where Text is a scalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message isissued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

Asaside effect of issuing the error, appropriate fields of the system variable
IERROR_STATE are set; the text of the error message is placed in
IERROR_STATE.MSG, or in [ERROR_STATE.SYS _MSG for the operating
system’s component of the error message. See “'ERROR_STATE” inthe IDL
Reference Guide manual for more information.

As an example, assume the statement:
MESSAGE, 'Unexpected value encountered.'
is executed in a procedure named CALC. IDL would print:

% CALC: Unexpected value encountered.

and execution would halt.

The MESSAGE procedure accepts severa keywords that modify its behavior. See
“MESSAGE" in the IDL Reference Guide manual for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, the
following code uses ON_|OERROR to read from afile until an error (presumably
end-of-file) occurs. It then closes the file and reissues the error.

; Open the data file.
OPENR, UNIT, 'DATA.DAT', /GET LUN

; Arrange for jump to label EOD when an input/output error occurs.
ON_TIOERROR, EOD

; Read every line of the file.

Creating Custom Error Messages Building IDL Applications

Chapter 8: Debugging and Error-Handling 163

WHILE 1 DO READF, UNIT, LINE

; An error has occurred. Cancel the input/output error trap.
EOD: ON_TIOERROR, NULL

; Close the file.
FREE_LUN, UNIT

; Reissue the error. !ERROR STATE.MSG contains the appropriate

; text. The IOERROR keyword causes it to be issued as an

; input/output error. Use of NONAME prevents MESSAGE from tacking
; the name of the current routine to the beginning of the message
; string since !ERROR_STATE.MSG already contains it.

MESSAGE, !ERROR_STATE.MSG, /NONAME, /IOERROR

Message Blocks

IDL messages include text and formatting information which, when combined with
text supplied in the call to MESSAGE, provide information to the program’s user
about the error that occurred. For example, entering

MESSAGE, 'Howdy, folks'
at the IDL command line produces the following outpult:

% SMAINS: Howdy, folks
% Execution halted at: SMAINS

indicating that the message was issued from within the IDL $MAINS program.

A message block is a collection of messages that are loaded into IDL asasingle unit.
At startup, IDL contains asingle internal message block named IDL_MBLK_CORE,
which contains the standard messages required by the IDL system. By defaullt,
MESSAGE throwsthe IDL_M_USER_ERR message from the IDL_MBLK_CORE
message block, producing output similar to that shown above.

Dynamically loadable modules (DLMs) usually define additional message blocks for
their own needs when they are loaded. In addition, if you wish to provide something
other than the default error message for your own IDL programs, you can define your
own message blocks and error messages. See “DEFINE_MSGBLK” and
“DEFINE_MSGBLK_FROM_FILE” in the IDL Reference Guide manual for
additional details. Specify the BLOCK and NAME keywords to the MESSAGE
procedure to issue a message from a message block you have defined.

Building IDL Applications Creating Custom Error Messages

164 Chapter 8: Debugging and Error-Handling

Notifying the User of Errors

The DIALOG_MESSAGE function creates amodal (blocking) dialog box that can
be used to display information for the user. The dialog must be dismissed, by clicking
on one of its option buttons, before execution can continue.

See“DIALOG_MESSAGE” inthe IDL Reference Guide manual for details or the
MEMORY routine “Examples’ section in the IDL Reference Guide for an example of
using DIALOG_MESSAGE.

Notifying the User of Errors Building IDL Applications

Chapter 8: Debugging and Error-Handling 165

Math Errors

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. On systems that
implement the | EEE floating-point standard, IDL substitutes the special floating-
point values NaN and Infinity when it detects a floating point math error. (See
“Special Floating-Point Values’ on page 166.) Integer overflow and underflow is not
detected. Integer divide by zero is detected on al platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when a non-zero result is so close to zero that
it cannot be expressed as a normalized floating-point number. In the vast majority of
cases, floating-point underflow errors are harmless and can be ignored. For more
information on floating-point numbers, see “Accuracy and Floating Point
Operations’ on page 272

Accumulated Math Error Status

IDL handles math errors by keeping an accumulated math error status. This status,
which isimplemented as alongword, contains a bit for each type of math error that is
detected by the hardware. When IDL automatically checks and clears this indicator
depends on the value of the system variable 'EXCEPT. The CHECK_MATH
function also allows you to check and clear the accumulated math error status when
desired.

IEXCEPT has three possible values:
IEXCEPT=0

Do not report exceptions.
IEXCEPT=1

The default. Report exceptions when the IDL interpreter returns to an interactive
prompt. Any math errors that occurred since the last interactive prompt (or call to
CHECK_MATH) are printed in the IDL command log. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0

Building IDL Applications Math Errors

166

Chapter 8: Debugging and Error-Handling

IEXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows IDL
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
% Detected at JUNK 3 junk.pro

Special Floating-Point Values

Math Errors

Machines which implement the IEEE standard for binary floating-point arithmetic
have two specia values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when aresult islarger than the largest representation. NaN is the
result of an undefined computation such as zero divided by zero, taking the square-
root of a negative number, or the logarithm of a non-positive number. In many cases,
when IDL encounters the value NaN in a data set, it treats it as “missing data.” The
specia values NaN and Infinity are also accessible in the read-only system variable
IVALUES. These specia operands propagate throughout the evaluation process—the
result of any term involving these operands is one of these two special values.

Note
For the minimum (<) and maximum (>) operators with NaN operands, the result is
undefined and may not necessarily be the special value NaN. “Mathematical
Operators’ on page 223 for details.

For example:

; Multiply NaN by 3
PRINT, 3 * !VALUES.F NAN

IDL prints:
NaN

It isimportant to remember that the value NaN isliterally not a number, and as such
cannot be compared with a number. For example, suppose you have an array that
contains the value NaN:

A = [1.0, 2.0, !VALUES.F NAN, 3.0]
PRINT, A

IDL prints:
1.00000 2.00000 NaN 3.0000

Building IDL Applications

Chapter 8: Debugging and Error-Handling 167

If you try to select elements of this array by comparing them with a number (using
the WHERE function, for example), IDL might generate an error (depending on the
hardware and operating system):

; Print the indices of A that are not equal to 1
PRINT, WHERE(A NE 1.0)

IDL prints:

1 2 3
% Program caused arithmetic error: Floating illegal operand

(Depending on your hardware and operating system, you may not see the floating-
point error.)

To avoid this problem, use the FINITE function to make sure arguments to be
compared are in fact valid floating-point numbers:

PRINT, WHERE(FINITE(A))
IDL printsthe indices of the finite elements of A:
0 1 3

To then print the indices of the elements of A that are both finite and not equal to 1.0,
you could use the command:

good = WHERE(FINITE(A))
PRINT, good[WHERE (A[good] NE 1.0)]

IDL prints:
1 3

Similarly, if you wanted to find out which elements of an array were not valid
floating-point numbers, you could use a command like:

; Print the indices of the elements of A that are not wvalid
; floating-point numbers.
PRINT, WHERE(~FINITE(ZA))

IDL prints:
2

Note that the special value Infinity can be compared to afloating point number. Thus,

if:
B = [1.0, 2.0, !VALUES.F INFINITY]
PRINT, B

IDL prints:
1.00000 2.00000 Inf

Building IDL Applications Math Errors

168

Chapter 8: Debugging and Error-Handling

and
PRINT, WHERE(B GT 1.0)
IDL prints:
1 2
You can also compare numbers directly with the special value Infinity:

PRINT, WHERE (B EQ !VALUES.F INFINITY)

IDL prints:

2
Note
On Windows, using relational operators such as EQ and NE with the valuesinfinity
or NaN (Not a Number) causes an “illegal operand” error. The FINITE function’s
INFINITY and NAN keywords can be used to perform comparisonsinvolving
infinity and NaN values. For more information, see “FINITE” on page 784.

The FINITE Function

Usethe FINITE function to explicitly check the validity of floating-point or double-
precision operands on machines which use the | EEE floating-point standard. For
example, to check the result of the EXP function for validity, use the following
Statement:

;Perform exponentiation.
A = EXP (EXPRESSION)

;Print error message.
IF ~ FINITE(A) THEN PRINT, 'Overflow occurred'

If A isan array, use the statement:

IF TOTAL(FINITE(A)) NE N_ELEMENTS (A) THEN

Integer Conversions

Math Errors

It must be stressed that when converting from floating to any of the integer types
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-bit integer) if overflow isimportant, you must explicitly check
to be sure the operands are in range. Conversions to the above types from floating
point, double precision, complex, and string types do not check for overflow—they
simply convert the operand to the target integer type, discarding any significant bits
of information that do not fit.

Building IDL Applications

Chapter 8: Debugging and Error-Handling 169

When run on a Sun workstation, the program:

A

A =2.0 31 + 2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)

(which creates a floating-point number 2 larger than the largest positive longword
integer), prints the following:

2147483647 -2147483648 -1 0 255 0
% Program caused arithmetic error: Floating illegal operand

This result isincorrect.

Warning
No error message will appear if you attempt to convert afloating number whose
absolute value is between 21° and 231 - 1 to short integer even though the result is
incorrect. Similarly, converting a number in the range of 256 to 231_1 from
floating, complex, or double to byte type produces an incorrect result, but no error
message. Furthermore, integer overflow is usually not detected. Your programs
must guard explicitly against it.

Building IDL Applications Math Errors

170 Chapter 8: Debugging and Error-Handling

Math Errors Building IDL Applications

Chapter 9

Building Cross-
Platform Applications

The following topics are covered in this chapter:

Overview of Cross-Platform Issues 172
Which Operating System is Running? ... 173
File and Path Specifications 174
Filesand1/O 176
Math Exceptions 178
Responding to Screen Size and Colors ... 179

Building IDL Applications

Printing i 180
SAVEand RESTORE 181
Widgets in Cross-Platform Programs 182
Using External Code 185
IDL DataMinerIssues 186

171

172 Chapter 9: Building Cross-Platform Applications

Overview of Cross-Platform Issues

IDL isdesigned as a platform-independent environment for data analysis and
programming. Because of this, the vast mgjority of IDL’s routines operate the same
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type of
system for use on any system IDL supports.

Despite IDL’s cross-platform nature, there are differences between the computers
that make up a multi-platform environment. Operating systems supply resourcesin
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows and UNIX machines, there are some cases
where the discrepancies cannot be overcome. This chapter discusses aspects of IDL
that you may wish to consider when developing an application that will run on
multiple types of computer.

Note
This chapter is not an exhaustive list of differences between versions of IDL for

different platforms. Rather, it coversissues you may encounter when writing cross-
platform applicationsin IDL.

Overview of Cross-Platform Issues Building IDL Applications

Chapter 9: Building Cross-Platform Applications 173

Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, your
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable 'VERSION. For example, you could use an IDL CASE statement that |ooks
something like the following to execute code that pertainsto a particular operating

system family:
CASE !VERSION.OS FAMILY OF
'unix' : Code for Unix
'Windows' : Code for Windows
ENDCASE

Writing conditional IDL code based on platform information should be alast resort,
used only if you cannot accomplish the same task in a platform-independent manner.

Operating System Access

While IDL provides ways to interact with each operating system under which it runs,
it is not generally useful to use operating-system native functions in a cross-platform
IDL program. If you find that you must use operating-system native features, be sure
to determine the current operating system (as described above) and branch your code
accordingly.

Building IDL Applications Which Operating System is Running?

174 Chapter 9: Building Cross-Platform Applications

File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters used

by different operating systems; see “!PATH” in the IDL Reference Guide manual for
further details on path specification.

Operating Directory Path Element
System Separator Separator
UNIX / (forward slash) : (colon)
Windows \ (backward dash) ; (semicolon)

Table 9-1: Directory and Path Element Separator Characters

Asaresult of these differences, specifying filenames and paths explicitly in your IDL
application can cause problems when moving your application to a different
platform. You can effectively isolate your IDL programs from platform-specific file

and path specification issues by using the FILEPATH and DIALOG_PICKFILE
functions.

Choosing Files at Runtime

To allow users of your application to choose afile at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such as reading afile
name from atext field in awidget program) may or may not provide a proper file
path.

Selecting Files Programmatically

To give your application access to afile you know to be installed on the host, use the
FILEPATH function. By default, FILEPATH allows you to select filesthat are included
inthe IDL distribution tree. Chances are, however, that afile you supply as part of your
own application is not included in the IDL tree. You can till use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

File and Path Specifications Building IDL Applications

Chapter 9: Building Cross-Platform Applications 175

root
rsi MYAPP other

idl

Figure 9-1: A Possible Directory Hierarchy for an IDL Application

For example, suppose your application isinstalled in a subdirectory named M YAPP
of theroot directory of the filesystem that contains the IDL distribution. You could
use the FILEPATH function and set the ROOT_DIR keyword to the root directory of
the filesystem, and use the SUBDIRECTORY keyword to select the MYAPP
directory. If you are looking for afile named myapp.dat, the FILEPATH command
lookslike this:

file = FILEPATH('myapp.dat', ROOT_DIR=root, SUBDIR='MYAPP')

The problem that remainsis how to specify the value of root properly on each
platform. Thisis one case whereit is very difficult to avoid writing some platform-
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment sets an IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_DIR
keyword. The CASE statement looks like this:

CASE !VERSION.OS FAMILY OF

'unix!' : rootdir = '/!
'Windows' : rootdir = STRMID(!DIR, 0, 2)
ENDCASE

file = FILEPATH('myapp.dat', ROOT=rootdir, SUBDIR='MYAPP')

Note that the root directory under Unix iswell defined, whereas the root directory on
amachine running Microsoft Windows must be determined by parsing the IDL
system variable !DIR. Under Windows, the root is assumed to be the drive letter of
the hard drive and the following colon — usually “C:”.

Building IDL Applications File and Path Specifications

176

Chapter 9: Building Cross-Platform Applications

Files and I/O

IDL’sfile input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening atext file
and reading its contents, importing an image format file into an IDL array, or writing
ASCII datato afile on ahard disk, IDL’s /O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in binary
data format files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensure that IDL reads or writesfilesin
the proper way.

