Using IDL

IDL Version 6.0

July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Research Systems Inc.

0703IDL60USG

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fithess for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, |ON Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, PO. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Part I: Using IDL
Chapter 1:

INTrOAUCING IDL .oeieiii et e e e aenes 17
OVEIVIBIW ...ttt et e e st r e et r e nr e n e e neanenrenens 18
LAUNCNING IDL ..ottt s 20
Environment Variables Used DY IDLoooveiriiicie et 22
Command Line OptionS fOr IDL SEAMUPceeerverierieeeesiesie e 27
= (0 T - UPRR 30
Message Of the Day FIlES ..o e 31
UsiNg YOour MOUSEWItN IDLccveeieeece ettt 32
QUITEING IDL .ttt sttt b e e e st sb e 33
HEIPFUI RESOUICESocveeiieiecteete ettt ettt e s s neesaeesneesneesneenneeas 34

Using IDL 3

Chapter 2:

The IDL Development ENVIrONMENTvvciiiiiiiiiieeeeeeeeeeeeeeevv 39
Components Of thE IDLDEccoceeieie ettt sre e 40
L LS 1Y 47
Bt MENU ..ottt bbbt b e e 51
SEATCN MBNU .ttt et a et e st e seeeneeneentenaeeneas 53
RUN MENU ..t e b s b n e b e nr e e nreenis 55
(0= o = o P 60
IMBCTOS IMBINU ..ttt sttt bttt b e bt s ae e e e e e b sae e 61
WINOOW IMIBNU ...ttt sttt st e e e ste s et e tesreeneeneesaesne e 63
[1= T AV = 0T T 66
Keyboard SNOMCULScoeeiiiiiere ettt s e e e 67
Chapter 3:

Using the IDL EditOrccooiiiieeeeeeeeiee e 71
ADOUL the IDL EAITOF ..ot 72
KeybOoard SNOMCULSccveiieiriiieieeeieniesie st 73
<~ £ T 75
Text Selection Modes (WIiNAOWS ONIY) ...t 76
Chromacoded Editor (WindowsS ONlY)cceccieiiiieccece et 78
BIOCK COMIMENTSoeetieiecciee ettt ettt s sre e sbe e s ae e sbe e sheesaeesae e beesteesreenras 79
FUNCLIONS/ProCeAUIrES IMENUcoiiiiiiieiiee ettt ee e 80
Using External EAitors (MOLIT)cccoooiiireieinireseeeee e 81
Chapter 4:

Using the IDL Command INput LiNe ..., 83
INPUE TO IDL ettt ettt b e sh e e bbb e et e e see e besbeenne s 84
EXECULIVE COMIMENTSovieeiiiiiiiesieseeerie ettt sttt st b e s enenne s 88
Issuing Operating System COMMEANGScocveeerereeeeeeree st eeeee e e ereeee e see e 90
Chapter 5:

Setting IDL PreferenCes ... 91
CUSIOMIZING IDL .ottt bbbt ebe b b 92
GENEral PIrEFEIEINCESooiviieieieee ettt ettt te e et e seeeneensesesreeneas 94
LaYOUL PrEfEIEINCES ..ottt sttt sttt s be e e eneesresne s 96
GraphiCS PrEfEIENCES ...oveieieieie ettt s re e et e eae e 100
EdItOr PreEfErENCESooviieeeeieteree ettt st 103

Contents Using IDL

SEArtUP PrEfEIEINCESocueeieiecte ettt et s ens 105
FONE PrEFEIENCES ...ttt sttt e e seeseeeneeneesaenneas 107
Path PrefErENCES ..ot sttt 109
Chapter 6:

WOTrKing With MACIOS ...uuviiiiiiiiiiiiiiiie e 111
WHEE @r€ IMIBCIOS?eveieeeeeiesie sttt sttt st esae st sre e e e stesreeseensesaesseesanneessesneens 112
Using the IDL Macro TOOIDANcccuviiiiieiiecie et 113
Creating UNIX MEBCIOS ...c.coviieiiirieieirie sttt st sresne e s sne e 114
Creating WIiNAOWS IMIBCIOSc.eeiuieieeieeieeieeeseesieseessessseesseesnessseessesssessseesseessesssesssesses 117
Command Stream SUDSHITULIONSceveieeriiiieeeriesie e 119
Building IDL EX@MPIE MACIOSccceeiueiieeiieiiesee e seeseesteesteesteesreesseenseeseeseeneeseesnees 120
Chapter 7:

PriNTING IN IDL e e e 123
OVEIVIBIW ..ttt b sttt b e ettt b e bbb st et et e b e sbe it e 124
Printing GraphiCscooueiiiieeieeee ettt eneeneesee e 125
IDL Printer SEtUP iN WINGOWSocveiiiiiiieieite ettt st 126
IDL Printer Setup in UNIX 0 MaC OS X ..o 127
Chapter 8:

Customizing IDL on Motif SYyStEMScoovvvvviiiiiiiiiiiiiee e 139
Using X Resourcesto CUuStOMize DLcccveceiieieiese et s 140
Command LiNE OPLiONSc.eiuerieieieierieseeeeiesie et 143
Modifying the Control Panelcccoviiiieieie e 146
ACHON ROULINES ...ttt st ae st eeene e aeseesne e e e nsesne e 149
CDE File Manager SUPPOITcceiiiieeeeiesiesteeeestesie e eaeste e sreeaesbesre e ensestesresaenneseesnas 156
Chapter 9:

Preparing and Running Programs in IDLccccvvvvvivviviiiiiiiiine e 157
(@< V= P 158
Introduction to IDL Program FilESccceriir ettt s 159
RUNNiNg IDL Program FilEScoiiiiiiiiirieeeeese e 161
Interrupting Program EXECULIONcccceierieriee e sieeseese e e e stesste e seeeseesesseesneesneens 165
Variable Context After INTEITUPLIONoviiiiieeee e 166
N o0 1o T 1 5 S 167
Saving Variables from an IDL SESSIONccccceviiirieierinesieieese e 168
For More Information 0N ProgramimMingccceceeeeerieesieeseesiesseeseeseesseesseessesseesseesnns 170

Using IDL Contents

Chapter 10:

Executing Batch JOBS iN IDLoveiiiiiiiiii e 171
OVEIVIBIW .ttt b ettt b e bt b b e et et b e s b et et et ebene et 172
Interpretation Of BaICh SLALEMENTSccoiieeieeiiereeeeere e 173
A BaICh EXAMPIE ..ottt sttt 174
Chapter 11:

JoUTNAlING TN IDL ..eiiiiiiiiiiieieeeeee e 175
(@< V= S 176
Journaling EXAMPIESooieeee et 178

Part 1l: Reading and Writing Data
Chapter 12:

IDL Macros for Importing Datacccoveeeieiiiiiiieeieiice e 181
(@< V=T 182
Using Macrasto Import IMage Fil€Socuveeee e 183
Using Macros to IMport ASCI FIlES ... 187
Using Macros to Import Binary FIlESccccciiiiieiiicece e 193
Using Macrasto IMport HDF FIIESooueiieeieeeeese e 199
Chapter 13:

Reading and Writing IMagescccceeiiiiiiiii e 203
LiSt OF COMMENGS ..ottt sttt s ne e e e seeees 204
Accessing Image FilesSUSING DIalOgScccoveeririenieneeeniseseeeeesie s 207
Accessing General Image File FOrMALScccccvveiiee e 211
Accessing Specific Image File FOrMELScccoveireiireinee s 212
Accessing FIlesS USING DIalOgS ..ccoveiieieerieeieesie e e eeeeseeseeste e snee s snessneesreesnee e 214
Accessing Files With Compound WIAJELSccoerererierenereeeeseseseeeeese s 216
Chapter 14:

Reading and Writing ASCII Datacccccoeeeeeeiiiiiiieeceeee e 219
(@< V= ST 220
Reading an ASCI Data Filecocceve it e 221
Advanced File INPUI/OULPULccoriiiriieeenesiesee s 225

Contents Using IDL

Chapter 15:

Reading and Writing Binary Datacccccooevviiiiiieiiiieeeeeeeveeen 227
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 228
Reading aBinary DataFile ... 229
Advanced File INPUI/OULPULceeeeiiiiiiieeee ettt e e 232

Part Ill: Using Direct Graphics
Chapter 16:

LT =T o] | oS REPUPPPRR 235
(@< V= TSP 236
DL Dir€Ct GraphiCSc.cciiiiiiiieieiste et 237
DI @ o] = ol € = o oSS 238
Chapter 17:

Direct Graphics PIOttING ...cooovvieiieeeeeceeee e 239
OVEIVIBIW ..ttt b st b e et b e bbbt b e st et e b e s b e te e 240
Plotting Keyword ParameLersccoooieeeeerese et eneas 241
Direct Graphics Coordinate SYStEMSccceeveereiiiieeierie e seesee e eeee e e sreeaesresreas 242
Annotation — The XY OUTS PrOCEAUIEccceoeiiiiee et 251
PLOttING SYMDOIS ...t reene e e nrenneas 253
0] 1Yo o) o 1 11 1 o SRR 257
TICK MAKS .ttt 261
LOgarithmiC SCAIINGcoveeieeeiieeeee ettt seeeneeneeseenneas 265
MUItIPIE PIOES ON @PAGE ..ottt st st ene s 267
Specifying the Location of the PIOtccooeiiiiieeee e 269
PIOttiNG MISSING DA ...c.viiveeeieieiiesieeese ettt s sre e neennesrenneas 271
D= = T 0= o] o OSSPSR 272
USING the AXIS PrOCEAUIEc.veieiieeeeie ettt ettt st naesneas 283
Using the CURSOR PrOCEAUIEeoieiiiiiieeeeiee st eeee et e st eneeee e e 287
Chapter 18:

Plotting Multi-Dimensional Arrayscooeeeiiiiiiiiiiiiiiiiieeeeeeeeeee e 289
(@< V= TSP 290
(©0 01 (011 g o £ 291
Overlaying Images and Contour PIOLSccceoriciiirsieen e 297
Additional CoNtOUr OPLIONSc.coiiireiieesiesieie st be e 302
The SURFACE PrOCEAUE ..ottt 306

Using IDL Contents

Three-Dimensional GraphiCsccccceiiiiiieie et eae e sreeneas 309
Three-Dimensional TransSfOrMatioNnsccoccevrreeeerene e eneas 319
Shaded SUIMACESooueieirereriee bbb e 325
VOIUME ViISUBIIZALTON ...t e e e enee e 328
REFEIEINCES ...ttt 332
Chapter 19:

MaP ProjECTIONS ..o 333
(@< V= S 334
The MAP_SET ProCEAUIEccueeieee ettt e st e e e sre e 336
The MAP_GRID ProCEAUIEccceveieieiesesiesteetese e eeesee e ste e esae e tesseenaesseseesseensensens 338
The MAP_CONTINENTS PrOCEAUIEccvivereeieiirienieeeiesiesie et sse e seeesnennens 339
Graphics TechniqUES TOr MaPPIiNGcoveveeereriirierieeeerre et ere s 340
Map ProjectionS DESCIDEAccocveiiiiie ettt e 342
AZIMULNE] PrOJECTIONS ...ttt 343
(O 1] g e [Tor= I C0 = ox 1 o 1P 353
Pseudocylindrical ProJECHIONSccceiriirieirieriesieseeeeie st 358
VLT ol L= = o) 1Y/ = o 361
High-Resolution Continent OULIINESccceiiirineiininesieree s 363
S = = 000 SR 365
Chapter 20:

Image Display ROULINESooovviiiiiiiiiiiiee et 367
OVEIVIBIW .ttt bttt b ettt b e e et e st bt e b et et eb e e et 368
T T2 0 =TT P TP 369
IMAQING ROULINESeoiiiiiticeeie sttt ettt s r et et beeneeaesresneenes 370
T Tz o LSl DT o = Y S 371
Reading from the Display DEVICEcccecueiiiiceeiee st 375
(00 Lo g 1= = S 377
TrUECOIOr DISPIAYS ...ooveiieciecieeie sttt sttt st sne e e e saesteeneenseseesreennas 385
Controlling the DEVICE CUISOKcocueieieeeeceiesiesie e ree st steeeesee e see e e tesae e eeeseeseesaeens 389
REFEIEINCES ...ttt 390
Chapter 21:

SIgNal ProCESSING eeieiiiiiiiiiiiii et e e e eeeeaeeees 391
(@< V= S 392
[T Tl = ST =S 393

Contents Using IDL

Signal ANAlYSIS TraNSFOMIScveciiiiiceciesie ettt s ens 396
The Fourier TranSfOrmM ...t 397
INterpreting FFET RESUILSvoiieececee et 398
Displaying FFT RESUILSooeiieeeeee ettt eneas 399
USING WINAOWS ...ttt ettt et st e et snesne e s e sresresnaennentenreas 405
Y =S o S 409
FFT AIQOrthm DELAIIScoeceeiiieciecee sttt s s ene s 410
The HIlbert Transform ... 411
The Wavelet TranSfOrmM ...t s 413
(@0 01V/0 111 o] o S 414
Correlation and COVAINAINCEccueeririerieieirese et e e ae e 415
Digital FIITEING ..oeeeeeeieee ettt ettt e e seeseeeneeneeneeneeas 416
Finite Impulse Response (FIR) FIltErS ..o e 417
FIR Filter IMplementalioncooeeooirie e nneas 421
Infinite IMpPUlSe RESPONSE FIILErSc.coviciicieeee e 423
Routines for SigNal PrOCESSINGcc.eeovererieeeeee e eee et e et eee e e 427
REFEIEINCES ...ttt ettt s 429
Chapter 22:

1Y = U =T 0 = oS 431
IDL’s Numerical RECIPES FUNCLIONScceiiiiriiieiniesieie et 433
Accuracy & Floating-Point OPEralionsccccceeieeiieerieesieeseeseesieesreesseeseeeseesseesnsesneens 434
ATTAYS @NA MBITICES ..ttt ettt b e e 436
COorrelation ANBIYSISueecieeieeieese e et ee e e s e s e e sre e sraesaeenre e reenreeees 442
Curve and SUIMfaCE FitliNgccoereerirereeeisese e e e 446
Eigenvalues and EigENVECIOrSccccvvir i cee e e e sttt 449
Gridding and INTErPOIELIONceiveeririerieieeres e 455
HYPOtNESIS TESHING ..veeveeieeiecie et e r e b et eenneeeeeneennas 457
Fa1C=s | = o] o PSSP PRRR 460
[T gTc YA =0 1 466
NONIINEAr EQUALIONSooviiiieieieete ettt 474
L@ o 11 1021 o o I 476
SPAISE ATTEYS oeeeitiiteeie sttt sttt h e e bt b e b e sb e bt e e e b e sbeeae e e e besre e e nnenrennis 478
TIME-SEMES ANBIYSIS .oovieiieeciecse et e s et te e ee e te ettt e e st e saeesneesneesreesneesnaesnnens 481
MUITIVATAIE ANBIYSIS ..ottt sb ettt b e ne e 484
REFEIEINCES ...ttt sttt be st et e seesbeeneenneseenaeas 490

Using IDL Contents

10

Part IV: Object Graphics

Chapter 23:

ODJECT GraphiCsS v 495
(@< V= 496
Direct versus Object GraphiCsccccvieriieeiiie et 498
How t0 Use ObJECt GraphiCScveiiiiiieieeeiesete e 500
Overview of Object GraphiCS ClIaSSEScccvciiiiirieee s 502
CONtAINES ODJECESviueeeeeiieiertee et b e e 504
V(o (N =X @ o= o £ P 505
ALOMIC GraphiC ODJECEScoviiuiieiriesierieee et 506
(000710101 T S @] = £ PR 509
ATITDULE ODJECES ...t 510
[[o< B] = £ 511
DestinatiON OBJECESc.eeveiriiriirieieesie ettt st ebe e s 512
File FOrmat ODJECESveeiece et ettt e sne e sne e e 513
PropertieS Of ODJECEScveiiiriiieieese ettt n e e 515
Undocumented Graphic ObJECt CIESSESccvivvieriiiierie e see e s e e 517
Chapter 24:

The Graphics Object Hierarchy ... 519
OVEIVIBIW .ttt sttt b bbbt b e st et et be e b et et et ebene et 520
SCENES ..ttt ettt ettt ettt ettt a bt h et ae e eae e eae e Rt e heeeRe e ehe e eheeahe e be e bt e beebeebeeareas 521
VIBWOIOUPS ..vuveeeeieitesteeueeste s e teete e testesteese e tesbesseeae e sesteabeeaseseseeareessensestesteeneenseseeseennnas 522
Y= USRS 523
Y00 = TSP SRP 524
ALOMIC GraphiC ODJECES ...c.eeiiiieeeieee e 525
Attribute and HElPer ODJECLSceevieiiiiiceeee e 526
The ReNdering PrOCESSccciiiiiieeee sttt st neesaesreeneas 527
SIMPIE PIOt EXAMPIE ..ottt sttt neeae e 529
Chapter 25:

TranSTOrMAtiONS ...ouuvuiiiiii e 531
(@< V= S 532
RV T=.01T oo o OO PP 533
PrOJECTION ...ttt e et r e n et r e e es 535
YL o1] (o) S 537

Contents Using IDL

VIBW VOIUITIE .ttt sttt 539
Model TranSfOrMELIONSccoieiieiere ettt s ee e e eesreeneas 542
CoOrdiNate CONVEISIONc.ceueieerieieierierieseeeesesie st seees s bessee e sbessesae e sesbe st eee e ssessensenens 545
Example: Centering an IMagEcoeeererieeeee ettt ee e e 547
Example: Displaying @ SUIMACEccccvcveiiieeiee ettt st snea 550
Virtual Trackball and 3D Transformationsccocceeevereeeesene e 553
Chapter 26:

WOrking With Color ..o 555
(@< V= ST 556
Color and Digital DALcccceerrereeeeiirierieieisie et 557
INdexed Color MOOE!ooiii et 558
(€1 @] o g/ o L= SRR 559
Color and Destination OBJECLSccceecieeiieiieir st see e 560
L 1= (=SSP 561
L £ o 1o o 562
How IDL INterpretS Color VAIUEScccociiiiiirieieeeeesese et 564
Chapter 27:

Using Attributes and HEIPEersoouvvviiiiiiiiiiiieeeeeeceeeee 567
(@< V= T 568
0] R o= ox S UPSROP 569
= T LT @ o] = £ TSP 572
L 10 £ T O o= £ TSSO 573
Yoo o= ot 575
TESSENAtOr ODJECLS ...c.viiviieeeeee ettt a e e ens 579
Chapter 28:

Working with AXes and TeXTcoooviiiiiiiiiiiiii e 581
(@< V= T 582
F N (ST @ o= o T 583
B IS o = £ 601
Chapter 29:

Working with Plots and Graphsccccceoeiiiiiiiiiciiiiiiieeeee e 605
(O0 01 (018 @ o] ="t £ TP 606
POIYGON ODJECES ...ttt b ettt b e n e 609
[0 AN LT TSX @ o= o =S 615

Using IDL Contents

12

[L0 1 @ o =T £ S 616
(=0T 10 O o] = £ 620
A PIOtING ROULINEoiveeieeie ettt sttt aesreeneas 623
Chapter 30:

Working with SUIfacesooovviiiiiiiiii e 627
T = oY @ o = £ P 628
LIgNE ODJECES ..ttt nr s 633
An Interactive Surface EXampPle ..o 636
Chapter 31:

WOTrkKing With IMagESuuiiiiiiiiiiiiiieiee e 639
IMBGE ODJECES ...ttt ettt b e bt b s e e naesne e 640
(01 [0]5 7= g @ o] 1= ox 1P 644
Saving an IMagE 0 A FIIE ..o 646
Chapter 32:

Working With VOIUMEScoiiieeeeee et 649
AV o 101X @ o= £ RS 650
VOlumME OBJECE ALLIDULES ..ot 652
Chapter 33:

Selecting ODJECTS ..o 657
Selection and Data PICKiNGcccvveeiiiii et 658
S o1 o o T 659
A SElECHION EXAMPIE ...t st 661
(= = U T] o T 662
A Data Picking EXAMPIEooveiececese ettt st 663
Chapter 34:

Using Destination ODJECESuuuviiiiiiiiiiiiiiiieeee 665
(@< V= ST 666
WINAOW ODJECES ...ttt bbb se e 667
USING WINAOW ODJECES ...ecuviiiiiiicie ettt ettt s sneesnee e 670
LS = g Tot oo TSP TP SRRSO PUPSRRPRON 672
U= O o] o £ 674
(O[] o] oTo7= (o N @] o] of 1TSS PT SRRSO 675
L T 1S B] = £ 676
VRML ODJECES ..cooveoveoeeeeeseess s ssssssssssssesss s sssssasssss s ssss s sasssses s ssssnsenns 679

Contents Using IDL

13

Chapter 35:

Subclassing from Object GraphiCScccccoiiiiiiiiiiiiiiii 681
Creating Composite Classes OF SUDCIASSEScovvveiveecieriiieceeie st 682
Chapter 36:

Performance Tuning Object GraphiCscoovviiiiiiiiiiiiiiieeeeeeeeeeeen 685
(@< V= T 686
Polygon Mesh OptimiZatIONccceeeerieiieiie e e e sre et ee e 687
NOrmMal COMPULBLIONSeivieeirieriesieie sttt se s eresne e 690
Retained Graphics and EXPOSE EVENLS ... veviii e 691
Improving Redraw PerforManCecoocceeeiiriereeneseiesesese et 692
7= Tos 1 =0t =X 11 | o 693
[T 1] 0 ST STUTUPTP R TRTPRURPRIN 694
INAEX ettt aaaaaaas 695

Using IDL Contents

Part I: Using IDL

Chapter 1:
Introducing

IDL

This chapter includes information about IDL, the IDL documentation set, and how to contact RS
Technical Support. The following topics are covered in this chapter:

OVEIVIEW ..ot 18
LaunchingIDL 20
Environment VariablesUsed by IDL 22
Command Line Options for IDL Startup . .. 27
Startup Files 30

Using IDL

Message of theDay Files 31
Using Your MousewithIDL 32
QuittingIDL 33
Helpful Resources 34

17

18

Chapter 1: Introducing IDL

Overview

Overview

IDL (the Interactive Data Language) is a complete computing environment for the
interactive analysis and visualization of data. IDL integrates a powerful, array-
oriented language with numerous mathematical analysis and graphical display
techniques. Programming in IDL is atime-saving aternative to programming in
FORTRAN or C. Using IDL, tasks which require days or weeks of programming
with traditional languages can be accomplished in hours. You can explore data
interactively using IDL commands and then create complete applications by writing
IDL programs.

The advantages of IDL include:

IDL isacomplete, structured language that can be used interactively and to
create sophisticated functions, procedures, and applications.

Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

Compilation and execution of IDL commands provides instant feedback and
hands-on interaction.

Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation alow immediate observation of your computation’s
results.

Support for OpenGL-based hardware accelerated graphics.

Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

IDL’s flexible input/output facilities allow you to read any type of custom data
format. Support is provided for:

e common image standards. BMP, GEO TIFF, Interfile, JPEG, PICT, PNG,
PPM, SRF, TIFF, X11 Bitmap, and XWD.

* scientific dataformats; CDF, HDF, and NetCDF.
e other dataformats: ASCII, Binary, DICOM, DXF, WAV, and XDR.

IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

Using IDL

Chapter 1: Introducing IDL 19

e IDL programsrun across all supported platforms (UNIX, Macintosh and
Microsoft Windows) with little or no modification. This application portability
allows you to easily support a variety of computers.

¢ Existing FORTRAN and C routines can be dynamically-linked into IDL to add
specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display engine.

Using IDL Overview

20 Chapter 1: Introducing IDL

Launching IDL

To launch the IDL program, do one of the following:

On Windows platforms — Launching IDL means starting the IDL Development
Environment application (no command-line mode is available under Windows). The
IDL Development Environment is described in detail in Chapter 2, “The IDL
Development Environment”. To start IDL, double-click onthe IDL icon or select IDL
from the Start menu.

On UNIX platforms — IDL offers two interfaces:

¢ Incommand-line mode, IDL usesatext-only interface and sends output to your
terminal screen or shell window. (Graphics are displayed in IDL graphics
windows.) To start IDL in command-line mode, enter i di at the shell prompt.

e Ingraphical mode, IDL displaysthe IDL Development Environment, an X-
windows application that allows you to select options from menus, work with a
built-in editor, and more. The IDL Development Environment is described in
detail in Chapter 2, “The IDL Development Environment”. To start IDL in
graphical mode, enter i dl de at the shell prompt.

On the Macintosh MacOS X platform — IDL is launched much the same as on
UNIX platforms:

Start OroborOSX by double clicking the OroborOSX icon. OroborOSX
launches X Darwin and displays a UNIX X-windows command linein a
MacOS X window.

* Incommand-line mode, IDL uses atext-only interface and sends output to
your terminal screen or shell window. (Graphics are displayed in IDL
graphics windows.) To start IDL in command-line mode, enter i dl at the
UNIX prompt.

* Ingraphical mode, IDL displaysthe IDL Development Environment, an
X-windows application that allows you to select options from menus,
work with abuilt-in editor, and more. The IDL Devel opment Environment
isdescribed in detail in Chapter 2, “The IDL Development Environment”.
To start IDL in graphical mode, enter i dI de at the UNIX prompt.

Launching the iTools
The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data

analysis and visualization with the task of producing presentation quality graphics.
TheiTools are based on the IDL Object Graphics system. IDL provides five pre-built

Launching IDL Using IDL

Chapter 1: Introducing IDL 21

iTools for immediate interactive use. Each of these five toolsis designed around a
specific data or visualization type, these are:

e iPlot — for two and three dimensional plots (line, scatter, polar, and histogram
style)
e iSurface — for surface representations
e iContour — for contour maps
e ilmage— for image displays
* iVolume — for volume visualizations
To lauch each iTool, simply type the name of the iTool listed previously at the

Command Line of the IDL Development Editor. For more information on using the
iTools, seetheiTool User’s Guide.

TheiTools are built upon a new object-oriented framework, or set of object classes,
that serve as the building blocks for the interface and functionality of the Intelligent
Tools. IDL programmers can easily use this framework to create custom iTools. For
more information on creating custom iTools, see the iTool Developer’s Guide.

Startup Options

You can specify options to the command that starts IDL. On UNIX platforms, simply
append the option flag after thei dl ori dl de command at the shell prompt. On
Windows platforms, modify the Tar get field of the propertiesdialog for the IDL icon
to include the option flag. See “Command Line Optionsfor IDL Startup” on page 27
for alisting of the available startup options.

Troubleshooting

When IDL isready to accept acommand, it displaysthe IDL> prompt. If IDL does
not start, take the following action depending upon the operating system you are
running:

« Windows: Be surethat the path listed in the Properties dialog for the IDL icon
accurately reflects the location of the IDL executablefilei dI de. exe.

¢ UNIX: Besurethat your PATH environment variable includes the directory
that contains IDL.

Using IDL Launching IDL

22 Chapter 1: Introducing IDL

Environment Variables Used by IDL

When IDL starts, it sets the values of avariety of system variables. System variables
are aspecial class of predefined variables that are available to al IDL program units;
they are described in detail in Appendix D, “ System Variables’ in the IDL Reference
Guide manual. The values of some system variables can be specified by the user
when IDL starts, either via operating system environment variables or viapreferences
specified within the IDL Development Environment. In order to set these system
variables, IDL does the following things when it starts up:

1. It checksfor the presence of environment variables that correspond to the
system variables. If an environment variable exists, IDL uses the value
specified by the environment variable to set the value of the corresponding
system variable.

Note
Note that some environment variables used by IDL do not have corresponding
system variables; see below for details.

2. If the environment variable does not exist, and a preference for the system
variable's value has been set viathe IDL Development Environment’s
Preferences dialog, IDL uses the preference value to set the value of the
corresponding system variable.

3. If neither the environment variable nor a preference for the system variable’'s
value exist, IDL uses a default value.

Note
In some cases, the aspects of IDL’s behavior that can be controlled by environment
variables can aso be controlled by setting the values of the corresponding system
variablesin a startup script. See* Startup Files’ on page 30 for details.

Setting Environment Variables

The process used to set environment variables varies depending on the operating
system you are using.

UNIX and MacOS X Systems

On UNIX systems, environment variables are generally specified in afile read by
your shell program at startup. Syntax for setting environment variables varies
depending on the shell you are using, as does thefile you use to specify the variables.

Environment Variables Used by IDL Using IDL

Chapter 1: Introducing IDL 23

If you are unsure how to set environment variables on your system, consult the
system documentation or a system administrator.

For example, to set the environment variable IDL_PATH to the value
fusr/local/idl whenusingaC shell (csh), youwould add the following line to
your . cshrc file:

setenv | DL_PATH /usr/ 1 ocal /idl

Similarly, to set the same variable when using aBourne shell (sh), you would add the
following lineto your . profi | e file:

| DL_PATH="/usr/local/idl" ; export |DL_PATH
Microsoft Windows Systems

On Microsoft Windows systems, environment variables are set in the Environment
Variables dialog, which is accessible from the System Control panel. Some Windows
versions alow you to set environment variables either only for the user you logged in
as (“user variables’) or for all users (“system variables’) — setting IDL environment
variables as user variables means that other users who log on to the computer will not
have access to your environment variable values.

Environment Variables — All Platforms

The following environment variables are checked on al platforms.

HOME

IDL uses the value of the SHOME environment variable when storing user-specific
information in the local file system.

Note
Under Microsoft Windows, the HOME environment variable may not be set in all

cases. If itisnot set, IDL first attempts to substitute the USERPROFILE
environment variable (which usually looks something like C: \ Docunent s and
Set t i ngs\ user nanme where username is the login name of the current user). If
USERPROFILE isnot set, IDL usesthe value of the first of the following it finds:
the TEMP environment variable, the TMP environment variable, the Windows
system directory.

IDL_DEVICE

Set this environment variable equal to the name of the default IDL graphics device.
Setting this value is the same as setting the value of the IDL system variable

Using IDL Environment Variables Used by IDL

24 Chapter 1: Introducing IDL

ID.NAME. Note that the concept of a graphics device appliesonly to IDL Direct
Graphics; IDL Object Graphics do not use the current graphics device. See “!D
System Variable” in Appendix D of the IDL Reference Guide manual for detalils.

IDL_DIR

Set this environment variable equal to the path to the main IDL directory. Setting this
value isthe same as setting the value of the IDL system variable !DIR. See“!DIR” in
Appendix D of the IDL Reference Guide manual for details.

IDL_DLM_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL dynamically loadable modules. At startup, IDL uses the value of this
environment variable, if it exists, to initialize the IDL system variable |DLM_PATH.
Dueto the nature of DLMs, the value of 'DLM_PATH cannot be changed after IDL
has started. See “!DLM_PATH” in Appendix D of the IDL Reference Guide manual
for details. For information on how IDL_DLM_PATH isinterpreted by IDL at
startup, along with syntax options for specifying the path string, see “The Path
Definition String” under “EXPAND_PATH” in the IDL Reference Guide manual.

Note
On Windows, using the IDL_DLM_PATH environment variable is the only way to
specify the path to DLMs.

IDL_HELP_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL help files. At startup, IDL usesthe value of this environment variable,
if it exists, toinitialize the IDL system variable 'HELP_PATH. See“!HELP_PATH”
in Appendix D of the IDL Reference Guide manual for details. For information on
how IDL_HELP_PATH isinterpreted by IDL at startup, along with syntax optionsfor
specifying the path string, see“ The Path Definition String” under “EXPAND_PATH”
in the IDL Reference Guide manual.

IDL_PATH

Set this environment variable equal to the path to the directory or directories
containing IDL library (. pr o and . sav) files. At startup, IDL uses the value of this
environment variable, if it exists, toinitialize the IDL system variable |PATH. See
“IPATH” in Appendix D of the IDL Reference Guide manual for details. For
information on how IDL_PATH isinterpreted by IDL at startup, along with syntax

Environment Variables Used by IDL Using IDL

Chapter 1: Introducing IDL 25

options for specifying the path string, see “ The Path Definition String” under
“EXPAND_PATH” in the IDL Reference Guide manual.

Note
If you set the IDL_PATH environment variable, you must include the token

<I DL_DEFAULT> in the path you specify if you want IDL’s default libraries to be
included in the 'PATH system variable.

IDL_PATH_CACHE_DISABLE

Create this enviroment variable to disable IDL's path caching mechanism. The
existence of this variableis sufficient to disable path caching; the specific value of the
variable is unimportant.

Note
It isvery rarely desirable to completly disable the path caching mechanism. See

“PATH_CACHE” in the IDL Reference Guide manual for complete details.

IDL_STARTUP

Set this environment variable equal to the path to an IDL batch file that contains a
seriesof IDL statementswhich are executed each time IDL isrun. See“ Startup Files’
on page 30 for further details.

IDL_TMPDIR

IDL, and code written in the IDL language, sometimes need to create temporary files.
The location where these files should be created is highly system-dependent, and
local user conventions are often different from standard practice. By default, IDL
selects a reasonabl e location based on operating system and vendor conventions. Set
the IDL_TMPDIR environment variable to override this choice and explicitly specify
the location for temporary files.

The GETENYV system function handles IDL_TMPDIR as a special case, and can be
used by code written in IDL to obtain the temporary filelocation. See*GETENV” in
the IDL Reference Guide manual for more information.

Environment Variables — UNIX and MacOS X

The following environment variables are used by IDL for UNIX or MacOS X.

Using IDL Environment Variables Used by IDL

26 Chapter 1: Introducing IDL

DISPLAY

IDL usesthe DISPLAY environment variable to choose which X display is used to
display graphics.

TERM

Aswith any X Windows program, IDL uses the standard UNIX environment variable
TERM to determine the type of terminal in use when IDL isin command-line mode.

LM_LICENSE_FILE

IDL’s FlexL M-based license manager uses the value of this environment variable to
determine where to search for valid license files. Consult the license manager
documentation for details.

Environment Variables Used by IDL Using IDL

Chapter 1: Introducing IDL 27

Command Line Options for IDL Startup

You can alter some IDL behaviors by supplying command line switches along with
the IDL command. Different switches are available on different platforms. IDL can
also be started in non-interactive “ batch” mode by specifying the name of abatch file
at startup time. See Chapter 10, “Executing Batch Jobsin IDL” for details.

IDL for UNIX Switches

Switch Description

-vinefile | Start the IDL Virtual Machine. The file argument should be an IDL
. sav file. If nofileis specified, IDL displays afile selection dialog.
See Chapter 21, “Distributing IDL Applications” in the Building IDL
Applications manual for details on creating applications that runin
the IDL Virtual Machine.

-rt=file | Start IDL with aruntimelicense. Thefile argument should bean IDL
. sav file. If nofileis specified, IDL attempts to run afile named
runti me. sav. See Chapter 21, “Distributing IDL Applications’ in
the Building IDL Applications manual for details on creating runtime
applications.

-enefile | Start IDL with an embedded license. The file argument should be an
IDL . sav file that contains an embedded (“unlimited right to
distribute”) IDL license.See Chapter 21, “Distributing IDL
Applications’ in the Building IDL Applications manual for detailson
creating applications with an embedded IDL license.

- queue For users of counted floating licenses, setting this command switch
causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

-w Start IDL with the graphical user interface. Thisis the same as
entering i dl de at the command prompt.

- aut ow Start IDL with the graphical user interfaceif possible, otherwise start
IDL in command-line mode.

Table 1-1: UNIX Command LIne Switches

Using IDL Command Line Options for IDL Startup

28

Chapter 1: Introducing IDL

Switch

Description

-32

Start IDL in 32-bit mode, otherwise IDL startsin 64-bit mode by
default for those platforms that support 64-bit. If you have not
installed the 64-bit version, the 32-bit version will automatically be
started. If you have not installed the 32-hit version, this flag will not
work.

- nw

Run IDL in command-line mode no matter what. Note that
specifying i dl de - nwat the shell prompt will start IDL in
command line mode.

Table 1-1: UNIX Command LIne Switches

Note

In addition to the above command-line switches that control IDL’s behavior, there
are numerous command-line switches that control the appearance of the IDL

Development
Chapter 8 for

Environment on Motif systems. See “Command Line Options” in
details.

IDL for Windows Switches

The following switches are used with thei dI de. exe executable. For example, use

the command:

C.\RSI - Di rectory\ bi n\bin. x86\i dl de. exe -queue

where RS -Directory isthe directory where you haveinstalled IDL.

Switch

Description

- queue

For users of counted floating licenses, setting this command
switch causes IDL to wait for an available license before
beginning an IDL task such as batch processing. To set this
switch, change the shortcut properties of the IDL 6.0 desktop
icon so that the target line reads:

C.\RSI-Di rectory\bi n\bin. x86\idl de. exe -queue
where RS-Directory isthe directory where you haveinstalled
IDL.

Table 1-2: Windows Command Line Switches

Command Line Options for IDL Startup Using IDL

Chapter 1: Introducing IDL 29

The following switches are used with thei dl r t . exe executable.For example, use
the command:

C.\RSI-Directory\bin\bin.x86\idlrt.exe -vnefile.sav
where RS -Directory isthe directory where you haveinstalled IDL.

Switch Description

-vnefile Start the IDL Virtual Machine. The file argument should be an
IDL . sav file. If nofileis specified, IDL displays afile
selection dialog. See Chapter 21, “Distributing IDL
Applications’ in the Building IDL Applications manual for
details on creating applications that run in the IDL Virtual
Machine.

-enefile Start IDL with an embedded license. The file argument should
bean IDL . sav file that contains an embedded (“unlimited
right to distribute”) IDL license.See Chapter 21, “ Distributing
IDL Applications’ in the Building IDL Applications manual
for details on creating applications with an embedded IDL
license.

Table 1-3: Windows Command Line Switches

Using IDL Command Line Options for IDL Startup

30

Chapter 1: Introducing IDL

Startup Files

A startup fileis abatch file that is executed automatically each timethe IDL is
started. You can specify a startup file in either of two ways.

By specifying the name of the startup file in the Startup Filefield of the
Startup tab of the IDL Development Environment Preferences dial og.

By specifying the name of the startup file as the value of the IDL_STARTUP
environment variable. Note that this method works whether you use IDL in
command-line mode or viathe IDL Development Environment. If you use the
IDL Development Environment and you set both the environment variable and
the Startup File preference, IDL will use the value of the environment
variable.

Common uses for startup filesinclude the following:

Restoring variable data contained in a. sav file or reading in commonly used
data

Setting common keywords to the DEVICE procedure
Setting up system graphic preferences
Specifying shared or private color maps for PseudoColor devices

Startup files are executed one statement at atime. It is not possible to define program
modul es (procedures, functions, or main-level programs) in the startup file. For more
information on creating batch files, see Chapter 10, “ Executing Batch Jobsin IDL”.

Startup Files

Using IDL

Chapter 1: Introducing IDL 31

Message of the Day Files

Using IDL

When IDL starts, it displays the contents of the not d. t xt file, located in the
hel p/ not d subdirectory of the IDL distribution, in the Output Log. You can use this
Message of the Day file to provide information to IDL users every time IDL starts.

In addition, IDL will display the contents a file with the name pl at f or m t xt
located in the hel p/ not d subdirectory of the IDL distribution, where platformisa
string corresponding to the current operating system platform. For example, on
Microsoft Windows systems, IDL displays afile named wi n32. t xt .

You can determine the correct name for thisfile on a given platform by using the
following IDL command:

PRI NT, ! VERSI ON. OS
and appending the “. t xt ” extension to the operating system name.

If you do not want to see either the not d. t xt file or the platform-specific file each
time IDL starts, remove them from the hel p/ not d subdirectory of the IDL
distribution.

Note
Thenot d. t xt and platform-specific files are smply an ASCI| text files—not IDL
programs or batch files. To execute a series of IDL commands, select a startup file
as described in “ Startup Files” on page 30.

Message of the Day Files

32 Chapter 1: Introducing IDL

Using Your Mouse with IDL

IDL supports the use of mice with up to three buttons. Because some systems use
mice with one or two buttons, IDL provides mechanisms for simulating a three-
button mouse.

Using a Two-Button Mouse

Many mice used with Microsoft Windows systems have only two buttons. To
simulate a middle-button press, hold down the CONTROL key and press the left mouse
button.

Using a Macintosh (One-Button) Mouse

Many mice used with Macintosh systems have only one button. The X Window
System software provided with MacOS X provides multi-button mouse emulation,
allowing you to configure the system to generate middle- and right-button press
events. See your MacOS X system documentation for details.

Using Your Mouse with IDL Using IDL

Chapter 1: Introducing IDL 33
Quitting IDL

To quit IDL, do one of the following:
e Enter the EXI T command at the IDL command prompt.

e |If you arerunning the IDL Development Environment (IDLDE), select the
Exit option from the File menu.

* Under Microsoft Windows, press Alt+F4.

* Under UNIX or MacOS X, if you use IDL’'s command-line mode, press
Ctrl+D asthefirst character in command-line mode causes IDL to exit back to
the operating system. The EXI T procedure has the same function. If Ctrl+D is
not the first character, it simply ends the input line as if areturn had been
entered.

Note
When using IDL’s command-line mode under UNIX or MacOS X, you can
normally press Ctrl+Z to suspend IDL and return you to the shell process without
exiting IDL. After completing any shell commands, typef g to return IDL to the
foreground. Although the UNIX suspend character can be changed by the user
outside of IDL, thisisrarely done. For the purposes of this manual, we assume the
default convention.

Using IDL Quitting IDL

34

Chapter 1: Introducing IDL

Helpful Resources

There are many tools along the way which will help you learn and use IDL. You will
find answers to questions here whether you are ssmply looking-up the use for a
common routine in the IDL Help System or understanding this manual’s use of
conventions.

The IDL Help System

On each platform, the IDL Help System can be accessed directly through IDL to give
you information. To access help in IDL, do one of the following:

¢ Enter the ? command at the IDL command prompt.

* If you are running the IDL Development Environment (IDLDE), select the
Help option from the Menu Bar.

e InIDL for Windows, press Ctrl+F1

Reporting Problems

We strive to make IDL asreliable and bug free as possible. However, no program
with the size and complexity of IDL is perfect, and problems do surface. When you
encounter a problem with IDL, the manner in which you report it has alarge bearing
on how well and quickly we can fix it.

The relnotes.txt file accompanying each rel ease includes information about new
featuresin that release, bug fixes, and known problems which may be of help.

This section isintended to help you report problemsin away which helps us to
address the problem rapidly.

Background Information

Sometimes, a problem only occurs when running on a certain machine, operating
system, or graphics device. For these reasons, we need to know the following facts
when you report a problem:

* Your IDL installation number.
e Theversion of IDL you are running.
¢ Thetype of machine on which it is running.

¢ The operating system version it is running under.

Helpful Resources Using IDL

Chapter 1: Introducing IDL 35

Using IDL

e Thetype and version of your windowing system if you are on UNIX.

» Thegraphicsdevice, if the problem involves graphics and you know what
graphics device is on your system.

Theinstallation number is assigned by us when you purchase IDL and isincluded in
the license information that we sent you. The IDL version, site number, and type of
machine are printed when IDL is started.

For example, the following startup announcement appears indicating you are running
IDL version 5.6 under Sun Solaris using installation number xxxxx-x, under a
floating license located on a particular license manager.

IDL Version 5.6, Solaris (sunos sparc m64).
(c) 2002, Research Systems, Inc.

Installation number: XxXxxx-X.

Licensed for use by: RSI IDL floating licenses

Under UNIX, the version of the operating system can usually be found in the file
/ et c/ not d. It isalso printed when the machine boots. In any event, your system
administrator should know this information.

Under Windows, select About from the Help menu in the Windows Explorer.

Double Check

Before reporting a problem double check with the manual or alocal expert if oneis
available. Sometimes, it is a simple matter of misinterpreting what is supposed to

happen.

If you cannot determine what should happen in a given situation by consulting the
reference manual, the manual needs to be improved on that topic. Please let us know
if you fedl that the manual was vague or unclear on a subject.

Another question to ask is whether the problem lieswithin IDL, or with the system
running IDL. Isyour system properly configured with enough virtual memory and

sufficient operating system quotas? Does the system seem stable and is everything

else working normally?

Describing The Problem

When describing the problem, it is important to use precise language. Terms like

crashes, blows up, and fails are vague and open to interpretation. Doesiit really crash
IDL and leave you looking at an operating system prompt? Thisis how RSI technical
support personnel interpret a problem report of acrash. If the behavior being reported
refers to an unexpected error message being issued before returning another prompt,

Helpful Resources

36

Chapter 1: Introducing IDL

then describing it as a crash becomes misleading. What isreally meant by aterm like
"fails?'