Before attempting to write a cross-platform IDL application that uses more than basic
file 1/O, you should read and understand the sections in Chapter 18, “Files and
Input/Output” that apply to the platforms your application will support. The
following are afew topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Files and 1/O

Computer systems on which IDL runs support two ways of ordering the bytes that
make up an arbitrary scalar: big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, and little endian, in which
numbers are stored beginning with the least significant byte. The following table lists
the processor types and operating systems IDL supports and their byte ordering
schemes:

Processor Type Operating System Byte Ordering

AMD Linux little-endian
Windows little-endian

Hewlett Packard PA-RISC HP-UX big-endian

IBM RS/6000 AlIX big-endian

Intel x86 Linux little-endian
Windows little-endian

Motorola PowerPC Macintosh OS X and later | big-endian

Table 9-2: Byte ordering schemes used by platforms that support IDL

Building IDL Applications

Chapter 9: Building Cross-Platform Applications 177

Processor Type Operating System Byte Ordering
SGI R4000 and up Irix big-endian
Sun SPARC Solaris big-endian

Table 9-2: Byte ordering schemes used by platforms that support IDL

ThelDL routinesBY TEORDER and SWAP_ENDIAN allow you to convert numbers
from big endian format to little endian format and vice versa. It is often easier,
however, to use the XDR (for eXternal Data Representation) format to store data that
you know will be used by multiple platforms. XDR files write binary datain a
standard “ canonical” representation; as aresult, the files are slightly larger than pure
binary datafiles. XDR files can be read and written on any platform that supports
IDL. XDR isdiscussed in detail in “Portable Unformatted Input/Output” on

page 461.

Building IDL Applications Files and 1/0

178 Chapter 9: Building Cross-Platform Applications

Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. Beginning with
version 5.1, IDL usesthe | EEE floating-point standard on all supported systems. Asa
result, IDL always substitutes the special floating-point values NaN and Infinity
when it detects a math error. (See “Specia Floating-Point Values” on page 166 for
details on NaN and Infinity.)

For information on debugging math errors, see “Math Errors’ on page 165.

Math Exceptions Building IDL Applications

Chapter 9: Building Cross-Platform Applications 179

Responding to Screen Size and Colors

The usability of your application may depend on responding to settings on the user’'s
system.

Finding Screen Size

Usethe GET_SCREEN_SIZE function to determine the size of the screen on which
your application is displayed. Writing code that checks the screen size alows your
application to handle different screen sizes gracefully.

Number of Colors Available

Usethe N_COLORSand TABLE_SIZE fields of the ! D system variable to determine
the number of colors supported by the display and the number of color-table entries
available, respectively.

Make sure that your application handles relatively small numbers of colors (less than
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors out
of all the available colorsfor its own use. These colors are the ones used for title bars,
window frames, window backgrounds, scroll bars, etc. If your application isrunning
on a Windows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit color)
displays aswell. If your application uses IDL’s color tables, for example, you will
need to force the application into 8-bit mode using the command

DEVICE, DECOMPOSED=0

to use indexed-color mode on a machine with a TrueColor display.

Building IDL Applications Responding to Screen Size and Colors

180

Chapter 9: Building Cross-Platform Applications

Printing

Printing

IDL displays operating-system native dialogs using the DIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capahilities presented via
IDL’s print dialogs. If your IDL application uses IDL’s printing dialogs, make sure
that your interface calls the dialog your user will expect for the platform in question.

Building IDL Applications

Chapter 9: Building Cross-Platform Applications 181

SAVE and RESTORE

If you distribute your application via IDL SAVE files, remember that files containing
IDL routines are not necessarily compatible between IDL releases. Always save your
original code and re-save when anew version of IDL isreleased. SAVE files
containing data are always compatible between releases of IDL.

Note also that if you are restoring afile created with VAX IDL version 1, you must
restore on a machine running VMS.

Building IDL Applications SAVE and RESTORE

182 Chapter 9: Building Cross-Platform Applications

Widgets in Cross-Platform Programs

IDL’s user interface toolkit is designed to provide a“native” ook and feel to widget-
based IDL applications. Where possible, widget toolkit elements are built around the
operating system’s native dialogs and controls; as aresult, there are instances where
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependenciesin the IDL widget toolkit.
Consult the descriptions of theindividual DIALOG and WIDGET routinesin the IDL
Reference Guide for compl ete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when you
use DIALOG_PICKFILE in an IDL application, Windows users will see the
Windows-native file selection dialog and Motif users will see the Motif file selection
dialog. Consult the descriptions of the individual DIALOG routinesin the IDL
Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET _BASE routine) play an especially
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. See “Iconizing, Layering, and Destroying Groups of Top-Level Bases’
under “WIDGET_BASE” in the IDL Reference Guide manual for details about the
platform-dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET_BASE routine allow a
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widgets
depend on the platform’s current settings for font, font size, and “window dressing”
(things like the thickness of borders and three-dimensional appearance of controls).
Asaresult of the platform-specific appearance of each widget, attempting to position
individual widgets manually within abase will seldom give satisfactory results on al
platforms.

Widgets in Cross-Platform Programs Building IDL Applications

Chapter 9: Building Cross-Platform Applications 183

Instead, insert widgets inside base widgets that have the ROW or COLUMN
keywords set, and let IDL determine the correct geometry for the current platform
automatically. You can gain afiner degree of control over the layout by placing
groups of widgets within sub-base widgets (that is, base widgets that are the children
of other base widgets). This allows you to control the column or row layout of small
groups of widgets within the larger base widget.

In particular, refrain from using the X/Y SIZE and X/Y OFFSET keywordsin cross-
platform applications. Using the COLUMN and ROW keywords instead will cause
IDL to calculate the proper (platform-specific) size for the base widget based on the
size and layout of the child widgets.

Fonts Used in Widget Applications

You can specify the font used in awidget viathe FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widget
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance for
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in “Which Operating System is Running?’ on
page 173. You can avoid the need for platform-dependent code by using the TrueType
fonts supplied with IDL; there may be a performance penalty when the fonts are
initially rendered. See Appendix H, “Fonts’ in the IDL Reference Guide manual for
details.

Motif Resources

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to awidget on a Motif system. Resources specified viathe
RESOURCE_NAME keyword will be quietly ignored on Windows systems. See
“RESOURCE_NAME" under “WIDGET_BASE” in the IDL Reference Guide
manual for details. In general, you should not expect to be able to duplicate the level
of control available via X Window System resources on other platforms.

WIDGET_STUB

On Moatif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL applications.
The WIDGET_STUB mechanism is only available under Unix, and is thus not
suitable for use in cross-platform applications that will run under Microsoft
Windows. WIDGET_STUB is described in the External Development Guide.

Building IDL Applications Widgets in Cross-Platform Programs

184 Chapter 9: Building Cross-Platform Applications

Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical items
are displayed and manipulated. IDL attempts to provide consistent functionality on
al windowing systems, but is not always completely successful. For example,
enter/exit tracking events are not generated by some windowing systems. IDL
attempts to provide appropriate enter/exit events, but behaviors may differ on
different platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.

Widgets in Cross-Platform Programs Building IDL Applications

Chapter 9: Building Cross-Platform Applications 185

Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program viaCALL_EXTERNAL or LINKIMAGE or viathe callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See the
External Development Guide for details on writing and using external code along
with IDL.

Building IDL Applications Using External Code

186 Chapter 9: Building Cross-Platform Applications
IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL’s Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers that
allow connection to different databases are platform-dependent, and may require
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in use,
and will be different from data source to data source.

IDL DataMiner Issues Building IDL Applications

Chapter 10

Writing Efficient IDL

Programs

The following topics are covered in this chapter:

Overview of Program Efficiency 188
Use Vector and Array Operations 190
Use System Functions and Procedures . .. 193

Building IDL Applications

Virtua Memory

The IDL Code Profiler

187

188 Chapter 10: Writing Efficient IDL Programs

Overview of Program Efficiency

This chapter presentsideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improvethe efficiency of IDL programs. In IDL, complicated computations
can be specified at ahigh level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programsin IDL are identical to thosein other
computer languages with the addition of the following simple guidelines:

e Usearray operations rather than loops wherever possible. Try to avoid loops
with high repetition counts. See “Use Vector and Array Operations’ on
page 190.

e UselDL system functions and procedures wherever possible. See“Use System
Functions and Procedures’ on page 193.

e Access array datain machine address order. See “Access Large Arrays by
Memory Order” on page 195.

Attention also must be given to algorithm complexity and efficiency, asthisis
usually the greatest determinant of resources used.

IDL Implementation

IDL programs are compiled into alow-level abstract machine code whichis
interpretively executed. The dynamic nature of variablesin IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardliess of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of thetimerequired for array operationsissimilar to that of vector
computers and array processors. Thereisan initial set-up time, followed by rapid
evaluation of the operation for each element. The time required per element is shorter
in longer arrays because the cost of thisinitial set-up period is spread over more
elements. The speed of IDL iscomparable to that of optimized FORTRAN for array

Overview of Program Efficiency Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 189

operations. When data are treated as scalars, IDL efficiency degrades by afactor of
30 or more.

Additional Programming Efficiency Resources
Also refer to the following topics, located in other sections of this manual, for

additional ways to improve the efficiency of your IDL program:

e “Efficiency and Expression Evaluation Order” on page 252 — describes how
to organize operations to increase execution speed

« “Defining and Using Constants’ on page 265 — describes the importance of
using constants of the correct type

* “Avoid Invariant Expressions’ on page 129 — describes the inefficiency of
invariant expression within loop statements

Building IDL Applications Overview of Program Efficiency

190 Chapter 10: Writing Efficient IDL Programs

Use Vector and Array Operations

Programs with vector and array expressions run faster than programs with scalars,
loops, and I F statements. Whenever possible, vector and array data should be
processed with IDL array operations rather than scalar operationsin aloop.

Example—Inverting an Image

Consider the problem of inverting a512 x 512 image. This problem arises because
some image display devices consider the origin to be the lower-left corner of the
screen, while others recognize it as the upper-left corner.

Note
The following example is for demonstration only. The IDL system variable

IORDER should be used to control the origin of image devices. The ORDER
keyword to the TV procedure serves the same purpose.

A programmer without experiencein using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

;jTemporarily save pixel image.
temp = imagel[I, J]

;Exchange pixel in same column from corresponding row at bottom

image[I, J] = image[I, 511 - J]
image[I, 511-J] = temp
ENDFOR

A more efficient approach to this problem capitalizes on IDL’s ability to process
arrays as asingle entity:

FOR J = 0, 255 DO BEGIN

; Temporarily save current row.
temp = image([*, J]

;Exchange row with corresponding row at bottom.

image[*, J] = image[*, 511-J]
image[*, 511-J] = temp
ENDFOR

Use Vector and Array Operations Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 191

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

;Get a second array to hold inverted copy.
image2 = BYTARR (512, 512)

;Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]

Even more efficient isthe single line:

image2 = image([*, 511 - INDGEN(512)]
that reverses the array using subscript ranges and array-valued subscripts.
Finally, using the built-in ROTATE function is quickest of al:

image = ROTATE (image, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.

See Chapter 15, “Arrays’ for complete details on working with arraysin IDL.
Example—Summing Elements

Consider the problem of adding all positive elements of array B to array A.
Using aloop will be slow:
FOR I = 0, (N-1) DO IF B[I] GT 0 THEN A[I] = A[I] + B[I]
Masking out negative elements using array operations will be faster:
A=A+ (BGT 0) *B
Adding only the positive elements of B is faster till:
A=A+ (B> 0)

When an |F statement appears in the middle of aloop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and WHERE

In this example, each element of C is set to the square-root of A if A[l] is positive;
otherwise, C[1] is set to minus the square-root of the absolute value of A[l].

Using aloop statement is slow:

FOR I=0, (N-1) DO IF A[I] LE O THEN $
C[I]=-SQORT(-A[I]) ELSE C[I]=SQRT(A[I])

Building IDL Applications Use Vector and Array Operations

192

Chapter 10: Writing Efficient IDL Programs

Using an array expression is much faster:
C = ((AGT 0) * 2-1) * SQRT(ABS(A))

The expression (A GT 0) hasthe value 1 if A[l] is positive and has the value O if
A[llisnot. (A GT 0)* 2- lisequal to+1if A[l] ispositive or -1 if A[l] is negative,
accomplishing the desired result without resorting to loops or | F statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

;Get subscripts of negative elements.

negs = WHERE(A LT 0)

;Take root of absolute value.

C = SQRT(ABS(A))

;Negate elements in C corresponding to negative elements in A.
Cl[negs] = -Clnegs]

Use Vector and Array Operations Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 193

Use System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
almost always much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation isto find the sum of the elementsin an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at |east 10 times faster
than directly coding the sum.

;Slow way: Initialize SUM and sum each element.
sum = 0. & FOR I = J, K DO sum = sum + array[I]

;Efficient, simple way.
sum = TOTAL(array[J:K])

Similar savings result when finding the minimum and maximum elementsin an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.

Building IDL Applications Use System Functions and Procedures

194 Chapter 10: Writing Efficient IDL Programs

Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systemsto avoid penalty. Virtua memory allows the computer to
execute programs that reguire more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this processis transparent to the user, it greatly affects the efficiency of the
program.

Note
In relatively modern computers, plentiful physical memory (hundreds of megabytes
for a single-use machine) is not uncommon. Remember, however, that IDL is
generally not the only consumer of memory on a system. Other applications, the
operating system itself, and other users on multi-user systems may consume large
amounts of physical and virtual memory. If your IDL program appears to be
inefficient or slow, inspect the system memory situation to determine whether
virtual memory is being used, and if so, whether there is enough of it.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only a small portion of that data actually residesin
physical memory at any given moment; the remainder is stored on disk. The portion
of data and program code in real physical memory is commonly called the working
Set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then allows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A page fault is
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very large in relation to the physical memory accesstime,
page faults become an important consideration.

When using IDL with large arrays, it isimportant to have access to sufficient physical
and virtual memory. Given a suitable amount of physical memory, the parameters
that regulate virtual memory reguire adjustment to assure best performance. These
parameters are discussed below. See * Virtual Memory System Parameters’ on

page 197. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manager.

Virtual Memory Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 195

Access Large Arrays by Memory Order

When an array islarger than or close to the working set size (i.e., the amount of
physical memory available for the process), it is preferable to accessit in memory
address order.

Consider the process of transposing alarge array. Assume the array isa 512 x 512
byte image with a 100 kilobyte working set. The array requires 512 x 512, or
approximately 250 kilobytes. L ess than half of the image can be in memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. Thefirst row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses ailmost equal to the size of the entireimage. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written almost 512 times. The amount of time required to
transpose the array using the method described above is relatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 x 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:
FOR X = 0, 511 DO FOR Y = 0, 511 DO ARRI[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FOR Y = 0, 511 DO FOR X = 0, 511 DO ARRI[X, Y] = ...

This approach cuts computing time by a factor of at least 50.
Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especially if you have asmall system), you may encounter the error
message

)

% Unable to allocate memory.

Building IDL Applications Virtual Memory

196 Chapter 10: Writing Efficient IDL Programs

This error message means that IDL was unable to obtain enough virtual memory to
hold all your data. Whenever you define an array, image, or vector, IDL asksthe
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

Thefirst time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to a scalar value.

If you need to exit IDL, you first should use the SAVE procedure to save your
variablesin an IDL savefile. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELP/MEMORY command tells you how much virtual memory you have
allocated. For example, a512 x 512 complex floating array requires 8 x 5122 bytes or
about 2 megabytes of memory because each complex element requires 8 bytes.
Deleting avariable containing a512 x 512 complex array will increase the amount of
memory available by this amount.

Minimizing Virtual Memory

If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
statement

A= (B+C) * (E + F)

IDL first evaluates the expression B + C and creates atemporary array if either B or
C are arrays. In the same manner, another temporary array is created if either E or F
are arrays. Finaly, the result is computed, the previous contents of A are deleted, and
the temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays worth of data
isrequired in addition to normal variable storage.

Itisagood ideato delete the allocation of a variable that contains an image and that
appears on the left side of an assignment statement, as shown in the following
program.

;Loop to process an image.
FOR I = ... DO BEGIN

;Processing steps.

Virtual Memory Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 197

;Delete old allocation for A.
A =0

;Compute image expression and store.
A = Image_ Expression

;End of loop.
ENDFOR

The purpose of the statement A=0 isto free the old memory allocation for the
variable A before computing the image expression in the next statement. Because the
old value of A isgoing to be replaced in the next statement, it makes senseto free A’s
alocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arraysis
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as atemporary variable and makes the argument undefined. In this way, you avoid
making anew copy of temporary results. For example, assume that A isalarge array.
To add 1 to each element in A, you could enter:

A = A+1

However, this statement creates a new array for the result of the addition and assigns
the result to A before freeing the old allocation of A. Hence, the total storage required
for the operation istwice the size of A. The statement:

A = TEMPORARY (A) + 1

requires no additional space.
Virtual Memory System Parameters

Thefirst step isto determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 x 512 images, each
complex image requires 2 megabytes. Suppose that during atypical session you need
to have twenty images stored in variables and reguire enough memory for ten images
to hold temporary results, resulting in atotal of thirty images or 60 megabytes.
Rounding up to 80 megabytes gives a reasonable value for the amount of physical
and virtual memory that should be availableto IDL.

Building IDL Applications Virtual Memory

198

Chapter 10: Writing Efficient IDL Programs

UNIX Virtual Memory

For UNIX, The size of the swapping area(s) determines how much virtual memory
your processis alowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is atime-consuming task that should be
planned carefully. It usualy requires saving the contents of the disk, reformatting the
disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to aregular file. Thisis a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.

Windows Virtual Memory

For Microsoft Windows, creation and management of virtual memory files (called
“paging files") are handled more or less automatically. You can, however, adjust the
initial and maximum size of the paging file for a given disk. Consult your system
documentation for details and instructions on how to perform these operations.

Virtual Memory Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 199

The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within afile.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of the
IDLDE or by entering PROFILER at the Command Line. For more information about
the PROFILER procedure, see “PROFILER” in the IDL Reference Guide manual.

Note
Calling the Profiler from the Command Line does not start the Profiler dialog.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

Bl
— Uzer Module — Syztem Module:
[WIDIST
[wIFILEPATH [wlAC0S5
[wIPATH_SEP (wlaL0G
[IPROF_TEST [wlALOG10
[wIARG_PRESENT
[wiARRAT_EQUAL
[wlaSIN
[wiaS50C
(wlaTaN
(w15 LI
[Al User Modules
Profie 4l | Clear Al | oK

Figure 10-1: Profile Dialog

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for
profiling. To select amodule, click on the checkbox next to it. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.

Building IDL Applications The IDL Code Profiler

200 Chapter 10: Writing Efficient IDL Programs

All User Modules

Select this checkbox to select al the user modules for profiling.
System Modules

Thisfield includes all IDL system procedures and functions.
All System Modules
Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for al the available modules—System
and User. Click “Reset” to clear the report shown in the “ Profile Report” dialog. The
“Profile Report” dialog is dismissed, asit no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismissthe Profile dialog. Click “Help” to display Help
on thisdialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDLDE. The Profile
Report dialog appears.

Fields in the Profiler Report Dialog

Thefieldsin the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the values in each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted alphabetically.

Note
Whether you enter a program at the command line or run a program contained in a
file, the PROFILER procedure reports the status of all the modules compiled and
executed either since profiling wasfirst set or since the PROFILER was reset.

Modules

The name of the library, user, or system procedure or function.

The IDL Code Profiler Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 201

Typ

Thetype of module. System procedures or functions are associated withan“S’. User
or library functions or procedures are associated with a“U”.

Count
The number of times the procedure or function has been called.
Only(sec)

Thetimerequired, in seconds, for IDL to execute the given function or procedure, not
including any calls to other functions or procedures (children).

Only Avg
Average of the Only(sec) field above.
+Children(sec)

The time required, in seconds, for IDL to execute the given function or procedure
including any calls to other functions or procedures.

+Child Avg
Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDLDE. Click “Save’ to save the report as atext file. The
Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile Report
dialog. The contents remain available after cancelling. Click “Help” to display Help
on thisdialog.

Using the IDL Code Profiler

Open anew editor file by selecting “New” from the File menu.

Enter the following lines in the editor:

PRO prof_ test

OPENR, 1, FILEPATH(’'nyny.dat’, SUBDIR=['’examples’, ’‘data’])
a=ASSOC (1, BYTARR(768,512))
b=a[0]
CLOSE, 1
TV, b
END

Building IDL Applications The IDL Code Profiler

202 Chapter 10: Writing Efficient IDL Programs

Save thefile as prof_test.pro by selecting “Save” from the File menu. The Save As
dialog appears.

To use the IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compile all
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile al the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Avg
AS50C 5 1 0.000116 0.000116 0.000116 0.000116
EvYTARR 5 1 0.001603 0.001603 0.001603 0.001603
CLOSE 5 1 0.000093 0.000093 0.000093 0.000093
KETWORD_SET S g 0.000018 0.000003 0.000018 0.000003
M_ELEMENTS 5 3 0.000011 0.000004 0.000011 0.000004
OM_ERROR 5 1 0.000028 0.000028 0.000028 0.000028
OPEMR 5 1 0.000293 0.000293 0.000293 0.000293
STRLEN 5 1 0.000006 0.000006 0.000006 0.000006
STRMID 5 1 0.000011 0.000011 0.000011 0.000011
™ 5 1 0.087759 0.087759 0.087759 0.087759
WwHERE 5 1 0.000017 0.000017 0.000017 0.000017
Print | Save... | ok I

Figure 10-2: Profile Report Dialog

For more information about the capabilities of either dialog, see “ The Profile Dialog”
on page 199 and “The Profile Report Dialog” on page 200.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for all system files, plus the user module, prof_test, and the
library function, FILEPATH. If you have altered the above results, reset the report
and run prof_test again.

Enter the following lines at the Command Line:

;Create a dataset using the library function DIST. Note that DIST
;is immediately compiled.

The IDL Code Profiler Building IDL Applications

Chapter 10: Writing Efficient IDL Programs 203

A= DIST(500)

;Display the image.
TV, A

Return to the Profile dialog. You will note that the DIST function has been appended
to the User Modulefield, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog’s results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previously selected for profiling.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Av:l
FINDGEM 5 1 0.000034 0.000034 0.000034 0.0000
FLTARR 5 1 0.000040 0.000040 0.000040 0.0000
KETWORD_SET S g 0.000040 0.000007 0.000040 0.0000
M_ELEMENTS 5 4 0.000015 0.000004 0.000015 0.0000
OM_ERROR 5 2 0.000042 0.000021 0.000042 0.0000
OPEMR 5 1 0.000168 0.000168 0.000168 0.0001
SQRT S 281 0.004357 0.000018 0.004397 0.0000
STRLEN 5 1 0.000009 0.000009 0.000009 0.0000
STRMID 5 1 0.000054 0.000054 0.000054 0.0000
™ 5 2 0.235904 0117952 0.235904 01179
WwHERE 5 1 0.000038 0.000038 0.000038 0.0000 7+ |
« | 2
Print | Save... | 55 |

Figure 10-3: Refreshing the Profile Report

If you select DIST in the User Modules field in the Profile dialog and then re-enter
only the statement calling TV at the Command Line, you will notice that only the
count for TV increases in the profiler report. You must re-enter the statement calling
DIST at the Command Line; the already-compiled library function is executed again,
making it available for profiling.

Building IDL Applications The IDL Code Profiler

204 Chapter 10: Writing Efficient IDL Programs

The IDL Code Profiler Building IDL Applications

Chapter 11

Multithreading in IDL

This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.

ThelDL ThreadPool 206 Routinesthat Usethe Thread Pool
Controlling the IDL Thread Pool 209

Building IDL Applications

205

206 Chapter 11: Multithreading in IDL

The IDL Thread Pool

On computer systems that have more than one central processing unit, multi-
threading can be used to increase the speed of numeric calculations by using multiple
system processors to simultaneously carry out different parts of the computation. In a
multithreaded environment, each thread handles a portion of the overall task; if
several threads can run in parallel, the computation can often be completed more
quickly than if the different portions of the task ran in series.

IDL’sthread pool —a pool of computation threads that are used as helpersto

accel erate numerical computations— allows for multithreading when multiple CPUs
are present. IDL automatically evaluates all computations performed by routines that
may benefit from multithreading to determine whether or not to use the thread pool in
the current computation. This decision is based on attributes such as the number of
data elementsinvolved, the availability of multiple CPUs, and the availability of a
multithreaded implementation of the algorithm in use. You can alter the parameters
used by IDL to make this decision, either on aglobal basisfor the duration of asingle
IDL session, or for an individual computation.

Note
Multithreading does not offer the possibility of increased execution speed for al
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 215.

Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in a calculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL encounters a computation
that can use the thread pool and which would benefit from parallel execution, it
divides the task into sub-parts for each thread, enables the thread pool to do the
computation, waits until the thread pool completes, and then continues. Other than
the improved performance, the end result is virtually indistinguishable when
compared to the same computation performed in the standard single-threaded
manner.

The IDL Thread Pool Building IDL Applications

Chapter 11: Multithreading in IDL 207

Possible Drawbacks to the Use of the
IDL Thread Pool

There are instances when allowing IDL to useits default thread pool settings can lead
to undesired results. In some instances, a multithreaded implementation using the
thread pool may actually take longer to complete a given job than a single-threaded
implementation. If acomputation uses the thread pool in an inappropriate situation,
there may be other undesirable effects. The following are some situationsin which
the default thread pool settings may provide less than optimal results.

Computation of a Relatively Small Number of Data Elements

Use of the IDL thread pool requires a small fixed overhead when compared to a non-
threaded version of the same computation. Normally, computational speed increases
when multiple CPUs work in parallel, and the speed-up is much larger than the loss
due to thread pool overhead. However, if the computation does not include alarge
enough number of data elements (each element being a data value of a particular data
type), the loss due to thread pool overhead can exceed the benefit and the overall
computation speed can be slower.

To prevent the use of the thread pool for computations that involve too few data
elements, IDL supports a minimum threshold value for thread pool computations.
The minimum threshold value is contained in the TPOOL_MIN_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Large Computation that Requires Virtual Memory Use

If acomputation istoo largeto fit into physical memory, the threads in the thread
pool may cause page faults that will activate the virtual memory system. If more than
one thread encounters this situation simultaneously, the threads will compete with
each other for access to memory and performance will fall below that of asingle-
threaded approach to the computation.

To prevent the use of the thread pool for computations that involve too many data
elements, IDL supports a maximum threshold value for thread pool computations.
The maximum threshold value is contained in the TPOOL_MAX_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Multiple Users Competing for CPU Resources

On alarge multi-user system, an IDL application that uses the thread pool may
consume all available CPUs, thus affecting other users of the system by reducing
overall performance.

Building IDL Applications The IDL Thread Pool

208 Chapter 11: Multithreading in IDL

To prevent the use of all system processors by routines that use the thread pool, IDL
allows you to specify explicitly the number of CPUs that should be used in
calculations that involve the thread pool. The number of processors to be used for
thread pool operationsis contained in the TPOOL_NTHREADS field of the !CPU
system variable. See the following sections for details on modifying this value.

Note
To change the default number of threads used by IDL, set the
IDL_CPU_TPOOL_NTHREADS preference. For more information, see “! CPU
Settings Preferences’ in Appendix E of the IDL Reference Guide manual.

Sensitivity to Numerical Precision

Algorithms that are sensitive to the order of operations may produce different results
when performed by the thread pool. Such results are due to the use of finite precision
floating point types, and are equally correct within the precision of the data type.

The IDL Thread Pool Building IDL Applications

Chapter 11: Multithreading in IDL 209

Controlling the IDL Thread Pool

IDL alows you to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

¢ Viewing the Current Thread Pool Settings

e Using the Default Thread Pool Settings

e Changing Global Thread Pool Settings

e Changing Thread Pool Settings for a Specific Computation
» Disabling the Thread Pool

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 215.

Viewing the Current Thread Pool Settings

The current values of the parameters that control IDL’s use of the thread pool for
computations are always available in the read-only ' CPU system variable. |CPU is
initialized by IDL at startup with default values for the number of CPUs (threads) to
use, as well as the minimum and maximum number of data e ements. To view the
settings, use the following command:

HELP, /STRUCTURE, !CPU

The values of thefieldsin the |CPU system variable are explained in “!CPU” in the
IDL Reference Guide manual.

Using the Default Thread Pool Settings

If you have more than one processor on your system, if the routine you are using is
able to use the thread pool, and if the number of data elementsin your computation
fallsinto the allowed range (neither too few nor too many), then IDL will employ the
thread pool in that calculation.

If the above requirements are met, IDL will automatically use the thread pool for the
computation. You do not need to do anything special to enable IDL’s multithreading
capabilities.