It isalso important to separate concrete facts from conjecture about underlying
causes. For example, a statement such as"IDL dumps core when allocating dynamic
memory" is not nearly as useful as this statement, "IDL dumps core when | execute
the following statements... "

Reproducibility

Intermittent problems are by far the hardest kind to fix. In general, if we can't make it
happen on our machine, we can't fix it. It is far more likely that we can help you if
you can tell us a sequence of IDL statements that cause the problem to happen.
Naturaly, there are degrees of reproducibility. Situations where a certain sequence of
statements causes the problem 1timein 3 tries are fairly likely to be fixable.
Situations where the problem happens once every few months and no oneis sure
what triggered it are nearly impossible to identify and correct.

Simplify the Problem

In accordance with RSI Technical Support policy, when reporting aproblem, itis
important to give us the shortest possible series of IDL statements that cause it. Here
are some suggestions for simplifying your problem:

Copy the procedure and function files that are involved to a scratch second copy.
Never modify your only copy!

Eliminate everything not involved in demonstrating the problem. Don't do this all at
once. Instead, do it in a series of dow careful steps. Between each step, stop and run
IDL on the result to ensure that the problem still appears.

If asimplification causes the problem to disappear, then slowly restore the statements
involved until you can identify the source of the problem. The end result of such
simplification should be a small number of IDL statements that demonstrate the
problem.

If the problem does not invaolve file Input/Output, strive to eliminate all file I/O
statements. Use IDL routines to generate a dummy data set, rather than including
your own dataiif at all possible. If your problem report does not involve your data, it
will be much easier for usto reproduce.

On the other hand, if the problem involves file Input/Output, and the problem only
happens with a certain datafile or type of data, we will need to look at your data or a
sample of your data.

If it is necessary to send us your data, use one of the following methods:

Helpful Resources Using IDL

Chapter 1: Introducing IDL 37

e If thedataset is small, please send it as an attachment in your email to us:
support@RSInc.com.

e |fthedatasetislarge, please place it on our ftp site at:
ftp.RSInc.com/incoming.

Be sure to include the commands that reproduce your problem in your message to
use. If you have placed your data on the ftp site, include the name of the data set and
when it was uploaded.

Problems with Dynamic Loading

Under some operating systems, the CALL_EXTERNAL and LINKIMAGE system
routines allow you to dynamically load routines written in other languagesinto IDL.
Thisisavery powerful technique for extending IDL, but it is considerably more
difficult than simply writing IDL statements. At this level, the programmer is outside
the user level shell of IDL and is not protected from programming errors. These
errors could give incorrect results or crash IDL. In such situations, the burden of
proving that a problem iswithin IDL and not the dynamically loaded code is entirely
the programmer's.

Although it is certainly true that a problem in this situation can be within IDL, itis
very important that you exhaust all other possibilities before reporting the problem. If
you decide that you heed to report the problem, the comments above on simplifying
things are even more important than usual. If you send us a small example that
exhibits the problem, we may be able to respond with a correction or advice.

Contact Us

Using IDL

To report a problem, contact us at the following addresses:

Electronic Malil
support@RSInc.com

Telephone

(303) 786-9900

(303) 786-9909 (Fax)

(303) 413-3920 (IDL technical support direct line)
Mail

Research Systems, Inc.

4990 Pear| East Circle

Boulder, CO 80301

Web Site
http://www.RSInc.com

Helpful Resources

mailto:support@RSInc.com
mailto:support@RSInc.com
ftp://ftp.rsinc.com/incoming
http://www.rsinc.com

38

Chapter 1: Introducing IDL

Typographical Conventions

The following typographical conventions are used throughout this manual and the
entire IDL documentation set:

Helpful Resources

UPPER CASE type

IDL functions and procedures, and their keywords are displayed in UPPER
CASE type. For example, the calling sequence for an IDL procedure lookslike
this:

CONTOUR, Z [, X, V]

Mixed Case type
IDL object class and method names are displayed in Mixed Case type. For
example, the calling sequenceto create an object and call a method looks like
this:

object = OBJ_NEW' | DLgrPlot")

obj ect -> GetProperty, ALL=properties
Italic type
Argumentsto IDL procedures and functions — data or variables you must
provide — aredisplayed initalic type. In the above example, Z, X, and Y are all
arguments.

Square brackets ([])

Square brackets used in calling sequences indicate that the enclosed arguments
are optional. Do not type the brackets. In the above CONTOUR example, X
and Y are optional arguments. Square brackets are also used to specify array
elements.

Courier type

In examples or program listings, things that you must enter at the command
line or in afile are displayed in courier type. Results or datathat IDL displays
on your computer screen are shown in courier bold type. An example might
direct you to enter the following at the IDL command prompt:

array = | NDGEN(5)
PRI NT, array

In this case, the results are shown like this:
0 1 2 3 4

Using IDL

Chapter 2:

The IDL Development
Environment

This chapter describes the IDL Development Environment.

Componentsof theIDLDE 40
FileMenu........................... 47
EditMenu 51
SearchMenu 53
RunMenu 55

Using IDL

ProjectMenu 60
MacrosMenu, 61
WindowMenu 63
HepMenu 66
Keyboard Shortcuts 67

39

40 Chapter 2: The IDL Development Environment

Components of the IDLDE

The IDL Development Environment (IDLDE) is a convenient multiple-document
graphical user interface that includes built-in editing and debugging tools. This
section describes briefly the components of the IDLDE. The Windows version is
shown on the left and the UNIX version is shown on the right within the following

figure.

Menu Bar

Buttons

[EB/IDL #3939% (- RSI IDL fl

2 (2 L <&

un Project Macros Window

ﬂéﬂ

Control Panel Project Window Toolbars

BEEEEE EEEEnE = EEE TN

E-Iﬂi‘ﬂl (L Untitled0
) b

Groups| Build Order

L

Al ¥)

=

= 1

[1oL | / Nme | Tupe | Value

Ready /
Localfs [Parans | Commans | Sfsten|

= I < !
I |
Multiple Output Variable Command Status Bar
Document Panel Log Watch Window Input Line
Figure 2-1: The IDL Development Environment
for Windows (left) and UNIX (right).
Note
Individual components are similar across the two platforms.
Using IDL

Components of the IDLDE

Chapter 2: The IDL Development Environment 41

Menu Bar

The menu bar, located at the top of the main IDLDE window, allows you to control
various | DLDE features. When you select an option from amenu item in the IDLDE,
the Status Bar displays a brief description.

The menu bar consists of the following menu items:

Menu Item Description of Functions

FileMenu The File Menu gives you options such as opening, closing and
creating new Editor windows and Projects and other options
such as printing, printer setup, preferences and exiting IDL.

Edit Menu The Edit Menu provides edit-related options such as undo,
redo, cut, copy, paste, delete, select all, clear all and clear log.

Search Menu The Search Menu alows you to find text in currently active
Editor windows as well as other options such as find again,

find selection, enter selection, replace, replace & find, go to
line and go to definition.

Run Menu Run Menu items are enabled when an IDL program is loaded
into an IDL Editor window. The run menu allows you program
related functionality such as compiling, resolving
dependencies, resetting, and editing programs among other
things. For more information on running programsin IDL, see
Chapter 3, “Preparing and Running Programsin IDL".

Project Menu The Project Menu provides project-related functionality such
as adding/removing files, grouping and moving files, building,
running and exporting projects and so on. For more
information on working with IDL projects, see Chapter 13,
“Creating IDL Projects’ in the Building IDL manual.

Macros Menu The Macro Menu provides functionality for creating new
macros and using existing macrosin IDL. Fore more about
working with macrosin IDL, see Chapter 5, “ Creating Macros
inIDL”.

Window Menu The Window Menu gives functionality related to Multiple
Document Panel windows.

Table 2-1: The IDL Menus

Using IDL Components of the IDLDE

42 Chapter 2: The IDL Development Environment

Menu Item Description of Functions

Help Menu The Help Menu allows you to call IDL Online Help. You can
call the entire Online Help system in the IDL Online Help
Viewer or find help by topic. For more information on the IDL
Help System, see “Helpful Resources’ on page 34.

Table 2-1: The IDL Menus (Continued)

You can display menu commands for each menu using the following methods:
¢ Clicking the menu on the Menu bar.

e Pressing the ALT key plus the underlined letter in the menu’stitle. For
example, to display the File menu, press ALT+F.

You can select or execute amenu command using the following methods:
¢ Clicking the item in the menu.

¢ Pressing the ALT key plus the underlined letter in the menu’stitle, and then
pressing the letter underlined in the menu item. For example, to select the
menu item File — Open, press ALT+F+O.

e Using the cursor and the arrow keysto highlight a menu item, and then
pressing the Enter key.

Note
Many items (on each platform) have keyboard shortcuts displayed to theright of the

corresponding menu option.

Toolbars

You can choose any combination of three toolbars: Standard, Run & Debug, and
Macros. To change the toolbars displayed, use the Windows menu to access the
Toolbar pulldown menu and select or de-select any combination of the three
toolbars. In addition in IDL for Windows, when you open a GUIBuilder window, its
associated toolbar is displayed.

When you position the mouse pointer over atoolbar button, the Status Bar displays a
brief description. If you click on atoolbar button which represents an IDL command,
the IDL command issued is displayed in the Output L og.

Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 43

Project Window

On all platforms, the IDL Project Window allows you to manage, compile, run, and
create distributions of all the files needed to develop an IDL application. All of your
application files can be organized for ease of access, and to be easier to export to
other developers, colleagues, or users. For further information on the Projects
Window, refer to Chapter 20, “ Creating IDL Projects’ in the Building IDL
Applications manual in Building IDL Applications.

Multiple Document Panel

On all platforms, the section of the main IDL window where IDL Editor windows are
displayed is known as the multiple document panel.

GUIBuilder Windows

Using IDL

Under Microsoft Windows, IDL GUIBuilder windows alow you to interactively
create user interfaces. Then, you can generate the IDL code that defines the interface
and the code to contain the event-handling routines. You can modify the code,
compile, and run the application in the IDLDE.

You can have any number of GUIBuilder windows open simultaneously.

To open a GUIBuilder window, you can select New then GUI from the File menu, or
you can select Open from the File menu. You can aso open GUIBuilder windows
using the toolbar buttons.

When you minimize a GUIBuilder window, a Windows title bar with the name of the
file appears in the Multiple Document Panel.

For information about the GUIBUIilder, see Chapter 24, “Using the IDL GUIBUilder”
in the Building IDL Applications manual.

Editor Windows

IDL Editor windows allow you to write and edit IDL programs (and other text files)
from within IDL. Any number of Editor windows can exist simultaneously. No Editor
windows are open when IDL isfirst started. Editor windows can be created by
selecting File — New or File — Open.

You can access different files from the Windows menu by clicking on the appropriate
numbered file. See “Creating a Simple Program” in Chapter 9 of the Building IDL
Applications manual for more information on the IDL Editor.

Components of the IDLDE

44

Chapter 2: The IDL Development Environment

If you click the right mouse button while positioned over an editor window, a popup
menu appears allowing you to quickly access several of the most convenient
commands. The popup menu changes to display common debugging commands if
IDL isrunning a program.

If aprogram error or breakpoint is encountered, IDLDE displays the relevant file,
opening it if necessary. The line at which the breakpoint or error occurred is marked.
See Chapter 17, “Debugging an IDL Program” in the Building IDL Applications
manual for more on IDL’s debugging commands.

Graphics Windows

IDL Graphics windows appear when you use IDL to plot or display data.

You can copy the contents of a Graphics window—Direct or Object—directly to the
operating system clipboard in a bitmap format using CTRL+C.

When an IDL Graphics window is minimized (iconized), the icon displays the name
of the IDL window. Thisicon appears on the desktop, not in the Multiple Document
Panel, as with an iconized Editor window.

Warning
If the backing store is not set when awindow isiconized, it will not be refreshed
upon return. For more information about setting the backing store for graphics
windows, see “ Graphics Preferences’ on page 100.

Output Log

On all platforms, output from IDL is displayed in the Output Log window, which
appears by default when IDLDE isfirst started. Only one Output Log window can
exist at atime.

InIDL for Windows, if you click the right mouse button while positioned over the
Output Log, a popup menu appears alowing you to move to a specified error. Clear
the contents of the Output Log, or copy selected contents.

InIDL for UNIX, if you click the right mouse button while positioned over the
Output Log, a popup menu appears allowing you to move to a specified error or clear
the contents of the Output Log.

Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 45

Variable Watch Window

The Variable Watch Window appears by default when you start the IDLDE. It keeps
track of variables as they appear and change during program execution. For more
information about the Variable Watch Window, see “ The Variable Watch Window” in
Chapter 17 of the Building IDL Applications manual.

Command Input Line

The Command Input Lineisan IDL prompt where you can enter IDL commands.
The text output by IDL commandsis displayed in the Output Log window.

If you click the right mouse button while positioned over the Command Input Line, a
popup menu appears displaying up to 20 commands from the command recall buffer.

Select an entry in the popup menu to repeat the command. See “ Command Recall and
Line Editing” in Chapter 4 for additional information about the command recall
buffer.

Status Bar

When you position the mouse pointer over a Control Panel button (Toolbar buttonin
IDL for Windows) or select an option from amenu in IDLDE, the Status Bar displays
abrief description.

Docking/Undocking

Using IDL

In IDL for Windows, four sections of the IDLDE can be moved within and
unanchored from the main IDLDE window: the Toolbars, Output Log, Variable
Watch Window, and Command Input Line. Click on the border and drag the | eft
mouse button. You will notice the outline of the chosen section moving with your
mouse. When alocation is chosen, release the mouse button to dock the window. If
you move this outline so that it overlaps an edge of the window space being used by
the IDLDE, the section will be docked to the nearest available side of the main
IDLDE window. The Toolbars, Output Log, Variable Watch Window, and Command
Input Line will remain between the Menu Bar and the Status Bar when docked. They
can be docked in any order to an edge. If the outline doesn’t overlap an edge, the
section will float on the desktop. If you hold down the [Ctrl] key, the sections will
float instead of docking to the nearest available side of the IDLDE.

Components of the IDLDE

46 Chapter 2: The IDL Development Environment

Control Panel Buttons

InIDL for UNIX, the Control Panel buttonsissue IDL commands for the currently-
selected Editor window when pressed. The IDL command issued is displayed in the
Output Log. By default, there are three different toolbars and the buttons displayed as
well asthe commands they issue are compl etely configurable (see Chapter 5, * Setting
IDL Preferences’ for more on these toolbars). When you position the mouse pointer
over a Control Panel Button, the Status Bar displays a brief description.

Components of the IDLDE Using IDL

Chapter 2: The IDL Development Environment 47

File Menu

New

Select from the following sub-menu items:
e Editor [CTRL+N]: Opensanew IDL Editor window.

e GUI (Microsoft Windows Only): opens anew IDL GUIBuilder file. For
information about the IDL GUIBuilder, see Chapter 24, “Using the
IDL GUIBUuilder” in the Building IDL Applications manual.

e Project...: opensthe New Project dialog.

e Visualization: LaunchesaniTool. See“Introducing theiTools” in Chapter 1 of
theiTool User’s Guide manual for more on iTools.

Each window istitled Unti t | edn or Unti t | edPr cn (wheren isthe numerical
index of the new editor window or GUIBuilder file) until saved with another name.

Open... [CTRL+O]

Using IDL

Select this option to open atext file for editing. (On Microsoft Windows platforms,
you can also select an IDL GUIBuilder *. pr ¢ portable resource file.) The Open
dialog appears. Select the file you want to open or type the file name and click Open
(Windows) or OK (Motif). You can select a continuous range of files by holding
down the Shift key after selecting the first file, or select multiple separated files by
selecting each file while holding down the Control key. A new IDL Editor window is
created to contain each text file.

Note
On Moatif platforms, if the M ultiple Windows option is selected, anew IDL Editor

window is created outside the main window to contain each text file. “Layout
Preferences’ on page 96 for details.

You can aso open text files from the Command Input Line. To open text files, enter
the following at the IDL prompt:

CEDIT filey [filey ... filey]

wherefile is the name of the text file you want to open. If the path is not specified in
the Path Preferences from the File menu, you must enter the full path for file. See
“.EDIT” in the IDL Reference Guide manual for more information.

File Menu

48

Chapter 2: The IDL Development Environment

Close

Select this option to close the currently-selected IDL Editor window. If you have
made changesin an IDL Editor window, you are asked if you want to save the
changes before closing the window.

Open Project...

Select this option to open anew IDL Project. The Open dialog appears. Select the
project you want to open and click Open.

Save Project

Select this option to save the current IDL Project. If the Project has not yet been
saved, you are prompted for afilename with the Save As dialog.

Save Project As...

Select this option to save the current IDL Project to a specified filename. The Save As
dialog appears.

Close Project

Select this option to close the current IDL Project. If you have made changesin to the
project, you are asked if you want to save the changes before closing the window.

Save [CTRL+S]

Select this option to save the contents of an IDL Editor window. If the file has not yet
been saved, you are prompted for a filename with the Save As dialog.

Note
Changes made to a previously-compiled routine are not available to IDL until that
routine is re-compiled. Executing the routine without first saving and re-compiling
simply re-runs the previously-compiled version, without incorporating recent
changes.

Select the Compile option in the Run menu to return to the main program level and
re-compile the routine. Select Compilefrom Memory in the Run menu to save and
compile recent changesto atemporary file.

File Menu Using IDL

Chapter 2: The IDL Development Environment 49

Save AsS...

Select this option to save the contents of an IDL Editor window to a specified
filename. The Save As dialog appears. (On Motif platforms, you can select this
option with the keyboard shortcut Ctrl+W.)

Revert to Saved

Select this option to reload the last saved version of the document.

Warning
Unsaved changes are lost without warning.

Generate .pro (Microsoft Windows Only)

On aMicrosoft Windows system, select this option to generate source code files from
GUIBuilder interface definitions. When you generate code for the first time, all
options open the Save As dialog so that you can select alocation and specify a
filename. The following are generated:

¢ Thewidget definition codeto a*. pr o file.
e Theevent-handler callback codetoa* _event cb. pro file.

For information about the IDL GUIBUIilder generated code, see “ Generating Files” in
Chapter 24 of the Building IDL Applications manual.

Print... [CTRL+P]

On Microsoft Windows systems, select this option to print the contents of the
currently-selected window to the default printer immediately. On Motif systems, the
Print dialog appears.

7 Numbered Lines

7 Wrapped Lines
7 Two Pages

7 Header
Frint | Dismissl Help |

Figure 2-2: The Motif Print Dialog.

Using IDL File Menu

50

File Menu

Chapter 2: The IDL Development Environment

Select Numbered Linesto include line numbersin the printout. Select Wrapped
Linesto cause lines longer than the width of the printed page to wrap to a new line.
Select Two Pages to print two pages per sheet of paper (each logical page is printed
at half normal size). Select Header to include file information at the top of each page.

Print Setup...

Select this option to change the printer and printing options. The Print (Windows) or
Printer Setup (Motif) dialog appears. For further information on setting up a printer,
see Chapter 7, “Printing in IDL”.

Recent Files

Select this option to open recently opened or created files. This menu item lists the
last ten opened or created files. (On Microsoft Windows systems, it includes both text
and GUIBuilder files.) To open afile on thislist, select it.

On Moatif systems, to change the maximum number of files displayed from ten to
another number, modify thei dl de. nunRecent Fi | es resourceinyour . i dl de
resource file. See Chapter 8, “Customizing IDL on Motif Systems”, for details.

Recent Projects
Select this option to open recently opened project files.
Preferences...

Select this option to display the tabbed Preferences dialog, which allows you to
customize your interaction with the IDLDE environment. The options available via
the Preferences dialog are described in detail in Chapter 5, “ Setting IDL
Preferences’.

Exit [CTRL+Q)]

Select this option to exit IDL.

Using IDL

Chapter 2: The IDL Development Environment 51

Edit Menu

Undo [CTRL+Z (Windows), ALT+Z (Motif)]

Select this option to undo previous editing actions. Multiple undo operations are
supported; the first reverses the most recent operation, the next reverses the second
most recent operation, etc. If the most recent action isirreversible, thisoption will not
be accessible.

Redo [CTRL+Y (Windows), ALT+Y (Motif)]

Select this option to redo previously undone editing actions. Multiple redo operations
are supported; the first redo reverses the most recent undo, €tc.

Cut [CTRL+X (Windows), ALT+X (Motif)]

Select this option to remove currently-sel ected text from an IDL Editor window or the
Command Input Line to the Windows clipboard.

Copy [CTRL+C (Windows), ALT+C (Motif)]

Select this option to copy the currently-selected text in an IDL Editor window, Output
Log window, or Command Input Line to the clipboard. Copy also alows you to copy
graphics from an IDL graphics window or draw widget to the clipboard.

Paste [CTRL+V (Windows), ALT+V (Motif)]

Select this option to paste the contents of the Windows clipboard at the current
insertion point. The insertion point can only be placed in an IDL Editor window.

Delete [DEL]

Select this option to delete the currently-selected text. The deleted text is not placed
on the clipboard.

Select All
Use this option to highlight the entire contents of an IDL Editor window.

Clear All [CTRL+DEL (Windows)]

Use this option to clear the entire contents of the current IDL Editor window.

Using IDL Edit Menu

52 Chapter 2: The IDL Development Environment

Clear Log [CTRL+Y (Motif)]
Use this option to clear the entire contents of the Output Log.
Properties (Microsoft Windows Only)

Select this option to open the GUIBuilder Properties dialog, which you can use to set
the attribute and event properties for a widget.

For information on the Properties dialog, see “ Using the Properties Dialog” in
Chapter 24 of the Building IDL Applications manual.

Menu (Microsoft Windows Only)

Select this option to open the GUIBuilder Menu Editor, which you can use to define
menus for top-level base widgets and button widgets.

For information on the Menu Editor, see “Using the Menu Editor” in Chapter 24 of
the Building IDL Applications manual.

Edit Menu Using IDL

Chapter 2: The IDL Development Environment 53

Search Menu

Find... [CTRL+F (Windows), ALT+F (Motif)]

Select this option to find text in an IDL Editor window or windows. The Search or
Find/Replace dialog appears.

Enter the text to find in the field marked Search for or Find; click Find next to
highlight the search text in the currently activefile.

Platform Differences

e OnWindows platforms, you can also choose an entry from the pulldown list of
recent search terms rather than entering a new term in the Search for field.

¢ On Windows platforms, you can specify replacement text by checking the
Replace with checkbox and entering a replacement term. Click Replace to
replace the selected text.

Check the Case sensitive checkbox to match the case of the text you enter. Check
Whole words only to match only entire words (the default is to match sub-strings).
To replace all instances of the search text, check the Replace all checkbox and click
Replace. Select Forward from cursor or Backward from cursor to specify the
direction in which you would like to begin the search, or Entirefile to search from
the beginning of thefile.

By default, the search will take place in the currently-selected window. Choose a
different file or All Windows from the pulldown list marked Search in file to search
other windows.

Find Again [F3 (Windows), ALT+G (Motif)]
Select this option to repeat the previous Find operation.

Find Selection [CTRL+E (Windows), ALT+I (Motif)]

Select this option to find the next occurrence of the selected text in an IDL Editor
window.

Enter Selection [ALT+T (Motif)]
Select this option to enter selected text in the Find field of the Find/Replace dialog.

Using IDL Search Menu

54 Chapter 2: The IDL Development Environment

Replace... [CTRL+H (Windows), ALT+R (Motif)]

Select this option to find text in an IDL Editor window and replace it with new text.
The Replace dialog box appears. The Replace dialog has the same controls as the
Search dialog, described above in the Find item. By default, the Replace with
checkbox is checked.

Replace & Find [ALT+P (Motif)]

Select this option to repeat the most recent search-and-replace operation.
Replace Again [SHIFT+F3]

Select this option to repeat the previous Replace operation.
Go To Line... [CTRL+G]

Select this option to jump directly to the specified line number in an IDL Editor
window. The Go To Line dialog appears.

Go To Definition [CTRL+D (Windows), CTRL+T (Motif)]

Use this option to go to and mark with a current line indicator (blue arrow) the
procedure or function call of the item next to which the cursor is positioned. Theitem
must be either user-defined or a procedure or function written in IDL, and must have
been compiled during the current IDLDE session.

Search Menu Using IDL

Chapter 2: The IDL Development Environment 55

Run Menu

Run Menu items are enabled when an IDL program isloaded into an IDL Editor
window and compiled. If you click the right mouse button while positioned over an
editor window, a popup menu appears alowing you to quickly access several of the
most convenient commands. The popup menu changesto display common debugging
commands if IDL isrunning a program. See Chapter 17, “Debugging an IDL
Program” in the Building IDL Applications manual for more information.

Compile filename.pro [CTRL+F5]

Select this option to compile a. pr o file. The currently-selected fileis only
recognized as an IDL procedure or function if suffixed with . pr o. Selecting this
option isthe same as entering . COMPI LE at the Command Input Line, with the
appropriate Editor window selected in the Multiple Document Panel.

You can also compile files from the Command Input Line. Enter the following at the
IDL prompt:

.COWPILE filel [file2 ... filen]

wheref i | e isthe name of the file you want to open. IDL opens your filesin editor
windows and compiles the procedures and functions contained therein. If the path is
not specified in the Path Preferences from the File menu, you must enter the full
path for file.

See“.COMPILE” in the IDL Reference Guide manual for a more detailed
explanation.

Compile filename.pro from Memory [CTRL+F6]

Select this option to save and compile changes to the current editor window without
affecting the last-saved version of the file. The temporary file created allows you to
experiment without committing changes to the permanent file. Selecting thisoptionis
the same as entering . COVPI LE - f at the Command Input Line. See “.COMPILE"
in the IDL Reference Guide manual for a more detailed explanation.

Compile All
Select this option to compile all currently open *. pr o files.
Run filename [F5]

Select this option to execute thefilecaled f i | ename contained in the currently-
active editor window. Selecting this option is the same as entering the procedure

Using IDL Run Menu

56

Chapter 2: The IDL Development Environment

name at the Command Input Line or using the .GO executive command at the
Command Input Line. If thefileis interrupted while running, selecting this option
resumes execution; it is the same as entering .CONTINUE at the Command Input
Line. For more information, see .CONTINUE and .GO in the IDL Reference Guide.

Warning
In order for the Run option to reflect the correct procedure name in the Run menu,
the . pr o filename must be the same as the main procedure name. For example, the
file named squi sh. pr o must include:

pro squi sh

Resolve Dependencies [ALT+F5 (Motif)]

Select this option to iteratively compile all un-compiled IDL routines that are
referenced in any open and compiled files. Selecting this option is the same as
entering RESOLVE_ALL, / QUI ET at the Command Input Line. The QUI ET keyword
suppresses informational messages. See “RESOLVE_ALL” in the IDL Reference
Guide manual for amore detailed explanation.

Profile

Select this option to access the Profile dialog. The IDL Code Profiler allows you to
analyze the performance of your applications. You can identify which modules are
used most frequently, and which modules take up the greatest amount of time.For
more information about the IDL Code Profiler, see“The IDL Code Profiler” in
Chapter 13 of the Building IDL Applications manual.

Test GUI [CTRL+T (Microsoft Windows Only)]

Run Menu

Select this option to test the GUI interface in a GUIBUuilder window. This option
allows you to see how the interface you have designed will look when it is running.

To exit test mode:
Pressthe Esc key.
or

Click the X in the upper-right corner of the application window of the
running test application.

Note
Thisoption is not available if a blocking widget is currently active.

Using IDL

Chapter 2: The IDL Development Environment 57

Using IDL

Break [CTRL+BREAK (Windows), CTRL+C (Motif)]

Select this option to interrupt program execution. IDL inserts a marker to the left of
the line at which program execution was interrupted.

Stop [CTRL+R]

Select this option to stop program execution and return to the main program level.
Selecting thisitem is the same as entering the following at the Command Input Line:
RETALL
W DGET_CONTROL, / RESET

CLCSE, /ALL
HEAP_CC, /VERBCSE

See RETALL, WIDGET_CONTROL, CLOSE, or HEAP_GC in the IDL Reference
Guide for more detailed explanations.

Reset

Select this option to completely reset the IDL environment. This option executes
.RESET_SESSION. See“.RESET_SESSION” in the IDL Reference Guide manual
for more information.

Step Into [F8]

Select this option to execute a single statement in the current program. The current-
line indicator advances one statement. |f the statement being stepped into calls
another IDL procedure or function, statements from that procedure or function are
executed in order by successive Step commands. Selecting thisitem is the same as
entering . STEP at the IDL Command Input Line. See“.STEP” in the IDL Reference
Guide manual for amore detailed explanation.

Step Over [F10]

Select this option to execute a single statement in the current program. The current-
line indicator advances one statement. If the statement which is stepped over calls
another IDL procedure or function, statements from that procedure or function are
executed to the end without interactive capability. Selecting thisitem isthe same as
entering . STEPOVER at the IDL Command Input Line. See“.STEPOVER” inthe IDL
Reference Guide manual for a more detailed explanation.

Run Menu

58

Chapter 2: The IDL Development Environment

Step Out [CTRL+F8]

Select this option to continue processing until the current program returns. Selecting
thisitem isthe same as entering . QUT at the IDL Command Input Line. See“.OUT”
in the IDL Reference Guide manual for a more detailed explanation.

Trace...

Select this option to access the Trace Execution dialog. You can modify the interval
between successive .STEP or .STEPOV ER commands, depending on whether Step
into routines or Step over routinesis checked. The current-line indicator points to
program lines as they are executed. Selecting thisitem at full speed isthe same as
entering . TRACE at the IDL command prompt. See “. TRACE” in the IDL Reference
Guide manual for amore detailed explanation.

Run to Cursor [F7]

Select this option to execute statements in the current program up to the line where
the cursor is positioned. Selecting this item is the same as setting a one-time
breakpoint at a specific line. See “BREAKPOINT” in the IDL Reference Guide
manual for a more detailed explanation.

Run to Return [CTRL+F7]

Select this option to execute statements in the current procedure or function up to the
line where the return is positioned. Selecting thisitem is the same as setting a one-
time breakpoint at a specific line. See“.RETURN” in the IDL Reference Guide
manual for a more detailed explanation.

Set Breakpoint [F9]

Select this option to set a breakpoint on the current line.

See Chapter 17, “Debugging an IDL Program” in the Building IDL Applications
manual for a more detailed explanation.

Disable Breakpoint [CTRL+F12 (Motif)]

Select this option to access disable a breakpoint in the current line.

See Chapter 17, “Debugging an IDL Program” in the Building IDL Applications
manual for a more detailed explanation.

Edit Breakpoint...

Select this option to access the Edit Breakpoint dialog.

Run Menu Using IDL

Chapter 2: The IDL Development Environment 59

See Chapter 17, “Debugging an IDL Program” in the Building IDL Applications
manual for a more detailed explanation.

Up Stack [CTRL+Up]

Select this option to move up the call stack by one.
Down Stack [CTRL+Down]

Select this option to move down the call stack by one.

List Call Stack

Select this option to display the current nesting of procedures and functions.
Selecting thisitem is the same as entering HELP, / TRACEBACK at the IDL
Command Input Line. See “HELP” in the IDL Reference Guide manual for amore
detailed explanation.

Using IDL Run Menu

60 Chapter 2: The IDL Development Environment

Project Menu

For more information on the following menu items, see Chapter 20, “Creating IDL
Projects’ in the Building IDL Applications manual.
Add/Remove Files...
Select this option to add or remove files from the current project.
Remove Selected [CTRL+H (Motif Only)]
Select this option to remove the currently selected file from your IDL Project.
Move To (Motif Only)
Select this option to remove the currently selected file from your IDL Project.
Groups...

Sel ecting this option displays the Project Groupsdialog from which you can create a
new group or rename, remove, move up or down, or set to filter specific file typesfor
the default groups within an IDL Project.

Options...

Select this option to change the options for a project. The Project Optionsdialogis
displayed.

Compile

Select this option to compile filesin a project. You can choose either All Filesto
compile al the sourcefilesin aproject or M odified Filesto compile only the files
that have been modified since the last compile.

Build

Select this option to build your project.
Run

Select this option to run the application defined by your project.
Export

Select this option to export your project.

Project Menu Using IDL

Chapter 2: The IDL Development Environment 61

Macros Menu

Edit...

Select this item to access the Edit Macros dialog. Macros which have already been
defined are listed in the M acros: field. To edit a macro, click on the macro to access
its characteristics and click OK when your adjustments are compl ete.

To add amacro, click Add..., which will access the Add Macro dialog. Enter the
name of the new macro in the given field and click OK. Enter the IDL command to
be executed by the new macro in the IDL Command: field. Enter the menu item
name, the full path to the toolbar bitmap file, the tooltip text, and the status bar text in
the appropriate fields. Select the accelerator by specifying the key in the Key: field
and then optionally clicking on any combination of CTRL, ALT and Shift.

Note
Bitmap files for toolbar buttons must be 16 pixels by 16 pixels, and must contain
256 colors or fewer.

To remove a macro, click Remove. To change the position of amacro in the Macro
menu and on the Macro Toolbar, click on the macro to highlight it and click on
either Move Up or Move Down.

Import... (Microsoft Windows Only)

Use this menu selection to display the Import M acr os dialog box. Use thisdialog to
select the previous IDL installation from which you want macros to be imported.

Print Var (Windows), Print Variable (Motif)

Select this option to print the selected variable. Selecting thisitem isthe same as
entering PRI NT, x at the IDL Command Input Line, where x isthe selected variable.

Help On Var (Windows), Help On Variable (Motif)

Select this option to list attributes of the selected variable. Selecting thisitem isthe
sameasentering HELP, x, / STRUCTURE at the IDL Command Input Line, where x
is the selected variable.

Import Image

Select this option to import an imagefileinto IDL. For more information, see “Using
Macrosto Import Image Files’ on page 183.

Using IDL Macros Menu

62 Chapter 2: The IDL Development Environment

Import ASCII

Select thisoption to import an ASCI| fileinto IDL. For more information, see“Using
Macrosto Import ASCII Files’ on page 187.

Import Binary

Select this option to import abinary fileinto IDL. For more information, see “Using
Macrosto Import Binary Files” on page 193.

Import HDF

Select this option to import an HDF file into IDL. For more information, see “Using
Macrosto Import HDF Files’ on page 199.

Demo

Select this option to access IDL's Demo application.

Macros Menu Using IDL

Chapter 2: The IDL Development Environment 63

Window Menu

Read Only (Motif Only)

Select this option to enable or disable editing of the currently selected window. A
filled square next to the item indicates Read-Only status.

Next [F6 (Windows), F11 (Motif)]

Select this option to shift IDL’s focus to the next numbered editor window.
Previous [SHIFT+F6 (Windows), ALT+F11 (Motif)]

Select this option to shift IDL’s focus to the previous numbered editor window.
Cascade

Select this option to cascade al the IDL Editor windows within the main window.
Tile Horizontally (Microsoft Windows Only)

Select thisoption to tile all the IDL Editor windows on top of one another within the
main window.

Tile Vertically (Microsoft Windows Only)

Select this option to tile all the IDL Editor windows side-by-side within the main
window.

Tile (Motif Only)
Select this option to arrange al open windows in a non-overlapping fashion.
Close All

Select this option to close all open files. If afile has not yet been saved, you are
prompted to save the changes.

Arrange lcons

Select this option to arrange al minimized Editor or Graphics windows.

Using IDL Window Menu

64

Chapter 2: The IDL Development Environment

Close All

Select this option to close dll IDL Editor windows. If the text within an IDL Editor
window has changed, you are asked if you want to save the file before closing.

Configure (Motif Only)

Select this option to access a pulldown menu which alters the appearance of the
IDLDE. Select each toggle option to hide or show each component. For more
information about each component, see “ Components of the IDLDE” on page 40.

e HideControl (Show Control)

e HideView (Show View)

¢ HideLog (Show Log)

¢ Hide Variable Watch (Show Variable Watch)
e Hide Command (Show Command)

¢ Hide Status (Show Status)

e HideProject (Show Project)

Command Input [CTRL+I] (Microsoft Windows Only)

If this menu item has a check mark by it, the IDL Command Input Lineisvisiblein
the main IDL window. If thisitem does not have a check mark next to it, the IDL
command input lineis not visible. Click on this menu item to toggle between the two
states.

Output Log [CTRL+L] (Microsoft Windows Only)

If this menu item has a check mark by it, the Output Log isvisiblein the main IDL
window. If thisitem does not have a check mark next to it, the M ultiple Document
Panel is maximized in the main IDL window. Click on this menu item to toggle
between the two states.

Variable Watch [CTRL+A] (Microsoft Windows Only)

If this menu item has a check mark by it, the Variable Watch Window isvisiblein
the main IDL window. If thisitem does not have a check mark net to it, the Variable
Watch Window is not visible. Click on this menu item to toggle between the two
states.

Window Menu Using IDL

Chapter 2: The IDL Development Environment 65

Project (Microsoft Windows Only)

If this menu item has a check mark by it, the Project Window isvisible in the main
IDL window. If thisitem does not have acheck mark net to it, the Project Window is
not visible. Click on this menu item to toggle between the two states.

Toolbars

Select this option to access a pulldown menu with the three Windows toolbars:
Standard, Run & Debug, and Macros. If atoolbar has acheck mark by it, itis
visible below the Menu bar items.

Status Bar (Microsoft Windows Only)

If this menu item has a check mark by it, the Status bar is visible at the very bottom
of the Main IDL window.

Numbered Windows

The numbered menu items at the bottom of the Window menu display open files.
Select any of these menu items to make that window the current window.

Using IDL Window Menu

66 Chapter 2: The IDL Development Environment

Help Menu

Contents...[CTRL+F1]

Select this menu item to display the IDL Online Help Viewer.
Find Topic... [F1]

Select this menu item to display the Search dialog for IDL Online Help.
Help on the IDL Dev Env...

Select this menu item to display this chapter of Using IDL.
Help on the IDL Language...

Select this menu item to display information on the IDL language.
Help on Help...

Select this menu item to learn about how to use Help.
About IDL...

Select this option to display information on the IDL version in use.

Help Menu Using IDL

Chapter 2: The IDL Development Environment 67

Keyboard Shortcuts

Using IDL

Most of the IDL Development Environment menu options can be accessed from the
keyboard instead of clicking on the menus. The following table lists al of the
available keyboard eguivalents. Note that these equivalents are al so shown to the right
of each menu item in the menus themselves.

Windows UNIX
Keyboard Keyboard Function
Shortcut Shortcut
CTRL+A n/a Toggle Variable Watch Window
CTRL+C ALT+C Copy selection to clipboard
CTRL+D CTRL+T Go to definition
CTRL+E ALTH Find highlighted selection
CTRL+F ALT+F Start Find dialog
F3 ALT+G Find Again
CTRL+G CTRL+G Start Go To Line dialog
CTRL+H ALT+R Start Replace dialog
n‘a ALT+P Replace and Find Again
n/a ALT+T Enter Selection in the Find dialog
CTRL+I na Toggle Command Input Line
CTRL+L n‘a Toggle Output Log
CTRL+N CTRL+N Open new (empty) Editor Window
CTRL+O CTRL+O Open file
CTRL+P CTRL+P Print currently-active file
CTRL+Q CTRL+Q Exit IDL
CTRL+R na Stop the IDL environment
CTRL+S CTRL+S Save currently-active file

Table 2-2: IDLDE Keyboard Shortcuts

Keyboard Shortcuts

Chapter 2: The IDL Development Environment

Windows UNIX
Keyboard Keyboard Function
Shortcut Shortcut
n/a CTRL+W Saveto anew file (Save As..))
n/a CTRL+Y Erase contents of Output Log.
CTRL+V ALT+V Paste selection from clipboard at insertion
point
CTRL+X ALT+X Cut selection to clipboard
CTRL+Y ALT+Y Redo last undo
CTRL+Z ALT+Z Undo previous editing action
CTRL+Break CTRL+C Interrupt program execution /Break
CTRL+De n/a Clear current Editor window
CTRL+F1 n‘a Online Help Contents Page
n/a ALT+F5 Resolve Dependencies
CTRL+F5 CTRL+F5 Compile currently-selected file
CTRL+F6 CTRL+F6 Compile program from memory
CTRL+F7 CTRL+F7 Execute file to return
CTRL+F8 CTRL+F8 Continue processing until program
returns. .OUT
CTrL+T CTrL+T Move up call stack
CTRL+{ CTRL+{ Move down call stack
Delete Delete Delete selection
F1 n/a Start Find Topic in Online Help
F5 F5 Run
F5 F6 Continue stopped program: .CONTINUE
F6 F11 Display next-numbered Editor window
F7 F7 Execute file to cursor

Table 2-2: IDLDE Keyboard Shortcuts (Continued)

Keyboard Shortcuts

Using IDL

Chapter 2: The IDL Development Environment

Using IDL

69

Windows UNIX
Keyboard Keyboard Function
Shortcut Shortcut
F8 F8 Execute asingle statement: .STEP
F9 F9 Set / Clear breakpoint
F10 F10 Execute asingle statement: .STEPOVER
Shift+F6 ALT+F11 Display previously-numbered Editor

window

Table 2-2: IDLDE Keyboard Shortcuts (Continued)

Keyboard Shortcuts

70 Chapter 2: The IDL Development Environment

Keyboard Shortcuts Using IDL

Chapter 3:

Using the IDL Editor

This chapter describes the use of IDL’s built-in editor.

About the IDL Editor 72 Chromacoded Editor (WindowsOnly) 78
Keyboard Shortcuts 73 Functions/ProceduresMenu 80
Searching 75 Using External Editors (Motif) 81

Text Selection Modes (Windows Only) 76

Using IDL 71

72 Chapter 3: Using the IDL Editor
About the IDL Editor

Although any text editor can be used to create an IDL program file, the IDL Editor
included in the IDL Development Environment contains features that simplify the

process of writing IDL code. For example, if you indent aline using the Tab key, the
following lines will be indented as well.

If you use the IDL Development Environment, files are opened in the IDL Editor by
default. On UNIX platforms, you can simplify the process of using another editor;
see “Using External Editors (Motif)” on page 81 for details.

If you have afile open in the IDL Editor and you modify the file using another editor
(on any platform), IDL will warn you that the file in the IDL Editor window has
changed, and give you a chance to reload the file.

About the IDL Editor Using IDL

Chapter 3: Using the IDL Editor

Keyboard Shortcuts

Using IDL

73

The following keyboard shortcuts are available in IDL Editor windows:

(Wirfggws) (I\I/Tc?t)?f) Gl
«->MN «->MN Move cursor |eft or right one character, up or
down oneline.
Ctrl+« Ctrl+B Move left one word.
Ctrl+— Ctrl+F Move right one word.
End Ctrl+E Move to end of current line.
Home Ctrl+A or Move to beginning of current line.
Home
Page Down Page Down Move to next screen.
Page Up Page Up Move to previous screen.
Shift+Tab Move cursor one tab-stop |eft.
Ctrl+Home Ctrl+Home Move to beginning of file.
Ctrl+End Ctrl+End Move to end of file.
Ctrl+V Delete word to the | eft of the cursor.
Ctrl+K Delete word to the right of the cursor.
Ctrl+K Delete everything in the current line to the right
of the cursor.
Ctrl+U Delete everything in the current line to the left of
the cursor.
Delete Ctrl+D Delete the next character.
Ctrl+U Make selected text (or the character to theright of
the cursor) lower-case.
Ctrl+Shift+U M ake selected text (or the character to the right of

the cursor) upper-case.

Table 3-1: IDL Editor Window Key Definitions

Keyboard Shortcuts

74 Chapter 3: Using the IDL Editor

(Wi r|1<degws) (I\l/Tc?t);f) gy

Ctrl+z Alt+Z Undo last action.

Ctrl+Y Alt+Y Redo last undone action.

Ctrl+X Alt+X Cut selection to clipboard.

Ctrl+Shift+Y Cut line containing cursor to clipboard.
Ctrl+C Alt+C Copy selection to clipboard.

Ctrl+Vv Alt+V Paste contents of clipboard at current cursor

location.
Ctrl+] Find matching (, {, or [character.
Tab Indent highlighted lines one tab-stop right.

Keyboard Shortcuts

Table 3-1: IDL Editor Window Key Definitions (Continued)

Using IDL

Chapter 3: Using the IDL Editor 75

Searching

The IDL Editor window provides a comprehensive search-and-replace mechanism,
allowing you to search for occurrences of atext string in one or more open files. See
“Search Menu” in Chapter 2 for detalils.