Building IDL Applications Controlling the IDL Thread Pool

210 Chapter 11: Multithreading in IDL

Changing Global Thread Pool Settings

Unless they are overridden by thread pool keywords supplied at the time of
execution, the values contained in the ! CPU system variable control IDL’s use of the
thread pool. !CPU isa*“read-only” system variable, which means that you cannot
assign valuesto its structure fields directly, either at the command line or within a
program. However, you can set the default number of threads prior to starting IDL by
using the IDL_CPU_TPOOL_NTHREADS preference. See “!CPU Settings
Preferences’ in Appendix E of the IDL Reference Guide manual for details. You can
also change the values of the | CPU system variable for the duration of the current
IDL session by using the CPU procedure.

The CPU procedure accepts the following keywords:
TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword changes the value returned by |CPU.TPOOL_MAX_ELTS.
TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword changes the value returned by |CPU.TPOOL_MIN_ELTS.
TPOOL_NTHREADS

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
ICPU.HW_NCPU threads, so that each thread will have the potential to runin
parallel with the others. Set this keyword equal to O (zero) to ensure that
ICPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

This keyword changes the value returned by 'CPU.TPOOL.NTHREADS.

Controlling the IDL Thread Pool Building IDL Applications

Chapter 11: Multithreading in IDL 211

Note
For numerical computation, there is no benefit to using more threads than your
system has CPUs. However, depending on the size of the problem and the number
of other programs running on the system, there may be a performance advantage to
using fewer CPUs. See “Possible Drawbacksto the Use of the IDL Thread Pool” on
page 207 for a discussion of the circumstances under which using fewer than the
maximum number of CPUs makes sense.

For more information on the CPU procedure, see “CPU” in the IDL Reference Guide
manual.

Examples

The following examples illustrate use of the CPU procedure to modify IDL’s global
thread pool settings.

Note
The following examples are designed for systems with more than one processor.
The examples will generate correct results on single-processor systems, but may
run more slowly than the same operations performed without the thread pool.

Example 1

As afirst example, imagine that we want to ensure that the thread pool is not used
unless there are at |east 50,000 data elements. We set the minimum to 50,000 since
we know, for our system, that at |east 50,000 floating point data elements are required
before the use of the thread pool will exceed the overhead required to use it.

In addition, we want to ensure that the thread pool is not used if acalculation involves
more than 1,000,000 data elements. We set the maximum to 1,000,000 since we
know that 1,000,000 floating point data elements will exceed the maximum amount
of memory available for the computation, requiring the use of virtual memory.

Thefollowing IDL statements use the CPU procedure to modify the minimum and
maximum number of elements used in thread pool computations, create an array of
floating-point values, and perform a computation on the array:

; Modify the thread pool settings
CPU, TPOOL MAX ELTS = 1000000, TPOOL_ MIN_ELTS = 50000

; Create 65,341 elements of floating point data
theta = FINDGEN (361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta))”2

Building IDL Applications Controlling the IDL Thread Pool

212 Chapter 11: Multithreading in IDL

In this example, the thread pool will be used since we are performing a computation
on an array of 361 x 181 = 65,341 data el ements, which falls between the minimum
and maximum thresholds. Note that we altered the global thread pool parametersin
such away that the computation was allowed. The values set by the CPU procedure
will remain in effect, either until they are changed again by another call to CPU or
until the end of the IDL session. An aternative approach that does not change the
global defaults in shown in “Changing Thread Pool Settings for a Specific
Computation” on page 213.

Example 2
In this example, we will:
1. Savethe current thread pool settings from the !CPU system variable.

2. Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a floating point computation.

Perform several floating point computations.

Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

5. Perform several double precision computations.
6. Restore the thread pool settings to their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool.

; Retrieve the current thread pool settings
threadpool = !CPU

; Modify the thread pool settings
CPU, TPOOL MAX ELTS = 1000000, TPOOL MIN ELTS = 50000, $
TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data
theta = FINDGEN (361, 181)

; Perform computations, using 2 threads
sineSquared = 1. - (COS(!DTOR*theta))”2
next computation

next computation

etc.

; Modify thread pool settings for new data type
CPU, TPOOL MAX ELTS = 50000, TPOOL MIN ELTS = 10000

Controlling the IDL Thread Pool Building IDL Applications

Chapter 11: Multithreading in IDL 213

; Create 65,341 elements of double precision data
theta = DINDGEN (361, 181)

; Perform computation

sineSquared = 1. - (COS(!DTOR*theta))”2
next computation

next computation

etc.

;Return thread pool settings to their initial wvalues

CPU, TPOOL_MAX_ELTS = threadpool.TPOOL_MAX_ELTS, S
TPOOL_MIN ELTS = threadpool.TPOOL MIN ELTS, $
TPOOL_NTHREADS threadpool .HW NCPU

Again, in this example we atered the global thread pool parameters. In cases where
you plan to perform multiple computations that take advantage of the same thread
pool configuration, changing the global thread pool parametersis convenient. In
cases where only a single computation uses the specified thread pool configuration, it
iseasier to use the thread pool keywordsto the routine that performs the computation,
as described in the following section.

Changing Thread Pool Settings for a Specific
Computation

All routines that have been implemented to use the thread pool accept keywords that
allow you to override the thread pool settings stored in !CPU for a single invocation
of theroutine. This allows you to modify the settings for a particular computation
without affecting the global default settings of your session. For alist of the routines
that have been implemented to use multithreading when possible, see “ Routines that
Use the Thread Pool” on page 215. In the IDL Reference Guide, documentation for
routines that use the thread pool includes a section titled “ Thread Pool Keywords.”

The thread pool keywords are:
TPOOL_MAX_ELTS

Set this keyword to a non-zero val ue to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on the maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword overrides the default value, given by |CPU.TPOOL_MAX_ELTS.

Building IDL Applications Controlling the IDL Thread Pool

214 Chapter 11: Multithreading in IDL

TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword overrides the default value, given by 'CPU. TPOOL_MIN_ELTS.
TPOOL_NOTHREAD

Set this keyword to explicitly prevent IDL from using the thread pool for the current
computation. If this keyword is set, IDL will use the non-threaded implementation of
the routine even if the current settings of the ! CPU system variable would allow use

of the threaded implementation.

Example

We can use the TPOOL_MIN_ELTS and TPOOL_MAX_ELTS keywords to the
COS function to modify the example used in the previous section so that our changes
to the thread pool settings do not alter the global default.

; Create 65,341 elements of floating point data
theta = FINDGEN (361, 181)

; Perform computation and override session settings for maximum

; and minimum number of elements

sineSquared = 1. - (COS(!DTOR*theta, TPOOL MAX ELTS = 1000000, $
TPOOL_MIN ELTS = 50000)) "2

Disabling the Thread Pool

There are two ways to disable the thread pool in IDL:
e Usethe CPU procedure to ater the global thread pool parameters.

e Usethe TPOOL_NOTHREAD keyword to aroutine to disable the thread pool
for a specific single computation.

In the first example, we will disable the thread pool for the session by setting the
number of threads to use to one:

CPU, TPOOL NTHREADS = 1

In the next example, we will disable the thread pool for a specific computation using
the TPOOL_NOTHREAD keyword:

sineSquared = 1. - (COS(!DTOR*theta, /TPOOL NOTHREAD)) "2

Controlling the IDL Thread Pool Building IDL Applications

Chapter 11: Multithreading in IDL 215

Routines that Use the Thread Pool

Multithreading does not offer the possibility of increased execution speed for all IDL
routines. The operators and routines currently using the thread pool in IDL are listed
below, grouped by functional category.

Binary and Unary Operators:

- — +

++ NOT AND
/ * EQ
NE GE LE
GT LT >
< OR XOR
A MOD #
##

Note

If an operator uses the thread pool, any compound assignment operator based on
that operator (+=, *=, etc.) also uses the thread pool.

Mathematical Routines:

« ABS ¢ ERRORF ¢ MATRIX_MULTIPLY
* ACOS EXP * PRODUCT

* ALOG o EXPINT * ROUND

« ALOGI0 * FINITE * SIN

« ASIN * FLOOR * SINH

« ATAN * GAMMA e SOQRT

e CEIL GAUSSINT * TAN

Building IDL Applications Routines that Use the Thread Pool

216

* CONJ
* COS
* COSH

Image Processing Routines:

. BYTSCL
« CONVOL
« FFT

Array Creation Routines:

* BINDGEN
* BYTARR

* CINDGEN
 DCINDGEN

* DCOMPLEXARR

* DINDGEN
* FINDGEN
* INDGEN

* IMAGINARY

* LNGAMMA

Chapter 11: Multithreading in IDL

* TANH
* VOIGT

« INTERPOLATE
« POLY_2D
« TVSCL

LINDGEN
L64INDGEN
MAKE_ARRAY
REPLICATE
UINDGEN
ULINDGEN
UL64INDGEN

Non-string Data Type Conversion Routines:

* BYTE

* COMPLEX
» DCOMPLEX
» DOUBLE

* FIX

Routines that Use the Thread Pool

LONG
LONG64
UINT
ULONG
ULONG64

Building IDL Applications

Chapter 11: Multithreading in IDL 217

* FLOAT

Array Manipulation Routines:

* MAX « TOTAL
* MIN » WHERE
* REPLICATE_INPLACE

Programming and IDL Control Routines:

* BYTEORDER * LOGICAL_OR
* LOGICAL_AND * LOGICAL_TRUE

Building IDL Applications Routines that Use the Thread Pool

218 Chapter 11: Multithreading in IDL

Routines that Use the Thread Pool Building IDL Applications

Part II: Components
of the IDL Language

Chapter 12

Expressions and

Operators

The following topics are covered in this chapter:

Overview of Expressions and Operators .. 222

Mathematical Operators 223
Minimum and Maximum Operators 229
Matrix Operatorscccvvuan.. 231
Logical Operators 233

Building IDL Applications

BitwiseOperators
Relational Operators. 240
Assignment and Compound Assignment . 243

Other Operators 246
Operator Precedence 249
221

222 Chapter 12: Expressions and Operators

Overview of Expressions and Operators

Variables, constants, and function results are combined into expressions using
operators. The value of an expression depends on the values of the operands and the
operator involved. Expressions can be combined with other expressions, variables,
and constants to yield more complex expressions. In IDL, unlike FORTRAN or C,
expressions can be scalar- or array-valued.

IDL has alarge number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and logical arithmetic (& &, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

Functions, which are operatorsin themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!Pl) evaluates the variable A multiplied by the value of =, then
applies the trigonometric sine function. Thisresult can be used as an operand to form
amore complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI) evaluates e3"(@m),

Overview of Expressions and Operators Building IDL Applications

Chapter 12: Expressions and Operators 223

Mathematical Operators

IDL mathematical operators are described in the following table.

Note
Also see “Assignment and Compound Assignment” on page 243 for information on
= and op= and " Other Operators’ on page 246 for information onthe[], (), and ?:

operators.
Operator Description Example
+ Addition Store the sum of 3and 6 in B:
B =3+ 6
String Concatenation | Store the string value of "John Doe" in B:
B = 'John' + ' ' + 'Doe'
++ Increment Adds one to the operand.:
A =3
A++
PRINT, A
IDL Prints:

4

Note - The increment operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 225.

- Subtraction Store the value of 5 subtracted from 9in C:
CcC =9 -5
Negation Change the sign of C:
Cc = -C

Table 12-1: Mathematical Operators

Building IDL Applications Mathematical Operators

224

Chapter 12: Expressions and Operators

Operator Description

Example

- Decrement

Subtracts one from the operand:
A =3

A_ -

PRINT, A

IDL Prints:;

2

Note - The decrement operator supports both
pre- and post-fix syntax. See “Using
Increment/Decrement” on page 225.

* Multiplication

Store the product of 2 and 5in variable C:
C=2%*5

Pointer dereference

If ptr isavalid pointer (created viathe
PTR_NEW function), then *ptr isthe value
held by the heap variable that ptr pointsto.
For more information on IDL pointers, see
Chapter 17, “Pointers’ in the Building IDL
Applications manual.

/ Division

Store result of 10.0 divided by 3.2 in variable
D:
D = 10.0/3.2

A Exponentiation

Store result of 2 raised to the 3rd power in
variable B:

B = 273
Note - How exponentiation is evaluated
depends upon whether the operands are real
or complex. See “Using Exponentiation” on
page 228 for details.

Table 12-1: Mathematical Operators (Continued)

Mathematical Operators

Building IDL Applications

Chapter 12: Expressions and Operators 225

Operator Description Example

MOD Modulo | MOD Jisequal to the remainder when | is
divided by J. The magnitude of the result is
lessthan that of J, and its sign agrees with that
of I. Print the value of 9 modulo 5:

PRINT, 9 MOD 5

IDL Prints:
4

Compute angle modulo 2p.
A =(ANGLE + B) MOD (2 * !PI)

Table 12-1: Mathematical Operators (Continued)
Using Increment/Decrement

Theincrement (++) and decrement (--) operators can be applied to variables
(including array subscripts or structure tags) of any numeric type. The ++ operator
increments the target variable by one. The -- operator decrements the target by one.
When written in front of the target variable (that is, using prefix notation), the
operations are known as preincrement and predecrement, respectively. When written
following the target variable (using postfix notation), they are called postincrement
and postdecrement.

Note
The increment and decrement operators can only be applied to variable expressions
to which avalue can be assigned. Hence, the following is not allowed:

A = 23++

because it attempts to apply the increment operator to a constant. Another way of
stating thisruleisto say that it must be possible for the expression being
incremented or decremented to appear on the left-hand side of the equal sign.

The increment and decrement operators can be used either as standal one statements
or within alarger enclosing expression. Although the two forms are very similar, the
expression form has some efficiency and side-effect issues (described below) that do
not apply to the statement form.

Building IDL Applications Mathematical Operators

226 Chapter 12: Expressions and Operators

Increment/Decrement Statements

Increment and decrement operators can be used, along with avariable, as standalone
Statements:

* A++ Or ++A
e A--0r--A

The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable isincremented in place and no temporary copies of the
data are made.

Increment/Decrement Expressions

Increment and decrement operators can be used within expressions. When the
operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of the variable A is 27, while B is 28:

B = 27

A = B++
In contrast, after executing the following statements, both A and B have a value of
26:

B
A

27
--B

Efficiency of Prefix vs. Postfix Operations

When used as part of an expression, the prefix form of the increment and decrement
operators has an efficiency advantage over the postfix form. The reason for thisis
that the postfix form requires IDL to make a copy of the data, while the prefix form
does not. The operations carried out by IDL to execute a prefix increment or
decrement operation are:

1. Fetch thetarget variable.
2. Increment or decrement the target variable in place (no copies are made).
3. Usethe variable when evaluating the surrounding expression.