Using IDL Searching

76 Chapter 3: Using the IDL Editor

Text Selection Modes (Windows Only)

Under Microsoft Windows, the IDL Editor provides three ways of selecting text:
stream mode, line mode, and column mode.

e Stream mode selects text in a stream, beginning with the first character
selected and ending with the last character, just asif you were reading the text.

iputing environmnent for the

Wl vizuslization of data.

Figure 3-1: A selected stream of text.

¢ Linemode selects full lines of text.

display technigues.

Figure 3-2: Text selection using Line Mode.

Box mode selects text from one screen column to the next. Selecting text in
column mode is similar to drawing a rectangle around the text you wish to

select.

bnalvsis and graphical

with numess nathematical
display technigues.

Figure 3-3: Column Mode text selection.

Switch between the three modes by clicking the right mouse button while positioned
over an Editor window. Select the “ Selection Mode” option to access a pull-down

Text Selection Modes (Windows Only) Using IDL

Chapter 3: Using the IDL Editor 77

menu with the three text selection modes. The option with a check mark by it isthe
currently selected text selection mode. If you have text already selected, the selected
areawill change to reflect the new mode.

Using IDL Text Selection Modes (Windows Only)

78 Chapter 3: Using the IDL Editor

Chromacoded Editor (Windows Only)

The IDL Editor in IDL for Windows supports chromacoding—different types of IDL
statements appear in different colors. To change the default colors used for different
types of IDL statements, select File — Preferences, and select the Editor tab.

Turning Chromacoding Off

By default, the Windows IDL Editor uses chromacoding. To turn off chromacoding,
select File » Preferences, select the Editor tab, and uncheck the Enable colored
syntax checkbox.

Chromacoded Editor (Windows Only) Using IDL

Chapter 3: Using the IDL Editor 79

Block Comments

The IDLDE provides methods to quickly comment and uncomment blocks of code
lines. To comment or uncomment lines of code, you may either select the linesto be
commented/uncommented or you may simply places the cursor somewhere on the
desired line. Commenting and uncommenting can be performed using:

Method Description
Toolbar Click the Comment or Uncomment tool bar items.
[
Comment Uncomment

Menu Use the Edit - Comment or Edit - Uncomment menu
items.

Context menu Right click over aline (or block of selected lines) to display
the context menu. Select Comment or Uncomment from the
menu.

Table 3-2: Block Comment Methods

Using IDL Block Comments

80 Chapter 3: Using the IDL Editor
Functions/Procedures Menu

When you open afilein the IDL Editor, all functions and procedures defined in that
filearelisted in the Functions/Procedures M enu. On Windows, this feature appears as
a pull-down menu located on the IDLDE toolbar. On Moaitif, this menu is accessed
through the () button in the upper left corner of the Editor window.

Select a procedure or function from the drop-down list to move the cursor to the
beginning of that procedure or function. Thisis especially useful for navigating large
program files containing multiple procedures and functions.

Functions/Procedures Menu Using IDL

Chapter 3: Using the IDL Editor 81

Using External Editors (Motif)

If you wish to use more sophisticated editing features on Motif platforms, you can
create an IDLDE macro to open afile that is currently open in the IDL Editor in
another editor such as emacs or vi. Use the following procedure to create a macro:

1. Select Macros — Edit menu to bring up the Edit Macros dialog box. You can
use this dialog to create, edit, or remove macros.

2. Complete thefieldsin the Edit Macros diaog:

« Name: The name that you wish to appear in the Macros list in the Edit
Macros dialog. For example, enter Edit inenmacs.

e Label: The name that you wish to appear on the M acros menu. For
example, enter emacs.

* Bitmap: The bitmap to use as the toolbar button label. Use the file paths
and file name extensions discussed in “ Bitmaps for Control Panel Buttons”
in Chapter 6.

e Statushbar text: Thetext that appearsin the status bar when the mouseis
help over the menu item or toolbar button.

« Tiptext: Thetext for thetool tip that appears when the mouse is held over
the toolbar button.

* |DL command: ThelDL command to execute when the macro is sel ected.
To create amacro for editing in Emacs, enter the following:

SPAWN, 'enacs +%. % &

e Select the Menu and/or Toolbar checkbox to specify whether the macro
will appear in the M acr os menu and/or the toolbar.

3. Createthe new macro by pressing the Add button. If you entered enacs in the
Label field, anew “emacs’ macro is added to the Macros list.

4. Toadd amacro for editing in vi, repeat the above steps, but enter the following
inthe“IDL command” field:

SPAWN, 'xterm-e vi +% 9% &

To use the new macros, open the desired filein the IDL editor, then select the desired
M acros menu item or toolbar button.

Using IDL Using External Editors (Motif)

82 Chapter 3: Using the IDL Editor

The IDLDE aways checks if the current file has been externally modified before
using it. If afile was modified with an external editor, IDLDE notifies you, and asks
you to reload the file before using it (you can also use the Revert to Saved option
from the File menu to reload thefile).

Using External Editors (Motif) Using IDL

Chapter 4:

Using the IDL
Command Input Line

The following topics are covered in this chapter:

InputtoIDL 84 Issuing Operating System Commands 90
ExecutiveCommands 88

Using IDL 83

84 Chapter 4: Using the IDL Command Input Line

Input to IDL

Commands entered at the IDL prompt are usually interpreted as |DL statementsto be
executed. Other interpretations include executive commands that control execution

and compilation of programs, shell commands, and so on. Input to the IDL prompt is
interpreted according to the first character of theline, as shown in the following table.

Theinformation in this chapter appliesequally to IDL used in command-line mode or
viathe IDL Development Environment.

First Character Action
Executive command.
? Help inquiry.
$ Command to be sent to operating system.
@ Batch file initiation.
Tor key Recall/edit previous commands.
CTrRL+D In UNIX command-line mode, exits IDL,
closes all files, and returns to operating
system.
CTRL+Z In UNIX command-line mode, suspends
IDL.
All others IDL statement.

Table 4-1: Interpretation of the First Character in an IDL Command

Command Recall and Line Editing

By default, IDL savesthe last 20 commands entered in arecall buffer. These
command lines can be recalled, edited, and re-entered. The up-arrow key (1) on the
keypad recalls the previous command you entered to IDL, moving backward through
the command history list. Pressing it again recalls the previous line, and so on. The
down-arrow key (4) on the keypad moves forward through the command history.
When acommand isrecalled, it is displayed at the IDL prompt and can be edited
and/or entered.

Input to IDL Using IDL

Chapter 4: Using the IDL Command Input Line 85

You can view the contents of the recall buffer in the following ways:
¢ Usethe arrow keysto view the entries in the buffer one at atime.

¢ Usethe HELP procedure with the RECALL_COMMANDS keyword to
display the entire contents of the recall buffer in the IDL Output Log.

* IntheIDL Development Environment, by right-clicking on the Command
Input Line. The 20 most recent commands in the command recall buffer are
displayed, and can be selected and re-executed.

The line-editing abilities and the keys that activate them differ somewhat between the
different operating systems.

Note
The behavior can also differ within the same operating system, between the
Command prompt for IDL and the Command line on the IDLDE.

The table below lists the edit functions and the corresponding keys.

Function UNIX Windows

Move cursor to start of line | CTRL+A or Home Home

Move cursor to end of line | CTRL+E or End End

Move cursor |eft one Left arrow Left arrow

character

Move cursor right one Right arrow Right arrow

character

Move cursor left oneword | CTRL+B, CTRL+left arrow
(R13 on Sun Keyboard)

Move cursor right oneword | CTRL+F, CTRL+right arrow
(R15 on Sun Keyboard)

Delete from current to start | CTRL+U

of line

Deletefrom currenttoend | CTRL+K

of line

Delete entireline

Table 4-2: Command Recall and Line Editing Keys

Using IDL Input to IDL

86

Chapter 4: Using the IDL Command Input Line

Function UNIX Windows
Delete current character CTRL+X or CTRL+D Delete
Delete previous character CTRL+H, or Backspace, | Backspace
or Delete
Delete previous word CTRL+W, or Esc-Delete
Generate IDL keyboard CTRL+C CTRL+break
interrupt
Move back onelinein CTRL+N, Up arrow Up arrow
recall buffer
Move forward onelinein Down arrow Down arrow
recall buffer
Redraw current line CTRL+R
Overstrike/l nsert Esc-l
EOF if current lineis CTRL+D
empty, else EOL
Search recall buffer for text | Availableonly in
command-line mode.
Enter A, then input
search string at prompt.
Insert the character at the any character any character

current Executive
Commands position

Table 4-2: Command Recall and Line Editing Keys (Continued)

The command recall feature is enabled by setting the system variable [EDIT_INPUT
to anon-zero value (the default is 1) and is disabled by setting it to 0. See
“1EDIT_INPUT” in Appendix D of the IDL Reference Guide manual for details.

Copying and Pasting Multiple IDL Code Lines

Input to IDL

You can paste multiple lines of text from the clipboard to the command line. You
simply need to place some text in the clipboard and paste it into the command line.
Any source of text isvalid, with emphasis on the requirement that the text be

Using IDL

Chapter 4: Using the IDL Command Input Line 87

convertibleto ASCII. When copying text from an IDE editor, the selection mode can
be stream, line, or box.

Note
Line and box modes automatically put atrailing carriage return at the end of the
text. When pasted, the last line is executed.

Be sure when you paste multiple lines that they only contain asingle IDL command
or are lines which include statements that utilize line continuation characters ($).
Multi-line statements will produce unintended IDL interpreter behavior or errors.

Lines are transferred to the command line asis. Namely, leading white space is not
removed and comment lines are sent to the IDL interpreter without distinction.

Note
Tabs are converted to white space based on the tab size indicated by the IDE editor
preferences.

Changing the Number of Lines Saved

You can change the number of command lines saved in the recall buffer by setting
IEDIT_INPUT egual to anumber other than one (in the IDL Devel opment
Environment, you can set this value viathe General tab of the IDLDE Preferences
dialog aswell.) In order for the change to take effect, IDL must be able to processthe
assignment statement before providing acommand prompt. This meansthat you must
put the assignment statement in the IDL startup file. (See* Startup Files” in Chapter 1
for more information on startup files.)

For example, placing the line
I'EDI T_I NPUT = 50

inyour IDL startup file changes the number of lines saved in the command recall
buffer to 50.

See“!EDIT_INPUT” in Appendix D of the IDL Reference Guide manual and
“General Preferences’ in Chapter 5 for additional details.

Using IDL Input to IDL

88

Executive Commands

Chapter 4: Using the IDL Command Input Line

IDL executive commands compile programs, continue stopped programs, and start
previously compiled programs. All of these commands begin with a period and must
be entered in response to the IDL prompt. Commands can be entered in either
uppercase or lowercase and can be abbreviated. Under UNIX, filenames are case
sensitive; under Microsoft Windows, filenames can be specified in any case.

Note

Comments (prefaced by the semicolon character in IDL code) are not allowed

within executive commands.

Executive commands are summarized in the table below. See the IDL Reference
Guide for in-depth descriptions of these commands.

Command Action
.COMPILE Compilestext from files or keyboard without
executing.
.CONTINUE Continues execution of a stopped program.

EDIT

Opensfilesin editor windows of the IDLDE.

FULL_RESET_SESSION

Does everything .RESET_SESSION does, plus
additional reset tasks such as unloading sharable
libraries.

.GO Executes previously compiled main program from
beginning.
OUT Continues program execution until the current

routine returns.

.RESET_SESSION

Resets much of the state of an DL session without
requiring the user to exit and restart the IDL
session.

.RETURN

Continues execution until encountering a
RETURN statement.

Table 4-3: Executive Commands

Executive Commands

Using IDL

Chapter 4: Using the IDL Command Input Line

Using IDL

89

Command Action

.RNEW Erases main program variables and then executes
.RUN

.RUN Compiles and possibly executes text from files or
keyboard

SKIP Skips over the next statement and then single steps

STEP Executes a single statement (abbreviated as .S)

STEPOVER Executes a single statement if the statement does
not call aroutine (abbreviated as .SO)

.TRACE Similar to .CONTINUE, but displays each line of

code before execution

Table 4-3: Executive Commands (Continued)

Executive Commands

90 Chapter 4: Using the IDL Command Input Line

Issuing Operating System Commands

Operating system commands can be sent to a subprocess for execution by entering
the $ character followed by the command at the IDL prompt.

The SPAWN procedure is a more flexible way of accomplishing the same thing
because it can be used within an IDL program while $ can only be entered
interactively. In addition, the standard output of the command can be saved in an IDL
string array by SPAWN. Hence, $ can be thought of as an interactive-only
abbreviation for SPAWN.

For more information on the SPAWN procedure, see“ SPAWN” in the IDL Reference
Guide manual.

Issuing Operating System Commands Using IDL

Chapter 5:

Setting IDL

Preferences

The IDL Development Environment can be customized by setting preferences. This chapter

describes the sections of the Preferences dialog:

Customizing IDL
General Preferences 94
Layout Preferences
GraphicsPreferences

Using IDL

Editor Preferences 103
Startup Preferences 105
Font Preferences 107
Path Preferences 109

91

92 Chapter 5: Setting IDL Preferences

Customizing IDL

Various settings for the IDL Development Environment can be customized using the
Preferences dialog. To open the Preferences dialog, select Preferencesfromthe IDL
Development Environment File menu.

Note
On UNIX platforms, including Macintosh OS X, some settings can also be
customized by editing IDL’s resource files. For further information about editing
resource files on UNIX and Macintosh OS X, see Chapter 8, “Customizing IDL on
Motif Systems”.

The Preferences dialog contains tabbed sections that allow you to customize your
interaction with the IDLDE environment. The tabs and their uses are described
below.

Theterminology used on the Preferences dial ogs differs between Microsoft Windows
and Matif systems. In this documentation, if the wording is significantly different
between the two platforms, the wording used in the Windows dialogsis listed first,
followed by the wording used in the Motif dialogs.

Tab Description

General This tab allows you to specify how the IDLDE session begins

Preferences and ends, to control the number of linesin therecall buffer and
the Output Log, and to designate how the files should be
opened and read.

Layout Thistab allowsyou to specify the location and size of themain

Preferences IDLDE window on the screen. You can aso designate which
components of the IDLDE will be visible.

Graphics This tab allows you to set the layout of windows that contain

Preferences IDL graphics, and to specify the backing store.

Editor This tab allows you to customize the IDL’s built-in editor and

Preferences also offers several compiling options.

Startup This tab allows you to specify the main IDL directory, the

Preferences working directory, and a startup file.

Table 5-1: Preference Dialog Tabs

Customizing IDL Using IDL

Chapter 5: Setting IDL Preferences 93

Tab

Description

Font Preferences | Thistab allows you to specify different fonts, styles, and sizes

for the Editor, Command Input Line and Output Log.

Path Preferences | Thistab allows you to specify the IDL Files Search Path.

Entriesin this tab are used to set the system variable |PATH if
the IDL_PATH environment variable has not be set.

Table 5-1: Preference Dialog Tabs (Continued)

Platform Differences

Microsoft Windows and UNIX platforms (including Macintosh OS X) implement the
Preferences dialog using different dialog application buttons. The following table
lists the buttons, the platforms on which they are found in the Preferences dialog,
and the action performed when the button is used.

Platform Button Result
Windows, | OK Changes are applied to the current session and the
UNIX Preferences dialog is dismissed.
Apply Changes are applied to the current session but not
saved. The Preferences dialog remains visible.
Windows Reset Restores the Preferences on the dialog to the
only preference values from the start of the current IDL
session.
Cancel Any changes which were not applied are ignored and
the Preferences dialog is dismissed.
UNIX only | Save Changes are applied to the current session and saved.

If the option has an asterisk next to it, you must save
and restart the IDLDE for the change to take effect.

Dismiss Dismisses the Preferences dialog box without
applying any changes, unless previously applied.
Help Displays IDL Online Help.

Using IDL

Table 5-2: Preferences Dialog Button Descriptions

Customizing IDL

94

General Preferences

Chapter 5: Setting IDL Preferences

The General tab of the Preferences dialog has three sections: Program, Log and

Command windows, and Files.

Preferences E

General | Layoutl Graphicsl Editor I Startupl Fonts I Fath I
— Program

[V Show Splash Screen

[v Corifirm Exit

[V Users share preferences and macros

— Log and Command windo
Mumber of lines saved in the recall buffer: |2U

3 Preferences

Laguut] Graphics] Edit] Startup] Fomts] F'aths]

Program:

I” #Show Splash Screen

[T Save Preferences on Exit
[T Confirm Exit

Log % Command Window:

*Lines to Sawve: EEOO #Delete on Limit: E125

Mumber of lines to dizplay in the log: I‘IDDD LAAES SEEE Am EE FEESLL EUERS [20
Mumber of log lines to delete at limit: 100 Files:
7 Change Directory on Open
—Fil
e 7 Open Files Read Only
[Change Directary on Open
[Open Files Read Only
#* — will take effect in the next session
Reset |
aK | Apply Save Dismiss Help
QK Cancel | Apply | Help I

Figure 5-1: General Preferences Dialog

Program Section

You can specify how IDL handles starting up and exiting. Click on the following
check boxes to apply or disable the options:

e Show Splash Screen — Select this option to show the IDL splash screen on
startup. This selection takes effect the next time an IDL session is started.

* Save Preferenceson Exit (Motif only) — Select this option to save all the
settings specified in the Preference tabs when the current IDL session exits. If
you desel ect this option, changes made to the current IDL session and not
explicitly saved (by clicking either the Save or OK button) will be discarded
when the current session ends.

» Confirm Exit — Select this option to display awarning dialog when you exit
IDL.

e Usersshare preferences and macros (Windows only) — If this check box is
selected, all users on the Windows computer share the same set of preferences

General Preferences Using IDL

Chapter 5: Setting IDL Preferences 95

and macros (which meansthat any user can change preferences and macros for
all users on the computer). By default, each user on the Windows computer has
aunique set of preferences and macros; changes affect only the current user.

Note
You must have Administrator rights on the Windows computer to change the “ share
preferences’ setting. The checkbox will be greyed out if you are logged on as a user
without administrative rights.

Log and Command Windows Section

The number of lines saved in the recall buffer for the Command Line has an impact
on the performance of IDL. The amount of memory required for greater numbers of
saved linesin the buffer affects the speed at which IDL runs. Click in the field next to
each description and enter your adjusted value to change the settings.

¢ Number of linessaved in therecall buffer — Thisfield controlsthe
maximum number of lines saved in the recall buffer. (See “ Command Recall
and Line Editing” in Chapter 4 for information on using the recall buffer.) The
default is 20 lines.

 Number of linesto display in thelog/ Linesto Save— Thisfield controls
the maximum number of lines retained by the Output L og window. The
default is 1000 lines for Microsoft Windows systems and 500 for UNIX
systems.

e Number of loglinesto deleteat limit / Delete on Limit — Thisfield controls
the number of linesthat will be deleted from the Output L og window when the
maximum number of linesisreached. The earliest linesin the log are del eted.
The default is 100 for Microsoft Windows systems and 125 for UNIX systems.

Files Section

You can change the way in which IDL handles opening files. Select or clear the
following check boxes to apply or disable the options:

e Change Directory on Open — Select this option to cause IDL to change the
current working directory when you open afile. The new current working
directory will be the directory that contains the opened file.

¢ Open FilesRead Only — Select this option to open files so that they can be
viewed, but not changed.

Using IDL General Preferences

96 Chapter 5: Setting IDL Preferences

Layout Preferences

This tab allows you to control the appearance and placement of the IDLDE.

General Lavout | Graphicsl E ditar I Startupl Fonts I Path I Gemeral] Graphics] Edit] Startup] Fomts] F'aths]
*Main Window:
_M?Ln Windo! ~ Default Left l Width l iyl
Default layout . dth: I .
o Sy Iailout Lefe 0 Sofidihe [+ Specify Top E/— Height [&o
Top: |2? Heiatit: IBSD “ Remember
(+ Remember layout i &
Windows:
— Show Windo Editor Layout: _IMultiple
v Command Input [V Standard Toolbar fAide: JControl IView Ilog Watch
I~ Output Log v Run & [ebug Toolbar Hide: _ICommand _IStatus _IProject
|v Status Bar v Macros Toolbar Separate: I Command _IControl _Ilog _IWatch I Project
[V ‘ariable Watch [V Project
Control Panel:
Hide Tools: _iStandard _I RundDebug _ilser
Mumber of Rows: I:L Vertical _I
* — will take effect in the next session
Reset |

Ok | Apply | Save Dismiss Help

QK I Cancel | Apply | Help |

Figure 5-2: Layout Preferences Dialog

Main Window Section

Use the fieldsin this section to specify the default size and placement of the IDL
Development Environment’s main window. (See “ Components of the IDLDE” in
Chapter 2 for descriptions of the components of the IDLDE.)

e Select the Default Layout radio button to use the IDLDE’s default layout,
which depends on the size and resolution of your computer screen. If you
select this radio button, all of the IDLDE’s windows and toolbars will be
displayed in their standard locations.

¢ Select the Specify L ayout radio button to manually specify the layout of the
IDLDE:

e Enter the number of pixels from the left-hand edge of the screen the
IDLDE window should be displayed in the L eft field.

¢ Enter the number of pixels from the top edge of the screen the IDLDE
window should be displayed in the Top field.

» Enter the width of the IDLDE window in pixelsin the Width field.

Layout Preferences Using IDL

Chapter 5: Setting IDL Preferences 97

Using IDL

e Enter the height of the IDLDE window in pixelsin the Height field.

Notethat if you select the Default L ayout radio button after specifying values
in these fields, your values will be replaced with “-1”" to indicate that the
default values will be used the next time IDL starts.

¢ Select the windows and toolbars to be displayed from the Show Window
section (Windows) or Windows and Control Panel sections (Matif).

Click Apply to apply your changes to the current IDLDE window without
saving the values. (This allows you to use the L ayout tab to control the
appearance of the IDLDE for the current session without making your changes
permanent.) Click OK to apply your changes and save the values; they will be
used the next time IDL starts.

Select the Remember Layout radio button and click OK to save the current
layout of the IDLDE windows for use the next time IDL starts. This optionsis
useful if you have configured the windows manually and wish to save your
changes.

Undocking IDLDE windows

Some of the elements of the IDLDE can be “undocked” from the interface and appear
as separate, free-floating windows. On Microsoft Windows systems, use the mouse to
select an element and drag it away from the main IDLDE window to undock the
element. On Motif systems, you can use the checkboxes in the Windows section to
undock elements.

The following elements can be undocked:

Command Input Line
Toolbars

Output Log

Variable Watch Window
Project Window

Show Window Section (Microsoft Windows Only)

By default, all the listed options are checked, signifying that they are all visiblein the
IDLDE main window. Click on the check boxes to show or hide the following
windows.

Command Input line;

Output Log window;

Layout Preferences

98

Chapter 5: Setting IDL Preferences

Status Bar;

Variable Watch window;
Standard Toolbar;

Run & Debug Toolbar;
Macros Toolbar;

Project window

Click Apply to apply your changes to the current IDL session. (Thisisthe same as
selecting the corresponding options in the Window menu.) Select the Specify
L ayout radio button and click OK to make the current layout the default.

Windows Section (Motif Only)

Use the optionsin this section to control the appearance of the window elements of
the IDLDE.

Editor Layout — Click Multipleto display open Editor and Project windows
separately from the main IDLDE window. Note that if the M ultiple Windows
option is enabled, the choice to hide or view the Editor windows is not
available.

Hide — Select the check box for elements of the IDLDE you wish to hide
from view. By default, none of the sections are hidden.

* Control hidesthe toolbars;

¢ View hides the Project window and the Editor window;

¢ Log hides the Output Log window;

e Watch hides the Variable Watch window;

e Command hidesthe Input Command Line;

e Statushidesthe fly over status line at the base of the Main IDL window;

e Project hidesthe Project window and extends the Editor window to the
full width of the IDLDE.

Separate — Select the check box for the constituent window you want to
separate from the IDLDE Main Window. When the Separ ate action is applied,
the element is “undocked” from the interface and appears as separate, free-
floating window.

Layout Preferences Using IDL

Chapter 5: Setting IDL Preferences 99

Click Apply to apply your changes to the current IDL session. (Thisisthe same as
selecting the corresponding optionsin the Window menu.) Select the Specify L ayout
radio button and click OK to make the current layout the default.

Control Panel Section (Motif Only)
You can specify how you would like to display the various toolbars on the Control

Panel.

¢ Hide Tools — Select the check box for any of the available toolbars
(Standard, Run & Debug, and User) to hide that toolbar.

¢ Number of Rows— Enter the number of rowsto usein displaying any visible
toolbars. You can select from 1 to 3 rows.

* Vertical — Select this check box to cause the toolbars to be stacked vertically
one on top of the other rather than horizontally next to each other.

Using IDL Layout Preferences

100 Chapter 5: Setting IDL Preferences

Graphics Preferences

This tab allows you to control the layout and default size of IDL Graphics windows.
You can aso control IDL’s default use of backing store and the size of the TrueType
font cache. Note that the values set here are defaults; the values can be overridden
when a graphics window is created.

Gene[all Layout Graphics | Editar I Startupl Fonts I Path I Gemerall Lagmut] Graphics Edit] Startup] FDmtE] Paths]
Windows Size:
it [yl Default Width: [B40 Default Height: [512

&« Tile width: |512 Height: |334

(" Cascade ¥ 174 Scieen Size | Always On Top

Use [T 1/4 the screen size

#Backing Store:

B B(?_Cking store + None (RETAIN = 0)
Maone [direct-draw) RETAIN =0 ~g RETAIN = 1
' System buffered RETAIN = 1 ysten J
" Bitmap buffered RETAIN = 2 w Pixmap (RETAIN = 2)
Graphics Attributes:
— True Type Font:

Size of TrueType Font Cache (in glyphs): [256

Size of glyph cache (in glyphs): |258
ize of glyph cache (in glyphsl Object Graphics Renderer:

. . “* Hardware Rendering (OpenGL)
— Default object graphics renderer:

(+ Hardware [OpenGL)
" Software

“Will take effect in the nest session Reset |
QK I Cancel | Apply | Help |

~ Software Rendering

* — will take effect in the next session

aK | Apply Save Dismiss Help

Figure 5-3: Graphics Preferences Dialog

Window layout / Windows Size Section

Specify the default width and height of IDL graphics windows in the Width and
Height fields. Alternatively, you can specify that graphics windows have a default
width and height of half the screen width and height by checking the 1/4 Screen Size
checkbox.

Platform Differences

On Windows systems, you can specify that graphics windows should be created size-
by-side, with no overlap by selecting the Tile radio button, or that they should be
created overlapping by selecting the Cascade radio button. Select the Always On
Top checkbox to ensure that graphics windows float above all other IDL windows.

Graphics Preferences Using IDL

Chapter 5: Setting IDL Preferences 101

Backing Store Section

When backing store is enabled, a copy of each Graphics window is kept in memory;
the copy is used to refresh the window when it has been covered and uncovered.
IDL’s performance may increase when no backing store is used, since the amount of
memory required to save files can affect the speed at which IDL will run. Settingsin
this section correspond to settings of the RETAIN keyword to the DEVICE
procedure; see “Backing Store” in Appendix A of the IDL Reference Guide manual
for more information.

¢ None (RETAIN = 0): Select this option to refrain from keeping a copy of the
window. In some situations, disabling backing store may lead to an increasein
IDL’s performance.

« System (RETAIN = 1): Select this option to request backing store from the
windowing system. Thisis the default.

e Bitmap / Pixmap (RETAIN = 2): Select this option to specify that IDL should
maintain the backing store using its own memory.

Note
Changes made to the Backing Stor e preference do not take effect until the next IDL
session.

True Type Fonts Section

Using IDL

IDL saves TrueType fonts as a set of glyphs; each glyph represents the triangulation
data for drawing one character. The Size of TrueType Font Cache (in glyphs) field
allows you to set the number of glyphsto keep in cache memory; keeping glyphsin
memory speeds drawing of fontsin IDL graphics windows. The default number of
glyphsin cache memory is 256, roughly two TrueType font sets.

Enter the number of TrueType characters for which to save triangul ation information.
Saving the triangulation information for TrueType characters meansthat IDL will not
have to calculate the polygons to draw the next time a character of the same font and
sizeisrendered. Larger valueswill use more memory but can increase drawing speed
if multiple fonts are used. The default is 256.

Default object graphics renderer / Graphics Attributes Section

IDL supports two methods of rending object graphics: via a hardware graphics
accelerator or via a software rendering package. Select Har dwar e rendering if your
system has OpenGL graphics accelerator hardware. Select Softwar e rendering
otherwise.

Graphics Preferences

102 Chapter 5: Setting IDL Preferences

See “Hardware vs. Software Rendering” in the “Using Destination Objects’ chapter
of for information about the differences between the two rendering systems.

Graphics Preferences Using IDL

Chapter 5: Setting IDL Preferences

Editor Preferences

Thistab allows you to specify settings for the built-in IDL Editor and control the way
IDL compilesfilesloaded in editor windows. On Microsoft Windows systems, this

tab a'so alows you to specify syntax-highlighting and other editor features.

Preferences E

Generall Layoutl Graphics Editor |Startup| Fonts I Fath I

[V Enable colored syritax
[V Backup on save

[V Enable Open on debug

¢ Freferences =]

Gemerall Lagmut] Graphica] Startup] FDmtE] Paths]

W Make backup copy of source file

Compiling:

— Compiling

(¢ #sk to save changes before compiling
" Automatically save changes before compiling
" Compils from memary (don't save before compiling)

4 Ask to save changes before compiling
~ Automatically save changes before compiling

~ Compile from memory (don’t save before compiling)

— Tab:

Mumber of spaces to indent for each tab: |4
s tabs
I~ Convert tabs to spaces on save

" Use spaces

— Color

e Frizeeshnes Foreground: Background:
Uszer Functions I vl I vl
System Procedures - :l
System Functions LI
= #* — will take effect in the next session

Reset |

aK | Apply Save Dismiss Help
QK I Cancel | Apply | Help |

Figure 5-4: Editor Preferences Dialog

Backup on Save

Select the Backup on Save/ M ake backup copy of sour ce file check box to cause
IDL to create a backup of the original file when saving afilein an IDL editor
window.

Compiling Section

Using IDL

Select the Ask to save changes before compiling radio button if you would like to
save changes when you compile aprogram in an IDL editor window. Thisisthe
default.

Select the Automatically save changes before compiling radio button if you do not
want to be prompted each time you compile, but do want to save the changes.

Select the Compile from memory (don’t save before compile) radio button if you
do not want to save files before compiling them.

Editor Preferences

104 Chapter 5: Setting IDL Preferences

Note

You can override your default selection by selecting the appropriate menu item
from the Run menu.

Microsoft Windows Editor Configuration

On Microsoft Windows systems, you can choose to use syntax highlighting in IDL
editor windows. If syntax highlighting isturned on, IDL statements are displayed in
different colors. Select the Enable colored syntax checkbox to enable syntax
highlighting.

If you want IDL to open the source file for a program that generates an error in an
IDL editor window, select the Enable Open on debug checkbox.

Tabs Section

You can specify the width of the white space to be used when you press the TAB key
inan IDL editor window. Enter a number in the Number of spacesto indent for
each tab field to specify the width of the indent to be used.

If you want the IDL editor to insert atab character (ASCII 9) when you pressthe TAB
key, select the Use tabs radio button. If you want IDL to insert the specified number
of space characters (ASCII 32) when you press the TAB key, select the Use spaces
radio button.

If you have selected the Use spaces radio button, you have the option to convert tab
characters to spaces when the file is saved by selecting the Convert tabsto spaces
on save checkbox.

Colors Section

Use this section to select the colors that will be used in the IDL editor when syntax
highlighting is enabled. To set colors, select atype of IDL statement from the

scrolling listbox at left, then select the foreground and background colors for that
type of statement.

Editor Preferences Using IDL

Chapter 5: Setting IDL Preferences 105

Startup Preferences

This tab allows you to specify the location of the main IDL directory, the default
working directory, and any startup file to be run.

Generall Layoutl Graphicsl Editor Startup | Fonts I Path I Gemeral] LEHD“] Graphics] Edit] Fomts] F'aths]

#Select IDL Main Dir...| [
1DL Main directory: 5 5 -

Select Working Directory.. | I"
C:ARSIMDLSE Browse... |
working Directory: Startup File:
|CARSINDLER Browse... |

#Select Startup File.. | I
Startup file:
I - | I #Don”t Use Startup File

#* — will take effect in the next session
Reset |
aK | Apply Save Dismiss Help
QK I Cancel | Apply | Help |

Figure 5-5: Startup Preferences Dialog

IDL Main Directory

Usethisfield to select the location of the main IDL directory. The default isthe
location you specified when you installed IDL. Thereis no reason to change this
entry. The location of the home IDL directory is shown primarily for informational

purposes.
Working Directory

Thisfield allows you to set the initial working directory for future IDL sessions. The
General Preferences tab contains a“ Change Directory on Open” option, which also
affects the working directory.

Using IDL Startup Preferences

106 Chapter 5: Setting IDL Preferences

Startup file

Use thisfield to specify the name of an IDL batch file to be executed automatically
each time IDL isrun. See “Startup Files” on page 30 for additional details.

On Matif platforms, you can disable the use of the startup file by selecting the Don’t
Use Startup File checkbox.

Startup Preferences Using IDL

Chapter 5: Setting IDL Preferences 107

Font Preferences

This tab allows you to specify fonts to be used in various sections of the IDLDE

interface.
Generall Layoutl Graphicsl E ditar I Statup Fonts |F'ath I Gemeral] LEHD“] Graphics] Edit] Start“p] F'aths]
‘window: Font name: WefEullEo oo IE'Xilﬁ
Foure e |[
Command |nput "
Output Log B Century Schoolbook ‘l -
B Comic Sans MS = Control... ISXiE
B Courier LI -
Eelilton o I"i4 —k-helvetica-medium=i=s08859
Sample Style: Size: Log... |j14 —%-helvetica-medium=iz08553
IHeguIar I‘ID
Command. . . I:Eixi'ﬁ
Eold 12 =
[v Use Default Fonts
#* — will take effect in the next session
Reset |
aK | Apply Save Dismiss Help
QK I Cancel | Apply | Help |

Figure 5-6: Font Preferences Dialog
Microsoft Windows

Under Microsoft Windows, IDL uses a standard Windows font-selection dialog. You
can select different fonts for IDL Editor windows, the Command Input Line, and the
Output Log. Click on one of these areasin the Window list, then select thefont, style,
and size using the appropriate lists. Click Use Default Fontsto change to the IDL
default font selections for all three areas.

UNIX

This tab allows you to control which fonts are to be used for the main IDL window.
Click on any of the following buttons to specify the relevant font:

e Default — dialog boxes
¢ Menubar — menu items

¢ Control — the Control Panel

Using IDL Font Preferences

108 Chapter 5: Setting IDL Preferences

* Edit — editor windows
e Log— the Output Log

e« Command — the Command Input Line
Selecting a Font

Clicking any of the buttons on the Fonts tab of the Preferences dialog brings up the
Select Font dialog. Thisdialog allowsyou to select fonts from the X Windows Server
font database, based on the attributes Foundry, Family, Weight, Sant, SetWidth, and
Sze. Using thisdialog is similar to using the xf ont sel X Window utility. See your
X Window system font documentation for additional details. Once you have selected
afont, click OK to accept your selection or Cancel to abandon it.

> Select Font |]

20 names match

Foundry : adobe — | Family : helvetica 4|
Weight @ medium — | Slant gl 4|
Setlidth: normal - | Size 1 140 4|

"1234567890-=gwertyuiop[]h =

asdfghjkl; zxevbnm, J

~l@EEsLE () +OWERTYUIOPS 7]
I~)
Selection

I}adobe—he1vetiCa—medium—r—norma1—*—*—140—*—*—*—*—*—*

oK | Eancell Help |

Figure 5-7: Motif Select Font Dialog.

Font Preferences Using IDL

Chapter 5: Setting IDL Preferences

Path Preferences

109

This tab allows you to control where IDL looks for procedures and functions. The
path elements specified in the Search Path / IDL Files Search Path are used to set
the IPATH system variable when the IDLDE starts.

Generall Layoutl Graphicsl Editor I Startupl Fonts Path |
Search path:
[#xIDL_DEFAULT>
4|
el
Insert | Insert Standard Librariesl Femove | Expand |
A preceding check means “search subdirectories."
¥ Enable Path Cache Reset |

QK I Cancel | Apply | Help |

rences
Gemerall Lagmut] Graphica] Edit] Startup] FDmtE]

IDL Files Search Path (x means search subdirectories):

W <IDL_DEFALLT> A1

i

H H InEE-rt....HInEE-rt Standard Libraries| Remove| Expand

* — will take effect in the next session

aK | Apply Save Dismiss Help

Figure 5-8: Path Preferences Dialog

Note

If you have set the environment variable IDL_PATH, IDL will set the 'PATH system
variable based the contents of the IDL_PATH environment variable at startup,
overriding any settings made in thisdialog. After IDL has started, however, you can
modify the current value of the 'PATH system variable using this dialog. See
“1PATH” inthe IDL Reference Guide manual for additional detailson how !PATH is

Set.

Search Path / IDL Files Search Path

The IDLDE Path Preferences dial og uses the same mechanism to expand the
elements of the Search Path field asis used by the EXPAND_PATH function. By
default, thisfield is populated with asingle entry: <I DL_DEFAULT>, indicating that
the default IDL path will be used. If the IDL_PATH environment variable is not set,
when the IDLDE starts up, it will expand this token into the default value of the
IPATH system variable. See “ The Path Definition String” under “EXPAND_PATH”

Using IDL

Path Preferences

110 Chapter 5: Setting IDL Preferences

in the IDL Reference Guide manual for complete details on how thistokenis
expanded.

If the box to the left of a path element is checked, all directories below the listed
directory that contain at least one. pr o or . sav filewill beincluded in !'PATH. (This
mechanism is analogous to the use of a“+” symbol in an EXPAND_PATH path
definition string.)

Note
If the <I DL_DEFAULT> entry is present, the box to itsleft is both checked and
greyed out (Windows) or completely blacked out (Motif), indicating that the token
will always be expanded.

You can modify the value of the 'PATH system variable in the following ways using
thisdialog:

¢ Changetheorder of the path elements — using the up- and down-arrows,
you can reorder the path elements. When searching the directoriesin the
I'PATH system variable for files, IDL will use the first matching file it finds. If
you have multiple files with the same name in different directories within
IPATH, you may need to adjust the order in which the directories are scanned.

¢ Insert...— To add a path to the Search Path list, click Insert... to display the
Select Directory dialog. The new path isinserted before the first selected path.
If none of the paths are selected, the new path is appended to the end of thelist.

« |nsert Standard Libraries— Click Insert Standard Librariesto insert the
<| DL_DEFAULT> path element into the list.

* Remove — Click on Remove to delete the selected path.

e Expand — Click on Expand to include the individual subdirectories of the
selected path element in the Sear ch Path list. When you click Expand, the
checkmark isremoved from the original path element, since the subdirectories
are now explicitly included in the path search list.

See “Running IDL Program Files’ in Chapter 9 for more information on how !'PATH
isused by IDL when compiling and running programs.

Enable Path Cache

Select Enable Path Cache to enable IDL's path caching mechanism. Path caching is
enabled by default, and in ailmost all cases should be left enabled. See
“PATH_CACHE” in the IDL Reference Guide manual for more information about
IDL’s path cache.

Path Preferences Using IDL

Chapter 6:

Working With Macros

This chapter discusses the following topics:

What areMacros? 112 Creating WindowsMacros 117
Usingthe IDL Macro Toolbar 113 Command Stream Substitutions 119
CreatingUNIX Macros 114 Building IDL Example Macros 120

Using IDL 111

112 Chapter 6: Working With Macros
What are Macros?

A macro alows you to execute commonly-used I DL tasks with the press of a mouse
button or through a single keystroke ("hot key") combination. In IDL you can create
your very own macros using:

e routines

e procedures

¢ statements

» command stream substitutions

For example you may customize and extend the functionality of the IDL
Development Environment (such as writing a procedural macro to change IDL's
working directory, which we will see later in this section).

What are Macros? Using IDL

Chapter 6: Working With Macros 113

Using the IDL Macro Toolbar

IDL offers several existing macro options on its Macro Toolbar. These macros allow
you quick access to commonly used IDL functionality such as printing a variable,
importing various file types, and running the IDL Demos.

Import Image File
Print Variable | Import Binary File

|/
;I E fﬁ% qﬂﬂ pF ﬁ<—RunDemo

/ot N

Help on Variable Import ASCII File Import HDF File

Figure 6-1: The IDLDE’s Macro Toolbar

Using IDL Using the IDL Macro Toolbar

114 Chapter 6: Working With Macros

Creating UNIX Macros

You can modify the contents of the M acros menu and macros tool bar, either using
the Edit Macros dialog (displayed by selecting Edit... from the M acr os menu) or by
manually editing the user resource (. i dl de) file.

Using the Edit Macros Dialog

The Edit Macros dialog allows you to add, remove, or modify macros that appear
either in the Macros menu or the M acr os tool bar.

¢ Edit Macros
i1 Aclcl s
Remove
import_image
import_ascii A
import_binary * 4 ¥

Macro Attributes:

Hame: I?primtvar

R I:F'r'int Yar

Bltmap: Ijidl,pr‘intvar‘

Stotls bon fexE. I:Primt Selected Variable.

Tip fext: I:Fr'int Yariable.

IDL Command : I)jrimt,%S

1 Menu I Toolbar

aK | Apply Dismiss Help

Figure 6-2: The Edit Macros Dialog.

To add a new macro, do the following:

1. Enter anamefor your macro in the Name field. The Name appearsonly in the
Edit Macros dialog.

2. Enter alabel for your macro in the Label field. The label will be used in the
Macros menu (if selected).

3. Enter the name of the bitmap (. xbmor . xpm) file associated with the macro in
the Bitmayp field. The bitmap will be used on the Macros toolbar (if selected).
See “Bitmaps for Control Panel Buttons®” on page 115 for details.

Creating UNIX Macros Using IDL

Chapter 6: Working With Macros 115

4.

0.

Enter text to be displayed on the IDLDE status bar in the Status bar text field.

Enter text to be displayed as atooltip when the mouse cursor is positioned over
the toolbar button in the Tip text field.

Enter the IDL command to be executed in the IDL Command field. See
“Command Stream Substitutions” on page 119 for information on the types of
dynamic information that can be included in the command.

In addition to IDL-language commands, you can attach IDL Motif Action
Routines to amacro. See “Action Routines’ on page 149 for details.

Select the M enu checkbox if you want the macro to appear on the M acros
menul.

Select the Toolbar checkbox if you want the macro to appear on the Macros
toolbar.

Click Add to add the new macro, then click OK.

To Remove an existing macro, select it from thelist and click Remove. To rearrange
macrosin the list, use the up- and down-arrow buttons.

Bitmaps for Control Panel Buttons

Using IDL

It is recommended that bitmaps for control panel buttons:

1

Note

Bein either XBM (X 11 bitmap file) or XPM (X 11 system pixmap file) format,
with the file extension . xbmor . xpm

Supply the full path name to the bitmap file. Alternatively, if the bitmap is
located in one of the following directories, you can supply only the basefile
name:

e $IDL_DI R resource/ X11/1i b/ app_defaul ts

e $IDL_DIR resource/ X11/1i b/ app_defaul t s/ bi t maps
$HOVE

« $HOVE/ bi t maps

The above directories show the default search path for a bitmap file if nothing other
than the root file name is specified in the .idldefile.

Creating UNIX Macros

116 Chapter 6: Working With Macros

Manually Editing the Resource File

Although thereislittle advantage in doing so, you can also modify the M acros menu
or toolbar by manually editing either your own local IDL resource file or the system-
wide resourcefile. For details, see “Moaodifying the Control Panel” on page 146.

Creating UNIX Macros Using IDL

Chapter 6: Working With Macros

117

Creating Windows Macros

You can modify the contents of the M acros menu and macros toolbar using the Edit
Macros dialog (displayed by selecting Edit... from the M acr os menu). The Edit

M acros dialog alows you to add, remove, or modify macros that appear either in the
Macros menu or the M acr os tool bar.

Edit Macros [%]
; Add...
H
Importimage Bemove |
Importdscii —
ImportBinary
ImportHDF M
Demo Move Down |

IDL command:

print, s

Accelerator
Menu item name: I&F'rint War

™ Crl
Toolbar bitrnap file: IE:\HSI\IDL54\res &b Kew I_
Tacltip text: IF'rint Yariable I stift

Status bar test:
Print Selected Y ariable.