Thisisvery efficient. In contrast, the postfix form requires IDL to make a copy of the
variablein order to use its old value in the surrounding expression following the

Mathematical Operators Building IDL Applications

Chapter 12: Expressions and Operators 227

increment/decrement. The operations carried out by IDL to execute a postfix
increment or decrement operation are;

1. Fetchthetarget variable.

2. Make atemporary copy of the variable.

3. Increment or decrement the original variable.

4. Usethetemporary copy when evaluating the surrounding expression.

If your computation requires the postfix form, then these operations are necessary
and reasonable. If not, the prefix form will use fewer resources and is the better
choice. The larger the datainvolved, the more important this becomes. It isnot a
concern for small variables.

Order Of Side Effects

The way that the increment and decrement operators change the value of avariablein
addition to using its value in a surrounding expression is called a side effect. In most
cases, the side effects are desired, and cause no problems. Side effects can cause
problems, however, if the increment or decrement operator is applied to avariable
that appears more than once within a single statement or expression. Consider the
following statement (taken from The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie):

Al1i] = 1i++

Which value of i isused to index A?Isit the original value of i, or the incremented
value? The answer depends on the order in which the various parts of the statement
are evaluated. Either answer might be considered correct, and IDL does not require
one or the other. Similarly, in the statements

B
A

23
B++ + B

the value of A could be either 47 or 46, depending on which part of the expressionis
evaluated first.

Note that this situation falls outside the rules of operator precedence — it isthe order
in which the variables themselves are eval utated that affects the result. Let's examine
the situation closely:

¢ Herethe“old” value of B (23) is always used for the first occurrence of B in
the statement.

+ | the sub-statement B++ is evaluated first, the value of the second occurrence
of B in the statement uses the “new” value of B (24), giving A the value 47.

Building IDL Applications Mathematical Operators

228 Chapter 12: Expressions and Operators

« If the sub-statement that contains only the variable B is evaluated first, the
“old” value of B will be used for both occurrences, and A will get the value 46.

As with most languages that implement increment and decrement operators, IDL
does not require any particular ordering of evaluation within an expression in which
such side effects occur. Different versions or implementations of IDL may evaluate
the same expression differently. As aresult, you should avoid writing code that
depends on a particular ordering of the side effects.

Using Exponentiation

The caret (*) isthe exponentiation operator. A*B is equal to A raised to the B power.
For real numbers, A*B is evaluated as follows:

e If Alisareal number and B is of integer type, repeated multiplication is
applied.

« If both A and B arereal (non-integer), the formula AB = eB™ is evaluated.

« AVisdefined as 1.

For complex numbers, A*B is evalutated as follows. The complex number A can be
represented as A = a + ib, whereaisthereal part, and ib is the imaginary part. In
polar form, we can represent the complex number as A = re® =r cosd + ir sino,
wherer cosO isthereal part, andir sinf isthe imaginary part:

« If Aiscomplex and B isreal, the formulaAB = (ré®)B = rB (cosBO + isinB6) is
evaluated.

« If Aisrea and B is complex, the formula AB = eB™ is eval uated.

« If both A and B are complex, the formula AE = e¥" is evaluated, and the
natural logarithm is computed to be In(A) = In(ré®) = In(r) + 6.

Mathematical Operators Building IDL Applications

Chapter 12: Expressions and Operators

229

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below.

Note
Negated values must be enclosed in parenthesesin order for IDL to interpret them
correctly.
Operator Description Example
< Minimum operator. Set A equal to 3:
Thevalueof “A<B” is | o _ 5 . 3
equal tothesmaller of A
or B. Set A equal to -6. Use parenthesesto avoid
Note - Seealso “Using | @Syntax error.
Minimum or Maximum | A = 5 < (-6)
with Complex o
Numbers’ and “Using Set all pointsin array ARR that are larger
Minimum or Maximum | than 100 to 100:
with NaN Values’ ARR = ARR < 100
below.
Set X to the smallest of the three operands:
X = X0 < X1 < X2
> Maximum operator. Use '>' to avoid taking the log of zero or

“A >B" isequal to the
larger of A or B.

Note - Seealso “Using
Minimum or Maximum
with Complex
Numbers’ and “Using
Minimum or Maximum
with NaN Values’
below.

negative numbers:

C = ALOG(D > 1E - 6)
Plot positive points only. Negative points
are plotted as zero:

PLOT, ARR > 0

Building IDL Applications

Table 12-2: Minimum and Maximum Operators

Minimum and Maximum Operators

230 Chapter 12: Expressions and Operators

Using Minimum or Maximum with Complex Numbers

For complex numbers, the absolute value is used to determine which value is smaller
or larger. If both values have the same magnitude then the first value is returned.

Minimum Operator Examples

; Set A equal to 1+2i, since ABS(1+2i) is less than ABS(2-41i):
A = COMPLEX(1,2) < COMPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+1i):

A = COMPLEX(1,-2) < COMPLEX(-2,1)

Maximum Operator Examples

; Set A equal to 2-4i, since ABS(2-4i) is greater than ABS(1+2i)
A = COMPLEX(1,2) > COMPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+1)
A = COMPLEX(1l,-2) > COMPLEX(-2,1)

Using Minimum or Maximum with NaN Values

Typicaly in IDL, the result of any operation involving the special value NaN is
simply NaN. For efficiency, IDL does not check the values of A and B for NaN
values before performing the minimum or maximum operation. If A or B contains a
NaN value, the result is undefined and can be either NaN or the other non-NaN value,
depending on the specific hardware and operating system. If you suspect that one of
your operands contains NaN values, you might want to use the FINITE function to
ensure that you return NaN values in the result. For example, if A and B are scalars:

A = !VALUES.F NAN
B =25

; Result is undefined and can either be 5 or NaN:
PRINT, A > B

; Result must be NaN if either operand is NaN:
PRINT, (FINITE(A) && FINITE(B)) ?» (A > B) : !VALUES.F NAN

This second method also avoids any floating-point math errors. If A and B are arrays,
the following method can be used:

C = REPLICATE(!VALUES.F NAN, N ELEMENTS (A))
good = WHERE(FINITE(A) and FINITE(B), ngood)
IF (ngood GT 0) THEN C[good] = A[good] > B[good]

Minimum and Maximum Operators Building IDL Applications

Chapter 12: Expressions and Operators

Matrix Operators

231

IDL has two operators used to multiply arrays and matrices. For an example
illustrating the difference between the two, see“Multiplying Arrays’ in Chapter 15 of
the Building IDL Applications manual.

Operator

Description

Example

#

Computes array elements
by multiplying the
columns of the first array
by the rows of the second
array. The second array
must have the same
number of columns asthe
first array hasrows. The
resulting array hasthe
same number of columns
asthefirst array and the
same number of rows as
the second array.

Multiply a 3-column by 2-row array:

arrayl = [[1, 2, 1], S

(2, -1, 21 1

Create a 2-column by 3-row array:

array2 = [[1, 3], [0, 1],%
(1, 11 1
PRINT, arrayl#farray?2

IDL prints:

7 -1 7
2 -1 2
3 1 3

Computes array elements
by multiplying the rows
of thefirst array by the
columns of the second
array. The second array
must have the same
number of rows asthe
first array has columns,
Theresulting array has
the same number of rows
asthefirst array and the
same number of columns
asthe second array.

Create a 3-column by 2-row array:

arrayl = [[1, 2, 1], [2, -1, 2]]

Create a 2-column by 3-row array:

array2 = [[1, 3], [0,
PRINT, arrayl#ifarray?2

11, [1, 111

IDL prints:
2 6
4 7

Building IDL Applications

Table 12-3: Matrix Operators

Matrix Operators

232 Chapter 12: Expressions and Operators

Tip
If one or both of the arrays are also transposed as part of a matrix multiplication,
such as TRANSPOSE(A) # B, it is more efficient to usethe MATRIX_MULTIPLY
function, which does the transpose simultaneously with the multiplication.

Matrix Operators Building IDL Applications

Chapter 12: Expressions and Operators

Logical Operators

233

There are three logical operatorsin IDL: &&, ||, and ~. When dealing with logical
operators, non-zero numerical values, non-null strings, and non-null heap variables
(pointers and object references) are considered true, everything elseisfalse.

Note

Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1's complement),
and for ! to be used for logical negation. Thisisnot thecasein IDL: ! isusedto
reference system variables, the NOT operator performs bitwise negation, and ~
performslogical negation.

Operator Description Example
&& Logical AND PRINT, 5 && 7
Returns 1 whenever both of its IDL Prints: 1
operands are true; otherwise,
returns 0. Non-zero numerical IERI_IlliTri’ntSS . i& 2
values, non-null strings, and '
non-null heap variables (pointers
. PRINT, 4 && O
and (_.'iject references) are IDL Prints: 0
considered true, everything else
ISfaI%. PRINT, nn && llsunll
IDL Prints: o

Operands must be scalars or
single-element arrays. The & &
operator short-circuits; the
second operand will not be
evaluated if thefirstisfalse. See
“Short-circuiting” on page 234
for details.

Building IDL Applications

Table 12-4: Logical Operators

Logical Operators

234

Chapter 12: Expressions and Operators

Operator Description Example

Il Logical OR IF ((5 GT 3) || (4 GT 5)) $§

. . THEN PRINT, 'True'
Returns 1 whenever either of its

operands are true; otherwise, IDL Prints:
returns 0. Uses the same test for
“truth” asthe & & operator.

Operands must be scalars or
single-element arrays. The ||
operator short-circuits; the
second operand will not be
evaluated if thefirst istrue. See
“Short-circuiting” on page 234
for details.

True

~ Logical negation PRINT, ~ [1, 2, 0]

Returns 1 when itsoperand is IDL Prints:
false; otherwise, returns 0.

Uses the same test for “truth” as
the & & operator.

0O 0 1

Table 12-4: Logical Operators (Continued)

Short-circuiting

The s& and | | logical operators are short-circuiting operators. This meansthat IDL
does not evaluate the second operand unlessit is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, sinceit allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Opl && Op2

IDL does not evaluate op2 if op1 isfase, because it aready knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Opl || Op2

IDL does not evaluate op2 if op1 istrue, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the LOGICAL_AND and
LOGICAL_OR functions or the bitwise AND and OR operators.

Logical Operators Building IDL Applications

Chapter 12: Expressions and Operators 235

Additional Logical Operator Examples

Results of relational expressions can be combined into more complex expressions
using the logical operators. Some examples of relational and logical expressions are
asfollows:

;True if A is between 25 and 50. If A is an array, then the result
;is an array of zeros and ones.
(A LE 50) && (A GE 25)

;True if A is less than 25 or greater than 50. This is the inverse

;of the first.
(A er 50) || (A LT 25)

Building IDL Applications Logical Operators

236

Chapter 12: Expressions and Operators

Bitwise Operators

There are four bitwise operatorsin IDL: AND, NOT, OR, and XOR. For integer
operands (byte, signed- and unsigned-integer, longword, and 64-bit longword data
types), bitwise operators operate on each bit of the operand or operands

independently.
Operator Description Example
AND Bitwise AND The statement

For integer, longword, and byte
operands, a bitwise AND
operation is performed. If the
operands are scalars, it returns a
scalar value. If either operand is
an array, it returns an array
containing one value for each
element of the shortest array
operand.

For operations on other types,
the result is equa to the second
operand if thefirst operand isnot
equal to zero or the null string;
otherwise, theresult is zero or
the null string.

Note - The bitwise AND
operator is not valid for heap
variable operands

5 AND 6 = 4
isrepresented in binary asfollows:

0101 AND 0110 = 0100

PRINT, (5 GT 2) AND (4 GT 2)
IDL Prints; 1

PRINT, (5 GT 2) AND (4 GT 5)
IDL Prints; o

PRINT, 5 AND 7
IDL Prints: 5

PRINT, 5 AND 2
IDL Prints; o

PRINT, 4 AND 2
IDL Prints: o

Bitwise Operators

Table 12-5: Logical Operators

Building IDL Applications

Chapter 12: Expressions and Operators

237

Operator Description Example
NOT Bitwise NOT The statement
Returnsthe bitwiseinverse of its | NOT 4 = -5

scalar or array operand (returns
scalar if operand isascalar, or
returns an array containing one
value for each element of the
operand array).

For integer, longword, and byte
operands, NOT returns the
complement of each bit of the
operand. For floating-point
operands, theresult is 1.0 if the
operand is zero; otherwise, the
result is zero.

Warning - Use caution when
using the return value from the
bitwise NOT operator as an
operand for the logical operators
&& and | |. See“Using the NOT
Operator” on page 238 for
additional discussion.

Note - Not valid for string or
complex operands.

isrepresented in binary as follows:
NOT 0100 = 1011

PRINT, NOT 1
IDL Prints:

-2

Note - Modern computers use the
“2s complement” representation
for negative signed integers. This
means that to arrive at the decimal
representation of anegative binary
number (a string of binary digits
with a one as the most significant
bit), you must take the
complement of each bit, add one,
convert to decimal, and prepend a
negative sign. For example, NOT
O equals-1, NOT 1 equals-2, etc.

IF (NOT (5 GT 6)) THEN $
PRINT, 'True'

IDL Prints:;

True

Building IDL Applications

Table 12-5: Logical Operators (Continued)

Bitwise Operators

238 Chapter 12: Expressions and Operators
Operator Description Example

OR Bitwise OR For integer operands, OR
Performs the logical “inclusive performs a bitwise inclusive “or”
or” operation on two scalar or operation and returns the resullt.
array operands (returning a The statement:
scalar value for scalar operands, | 3 XOR 5 = 6
or returning an array containing | isrepresented in binary asfollows:
onevaluefor eachelement of the | 0011 xor 0101 = 0110
shortest array operand.
For integer or byte operands, a IF ((5 GT 3) OR $
bitwiseinclusive OR is (4 GT 5)) THEN 3
performed. For floating- point PRINT, 'True
operandg, (etprnstheflrst IDL Prints:
operand if it is non- zero, or the
2nd operand otherwise. True

XOR Bitwise exclusive XOR For integer operands, XOR sets a

XORisonly valid for byte,
integer, and longword operands.

Performsthe logical “exclusive
or” operation on two scalar or
array operands (returning a
scalar value for scalar operands,
or returning an array containing
one valuefor each element of the
shortest array operand.

A bitintheresultissetto 1if the
corresponding bitsin the
operands are different; if they
areequal, it is set to zero.

bit in the result to 1 if the
corresponding bitsin the operands
are different or to O if they are
equal. The statement:

3 XOR 5 = 6
isrepresented in binary as follows:

0011 XOR 0101 = 0110
IF ((5 GT 3) XOR (4 GT 5))
THEN $
PRINT, 'Different' $
ELSE PRINT, 'Same'
IDL Prints:
Different

Table 12-5: Logical Operators (Continued)
Using the NOT Operator

Due to the bitwise nature of the NOT operator, logical negation operations should
aways use ~ in preference to NOT, reserving NOT exclusively for bitwise
computations. Consider a statement such as:

Bitwise Operators

Building IDL Applications

Chapter 12: Expressions and Operators 239

IF ((NOT EOF(lun)) && device ready) THEN statement

which wants to execute statement if the file specified by the variable 1un has data
remaining, and the variable device ready isnon-zero. When EOF returns the
value 1, the expression NOT EOF (1un) Yields-2, due to the bitwise nature of the
NOT operator. The && operator interprets the value -2 as true, and will therefore
attempt to execute statement incorrectly in many cases. The proper way to write the
above statement is:

IF ((~ EOF(lun)) && device ready) THEN statement

Additional Bitwise Operator Examples

Some examples of bitwise expressions are as follows:

; Displays the “negative” of an image contained in the array IMG.
TV, NOT IMG

; Adds the hexadecimal constant FF (255 in decimal) to the array

; ARR. This masks the lower 8-bits and zeros the upper bits.
ARR AND 'FF'X

Building IDL Applications Bitwise Operators

240 Chapter 12: Expressions and Operators

Relational Operators

The IDL relational operators apply arelation to two operands and return alogical
value of true or false. The resulting logical value can be used as the predicatein IF,
WHILE or REPEAT statements. You can aso combine Boolean operators with other
logical values to make more complex expressions.

Note
It isimportant to see “ Definition of True and False” in Chapter 7 of the Building
IDL Applications manual for details on when avalueis considered true or false.

Therulesfor evaluating relational expressions with operands of mixed modes are the
same as for arithmetic expressions. Each operand is promoted to the data type of the
operand with the greatest precedence or potential precision. (See “Data Type and
Structure of Expressions’ on page 258 for details.) For example, in the relational
expression “2 EQ 2.07, theinteger 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression istrue. The relational operators
return avalue of 1 for true and O for false. The type of the result is aways byte.

Note
When using EQ and NE with complex numbers, both the real and imaginary parts
must meet the condition of the relational operator. For example, the following
returns O (false):

PRINT, COMPLEX(1,2) EQ COMPLEX(1,-2)

When using GE, GT, LE, and LT with complex numbers, the absolute value (or
modulus) of the complex number is used for the comparison.

For more information on using relational operators, also see “Using Relational
Operators with Arrays’ and “Relational Operators with Infinity and NaN Values’ on

page 242.
Operator Description Example
EQ Equal to Returnstrueif its operands are equal;

otherwise, it returnsfalse. The
following returns True:

IF (2 EQ 2.0) THEN PRINT, 'True'

Table 12-6: Relational Operators

Relational Operators Building IDL Applications

Chapter 12: Expressions and Operators

241

Operator Description

Example

NE Not equal to

Returns true whenever the operands are
different. The following returns 1
(true):

PRINT, "sun" NE "fun"

GE Greater than or equal to

Returnstrueif the operand on theleft is
greater than or equal to the one on the
right. Relational operator are useful for
creating array masks:

A = ARRAY * (ARRAY GE 100)

See “Using Relational Operators with
Arrays" on page 242.

GT Greater than

Returnstrueif the operand on theleft is
greater than the operand on theright.
Determineif A is greater than B:

IF (A GT B) THEN PRINT, 'True'

Note - Strings are compared using the
ASCII collating sequence: " " isless
than "0" islessthan "9" islessthan "A"
islessthan"Z" islessthan "a" whichis
lessthan "z".

LE Less than or equal to

Returnstrueif the operand on theleft is
less than or equal to the operand on the
right. Determineif A islessthan or
equal to B:

IF (A LE B) THEN PRINT, 'True'

LT Less than

Returnstrueif the operand on theleft is
less than the operand on the right.
Determineif A islessthan B:

IF (A LT B) THEN PRINT, 'True'

Table 12-6: Relational Operators (Continued)

Building IDL Applications

Relational Operators

242 Chapter 12: Expressions and Operators

Note
You can use the NE and EQ operators to determine if two object references point to
the same heap variable. See “ Object Equality and Inequality” in Chapter 1 of the
Object Programming manual for examples.

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression:

A = ARR * (ARR LE 100)

Alisan array equal to ARR except that all points greater than 100 have been reduced to
zero. The expression (ARR LE 100) isan array that contains a 1 where the
corresponding element of ARR islessthan or equal to 100, and zero otherwise. For
example, to print the number of positive elementsin the array ARR:

PRINT, TOTAL (ARR GT 0)

The following command sets B equal to ARRAY whenever the corresponding
element of ARRAY isgreater than or equal to 100. If the element isless than 100, the
corresponding element of B is set to zero.

B = ARRAY * (ARRAY GE 100)
Relational Operators with Infinity and NaN Values

On Windows and Solaris x86 platforms, using relational operators with the values
infinity or NaN (Not a Number) causes an “illegal operand” error. The FINITE
function’s INFINITY and NAN keywords can be used to perform comparisons
involving infinity and NaN values. For more information, see “FINITE” inthe IDL
Reference Guide manual and “ Special Floating-Point Values’ on page 166.

Relational Operators Building IDL Applications

Chapter 12: Expressions and Operators 243

Assignment and Compound Assignment

The assignment statement stores a value in a variable. Compound assignment
combines assignment with another operator.

Operator Description Examples
= Assignment Simple assignment examples:
The value of the expression A=5

on theright hand side of the | Assigns5to variable A:
equal signisstoredinthe

variable, subscript element, or | B='Hello World! _
range on the left side. Theold | Assign "Hello World" to variable B:

value of thevariable, if any, iS | name = 'Mary:

discarded, and the value of The variable name becomes a scalar
the expression is stored inthe | string variable.

variable. The expression on arr = FLTARR(100)

the right side can be of any Make arr a 100-element, floating-
type or structure. point array.

For more information on arr = arr[50:*]

assignment involving arrays | Discard points 0 to 49 of arr. Itis
and ranges, see Chapter 15, now a 50-element array.

“Arrays’.

For information on
assignment involving objects,
see “Object Assignment” in
Chapter 1 of the Object
Programming manual.

Table 12-7: Assignment and Compound Assignment

Building IDL Applications Assignment and Compound Assignment

244 Chapter 12: Expressions and Operators

Operator Description Examples
op= Compound Assignment Applies the specified operation to
where op is one of the the target variable “in place,”

following operators: ##, #, *, without making a copy of the
+,-,1,<,> " AND, EQ, GE variable. For example,

GT, LE, LT, MOD, NE, OR, A +=5

XOR adds 5 to the value of the variable A.

Provides succinct syntax for | A op= expression
expressionsinwhich thesame | 1S €quivalent to:
variable would otherwise be A = TEMPORARY (A) op
present on both sides of the (expression)

equal sign. _ The following statements both add
See “Compound Assignment | 100 to current value of A:
Operators’ on page 244 for

. A=A + 100
details.

A += 100

Table 12-7: Assignment and Compound Assignment (Continued)
Compound Assignment Operators

In addition to the standard assignment statement, IDL supports the following
compound assignment operators:

Hi= #= k= += -=

I= <= >= AND= EQ=
GE= GT= LE= LT= MOD=
NE= OR= XOR= A=

See op=in previous table for examples.

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op isan IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression isany IDL
expression, produces the same result as the statement:

A = A op (expression)

Assignment and Compound Assignment Building IDL Applications

Chapter 12: Expressions and Operators 245

The difference is that the statement using the compound operator makes more
efficient use of memory, because it performs the operation on the target variable A in
place. In contrast, the statement using the simple operators makes a copy of the
variable A, performs the operation on the copy, and then assigns the resulting value
back to A, temporarily using extra memory.

Note that the statement:
A op= expression
isidentical tothe IDL statement:
A = TEMPORARY (A) op (expression)

which usesthe TEMPORARY function to avoid making a copy of the variable A.
While there is no efficiency benefit to using the compound operator rather than the
TEMPORARY function, the compound operator allows you to write the same
statement more succinctly.

Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate
whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

Thefirst statement assigns the value 23 to a variable named AAND. The second
statement performsthe AND operation between A and 23, storing the result back into
thevariable A.

Compound operators that do not involve IDL keywords (+=, for example) do not
require whitespace in order to be properly parsed by IDL, although such whitespace
isrecommended for code readability. That is, the statements

A+= 23
A += 23

are identical, but the latter is more readable.

Building IDL Applications Assignment and Compound Assignment

246

Other Operators

Chapter 12: Expressions and Operators

The following operators (onthe[], (), ?: and -> operators) are used when working
with arrays, controlling the order of operations, creating conditional expressions, or
invoking an object method.

Operator

Description

Examples

[]

Array concatenation

The expression [A,B] isan
array formed by
concatenating A and B,
which can be scalars or
arrays, along the first
dimension.

To concatenate second and
third levels, nest the brackets;
[[1,2],[3,4]] isa2-element by
2-element array with the first
row containing 1 and 2 and
the second row containing 3
and 4. Operands must have
compatible dimensions; all
dimensions must be equal
except the dimension that is
to be concatenated, e.g.,
[2INTARR(2,2)] are
incompatible.

See Chapter 15, “Arrays’ for
more information.

Define C as three-point vector:
c = [0, 1, 3]

Add 5 to theend of C:

PRINT, [C, 5]
IDL Prints: 0 1 3 5

Insert -1 at the beginning of C:

PRINT, [-1, C]

IDL Prints: -1 o 1 3
Plot ARR2 appended to ARRL.
[ARR1,

PLOT, ARR2]

Define a 3x3 matrix.

KER = [[1,2,1],
[1,2,1]]

[2,4,2], s

Note - Array concatenation isa
relatively inefficient operation, and
should only be performed once for a
given set of dataif possible.

Enclose array subscripts

Note - See “Array Subscript
Syntax: [] vs. ()" on

page 314 for additional
details.

A = [2, 1, 5]
Print the 3rd element in A:

PRINT, A[2]

IDL Prints; 5

Other Operators

Table 12-8: Other Operators

Building IDL Applications

Chapter 12: Expressions and Operators

247

Operator Description Examples
() Group expressionsto control | PRINT, 3 + 4 * 2 2 /2
order of evaluation or IDL Prints: 11
enclose function parameter PRINT, (3 + (4 * 2) *~ 2 / 2)
lists IDL Prints: 35
Note - See " Operator Enclose function argument lists:
Precedence” on page 249for | g1y (ane * pI/180.)
details on order of evaluation
? Conditional expression For
Provides away to write value = exprl ? expr2 : expr3
simple constructions of the | ey js evaluated first. If expriis
IF... THEN...EL SE statement | e, then value = expr2. If exprl is
in expression form. false, value = expr3.
See “Working with A-G & Bed
Conditional Expressions’
bel ow. Set Z to the greater of A and B:
Z = (AGT B) ? A : B
PRINT, Z
IDL Prints: 6
-> Method invocation oWindow- >Draw .
Calls an object method. See gg?i? ;:Jndow iI: t?]rélo?)l‘e%;vr\g;ﬂg\g
“Acting on Objects Using J Draw J :
Methods’ in Chapter 1 of the
Object Programming manual
for more information.

Table 12-8: Other Operators (Continued)

Working with Conditional Expressions

The conditional expression—written with the ternary operator ?—has the lowest
precedence of all the operators. It provides away to write simple constructions of the
IF...THEN...EL SE statement in expression form. In the following example, Z
receives the larger of the values contained by A and B:

IF (A GT B) THEN Z

This statement can be written more concisely using a conditional expression:

Building IDL Applications

Other Operators

248 Chapter 12: Expressions and Operators

Z = (AGT B) ? A : B
The general form of aconditional expressionis:
exprl ? expr2 : expr3

The expression exprl is evaluated first. If exprl istrue, then the expression expr2 is
evaluated and set as the value of the conditional expression. If exprlisfalse, expr3is
evaluated and set as the value of the conditional expression. Only one of expr2 or
expr3is evaluated, based on the result of exprl. (See “Definition of True and False’
on page 140 for details on how the “truth” of an expression is determined.)

Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around expr 1. However, parentheses are often used in this situation, as
they enhance the readability of the expression.

Other Operators Building IDL Applications

Chapter 12: Expressions and Operators 249

Operator Precedence

Thefollowing tablelists IDL’s operator precedence. Operators with the highest
precedence are evaluated first. Operators with equal precedence are evaluated from
left to right.

Note
See “Efficiency and Expression Evaluation Order” on page 252 for information on
creating efficient statements.

Priority Operator

First (highest) () (parentheses, to group expressions)

[] (brackets, to concatenate arrays)

Second . (structure field dereference)

[1 (brackets, to subscript an array)

() (parentheses, used in afunction call)

Third * (pointer dereference)

* (exponentiation)

++ (increment)

-- (decrement)

Fourth * (multiplication)

and ## (matrix multiplication)
/ (division)

MOD (modulus)

Table 12-9: Operator Precedence

Building IDL Applications Operator Precedence

250 Chapter 12: Expressions and Operators

Priority Operator

Fifth + (addition)
- (subtraction and negation)

< (minimum)

> (maximum)

NOT (bitwise negation)

Sixth EQ (equality)

NE (not equal)

LE (lessthan or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

Seventh AND (bitwise AND)

OR (bitwise OR)

XOR (bitwise exclusive OR)
Eighth && (logical AND)

| | (logical OR)

~ (logical negation)

Ninth ?. (conditional expression)

Table 12-9: Operator Precedence (Continued)

Note
Thereisalso adatatype hierarchy that affects the result of mathematical operations.
See “Data Type and Structure of Expressions’ on page 258 for details.

The effect of a given operator is based on both position and the rules of operator
precedence. This concept is shown by the following examples.

A =4+ 5*2

Operator Precedence Building IDL Applications

Chapter 12: Expressions and Operators 251

A isequal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A= (4 +5) *2

Inthis case, A equals 18 because the parentheses have higher operator precedence
than the multiplication operator; the expression inside the parentheses is evaluated
first, and the result is multiplied by two.