Ok I Lancel |

Figure 6-3: The Edit Macros Dialog.

To add a new macro, do the following:

1. Click Add and enter aname for your new macro. The name you specify
appears only in the Edit Macros dialog.

2. Enter the IDL command to be executed in the IDL Command field. See
“Command Stream Substitutions’” on page 119 for information on the types of
dynamic information that can be included in the command.

3. If you want your macro to be included in the M acros menu, enter alabel for
your macro in the Menu Item Name field.

4. If you want your macro to beincluded in the Macrostoolbar, enter the full path
name of the bitmap button file in the Toolbar bitmap file field. Bitmaps used
as macro buttonsin IDL must be 16 by 16 pixel . brp files. IDL's default

Using IDL

Creating Windows Macros

118 Chapter 6: Working With Macros

bitmaps are stored inther esour ces/ bi t maps subdirectory of the IDL
distribution.

5. Enter text to be displayed as atooltip when the mouse cursor is positioned over
the toolbar button in the Tooltip text field. Thisvalueisignored if no bitmap
fileis specified.

6. Enter text to be displayed on the IDLDE status bar in the Status bar text field.

7. Optionaly, inthe Accelerator field, enter a keystroke shortcut combination
for your new macro. Note that you can create a macro that is available only by
pressing the keystroke combination if you supply neither alabel for the
M acros menu nor a bitmap for the Macros tool bar.

To Remove an existing macro, select it from the list and click Remove. To rearrange
macrosin the list, use the up- and down-arrow buttons.

Click OK to accept your changes or Cancel to abandon them.

Creating Windows Macros Using IDL

Chapter 6: Working With Macros

119

Command Stream Substitutions

You can use command stream (%) substitutions as shortcuts to incorporate certain
types of information into the IDL command for your macro.

Command
Stream Result
Substitution

%F The filename associated with the currently active editor
window.

%P The full path filename associated with the currently active
editor window.

%N The base name of the filename without its path or suffix.

%B The base name of the filename without its path, but with its
suffix.

%S The currently selected text.

%L The line number with the current insertion point.

%% Insertsthe “ %" character.

Table 6-1: Listing of Useful Command Stream Substitutions

Note

When creating a new macro, you may store the macro in the folder (directory)
which IDL has aready provided for the existing IDLDE macros. This folder exists
inthel i b\ macr os directory of your installation directory. If you wish to create a
unique folder for the storage of only macros which you have created you may do so.

Using IDL

Command Stream Substitutions

120 Chapter 6: Working With Macros

Building IDL Example Macros

Below are two examples that illustrate how amacro is created in IDL. The first
example below isa UNIX-only example; the second example will work on either
Microsoft Windows or UNIX.

Creating a Macro to Call a Text Editor in IDL for UNIX

On UNIX platforms, you can create amacro to open afilethat is currently openinthe
IDL Editor in another editor, such asemacs or vi . Use the following procedure to
create the macro:

1. Select Macros — Edit menu to bring up the Edit M acr os dialog box.
2. Complete the following fields in the Edit M acr os dial og:

e Enter “Edit in emacs’ in the Name field.

* Enter “emacs’ in the Label field.

* LeavetheBitmap field blank. This macro will appear only in the M acros
menul.

¢ Leavethe Statusbar text field blank. This value is used only when a
toolbar button is present.

¢ LeavetheTip text field blank. Thisvaueis used only when atoolbar
button is present.

e Enter thefollowing inthe IDL command field (notice that we are using
the %L and %P command stream substitutions):

SPAWN, 'emacs +%. %P &

¢ Select the M enu checkbox to specify whether the macro will appear in the
M acros menu.

3. Create the new macro by clicking the Add button. The new emacs macrois
added to the M acr os menu.

To use this new macro, open the desired file in the IDL editor, then select emacs from
the M acr os menu.

To add amacro for editing in vi, repeat the above steps, but enter the following in the
IDL command field:

SPAWN, 'xterm-e vi +% %P &

Building IDL Example Macros Using IDL

Chapter 6: Working With Macros 121

Note

The IDLDE always checks to determine whether the current file has been externally
modified before using it. If afile was modified with an external editor, IDLDE
notifies you, and asks you to reload the file before using it. You can also use the
Revert to Saved option from the File menu to reload the file.

Change Working Directory Macro

The following macro will select and change your current working directory. The
steps bel ow describe the fields of the Macros dialog on a Microsoft Windows system,
but the macro will work equally well on a UNIX system.

First we will createa. pr o filein IDL which will display a platform-specific
directory-selection dialog.

1

Using IDL

From the IDLDE, open anew IDL Editor window by selecting File > New —
Editor.

Type (or copy) the following lines of code into the new Editor window to form
aprogram:
PRO cd_t est
dir = DI ALOG Pl CKFI LE(/ DI RECTORY)
IF (dir) THEN BEG N
PRINT, 'Changing to: ', dir
CD, dir
ENDI F
END

Savethefileascd_t est . proinadirectory included in IDL's path. (The file
must bein IDL’s path so that IDL will find it automatically when the command
cd_test is executed by the macro we will create.)

Select M acros — Edit menu to bring up the Edit Macros dialog box.

Click Add to create a new macro. Enter “Change Directories’ as the macro
name.

Building IDL Example Macros

122 Chapter 6: Working With Macros

6. Complete the following fields in the Edit Macros dial og:
e Enter “cd test” inthe DL command field.
e Enter “Change Directories’ in the Menu item name field.

¢ Leavethe Toolbar bitmap file field blank. This macro will appear only in
the M acr os menu.

* Leavethe Tooltip text field blank. This valueis used only when a toolbar
button is present.

« Leavethe Statusbar text field blank. Thisvalue is used only when a
toolbar button is present.

To use the new macro, select “ Change Directories’ from the M acros menu.

Building IDL Example Macros Using IDL

Chapter 7:

Printing In IDL

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 124 IDL Printer SetupinWindows 126
Printing Graphics 125 IDL Printer Setupin UNIX or Mac OS X 127

Using IDL 123

124 Chapter 7: Printing in IDL

Overview

IDL allows you two ways to print:
* Printing graphics from the IDL language.
¢ Printing IDL source code from the File menu of the IDLDE.

While these sources are fundamentally different, the methods used to specify and
configure a print device according to your operating system are the same. These
topics are covered in the following sections.

Overview Using IDL

Chapter 7: Printing in IDL 125
Printing Graphics

Beginning with IDL version 5.0, IDL interacts with a system-level printer manager to
allow printing of both IDL Direct Graphics and IDL Object Graphics. On Windows
platforms, IDL uses the operating system’s built-in printing facilities; on UNIX
platforms, IDL uses the Xprinter print manager from Bristol Technology.

Usethe DIALOG_PRINTERSETUP and DIALOG_PRINTJOB functions to
configure your system printer and control individual print jobs from within IDL.

Printing IDL Direct Graphics

To print IDL Direct Graphics, you must first use the SET_PLOT procedure to make
PRINTER your current device. Issue IDL commands as hormal to create the graphics
you wish to print, then use the CLOSE_DOCUMENT keyword to DEVICE to
actually initiate the print job and print something from your printer. You can also
create multiple pages before closing the document as well as being able to usetile
graphics with the 'PMULTI system command. See “IDL Graphics Devices’ in
Appendix A of the IDL Reference Guide manual for details.

Printing IDL Object Graphics

To print IDL Object Graphics, you must create a printer object to use as adestination
for your Draw operations. You can also print multiple documents with the
IDLgrPrinter object. See “Printer Objects’ on page 676 for information about printer
objects and their use.

Using IDL Printing Graphics

126

IDL Printer Setup in Windows

Chapter 7: Printing in IDL

Setting up aprinter in IDL for Windows uses the common Windows Printer Setup
dialog. For more information on setting up a Printer on Windows, see your Windows

operating system documentation or support.

Figure 7-1: Common Printer Setup Dialog in Windows

IDL Printer Setup in Windows

Print

— Prirter

Mame: [Kodsk EktaPlus 7016

Status: Fieady

Type: Kodak EktaPlus 7016
Wwhere: COM4:

Comment:

j Froperties |

— Print range

Lo

) Fages [rom:l— Lo:l_

) Selestion

Copie:

Mumber of copies:

Ijl ™ Callate

Help |

Cancel |

Using IDL

Chapter 7: Printing in IDL 127

IDL Printer Setup in UNIX or Mac OS X

IDL for UNIX uses the Xprinter print technology from Bristol Technology to create

and output information to awide variety of printers. This section describes the
Xprinter setup dialogs.

The Xprinter Setup Dialog

The Xprinter Setup dialog allows you to select model-specific printer options such as
paper trays, paper size, page orientation, and the UNIX print spooler command.
Printer options are saved in the $SHOVE/ . Xpri nt er Def aul t s file. Once configured,
the desired information is saved to the file system and used in future IDL sessions.

¢ Prinker Setup

Output Format: | «w Printer Specific “* Generic (File Onlu) About. ..
File MHame: ‘Exnrinter.eps EPSF
Orientation: q
Scale :|1.00
- Portrait
W Landscape Copies: [31
Apply | Save | Reset | Cancel | Optioms. .. | Install...

Figure 7-2: The Printer Setup Dialog
Printer Setup Dialog Buttons

The action area of the Printer Setup dialog contains six buttons:

Button Description

OK Writes current configuration information to your default
printer information file SHOVE/ . Xpri nt er Def aul t s. This
button also dismisses the dialog.

Table 7-1: Printer Setup Dialog Buttons

Using IDL IDL Printer Setup in UNIX or Mac OS X

128 Chapter 7: Printing in IDL

Button Description
Save Writes current configuration information to your default
printer information file SHOVE/ . Xpri nt er Def aul t s.
Reset Rel oads default configuration from
$HOVE/ . XprinterDefaul ts.
Cancel Closes dialog and cancels all configuration changes.
Options Displaysthe options dial og box that lets you select an alternate

printer setup. This button is disabled if output is configured to
be sent to afile instead of a printer.

Install Displays the installation dialog box that allows you to add or
remove printer devices and printer ports from the
$HOVE/ . Xprint er Def aul ts file.

Table 7-1: Printer Setup Dialog Buttons (Continued)
Configuring Printer Setup Options

Specify the following options on theinitial Printer Setup dialog:

Option Description

Output Format: | Specify whether to send output to afile or a printer. If you
choose Printer Specific, you can send output to any printer
type/port combination configured in your

$HOVE/ . Xpri nt er Def aul t s file. If the port isFILE:,
Xprinter creates an output file for the specified printer type. If
you choose Generic (File Only), print output is sent to an
Encapsulated PostScript or generic PCL file.

Printer: Thisfield appears only if you select Output Format: Printer
Specific. It specifies the name of the default printer type/port
to which to send print output. Click the Options button to
specify adifferent printer type/port combination.

Table 7-2: Specifying Printer Setup Options

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 7: Printing in IDL 129
Option Description

File Name: Thisfield appears only if you choose Output Format: Generic
(File Only). Type the name of the print file you wish to create.
To pipe print output to acommand, enter a! character asthe
first character and then specify the command to which to send
output. For example, to send output to the Ip command, enter
the following:
'p

EPSF Thisfield only appearsif you select Output Format: File.

PCL 4 Click this button to display alist of output file types and select
the desired type. Available types are EPSF (Encapsul ated

PCL5 PostScript), PCL4, and PCL5.

Orientation Specify portrait or landscape.

Scale To increase the size of the output, specify avalue greater than
1.00. To reduce the size, specify avalue less than 1.00. For
example, avalue of 2.00 would double the size of the output; a
value of 0.50 would reduce it by half.

Copies Specify the number of copiesto print.

Table 7-2: Specifying Printer Setup Options (Continued)

To set additional options, such as selecting a different printer or changing the page
size, click the Options button. The Options dialog appears.

The Options dialog is only available when sending output to a printer.

¢ Options [%]
Frinter Mame:|HP LaserJet IV PCL Cartridge on FILE: id
Resolution: |300 Ld
Page Size: Letter id
Faper tray: |Eassette |V

Ol | Cancel |

Using IDL

Figure 7-3: The Options Dialog

IDL Printer Setup in UNIX or Mac OS X

130 Chapter 7: Printing in IDL

Use this dialog to set the Printer Setup options:

Option Description

Printer Name Usethisfield to select the current printer. Click the down
arrow to display alist of configured printers.

Resolution Specify printer resolution with thisfield. Values vary
depending on printer.

Page Size Specify paper size with thisfield. Values vary depending on
printer.

Paper tray Specify paper tray with thisfield. Values vary depending on
printer.

Duplex Specify duplex options (if the selected printer supports duplex

printing). Valid values include None (no duplex printing),
Duplex Tumble (flips over the short edge), and Duplex No
Tumble (flips over the long edge). If the selected printer does
not support duplexing, thisfield is disabled.

Table 7-3: The Printer Setup Options
Adding a New Printer to the List of Printer Choices

To add a new printer to your list of available printers:
« Defineaport, which isan aiasfor the print command.

¢ Associate the port with the printer’s PPD file.
Defining a New Port

To define anew port using the Printer Setup dialog:

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 7: Printing in IDL 131

« Display the Ports dialog. From the Printer Setup dialog, select I nstall, Add
Printer, and Define New Port.

Forts

local=1p -t$XPDOCHAME

Edit Port:

ﬁdd—Replace| Ratagnse Spooler Dismiss Cancel

Figure 7-4: Defining a New Port

Type the port definition in the Edit Port edit box. Port definitions have the following
format:

port=print_comand

The print_command is the command for sending output to the printer port. If you
were to have two printers named ORION and SIRIUS for example, the definitions
would appear as follows:

ORI ON=rsh bandit "lIp -d ps”

SI Rl US=rsh bandit "Ip -d ps -T pcl5”
Both printers here are connected to the system bandit, so the print command is a
remote shell command executed on bandit. ORION is a PostScript printer, so the
command| p -d ps isexecuted on bandit to print to ORION. SIRIUS thoughisa
PCL5 printer, so the print command executed on bandit to print to SIRIUSislp -d
ps -T pcl5.

* Click Add/Replace and the new port is now included in the list of current port
definitions.

¢ Repeat the above step for each printer to which you wish to send output.

Using IDL IDL Printer Setup in UNIX or Mac OS X

132 Chapter 7: Printing in IDL

Note
To create aprinter port for each available queue on hp700 systems, click the

Spooler button on the Ports dialog. This command creates a default printer port for
each available printer queue returned by the | pst at -acommand.

Modifying an Existing Port
In order to modify an existing port using the Printer Setup dialog:

« Display the Ports dialog. From the Printer Setup dialog, click Install, Add
Printer, and Define New Port.

e Select the port you wish to modify and edit the port information in the Edit
Port edit box.

e Click Add/Replace. The modified port is now included in the list of current
port definitions.

Matching a Printer Device to a Port
In order to match a printer device to a port using the Printer Setup dialog:

e Display the Add Printer dialog. From the Printer Setup dialog, click Install
and Add Printer.

¢ InthePrinter Devicesfield, select the description that matches the printer you
aretoinstall. If no description matches this printer, contact your printer vendor
for a printer description (PPD) file.

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 7: Printing in IDL 133

e Select the desired port in the Current Port Definitions list box and click Add
Selected. The new printer is now included in the list of currently installed

printers.
Printer Devices Current FPort Definitions
.ﬁF:S:PE PIP with APS-B=108 : ﬁ local=1lp =t3XPODCHAME
APS-FS PIP with APS-6-80 FILE:=

APS-FS PIF with LZR 1200

APS=FS PIP with LZR 2600

AST Turbolaser-PS

Adobe LaserJet IT Cartridge

Agfa Matrix ChromaScript

Agfa TabScript CS00 FostScript Printer
fgfa-Compugraphic S9400F

Apple LaserWriter]

fild Selected Define Mew Port... Dismiss

Figure 7-5: Adding a Printer

Removing an Installed Printer
In order to remove a printer device/port combination using the Printer Setup dialog:

« Display the Printer Installation dialog. From the Printer Setup dialog, click
Install.

« IntheCurrently Installed Printerslist box, select the printer you wish to
remove and click on Remove Selected.

Manually Modifying Default Printer Setup Values

Xprinter retrieves default printer setup information from the file

. Xprint er Def aul t s inyour home directory. If thisfile does not exist, Xprinter
reads the information from the file $XPHOVE/ xpri nt er/ Xpri nt er Def aul t s or
$XPPATH Xpri nt er Def aul t s.

Note
For IDL, $XPATHissetto $I DL_DI R/ resour ce/ xprinter.

The Xprinter Printer Setup dialog writes modifications to the default information in
$HOME/ . Xpri nt er Def aul t s. However, it never modifies the default information
in the file $XPHOVE/ Xpri nt er Def aul t s or $XPPATH Xpr i nt er Def aul ts. If
thefile SHOVE/ . Xpri nt er Def aul t s does not already exist, the Xprinter Printer
Setup dialog createsiit.

Using IDL IDL Printer Setup in UNIX or Mac OS X

134 Chapter 7: Printing in IDL

Although the most common way to modify the default Printer Setup is using the
Printer Setup dialog, which updates $HOVE/ . Xpri nt er Def aul t s automatically,
you may also edit this file with any text editor and make changes directly.

You may also set up the SHOVE/ . Xpr i nt er Def aul t s file to do the following:
» Define printer ports.
e Match printer types to defined ports.
e Specify the default printer.
e Specify printer-specific options.
Defining a Port

A printer port isan alias for the print command. It is defined in the [ports] section of
$HOVE/ . Xpdf aul t s and appears as part of the Printer Name in the Printer Setup
dialog. For instance, thefollowing isthefirst Printer Name in the Printer Setup dialog
before you make any changes to $HOVE/ . Xpri nt er Def aul t s:

Appl eLaserWiter v23.0 PostScript on FILE:

For this Printer Name, FILE: isthe port name. To send output to a printer instead of a
file, you first must define a port for each printer to which you wish to direct outpuit.
Port entries in the [ports] section have this format:

port =print _command

The print_command is the command for sending output to the printer port. For
instance, if you have two printers (ORION and SIRIUS), your [ports] section may
appear asfollows:

[ports]
ORI ON=rsh bandit "lIp -d ps”
SI Rl US=rsh bandit "Ip -d ps -T pcl5”

In the above, both printers are connected to the system bandit, so the print command
is aremote shell command executed on bandit. ORION is a PostScript printer, so the
command| p -d ps isexecuted on bandit to print to ORION. SIRIUS, though, isa
PCL5 printer, and thus the print command executed on bandit to print to SIRIUS is
Ip -d ps -T pcl5.

If aprinter is connected to your local system, you will need to add an entry for that
printer aswell. For the local printer, your entry should be like the following:

[ports]

ORI ON=rsh bandit "lIp -d ps”
SIRIUS=rsh bandit "lIp -d ps -T pcl 15"
LOCAL=lp -d ps

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 7: Printing in IDL 135

Your printer port can be any name you choose except FILE:, which isthe only
reserved port name. It causes X printer to create a print file formatted specifically for
the specified printer type.

An entry must be created in the [ports] section for every printer to which you wish to
be able to print.

Matching a Printer Type to a Defined Port

After you have defined a port for each printer, you must tell Xprinter what type of
printer is associated with each port. List device typesin the [devices] section of the
. Xpri nt er Def aul t s file. Each entry in the [devices] section has the following
format:

alias=PPD file driver, port

There must be a space between the PPD_file and driver and a comma between the
driver and the port. The following table describes each part of this entry.

Field Description

dias The dlias is a descriptive name used to identify the printer. It
can be anything you choose. The alias is the name which
appears in the Printer Setup dialog (such asHP Laser Jet
Il SI PostScript).

PPD file The PPD_fileisthe name of the printer description (PPD) file
used by the printer, without a. PPD extension. Search in the
directory $XPHOME/ xpri nt er / ppds/ to find the PPD file
for your printer.

driver The driver isthe type of driver your printer uses. Value values
are Post Scri pt, PCL4, and PCL5.

port The port isthe printer port aslisted in the [ports] section of the
. Xpri nt er Def aul t s file (ORION, SIRIUS, and LOCAL in
the example [ports] section).

Table 7-4: Associating a Printer with a Port

Using IDL IDL Printer Setup in UNIX or Mac OS X

136

Chapter 7: Printing in IDL

Here's an example configuring three printers:

Port Printer Type Output Type
ORION HP LaserJet 111Si PostScript v52.3 PostScript
SIRIUS HP LaserJet 4M PCL Cartridge PCL
LOCAL QMS-PS 2200 v52.3 PostScript

Table 7-5: Example Configuration

First, be sureto choose an aliasfor each printer. In order to make it simpler to identify
the printer from the Printer Setup dialog you wish to use, you may use the following
aliases:

HP LaserJet PS

HP LasterJet PCL

Qs PS
It isimportant to note that if you utilize the Printer Setup dial og to associate ports and
PPD files, you cannot specify a printer alias. You must instead choose an alias from
the predefined listing that appears in the Printer Devices list box in the Add Printer
dialog. The corresponding PPD file is already associated with the printer aliasesin
thislist box.

Now, identify the PPD file associated with each of these printers.
Thus the [devices] section of the . Xpri nt er Def aul t s file would be as follows:

[devi ces]

HP LaserJet PS=HP3SI 523 Post Scri pt, ORI ON
HP LaserJet PCL=HP4AM PCL, SI Rl US

QVB PS=@200523 Post Scri pt, LOCAL

After these entries have been added to your . Xpri nt er Def aul t s file, thefollowing
printer choices are available from the Printer Setup dialog:
HP LaserJet PS on ORI ON

HP LaserJet PCL on SIRIUS
QWS PS on LOCAL

Specifying a Default Printer

After you have configured all available printers, you may select one of them as the
default printer. To make a specific printer the default printer on the Printer Setup
dialog, add an entry (in the following format) to the [windows] section of the

. Xpri nt er Def aul t s file:

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 7: Printing in IDL 137

Using IDL

[Wi ndows]
devi ce=PPD fil e, driver, port

Simply provide the same information that you used in the [devices] section. Only the
format of the entry is different; there is acomma between the PPD_file and the driver
instead of a space.

For example, suppose you wish the default printer to be the printer at port ORION.
The [windows] section would appear as follows:

[wi ndows]

devi ce=HP3SI 523, Post Scri pt, ORI ON

[ports]

ORI ON=rsh bandit "lIp -d ps”

SI R US=rsh bandit "Ip -d ps -T pcl5”
LOCAL=l p -d ps

[devi ces]

HP LaserJet PS=HP3SI 523 Post Scri pt, ORI ON
HP LaserJet PCL=HPAM PCL, SI RI US

QVE PS=@200523 Post Scri pt, LOCAL

Inyour default . Xpri nt er Def aul t s file, the [windows] entry appears:

[Wi ndows]
devi ce=NULL, Post Scri pt, FI LE

Since no PPD fileislisted (NULL), the default on the Printer Setup dialog is to print
generic PostScript to afile. You may specify the filename and change the type of
output to PCL on the Printer Setup dial og.

Specifying Printer-Specific Options

You may include a section that lists the default printer-specific options for each
printer defined in the devices section. The options available vary between differing
printers, but typical options include number of copies, page size, paper tray, and
orientation. An example follows of a printer-specific section for a default printer in
the example . Xpri nt er Def aul t s file:

[HP3SI 523, Post Scri pt]
Scal e=0. 80

Copi es=1
Paper Tr ay=Lower
PageSi ze=Let ter
Orientation=Portrait
DPI =300

IDL Printer Setup in UNIX or Mac OS X

138 Chapter 7: Printing in IDL

IDL Printer Setup in UNIX or Mac OS X Using IDL

Chapter 8:
Customizing IDL on
Motif Systems

This chapter describes techniques for customizing versions of IDL running under the X Window
System (Motif) graphical user interface.

Using X Resourcesto Customize IDL ... 140 ActionRoutines 149
Command LineOptions 143 CDE File Manager Support 156
Modifying the Control Panel 146

Using IDL 139

140 Chapter 8: Customizing IDL on Motif Systems

Using X Resources to Customize IDL

X Resources in Brief

The component widgets of an X Window application each have two names, a class
name that identifiesits type (e.g., XmText for the Motif text widget) and an instance
name (e.g., command, the name of the IDLDE command input text widget). The class
name can be used to set resources for an entire class of widgets (e.g., to make al text
widgets have a black background) while the instance name is used for control of
individual widgets (e.g., set the IDLDE command input window font without
affecting other widgets).

Applications consist of atree of widgets, each having a class name and an instance
name. To specify aresource for a given widget, list the names of the widgets lying
between the top widget and the target widget from left to right, separated by periods.
In amoderately complicated widget hierarchy, only some of the widgets are of
interest; there are intervening widgets that serve uninteresting purposes (such as a
base that holds other widgets). A star (*) character can be used as awildcard to skip
such widgets. Another fact to keep in mind is that a given resource specification is
interpreted as broadly as possible to apply to any widget matching that description.
This allows avery small set of resource specifications to affect alarge number of
widgets.

Resource Files
There are two resource files used to customize the IDL Development Environment.
Aningtallation-wide resourcefile called | dl islocated in
$I DL_DI R/ resource/ X11/1i b/ app-defaul ts
and a user resourcefile called . i dl de islocated in your home directory.

Modifying the global | dI resource file effects an installation-wide customization.
Changestothel dl filewill be lost with anew installation.

The user resourcefile, . i dl de, customizes individual versions of IDLDE and is
divided into two sections. The first section contains user-defined customization

resources. You can place comments starting with “!” or “!1” in the first section of
. i dl de. When newer versionsof . i dl de arewritten, system comments are prefixed
with “!11” . The second section of . i dl de isused to store preferences; it is modified

when preferences are saved and shouldn’t be modified manually.

Using X Resources to Customize IDL Using IDL

Chapter 8: Customizing IDL on Motif Systems 141

If you use IDL in command-line mode rather than viathe IDL Development
Environment, you can include resourcesin the . Xr esour ces filelocated in your
home directory.

Format of IDL Resources

All IDL resource strings begin with the characters“| dl ”. For example, the resource
Idl.colors
controls the number of entries of the system shared colormap IDL will use.

Resource strings that apply only to the IDL Development Environment begin with
the characters“I dl *i dl de”. For example, the resource

I dl *i dl de*hi deConmand
controls whether the IDLDE Command Input Lineis visible when IDL starts up.

Resourcesthat include the string “i dl de” must be included either in the system-wide
I dl resourcefile orina. i dl de fileinyour home directory. Resources that apply to
IDL whether it is running in command-line mode or viathe IDLDE can be included
in either the system-wide | dl resourcefile orina. Xr esour ces filein your home
directory.

To specify avaluefor an X resource, append a colon character and the value after the
resource string. Whitespace isignored. For example:

Idl.colors:-10
isthe same as
Idl.colors: -10

X Resources Used by IDL

Using IDL

IDL uses alarge number of resources to control the behavior and appearance of the
IDL Development Environment and any graphical application writtenin IDL. To
learn more about the specific resources used, or to modify individual values, inspect
the installation-wide resourcefile | dl , locatedin

$I DL_DI R'resource/ X11/1i b/ app-defaul ts

Note

RSl suggests that you make any changes to the IDL resources in a user-specific
.idldefileor. Xresources file.

Using X Resources to Customize IDL

142 Chapter 8: Customizing IDL on Motif Systems

Reserving Colors

When IDL starts, it attempts to secure entries in the shared system color map for use
when drawing graphics. If theentry | dl . col or s existsinthel dI resourcefile, IDL
will attempt to allocate the number of colors specified from the shared colormap. If
for some reason it cannot allocate the requested number of colors from the shared
colormap, IDL will create a private colormap. Using a private colormap ensures that
IDL hasthe number of colormap entries necessary, but can lead to colormap flashing
when the cursor or window focus moves between IDL and other applications.

One way to avoid creating a private colormap for IDL isto setthel dl . col ors
resource equal to a negative number. This causes IDL to try to use the shared
colormap, allocating all but the specified number of colors. For example:

Idl.colors: -10

instructs IDL to allocate all but 10 of the currently available colors for its use. Thus,
if there are atotal of 220 colors not yet reserved by other applications (such asthe
windowing system), IDL will alocate 210 colors from the shared colormap.

The IDLDE application itself uses between 10-15 colors. On startup, the IDLDE will
attempt to use colors in the shared colormap, but will reserve colors for itself if
appropriate matching colors in the shared colormap are not found. As aresult,
running IDL with the IDLDE may use more colors than running IDL with the tty
(plain command line) interface.

If you experience colormap flashing when using the IDLDE, but not when you use
the plain tty interface, try adjusting the number of colors used by the IDLDE
interactively, using the - col or s startup flag. For example,

idlde -colors -15

startsthe IDLDE and alocates all but 15 of the currently available colors. When you
find an appropriate number of colorsto reserve, you can set thei dl de. col or s
resourceinthel dl resourcefile or in your personal . i dl de file accordingly.

Using X Resources to Customize IDL Using IDL

Chapter 8: Customizing IDL on Motif Systems 143

Command Line Options

The IDLDE can aso be customized from the command line using the command line
flags described below. Command line flags are given precedence over global
resource files (I dl) and user resource files (. i dI de). For more information about
resources, see “Using X Resourcesto Customize IDL” on page 140.

Example

Type the following at the operating system command line to start the UNIX IDLDE
using separate main-level windows to display files:

idde -nulti
The available command line flags follow:
-efile [-e filey -e filey. ..]

Opens specified files at startup.
-nocommand

Hides the Output Log window and Command Input Line at startup. The related
resourceis| dl *i dl de*hi deConmand: Tr ue.

-command

Displays L og window and Command Input window at startup. The related resourceis
I dl *i dl de*hi deConmand: Fal se.

-nocontrol

Hides the Control panel buttons at startup. The related resourceis
I dl *i dl de*hi deControl : True.

-control

Displays the Control Panel buttons at startup. The related resourceis
I dl *i dl de*hi deControl: Fal se.

-nolog

Hides the Output Log at startup. The related resourceis
I dl *i dl de*hi deLog: True.

Using IDL Command Line Options

144

Chapter 8: Customizing IDL on Motif Systems

-log

Displays the Output Log at startup. The related resourceis
I dl *i dl de*hi deLog: Fal se.

-nostartup

Does not execute startup file on startup (including IDL_STARTUP). The related
resourceis| dl *i dl de. noStart upFil e: True.

-startup

Executes startup file on startup (including IDL_STARTUP). The related resourceis
I dl *idl de. noStartupFil e: Fal se.

-startupfile "file"

Executesfile at startup (overrides IDL_STARTUP environment variable). If
startupfileis not specified, the environment variable IDL_STARTUP is used as the
startup file (if defined). Therelated resourceis! dl *i dl de. startupFile: file
wherefi | e isthefull path name of the startup file.

-nostatus

Hides the Status Bar at startup. The related resourceis
I dl *i dl de*hi deSt atus: True.

-Status

Displays the Status Bar at startup. The related resource is
I dl *i dl de*hi deSt atus: Fal se.

-path "path"

Append path to the IDL path (defined using IDL_PATH environment variable). The
related resourceis| dl *i dl de. pat h: pat h where pat h isthe full path to be
appended.

-quiet
Inhibits display of the IDL startup announcement and message of the day (motd) file.
-readonly

Opensfiles asread-only. The related resourceis| dl *i dl de. readOnl y: True.

Command Line Options Using IDL

Chapter 8

Using IDL

: Customizing IDL on Motif Systems 145

-readwrite

Open files as read-writeable. The related resourceis
Idl *idl de. readOnly: Fal se.

-single

Displaysfilesin asingle window, which is a child of the main IDLDE window. The
related resourceis| dl *i dl de*nul ti W ndowEdi t: Fal se.

-multi

Displays files in multiple windows, each one in a separate main level window. The
related resourceis! dl *i dl de*nmul t i W ndowEdi t: Tr ue.

-view

Displays the Multiple Document Panel in single window mode at startup. The related
resourceis! dl *i dl de*hi deVi ew. Fal se.

-noview

Hides the Multiple Document Panel at startup. The related resourceis
I dl *i dl de*hi deVi ew. True.

-title "Title"

Use Title as thetitle of the main IDLDE window. The related resourceis
idlde.title.

Command Line Options

146 Chapter 8: Customizing IDL on Motif Systems

Modifying the Control Panel

The Control Panel, with the resource name cont r ol , is located below the IDL
Development Environment M enu bar. The Control Panel bar is a RowColumn
widget containing buttons which serve as shortcuts for common commands.

You can modify the existing Control Panel settings by editing thei dl de* cont r ol
valuesin the system-wide | dI resource file or overriding those settingsin your local
. i dl de file. In addition, you can add buttons to the M acr os toolbar or menu by
adding resourcesto your . i dl de file.

Note
If you wish to add, modify, or remove the buttons on the M acr os toolbar or menu,
you can do so viathe IDLDE interface using the Edit Macros dialog. See*“ Creating
UNIX Macros’ on page 114 for details. Whether you modify your macros using the
dialog or by editing aresource file manually, the results are the same. Thereislittle
advantage to adding macrosto the . i dl de file manually.

Adding Macros Toolbar Buttons

Thei dl But t onsUser resource defines the resource name for each button on the
M acros toolbar in the Control Panel. The resource name details button attributes,
such asitslabel or pixmap, its associated IDL command, and its status bar message.

To add a button to the M acr os tool bar, make the following modifications to the
. i dl de file:

« Addanew nametothei dl de*cont rol *i dl Butt onsUser list. The buttons
are created in the order specified.

e Addidl de*control *<new button>*| abel String orl abel Pi xmap
resources (or both). These resources define the button text or image. If you
choose to use a pixmap label, be sure the file you specify abides by the
restrictions described in “Bitmaps for Control Panel Buttons’ on page 115.

« Addanidl de*control *<new button>*i dl Command resource. Thisis
the text of the IDL command to execute. You can aso include command
stream substitutions; see “ Command Stream Substitutions’ on page 119 for
details.

Alternatively, you can add ani dl Act i on resource. See “Action Routines’ on
page 149 for details.

Modifying the Control Panel Using IDL

Chapter 8: Customizing IDL on Motif Systems 147

e Addanidl de*control *<new butt on>*hi nt resource. Thisisthe text
that appears in the Status Bar when the cursor is positioned over the new
button.

e Addanidl de*control *<new button>*ti p resource. Thisisthe text that
appears as a “tooltip” when the cursor is positioned over the new button.

If you want your changes to be available to all users on the system, you can aso
modify the system-wide | dI resource file, located in the following directory:

$I DL_DI R/ resource/ X11/1i b/ app-defaul ts

Adding Macros Menu Entries

To add entries into the M acr os menu, follow the same steps outlined above,
modifying thei dl de* menubar * macr osMenu* macr osLi st User resource and
substituting i dI de* menubar * macr osMenu* <new nenu it e for

i dl de*cont rol *<new but t on> in the above steps.

Examples

Using IDL

To add a button called Reset All to the Control Panel with a color pixmap stored in
thefiler eset al | . xpmlocated in your home directory, add the following resources
tothe. i dl de filein your $SHOME directory:

i dl de*control *idl ButtonsUser: <exiting buttons> resetall
i dl de*control *resetal | *| abel Pi xmap: resetal |.xpm

i dl de*control *resetal | *| abel String: Reset All

i dl de*control *resetal | *i dl Command: \

RETALL & W DGET_CONTRQOL, / RESET

i dl de*control *resetal | *statusString:\

Stop execution of the current code and return to\

the main programing | evel

Note that in this example the new button is added at the end of the list of existing
buttons. You can locate the new button anywherein thelist.

To specify a pixmap located in particular directory, specify the full file path of the
pixmap file, for example:

i dl de*control *resetal | *I abel Pi xmap:\
/ hone/ user/ bi t maps/resetal | . xpm

To create two rows of the Control Panel from the default of one row, set the
numColumns resource to 2:

i dl de*cont rol *nunCol ums: 2

Modifying the Control Panel

148 Chapter 8: Customizing IDL on Motif Systems

To use labdl (text) buttonsin the Control Panel set| abel Type to XnSTRI NG. To use
icon (graphics) buttons set | abel Type to XnPl XMVAP.

i dl de*control *I abel Type: XnSTRI NG
or
i dl de*control *I abel Type: XnPl XMAP

Modifying the Control Panel Using IDL

Chapter 8: Customizing IDL on Motif Systems 149

Action Routines

Using IDL

Most Motif widgets supply action routines which can be bound to events (such as
keypress events). Action routines provided by IDL can be used to define commands
for Control Panel buttons or menu items by using thei dl Act i on resource.

The following action routines can be used in the same manner as the IDL commands
specifiedinani dl Command resource. The syntax to add an action routine to a
control panel button is:

I dl *i dl de*control *buttonNane*i dl Action: Action
or
I dl *i dl de*control *buttonNane*i dl Acti on: Action(Argunents)

where buttonName is the name of the button and Action is the name of the action
routine. Arguments to the action routine, if require, are enclosed in parentheses.

IdIBreakpoint

Usel dI Br eakpoi nt to control the placement of breakpoints. If no parameter is
specified, the breakpoint is set on the current line. At least one of the arguments from
the following table must be set:

Argument Action
SET Set a breakpoint on the current line.
CLEAR Clear the breakpoint on the current line.

TOGGLE Toggle (SET or CLEAR) the state of the
breakpoint on the current line.

COMPLEX Display breakpoint dialog to set a complex
breakpoint.

LIST List all currently set breakpoints

Table 8-1: Breakpoint Arguments

For example, to use this action routine to clear a breakpoint, the Action specified
would be:

I dl Br eakpoi nt (CLEAR)

Action Routines

150

IdIClearLog

Chapter 8: Customizing IDL on Motif Systems

Usel dl d ear Log to erase the contents of the Output Log.

IdIClearView

Usel dI d ear Vi ewto clear the contents of the currently-active filein the Multiple

Document Panel.
I[diCommandHide

Usel dl CommandHi de to hide or expose the Command Area, which includes the
Command Input Line and the Output Log. One of the following arguments must be

set: Show, Hide, or Toggle.

IdICompile

Usel dI Conpi | e to compile the file in the currently-active editor window. One of

the arguments from the following table must be set:

Argument

Action

FILE

Compiles the currently-active
file.

TEMPORARY

Compiles the currently-active
fileinto atemporary file

RESOLVE

Resolves all referenced and
uncompiled IDL routines

Table 8-2: Compiling Arguments

IdIControlHide

Usel dI Cont r ol Hi de to hide or expose the Control Panel. One of the following

arguments must be set: Show, Hide, or Toggle.

Action Routines

Chapter 8: Customizing IDL on Motif Systems 151

IdIEdit

Usel dl Edi t to manipulate the contents of the currently-selected editor window.
One of the arguments from the following table must be set:

Argument Action

UNDO Undo previous editing action.

REDO Redo previously undone
action.

CuUT Remove currently-selected
text to UNIX clipboard.

COoPY Copy currently-selected text
to UNIX clipboard.

PASTE Paste contents of UNIX
clipboard at current insertion
point.

SELECTALL Select all of the text in the
currently-sel ected editor
window.

GOTODEF Display the definition of the
currently-selected procedure
or function.

GOTOLINE Move directly to the specified
line number.

Table 8-3: Editor Window Editing Arguments
|dIEditMacros
Usel dI Edi t Macr os to display the Edit Macros dialog.
IdIEXit

Usel dl Exi t tocause IDLDE to act as though the EXIT command has been entered.
Note that thisis usually tied to a menu accelerator (Ctrl-Q in this case), so this
routine israrely called directly.

Using IDL Action Routines

152 Chapter 8: Customizing IDL on Motif Systems

IdIFile

Usel dl Fi | e to manipulate the currently-selected editor window. One of the
arguments in the following table must be set:

Argument Action

NEW Creates a new editor window.

OPEN Opens an existing file.

SAVE Saves the contents of the
currently-selected editor
window.

PRINT Prints the contents of the
currently-selected editor
window.

Table 8-4: Editor Window Arguments

IdIFileReadOnly

Usel dl Fi | eReadOnl y to specify the read/write status of the currently-active editor
window. One of the arguments from the following table must be set:

Argument Action

READONLY Disable editing of the
currently-sel ected editor
window.

READWRITE | Enables editing of the
currently-selected window.

Table 8-5: Read/Write Arguments

IdIFunctionKey

Usel dl Functi onKey to alow entry of an IDL command into the input command
stream. It istypically used to tie IDL commands to function keys. For example:

<Key>F5: I dl Functi onKey("print, 'F5 pressed' ")\n

Action Routines Using IDL

Chapter 8: Customizing IDL on Motif Systems 153

IdlInterrupt

Usel dl I nterrupt tocause IDLDE to receive an interrupt. Note that thisis usually
tied to Ctrl-C as a menu accelerator.

IdIListStack

Usel dI Li st St ack to display the current nesting of procedures and functions
(calling stack).

IdILogHide

Usel dl LogHi de to hide or expose the Output Log. One of the following arguments
must be set: Show, Hide, or Toggle.

IdIRecallCommand

Usel dl Recal | Conmand to recalls previously entered commandsinto the command
widget. Either the BACK or the FORWARD argument must be specified to indicate
the direction of the recall. For example:

<Key>osf Up: | dl Recal | Command(BACK)\ n
IdIReset
Usel dl Reset to reset the IDL environment.
IdIRun
Usel dl Run to execute the currently-activefile.
IdISearch

Usel dl Sear ch to call the Find dialog for a search of the current Multiple
Document Panel. One of the optional arguments from the following table may be

used:
Argument Action
FIND Displays a search dialog (default).
FINDAGAIN Finds the next occurrence of the
specified string.

Table 8-6: Find Dialog Arguments

Using IDL Action Routines

154 Chapter 8: Customizing IDL on Motif Systems

Argument Action

FINDSELECTION Finds next occurrence of the current
selection.

ENTERSELECTION | Entersthe current selection asthe search
string in the Find dialog.

REPLACE Replaces the search string, with a
specified replacement string.

REPLACEFIND Finds the next occurrence of the search
string, and replaces it with the specified
replacement string.

Table 8-6: Find Dialog Arguments
IdIStatusHide

Usel dl St at usHi de to hide or expose the Status Bar. One of the following
arguments must be set: Show, Hide, or Toggle.

IdIStep

Usel dI St ep to control statement execution for debugging. At least one of the
arguments from the following table must be set.

Argument Action

INTO Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are also executed in single-
statement mode.

OVER Executes a single statement in the current
program. If nested procedures or functions are
encountered, they are run until completion,
whereupon interactive control returns.

ouT Continues execution until current routine
returns.

Table 8-7: Debugging Arguments

Action Routines Using IDL

Chapter 8: Customizing IDL on Motif Systems 155

Argument Action
SKIP Skips one statement and executes following
Statement.
CONTINUE Continues execution of an interrupted program.

TOCURSOR Executes file until encountering the cursor.

TORETURN Executesfile until encountering the return.

Table 8-7: Debugging Arguments
IdITrace
Usel dI Tr ace to display adialog box to control program tracing.

IdIViewHide

Usel dI Vi ewHi de to hide or expose the M ultiple Document Panel. One of the
following arguments must be set: Show, Hide, or Toggle.

[dIWindows

Usel dl W ndows to manipulate the state of the Editor windows. One of the
arguments from the following table must be set:

Argument Action

CASCADE Arrange open windowsin a
staggered, overlapping
fashion.

TILE Arrange all windows in a non-
overlapping fashion.

MULTI Open windows outside the
IDLDE interface.

SINGLE Display the most recent
window on the Multiple
Document Panel.

Table 8-8: Editor Window Display Arguments

Using IDL Action Routines

156 Chapter 8: Customizing IDL on Motif Systems

CDE File Manager Support

This section provides information on setting up the IDL Devel opment Environment
to support the Common Desktop Environment (CDE) File Manager for HP-UX,
Solaris, and Tru64 UNIX. Setting up the IDLDE to provide CDE File Manager

support alows you to do the following:

e IDL. pro filescan be dragged and dropped from the CDE File Manager onto

the IDLDE.
e Double-clickingonan IDL . pr o file opensthefilein the IDLDE.
During installation, the CDE Action File, 1 dI . dt , isinstaled in

/etc/dt/appconfig/types/ C/ ontheloca machine, if thisdirectory haswrite
permissions. Thisfile provides the necessary support for the CDE File Manager on
that machine. However, if IDL isinstalled on a server and is run on various client
machines, the CDE Action File must be manually copied to each client machine on
which you want to provide support for the CDE File Manager. This file must also be
copied to the server if the/ et ¢/ dt / appconfi g/ t ypes/ C/ directory did not have
write permissions at installation time. If the local machine does not contain the

I dl.dt fileinthe/ et c/ dt/appconfig/types/ C directory, do the following:

1. Locatethel dl . dt fileinthedirectory $I DL_DI R/ bi n.

2. Copyldl.dt tothe/etc/dt/appconfig/types/ C/ directory onthelocal
machine. If the/ et c/ dt / appconfi g/ t ypes/ C/ directory does not exist,

copy thefiletothe/ usr/ dt/ appconfi g/t ypes/ C directory.