Position within the expression is used to determine the order of evaluation when two
or more operators share the same operator precedence. Consider the following:

A=6/2*3

In this case, A equals 9, since the division operator is to the left of the multiplication
operator. The subexpression 6 / 2 isevauated before the multiplication is done,
even though the multiplication and division operators have the same precedence.
Again, parentheses can be used to override the default evaluation order:

A=6/ (2% 3)
Inthis case, A equals 1, because the expression inside parentheses is evaluated first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Expression Value

A+1 The sum of A and 1.

A<2+1 The smaller of A or two, plus one.

A<2*3 The smaller of A and six, since* has
higher precedence than <.

2* SQRT(A) Twice the sguare root of A.

A + Thursday' The concatenation of the strings A
and “Thursday.” An error resultsif A
isnot astring

Table 12-10: Examples of Expressions

Building IDL Applications Operator Precedence

252 Chapter 12: Expressions and Operators

Efficiency and Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A is an array:

; Scale A from 0 to 16.
B =A* 16. / MAX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operations required is
twice the number of elementsin A. A much faster way of computing the same result
isused in the following statement:

; Scale A from 0 to 16 using only one array operation.
B =A * (16./MAX(A))

or

; Operators of equal priority are evaluated from left to right.
; Only one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
Statements:

A = RANDOMU (seed, 512, 512)
tl = SYSTIME(1l) & B = A*16./MAX(A) & t2 = SYSTIME (1)

PRINT, 'Time for inefficient calculation: ', t2-tl
t3 = SYSTIME(1) & B = 16./MAX(A)*A & t4 = SYSTIME (1)
PRINT, 'Time for efficient calculation: ', t4-t3

Operator Precedence Building IDL Applications

Chapter 13

Working with Data

In IDL

The following topics are covered in this chapter:

DataTypes ..., 254
Data Type and Structure of Expressions .. 258
Date/TimeData 261
Defining and Using Constants 265

Building IDL Applications

Accuracy and Floating Point Operations . 272

Type Conversion Functions 275
Variables 278
System Variables 280

253

254

Chapter 13: Working with Data in IDL

Data Types

The IDL language is dynamically typed. This means that an operation on avariable
can change that variable s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision. For example, if an integer variable is added to afloating-point variable, the
result will be afloating-point variable. See “ Data Type and Structure of Expressions’
on page 258

Note
See " Returning Type and Size Information” in Chapter 7 of the Using IDL manual
for information on how to determine the data type of an array.

Basic Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to a variable is determined either by the syntax used when
creating the variable, or as aresult of some operation that changes the type of the
variable. IDL’s basic datatypes are discussed in more detail beginning with “ Defining
and Using Constants’ on page 265

Table 13-1 lists IDL’s basic data types, provides examples of how to explicitly create
avariable of each type, and list the routines used to create variables and arrays of
each type.

Data Type Description Creation Routines
Byte An 8-bit unsigned integer a = 5B BYTE
ranging in value from 0 to BYTARR
255. Pixelsin images are a = BYTE(S)
commonly represented as
byte data.
Integer A 16-bit signed integer b =0 FIX
ranging from —32,768 to INTARR
+32,767. b =08
b = FIX(0)
Table 13-1: Data Types
Data Types Building IDL Applications

Chapter 13: Working with Data in IDL

255

Data Type Description Creation Routines
Unsigned A 16-bit unsigned integer ou UINT
Integer ranging from O to 65535

e ging UINT (0) UINTARR
Long A 32-bit signed integer oL LONG

ranging in value from LONARR
approximately minus two LONG (0)
billion to plus two billion.
Unsigned Long | A 32-bit unsigned integer 0UL ULONG
ranging in value from O to ULONARR
approximately four billion. ULONG (0)
64-bit Long A 64-bit signed integer OLL LONG64
ranging in value from — LON64ARR
9,223,372,036,854,775,808 LoNGe4 (0)
to
+9,223,372,036,854,775,80
7.
64-bit Unsigned | A 64-bit unsigned integer OULL ULONG64
Long ranging in value from O to ULONG4ARR
18,446,744,073,709,551,61 ULONGE4 (0)
5.
Floating-point | A 32-hit, single-precision, 0.0 FLOAT
floating-point number in FLTARR
the range of +10%, with FLOAT (0)
approximately six or seven
decimal places of
significance.
Double- A 64-bit, double-precision, 0.0D DOUBLE
precision floating-point number in DBLARR
the range of £10%% with DOUBLE (0)
approximately 14 decimal
places of significance.
Table 13-1: Data Types
Building IDL Applications Data Types

256 Chapter 13: Working with Data in IDL
Data Type Description Creation Routines
Complex A real-imaginary pair of j=5 COMPLEX
single-precision, floating- | COMPLEX(1.0, 0.0) COMPLEXARR
point numbers. Complex \ — COMPLEX(L,0)
numbers are useful for 1= '
signal processing and
frequency domain filtering.
Double- A rea-imaginary pair of k=38 DCOMPLEX
precision double-precision, floating- | DCOMPLEX(1.0, 0.0) | h~AvPl EXARR
complex point numbers.
String A sequence of characters, 1 = 'Hello' STRING
from O to 2147483647 (2.1 STRARR
GB) charactersin length, ém:uim;((728, 101B, &
whichisinterpreted astext. | |5 1088, 1118])

Table 13-1: Data Types

Note
In previous versions of IDL prior to version 4, the combination of adouble-
precision number and a complex number in an expression resulted in a single-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex data type. Starting with IDL version 4, this combination
resultsinaDCOMPLEX number.

Precision of Floating-Point Numbers

Data Types

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver slightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, this is something you
should consider.

For more information on floating-point mathematics, see Chapter 11, “Mathematics’
in the Using IDL manual. For information on your machine's precision, see
“MACHAR” in the IDL Reference Guide manual.

Building IDL Applications

Chapter 13: Working with Data in IDL 257

Complex Data Types
e Structures: Aggregations of data of various types. Structures are discussed in
Chapter 16, “ Structures’.

« Pointers: A reference to adynamically-allocated heap variable. Pointers are
discussed in Chapter 17, “Pointers”.

¢ Object References: A reference to a special heap variable that containsan IDL
object structure. Object references are discussed in Chapter 13, “Creating
Custom Objectsin IDL” in the Object Programming manual.

Building IDL Applications Data Types

258 Chapter 13: Working with Data in IDL

Data Type and Structure of Expressions

Every entity in IDL has an associated data type and structure. The structure of an
expression determines whether the expression can represent a single value or
multiple values. IDL expressions can be either scalars (with exactly one value) or
arrays (with one or more values). The data type and structure of an expression
depend on the data type and structure of its operands.

Tip
You can determine the data type of an expression by returning the type code of the
expression. See “Returning Type and Size Information” in Chapter 7 of the Using
IDL manual for more information.

Hierarchy of IDL Data Types

Unlike many other languages, the data type and structure of most expressionsin IDL
cannot be determined until the expression is evaluated. Because of this, care must be
taken when writing programs. For example, a variable can be a scalar byte variable at
one point in a program while at alater point the same variable can hold a complex
array. See “Expression Type” on page 259 for information on how the hierarchy of
datatypes affect the outcome of mathematical operations. See“ Expression Structure”
on page 260 for information on how the results of scalar and array operations are
evaluated. The twelve atomic data types in decreasing order of precedence are as
follows:

Double-precision complex floating-point
Complex floating-point

Double-precision floating-point

Floating-point

Signed and unsigned 64-bit integer

Signed and unsigned longword (32-bit) integer
Signed and unsigned (16-bit) integer

Byte

String

Data Type and Structure of Expressions Building IDL Applications

Chapter 13: Working with Data in IDL 259

Expression Type

IDL attempts to evaluate expressions containing operands of different data typesin
the most accurate manner possible. The result of an operation becomes the same data
type as the operand with the greatest precedence or potential precision. For example,
when adding a byte variable to a floating-point variable, the byte variable is first
converted to floating-point, then added to the floating-point variable, yielding a
floating-point result. When adding a double-precision variable to acomplex variable,
the result is double-precision complex, because the double-precision complex type
has a higher position in the hierarchy of datatypes. See “Hierarchy of IDL Data
Types’ on page 258 for the order of precedence.

Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed data types, care must be taken to obtain the
desired results. For example, assumethe variable A isan integer variable with avalue
of 5. The following expressions yield the indicated results:

; Integer division is performed. The remainder is discarded.
A/ 2 =2

; The value of A is first converted to floating.
A/ 2. =2.5

; Integer division is done first because of operator precedence.
; Result is floating point.
A/ 2+ 1. = 3.

; Division is done in floating, then the 1 is converted to floating
; and added.
A/ 2. +1=3.5

; Signed and unsigned integer operands have the same precedence, so
; the left-most operand determines the type of the result as signed
; integer.

A + 5U = 10

; As above, the left-most operand determines the result type

; between types with the same precedence
5U0 + A = 10U

Building IDL Applications Data Type and Structure of Expressions

260

Chapter 13: Working with Data in IDL

Note

When other data types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 isfirst converted to integer type.
In the same manner, 'ABC' + 123 also causes a conversion error.

Expression Structure

IDL expressions can contain operands that are either scalars or arrays, just asthey can
contain operands with different types. Conversion of variables between the scalar and
array formsisindependent of datatype conversion. An expression will yield an array
result if any of its operandsis an array, as shown in the following table:

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Table 13-2: Structure of Expressions

See " Operations on Array Expressions’ on page 309 for more information on
working with arrays as operands in an expression.

Data Type and Structure of Expressions

Building IDL Applications

Chapter 13: Working with Data in IDL 261

Date/Time Data

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows afew examples of calendar dates and their
corresponding Julian dates.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0
January 2, 4713 B.C.E., at 12pm 1
January 1, 2000 at 12pm 2451545

Table 13-3: Example Julian Dates

Julian dates can also include fractional portions of aday, thereby incorporating hours,
minutes, and seconds. If the day fraction isincluded in a Julian date, it is represented
as adouble-precision floating point value. The day fraction is computed as follows:

hour + Minute seconds

dayFraction =
ayFraction = = d " 1440.d | 86400.d

One advantage of using Julian dates to represent dates and times is that a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
datesjust as for any other type of number.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Building IDL Applications Date/Time Data

262

Chapter 13: Working with Data in IDL

Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision istypically limited by the datatype of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

Time values that require a high precision, and that span arange of afew days
or less, should be stored as double-precision values in units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “ seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

Date values that do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of thisformat is 1 day.

Date values where it is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian datesislimited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm:
julian = JULDAY(1,1,2000,12,15,0)

; Get machine characteristics:
machine = MACHAR (/DOUBLE)

; Multiply by floating-point precision:
precision = julian*machine.eps

; Convert to seconds:
PRINT, precision*86400d0

How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array

Date/Time Data

Building IDL Applications

Chapter 13: Working with Data in IDL 263

corresponds to a start date/time, and each subsequent val ue corresponds to the start
date/time plus that array element's one-dimensional subscript multiplied by a step
size for agiven date/time unit. Unlike the other array generation routinesin IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/time
isoriginally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for afull year:

date time = TIMEGEN (12, UNIT = 'Months', $
START = JULDAY (3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000. The results of the above call
to TIMEGEN can be output using either of the following methods:

1. Using the CALDAT procedure to convert the Julian dates to calendar dates:

CALDAT, date time, month, day, year

FOR i = 0, (N _ELEMENTS (date time) - 1) DO PRINT, $
month[i], day[i], year[i]l, $
FORMAT = ' (i2.2, "/», i2.2, "/", i4)"

2. Using the calendar format codes:
PRINT, date time, format = ' (C(CMOI2.2, "/v, CDbI2.2, "/", CYI))'
The resulting calendar dates are printed out as follows:

03/01/2000
04/01/2000
05/01/2000
06/01/2000
07/01/2000
08/01/2000
09/01/2000
10/01/2000
11/01/2000
12/01/2000
01/01/2001
02/01/2001

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, seethe “TIMEGEN” in the IDL Reference Guide
manual.

Date/Time Data Examples

You can display date/time data on IDLgrAXxis objects (through the TICKFORMAT
property) plots, contours, and surfaces by setting tick mark attributes. See

Building IDL Applications Date/Time Data

264 Chapter 13: Working with Data in IDL
“Displaying Date/Time Data on Axis Objects’ in Chapter 5 of the Object

Programming manual and the routines LABEL_DATE and “CONTOUR” inthe IDL
Reference Guide manual routine for examples.

Date/Time Data Building IDL Applications

Chapter 13: Working with Data in IDL 265

Defining and Using Constants

The syntax of a constant determines its type. Efficiency is adversely affected when
the type of a constant must be converted during expression evaluation. Consider the
following expression:

A+ 5

If thevariable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

Thetype of aconstant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A isabyte array, the result of the expression A + 5B isa
byte array, while A + 5 yields a 16-hit integer array.

This section discusses details of IDL data types including the following:
¢ “Integer Constants’ below
e “Floating-Point and Double-Precision Constants’ on page 268
e “Complex Constants’ on page 269
e “String Constants’ on page 270

Building IDL Applications Defining and Using Constants

266

Integer Constants

Chapter 13: Working with Data in IDL

Numeric constants of different types can be represented by avariety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B
Integer nornS 12,12S,425,425S
Unsigned Integer nU or nUS 12U,12US
Long nL 12L, 94L
Unsigned Long nuL 12UL, 94UL
64-bit Long nLL 12LL, 94LL
Unsigned 64-bit nULL 12ULL, 94ULL
Long

Hexadecimal Byte 'N'XB '2E'XB
Integer n'X 'OFX
Unsigned Integer | 'n'XU "OF XU
Long "n'XL 'FF'XL
Unsigned Long 'n'’XUL "FF XUL
64-bit Integer 'n'XLL "FF XLL
Unsigned 64-bit n'XULL 'FFXULL
I nteger

Defining and Using Constants

Table 13-4: Integer Constants

Building IDL Applications

Chapter 13: Working with Data in IDL 267
Radix Type Form Examples
Octal Byte "nB "12B
I nteger "n "12
'n'o ‘3770
Unsigned Integer | "nU "12U
'n'OU '‘377'0U
Long "nL "12L
n'OL 777r77TToL
Unsigned Long "nUL "12UL
'n'OUL 7T77T77T7'OUL
64-bit Long "nLL "12LL
n'OLL 777r777TOLL
Unsigned 64-bit "nULL "12ULL
Long nOULL 777r77r'OULL

Table 13-4: Integer Constants (Continued)

Digits in hexadecimal constantsinclude the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.