3. Inthel dl . dt file, verify that the path to the RSI _Di r/ bi n directory in the
ACTI ON | dI section iscorrect for the local machine. For example, if IDL is
locatedinthe/ usr /I ocal / rsi/ directory, the ACTI ON | dl section should

look like this:
ACTI ON | dl
{
LABEL I dl
TYPE COVIVAND
EXEC_STRI NG /bin/sh -c '
fusr/local/rsi/idl_setup.ksh;idl -c -e %rg_1%
| CON Dt actn

W NDOW TYPE NO_STDI O
DESCRI PTI ON Start 1dl Devel opnent Environment

}
4. Logout and log back in to the CDE.

CDE File Manager Support

Using IDL

Chapter 9:

Preparing and Running
Programs in IDL

The following topics are covered in this chapter:

OVEIVIEW ..ot 158
Introduction to IDL Program Files 159
Running IDL Program Files 161
Interrupting Program Execution 165

Using IDL

Variable Context After Interruption 166
AbortingIDL 167
Saving Variablesfrom an IDL Session .. 168

For More Information on Programming .. 170

157

158 Chapter 9: Preparing and Running Programs in IDL

Overview

Though IDL isavery useful interactive data analysistoal, it is also avery powerful
programming language. IDL offers varying types and degrees of program
capabilities.

Short programs or procedures are typically entered at the IDL command line. Theses
main-level programs consist of a series of program statements that are compiled and
executed once an END statement is encountered. For more information on main-level
programs, see “Main-Level Programs’ on page 194 of Building IDL Applications.

Longer routines and programs, consisting of more than afew lines, are typically
created using any text editor. The GUI front-end for IDL includes a built-in text
editor, but any text editor can be used to create IDL programs. Files containing IDL
programs, procedures, and functions are assumed to have the extension name. pr o.
See “IDL Program Files’ on page 159 for more information. Once the program has
been created in an editor, the program can be compiled and run using one of the
methods described in “Running IDL Program Files’ on page 161.

Binary files containing routines or variables can be created using the SAVE
procedure. Thesefiles, typically identified with a. sav extension, can be shared
among other users or restored at alater time. See“IDL .sav Files’ on page 159 for an
overview of common . sav file uses. While there are afew limitations on the
portability of such files between different release versions of IDL, these files provide
a convenient way to save session information, or share variable data, routines or
applications with other IDL users. See “Restoring and Running .sav Files’ on

page 162 for information on successfully restoring and running this type of file.

Overview Using IDL

Chapter 9: Preparing and Running Programs in IDL 159

Introduction to IDL Program Files

This section discusses existing IDL program files, either . pro or . sav files. For
information on main-level programs, which are entered and executed at the command
line, see “Main-Level Programs’ on page 194 of Building IDL Applications. For
information on include files, which contain IDL statements or commands that are
executed in sequence, see “Include Files’ on page 195 of Building IDL Applications.

IDL Program Files

Most IDL routines and utilities are in the form of uniquely named text files that
contain procedures and /or functions. Procedures consist of a sequence of IDL
statements that perform a specific task, and are identified with the procedure
definition statement, PRO. Functions also consist of a sequence of IDL statements
that perform a specific task, but additionally return avalue to the calling program unit
when executed. Functions are identified with the function definition statement,
FUNCTION. See“Running Program Files” on page 161 for the methods used to run
program files. For more detailed information on IDL program files, see“What is an
IDL Program?’ on page 194 in Building IDL Applications.

IDL .sav Files

Using IDL

A . sav file, created with the SAVE procedure, may contain data variables, system
variables, functions or procedures which you can restore and run. While a .sav file
cannot contain both variables and routines, a. sav file containing routines can call a
secondary .sav file containing variables.

Common uses for . sav filesinclude the following:

« To store the system variables and common blocks associated with an IDL
session. For more information on this application of . sav files see “ Saving
Variablesfrom an IDL Session” on page 168.

e To store variable data such as an image with its associated user-defined color
properties and size definitions. See“ Saving Variablesfrom an IDL Session” on
page 168.

e To share routines or applications with other IDL users. See * Saving Compiled
IDL Programs’ on page 202 in Building IDL Applications for an example.

Note
When using the SAVE procedure, some users identify binary files containing
variable datausing a. dat extension instead of a. sav extension. While any

Introduction to IDL Program Files

160 Chapter 9: Preparing and Running Programs in IDL

extension can be used to identify files created with SAVE, it is recommended that
you use the . sav extension to easily identify files that can be restored.

For information on running .sav files, see “Restoring and Running .sav Files’ on
page 162.

Introduction to IDL Program Files Using IDL

Chapter 9

: Preparing and Running Programs in IDL 161

Running IDL Program Files

This section discusses how to execute existing program files, either . pr o files
(discussed in the following section, “Running Program Files’) or . sav files
(discussed in the section, * Restoring and Running .sav Files’ on page 162). For
information on running main-level programs, which are entered and executed at the
command line, see “Main-Level Programs’ in Chapter 9 of Building IDL
Applications. For information on batch execution of include files, which contain IDL
statements or commands that are executed in sequence, see Chapter 10, “Executing
Batch Jobsin IDL”.

Running Program Files

Using IDL

IDL programfiles, identified with a. pr o extension, can be executed using one of the
following methods:

e Using the IDLDE interface
¢ Typing the routine name at the command line

¢ Running the program using an executive command
Running a Program File Using the IDLDE Interface

To run an IDL program using the IDLDE interface, compl ete the following steps:

1. Openthefilefrom itslocation in adirectory. For example, select:
File > Open — RSI\IDL 60\examples\demo\demosr c\d_uscensus.pro

2. Compilethefile by selecting Run — Compile d_uscensus.pro

3. Executethefile by selecting Run — run d_uscensus
Running a Program File from the IDL Command Line

When afileis specified by typing only the filename at the IDL prompt, IDL searches
the current directory for filename.pro (where filename is the file specified) and then for
filename.sav. If no file is found in the current directory, IDL searchesin the same way
in each directory specified by !PATH. If afileisfound, IDL automatically compiles
the contents and executes any functions or procedures that have the same name as the
file specified (excluding the extension).

Using the previous example, run the US Census Data demo by entering the following
at the command line:

d_uscensus

Running IDL Program Files

162 Chapter 9: Preparing and Running Programs in IDL

Running a Program File Using Executive Commands

When afile is specified using either the .RUN, .RNEW, .COMPILE, or @ command
followed by the filename, IDL searches the current directory for filename.pro (where
filename is the file specified) and then for filename.sav. If no fileisfound in the current
directory, IDL searchesin the same way in each directory specified by |PATH. If a
fileisfound, IDL compiles or runsthe file as specified by the executive command
used. Executive commands can be entered only at the IDL command prompt and are
often used when executing main-level program files. See “Executive Commands’ on
page 88 for more information.

Warning
If the current directory contains a subdirectory with the same name as filename, IDL
will consider the file to have been found and stop searching. To avoid this problem,
specify the extension (. pr o or . sav, usually) when entering the run, compile, or
batch file executive command.

The details of how 'PATH isinitialized and used differ between the various operating
systems, although the overall concept is the same. See“!PATH” in Appendix D of the
IDL Reference Guide for more information.

Restoring and Running .sav Files

IDL . sav filescan contain single or multiple routines that have been packaged into a
single binary file using the SAVE procedure. Variables, including system variables,
can aso be packaged into a. sav file. The method used to restore a.. sav file
depends upon the type of information it contains as follows:

* A . sav file containing data variables must be restored using the RESTORE
procedure

¢ A . sav file containing aroutine with the same name asthe . sav file can
typically berestored by simple entering its name, minusthe . sav extension, at
the IDL command line.

For an example of creating and restoring a. sav file, see “Restoring Compiled IDL
Programs and Data’ in Chapter 9 of Building IDL Applications. The sectionsin the
following list offer some guidelines for successfully restoring . sav files.

¢ “Restoring .sav Files Created with Different Versions of IDL” on page 163
e “Whereto Locate .sav Files’ on page 163
* “How to Restore a.sav File” on page 164

Running IDL Program Files Using IDL

Chapter 9: Preparing and Running Programs in IDL 163

Restoring .sav Files Created with Different Versions of IDL

While files containing data variables can be restored by any version of IDL that
supports the data types of the variables (in particular, by any version of IDL later than
the version with which the . sav file was created), files containing IDL routines and
IDL system variables can only be restored by versions of IDL that share the same
internal code representation. If you receive. sav filesfrom another IDL programmer,
it is best to know what version of IDL was used to create thefile. If you find that you
cannot restore a. sav file with your current version of IDL, you may need to contact
the developer for an updated . sav file. When creating . sav files, you should always
archivethe. pr o file from which the file was created so that you can recompile the
code using the latest version of IDL if necessary.

Where to Locate .sav Files

Using IDL

When preparing to restore a. sav file, it needs to be located in a path that can be
found by IDL. It is easiest to restore .sav files when they are located in your current
working directory. If you place thefile in your current working directory, you do not
need to specify a path when restoring the . sav file. For example, afile named
sessi onl. sav located in the current working directory could be restored with the
following command:

RESTORE, 'sessionl. sav'

Tip
To view your current working directory, type the following at the IDL prompt:
CD, CURRENT = ¢
PRI NT, c

If the .sav fileis not in your current working directory or IDL search path, but is
located within the main IDL installation directory, you will need to specify the path to
the file when using the RESTORE procedure. For example, if sessi onl. sav is
stored in adirectory named ny| DLsessi ons within the main IDL installation
directory, you could restore the file using the following command:

RESTORE, FILEPATH(' sessionl.sav' , SUBDI RECTORY =
[" myl DLsessions'])

If the file is neither located in your current working directory nor in the main IDL
installation directory, it would be easiest to copy the file into your current working
directory before restoring thefile. Alternately, you can specify the path to thefile
using the ROOT_DIR keyword to FILEPATH, or specify an absolute or arelative
path. See RESTORE in the IDL Reference Guide for details.

Running IDL Program Files

164 Chapter 9: Preparing and Running Programs in IDL

How to Restore a .sav File

You can restore a .sav file by using the RESTORE procedure or by specifying thefile
name at the IDL command line. As ageneral rule, use RESTORE with .sav files
containing variable data and use the command line method with .sav files containing
IDL routines or procedures that have the same name as the . sav file.

Using RESTORE

Use the RESTORE procedure to explicitly restorea. sav file. You must use
RESTORE in the following situations:

* Whenrestoring a. sav file containing variables.

« Whenthe. sav file contains multiple routines, and you need to first call a
routine that uses a different name than the . sav file. For example, if you have
afile, myApp. sav which contains procedures named | NTERFACE and
CUSTOM you would need to restore ny App. sav before caling either of these
procedures.

To use the RESTORE procedure, enter the following at the IDL command line:
RESTORE, 'fil enane. sav'

where filename.sav is the name of the file you wish to restore. If thefile is not located
in your current working directory, you will need to specify a path to the file. See the
previous section, “Where to Locate .sav Files” on page 163 for more information.

Restoring a File from the Command Line

When the . sav file has the same name as the routine it contains, you can restore the
file by entering the name of thefile, minusthe. sav extension at the IDL command
line. When afileis specified by typing only the filename at the IDL prompt, IDL
searches the current directory for filename.pro (where filename is the fil e specified)
and then for filename.sav. If no fileis found in the current directory, IDL searchesin
the same way in each directory specified by 'PATH.

The details of how 'PATH isinitialized and used differ between the various operating
systems. See “!PATH” in Appendix D of the IDL Reference Guide for more
information.

Note
Variables and routines cannot be stored in the same. sav file. If you need to restore
aseparate . sav file containing variables that are needed by routines contained in a
. sav file, the file containing the variables should be restored first.

Running IDL Program Files Using IDL

Chapter 9: Preparing and Running Programs in IDL 165

Interrupting Program Execution

Programs that are running can be manually stopped by typing CtrI+C (UNIX) or
Ctrl+Break (Windows). This action is called a keyboard interrupt. A message
indicating the statement number and program unit being executed is issued on the
terminal acknowledging the interrupt. The values of variables can be examined,
statements can be entered from the keyboard, and variables can be changed. The
program can be resumed by typing the executive command .CONTINUE to resume
or .Sto execute the next statement and stop.

Using IDL Interrupting Program Execution

166 Chapter 9: Preparing and Running Programs in IDL

Variable Context After Interruption

The variable context after a keyboard interrupt is that of the program unit in which
the interrupt occurred. By typing the statement RETURN, the program context will
revert to the next higher calling level. The RETALL command returns control to the
main program level. If any doubt arises as to which program unit in which the
interrupt occurred, the HEL P procedure can be used to determine the program
context. IDL checks after each statement to seeif an interrupt has been typed.
Execution does not stop until the statement that was active finishes; thus,
considerable time can elapse from the time the interrupt is typed to the time the
program interrupts.

Variable Context After Interruption Using IDL

Chapter 9: Preparing and Running Programs in IDL 167

Aborting IDL

If you find it necessary to abort IDL rather than exiting cleanly using the EXIT
command, do one of the following:

« UNIX: Aswith any UNIX process, IDL can be aborted by typing Ctrl+\.This
isavery abrupt exit—all variables are lost, and the state of open files will be
uncertain. Thus, although it can be used to exit of IDL in an emergency, itsuse
should be avoided.

Note
After aborting IDL by using Ctrl+\, you may find that your terminal isleft in the
wrong state. You can restore your terminal to the correct state by issuing one of the
following UNIX commands:

% r eset or %stty echo -cbreak

* Windows: Thereis no abort character for IDL for Windows.

Using IDL Aborting IDL

168 Chapter 9: Preparing and Running Programs in IDL

Saving Variables from an IDL Session

The SAVE and RESTORE procedures combineto provide the ability to save the state
of variables and system variables to restore them at alater time. Variables that are
used from session to session can be saved as and recovered from a. sav file. A
startup file can be set up to execute the RESTORE command every time IDL is
started. (See* Startup Files” on page 30 for information on specifying a startup files.)
For an overview of how to restore and run . sav files, see “Restoring and Running
.sav Files’ on page 162.

Tip
You can aso distribute IDL code in binary format, sharing programs and
applications with other IDL users. For an example of creating . sav files of
compiled programs, see“ Saving Compiled IDL Programs’ in Chapter 9 of Building
IDL Applications for more information.

The state of variablesin an IDL session can be saved quickly and easily, and can be
restored to the same point. Thisfeature allows you to stop work, and later resume at a
convenient time. Variables that you may wish to create a .sav file of include
frequently used datafiles or system variable definitions.

Data can be conveniently stored in . sav files, relieving the user of the need to
remember the dimensions of arrays and other details. It is very convenient to store
images this way. For instance, if the three variables R, G, and B hold the color table
vectors, and the variable | holds the image variable, the IDL statement,

SAVE, FILENAME = 'inmge.sav', R G B, |

will save everything required to display the image properly in afile named
i mage. sav. At alater date, the simple command,

RESTORE, 'inmge.sav'
will recover the four variables from thefile.

System variables can also be saved and later applied to another session of IDL. For
instance, you may choose to customize !PATH, the system variable defining the
directories IDL will search for libraries, include files, and executive commands or ! P,
the system variable that controls the definition of graphic elements associated with
plot procedures. You can save these definitionsin a .sav file and later automatically
restore or selectively restore the variables to apply the settings to other IDL sessions.

To save and restore the state of al current and system variables within an IDL
session, you could use the following statement:

Saving Variables from an IDL Session Using IDL

Chapter 9: Preparing and Running Programs in IDL 169

SAVE, /ALL, FILENAME = ‘' nyl DLsessi on. sav’

The ALL keyword saves al common blocks, system variables and local variables
from the current IDL session. See Chapter 3, “Constants and Variables’ in Building
IDL Applications for information on these elements of an IDL session.

Note
Routines and variables cannot be saved in the same file. Setting the ALL keyword
does not save routines.

To restore the session information, enter:
RESTORE, ‘ nyl DLsession. sav’

If the fileis not located in your current working directory or IDL search path, you
will need to define the path to the file. See “Whereto Locate .sav Files’ on page 163.

Long iterative jobs can save their partial resultsin a. sav format to guard against
losing data if some unexpected event such as a machine crash should occur.

Note
A . sav file containing data will always be restorable. However, . sav filesthat
contain IDL procedures, functions, and system variables are not always portable
between different versions of IDL. In this case, you will need to recompile your
original . pr o files or redefine you system variables and then re-create the . sav
files using the current version of IDL.

Using IDL Saving Variables from an IDL Session

170 Chapter 9: Preparing and Running Programs in IDL

For More Information on Programming

Here we have just touched on the great possibilitiesthat IDL offersfor programmers.
For more information on how to prepare and run programs, see the Building IDL
Applications manual.

For More Information on Programming Using IDL

Chapter 10:

Executing Batch
in IDL

The following topics are covered in this chapter:

Jobs

Overviewcoviiiiinnannnn. 172 A Batch Example
Interpretation of Batch Statements 173

Using IDL

171

172

Chapter 10: Executing Batch Jobs in IDL

Overview

Overview

IDL can be run in the non-interactive mode (the batch mode) by entering the
character @ followed by the name of afile containing IDL executive commands and
statements. All executive commands and IDL statements that normally come from
the keyboard are read from the specified file. For information on how to specify a
batch file as a startup file that is automatically executed when IDL is started, see
“Startup Files” on page 30.

Batch execution can be terminated before the end of thefile, with control returning to
the interactive mode without exiting IDL, by calling the STOP procedure from the
batch file. Calling the EXIT procedure from the batch procedure has the usual effect
of terminating IDL.

To enter batch mode from the interactive mode, enter:
@il ename

at the IDL prompt. (Note that the @ symbol must be the first character on thelinein
order for it to be interpreted properly.) IDL reads commands from the specified file
until the end of the fileis reached. Batch files can be nested by simply prefacing the
name of the new batch file with the @ character. As stated above, the current
directory and then all directoriesin the !PATH system variable are searched (if the
file was not found in the current directory). The filename can also include full path
specifications (e.g., when the batch file resides in a directory that isn’t included in
IPATH).

IDL only searchesthe !|PATH directoriesfor . sav and . pr o files. There are two
waysto get IDL to execute your batch/includefile:

¢ Add thedirectory with your batch fileto 'PATH, and make sureit hasa. pro
extension (e.g. "nybat ch. pro")

« Makethe directory with your batch files the working directory, either by
launching IDL from there, or using the CD routine

The only way to execute asimple ASCII batch/include file that does not have a. pro
extension isif it isin the working directory, or if you supply the full path
specification.

Using IDL

Chapter 10: Executing Batch Jobs in IDL 173

Interpretation of Batch Statements

Using IDL

Each line of the batch file is interpreted exactly asiif it was entered from the
keyboard. In the batch mode, IDL compiles and executes each statement before
reading the next statement. This differsfrom the interpretation of programs compiled
using .RNEW or .RUN, in which all statementsin a program are compiled asasingle
unit and then executed.

Labelsareillegal in the batch mode because each statement is compiled and executed
independently.

Multiline statements must be continued on the next line using the $ continuation
character, because IDL terminates every interactive mode statement not ending with
$ by an END statement. A common mistake is to include a multiple-line block
statement in a batch file as shown below.

; This will not work in batch node.
FOR I =1, 10 DO BEG N

A= X1]
ENDFOR

In the batch mode, IDL compiles and executes each line separately, causing syntax
errors in the above exampl e because no matching ENDFOR is found on the line
containing the BEGIN statement when the line is compiled. The above example
could be made to work by writing the block of statements as asingle line using the $
(continuation) and & (multiple commands on a single line) characters.

Interpretation of Batch Statements

174 Chapter 10: Executing Batch Jobs in IDL

A Batch Example

An example of an IDL executive command line that initiates batch execution:
@ryfile

This command causesthefilenyfi | e. pr o to be used for statement and command
input. If thisfileis not in the current directory, the IDL search path specified by
IPATH is also searched.

An example of the contents of a batch file follows:

Run program A:
RUN pr oga
Run program B:
RUN pr ogb
; Print results:
PRI NT, AVALUE, BVALUE
Close unit 3:
CLCSE, 3
<eof >

The batch file should not contain complete program units. Complete program units
should be compiled and run by using the .RUN and .RNEW commands in the batch
files, asillustrated above.

A Batch Example Using IDL

Chapter 11.
Journaling in IDL

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 176 Journaling Examples 178

Using IDL 175

176

Chapter 11: Journaling in IDL

Overview

Overview

Journaling provides arecord of an interactive session by saving in afile all text
entered from the terminal in response to a prompt. In journaling, all text entered to
the IDL prompt isentered directly into thefile, and any text entered from the terminal
in response to any other input request (such as with the READ procedure) is entered
as acomment. The result is afile that contains a complete description of the IDL
session.

JOURNAL has the form:
JOURNAL[, Argunent]

where Argument is either afilename (if journaling is not currently in progress) or an
expression to be written to thefile (if journaling is active).

Thefirst call to JOURNAL starts the logging process. If no argument is supplied, a
journal filenamedi dl save. pr o is started.

Warning
Under all operating systems, creating a new journal file will cause any existing file
with the same name to be lost. Supply a filename argument to JOURNAL to avoid
destroying desired files.

When journaling is not in progress, the value of the system variable |l JOURNAL is
zero. When the journa file is opened, the value of this system variable is set to the
number of the logical file unit on which the fileis opened. This alows IDL routines
to check if journaling is active. You can send any arbitrary datato thisfile using the
normal IDL output routines. In addition, calling JOURNAL with an argument while
journaling isin progress resultsin the argument being written to the journal file as if
the PRINT procedure had been used. In other words, the statement,

JOURNAL,
isequivalent to
PRI NTF, ! JOURNAL, Argunent

with one significant difference—the JOURNAL statement is not logged to the file,
only its output; while the PRINTF statement will be logged to the file in addition to
its output.

Using IDL

Chapter 11: Journaling in IDL 177

Journaling ends when the JOURNAL procedure is called again without an argument
or when IDL isexited. The resulting file serves as arecord of the interactive session
that went on while journaling was active. It can be used later as an IDL batch input
file to repeat the session, and it can be edited with any text editor if changes are
necessary.

Using IDL Overview

178 Chapter 11: Journaling in IDL

Journaling Examples

As an example of Journaling in IDL, consider the following IDL statements:

;Start journaling to file deno. pro:
JOURNAL, ' deno. pro’

; Pronpt for input:

PRI NT, 'Enter a nunber:'

; Read the user response into variable Z:

READ, Z

;Send an IDL comment to the journal file using JOURNAL:
JOURNAL, '; This was inserted with JOURNAL.'

; Send anot her comrent using PRI NTF:

PRI NTF, 'JOURNAL, '; This was inserted with PRI NTF.'

; End journaling:

JOURNAL

If these statements are executed by a user named Doug on a Sun workstation named
quixote, the resulting journal file dermo. pr o will look like the following:

; IDL Version 5.3 (sunos sparc)

; Journal File for doug@ui xote

; Working directory: /hone/doug/| DL
; Date: Mon Sept 9 14:38:24 1999

PRI NT, 'Enter a nunber:'

;Enter a nunber:

READ, Z

;87

; This was inserted with JOURNAL.

; This was inserted with PRI NTF.

PRI NTF, 'JOURNAL, '; This was inserted with PRI NTF.'

Note that the input data to the READ statement is shown as a comment. In addition,
the statement to insert the text using JOURNAL does not appear, while the statement
using PRINTF does appear.

Journaling Examples Using IDL

Part Il: Reading
and Writing Data

Chapter 12:

IDL Macros for
Importing Data

This chapter describes the following topics.

Overviewcoviiiiinnannnn. 182 Using Macrosto Import Binary Files.... 193
Using Macros to Import Image Files. 183 Using Macrosto Import HDF Files 199
Using Macros to Import ASCII Files 187

Using IDL 181

182 Chapter 12: IDL Macros for Importing Data

Overview

IDL contains macros to ease the importing of datainto IDL. This chapter introduces
these macros and describes how to import image, ASCII, binary, and Scientific Data

Format (SDF) files. These macros are available through the M acr os menu and also
through IDL Tool Bar buttons.

Edi. E EH IDL 5.3 for Windows Deme

Print Var — File Edit 5Search Hun Projec
Eelp an W ar E ~u Ty
Impart Image |:§b| E L= E % | s =
Impart Azcii I

Irmport Binary g E? fﬁ% [“H ﬁ ﬁ
Impart HOE

Dema / \
Import Image Import HDF
File File

Import ASCII File Import Binary File

Figure 12-1: Importing Data Macros Menu (Left) and Tool Bar Buttons (Right)

Overview Using IDL

Chapter 12: IDL Macros for Importing Data 183

Using Macros to Import Image Files

To import an image fileinto IDL, complete the following steps.

1. Select the Import Image Filetool bar button. The Select Image Filedialogis

displayed.
Drive:IE:\ 'l
{E1|crRsipLES

bin'
docsh
examples’,
externalt
helph

lib'
TEsOUNCE",

Filter: Ilmage Files VI Cancel
Freview: | Color -
Farmat:
Channels:
“width:
Height:
PFixel:
Palestte: Hﬂnﬂ
Image E of

Figure 12-2: Select Image File Dialog

2. Select afileto import. For example, select the
rsi-directory/ exanpl es/ dat a/ nuscl e. j pg filewhere
rsi-directory istheinstallation directory for IDL.

You can now see a preview of thisimage aswell as other information about the
filein the lower section of the Select Image File dialog. You can change the
preview to Color, Grayscale, or No Preview. If the image file had more than
one actua image, you can see them using the arrow buttons to scroll through
theimages. You can only read in oneimage of amulti-imagefile. Theimagein
the preview is the image that will be read.

3. Click Open.
4. Thefile has been opened into a structure variable named MUSCLE_IMAGE.

Using IDL Using Macros to Import Image Files

184

Chapter 12: IDL Macros for Importing Data

Images opened with the Import I mage File macro are stored in structure variables
which are named filename_IMAGE where filename is the name of thefile you
opened without the extension.

Note

IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If thefirst character of filenameisnot a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

So, the file we just opened (muscle.jpg) is now in the structure variable named
MUSCLE_IMAGE. Thefileis astructure with the following fields:

IMAGE — The actual image array.

R — Thered color table vectors.

G — The green color table vectors.
B — The blue color table vectors.

QUERY — Contains information about the image.

CHANNELS — The number of channelsin theimage.

HAS PALETTE — Specifiesif the paletteis present. 1 if the paletteis
present, else 0. If your image is n-by-mthe paletteis usually present and
the R, G, and B color table vectors mentioned above will contain values. If
your image is 3-by-n-by-m, the palette will not be present and the R,G, and
B color table vectors will not contain any values.

IMAGE_INDEX — The index of the image of thefile. The default is 0,
the first imagein the file. If there are multiple imagesin the file that you
read, thiswill be the number (or index) of the image.

NUM_IMAGES — The number of imagesin the origind file.

PIXEL_TYPE — The IDL Type Code of the image pixel format. Valid
types are:

PIXEL_TYPE returned Data Types

1 Byte

Table 12-1: Values for PIXEL_TYPE in the Structure

Using Macros to Import Image Files Using IDL

Chapter 12: IDL Macros for Importing Data 185

PIXEL_TYPE returned Data Types
2 Integer
3 Longword Integer
4 Floating Point
5 Double-precision Floating Point
12 Unsigned Integer
13 Unsigned L ongword I nteger
14 64-bit Integer
15 Unsigned 64-bit Integer

Table 12-1: Values for PIXEL_TYPE in the Structure

e TYPE— Theimagetype. Valid return values are:
BMP JPEG, PNG, PPM, SRF, TIFF, DICOM
The structure can be viewed in the Variable Watch Window.

Mame L} Type | Walue -
B | MUSCLE_IMAGE STRUCT { <Anonpmouss }
IMAGE EYTE Anap[E52, 444]
R EYTE Array[256]
G EYTE Array[256]
B EYTE Array[256]
B QUERY STRUCT { <Anonpmouss }
= | CH&NMELS LONG 1
DIMENSIONS LONG Aray[2]
= HaS_PALETTE INT a
IMAGE_INDEX LONG a
MUM_IMAGES LONG 1 e
PI<EL_TYPE INT 1
= TYPE STRING JPEG =
zl]\Locals {Paramsg Commong System | A4 | | _DI—I

Figure 12-3: Variable Watch Window Showing MUSCLE_IMAGE Structure

You can specify which part of the structure variable you want to access by using the
following syntax:
variable_name.element_name[.element_name]

For example, if you want to view the image, enter the following:

Using IDL Using Macros to Import Image Files

186 Chapter 12: IDL Macros for Importing Data

TV, MUSCLE_| MAGE. | MAGE
This displays the following image:

Figure 12-4: MUSCLE_IMAGE.IMAGE

If you want to know the file type, enter the following:
PRI NT, MUSCLE_| MAGE. QUERY. TYPE

IDL prints:
JPEG

Using Macros to Import Image Files Using IDL

Chapter 12: IDL Macros for Importing Data 187

Using Macros to Import ASCII Files

Using IDL

To import an ASCII fileinto IDL, complete the following steps:
1. Select theImport ASCII Filetool bar button. The Select an ASCI | fileto

read dialog displays.

Select an ASCII file to read. EHE
Lok jr: I 3 data j gl i
E]abnormdat clouds3d.dat 2] data.tst galawy.dat
@ alie.dat convec.dat dirty_zine.dat head.dat
@ azcil.dat cow, zmf @ endocell.jpg @ heart, dxf

r% ascil. bt ctzcan.dat @ examples. tif hurric. dat
cereb.dat damp_sh.dat flovedata3. dat @ image. tif
chirp.dat damp_zn2.dat flowdatad. dat index. bt
4] | i
File name: I Open I
Files of type: I"." j Cancel |

Figure 12-5: Select an ASCII file to read Dialog

2. Sedlect afileto import. For example, select the

rsi-directory/exanpl es/ dat a/ ascii.txt filewhere
rsi -directory istheinstallation directory for IDL. Click Open.

In the Define Data Type/Range dialog, you specify information about your
file. Thefirst few lines of thefile are displayed to help you find the
information you need to specify.

First, select the type of field which best describes your data. You can either
choose Fixed Width which specifies that the datais aligned in columns, or
Delimited which specifies that the datais separated by commas, whitespace,
etc. In thisexample, the datais delimited by commas so we'll select the
Delimited radio button.

Next, enter a character or string that is used to comment lines within thefilein
the Comment String to Ignore: field. In thisexample, if we read the first few
lines of thisfile, it defines the % character as the comment character. Enter the
% signin the Comment String to Ignore: field.

Next, enter the line number in which the data startsin the Data Startsat Line:
field. In this example, the data starts on line 6 so we'll enter that value in the
field.

Using Macros to Import ASCII Files

188 Chapter 12: IDL Macros for Importing Data

Click Next.

&l|STEP 1 of 3: Define Data Type / Range E

Chooze the field type which best describes your data:

' Fixed'width (fields are aligned in columns)

& Delimited [commas, whitespace, etc. separate each field)

Comment String ta lgnare: |%
D1ata Starts at Line: |8

Selected Text File: ity Es: Sl e |

Thiz file contains ASCII format weather data in a comma delimited table -

Text I |

with comments prefaced by the "%" character. The columns represent:

Longitude, latitude, elevation (in feet), temperature (in degrees F),

dew point (in degrees F), wind speed (knots), wind direction (degrees)

-116.9667, 33_.9333, 692, 77, 50, &, 270
-104_2545, 32.3340, 1003, &7, 50, 10, 340
-114.5225, 37.6073, 1333, 66, 35, 0, 0

ano 1-106 941%. 47 3222, 811. 6%. 57. &. 140 _ILI
A4 3

‘ Cancel | < Hack | Mest > | Eitiisk ”

wlw|alo|m|w|wlefe

Figure 12-6: Define Data Type/Range Dialog

4. Inthe Define Delimiter/Fields dialog, we'll specify the information about the
actual datain thefile.

First, we'll enter the number of columns or fieldsin the Number of Fields Per
Line: field. In thisexample, there are 7 fields.

Next, we'll enter the how the datais delimited. You can choose White Space,
Comma, Colon, Semicolon, Tab, or Other. If you specify Other, you must
then enter the charactersin the field. In this example, we'll select Comma
since the data is delimited by commas.

Using Macros to Import ASCII Files Using IDL

Chapter 12: IDL Macros for Importing Data

Using IDL

5.

Click Next.

Mumber of Fields Per Line:

Delimiter Between Data Elements:
" hite Space ¢ Comma ¢ Colon
" Semicolon ¢ Tab € Other: |:|

Selected Records:

189

-94_7500,
-13.6063,

Elefo|-fa|m|e]w]e|e~

-116.9667,
-104._2545,
-114.5225,
-106.941%,

-117.1765,
-11&6.0930,
-106 3722 .
A4

33,
3z,
37,
47

9333,
3340,
&073,
Izzz.,

31.2335.
433362,

3z,

7335,
44 8833,
31.8067.

Text

g9z, 77, S0, &, 270
1003, &7, S0, 10, 240
1333, 66, 35, 0, 0
811, &8, 57, &, 140
90, &9, 73, 10, 250
100, 75, &4, 3, 180

4, &4, &2, 5, 200
1530, 55, 51, 0, 0
lz06. 82. 57. 9. 10

-

3

‘ Cancel | < Back | Mest > | Eitiisk ”

Figure 12-7: Define Delimiter/Fields Dialog

Inthe Field Specification dialog, we'll enter information about the contents of
each column or field in the data.

First, select the first field in the datain the box in the upper left of the dialog.
Enter the name of the field in the Name field and the type of data represented
in the Type field. In this example we' Il specify L ongitude and Floating for
the fields. Continue naming al the fields in the data using this procedure. In
this example, we'll use Latitude — Floating; Elevation — Long; Temperature —
Long; DewPoint — Long; WindSpeed — Long; WindDir — Long for the other

field pairs.

You can also group some or all of the fields into one field by using the Group
or Group All buttons. In this example, there is no need to group any of the

fields.

Using Macros to Import ASCII Files

190 Chapter 12: IDL Macros for Importing Data

Next, select the value to assign missing data. You can select the | EEE standard
for NaN or a custom value. In this example, we'll choose | EEE NaN.

&l|STEP 3 of 3: Field Specification E

Mame: |Longitude
Tupe: IFlDating Paint 'l

[rata Type

Longitude |Floating
Latitude Floating
Elevation Laong
Temperature | Long
DewPoint Laong
n WindSpeed Long

Group [rEraup

Group Al Ungroup Al

Walue to Azsign to Missing Data: % [EEE NaM ¢ l:l

Sample Record:

Longitude Latitude | Elevation IT‘emperatur4 DewPoint | windspeed winDir
1 20,7832 300 &2 64 in &0 -

-
A4 3

‘ Cancel | < Back | [EREs | Finizh ”

Figure 12-8: Field Specification Dialog

6. Click Finish.

ASCII files opened with the Import ASCI| File macro are stored in structure
variables which are named filename_ASCII where filename is the name of the file
you opened without the extension.

Note
IDL variables must begin with a letter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filenameis not a
letter, the prefix “var” is added to the variable name. Any spaces within filename
are converted to underscores. Any other illegal characters within filename are
removed.

Using Macros to Import ASCII Files Using IDL

Chapter 12: IDL Macros for Importing Data 191

So, the file we just opened (ascii.txt) is now in the structure variable named
ASCII_ASCII. The variable is a structure with each field name being an element of
the structure.

The structure can be viewed in the Variable Watch Window.

Mame Type | Walue ;I

Bl | ASCI_asCl STRUCT { <Anonpmouss }

LOMGITUDE FLOAT Anray[15]

LATITUDE FLOAT Anray[15]

ELEWATION LOMG Anray[15]

TEMPERATURE LOMG Anray[15]

DEWPOINT LOMG Anray[15]

WINDSPEED LOMG Anray[15]

WINDIR LOMG Anray[15]

zl]\Locals {Paramsg Commong System | 4 | | 3

Figure 12-9: Variable Watch Window Showing ASCII_ASCII Structure
You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name
For example, if you want to view the Longitude field, enter the following:
Print, ASCI|_ASC | .LONG TUDE

IDL prints:
- 156. 950 -116. 967 -104. 255 -114. 522 -106. 942
-94. 7500 -73. 6063 -117.176 -116. 093 -106. 372
-93. 2237 -109. 635 -76. 0225 -93. 1535 -118. 721

If you want to plot Temperature, enter the following:
PLOT, ASCI|_ASCl | . TEMPERATURE

Using IDL Using Macros to Import ASCII Files

192 Chapter 12: IDL Macros for Importing Data

The following figure results.

a0+ a

20 -

Figure 12-10: Plot of ASCII_ASCI.TEMPERATURE

Using Macros to Import ASCII Files Using IDL

Chapter 12: IDL Macros for Importing Data 193

Using Macros to Import Binary Files

Sometimes, datais stored in files as arrays of bytesinstead of aknown format like
JPEG or TIFF. Thesefiles are referred to as binary files.

Note
The Import Binary File macro isintended for use in loading raw binary data from

filesinto IDL. Such datais comprised of bits that are meaningful — asintegers or
floating-point numbers for example — with no special processing (except possibly
byte-order swapping) required. Commercial spreadsheet or word processing files,
for example, are binary but they are not raw in the above sense, and thus are not
good candidates for use with this macro.

Also note that the Import Binary File macro isintended for usein loading data
from files the contents of which you have some knowledge about. To effectively
read data with this macro, you must be able to supply literal values or expressions
that specify the type and location of the data in the file you wish to read.

To import abinary fileinto IDL, complete the following steps:

1. Selectthe mport Binary Filetool bar button. The Select a binary fileto
read dialog is displayed.

Select a binary file to read. EHE
Look jn: I 29 data j gl ioEn EEE
‘3| abnorm. dat clouds3d.dat E data. but galasy. dat
@ alie.dat convec.dat dirty_sine. dat head.dat
@ ascil.dat cow. smf @ endocell.jpg @ heart.d=f

r% ascil. bt ctzcan.dat @ examples. tif hurric. dat
cereb.dat damp_sh.dat flovedata3. dat @ image. tif
chirp.dat damp_snZ.dat flovedatad. dat inde. bt
dl | 0
File name: I Open I
Filez of type: I"." j Cancel |

Figure 12-11: Select a binary file to read Dialog
2. Select afileto import. For example, select the

rsi-directory/ exanpl es/ dat a/ surface. dat filewhere
rsi-directory istheinstalation directory for IDL. Click Open.

Using IDL Using Macros to Import Binary Files

194

Chapter 12: IDL Macros for Importing Data

3. IntheBinary Template dialog box, specify information about your file.

&ll|Binary Template [%]
Template name:l File's byte: ordering: INative 'l

Fields:

Offset | # Dims Feturn | Yerify

Mew Field... | Modify Field... | Femove Field

&I Cancel |

Figure 12-12: The Binary Template dialog

First, enter the name of the template you are going to create in the Template
name: field. For this example, “marbellstemplate” is used.

Next, select the byte order in thefile in the File's byte ordering: pull-down
menu. The choices are:

Native — The type of storage method that is native to the machine you are
currently running. Little Endian for Intel microprocessor-based machines
and Big Endian for M otorola microprocessor-based machines. No byte
swapping will be performed.

Little Endian — A method of storing numbers so that the least significant
byte appearsfirst in the number. For example, given the hexadecimal
number A02B, the little endian method specifies the number to be stored
as 2BAO0. Specify thisif the original file was created on a machine that
uses an Intel microprocessor.

Big Endian — A method of storing numbers so that the most significant
byte appears first in the number. For example, given the hexadecimal
number A02B, the big endian method specifies the number to be stored as
A02B. Specify thisif the original file was created on amachine that uses a
M otorola microprocessor.

Thefilesur f ace. dat was created on a machine that uses an Intel
microprocessor. For this example, select Little Endian for the byte order.

Using Macros to Import Binary Files Using IDL

Chapter 12: IDL Macros for Importing Data 195

Using IDL

4. Now we are ready to enter the field values for thefile. You can have multiple

fields within abinary file. Click the New Field... button in the lower-left
corner of the Binary Template dialog box.

Inthe New Field dialog (shown at the end of these example steps), enter the
name of thefield in the Field name: text box. In thisexample, enter “A” asthe
field name.

Next, you need to specify where in the file to start reading. The options are:

e Offset — Specifiesthe byte offset or where to begin reading thefile. The >
symbol specifies to offset forward from a byte position, the < symbol
specifies to offset backward from a byte position.

* From beginning of file— Specifiesto start reading thisfield starting with
the first byte of the file plus any Offset specified.

e From initial position in file/lFrom end of previousfield — Thisfield
changes depending upon if thisisthefirst field or any other field besides
thefirst. If thisisthefirst field you are defining, this option specifies to
read from the beginning of the file plus any Offset specified. If thisis not
thefirst field, this option changesto From end of previousfield and
specifiesto begin reading the field where the previousfield ended plus any
Offset specified.

In this example, since thisisthefirst field in the file and we don’t have any
header information in the file, specify From the beginning of file without any
offset.

Next, select whether or not you want thisfield to be returned to IDL when a
fileisread. For example, you may have a section of your binary file that
contains header information. If you create afield for this section, you do not
want it returned to IDL. In this case, you would not select Returned in the
result. You must specify at least one field to be returned to IDL. In this
example, we want to return the field we're creating so we'll check the box in
the upper-right corner marked Returned in the result.

Next, you need to specify whether or not you want to verify any of the datayou
arereturning in the Verified equal tofield. Thisfield is only availableif the
field isascalar. Thiscan be any valid IDL expression that evaluatesto ascalar.
For this example, we won't verify any of the data.

Using Macros to Import Binary Files

196 Chapter 12: IDL Macros for Importing Data

Next, you need to specify the type of datathat isin thisfield. In this example,
the data is integer type data so select the Integer (16 bits) at the Type pull-
down menu. The valid values for Type are:

¢ Byte (unsigned 8-hits)

e Integer (16-bits)

e Long (32-bits)

* Long64 (64 hits)

e Float (32 bits)

¢ Double-Precision (64-hits)

¢ Unsigned Integer (16 bits)

¢ Unsigned Long (32-bits)

e Unsigned Long64 (64-bits)

e Complex (rea-imaginary pair of floats)
e Double-Precision Complex (pair of doubles)

Next, specify the number of dimensions contained in the datain the Number
of dimensions: pull-down menu. Thiswill activate a corresponding number of
boxes in the dimensions section of the dialog. In this example, the datais two-
dimensional.

Finally, enter the size of each dimension in the field. If you select the Allow
expressions for dimension sizes check box, you enter any valid IDL
expression that returns the size of the dimension. You can aso choose to
reverse the order of the data by selecting the Rever se check box for each
dimension. This can be useful when image datais returned in the reverse order
and appears upside down. In this example, the datais contained in a 350-by-
450 array, so enter 350 for the size of the 1st dimension and 450 for the size of
the 2nd dimension in the text fields marked Size:.

Using Macros to Import Binary Files Using IDL

Chapter 12: IDL Macros for Importing Data 197

Using IDL

Click OK.
&l|New Field E
Field name: I
Type: IByte [unsigned &-bits) j Mumber of dimensions: IU [zealar] 'l
Offset: I>D iezs Tst: Size; I I~ Reverse
" From beginning of file Znd; Sizes I I~ Feverse
From initial position in file Sl Giner I O B
Offset can be an integer or an expression _ .
involving fields defined earlier in the template. Ath: Siees I
Wihen a fle i red, this field should be: St e
¥ Retumed in the result it Szt I
Tt Sizer I
I~ Werified a5 being equal to: I .
Btk Sizer I
The Yerify field can contain a number or an expreszion E ach dimension can be an integer or an expression
ireolving fields defined earlier in the template. involving fields defined earlier in the template.
()8 | Cancel |

Figure 12-13: Modifying fields in Binary Template

5. You can now see the information that you entered in the Binary Template
dialog. If you need to enter more fields, select the New Field button. Repeat
the steps until you have entered all the fields in the binary file.

In this example, thereis only onefield. Click OK.

Binary files opened with the Import Binary File macro are stored in structure
variables which are named filename_BINARY where filename is the name of thefile
you opened without the extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the
underscore character, or the dollar sign. If the first character of filenameisnot a
letter, the prefix “var” is added to the variable name. Any spaces within filename are
converted to underscores. Any other illegal characters within filename are removed.

So, thefile we just opened (sur f ace. dat) is now in the structure variable named
SURFACE_BINARY. The variable is a structure with each field name being an
element of the structure.

Using Macros to Import Binary Files

198 Chapter 12: IDL Macros for Importing Data

The structure can be viewed in the Variable Watch Window.

Mame Type | Walue
B | SURFACE_BINARY STRUCT { <Anonpmouss }
ISR INT Anray[350, 450]
[0.0] INT 3198

II]\Locals {Paramsg Commong System | 4 | | _’I

Figure 12-14: Variable Watch Window Showing MARBELLS_BINARY Structure
You can specify which part of the structure variable you want to access by using the
following syntax:

variable_name.element_name
For example, display the image by entering:
TVSCL, SURFACE_BI NARY. A

Figure 12-15: Surface.dat displayed using TVSCL

Using Macros to Import Binary Files Using IDL

Chapter 12: IDL Macros for Importing Data 199

Using Macros to Import HDF Files

To import aHierarchical Data Format (HDF), HDF-EOS, or NETCDF fileinto IDL,
compl ete the following steps.

1. Select the Import HDF Filetool bar button. The Select a valid HDF,
NETCDF or HDF-EOSfiledialog is displayed.

Select a valid HDF, NETCDF or HDF-EOS file HE
Loak in: I 3 data j gl i =
E]abnormdat clouds3d. dat E data.tst galawy. dat
@ alie.dat convec.dat dirty_sine. dat head.dat
@ azcil.dat cow, zmf @ endocell.jpg @ heart, dxf

r% ascil. bt ctzcan.dat @ examples. tif hurric. dat
cereb.dat damp_sh.dat flovedata3. dat @ image. tif
chirp.dat damp_snZ.dat flovedatad. dat inde. bt
1 | i
File name: I Open I
Files of type: I"." j Cancel |

Figure 12-16: Select a valid HDF, NETCDF or HDF-EQOS file Dialog

2. Select afileto import. Click Open.

3. The HDF Browser window is displayed (shown at the end of these example
steps). In the HDF Browser window, select the datain the file you want to
import into IDL.

In the Display pull-down menu, select the type of file you are reading. The two

options are:
» HDF/NETCDF
« HDF-EOS

Next, select the type of data you want to import. The following tables describe
the options available for the two display choices from the pull-down menu.

Menu Selection Description

HDF/NetCDF Summary

Table 12-2: Menu Options for HDF/NetCDF Data Types

Using IDL Using Macros to Import HDF Files

200

Chapter 12: IDL Macros for Importing Data

Menu Selection

Description

DF24 (24-bit Images)

24-bit images and their attributes

DFRS8 (8-hit Images)

8-bit images and their attributes

DFP (Palettes)

Image palettes

SD (Variables/Attributes)

Scientific Datasets and attributes

AN (Annotations)

Annotations

GR (Generic Raster)

Images

GR Globa (File) Attributes

Image attributes

VGroups

Generic data groups

VData

Generic data and attributes

Table 12-2: Menu Options for HDF/NetCDF Data Types

Menu Selection

Description

HDF-EOS Summary

Point

EOS point data and attributes

Swath

EOS swath data and attributes

Grid

EOS grid data and attributes

Table 12-3: Menu Options for HDF-EOS Data Types

Once you have selected the type of data, information is displayed that shows
the different elements of data available in the file you are opening. For
example, if itisan imagefile, you will see the names of the images displayed.

Select the item to import.

If you have selected an image, 2D data set, or 3-by-n-by-m data set from the
pull-down menu, you can click on the Preview button to view the image. If
you have selected a data item that can be plotted in two dimensions, click on
the Preview button to view a 2D plot of the data (the default); or click on the
Preview Surface radio button to display a surface plot; click on the Preview
Contour radio button to display a contour plot; or click on the Preview Show3

Using Macros to Import HDF Files

Using IDL

Chapter 12: IDL Macros for Importing Data 201

radio button for an image, surface, and contour display. You can also select the
Fit to Window check box to fit the image to the window.

Next, if you want the data or metadata item you are previewing to be imported
into IDL, select the Read check box to extract the current data or metadata

item from the HDFfile.
Next, specify aname for the extracted data or metadata item.

Note
The Read check box must be selected for the item to be extracted. Default names

are generated for al data items, but may be changed at any time by the user.

Display: [HDF / NETCDF =
Preview

DFRB (Bbit Images) =

PALETTE

8-bit IMAGE ATTRIBUTES

W Read EstractAs|ydogen Image

HEIGHT = 204
REFND =3
"WW/IDTH = 204

IV Fit to window

' Preview Image

0K Color Table Cancel

Figure 12-17: HDF Browser Window

4. Continue selecting to read and name the data or metadata items you want to
import into IDL.

5. Click OK.

HDF, NETCDF, or HDF-EOS files read with the Import Binary File macro are
stored in structure variables which are named filename_DF where filename is the
name of the file you opened without the extension.

Note
IDL variables must begin with aletter, and may contain only letters, digits, the

underscore character, or the dollar sign. If the first character of filenameisnot a

Using IDL Using Macros to Import HDF Files

202 Chapter 12: IDL Macros for Importing Data

letter, the prefix “var” is added to the variable name. Any spaces within filename are
converted to underscores. Any other illegal characters within filename are removed.

The variable is a structure with each data or metadata name being an element of the
structure. You can specify which part of the structure variable you want to access by
using the following syntax:

variable name.data_name

For example, if you imported two data elements out of afile named hydrogen.hdf and
you named the elements IMAGEL and IMAGEZ2, you could access each individual
data element using the following:

HYDROGEN_DFIMAGE1
HYDROGEN_DFIMAGE2

If you wanted to view IMAGEL, you would enter:
TV, HYDTROGEN DF. | MAGEL

For more information on IDL support of HDF and other scientific data formats, see
the Scientific Data Formats manual .

Using Macros to Import HDF Files Using IDL

Chapter 13:

Reading and Writing
Images

This chapter provides an introduction to reading and writing image data using the latest commands
and user interfaces found in IDL.

Listof Commands 204 Accessing Specific Image File Formats .. 212
Accessing Image FilesUsing Dialogs 207 Accessing FilesUsing Dialogs......... 214

Accessing General Image File Formats . .. 211 Accessing Files With Compound Widgets 216

Using IDL 203

204 Chapter 13: Reading and Writing Images

List of Commands

The following routines are used for reading and writing image data. These IDL
routines provide access to specialized functionality in the case of more specific
applications.

Compound Widgets and Dialogs

CW_FILESEL A compound widget for file selection.

DIALOG_PICKFILE Allows the user to interactively pick afile, or
multiple files, using the platform's own native
graphical file-selection diaog.

DIALOG_READ_IMAGE A graphical user interface used for reading
image files.

DIALOG_WRITE_IMAGE A graphical user interface used for writing
image files.

Images (Generalized)

QUERY_IMAGE Reads the header of afile and determinesif it is
recognized as an imagefile.
READ_IMAGE Reads the image contents of afile and returns the

imagein an IDL variable.

WRITE_IMAGE Writes an image and its color table vectors, if any, to a
file of a specified type.

Images (Specific Formats)

QUERY_BMP Obtains information about a BMP image file without
having to read the image.
QUERY_DICOM Testsafile for compatibility with READ_DICOM and

returns an optional structure containing information
about images in the DICOM file.

QUERY _JPEG Obtains information about a JPEG image file without
having to read the image.

List of Commands Using IDL

Chapter 13: Reading and Writing Images 205

QUERY_PICT Obtains information about a PICT image file without
having to read the image.

QUERY_PNG Obtains information about a PNG image file without
having to read the image.

QUERY_PPM Obtains information about a PPM image file without
having to read the image.

QUERY_SRF Obtains information about a SRF image file without
having to read the image.

QUERY _TIFF Obtains information about a TIFF image file without
having to read the image.

READ_BMP Reads a Microsoft Windows Version 3 device

independent bitmap image (.bmp) and returns a byte
array containing the image.

READ_DICOM Reads an image from a DICOM file along with any
associated color table.

READ_INTERFILE Reads image data stored in Interfile (v3.3) format and
returns a 3D array.

READ_JPEG Reads JPEG (Joint Photographic Experts Group)
format compressed images from files or memory.

READ_PICT Readsthe contents of aPICT (version 2) format image
file and returns the image and color table vectors (if
present).

READ_PNG Reads the image contents of a Portable Network
Graphics (PNG) image file.

READ_PPM Reads the contents of a PGM (gray scale) or PPM

(portable pixmap for color) format image file and
returns the image in the form of a 2D byte array (for
gray scale images) or a (3, n, m) byte array (for
TrueColor images).

READ_SRF Reads the contents of a Sun rasterfile and returns the
image and color table vectors (if present).
READ_TIFF Reads multi channel image TIFF format files and

returns the image and color table vectors.

Using IDL List of Commands

206 Chapter 13: Reading and Writing Images

READ_X11 BITMAP Reads bitmaps stored in the X Windows X 11 bitmap
format.

READ_XWD Reads the contents of afile created by the xwd (X
Windows Dump) command and returns the image and
color table vectors.

WRITE_BMP Writes an image and its color table vectorsto a
Microsoft Windows Version 3 device independent
bitmap file (.bmp).

WRITE_JPEG Writes compressed images to a JPEG (Joint
Photographic Experts Group) filewhichisa
standardized compression method for full-color and

gray-scale images.

WRITE_NRIF Writes an image and its color table vectorsto an
NCAR Raster Interchange Format (NRIF) rasterfile.

WRITE_PICT Writes and image and its color table vectorsto aPICT
(version 2) format image file.

WRITE_PNG Writesa 2D or 3D IDL variable into a Portable
Network Graphics (PNG) imagefile.

WRITE_PPM Writes an imageto aPPM (TrueColor) or PGM (gray-
scale) imagefile.

WRITE_SRF Writes an image and its color table vectorsto a Sun
Raster File (SRF) imagefile.

WRITE_TIFF Writes an image and its color table vectorsto a Tagged

Image Format (TIFF) imagefile.

List of Commands Using IDL

Chapter 13: Reading and Writing Images 207

Accessing Image Files Using Dialogs

Selecting an Image File

The DIALOG_READ_IMAGE function isagraphical user interface which isused for
reading image files. This interface simplifies the use of IDL imagefile I/O. Users are
able to preview images with a quick and simple browsing mechanism which will also
report important information about the image file. The user has the option to view the
image in color, grayscale, or no preview.

Result = DI ALOG READ | MAGE()

SiSclectinage Fle |
Drive: I C:h = I
| C:himages |
cloud.jpg

Eullens.'EE

File niarme: |W'I'f|'2|tl'ﬂl3'-l2'ﬂ5|

Filter: I Image Files = I

Presviews: | Colar =

Format: PHG
Channelz: 1
Width: 360
Height: 360
Fixel BYTE

e SR |
Palette: Yes Hﬂnﬂ
Image of 1

Figure 13-1: The DIALOG_READ_IMAGE dialog

Using IDL Accessing Image Files Using Dialogs

208

Chapter 13: Reading and Writing Images

Button Function
Open Opens the selected image file.
Cancel Cancels the current image selection.
Arrow Keys Pages through multiple imagesin thefile.

Table 13-1: Save Image File Buttons

Accessing Image Files Using Dialogs

Using IDL

Chapter 13: Reading and Writing Images 209

Saving an Image File

The DIALOG_WRITE_IMAGE function isagraphical user interface which is used
for writing/saving image files. This interface simplifies the use of IDL imagefile I/O.

nyi mge = DI ST(100)
result = DI ALOG WRI TE_| MAGE(nyi mage, FI LENAVE=' nyi nage.tif')

&l Save Image File |
Drive:IE:"s VI

CARSIMDLSS

docsh,
examples’,
external',
helpt,

librt,
resoUrcet,

File name: |m_l,limage.tif | Save

Save a I.TIFF,.TIF vI Cancel

Optiohz...

i

Figure 13-2: The DIALOG_WRITE_IMAGE dialog

Button Function
Save Savesthe imagefile.
Cancel Cancels the save function.
Options Brings up adialog box of image format save options.

Table 13-2: Save Image File Dialog Buttons

Using IDL Accessing Image Files Using Dialogs

210 Chapter 13: Reading and Writing Images

&l Image Options |

™ tppend

100
A A
¥ Rezolution

100
A _
" Reszolution

Compreszsion I MHaone "I
o]

Figure 13-3: Image Options

Accessing Image Files Using Dialogs Using IDL

Chapter 13: Reading and Writing Images 211

Accessing General Image File Formats

Querying an Image File

The QUERY _IMAGE function reads the header of an image file and determinesif it
isrecognized as an imagefile. If it isan image file, an optional structure containing
the information about the image is returned. The Info structure for all image types has
the following fields:

Tag Definition
CHANNELS Long
DIMENSIONS One-dimensional long array
FILENAME Scalar string

HAS PALETTE | Integer
IMAGE_INDEX | Long
NUM_IMAGES | Long
PIXEL_TYPE Integer
TYPE Scalar string

Table 13-3: Info Structure for Images
Reading an Image File

The READ_IMAGE function reads the image contents of afile and returns the image
inan IDL variable.

Writing an Image File

The WRITE_IMAGE function writes an image and its color table vectorsto afile of
a specified type. The WRITE_IMAGE function can write most types of image files.

Using IDL Accessing General Image File Formats

212 Chapter 13: Reading and Writing Images

Accessing Specific Image File Formats

QUERY_* Routines

IDL has added a consistent set of query routines to the existing IDL image file format
API to alow usersto abtain information about files without having to read them into
memory.

All of the QUERY _ routines return a status, which determinesif thefile is appropriate
to use the corresponding READ _ routine. In addition, these routines return an
anonymous structure containing all of the available information for that image format,
such as the image dimensions, number of samples per pixel, pixel type, paette info,
and the number of imagesin thefile. The following isalist of the current QUERY _

routines:
QUERY_BMP QUERY_PNG
QUERY_DICOM QUERY_PPM
QUERY_JPEG QUERY_SRF
QUERY_PICT QUERY _TIFF

READ_* Routines

IDL includes a number of routines for reading standard graphics file formats. These
routines read the image file format and returns the image and color table vectors (if
present). The following isalist of the current READ _ routines:

READ_BMP READ_PNG
READ_DICOM READ_PPM
READ_JPEG READ_SRF
READ_PICT READ_TIFF

Accessing Specific Image File Formats Using IDL

Chapter 13: Reading and Writing Images 213

WRITE_* Routines

IDL has added a consistent set of write routines to the existing IDL image file format
functions to allow users to write an image and its color table vectorsto afile of a
specified type. Thefollowing isalist of the current WRITE _ routines:

WRITE_BMP WRITE_PNG
WRITE_DICOM WRITE_PPM
WRITE_JPEG WRITE_SRF
WRITE_PICT WRITE_TIFF

Using IDL Accessing Specific Image File Formats

214 Chapter 13: Reading and Writing Images

Accessing Files Using Dialogs

File Selection

The DIALOG_PICKFILE function allowsthe user to interactively pick afile using the
platform’s own native graphical file selection dialog. The user can also enter the name
of thefile.

Directory Selection

The DIRECTORY keyword allows the user to select adirectory rather than afile name
with the DIALOG_PICKFILE function. See DIALOG_PICKFILE in the IDL
Reference Guide for details.

Result = DI ALOG Pl CKFI LE()

Pleasze Select a File

Look in; I £ examples
data [object
demo [C3 tstarm
doc 30 demo_pro.pri
quibuilder E
inzight
Mz

File name: Idemu:u_pru:ui.pri Open I
Files of twpe: I"." j Cancel |

Figure 13-4: DIALOG_PICKFILE

Multiple File Selection

The MULTIPLE_FILES keyword allows multiple file selection in the dialog. When
this keyword is set, the user can select multiple files using the platform-specific
selection method and DIALOG_PICKFILE can return a string or an array of strings
that contains the full path name of the selected file or files.

Accessing Files Using Dialogs Using IDL

Chapter 13: Reading and Writing Images 215

Result = DI ALOG Pl CKFI LE(/ MULTI PLE_FI LES)

PloaseSoloota e]
Laak ir: |El data j ﬂl

abrormn. dat 3] chirp.dat . damp zh.dat m examnples. t
alie. dat louds3d. dat . b flowedata3,
ascil.dat . dlrt_l,l gire. dat flovedatad.
""" i m elew_tjpg galaxy. dat
j’ avhir.png czcan. dat @ elevbin. dat head.dat
cereb.dat damp_zn.dat m endocell.jpg @ hiezart, duf

« I |

File niame: I"u:u:unveu:.dat" "clouds3d.dat" "data.tet" "elevbi Open I
Files of tupe: I"." j Cancel |

Figure 13-5: MULTIPLE_FILES Selection

Using IDL Accessing Files Using Dialogs

216 Chapter 13: Reading and Writing Images

Accessing Files With Compound Widgets

Selecting a File

The CW_FILESEL isacompound widget which can be used in a component fashion
aswell as adding multiple file filter selection. The following example illustrates how
CW_FILESEL could be used to create a widget for opening imagefiles:

PRO i mage_opener _event, event
W DGET_CONTROL, event.top, GET_UVALUE=state, /NO _COPY

CASE event . DONE OF
0: BEG N
state.file = event. VALUE
W DGET_CONTROL, event.top, SET_UWVALUE=state, /NO _COPY
END
1: BEG N
IF (state.file NE'') THEN BEG N
inmg = READ | MAGE(state.file)

TV, ing
ENDI F
W DGET_CONTROL, event.top, SET_UVALUE=state, /NO _COPY
END
2: W DGET_CONTRCL, event.top, /DESTROY
ENDCASE

END
PRO i mage_opener
DEVI CE, DECOVPOSED=0, RETAI N=2
base = W DGET_BASE(TI TLE =" Open | mage', /COLUW)
filesel = CWFILESEL(base, /I MAGE_FILTER, FILTER="AIIl Files")
file=""

state = {file:file}

W DCGET_CONTROL, base, /REALIZE
W DCET_CONTROL, base, SET_WVALUE=state, /NO _COPY

XMANAGER, 'inmage_opener', base

END

Accessing Files With Compound Widgets Using IDL

Chapter 13: Reading and Writing Images 217

This code opens the following dialog:

&l Open Image M=l E3
Drive:lﬁ
|E:'ximages |
cloud.jpg

Eullens.'EE

File name:|WDf|'2|tl'ﬂF'-F'nEI | Dpen |
Filter: I.-'l'l.ll Files vI Cancel |

Figure 13-6: CW_FILESEL

Using IDL Accessing Files With Compound Widgets

218 Chapter 13: Reading and Writing Images

Accessing Files With Compound Widgets Using IDL

Chapter 14:
Reading and Writing
ASCI| Data

This chapter provides an introduction to reading and writing ASCII data using the commands and
user interfacesfound in IDL.

Overviewcoviiiiinnannnn. 220 Advanced FileInput/Qutput 225
Reading an ASCII DataFile 221

Using IDL 219

220 Chapter 14: Reading and Writing ASCII Data

Overview

IDL recognizestwo types of ASCII datafiles: free format files, and explicit format
files. A free format file uses commas or tabs and spaces to distinguish each element
in thefile. An explicit format file distinguishes elements according to the commands

specified in aformat statement.

Overview Using IDL

Chapter 14: Reading and Writing ASCII Data 221

Reading an ASCII Data File

Most ASCII files are free format files. IDL uses three commands for reading ASCI|
datafiles: READ, READF, and READS. The READ procedure reads free format data
from standard input, READF reads free format datafrom afile, and READS reads
free format data from astring variable.

Using the ASCII_TEMPLATE Function

The ASCIlI_TEMPLATE function generates a template defining an ASCI| file
format. In this example, two routines are used to input an ASCII datafileinto IDL.
Thefirst routine, ASCII_TEMPLATE, isawidget program which allows the user to
describe the data organization of the file. This routine creates atemplate which is
used to read the data file, according to the template specifications, by the second
routine called READ_ASCII. Thetemplateisan IDL variable that can be reused by
other files with the same organization. The following example creates a template for
an ASCI| file using the ASCII_TEMPLATE function.

tenplate = ascii _tenplate()

This command assigns the description of the datato a variable named template. IDL
will display adialog box which prompts the user to select afile.

Note
If afilenameis specified in the parentheses after the ASCII_TEMPLATE function,
this screen will not appear.

Pleaze Select a File EHE

Lookjn: |3 153 =] o ==

|1 bin adinit dat idl_datariner.dl idl_fftacls
] examples backup.macros.ini idl_datarniner.dim idl_fftoal.
|20 extemal [T hinstall exe idl_dicom.dl idl_gif.dl
| help idl.ooa idl_dicom.dim idl_gif din
b idl_cdf.di idl_df.dl idl_grtaol.
| resource idl_cdf.dim idl_df.dim idl_grtaol.
K I |]
File name: I Open I
Filez of type: I"." j Cancel |

Figure 14-1: File Selection Dialog Box

Using IDL Reading an ASCII Data File

222 Chapter 14: Reading and Writing ASCII Data

Once afile has been selected, IDL displays thefirst of three pages of the
ASCII_TEMPLATE dialog.

EJSTEP 1 of 3: Define Data Type / Range

Chooze the field type which best describes your data:
" Fized Width [fields are aligned in colurmnz)

+ Delimited [commas, whitespace, etc. separate each field)

Comment String to |gnore:
Dlata Starts at Line: |1

Selected Text File:

Text
1 -
2 with comments prefaced ky the "%$" character. It is used as
3 an example in documentstion for Insight.
4
5 5503 22.1 1&.3 40.0 % First record
& 1.1 15.1 22.4 % Second record
7 io0.z2 TE.0 22.1 2.3 % Third record
=}

-
4 3

‘ Cancel | | Mest > | ”

Figure 14-2: ASCIlI Template - Define Data Type / Range
The first page displays a representative sample of lines from the data file with their

numbers on the left. Select the field type that best describes the data. Click the Next
button on the bottom-right corner of the screen to move to the next page.

Reading an ASCII Data File Using IDL

Chapter 14: Reading and Writing ASCII Data 223

&l STEF 2 of 3: Define Delimiter / Fields

Mumnber of Fields Per Line: |10.11.6.7.6.7

Delimiter Between D1ata Elements:

@+ ‘White Space ¢ Comma Colon
" Semicalon € Tab Other |:|

Selected Records:

Text
1 -
2 with comments prefaced ky the "%$" character. It is used as
3 an example in documentstion for Insight.
4 5503 22.1 1&.3 40.0 % First record
5 1.1 15.1 22.4 % Second record
& io0.z2 TE.0 22.1 2.3 % Third record

-
4 3

| _Coneel | _<Bck | [fiEi3 |

Figure 14-3: ASCII Template - Define Delimiter / Fields
The second page displays the number of fields per linewhich islisted asthree and the

white space is selected for the data delimiter. Click the Next button on the bottom
right corner of the screen to move to the next page.

Using IDL Reading an ASCII Data File

224 Chapter 14: Reading and Writing ASCII Data

EJSTEP 3 of 3: Field Specification

[rata Type

Mame; [fighd0l

Shing

field02 | Sting Type: |String -
fieldd3 Sting
fieldd4 Sting

Shing Group

Shing

Group Al Ungroup Al

Walue to Assign to Missing Data: % [EEE MaM l:l

Sample Record:

1 file contains ASCIT format dats in -
2 with comments prefaced oy the tyn character.

3 arn example in docunentatifor Insight.

4 5503 22.1 1&.3 40.0 £ First record

5 1.1 15.1 22.4 £ Second record

& io0.z2 TE.0 22.1 2.3 £ Third record

-
4 3

‘ Cancel | < Back | | Finizh ”

Figure 14-4: ASCII Template - Field Specification

Thethird page displays the columnsin the data set which can be named and their data
type specified. Name the fields by typing in the name text at the upper right of the
form. Click the Finish button on the bottom-right corner of the screen.

Theresult isan IDL structure variable that describes the data in the file and can be
used as input to the READ_ASCII command.

Reading an ASCII Data File Using IDL

Chapter 14: Reading and Writing ASCII Data 225

Advanced File Input/Output

For information on more advanced file 1/0O capabilities, see Chapter 10, “Files and
Input/Output” in the Building IDL Applications manual.

Using IDL Advanced File Input/Output

226 Chapter 14: Reading and Writing ASCII Data

Advanced File Input/Output Using IDL

Chapter 15:

Reading and Writing
Binary Data

This chapter provides an introduction to reading and writing binary data using the commands and
user interfacesfound in IDL.

Overviewcoviiiiinnannnn. 228 Advanced File Input/Qutput 232
Reading aBinary DataFile 229

Using IDL 227

228 Chapter 15: Reading and Writing Binary Data

Overview

Binary data or binary data files are more compact than ASCI| datafiles and are
frequently used for large datafiles. Binary datafiles are stored as one long stream of
bytesin afile.

Overview Using IDL

Chapter 15: Reading and Writing Binary Data 229

Reading a Binary Data File

To read binary datafiles, define the variables, open the file for reading, and read the
bytes into those variables with the READU command. Each variable reads as many
bytes out of the file as required by the specified data type and organizational
structure.

It is aso possible (and often more convenient) to read datafrom abinary file using
the BINARY_TEMPLATE and the READ_BINARY functions, as described in the
following section.

Using the BINARY_TEMPLATE Function

A binary template serves as a description of the format of the datain abinary file. A
single template can be re-used for al binary files that are organized in the same way.
The template specifies user defined fields and file byte order. Templates are created
using the BINARY _TEMPLATE function and used as the value of the TEMPLATE
keyword to the READ_BINARY function.

When the BINARY _TEMPLATE function isinvoked, the following dialog is

displayed:
&ll|Binary Template [%]
Template name:l File's byte: ordering: INative 'l

Fields:

Offset | # Dims Werify

0] o

Mew Field... | Modify Field... | Femove Field

&I Cancel |

Figure 15-1: Binary Template

The Template Name is optional, and can be any string.

The byte order in the file is selected using the using the File's byte ordering: pull-
down menu. The choices are:

Using IDL Reading a Binary Data File

230 Chapter 15: Reading and Writing Binary Data

« Native— The type of storage method that is native to the machine you are
currently running. Little Endian for Intel microprocessor-based machines and
Big Endian for M otorola microprocessor-based machines. No byte swapping
will be performed.

e Little Endian — A method of storing numbers so that the least significant
byte appearsfirst in the number. For example, given the hexadecimal number
A02B, thelittle endian method specifies the number to be stored as 2BAO.
Specify thisif the original file was created on a machine that uses an Intel
Mi Croprocessor.

¢ Big Endian — A method of storing numbers so that the most significant byte
appearsfirst in the number. For example, given the hexadecima number
A02B, the big endian method specifies the number to be stored as A02B.
Specify thisif the origina file was created on a machine that uses a Motorola
Mi Croprocessor.

Fields are read in the order in which they are listed in the main dialog for
BINARY_TEMPLATE, with offsets being added to the current file position pointer
before each field isread. If afield has aready been defined, clicking in the Return
column will toggle the value of the field between Yes and No. Fields that are not
marked for return can be used for calculations by other fieldsin the template. At least
one field must be marked Yes for return in order for the BINARY _TEMPLATE
function to return atemplate. Click New Field... to enter the description of a new
template field. The New Field dialog appears:

&l New Field [x]
Field nme: |
Type: | Byte [unsigned &-bits) - Nurber of dimensions: | 0 (scakar) ¥
et b s Sie I Reverse
" From beginning of file 2nd Siee, " Reverse
@
fzD Il i = Reverse
Dffset can be an integer o1 an expressian)
invalving fields dsfined sarliet in the template. A Siee
\when a fle is 1ead, this field should be: G =
¥ Retumed in the result Bt Siz
7 S
I~ Veriied as being equal to: o
ih: o2

The Verify field can contain a number or an expression Each dimension can be an integer or an sxpr
inwolving fields defined earliet in the template. involving fields defined earlier in the template.

0K | Cancel

Figure 15-2: Binary Template - New Field

Reading a Binary Data File Using IDL

Chapter 15: Reading and Writing Binary Data 231

Using IDL

The Field Name can be any string.

The Type of each Template-specified field is selected from a droplist that offers the
following IDL types. byte, integer, long, float, double, complex, dcomplex, uint,
ulong, long64 and ulong64. Strings are read as an array of bytes for later conversion
to type STRING.

Offsets can be specified using integer values, field names, or any valid IDL
expression.

« An absolute integer offset specifies afixed location (in bytes) from the
beginning of the file (or the initial file position for an externally opened file).

* A relativeinteger offset specifies a position relative to the current file position
pointer after the previousfield (if any) isread. Relative offsets are shown in the
BINARY_TEMPLATE user interface with a preceding > or < character, to
indicate a positive (>) or negative (<) byte offset.

e Expressions can include the names of fields that will be read before the current
field — that is, the field number of the referenced field must be lower than the
field number of the field being defined.

The Verify field can contain an integer, field name, or any valid IDL expression. Only
scalar fields can be verified. READ_BINARY reports an error if averification fails.

The Number of Dimensions of afield can be set viaadroplist of values 0 (scalar) to
8 (which is the maximum number of dimensions that an IDL variable can have.) The
size of each dimension can be an integer, field name, or any valid IDL expression.
Any of the first three dimensions of array data can also be specified to be reversed in
order.

Note
If BINARY_TEMPLATE iscalled by aprogram that isrunning in the IDL Virtual
Machine, the Offsets, Verify, and Size fields can contain integers or field names,
but not an IDL expression.

Click OK to create the new field definition, and repeat to define all necessary fields.

The BINARY _TEMPLATE function returns a structure variable containing the
template. The template variable can be saved and used as the value of the
TEMPLATE keyword to the READ_BINARY function:

tenpl ate = BI NARY_TEMPLATE(fi | e. dat)
Result = READ BINARY('file.dat', TEMPLATE=tenpl ate)

wherefile.dat isabinary datafile to be read. The template variable can also be reused
asthe value of the TEMPLATE keyword to BINARY_TEMPLATE.

Reading a Binary Data File

232 Chapter 15: Reading and Writing Binary Data

Advanced File Input/Output

For information on more advanced file 1/0O capabilities, see Chapter 10, “Files and
Input/Output” in the Building IDL Applications manual.

Advanced File Input/Output Using IDL

Part Ill: Using
Direct Graphics

Chapter 16:

Graphics

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 236 IDL Object Graphics 238
IDL Direct Graphics 237

Using IDL 235

236 Chapter 16: Graphics

Overview

Beginning with IDL version 5.0, IDL supports two distinct graphics modes: Direct
Graphics and Object Graphics. Direct Graphics rely on the concept of a current
graphics device; IDL commands like PLOT or SURFACE create images directly on
the current graphics device. Object Graphics use an object-oriented programmers
interface to create graphic objects, which must then be drawn, explicitly, to a
destination of the programmer’s choosing.

Overview Using IDL

Chapter 16: Graphics 237

IDL Direct Graphics

If you have used versions of IDL prior to version 5.0, you are aready familiar with
IDL Direct Graphics. The salient features of Direct Graphics are:

Using IDL

Direct Graphics use a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

IDL commands that existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. al draw their output directly on
the current graphics device.

Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

When you add a new item to an existing direct-mode graphic (using aroutine
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.

IDL Direct Graphics

238

Chapter 16: Graphics

IDL Object Graphics

Versions of IDL beginning with version 5.0 include Object Graphicsin addition to
Direct Graphics. The salient features of Object Graphics are:

Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

Object graphics are object-oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to awindow on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing all of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including calculation of
normal vectors for lines and surfaces, lighting considerations, and general
object overhead. As aresult, the time needed to render a given object—a
surface, say—will often be longer than the time taken to draw the analogous
image in Direct Graphics.

Object Graphics use a programmer’sinterface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programsthat are compiled and run. While
itisgtill possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.

IDL Object Graphics Using IDL

Chapter 17:

Direct Graphics Plotting

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 240
Plotting Keyword Parameters 241
Direct Graphics Coordinate Systems. 242
Annotation — The XYOUTS Procedure . . . 251
PlottingSymbols 253
PolygonFilling 257
TickMarks oo 261

Using IDL

LogarithmicScaling 265
Multiple PlotsonaPage.............. 267
Specifying the Location of the Plot 269
Plotting MissingData. 271
Date/TimePlotting 272
Usingthe AXISProcedure 283
Using the CURSOR Procedure 287

239

240 Chapter 17: Direct Graphics Plotting

Overview

IDL includes several routines that can be used to display datain a variety of plot
formats, including general x versusy, contour, mesh surface, and perspective plots.
The routines allow users to display information in a manner that can be easily
understood during data analysis.

Optional keyword parameters and system variables enable users to change certain
specifications of the routines, such as scaling, style, and colors, for custom or
specialized plots.

This chapter provides examples of scientific graphicsin which one variableis plotted
as afunction of another. The routines for the display of functions of two variables,
CONTOUR, SHADE_SUREF, and SURFACE, are explained in detail in “Plotting
Multi-Dimensional Arrays’ in Chapter 18.

Plotting with iTools

Beginning with IDL 6.0, you can also use the IDL Intelligent Tools (i Tools) to display
plot data. The iTools provide an easy-to-use interface that allows you to manipulate
your data after it has been displayed. See “Introducing the iTools’ in Chapter 1 of the
iTool User’s Guide manual for more on iTools.

Running the Example Code

The examplesin this chapter are all written to take advantage of IDL Direct Graphics.
Examples and techniques using IDL Object Graphics are contained in the later
chapters of this manual.

Some of the example code used in this chapter is part of the IDL distribution. All of
the files mentioned are located in the exanpl es/ doc subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See |PATH in the
IDL Reference Guide for information on IDL’s path.

Overview Using IDL

Chapter 17: Direct Graphics Plotting 241

Plotting Keyword Parameters

The IDL plotting procedures are designed to produce acceptable results for most
applications with a minimum amount of effort. The large number of keyword
parameters, described in the IDL Reference Guide, in combination with plotting and
graphic system variables, allow usersto customize the graphics produced by IDL.
Most of these keyword parameters pertain to advanced programming. The major
keyword parameters are described and illustrated by example in this chapter.

Correspondence with System Variables

Many of the keyword parameters correspond directly to fieldsin the system variables
IR, X, 1Y, or I1Z. When specifying a keyword parameter name and value in acall that
value affects only the current call, the corresponding system-variable field is not
changed. Changing the value of a system-variable field changes the default for that
particular parameter and remains in effect until explicitly changed. The system
variables involving graphics and their corresponding keywords are detailed in
Appendix D, “System Variables’ in the IDL Reference Guide manual.

Example—The COLOR Keyword Parameter

Using IDL

The keyword parameter COLOR corresponds to the field COLOR of the system-
variable structure P and is referenced as 'P.COLOR. To set the color of aplot to
color-index 12, use the following statement:

PLOT, X, Y, COLCOR = 12

Future plots are not affected and are drawn with color index 'PCOLOR, which is
normally set to the number of available colors minus one.

The interpretation of the color index varies among the devices supported by IDL.
With color video displays, thisindex selects acolor (normally ared, green, blue
(RGB) triple stored in adevice table). You can control the color selected by each
color index with the TVLCT procedure which loads the device color tables.

Other devices have afixed color associated with each color index. With plotters, for
exampl e, the correspondence between colors and color index is established by the
order of the pensin the carousel.

To change the default color of future plots, use a statement such as:
I P. COLOR = 12

which sets the default color to color-index 12. You can override this default at any
time by including the COLOR keyword in the graphic routine call.

Plotting Keyword Parameters

242 Chapter 17: Direct Graphics Plotting

Direct Graphics Coordinate Systems

You can specify coordinates to IDL in one of the following coordinate systems:

DATA Coordinates

This coordinate system is established by the most recent PLOT, CONTOUR, or
SURFACE procedure. This system usually spans the plot window, the area bounded
by the plot axes, with arange identical to the range of the plotted data. The system
can have two or three dimensions and can be linear, logarithmic, or semi-logarithmic.
The mechanisms of converting from one coordinate system to another are described
below. See “CONVERT_COORD Function” on page 243.

DEVICE Coordinates

This coordinate system is the physical coordinate system of the selected plotting
device. Device coordinates are integers, ranging from (0, 0) at the bottom-left corner
to (Vi —1, V) —1) at the upper-right corner. V, and V,, are the number of columns and
rows addressed by the device. These numbers are stored in the system variable D as
ID.X_SIZEand ID.Y_SIZE.

NORMAL Coordinates

The normalized coordinate system ranges from zero (0) to one (1) over each of the
three axes.

Almost all of the IDL graphics procedures accept parametersin any of these
coordinate systems. Most procedures use the data coordinate system by default.
Routines beginning with the letters TV are notable exceptions. They use device
coordinates by default. You can explicitly specify the coordinate system to be used by

including one of the keyword parameters /DATA, /DEVICE, or NORMAL in the
call.

Two-Dimensional Coordinate Conversion

The system variables ID, P, X, 1Y, and ! Z contain the information necessary to
convert from one coordinate system to another. The relevant fields of these system
variables are explained below, and formulae are given for conversions to and from
each coordinate system. See Chapter 18, “Plotting Multi-Dimensional Arrays’ for a
discussion of three-dimensional coordinates.

Direct Graphics Coordinate Systems Using IDL

Chapter 17: Direct Graphics Plotting 243

In the following discussion, D is adata coordinate, N is a normalized coordinate, and
Risaraw device coordinate.

Thefields!D.X_VSIZE and !D.Y_V SIZE aways contain the size of the visible area
of the currently selected display or drawing surface. Let V, and Vi represent these two
Sizes.

Thefield IX.Sisatwo-element array that contains the parameters of the linear
equation, converting data coordinates to normalized coordinates. ! X.S[0] isthe
intercept, and ! X.9[1] isthe slope. ! X.TYPE isO for alinear x-axisand 1 for a
logarithmic x-axis. The y- and z-axes are handled in the same manner, using the
system variables!Y and !Z.

Also, let D, be the data coordinate, N, the normalized coordinate, R, the device
coordinate, V, the device X size (in device coordinates), and X; = IX.S§; (the scaling
parameter).

With the above variables defined, the linear two-dimensional coordinate conversions
for the x coordinate can be written as follows:

Coordinate

Conversion Linear Logarithmic
Data to normal N, = Xy+X,D, N, = Xy + X,logD,
Data to device R, = V, (X +X;D,) R, = V,(Xy+ X;logD,)

Normal to device R, = N,V R, = N,V

Normal to data D, = (N,—=Xp)/ X, D, = 10N =X0) /X7
Deviceto data D, = (R/V,—Xy) /X, |Dy = 10(R/V=X0) /Xy
Device to normal N, = R/V, N, = R,/V,

Table 17-1: Equations for X-axis Coordinate Conversion

They- and z-axis coordinates are converted in exactly the same manner, with the
exception that there is no z device coordinate and that |ogarithmic z-axes are not
permitted.

CONVERT_COORD Function

The CONVERT_COORD function provides a convenient means of computing the
above transformations. It can convert coordinates to and from any of the above
systems. The keywords DATA, DEVICE, or NORMAL specify theinput system. The

Using IDL Direct Graphics Coordinate Systems

244

Chapter 17: Direct Graphics Plotting

output coordinate system is specified by one of the keywords TO_DATA,

TO _DEVICE, or TO_NORMAL. For example, to convert the endpoints of aline
from data coordinates (0, 1) to (5, 7) to device coordinates, use the following
Statement:

D = CONVERT_COORD([0, 5], [1, 7], /DATA, /TO DEVICE)

On completion, the variable D isa (3, 2) vector, containing the X, y, and z coordinates
of the two endpoints.

X Versus Y Plots—PLOT and OPLOT

This section illustrates the use of the basic x versus y plotting routines, PLOT and
OPLOQOT. PLOT produces linear-linear plots by default, and can produce linear-log,
log-linear, or log-log plots with the addition of the XLOG and YLOG keywords.

Data used in these examples are from afictitious study of Pacific Northwest Salmon
fisheries. In the example, we suppose that data were collected in the years 1967,
1970, and from 1975 to 1983. The following IDL statements create and initialize the
variables SOCKEY E, COHO, CHINOOK, and HUMPBACK, which contain
fictitious fish population counts, in thousands, for the 11 observations:

SOCKEYE=[463, 459, 437, 433, 431, 433, 431, 428, 430, 431, 430]
COHO=[468, 461, 431, 430, 427, 425, 423, 420, 418, 421, 420]
CHI NOCOK=[514, 509, 495, 497, 497, 494, 493, 491, 492, 493, 493]
HUVPBACK=[467, 465, 449, 446, 445, 444, 443, 443, 443, 443, 445]
; Construct a vector in which each el enent contains

; the year of the sample:

YEAR = [1967, 1970, I NDGEN(9) + 1975]

If you prefer not to enter the data by hand, run the batch file pl ot 01 with the
following command at the IDL prompt:

@l ot 01
See “Running the Example Code” on page 240 if IDL does not find the batch file.

The following IDL commands create a plot of the population of Sockeye salmon, by
year:
PLOT, YEAR, SOCKEYE, $

TI TLE=' Sockeye Popul ation', XTITLE=' Year', $
YTl TLE=' Fi sh (thousands)’

The PLOT procedure, which produces an x versus y plot on anew set of axes,
requires one or two parameters: a vector of y values or a vector of x values followed
by avector of y values. Thefirst attempt at making a plot produces the figure shown

Direct Graphics Coordinate Systems Using IDL

Chapter 17: Direct Graphics Plotting 245

below. Note that the three titles, defined by the keywords TITLE, XTITLE, and
YTITLE, are optional.

Sockeye Popuolotion
T

500 T T

400

300

200

Fish {thousonds)

100

1955 19740 1975 1980 1985
Year

Figure 17-1: Initial Population Plot

Axis Scaling

The fluctuations in the data are hard to see because the scores range from 428 to 463,
and the plot’s y-axisis scaled from 0 to 500. Two factors cause this effect. By default,
IDL setsthe minimum y-axis value of linear plotsto zero if they dataare al positive.
The maximum axis value is automatically set by IDL from the maximum y data
value. In addition, IDL attempts to produce from three to six tick-mark intervals that
areinincrements of an integer power of 10times 2, 2.5, 5, or 10. In thisexample, this
rounding effect causes the maximum axis value to be 500, rather than 463.

The YNOZERO keyword parameter inhibits setting the y-axis minimum to zero
when given positive, nonzero data. The figure below illustrates the data plotted using

Using IDL Direct Graphics Coordinate Systems

246 Chapter 17: Direct Graphics Plotting

this keyword. The y-axis now ranges from 420 to 470, and IDL creates tick-mark
intervals of 10.

Sockeye Popuolotion
470 T T

460

450

Fish {thousonds)

440

430

420 1 1 1
1955 19740 1975 1980 1985
Year

Figure 17-2: Properly Scaled Plot

; Define variabl es:

@l ot 01

PLOT, YEAR, SCCKEYE, /YNOZERO, $
TI TLE=' Sockeye Popul ation', XTITLE= Year', $
YTI TLE=' Fi sh (thousands)'

Multiline Titles

The graph-text positioning command !C, starts anew line of text output. Titles
containing more than one line of text are easily produced by separating each line with
this positioning command.

In the above example, the main title could have been displayed on two centered lines
by changing the keyword parameter TITLE to the following statement:

TI TLE = ' Sockeye! CPopul ati on’

Direct Graphics Coordinate Systems Using IDL

Chapter 17: Direct Graphics Plotting 247

Note
When using multiple line titles you may find that the default margins are
inadequate, causing thetitlesto run off the page. In this case, set the[XY]MARGIN
keywords or increase the values of !X.MARGIN or 'Y.MARGIN.

Range Keyword

Using IDL

Therange of the x, y, or z axes can be explicitly specified with the [XY Z] RANGE
keyword parameter. The argument of the keyword parameter is a two-element vector
containing the minimum and maximum axis values.

Asexplained above, IDL attempts to produce even tick intervals, and the axis range
selected by IDL may be dlightly larger than that given with the RANGE keyword. To
obtain the exact specified interval, set the axis style parameter to one (YSTYLE = 1).

The effect of the YNOZERO keyword isidentical to that obtained by including the
keyword parameter YRANGE = [M N(Y), MAX(Y)] inthecall to PLOT. You can
make /Y NOZERO the default in subsequent plots by setting bit 4 of Y.STYLE to
one(! Y. STYLE = 16).

See STYLE inthe IDL Reference Guide for details on the STYLE field of the axis
system variables X, 1Y, and ! Z. Briefly: Other bitsin the STY LE field extend the
axes by providing a margin around the data, suppress the axis and its notation, and
suppress the box-style axes by drawing only left and bottom axes.