Type Absolute Value Range
Byte 0-255
Integer 0-32767
Unsigned Integer 0-65535
Long 0-2%1-1
Unsigned Long 0-2%2.1

Table 13-5: Absolute Value Range Of Integer Constants

Building IDL Applications

Defining and Using Constants

268 Chapter 13: Working with Data in IDL

Type Absolute Value Range
64-bit Long 0-2%8_1
Unsigned 64-hit Long 0-204-1

Table 13-5: Absolute Value Range Of Integer Constants (Continued)

Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it istoo large to fit in an integer. Any numeric
constant can be preceded by aplus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Unacceptable Reason Acceptable
256B Too large, limit is 255 255B
'123L Missing apostrophe '123'L
'03G'x Invalid character "129
'27'L No radix '27'0L
650X L No apostrophes '650'XL

"129 9isaninvalid octal digit "124

Table 13-6: Examples of Integer Constants
Floating-Point and Double-Precision Constants
Floating-point and double-precision constants can be expressed in either

conventional or scientific notation. Any numeric constant that includes a decimal
point is a floating-point or double-precision constant.

Defining and Using Constants Building IDL Applications

Chapter 13: Working with Data in IDL 269

The syntax of floating-point and double-precision constantsis shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for

example, E-2.
Form Example

n. 102.

.n 102

n.n 10.2

NE 10E

NESX 10E5

Nn.EsX 10.E-3
.NESX AE+12
N.NESX 2.3E12

Table 13-7: Syntax of Floating-Point Constants

Double-precision constants are entered in the same manner, replacing the & with ap.
For example, 1. 0Do0, 1D, and 1 . D each represent a double-precision numeral 1.

Note
Thene and np forms are shorthand for nEo and npo, and are usually used to
indicate the type of the number, either single or double precision. When using these
formsin expressions, be sure to leave a space after the & or D if the next term has a
+or - sign.

For example, the expression 1D+45 is evaluated as 1x10™ in double precision,
while1D + 45 (note the spaces) evaluates to the number 46 in double precision.
Similarly, the expression 1D+x gives an error, because there was no space after the
D. The correct way to write thisexpressionis 1D + x (note the spaces).

Complex Constants

Complex constants contain areal and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which caseit is assumed to be zero. The form of acomplex constant is as follows:

COMPLEX (REAL PART, IMAGINARY PART)

Building IDL Applications Defining and Using Constants

270 Chapter 13: Working with Data in IDL

or
COMPLEX (REAL_PART)

For example, COMPLEX(1,2) isacomplex constant with areal part of one, and an
imaginary part of two. COMPLEX(1) isacomplex constant with area part of one
and a zero imaginary component. To extract the real part of a complex expression,
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes () or
guotes (). The value of the constant is simply the characters appearing between the
leading delimiter (' or ") and the next occurrence of the same delimiter. A double
apostrophe (' ') or quote (" ") is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.qg., 'Don' 't ' returnsDon ' t. This syntax often can be
avoided by using a different delimiter; e.g., "Don't" instead of 'Don' 't '. The
following tableillustrates valid string constants.

Expression Resulting String
'Hi there' Hi there
"Hi there" Hi there
" Null String
"I'm happy" I’'m happy
'I"m happy’ I"m happy
‘counter’ counter
129 129

Table 13-8: Examples of Valid String Constants

The following table illustrates invalid string constants. In the last entry of the table,
"129" isinterpreted as anillegal octal constant. Thisis because a quote character

Defining and Using Constants Building IDL Applications

Chapter 13: Working with Data in IDL 271

followed by adigit from 0 to 7 represents an octal numeric constant, not a string, and
the character 9 isan illegal octa digit.

String Value Unacceptable Reason
Hi there 'Hi there" Mismatched delimiters
Null String ' Missing delimiter
I’m happy 'I'm happy" Apostrophein string
counter "counter™ Double apostrophe is null string
129 "129" Illegal octal constant

Table 13-9: Examples of Invalid String Constants

Whilean IDL string variable can hold up to 64 Kbytes of information, the buffer than
handlesinput at the IDL command prompt is limited to 255 characters. If for some
reason you need to create a string variable longer than 255 characters at the IDL
command prompt, split the variable into multiple sub-variables and combine them
with the “+” operator:

var = varl+var2+var3

Thislimit only affects string constants created at the IDL command prompt.

Note
See Chapter 14, “ Strings” for details on working with strings.

Building IDL Applications Defining and Using Constants

272 Chapter 13: Working with Data in IDL

Accuracy and Floating Point Operations

In a computer, real numbers are represented with finite precision. While in most
casesit is safe to assume that the result of an arithmetical operation done on your
computer is correct, it isimportant to remember that this finite-precision
representation leads to unavoidable errors, especialy when floating-point numbers,
which are digital approximations to real numbers, are involved.

To understand why floating-point numbers are inherently inaccurate, consider the
following:

¢ Floating-point numbers must be made to fit in a space (astring of binary digits
in acomputer’s memory register) that can only hold an integer and a scaling
factor.

* Floating-point numbers are represented by strings of alimited number of bits,
but represent numbers much larger or smaller than that number of digits can be
made to express.

In other words, floating-point values are finite-precision approximations of infinitely
precise numbers.

Roundoff Error

When working with floating-point arithmetic, it is helpful to consider the quantity
known as the machine accuracy or the floating-point accuracy of your particular
computer. Thisisthe smallest number that, when added to 1.0, produces a floating-
point result that is different from 1.0.

A useful way of thinking about machine accuracy isto consider it to be the fractional
accuracy to which floating-point numbers are represented. In other words, the
machine accuracy roughly corresponds to a change of the least significant bit of the
floating-point mantissa—precisely what can happen if a number with more
significant digits than fit in the floating-point mantissais rounded to fit the space
available. Generally speaking, every floating-point arithmetic operation introduces an
error at least equal to the machine accuracy into the result. This error is known as
roundoff error.

Roundoff errors are cumulative. Depending on the algorithm you are using, a
calculation involving n arithmetic operations might have atotal roundoff error
between SQRT(n) times the machine accuracy and n times the machine accuracy.

Accuracy and Floating Point Operations Building IDL Applications

Chapter 13: Working with Data in IDL 273

Note that the machine accuracy is not the same as the smallest fl oating-point number
your computer can represent. To find these and other machine-dependent quantities
for your own computer, see MACHAR in the IDL Reference Guide.

Truncation Error

Another type of error is also present in some numerical algorithms. Truncation error
isthe error introduced by the process of numerically approximating a continuous
function by evaluating it at a finite number of discrete points. Often, accuracy can be
increased (again at some cost of computation time) by increasing the number of
discrete points evaluated.

For example, consider the process of calculating

2 3 n
X = 1+x+ X+, X
21 3! n!
Obviously, the answer becomes more accurate as n approaches infinity. When
performing the actual computation, however, a cutoff value must be specified for n.
Increasing n reduces truncation error at the expense of computational effort.

Severa IDL routines allow you to specify cutoff valuesin such cases (see, for
example, INT_2D of the IDL Reference Guide). When writing your own routinesin
IDL, it isimportant to consider this trade-off between accuracy and computational
time.

Routines for Mathematical Error Assessment

Below isabrief description of IDL routines for checking math error status and
machine characteristics. More detailed information is available in the IDL Reference
Guide.

CHECK_MATH | Returns and clears accumulated math error status.

FINITE Returns Trueif its argument is finite.

MACHAR Determines and returns machine-specific parameters affecting
floating-point arithmetic.

Table 13-10: Mathematical Error Assessment Routines in IDL

See “Math Errors’ on page 165 for more information.

Building IDL Applications Accuracy and Floating Point Operations

274 Chapter 13: Working with Data in IDL

Accuracy and Floating Point Operation References

Burden, Richard L., J. Douglas Faires, and Albert C. Reynolds. Numerical Analysis.
Boston: PWS Publishing, 1993. ISBN 0-534-93219-3

Stoer, J., and R. Bulirsch. Introduction to Numerical Analysis. New York: Springer-
Verlag, 1980. ISBN 0-387-90420-4

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Accuracy and Floating Point Operations Building IDL Applications

Chapter 13: Working with Data in IDL 275

Type Conversion Functions

IDL alows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output datain a mode compatible with
other programs, etc. For alist of type conversion functions, see “ Type Conversion” in
the IDL Quick Reference manual. Conversion functions operate on data of any
structure: scalars, vectors, or arrays, and variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

; Define A. Note that the value of A is outside the range

; of integers, and is automatically created as a longword

; integer by IDL.

A = 33000

;B is silently truncated.

B = FIX(A)

PRINT, B

IDL prints:
-32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See “Math Errors’ on page 165, for more
information.

Converting Strings

When converting from a string argument, it is possible that the string does not contain
avalid number and no conversion is possible. The default action in such casesisto
print awarning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jJumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a specia
case. Theresult of the BY TE function applied to astring or string array is abyte array
containing the ASCII codes of the characters of the string. Converting a byte array

Building IDL Applications Type Conversion Functions

276 Chapter 13: Working with Data in IDL

with the STRING function yields astring array or scalar with one less dimension than
the byte array.

Dynamic Type Conversion

The TY PE keyword to the FIX function allowstype conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TY PE keyword:

PRO EXAMPLE_FIXTYPE
; Define a variable as a double:
A = 3D

; Store the type of A in a variable:
typeA = SIZE(A, /TYPE)
PRINT, 'A is type code', typeA

; Prompt the user for a numeric value:
READ, UserVal, PROMPT='Enter any Numeric Value: '
; Convert the user value to the type stored in typeA:

ConvUserVal = FIX(UserVal, TYPE=typel)

PRINT, ConvUserVal
END

Examples of Type Conversion

See the following table for examples of type conversions and their resullts.

Operation Results
FLOAT(2) 1.0
FIX(1.3+1.7) 3
FIX(1.3) + FIX(1.7) 2
FIX (1.3, TYPE=5) 1.3000000

Table 13-11: Uses of Type Conversion Functions

Type Conversion Functions Building IDL Applications

Chapter 13: Working with Data in IDL 277

Operation Results
BYTE(L.2) 1
BYTE(-1) 255b (Bytes are modulo 256)
BYTE(01ABC') [48b, 49b, 65b, 66b, 67b]
STRING([65B, 66B, 67B]) 'ABC’
FLOAT(COMPLEX(L, 2)) 1.0
COMPLEX([L, 2], [4, 5]) [COMPLEX(1,4),COMPLEX (2,5)]

Table 13-11: Uses of Type Conversion Functions

Building IDL Applications Type Conversion Functions

278

Chapter 13: Working with Data in IDL

Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL datatypes. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and atype.

Structure

A variable can contain a single value (a scalar) or a number of values of the same
type (an array) or data entities of potentialy differing type and size (a structure).
Strings are considered as single values, and a string array contains a number of
variable-length strings.

In addition, a variable can associate an array structure with afile; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in “ASSOC” in the
IDL Reference Guide manual.

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When avariable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.

Building IDL Applications

Chapter 13: Working with Data in IDL 279

Variable Names

IDL variables are named by identifiers. Each identifier must begin with aletter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after the first 128 are ignored. Names are case insensitive. Lowercase letters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptabl e variable names.

Unacceptable Reason Acceptable
EOF Conflicts with function name | A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE
AB@ Illega character ABCS$DEF
abcd Embedded space My_variable

Table 13-12: Unacceptable and Acceptable IDL Variable Names

Tip
Usethe IDL_VALIDNAME routine to determine whether agiven string is
acceptable as an IDL variable name.

Warning
A variable cannot have the same name as a function (either built-in or user-defined)
or areserved word (see “Reserved Words’ in the IDL Reference Guide manual).
Giving avariable such aname resultsin asyntax error or in “hiding” the variable.

Building IDL Applications Variables

280 Chapter 13: Working with Data in IDL

System Variables

System variables are a specia class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set variousinternal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSY SV
procedure.

System variables are discussed in Appendix D, “System Variables’ in the IDL
Reference Guide manual.

System Variables Building IDL Applications

Chapter 14

Strings

The following topics are covered in this chapter:

Overviewof Strings 282
String Operations 283
Non-string and Non-scalar Arguments . .. 284
String Concatenation 285
Using STRING to Format Data 286
Byte Argumentsand Strings 288
CaseFolding 290

Building IDL Applications

Whitespace 291
Finding the Lengthof aString 293
SUBbSLHNGS . ..o 294
Splitting and Joining Strings 297
Comparing Strings 298
Non-Printing Characters. 302
Learning About Regular Expressions ... 303

281

282 Chapter 14: Strings

Overview of Strings

An DL string isasequence of characters from 0 to 2147483647 (2.1 GB) characters
in length. Strings have dynamic length (they grow or shrink to fit), and thereis no
need to declare the maximum length of astring prior to using it. Aswith any data
type, string arrays can be created to hold more than a single string. In this case, the
length of each individual string in the array depends only on its own length and is not
affected by the lengths of the other string elements.

Note

This chapter covers operations on strings. For information about using the * and “
characters to create valid strings, see “ String Constants’ on page 270.

A Note About the Examples

In some of the examplesin this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $
'Pine', 'Walnut']

Executing the statement,
PRINT, '>' + trees + '< !

resultsin the following outpuit:

>Beech< >Birch< >Mahogany< >Maple< >0ak< >Pine< >Walnut<

Overview of Strings Building IDL Applications

Chapter 14: Strings

283

String Operations

IDL supports several basic string operations, as described below:

Operation

Description

Concatenation

The Addition operator, “+”, can be used to concatenate strings
together. See “ String Concatenation” on page 285.

Formatting Data

The STRING function is used to format datainto astring. The
READS procedure can be used to read values from a string
into IDL variables. See “Using STRING to Format Data” on
page 286.

Case Folding The STRLOWCA SE function returns a copy of its string
argument converted to lowercase. Similarly, the STRUPCASE
function converts its argument to uppercase. See “ Case
Folding” on page 290.

White Space The STRCOMPRESS and STRTRIM functions can be used to

Removal eliminate unwanted white space (blanks or tabs) from their
string arguments. See “Whitespace” on page 291.

Length The STRLEN function returns the length of its string
argument. See “Finding the Length of a String” on page 293.

Substrings The STRPOS, STRPUT, and STRMID routines locate, insert,
and extract substrings from their string arguments. See
“Substrings’ on page 294.

Splitting and The STRSPLIT function isused to break strings apart