Direct Graphics Coordinate Systems

248

Chapter 17: Direct Graphics Plotting

For example, to constrain the x-axis to the years 1975 to 1983, the keyword
parameter XRANGE = [1975, 1983] isincludedinthecall to PLOT. Thefollowing
figure illustrates the result.

Sockeye Popuolotion
T T

435 T

=
L=
iy

432

Fish {theusonds)

430

478 1 1 1
15976 1978 1530 1982
ear

Figure 17-3: Plot with X-Axis Range of 1975 to 1983

Note that the x-axis actually extends from 1974 to 1984, as IDL elected to make five
tick-mark intervals, each spanning two years. If, as explained above, the x-axis style
is set to one, the plot will exactly span the given range. The call combining all these
optionsisasfollows:

Defi ne vari abl es:
@l ot 01
PLOT, YEAR, SOCKEYE, /YNOZERO, $
TI TLE=' Sockeye Popul ation', XTITLE = 'Year', $
YTI TLE = ' Fish (thousands)', XRANGE = [1975, 1983], /XSTYLE
Note
The keyword parameter syntax / XSTYLE is synonymous with the expression
XSTYLE = 1. Setting akeyword parameter to 1 is often referred to as simply

setting the keyword.

Direct Graphics Coordinate Systems Using IDL

Chapter 17: Direct Graphics Plotting 249

Overplotting

Additional data can be added to existing plots with the OPLOT procedure. Each call
to PLOT establishes the plot window (the rectangular area enclosed by the axes), the
plot region (the box enclosing the plot window and its annotation), the axis types
(linear or log), and the scaling. Thisinformation is saved in the system variables ! P,
IX, and 'Y and used by subsequent callsto OPLQOT.

Frequently, the color index, line style, or line thickness parameters are changed in
each call to OPLQOT to distinguish the data sets. The IDL Reference Guide contains a
table describing the line style associated with each index.

The figure below illustrates a plot showing all four data sets. Each data set except the
first was plotted with a different line style and was produced by acall to OPLOT. In
this example, an (11, 4) array called ALLPTS is defined and contains al the scores
for the four categories using the array concatenation operator. Once thisarray is
defined, the IDL array operators and functions can be applied to the entire data set,
rather than explicitly referencing the particular sample.

Salmon Populolions
520 T T T T

300

L]
!

480

460

Fish {thousonds)

440

4740

LN I I | L A B B B B B B B

400 1 L 1 I
1976 1973 1530 1982
Year

Figure 17-4: Overplotting Using Different Linestyles

First, we define an n-by-4 array containing all four sample vectors. (Thisarray isalso
defined by the pl ot 01 batch file.)
ALLPTS = [[COHO], [SOCKEYE], [HUWPBACK], [CH NOXK]]

The plot in the preceding figure was produced with the following statements:

Using IDL Direct Graphics Coordinate Systems

250 Chapter 17: Direct Graphics Plotting

; Define vari abl es:
@l ot 01
; Plot first graph. Set the y-axis mn and max
fromthe mn and nax of all data sets. Default linestyle is O.
PLOT, YEAR, COHO, YRANGE = [M N(ALLPTS), MAX(ALLPTS)], $
TI TLE=' Sal non Popul ations', XTITLE = 'Year', $
YTI TLE = 'Fish (thousands)', XRANGE = [1975, 1983], $

/ XSTYLE
; Loop for the three remaining scores, varying the linestyle:
FOR I =1, 3 DO OPLOT, YEAR, ALLPTS[*, I], LINE = |

Direct Graphics Coordinate Systems Using IDL

Chapter 17: Direct Graphics Plotting 251

Annotation — The XYOUTS Procedure

An obvious problem with the previous figure is that each line should be labeled
showing what it depicts. The XYOUTS procedure is used to write graphic text at a
given location. The call to XYOUTS to write a string starting at location (X, y) isas
follows:

XYQUTS, X, Y, STRING

See XYOUTS in the IDL Reference Guide for a complete list of keywords available
when adding graphic text to a plot.

The next figure illustrates one method of annotating each graph with its name. The
plot was produced exactly as was the previous figure, except that the x-axis range was
extended to the year 1990 to allow room for thetitles. To accomplish this, the
keyword parameter XRANGE = [1967, 1990] was added to thecall to PLOT. A
string vector, NAMES, containing the names of each sample population also is
defined.

Salmon Populations

520 — T T T T T T T — T T T T T
5001 Tl .
r T e L.--—-- Chinook a
480 1— —
LI :
g : Humpback :
440 — —|
i Sockeye]
470 __ Coho __
F1vs] I R S S R
1965 1970 1975 1980 1985 1990

Figure 17-5: Example of Annotating Each Line

First, we define an array containing names for each of the lines plotted. (Thisarray is
also defined by the pl ot 01 batch file.)

Annotation — The XYOUTS Procedure

252

Chapter 17: Direct Graphics Plotting

NAMES=[' Coho', ' Sockeye', ' Hunpback', ' Chi nook']
The plot was produced with the following statements:

Defi ne vari abl es:
@l ot 01
I ndex of |ast point:
N1 = N_ELEMENTS(YEAR) - 1
Plot first graph. Set the y-axis mn and nax
; fromthe mn and max of all data sets. Default linestyle is O.
PLOT, YEAR, COHO, YRANGE = [M N(ALLPTS), MAX(ALLPTS)], $
TI TLE=" Sal non Popul ations', XTITLE = 'Year', $
YTI TLE = 'Fish (thousands)', XRANGE = [1965, 1990], $
| XSTYLE
Loop for the three remaining scores, varying the linestyle:
FOR | =1, 3 DO OPLOT, YEAR, ALLPTS[*, 1], LINE = 1|
; Append the title of each graph on the right:
FOR 1 = 0, 3 DO XYQUTS, 1984, ALLPTS[N1, 1], NAMES[I]

Font Selection

The previous figure also illustrates the use of a PostScript font (Times-Roman, in this
case) for the titles and annotations. Note that PostScript fonts can only be used when
the current graphics devicesis set to PostScript.

This font was selected by first setting the default font, controlled by the system
variable |PFONT, to the hardware-font index of zero, and then calling the DEVICE
procedure to set the Times-Roman font. To recreate the plot using this font on your
system, inspect the batch file pl ot 02, located in the exanpl es/ doc subdirectory of
the IDL distribution. Note that running this batch files creates a PostScript file named
pl ot . ps inyour current working directory. See “ Running the Example Code” on
page 240 if IDL does not find the batch file.

Warning
Because not all devices have selectable hardware fonts, default hardware fonts vary.
Use of other PostScript fonts and their bold, italic, oblique, and other variantsis
described in Appendix H, “Fonts” in the IDL Reference Guide manual.

Annotation — The XYOUTS Procedure Using IDL

Chapter 17: Direct Graphics Plotting 253

Plotting Symbols

Using IDL

Each data point can be marked with a symbol and/or connected with lines. The value
of the keyword parameter PSY M sel ects the marker symbol, as described in the IDL
Reference Guide. For example, avalue of 1 marks each data point with the plus sign
(+), 2isan asterisk (*), etc. Setting PSY M to minus the symbol number marks the
points with asymbol and connects them with lines. A value of —1 marks pointswith a
plussign (+) and connects them with lines. Note also that setting PSY M to a value of
10 produces histogram style plots in which a horizontal line is drawn across each x
bin.

Frequently, when data points are plotted against the results of afit or model, symbols
are used to mark the data points while the model is plotted using aline. The figure
below illustrates this, fitting the Sockeye population values to a quadratic function of
theyear. The IDL function POLY_FIT isused to calculate the quadratic.

Quodratic FA
4?0: T T

4E0

4E0

FrTya

Sockeye Populotion

420

aznf

19655 1978 1575 1980 1985
Yaqr

Figure 17-6: Plotting with Predefined Marker Symbols

The statements used to construct the above plot are as follows:

Define vari abl es.
@l ot 01
Use the LINFIT function to fit the data to a |ine:

Plotting Symbols

254 Chapter 17: Direct Graphics Plotting

coeff = LINFI T(YEAR, SOCKEYE)
YFIT is the fitted |ine:
YFIT = coeff[0] + coeff[1]*YEAR
Plot the original data points with PSYM = 4, for di anonds:
PLOT, YEAR, SOCKEYE, /YNOZERO, PSYM = 4, $
TITLE = ' Quadratic Fit', XTITLE = 'Year', $
YTI TLE = ' Sockeye Popul ati on'
Overpl ot the smpoth curve using a plain |line:
OPLOT, YEAR YFIT

Alternatively, you can run the following batch file to create the plot:
@l ot 03
See “Running the Example Code” on page 240 if IDL does not find the batch file.

Defining Your Own Plotting Symbols

The USERSY M procedure allows you to define your own symbols by supplying the
coordinates of the lines used to draw the symbol. The symbol you define can be
drawn using lines or it can be filled using the polygon filling operator. USERSY M
accepts two vector parameters. a vector of x values and a vector of y values. The
coordinate system you use to define the symbol’s shape is centered on each data
point, and each unit is approximately the size of a character. For example, to define
the ssmplest symbol, use a one character-wide dash centered over the data point:

USERSYM [-.5, .5], [0, 0]

The color and line thickness used to draw the symbols are also optional keyword
parameters of USERSY M. The following code illustrates the use of USERSYM to
define a new symbol—afilled circle:

Make a vector of 16 points, Ali] = 2pi/16:

A = FINDGEN(17) * (!PI*2/16.)
Define the synbol to be a unit circle with 16 points,
and set the filled flag:

USERSYM COS(A), SIN(A), /FILL

Using the variables defined in the above example, we then create the plot, specifying
8 (user-defined) for the PSYM keyword to PLOT:

PLOT, YEAR, SOCKEYE, /YNOZERO, PSYM = 8, $
TITLE = ' Quadratic Fit', XTITLE = 'Year', $
YTI TLE = ' Sockeye Popul ati on’

Overpl ot the smooth curve using a plain |line:

OPLOT, YEAR, YFIT

Plotting Symbols Using IDL

Chapter 17: Direct Graphics Plotting 255

The following figure shows the result of this code:

Quodratic FA
AT0F T T

4E0

4E0

FrTya

Sockeye Populotion

420

aznf

19655 1978 1575 1980 1985
Yaqr

Figure 17-7: Plotting with User-defined Plotting Symbols

See USERSYM in the IDL Reference Guide for additional details.
Histogram Mode

Using the keyword PSY M=10 with the PLOT routines draws graphs in the histogram
mode, connecting points with vertical and horizontal lines. Thisnext figureillustrates

Using IDL Plotting Symbols

256 Chapter 17: Direct Graphics Plotting

the comparison between the distribution of the IDL normally distributed random
number function (RANDOMN) to the theoretical normal distribution.

Q.20 — — 1 — —

0.15

0.10

0.05

@

Figure 17-8: Histogram Mode

The plot was produced by the following IDL commands:

; Two-hundred val ues ranging from-5 to 4.95:

X = FI NDGEN(200) / 20. - 5.

; Theoretical normal distribution, scale so integral is one:

Y = 1/SQRT(2.*!Pl) * EXP(-X"2/2) * (10./200)

; Approximate normal distribution with RANDOW,
then formthe histogram

H = H STOGRAM RANDOMN(SEED, 2000), $

BINSIZE = 0.4, MN = -5., MAX = 5.)/2000.

; Plot the approxinmation using "histogram node."

PLOT, FI NDGEN(26) * 0.4 - 4.8, H, PSYM = 10

; Overplot the actual distribution:

OPLOT, X, Y * 8.

Plotting Symbols Using IDL

Chapter 17: Direct Graphics Plotting 257

Polygon Filling

Using IDL

Many scientific graphs use region filling to highlight the difference between two or
more curves, to illustrate boundaries, etc. The IDL POLY FILL procedurefills the
interior of arbitrary polygons given alist of vertices. The interior of the polygon can
befilled with asolid color or with some devices, a user-defined fill pattern contained
in arectangular array.

The figure below illustrates a simple example of polygon filling by filling the region
under the Chinook population graph with a color index of 25 percent the maximum,
then filling the region under the Sockeye population graph with 50 percent of the
maximum index. Because the Chinook populations are always higher than the
Sockeye populations, the graph appears as two distinct regions.

Chincok and Soclkeye Populations
Fag T T T T T T T T T T T T T T T T

300

CHINOOK

s
@
[=]

s
)
=]

Fish {thousands)

440

420
1965 1970 1975 1980 1885
Year

Figure 17-9: Filling Regions Using POLYFILL

The program that produced this figure is shown below. It first draws a plot axis with
no data, using the NODATA keyword. The minimum and maximum y values are
directly specified with the Y RANGE keyword. Because the y-axis range does not
always exactly include the specified interval (see“X VersusY Plots—PLOT and
OPLOT” on page 244), the variable MINVAL, is set to the current y-axis minimum,
I'Y. CRANGE[0] . Next, the upper Chinook population region is shaded with a
polygon that contains the vertices of the Chinook samples, preceded and followed by

Polygon Filling

258 Chapter 17: Direct Graphics Plotting

points on the x-axis, (YEAR[0] , M NVAL), and (YEAR[n- 1] , M NVAL). The polygon
for the Sockeye samplesis drawn using the same method with a different color.
Finally, the XYOUTS procedure is used to annotate the two regions.

Enter the following IDL commands to create the plot:

;. Define vari abl es:
@l ot 01
Draw axes, no data, set the range:
PLOT, YEAR, CHI NOOK, YRANGE = [M N(SOCKEYE), MAX(CH NOOK)], $
/ NODATA, Tl TLE=' Sockeye and Chi nook Popul ations', $
XTI TLE=' Year', YTITLE='Fish (thousands)’
Make a vector of x values for the polygon by duplicating
; the first and | ast points:
PXVAL = [YEAR[0], YEAR, YEAR N1]]
; Get y value al ong bottom x-axis:
M NVAL = !Y. CRANGE] 0]
Make a pol ygon by extending the edges down to the x-axis:
POLYFI LL, PXVAL, [M NVAL, CHI NOOK, M NVAL], $
COL = 0.75 * I D.N_COLORS
Same with second pol ygon.
POLYFI LL, PXVAL, [M NVAL, SOCKEYE, M NVAL], $
COL = 0.50 * ! D.N_COLORS
Label the pol ygons:
XYQUTS, 1968, 430, ' SOCKEYE' , Sl ZE=2
XYQUTS, 1968, 490, 'CHI NOXX', SIZE=2

Alternatively, you can run the following batch file to create the plot:
@l ot 04
See “Running the Example Code” on page 240 if IDL does not find the batch file.

Bar Charts

Bar (or box) charts are used in business-style graphics and are useful in comparing a
small number of measurements within afew discrete data sets. Although not
designed as atool for business graphics, IDL can produce many business-style plots
with little effort.

The following example produces a box-style chart showing the four salmon
populations as boxes of differing colors or shading. The commands used to draw the
next figure are shown below with annotation. You do not need to type these
commands in yourself; they are collected in the files pl ot 05. pr o, which contains

Polygon Filling Using IDL

Chapter 17: Direct Graphics Plotting 259

Using IDL

the two procedures, and pl ot 06, which contains the found in the exanpl es/ doc
subdirectory of the IDL distribution.

Salmon Populations

2] L T T]
500:— —:
460:— Chincolk _:
4503_ Hurnpback _f
440:_ Sochkeye _:

L e

L I
400: _._l_._._._._:

1865 1970 1875 1880 1985 1880

Figure 17-10: Bar Chart Drawn with POLYFILL

First, we define a procedure called BOX, which draws a box given the coordinates of
two diagonal corners:

Define a procedure that draws a box, using POLYFILL,
whose corners are (X0, Y0) and (X1, Y1):

PRO BOX, X0, YO, X1, Y1, color

. Call POLYFILL:
POLYFILL, [X0, X0, X1, X1], [Y0, Y1, Y1, YO], COL = color

END
Next, create a procedure to draw the bar graph:
PRO BARGRAPH, mi nval

; Define variables:
@l ot 01
: Wdth of bars in data units:
del = 1./5.
The nunber of colors used in the bar graph is
defined by the nunber of colors available on your system
ncol =! D. N_COLCRS/ 5
; Create a vector of color indices to be used in this procedure:
col ors = ncol *1 NDGEN(4) +ncol
; Loop for each sanple:

Polygon Filling

260

Chapter 17: Direct Graphics Plotting

FOR iscore = 0, 3 DO BEGA N
; The y value of annotation. Vertical separation is 20 data
;ounits:
yannot = minval + 20 *(iscore+l)
; Label for each bar:
XYQUTS, 1984, yannot, nanes[iscore]
; Bar for annotation:
BOX, 1984, yannot - 6, 1988, yannot - 2, colors[iscore]
; The x offset of vertical bar for each sanple:
xof f = iscore * del - 2 * del
; Draw vertical box for each year's sanple:
FOR iyr=0, N _ELEMENTS(year)-1 DO $
BOX, year[iyr] + xoff, minval, $
year[iyr] + xoff + del, $
allpts[iyr, iscore], $
colors[iscore]
ENDFOR
END

Enter the following at the IDL prompt to compile these two procedures from the IDL
distribution:

.run plot5.pro
To create the bar graph on your screen, enter the following commands.

; Load a color table:
LOADCT, 39

Asin the previous example, the PLOT procedure is used to draw the axes and to
establish the scaling using the NODATA keyword.

PLOT, year, CHI NOOK, YRANGE = [M N(allpts), MAX(allpts)], $
TITLE = ' Sal non Popul ati ons', /NODATA, $
XRANGE = [year[0], 1990]

; Get the y value of the bottom x-axis:

m nval = !'Y. CRANGE[0]
Create the bar chart:

BARGRAPH, mni nval

Alternatively, you can run the following batch file to create the plot:
@Il ot 06
See " Running the Example Code” on page 240 if IDL does not find the batch file.

Polygon Filling Using IDL

Chapter 17: Direct Graphics Plotting 261

Tick

Using IDL

Marks

You have ailmost complete control of the number, style, placement, thickness, and
annotation of the tick marks. The following plotting keyword parameters and their
corresponding system variable fields affect the tick marks:

[XYZ]GRIDSTYLE

The index of the line style to be used for plot tick marks and grids (i.e., when
TICKLEN isset to 1.0). See[XYZ]GRIDSTYLE in the IDL Reference Guide for
more information.

[XYZ]MINOR

The number of minor-tick intervals. If set to zero, the default, IDL automatically
determines the number of minor ticksin each major tick-mark interval. Setting this
parameter to 1 suppresses the minor ticks, and setting it to a positive, nonzero
number, n, produces n minor-tick intervals, and n—1 minor-tick marks. See
[XYZ]MINOR in the IDL Reference Guide for more information.

[XYZ]THICK

Thethickness of the x, y, or zaxes and their tick marks. This parameter is set with the
field THICK in the axes system variables, !X, Y, and !Z (e.g., ' X.THICK controls
the x-axis thickness). There are no keyword parameters affecting the axis thickness.
See [XYZ]THICK in the IDL Reference Guide for more information.

[XYZ]TICKFORMAT

Set this keyword to aformat string or a string containing the name of a function that
returns a string to be used to format the axis tick mark labels. See
[XYZ]TICKFORMAT in the IDL Reference Guide for more information.

TICKLEN

The length of each major-tick mark, expressed as afraction of the window sizein the
tick mark’s direction. The default value is 0.02. A length of 1.0 producesagrid. A
value of -0.02 makes tick marks that extend away from the plot. Individual axisticks
can be controlled with the [XY Z] TICKLEN keyword. See TICKLEN in the IDL
Reference Guide for more information.

Tick Marks

262 Chapter 17: Direct Graphics Plotting

[XYZ]TICKNAME

A string array containing the annotation of each magjor-tick mark. If omitted or if a
given string element contains the null string, IDL labels the tick mark with its value.
To suppress the tick labels, supply a string array of one-character long, blank strings,

i.e, REPLI CATE(' ', N).Null stringsforce DL to number thetick mark with its
value. See [XYZ]TICKNAME in the IDL Reference Guide for more information.
Note

If there are n tick-mark intervals, there are n + 1 tick marks and |abels.

[XYZ]TICKS

The number of major tick-mark intervals. If set to zero or omitted, IDL produces
between three and six intervals. See [XY Z]TICKS in the IDL Reference Guide for
more information.

[XYZ]TICKV

The data values of each tick mark. You can directly specify these values, producing
graphswith arbitrary tick marks. If you do this, IDL scales the axis from the first tick
value to the last unless you directly specify arange. As above, be sure to provide
n+ 1tick values. See [XYZ]TICKV in the IDL Reference Guide for more
information.

Example: Specifying Tick Marks
The following figure shows a box chart illustrating the direct specification of the x-

axistick values, number of ticks, and tick names. Building upon the previous
program, this program shows each of the four scores for the year 1967, the first year

Tick Marks Using IDL

Chapter 17: Direct Graphics Plotting 263

Using IDL

in our data. It usesthe BOX procedure from the previous example to draw arectangle
for each sample.

Salman Pepulations, 1967
T T

520F

Coho Bockaye Humpback Chineak

Figure 17-11: Controlling Tick Marks and Their Annotation

Using the data and variables from above, the following commands create the box
chart:

Enter the following command at the IDL prompt to compile the BOX and BARGRAPH
procedures (discussed in the previous example) from the IDL distribution:

.run plot05.pro
Enter the following commands to create the box chart:

; Define vari abl es:

@l ot 01

; Tick x values, 0.2, 0.4, 0.6, 0.8:

XVAL = FINDGEN(4)/5. + .2

; Make a vector of scores fromfirst year, corresponding to

; the nane vector from above:

YVAL = [COH(O 0], SOCKEYE[0], HUMPBACK[0], CHI NOOK[0]]

; Make the axes with no data. Force x range to [0, 1],

; centering xval, which also contains the tick val ues.
Force three tick intervals making four tick marks.

; Specify the tick names fromthe nanmes vector:

PLOT, XVAL, YVAL, /YNOZERO, XRANGE = [0, 1], XTICKV = XVAL, $
XTI CKS = 3, XTI CKNAME = NAMES, / NODATA, $
TI TLE = ' Sal non Popul ati ons, 1967

;. Draw the boxes, centered over the tick marks.
'Y.CRANGE[O] is the y value of the bottom x-axis.

FOR |1 =0, 3 DO BOX, XVAL[I] - .08, !'Y.CRANGE[O], $
XVAL[I] + 0.08, YVAL[I], 128

Tick Marks

264 Chapter 17: Direct Graphics Plotting

Alternatively, you can run the following batch file to create the plot:
@l ot 07
See “Running the Example Code” on page 240 if IDL does not find the batch file.

More Tick Mark Examples

See “Multiple Plots on a Page” on page 267 for more examples of ways you can
control where axes are drawn, tick mark length, and placement.

Tick Marks Using IDL

Chapter 17: Direct Graphics Plotting 265

Logarithmic Scaling

Using IDL

The XLOG, YLOG, and ZLOG keywords can be used with the PLOT routine to get
any combination of linear and logarithmic axes. The OPLOT procedure uses the
same scaling and transformation as did the most recent plot.

100.00

10.00

1.600

Power

oot oy
8} 20 40 60

80 100 120
Relative Frequency

Figure 17-12: Example of Logarithmic Scaling

Thefigureillustrates using PLOT to make alinear-log plot. It was produced with the
following statements:

; Create data array:
X = FLTARR(256)
; Make a step function. Array el ements 80 through 120 are set to 1:
X[80:120] =1
;. Make a filter:
FREQ = FI NDGEN(256)
; Make the filter symretrical about the value x = 128:
FREQ = FREQ < (256- FREQ
; Second order Butterworth, cutoff frequency = 20.
FIL = 1./ (1+(FREQ 20)"2)
; Plot with a logarithm c x-axis. Use exact axis range:
PLOT, /YLOG FREQ ABS(FFT(X 1)), $
XTI TLE "Rel ative Frequency', YTITLE = 'Power', $
XSTYLE = 1

Logarithmic Scaling

266 Chapter 17: Direct Graphics Plotting
Pl ot graph:
OPLOT, FREQ FIL
Alternatively, you can run the following batch file to create the plot:
@l ot 08
See “Running the Example Code” on page 240 if IDL does not find the batch file.

Logarithmic Scaling Using IDL

Chapter 17: Direct Graphics Plotting 267

Multiple Plots on a Page

Using IDL

Plots can be ganged on the display or page in the horizontal and/or vertical directions
using the system variable field 'PMULTI. IDL sets the plot window to produce the
given number of plots on each page and moves the window to a new sector at the
beginning of each plot. If the pageisfull, it isfirst erased. If more than two rows or
columns of plots are produced, IDL decreases the character size by afactor of 2.

IPMULTI controls the output of multiple plots. Set 'PMULTI equal to an integer
vector in which:

e Thefirst element of the vector contains the number of empty sectors remaining
on the page. The display is erased if thisfield is zero when anew plot is begun.

¢ The second element of the vector contains the number of plots per page in the
horizontal direction.

e Thethird element contains the number of plots per page in the vertical
direction.

e Thefourth element contains the number of plots stacked in the Z dimension.

¢ Thefifth element controls the order in which plots are drawn. Set the fifth
element equal to zero to make plots from left to right (column major), and top
to bottom. Set the fifth element equal to one to make plots from top to bottom,
left to right (row major).

Omitting any of the five elements from the vector is the same as setting that element
equal to zero.

For example, to set up IDL to stack two plots vertically on each page, use the
following statement:

IP.MULLTI = [0, 1, 2]

Note that the first element, 'TPMULTI (0), is set to zero to cause the next plot to begin
anew page. To make four plots per page with two columns and two rows, use the
following statement:

IP.MULLTI = [0, 2, 2]

To reset to the default of one plot per page, set the value of 'PMULTI to 0, as shown
in the following statement:

'P.MULTI =0

Multiple Plots on a Page

268

Chapter 17: Direct Graphics Plotting

Average Monthly Precipitation Average Monthly Precipitation
25F] 2.5
Q.Oi 2.0
15} 1.5
1.0F 1 1.0
b ™
0,5:] 0.0 7
0.0t oo
Ja Fe Ma Ap Ma Ju Ju Au Se Oc No De Ja Fe Ma Ap Ma Ju Ju Au Se Oc Mo De
Inches Inches
Denver Denver

100

— 80 Jo Fe Ma Ap Ma Ju Mjﬂ‘mﬂm Ge Oe Mo Da
E ERS 50
E TOE 320 E
5 BOF 115 & ’ : G : '
L P =100y — S 00
n S0F 108
b & B
5 40F 1% é?
& 30 30 —100

8] 100 200 300 400

Day of Year
Denver Average Temperature Folar Plot

Figure 17-13: Multiple Plots Per Page, Various Tick Marks, and Multiple Axes

Thisfigure shows four plotsin a single window. For details, inspect the batch file
pl ot 09 in the exanpl es/ doc subdirectory of the IDL distribution. Note the
following features of the plotsin the figure:

1

The plot in the upper left has grid-style tick marks. This is accomplished by
setting the TICKLEN keyword equal to 1.0

The plot in the upper right has outward-facing tick marks. Thisis
accomplished by setting the TICKLEN keyword to a negative value.

The plot in the lower |eft corner has different axes on left and right, top and
bottom. Thisis accomplished by drawing the top and right axes separately,
using the AXI1S procedure.

The plot in the lower right uses no default axes at all. The centered axes are
drawn with calls to the AXIS procedure.

Multiple Plots on a Page

Using IDL

Chapter 17: Direct Graphics Plotting 269

Specifying the Location of the Plot

The plot-data window is the region of the page or screen enclosed by the axes. The
plot region is the box enclosing the plot-data window and the titles and tick

annotation.

Title: Sarmple Plot

Y Axis Title
{ St

&
T

&

s

1975
#Axis Title

Plat Region

Total Device Area

Figure 17-14: The Plot-Data Window, Plot Region, and Device Area
Relationship

Thefigureillustrates the relationship of the plot-data window, plot region, and the
entire device area. These areas are determined by the following system variables and
keyword parameters, in order of decreasing precedence:

POSITION

The POSITION keyword is accepted by the CONTOUR, MAP_SET, PLOT,
SHADE_SURF, and SURFACE routines. Its value is a four-element vector (six
elements for three-dimensional plots) containing the position of the axis endpoints:
[X0 Yo» X1, Y1]. Coordinates are specified in normalized coordinates or in device
coordinates if the DEVICE keyword is present.

Using IDL Specifying the Location of the Plot

270

Chapter 17: Direct Graphics Plotting

'P.POSITION

IPPOSITION isthe system variable equivalent of the POSITION keyword. Its value
is afour-element vector in the same form as above containing the normalized
coordinates of the plot-datawindow. !PPOSITION isignored if X, isequal to x,, (that
is,if 1 P. POSI TION[0] EQ ! P. PCSI TI ON[2]), which isthe defaullt.

IP.REGION

The !PREGION system variable is another four-element vector in the same form as
above containing the normalized coordinates of the plot region, the rectangle
enclosing the plot-data window and annotation. It isignored if 'PREGION [(Q] is
equal to 'PREGION]|2].

'P.MULTI

IPMULTI controlsthe number of plots per page. It is described in “Multiple Plots on
aPage’ on page 267.

[XYZ]JMARGIN

The [XYZ]MARGIN keywords are accepted by the AX1S, CONTOUR, PLOT,
SHADE_SURF, and SURFACE routines. The value of each of these keywordsisa 2-
element array specifying the margin on the left and right sides (XMARGIN) or the
top and bottom (Y MARGIN) of the plot window, in units of character size. Default
margins are 10 and 3 for the x-axis, and 4 and 2 for the y-axis. The ZMARGIN
keyword is present for consistency and is currently ignored.

I[XYZ]MARGIN

IIXYZ]MARGIN are the system variable equivalents of the [XYZ]MARGIN
keywords.

Specifying the Location of the Plot Using IDL

Chapter 17: Direct Graphics Plotting 271

Plotting Missing Data

Using IDL

The MAX_VALUE and MIN_VALUE keywordsto PLOT can be used to create
missing data plots wherein bad data values are not plotted. Data val ues greater than
the value of the MAX_VALUE keyword or less than the value of the MIN_VALUE
keyword are treated as missing and are not plotted. The following code creates a
dataset with bad data values and plots it with and without these keywords:

Make a 100-el enent array where each elenent is
set equal to its index:
A = FI NDGEN(100)
Set 20 random point in the array equal to 400.
; This sinmulates "bad" data val ues above the range
of the "real" data.
A(RANDOMJ(SEED, 20) *100) =400
Set 20 random point in the array equal to -10.
; This sinmulates "bad" data val ues bel ow t he range
of the "real" data.
A(RANDOMJ(SEED, 20) *100) =- 10
Pl ot the dataset with the bad val ues. Looks pretty bad!
PLOT, A
Pl ot the dataset, but don’t plot any value over 101.
; The resulting plot |ooks better, but still shows spurious val ues:
PLOT, A, MAX_VALUE=101
; This tinme | eave out both high and | ow spurious val ues.
; The resulting plot nmore accurately reflects the "real" data:
PLOT, A, MAX_VALUE=101, M N_VALUE=0

The following plotting routines allow you to set maximum and minimum valuesin
thismanner: CONTOUR, PLOT, SHADE SURF, SURFACE.

In addition to the maximum and minimum values specified with the MAX_VALUE
and MIN_VALUE keywords, these plotting routines treat the | EEE floating-point
value NaN (Not A Number) as missing data automatically. (For more information on
NaN, see “Specia Floating-Point Values’ in Building IDL Applications.)

Plotting Missing Data

272 Chapter 17: Direct Graphics Plotting

Date/Time Plotting

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows afew examples of calendar dates and their
corresponding Julian dates.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0
January 2, 4713 B.C.E., at 12pm 1
January 1, 2000 at 12pm 2451545

Table 17-2: Example Julian Dates

Julian dates can also include fractional portions of aday, thereby incorporating hours,
minutes, and seconds. If the day fraction isincluded in a Julian date, it is represented
as adouble-precision floating point value. The day fraction is computed as follows:

hour + Minute seconds

dayFraction =
ayFraction = = d " 1440.d | 86400.d

One advantage of using Julian dates to represent dates and times is that a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
datesjust as for any other type of number.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Date/Time Plotting Using IDL

Chapter 17: Direct Graphics Plotting 273

Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precision istypically limited by the datatype of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

e Timevaluesthat require a high precision, and that span arange of afew days
or less, should be stored as double-precision values in units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “ seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

« Datevaluesthat do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of thisformat is 1 day.

e Datevalueswhereit is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian datesislimited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm
julian = JULDAY(1, 1, 2000, 12, 15, 0)

; Get machine characteristics:
machi ne = MACHAR(/ DOUBLE)

; Multiply by floating-point precision:
preci sion = julian*machi ne. eps

; Convert to seconds:
PRI NT, precisi on*86400d0

How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. Thefirst value of the returned array

Using IDL Date/Time Plotting

274

Chapter 17: Direct Graphics Plotting

corresponds to a start date/time, and each subsequent val ue corresponds to the start
date/time plus that array element’s one-dimensional subscript multiplied by a step
size for agiven date/time unit. Unlike the other array generation routinesin IDL,
TIMEGEN includesa START keyword, which is necessary if the starting date/timeis
originally provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for afull year:

date time = TIMEGEN(12, UNIT = 'Mnths', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000.

Theresults of the above call to TIMEGEN can be output using either of the following
methods:

1. Using the CALDAT routine to convert the Julian dates to calendar dates:

CALDAT, date_time, nonth, day, year

FOR i = 0, (N_ELEMENTS(date_ tinme) - 1) DO PRINT, $
month[i], day[i], year[i], $
FORMAT = ' (i2.2, "/", i2.2, "I", i4)

2. Using the calendar format codes:
PRINT, date_time, format ='(C(CMJ 2.2, "/", CDI2.2, “/", CYI))'
The resulting calendar dates are printed out as follows:

03/ 01/ 2000
04/ 01/ 2000
05/ 01/ 2000
06/ 01/ 2000
07/ 01/ 2000
08/ 01/ 2000
09/ 01/ 2000
10/ 01/ 2000
11/01/ 2000
12/ 01/ 2000
01/ 01/ 2001
02/ 01/ 2001

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see the TIMEGEN in the IDL Reference Guide.

Date/Time Plotting Using IDL

Chapter 17: Direct Graphics Plotting 275

Displaying Date/Time Data on an Axis in Direct
Graphics

Using IDL

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (X, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after theinitia recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

nunber _sanpl es = 37

date_time = TI MEGEN(nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

di spl acenment = SI N(10. *! DTOR* FI NDGEN(nunber _sanpl es))

Normally, this type of data would be imported into IDL from a datafile. However,
this section is designed specifically to show how to display date/time data, not how to
import data from afile; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional data with the PLOT routine, the format of the
date/time values is specified through the LABEL _DATE routine as follows

date_| abel = LABEL_DATE(DATE FORMAT = [' % : %8])
where %l represents minutes and %S represents seconds.

The resulting format is specified in the call to the PLOT routine with the
XTICKFORMAT keyword:

PLOT, date_tine, displacenent, /XSTYLE, $
; displaying titles.
TITLE = ' Measured Signal', $
XTITLE = 'Time (seconds)', $
YTI TLE = ' Di spl acenent (inches)', $
; applying date/tine formats to X-axis |abels.
XTI CKFORVMAT = ' LABEL_DATE , $
XTICKUNITS = 'Time', $
XTI CKI NTERVAL = 5

Date/Time Plotting

276

Chapter 17: Direct Graphics Plotting

The XTICKUNITS keyword is set to note the tick labels contain date/time data. The
XTICKINTERVAL keyword is set to place the mgjor tick marks at every five second
interval. These keyword settings produce the following results:

0.5

Displacerment (inches)
o
=

0.5

Meosured Signal
7 —

B35 59:40 B 45 59:80 EoiEh O8G0 G005
Tirme {seconds)

Figure 17-15: Displaying Date/Time data with PLOT

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levelsto draw and the units used at each level with the XTICKUNITS keyword.
You can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_| abel = LABEL_DATE(DATE_FORMAT = $

Date/Time Plotting

["%:9%, ‘%, 9D oM W])

Using IDL

Chapter 17: Direct Graphics Plotting 277

where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with athree element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, thefirst level (closest to the axis) will contain minute and second
values separated by a colon (%l :%S). The second level (just below thefirst level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see the description of the LABEL_DATE routinein the IDL Reference Guide.

Besides the above change to the LABEL_DATE routine, you must aso change the
settings of the keywords to the PLOT routine to specify amultiple level axis:

PLOT, date_tinme, displacenment, /XSTYLE, $

; displaying titles.

TITLE = ' Measured Signal', $

XTITLE = 'Tine (seconds)', $

YTI TLE = ' Di spl acenent (inches)', $

; applying date/tine formats to X-axis |abels.

POCSITION = [0.2, 0.25, 0.9, 0.9], $

XTI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE' , 'LABEL_DATE], $

XTICKUNITS = ['Time', 'Hour', 'Day'], $

XTI CKI NTERVAL = 5
The POSITION keyword is set to allow the resulting display to contain all three
levels and thetitle of the date/time axis. The XTICKFORMAT is now set to a string
array containing an element for each level of the axis. The XTICKUNITS keyword is

set to note the unit of each level. These keyword settings produce the following
results:

Using IDL Date/Time Plotting

278 Chapter 17: Direct Graphics Plotting

Measured Signal
L B o B

0.5

-0.5

Displacerment (inches)
o
=
T T T T | T T T T | T T T T | T T T T

-1.0 P 1 |

L L R R | R | R | L |- M|
59:35 59:40 Boi4b 59:50 59:55 00:00 oo:05
|

1%

Mar 30, 2000
Time {zeconda)

Figure 17-16: Displaying Three Levels of Date/Time data with PLOT

Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on a sphere recorded at every second for 37 seconds
after the initia recording of 59 minutes and 30 seconds after 2 o'clock pm (14
hundred hours) on the 30th day of March in the year 2000:

nunber _sanpl es = 37

date_tinme = TI MEGEN nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

angl e = 10. *FI NDGEN(nunber _sanpl es)

tenperature = BYTSCL(SI N(10.*! DTOR* $
FI NDGEN(nunber _sanpl es)) # COS(! DTOR*angl e))

Since the final contour display will be filled, we should define a color table:

Date/Time Plotting Using IDL

Chapter 17: Direct Graphics Plotting 279

Using IDL

DEVI CE, DECOVPCOSED = 0
LOADCT, 5

The call to the DEVICE command with the DECOMPOSED keyword set to zero
allows color tables to be used on TrueColor displays, which may be the default
setting on some systems. The call to the LOADCT routine loads the Standard
Gamma:Il (number 5) color table, which isapart of IDL'slibraries.

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows

date_| abel = LABEL_DATE(DATE_FORMAT = $
['%: %, "%, ' 9% %'])

where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second val ues separated by
acolon (%l:%S). The second level (just below the first level) will contain the hour
values(%H). Thethird level (thefinal level farthest from the axis) will contain the day
and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

Theresulting format is specified by using the CONTOUR routine with the
XTICKFORMAT keyword:

CONTOUR, tenperature, angle, date tine, $
; specifying contour levels and fill colors.
LEVELS = BYTSCL(| NDGEN(8)), /XSTYLE, /YSTYLE, $
C COLORS = BYTSCL(I NDGEN(8)), /FILL, $
di splaying titles.
TITLE = ' Measured Tenperature (degrees Celsius)', $
XTITLE = ' Angl e (degrees)', $
YTITLE = 'Tinme (seconds)', $
applying date/tine formats to X-axis | abels.
POSITION = [0.25, 0.2, 0.9, 0.9], $
YTI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE , 'LABEL_DATE'], $
YTICKUNNTS = ['Tine', 'Hour', 'Day'], $
YTI CKI NTERVAL = 5, $
YTI CKLAYQUT = 2
; Applying contour lines over the original contour display.
CONTOUR, tenperature, angle, date_tinme, /OVERPLOT, $
LEVELS = BYTSCL(| NDGEN(8))

Asinthe plot example, the POSITION keyword is set to allow the resulting display to
contain all threelevelsand thetitle of the date/time axis. The Y TICKUNITS keyword
is set to note the unit of each level. And the Y TICKINTERVAL keyword is set to
place the major tick marks at every five second interval.

Date/Time Plotting

280 Chapter 17: Direct Graphics Plotting

This example also containsthe Y TICKLAYOUT keyword. By default, this keyword
is set to 0, which provides the date/time layout shown in the plot example. In this

example, Y TICKLAYOUT is set to 2, which rotates and boxes the tick labelsto
provide the following results:

Meosured Temperature {degrees Celsius)

Time (=zeconds)
War 30, 2000
14

300

200
Angle (degrees)
Figure 17-17: Displaying Date/Time Data with CONTOUR

Using System Variables to Display Date/Time Data

The settings we used to display our date/time data could have been specified through
system variables instead of keywords. The following table shows the relationship
between these keywords and their system variables:

Keywords System Variables
[XYZ]TICKUNITS I[XYZ].TICKUNITS
[XYZ]TICKINTERVAL IIXYZ].TICKINTERVAL
[XYZ]TICKLAYOUT I[XYZ].TICKLAYOUT

Table 17-3: Relationship Between Keywords and System Variables

Date/Time Plotting Using IDL

Chapter 17: Direct Graphics Plotting 281

Usually, keywords are used more frequently than system variables, but system
variables are better when trying to establish a consistent display style. For example,
we could have established a date/time axis style with these system variables before
producing our previous displays:

; Establishing an axis style.
I X. TI CKFORMAT = [' LABEL_DATE' , 'LABEL_DATE', 'LABEL_DATE']
IXTICKUNITS = ['Tinme', 'Hour', 'Day']
I X. TI CKI NTERVAL = 5
I X. TI CKLAYQUT = 2
; Displaying data.
PLOT, date_time, displacenment, /XSTYLE, $
TITLE = ' Measured Signal', $
XTI TLE = 'Time (seconds)', $
YTI TLE = ' Di spl acenent (inches)', $
PCSITION = [0.2, 0.7, 0.9, 0.9]
CONTOUR, tenperature, date_tine, angle, /FILL, $
LEVELS = BYTSCL(I NDGEN(8)), /XSTYLE, /YSTYLE, $
C COLORS = BYTSCL(| NDGEN(8)), /NCERASE, $
TITLE = ' Measured Tenperature (degrees Celsius)', $
XTI TLE = ' Angl e (degrees)', $
YTITLE = 'Tinme (seconds)', $
PCSITION = [0.2, 0.25, 0.9, 0.45]
CONTOUR, tenperature, date_tine, angle, /OVERPLOT, $
LEVELS = BYTSCL(| NDGEN(8))
I X. TI CKLAYQUT = 0
I X. TI CKI NTERVAL = 0
IX TICKUNITS = '
I X. TI CKFORMAT = "'

Notice these system variables are set to their default values after the two displays are
shown. When using system variables instead of keywords, remember to reset the
system variables back to their default values. The above example produces the
following results:

Using IDL Date/Time Plotting

282

Displacerment (inches)

Angle (degrees)

Chapter 17: Direct Graphics Plotting

Measured Signal

1.0

0.5

0.0

-0.5
-1.0

59:35

59:40

[5:45 |Beis0 59:55

00:00

14

[
=
(==

hJ
(=]
[m}

o
<

=

Mar 30, 2000

Meosured Temperature {degrees Celsius)

Time (=zeconds)

|5a:35

|5a:40

[5:45

14

Mar 30, 2000

Time (=zeconds)

Figure 17-18: Date/Time Axis Style Established With System Variables

Date/Time Plotting

Using IDL

Chapter 17: Direct Graphics Plotting 283

Using the AXIS Procedure

The AXIS procedure draws and annotates an axis. It optionally saves the scaling
established by the axis for use by subsequent graphics procedures. It can be used to
add additional axesto plotsor to draw axes at a specified position.

The AXIS procedure accepts the set of plotting keyword parameters that govern the
scaling and appearance of the axes. Additionally, the keyword parameters XAXIS,
YAXIS, and ZAXIS specify the orientation and position (if no position coordinates
are present) of the axis. The value of these parameters are O for the bottom or left axis
and 1 for the top or right. The tick marks and their annotation extend away from the
plot window. For example, specify YAXI S = 1 to draw ay-axis on theright of the
window.

The optional keyword parameter SAV E saves the data-scaling parameters established
for the axisin the appropriate axis system variable, !X, 'Y, or !Z. The call to AXISis
asfollows:

AXIS[[, X VY], Z]

where X, Y, and optionally Z specify the coordinates of the axis. Any of the coordinate
systems can be used by including the appropriate coordinate keyword in the call. The
coordinate corresponding to the axis direction isignored. When specifying an x-axis,
the x-coordinate parameter isignored, but must be present if thereisay coordinate.

Example: The AXIS Procedure

Using IDL

The figure shown below illustrates using AXIS to draw axes with a different scale,
opposite the main x- and y-axes. The plot is produced using PLOT with the bottom
and left axes annotated and scaled in units of days and degrees Fahrenheit. The
XMARGIN and YMARGIN keyword parameters are specified to allow additional
room around the plot window for the new axes. The keyword parameters XSTYLE =
8 and YSTYLE = 8 inhibit drawing the top and right axes.

Using the AXIS Procedure

284 Chapter 17: Direct Graphics Plotting

Month
Ja Fe Mo Ap Wo Ju Ju Ao S5 D¢ Mo Da

o

O

|

wd
€n

I

-\.\J
(]
rrepre
1
-3
(]

O n
Degrees Celsius

cn
[
Ll

N
C)

I
&
T
11l
&n

Degrees Fahrenheit

Q 100 200 300 400

Day of Year
Denver Average Temperaoture

Figure 17-19: A plot created with the AXIS procedure

Next, the AXIS procedure is called to draw the top, XAXIS =1, axis, labeled in
months. Eleven tick intervals with 12 tick marks are drawn. The x value of each
monthly tick mark isthe day of the year that is approximately the middle of the
month. Tick-mark names come from the MONTH string array.

Theright y-axis, YAXIS = 1, isdrawn in the same manner. The new y-axisrangeis
set by converting the original y-axis minimum and maximum values, saved by PLOT
in 'Y.CRANGE, from Fahrenheit to Celsius, using the formula C = 5(F-32)/9. The
keyword parameter YSTYLE = 1 forcesthe y-axis range to match the given range
exactly. The program is as follows:

Plot the data, omt right and top axes:
PLOT, DAY, TEMP, /YNOZERO, $
SUBTI TLE = ' Denver Average Tenperature', $
XTI TLE = 'Day of Year', $
YTI TLE = ' Degrees Fahrenheit', $
XSTYLE=8, YSTYLE=8, XMARG N=[8, 8], YMARG N=[4, 4]
Draw the top x-axis, supplying |abels, etc.
Make the characters smaller so they will fit:
AXI'S, XAXI S=1, XTI CKS=11, XTI CKV=DAY, XTI CKN=MONTH, $
XTI TLE=' Mont h', XCHARSI ZE = 0.7
Draw the right y-axis. Scale the current y-axis m ninum
; values from Fahrenheit to Cel sius and nake them

Using the AXIS Procedure Using IDL

Chapter 17: Direct Graphics Plotting 285

; the new mn and max val ues. Set YSTYLE=1 to nmke axi s exact.
AXI'S, YAXI S=1, YRANGE = (!Y.CRANGE-32)*5./9., YSTYLE =1, $
YTI TLE = ' Degrees Cel sius’

The code above isincluded in the batch file pl ot 09 in the exanpl es/ doc
subdirectory of the IDL distribution.

Using AXIS with Polar Plots

If the POLAR keyword parameter is set, the IDL PLOT procedure convertsits
coordinates from polar to Cartesian coordinates when plotting. The first parameter to
plot isthe radius, R, and the second is the angle 6 (expressed in radians). Polar plots
are produced using the standard axis and label styles, with box axes enclosing the plot
area.

Thefollowing figure illustrates using AXIS to draw centered axes, dividing the plot
window into the four quadrants centered about the origin. This method uses PLOT to
plot the polar data and to establish the coordinate scaling, but suppresses the axes.
Next, two callsto AXIS add the x- and y-axes, drawn through data coordinate (0O, 0).

100

Folar Plot

Figure 17-20: Using AXIS for polar plots

Make a radius vector:
R = FI NDGEN(100)
Make a vector:
THETA = R/'5
; Plot the data, suppressing the axes by setting their styles to 4:

Using IDL Using the AXIS Procedure

286 Chapter 17: Direct Graphics Plotting
PLOT, R, THETA, SUBTI TLE=' Polar Plot', XSTY=4, YSTY=4, /PCOLAR
AXI'S, 0, 0, XAX=0
; Draw the x and y axes through (0, 0):

AXI'S, 0, 0, YAX=0

The code aboveisincluded in the batch file pl ot 09 in the exanpl es/ doc

subdirectory of the IDL distribution.

Using the AXIS Procedure Using IDL

Chapter 17: Direct Graphics Plotting 287

Using the CURSOR Procedure

The CURSOR procedure reads the position of the interactive graphics cursor of the
current graphics device. It enables the graphic cursor on the device, optionally waits
for the user to moveit and/or press alocator button to terminate the operation (or type
acharacter if the device has no buttons), and then reports the cursor position.

Note, however, that CURSOR should not be used with draw widgets, created by the
WIDGET_DRAW function. If you need to find the position of the mouse or status of
mouse buttons in a draw widget, set the BUTTON_EVENTS and
MOTION_EVENTS keywords to WIDGET_DRAW, then examine the events
returned by your draw widget. See WIDGET_DRAW inthe IDL Reference Guide for
more information.

The CURSOR procedure is called as follows:
CURSCR, X, Y [, WAIT]

where x and y are the named variables that receive the cursor position. Normally, the
position is reported in data coordinates, but the DATA, DEVICE, and NORMAL
keywords can be used to explicitly specify the coordinate system.

See CURSOR in the IDL Reference Guide for details.

When CURSOR returns, the but t on field of the system variable IMOUSE is set to
the button status. Each mouse button isassigned abit inthe but t on field. Bit O isthe
leftmost button (value = 1), bit 1 isthe middle button (value = 2), and bit 3isthe
rightmost button (value = 4) for the typical three-button mouse. See 'IMOUSE in the
IDL Reference Guide for details.

Simple Interactive Examples

The following two programs demonstrate simple applications of the interactive
graphics cursor and the CURSOR procedure. The code for both routinesis located in
thefile pl ot 10. pr o, located in the exanpl es/ doc subdirectory of the IDL
distribution. You can aso create either routine at the IDL command line by starting
with the . RUN command and entering each lineindividualy.

Using IDL Using the CURSOR Procedure

288

Chapter 17: Direct Graphics Plotting

Thefirst routine is a simple drawing program. Straight lines are connected to
positions marked with the left or middle mouse buttons until the right button is
pressed.

PRO DRAW
; Start with a blank screen:
ERASE
; Get the initial point in nornmalized coordi nates:
CURSOR, X, Y, /NORMAL, /DOWN
; Repeat until right button is pressed. Get the second point.
Draw the line. Make the current second point be the new first.
VWH LE (! MOUSE. button NE 4) DO BEG N
CURSOR, X1, Y1, /NORM /DOM
PLOTS, [X, X1], [Y, Y1], /NORVAL
X=XL &Y =Y1
ENDWHI LE
END

The second simple procedure can be used to label plots using the cursor to position
the text:

;Text is the string to be witten on the screen:
PRO LABEL, TEXT
; Ask the user to mark the position:
PRI NT, 'Use the nouse to nark the text position:'
; Get the cursor position after pressing any button:
CURSOR, X, Y, /NORMAL, /DOMWN
; Wite the text at the specified position.
The NOCLIP keyword is used to ensure that
; the text will appear even if it is outside
; the plotting region.
XYQUTS, X, Y, TEXT, /NORMAL, /NOCLIP
END

To place annotation on a device with an interactive pointer, call this procedure with
the command:

ANNOTATE, ' Text for | abel’

Next, move the pointer device (mouse, cursor, or joystick) to the desired spot, and
press the locator button. Consider how you might augment the LABEL procedure to
allow you to specify the size and font of the annotation text.

Using the CURSOR Procedure Using IDL

Chapter 18:

Plotting Multi-
Dimensional Arrays

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 290
Contour Plots 291
Overlaying Images and Contour Plots 297
Additional Contour Options 302
The SURFACE Procedure 306

Using IDL

Three-Dimensiona Graphics 309
Three-Dimensional Transformations 319
Shaded Surfaces 325
Volume Visudization 328
References 332

289

290

Chapter 18: Plotting Multi-Dimensional Arrays

Overview

This chapter describes the facilities for drawing representations of two-dimensional
arrays. The two intrinsic procedures for the display of arrays are CONTOUR and
SURFACE.

CONTOUR and SURFACE both use line graphics to depict the value of atwo-
dimensional array. Asits nameimplies, CONTOUR draws contour plots.

SURFACE depicts the surface created by interpreting each element value as an
elevation. These three-dimensional, wire-mesh surface plots can have amost any
rotation about the x- and z-axes (the data z-axis must project parallel to the device'sy-
axis).

Three-dimensional graphics, coordinate systems, and transformations also are
included in this chapter. Almost all of the information concerning coordinate
systems, keyword parameters, and system variables discussed in Chapter 17, “Direct
Graphics Plotting”, apply to CONTOUR and SURFACE as well.

Surface and Contour Plots with iTools

Beginning with IDL 6.0, you can also usethe IDL Intelligent Tools (i Tools) to display
two-dimensional array data. The iTools provide an easy-to-use interface that allows
you to manipulate your data after it has been displayed. See “Introducing theiTools”
in Chapter 1 of the iTool User’s Guide manual for more oniTools.

Running the Example Code

Overview

The examplesin this chapter are all written to take advantage of IDL Direct Graphics.
Examples and techniques using IDL Object Graphics are contained in the later
chapters of this manual.

Some of the example code used in this chapter is part of the IDL distribution. All of
the files mentioned are located in the exanpl es/ doc subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See“!PATH” in
Appendix D of the IDL Reference Guide manual for information on IDL’s path.

Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 291

Contour Plots

Using IDL

The CONTOUR procedure draws contour plots from data stored in a rectangular
array. Initssimplest form, CONTOUR makes a contour plot given atwo-dimensional
array of zvalues. In more complicated forms, CONTOUR accepts, in addition to z,
arrays containing the x and y locations of each column, row, or point, plus many
keyword parameters. In more sophisticated applications, the output of CONTOUR
can be projected from three dimensions to two dimensions, superimposed over an
image, or combined with the output of SURFACE. The basic call to CONTOUR isas
follows:

CONTQUR, Z

where Z is atwo-dimensional array. This call labels the x- and y-axes with the
subscript along each dimension. For example, when contouring a 10 x 20 array, the x-
axisranges from 0 to 9, and the y-axis ranges from 0 to 19.

You can explicitly specify the x and y locations of each cell as follows:
CONTOUR, Z, X, Y

wherethe X and Y arrays can be either vectors or two-dimensional arrays of the same
sizeasZ. If they are vectors, the element z ; has a coordinate location of (x;, ¥j).
Otherwise, if the x and y arrays are two-dimensional, the element z ; has the location
(%ij» ¥ij)- Thus, vectors should be used if the x location of z ; does not depend upon j
and the y location of z ; does not depend uponii.

Dimensions must be compatible. In the one-dimensional case, X must have a
dimension egual to the number of columnsin Z, and Y must have a dimension equal
to the number of rowsin Z. In the two- dimensional case, al three arrays must have
the same dimensions.

IDL uses linear interpolation to determine the x and y locations of the contour lines
that pass between grid elements. The cells must be regular in that the x and y arrays
must be monotonic over rows and columns, respectively. The lines describing the
quadrilateral enclosing each cell and whose vertices are (X; j, Vi j), (Xi+1j» Yi+1;)»
(Xi+1,j+1s Yi+1j+1)» @d (X j+1, ¥i j+1) must intersect only at the four corners and the
quadrilateral must not contain other nodes.

See CONTOUR in the IDL Reference Guide for acomplete list of CONTOUR'’s
parameters and keywords.

Contour Plots

292 Chapter 18: Plotting Multi-Dimensional Arrays

Contouring Methods

In order to provide awide range of options, CONTOUR uses one of two contouring
algorithms. The algorithm used depends on the keywords specified, and is one of the
two following methods.

Cell Drawing

Thefirst algorithm, used by default, examines each array cell and draws all contours
emanating from that cell before proceeding to the next cell. This method is efficient
in terms of computer resources, but does not alow options such as contour labeling
or smaoothing.

Contour Following

The second method searches for each contour line, then follows the line until it
reaches a boundary or closes. This method gives better looking results with dashed
linestyles and allows contour labeling and bi-cubic spline interpolation, but requires
more computer time. The contour following method is used if any of these keywords
are specified: C_ ANNOTATION, C_ CHARSIZE, C LABELS, CLOSED,
FOLLOW, PATH_FILENAME, or DOWNHILL.

Note
Due to their differing algorithms, these two methods will often draw dightly
different, yet correct, contour maps for the same data. This differenceis adirect
result of the fact that there is often more than one valid way to draw contours and
should not be a cause for concern.

Example: Maroon Bells Peaks

Digital elevation data of the Maroon Bells area, near Aspen, Colorado, are used to
illustrate the CONTOUR procedure. The data set was obtained from a United States
Geological Survey Digital Elevation Model tape. This data providesterrain elevation
data over a 7.5-minute square (approximately 11 x 13.7 kilometers at the latitude of
Maroon Bells), with 30-meter sampling.

The dataare contained in a 360 x 460 array A, sampled in 30-meter square intervals,
measured in Universal Transverse Mercator (UTM) coordinates. The rectangular
array is not completely filled with data because the 7.5-minute square is not perfectly
oriented to the UTM grid system. Missing data are represented as zeroes. Elevation
measurements range from 2658 to 4241 meters or from 8720 to 13,914 feet.

Contour Plots Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 293

Using IDL

The Maroon Bells datais used in a number of examplesin this chapter, and is
included inan IDL SAVE filecaled mar bel | s. dat intheexanpl es/ dat a
subdirectory of the IDL distribution. To restore the save file, issue the following
commands at the IDL prompt (change the path separator characters as necessary for
your platform):

CD, !DI R+ /exanpl es/data’
RESTORE, 'nmarbells. dat'

The batch file cnt our 01, located in the exanpl es/ doc subdirectory of the IDL
distribution, restores this data and defines several variables used in the examplesin
this chapter.

This command creates an IDL variable named elev that contains the 360 x 460
integer array.

The figure below is the result of applying the CONTOUR procedure to the data,
using the default settings:

CONTOUR, el ev

500F
400 ¢

300§

<
&
T
<

0O 100 200 300 400

Figure 18-1: Simple Contour Plot of Maroon Bells

A number of problems are apparent with this ssmple contour plot.

* IDL selected six contour levels, by default, for the elevation from O to 4241;
that’s roughly 4241divided into 7 intervals or approximately 605 metersin
elevation between contour levels. The levels are 605, 1250, ..., 3635 meters,
even though the range of valid datais from 2658 to 4241 meters. Thisis
because the missing data values of 0 were considered when selecting the
intervals. It is generally more appropriate to select contour levels only within
the range of valid data.

Contour Plots

294

Chapter 18: Plotting Multi-Dimensional Arrays

e Thevertical contours along the left edge are an invalid artifact due to
contouring missing data and should not be present.

e For most display systems and for contour intervals of approximately 200
meters, the data has too many samplesin the x-y direction. This oversampling
has two adverse effects: the contours appear jagged, and a large number of
short vectors are produced.

e Theaxesarelabeled by point number, but should be in UTM coordinates.

* [tisdifficult to visualize the terrain and to discern maxima from minima
because each contour is drawn with the same type of line.

The above problems are readily solved using the following simple techniques:

e Specify the contour levels directly using the LEVEL S keyword parameter.
Selecting contour intervals of 250 meters, at elevation levels of [2750, 3000,
3250, 3500, 3750, 4000], resultsin six levels within the range of valid data.

¢ Change the missing data value to a vaue well above the maximum valid data
value, then use the MAX_VALUE keyword parameter to exclude missing
points. In this example, we set missing data values to one million with the
following statement:

el ev(WHERE(el ev EQ 0)) = 32767
Note
32767 isthe maximum allowable 16-hit integer.

¢ Usethe REBIN function to decrease the sampling in x and y by a factor of 5:
new = REBI N(el ev, 360/5, 460/5)

This smooths the contours, because the call to REBIN averages 52=25 bins when
resampling. The number of vectors transmitted to the display also are decreased by a
factor of approximately 25. The variable B isnow a72 x 92 array.

Careistaken in the second step to ensure that the missing data are not confused with
valid data after REBIN isapplied. Asinthisexample, REBIN averages bins of 52=25
elements, the missing data value must be set to avalue of at least 25 times the
maximum valid data value. After applying REBIN, any cell with amissing original
data point will have avalue of at least 106/25 = 40000, well over the largest valid
data value of approximately 4,500.

Thex and y vectors are constructed containing the UTM coordinates for each row and
column. From the USGS data tape, the UTM coordinate of the lower-left corner of
the array is (326,850: 4,318,500) meters. As the data spacing is 30 metersin both

Contour Plots Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays

Using IDL

directions, the x and y vectors, in kilometers, are easily formed using the FINDGEN

function, as shown in the example bel ow.

Contour levels at each multiple of 500 meters (every other level) are drawn with a
solid linestyle, whilelevelsthat fall between are drawn with adotted line. In addition,
the 4000-meter contour is drawn with atriple thick line, emphasizing the top contour.

The result of these improvements is shown in the figure below.

Maroon Bells Regicn

RN g s
a0 il SPa
43205 { e

A ot
wanol - (S e
43195 SO
4319.0 [I '

X S
aztes iy (e ! S

327.0 327.5 328.0 328.5

UTI Coordinates {(KM)
250 meter contours

Figure 18-2: Improved Contour Plot

This figure was produced with the following IDL statements:

;. Restore vari abl es:
@ntour 01
; Set missing data points to a |arge val ue:
elev (WHERE (el ev EQ 0)) = 1E6
; REBIN down to a 72 x 92 matri x:
new = REBI N(el ev, 360/5, 460/5)
; Make the x and y vectors specifying the position
; of each colum and row.
X = 326.850 + .030 * FINDGEN(72)
Y = 4318.500 + .030 * FI NDGEN(92)
Make the plot, specifying the contour |evels,

Contour Plots

296 Chapter 18: Plotting Multi-Dimensional Arrays

m ssing data val ue, |inestyles, etc.

Set the STYLE keywords to 1, obtaining exact axes.
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $

XSTYLE = 1, YSTYLE = 1, YMARG N = 5, MAX_VALUE = 5000, $

C LINESTYLE = [1, 0], $

CTHCK =11, 1, 1, 1, 1, 3], $

TITLE = ' Maroon Bells Region', $

SUBTI TLE = ' 250 neter contours', $

XTI TLE = ' UTM Coordi nates (KM'

If you prefer not to enter the code by hand, run the batch file cnt our 02 with the
following command at the IDL prompt:

@nt our 02
See “Running the Example Code” on page 290 if IDL does not find the batch file.

The figure below illustrates the data displayed as a grayscale image. Higher
elevations are white. Thisimage demonstrates that contour plots do not aways
provide the best qualitative visualization of many two-dimensional data sets.

™~

Figure 18-3: Maroon Bells Data Displayed as an Image

Contour Plots Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 297

Overlaying Images and Contour Plots

Superimposing an image and its contour plot combines the best of both worlds: the
image allows easy visualization and the contour lines provide a semi-quantitative
display. The programs presented in the rest of this section are for advanced
computing only.

A combined contour and image display, such asthat discussed in this section, can be
created with the IMAGE_CONT procedure. The following material is intended to
illustrate the ways in which images and graphics can be combined using IDL.

The technique used to overlay plots and images depends on whether or not the device
is able to represent pixels of variable size, as does PostScript, or if it has pixels of a
fixed size. If the device does not have scal able pixels, the image must be resized to fit
within the plotting areaif it is not already of asize suitable for viewing. Thisleadsto
three separate cases that areillustrated in the following examples.

Overlaying with Scalable Pixels

Using IDL

Certain devices, notably PostScript, can display pixels of varying sizes. With these
devices, it is easy to set the size and position of an image so that it exactly overlays
the plot window. In creating the next figure, the actual dimensions of the contour plot
window (contained in the ! X.WINDOW and !'Y.WINDOW system variables) were
used to calculate the new size of the image.

Overlaying Images and Contour Plots

298 Chapter 18: Plotting Multi-Dimensional Arrays

4321.0
4320.5
4320.0

4319.5 -

4318.0

4318.5

327.0 327.5 328.0 328.5

UTI Coordinates {(KM)
250 meter contours

Figure 18-4: Overlay of Image and Contour Plots

Note
In order to do this successfully, you must establish the size of the plot window
before scaling the image. This means that you must make a call to CONTOUR
before displaying the image, to set the window size, and another call to CONTOUR
after displaying the image, to draw the contour lines on top of the image data.

Inspect the batch file cnt our 03 located in the exanpl es/ doc subdirectory of the
IDL distribution to see how the figure was created. Note that the aspect ratio of the
image was changed to fit that of the plot window. To retain the original image aspect
ratio, the plot window must be resized to an identical aspect ratio using the
POSITION keyword parameter.

Overlaying Images and Contour Plots Using IDL

Chapter 1

8: Plotting Multi-Dimensional Arrays 299

Overlaying with Fixed Pixels

Using IDL

If the pixel sizeisfixed (asistrue on most displays), we can either resize theimageto
fit the plotting window or size the plotting window to fit the image dimensions.

Method 1: Scale the Image to Fit the Display

We can use the CONGRID function to create an image of the same size asthe
plotting window. The REBIN function also can be used to resample the original
image if the plot window dimensions are an integer multiple or factor of the original
image dimensions. REBIN is always faster than CONGRID. The following IDL
procedure creates an image of the same size as the window, displaysit, then overlays
the contour plot.

Restore vari abl es:

@ntour 01

; Set missing data points to a |arge val ue:

elev (WHERE (el ev EQ 0)) = 1E6

; REBIN down to a 72 x 92 matri x.

new = REBI N(el ev, 360/5, 460/5)

Scal e image intensities:

i mage = BYTSCL(el ev, M N=2658, MAX=4241)

; Before displaying the i mage, use the CONTQUR conmand

; to create the appropriate plot w ndow.

; The plot wi ndow nust be created before re-sizing

; the inmage data.

; Use the NODATA keyword to inhibit actually draw ng

; the contour plot.

CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $
MAX_ VALUE = 5000, XSTYLE =1, YSTYLE =1, $
TITLE = 'Maroon Bells Region', $
SUBTI TLE = ' 250 neter contours', $
XTI TLE = ' UTM Coordi nates (KM ', /NODATA

; Get size of plot window in device pixels.

PX = I X. WNDOW * ! D. X_VSI ZE

PY = 1'Y. WNDOW * ! D. Y_VSI ZE

; Desired size of inmage in pixels.

SX = PX[1] - PX[0] + 1

SY = PY[1] - PY[O] + 1

; Display the image with its |lower-1left corner at

; the origin of the plot window and with its size

; scaled to fit the plot w ndow.

TVSCL, CONGRI D(image, SX, SY), PX[0], PY[0])

CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $
MAX_VALUE = 5000, XSTYLE = 1, YSTYLE =1, $
TITLE = ' Maroon Bells Region', $
SUBTI TLE = ' 250 neter contours', $

Overlaying Images and Contour Plots

300 Chapter 18: Plotting Multi-Dimensional Arrays

XTI TLE = ' UTM Coordi nates (KM ', /NOERASE

Wite the contours over the image, being sure

to use the exact axis styles so that the contours
fill the plot window. Inhibit erasing.

If you prefer not to enter the code by hand, run the batch file cnt our 04 with the
following command at the IDL prompt:

@nt our 04
See “Running the Example Code” on page 290 if IDL does not find the batch file.

Method 2: Scale the Display to Fit the Image

If theimageisalready closeto the proper display size, it issimpler and more efficient
to change the plot window size to that of the image. The following procedure displays
the image at the window origin, then sets the plot window to the image size, leaving
its origin unchanged.

;. Restore vari abl es:
@nt our 01
; Set missing data points to a |arge val ue:
elev (WHERE (elev EQ 0)) = 1E6
: REBIN down to a 72 x 92 matri x.
new = REBI N(el ev, 360/5, 460/5)
; Scale image intensities.
i mage = BYTSCL(el ev, M N=2658, MAX=4241)
; Get size of plot wi ndow in device pixels.
PX = I X. WNDOW * ! D. X_VSI ZE
PY = 1'Y. WNDOW * ! D. Y_VSI ZE
; Get the size of the inmage.
SZ = Sl ZE(i mage)
Display the inmage with its |ower-left corner
; at the origin of the plot w ndow
TVSCL, inmage, PX[0], PY[O]
Wite the contours over the image, being sure to use
; the exact axis styles so that the contours fill the pl ot
; window. Inhibit erasing.
CONTOUR, new, X, Y, XSTYLE = 1, YSTYLE =1, $
POSI TION = [PX[0], PY[0], PX[0]+SZ[1]-1, PY[0]+SZ[2]-1], $
LEVELS = 2750 + FINDGEN(6) * 250., MAX VALUE = 5000, $
TITLE = ' Maroon Bells Region', $
SUBTI TLE = ' 250 neter contours', $
XTI TLE = ' UTM Coordi nates (KM ', /NOERASE, /DEVICE

Overlaying Images and Contour Plots Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 301

If you prefer not to enter the code by hand, run the batch file cnt our 05 with the
following command at the IDL prompt:

@nt our 05
See " Running the Example Code” on page 290 if IDL does not find the batch file.

Using IDL Overlaying Images and Contour Plots

302 Chapter 18: Plotting Multi-Dimensional Arrays

Additional Contour Options

In addition to the abilities of CONTOUR demonstrated above, there are several
options that depend upon the use of the contour following algorithm. These options
are asfollows:

Labeling Contours

The C_ANNQOTATION, C_CHARSIZE, and C_LABELS keywords are used to
control contour labeling. Using them, possibly in conjunction with the LEVELS
keyword, it is possible to specify which contours should be labeled, the size of the
|abels, and the actual |abels that should be used.

In the following discussion, a variable named DATA is contoured. This variable
contains uniformly distributed random numbers obtained using the following
Statement:

SEED = 20 & DATA = RANDOMJ(SEED, 6, 6)

To label contours using the defaults for label size and contoursto label, it is sufficient
to select the FOLLOW keyword. In this case, CONTOUR labels every other contour
using the default 1abel size (three-fourths of the plot axis label size). Each contour is
labeled with its value.

Figure 18-5: Simple Labeled Contour Plot

Additional Contour Options Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 303

The preceding figure was produced using the following statement:
CONTOUR, /FOLLOW DATA

The C_CHARSIZE keyword is used to specify the size of the characters used for
labeling in the same manner that SIZE is used to control plot axislabel size. The
C_LABELS keyword can be used to select the contours to be labeled. For example,
suppose that we want to contour the variable DATA at 0.2, 0.5, and 0.8, and we want
all three levelslabeled. In addition, we wish to make each label larger, and use
hardware fonts. This can be accomplished with the statement bel ow.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C LABELS=[1, 1, 1], $
C CHARSI ZE = 1.25, DATA, FONT = 0

The result is the plot on the left in the figure below.

Finally, it is possible to specify the text to be used for the contour labels using the
C_ANNOTATION keyword, as shown in the statements below.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C LABELS=[1, 1, 1], $
C_ANNOTATION = ["Low', "Mediunt, "H gh"], DATA, FONT=0

Theresult isthe plot on the right in the figure bel ow.

Figure 18-6: Label Size and Levels Specified (left), Explicitly Specified Labels
(right)

Smoothing Contours
The MIN_CURVE_SURF function can be used to smoothly interpolate both

regularly and irregularly sampled surfaces before contouring. This function replaces
the older SPLINE keyword to CONTOUR, which was inaccurate and is no longer

Using IDL Additional Contour Options

304 Chapter 18: Plotting Multi-Dimensional Arrays

supported. MIN_CURVE_SURF interpolates the entire surface to arelatively fine
grid before drawing the contours.

See CONTOUR in the IDL Reference Guide for an example using the
MIN_CURVE_SURF function. See also MIN_CURVE_SURF in the IDL Reference
Guide for further details.

The following short example shows the difference between a smoothed and an
unsmoothed contour plot:

;Create a sinple dataset:
data = RANDOMJ(seed, 7, 7)
;Plot the unsnpot hed dat a:
CONTOUR, data

;Plot the snoot hed data:
CONTOUR, M N_CURVE_SURF(dat a)

Filling Contours

Set the FILL keyword to produce afilled contour plot. The contours are filled with
solid or line-filled polygons. For solid polygons, use the C_COLOR keyword to
specify the color index of the polygons for each contour level. For linefills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK
to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the background
color before thefill lines are drawn, to avoid superimposing one pattern over another.

The FILL keyword replaces the use of the PATH_FILENAME keyword and
POLYFILL procedure from previousversions of IDL. Setting the FILL keyword also
closes any open contours before filling.

The following example illustrates various filled contour plot options.

; Create a sinple, random dataset for contouring:
data = RANDOMJ(seed, 7, 7)

; Create a basic, solid-color, filled CONTOUR pl ot
; Wth 6 evenly-spaced | evels.

CONTOUR, data, NLEVELS=6, /FILL

; Overplot contour outlines:

CONTOUR, data, NLEVELS=6, /NCERASE

Additional Contour Options Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 305

Instead of solid colors, contours can be filled with lines:

Create a vector of orientations for the fill Iines:
ANGLES = [0, 45, -45]

Create a vector of colors to use:
C =[70, 120, 200, 255]

Create contours filled with |ines.
CONTOUR, data, NLEVELS=10, C_ORI ENT=ANGLES, C_COLORS=C
; Overplot contour outlines:
CONTOUR, data, NLEVELS=10, / NCERASE

There are many other controls for filled contour plots. The C_COLORS,
C _LINESTYLE, C_SPACING, and C_THICK keywords can also be used to control
the type of fill. For more information see CONTOUR in the IDL Reference Guide.

Indicating Direction of Grade
Setting the DOWNHILL keyword creates short, perpendicular tick marks along each

contour that point in the downhill (decreasing el evation) direction. These marks make
the direction of the grade readily apparent. For example:

CONTOUR, data, /DOWNHILL

Using IDL Additional Contour Options

306 Chapter 18: Plotting Multi-Dimensional Arrays

The SURFACE Procedure

The SURFACE procedure draws wire mesh representations of functions of x and y,
just as CONTOUR draws their contours. Parameters to SURFACE are similar to
CONTOUR. SURFACE accepts atwo-dimensional array of z (elevation) values, and
optionally x and y parameters indicating the location of each z element.

Note
The grid defined by the x and y parameters must be regular, or nearly regular, or
errors in hidden line removal will result. Also, the rotation must project the data z-
axis so that it is parallel to the drawing surface’s y-axis or errorsin hidden line
removal will result.

SURFACE projects the three-dimensional array of points into two dimensions after
rotating about the z- and then the x-axes. Each point is connected to its neighbors by
lines. Hidden lines are suppressed. The rotation about the x- and z-axes can be
specified with keywords or a complete three-dimensional transformation matrix can
be stored in the field !P.T for use by SURFACE. Details concerning the mechanics of
three-dimensional projection and rotation are covered in the next section.

Thefollowing IDL codeillustrates the most basic call to SURFACE. It produces a
two-dimensional Gaussian function, then calls SURFACE to produce the figure
below.

() AN
0.l R TTIN
e ‘\\\\\\\\\\\:
SIS “‘:::“ h

NI
- »'».'c:o‘o:‘o:-%::.:’,’_;:;::‘-:
iy

Figure 18-7: Simple SURFACE Plot of a Gaussian

The SURFACE Procedure Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 307

; Create a 40 by 40 array in which each elenment is
; equal to the Euclidean distance fromthe center:
Z = SH FT(DI ST(40), 20, 20)

Make Gaussian with a 1/e width of 10:
Z = EXP(-(2Z/10)"2)
; Call SURFACE to display plot:
SURFACE, Z

In the exampl e above, the DIST function creates an (n, n) array in which each
element is set to its Euclidean distance from the origin.

SURFACE Keyword Parameters

In addition to the standard graphics keyword parameters, SURFACE accepts a
number of unique keyword parameters. See SURFACE in the IDL Reference Guide
for details.

Example

The figures below illustrate the application of the SURFACE procedure to the
Maroon Bells data used in the first section of this chapter. Aswith CONTOUR, it is
often useful to reduce the number of individual data values, so that the surface is not
obscured by excessive detail.

4500 -

s

35001

Y l'ﬂr

Jo0af

fJ.I‘}“J

Figure 18-8: Maroon Bells Surface Plots

Using IDL The SURFACE Procedure

308 Chapter 18: Plotting Multi-Dimensional Arrays

Theleft illustration in the figure above was produced by the following statements:

Restore vari abl es.
@nt our 01
Resize the original data into a 72 x 92 array, setting
all data values which are | ess than 2650 (the | owest
el evation we wish to show) to 2650.
surf = REBIN(el ev > 2650, 360/5, 460/5)
Di splay the surface, drawing a skirt down to 2650 neters:
SURFACE, surf, X, Y, SKIRT = 2650

Alternatively, run the batch file sur f 01 with the following command at the IDL
prompt:

@urf0ol
See “Running the Example Code” on page 290 if IDL does not find the batch file.

Theright illustration in the figure shows the Maroon Peaks area looking from the
back row to the front row (north to the south) of the Maroon Peaks area. This
perspective on the data is created by setting the angle of rotation around the z-axis to
210 degrees (setting AZ = 210), and increasing the azimuth from the default 30
degrees to 45 (setting AX = 45). Also, only the horizontal lines are drawn because the
/HORIZONTAL keyword is present in the following call:

SURFACE, surf, X, Y, SKIRT = 2650, /HORI Z, AZ = 210, AX = 45

Because the axes are rotated 210 degrees about the original z-axis, the annotation is
reversed and the x-axis is behind and obscured by the surface. This undesirable effect
can be eliminated by reversing the minimum and maximum values of the X and Y
ranges used when drawing the surface:

; As above, but reverse the data rather than the axes:
SURFACE, surf, X, Y, SKIRT = 2650, /HORIZONTAL, AX = 45, $
YRANGE = [MAX(Y), M N(Y)], XRANGE=[MAX(X), M N(X)]

The SURFACE Procedure Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 309

Three-Dimensional Graphics

Points in xyz space are expressed by vectors of homogeneous coordinates. These
vectors are trandlated, rotated, scaled, and projected onto the two-dimensional
drawing surface by multiplying them by transformation matrices. The geometrical
transformations used by IDL, and many other graphics packages, are taken from
Chapters 7 and 8 of Foley and Van Dam (1982). The reader is urged to consult this
book for a detailed description of homogeneous coordinates and transformation
matrices since this section presents only an overview.

Homogeneous Coordinates

A point in homogeneous coordinates is represented as a four-element column vector
of three coordinates and a scale factor w ¥4/ 0. For example:

P(wx, wy, wz, w) = P(x/w, y/w, zZiw, 1) = (X, Y, 2)

One advantage of this approach is that trandlation, which normally must be expressed
as an addition, can be represented as a matrix multiplication. Another advantage is
that homogeneous coordinate representations simplify perspective transformations.
The notion of rows and columns used by IDL is opposite that of Foley and Van Dam
(1982). In IDL, the column subscript isfirst, while in Foley and Van Dam (1982) the
row subscript isfirst. This changes all row vectors to column vectors and transposes
matrices.

Right-Handed Coordinate System

The coordinate system is right-handed so that when looking from a positive axis to
the origin, apositive rotation is counterclockwise. As usual, the x-axis runs across the
display, the y-axisis vertical, and the positive z-axis extends out from the display to
the viewer. For example, a 90-degree positive rotation about the z-axis transforms the
x-axisto the y-axis.

Transformation Matrices

Note
For most applications, it is not necessary to create, manipulate, or to even
understand transformation matrices. The procedure T3D, explained below,
implements most of the common transformations.

Using IDL Three-Dimensional Graphics

310 Chapter 18: Plotting Multi-Dimensional Arrays

Transformation matrices, which post-multiply a point vector to produce a new point
vector, must be (4, 4). A series of transformation matrices can be concatenated into a
single matrix by multiplication. If Al, A2, and A3 are transformation matricesto be
applied in order, and the matrix A isthe product of the three matrices, the following

applies.
(PeA)eAy)eAz=Pe((AjeAy)eAj)=PeA
IDL stores the concatenated transformation matrix in the system variable field | PT.
Each of the operations of tranglation, scaling, rotation, and shearing can be
represented by a transformation matrix.
Translation

The transformation matrix to translate a point by (Dy, Dy, D) is shown below.

10 0 D,|
010 Dy
0 01 D,
10 0 0 1
Scaling
Scaling by factors of S, Sy and S, about the x-, y-, and z-axes respectively, is
represented by the matrix below.
'S, 0 0 0
0 Sy 00
0 0S,0
10 0 0 1]

Three-Dimensional Graphics Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 311

Rotation

Rotation about the x-, y-, and z-axes is represented respectively by the following three
matrices:

1 0 0 0
0 cosf, -sinB, O
0 sn6, cosb, O
L0 0 0 1

cosey

0 1 0 0
—sno

0

coso,

sino,
0
0

—-sinod

z

0

0
coso, O
1
0 0

R O O O

T3D Procedure

The IDL procedure T3D creates and accumul ates transformation matrices, storing
them in the system variable field !PT. The procedure can be used to create a
transformation matrix composed of any combination of trandation, scaling, rotation,
perspective projection, oblique projection, and axis exchange. Transformations are
applied in the order of the keyword descriptions below:

Using IDL Three-Dimensional Graphics

312

Chapter 18: Plotting Multi-Dimensional Arrays

RESET

Set this keyword to reset the transformation matrix to the identity matrix to begin a
new accumulation of transformations. If this keyword is not present, the current
transformation matrix !PT is post-multiplied by the new transformation. The final
transformation matrix is always stored back in !PT.

TRANSLATE

This keyword argument accepts a 3-element vector. The viewpoint is translated by
the three-element vector [Ty, Ty, T,].

SCALE
This keyword argument accepts a 3-element vector. The viewing areais scaled by
factor [S,, §, .

ROTATE

This keyword accepts a 3-element vector. The viewing areais rotated about each axis
by the amount [0y, 6y, 6], in degrees.

PERSPECTIVE

A scalar (p) indicating the z distance of the center of the projection in the negative
direction. Objects are projected into the xy plane, at z= 0, and the eye is at point

(0,0,).
OBLIQUE

A two-element vector, [d, o], specifying the parameters for an oblique projection.
Points are projected onto the xy-plane at z= 0 as follows:

Xo =X+ z(d cos a)
Yo=Yy +tZdsina)

An oblique projection is aparalel projection in which the normal to the projection
planeisthe z-axis, and the unit vector (0, 0, 1) isprojected to (d cos o, d sin o)) where
o is expressed in degrees.

XYEXCH

If set, exchanges the x- and y-axes.

Three-Dimensional Graphics Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 313

XZEXCH
If set, exchanges the x- and z-axes.
YZEXCH

If set, exchanges the y- and z-axes.
Example: The Transformation Created by SURFACE

The SURFACE procedure creates a transformation matrix from its keyword
parameters AX and AZ asfollows:

1. Starting with the identity transformation, SURFACE translates the center of
the normalized cube to the origin.

2. SURFACE rotates 90 degrees about the x-axisto make the + z-axis of the data
the +y axis of the display. The +y data axis extends from the front of the
display to the rear.

3. SURFACE rotates AZ degrees about the y-axis. This rotates the result counter-
clockwise, as seen from above the page.

4. SURFACE rotates AX degrees about the x-axis, tilting the data towards the
viewer.

5. The procedure then removes the translation applied in the first step and scales
the data so that the data are still contained within the normal coordinate unit
cube after transformation.

These transformations can be created using T3D as shown below. The SCALE3
procedure, documented in the IDL Reference Guide, mimics the transformation
matrix created by SURFACE using the following method:

; Translate to nove center of cube to origin.
T3D, /RESET, TRANSLATE = [-.5, -.5, -.5]
Rot ate 90 degrees about x-axis, so +z axis i S now +y.
; Then rotate AZ degrees about y-axis.
T3D, ROTATE = [-90, AZ, 0]
Rot at e AX about x axis:
T3D, ROTATE = [AX, 0, 0]
Restore origin.
T3D, TRANSLATE = [0.5, 0.5, 0.5]

The SCALES procedure, scales the unit cube by afixed factor, 1/SQRT(3) to ensure
that the corners of the rotated cube fit within the drawing area. If requested, it also
will set the data scaling. Animations involving rotations or the SURFACE procedure

Using IDL Three-Dimensional Graphics

314 Chapter 18: Plotting Multi-Dimensional Arrays

should have their scaling and viewing transformation set by SCALES3 rather than the
obsolete SURFR procedure, so that the scaling does not vary between frames.

Three-Dimensional Coordinate Conversion

To convert from athree-dimensional coordinate to a two-dimensional coordinate,
IDL follows these steps:

* Datacoordinates are converted to three-dimensional normalized coordinates.
To convert the x coordinate from data to normalized coordinates, use the
formulaN, = X + X;D,. The same process is used to convert they and z
coordinatesusing !'Y.Sand ! Z.S.

* Thethree-dimensional normalized coordinate, P = (N,, Ny, N,), whose
homogeneous representation is (Ny, Ny, N, 1), is multiplied by the
concatenated transformation matrix 'PT:

P=PelP.T

e Thevector P’ isscaled by dividing by w, and the normalized two-dimensional
coordinates are extracted:

N = P'y/P'y, and N'y = P, /P,

« Thenormalized xy coordinate is converted to device coordinates as described
in “Two-Dimensional Coordinate Conversion” in Chapter 17.

The CONVERT_COORD function performs the above process when converting to
and from coordinate systems when the T3D keyword is specified. For example, if a
three-dimensional coordinate system is established, then the device coordinates of the
data point (0, 1, 2) can be computed as follows:

D = CONVERT_COORD(0, 1, 2, /TO DEVICE, /T3D, /DATA)

On completion, the three-element vector D will contain the desired device
coordinates. The process of converting from three-dimensional to two-dimensional
coordinates also can be written as an IDL function. This function accepts a three-
dimensional data coordinate, returns a two-element vector containing the coordinate
transformed to two-dimensional normalized coordinates using the current
transformation matrix:

FUNCTION CVT_TO 2D, X, Y, Z
Make a honogeneous vector of normalized 3D coordinates:
P=[!XS0] +!X 81 * X !Y.§0] +!1Y.5[1] *YVY, $
1Z.9[0] +'Z. 9[1] * Z, 1]
; Transformby !'P. T:
P=P#IPT
Return the scaled result as a two-el enent,

Three-Dimensional Graphics Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 315

; two-di nensional, xy vector:
RETURN, [P[O] / P[3], P[1] / P[3]]
END

Establishing a Three-Dimensional Coordinate
System

Usually, scaling parameters for coordinate conversion are set up by the higher-level
procedures. To set up your own three-dimensional coordinate system with agiven
transformation matrix and x, y, z data range, follow these steps:

» Establish the scaling from your data coordinates to normalized coordinates—
the (O, 1) cube. Assuming your data are contained in the range (Xmin, Ymins
Zpin) 10 Kimaxe Ymaxe Zmax)» Set the data scaling system variables as follows:

IXS=[-Xmin, 1] / (Xnax - Xmin)
'Y.S=[-Ymin, 1] / (Ymax - Ymn)
1Z.S =[] -Zmin, 1] / (Zmax - Zmn)

¢ Establish the transformation matrix that determines the view of the unit cube.
This can be done by either calling T3D, as explained above or by directly
manipulating 'P.T yourself. If you wish to simply mimic the rotations provided
by the SURFACE procedure, call the SCALE3 procedure (which can also be
used to perform the previous step).

Example

This example drawsfour views of asimple house. The procedure HOUSE definesthe
coordinates of the front and back faces of the house. The data-to-normal coordinate
scaling is set, as shown above, to avolume about 25 percent larger than that enclosing
the house. The PLOTS procedure is called to draw lines describing and connecting
the front and back faces. XYOUTSis called to label the front and back faces.

The commands shown after the definition of the HOUSE procedure contain four
sequences of callsto T3D to establish the coordinate transformation, each followed
by acall to HOUSE. If you prefer not to enter the IDL code by hand, run the batch
file showhaus with the following command at the IDL prompt:

@howhaus

Using IDL Three-Dimensional Graphics

316 Chapter 18: Plotting Multi-Dimensional Arrays

See “Running the Example Code” on page 290 if IDL does not find the batch file.

PRO HOUSE

;. X coordinates of 10 vertices. First 5 are front face,

; second 5 are back face. The range is 0 to 16.

house_x = [0, 16, 16, 8, 0, 0, 16, 16, 8, 0]
The corresponding y values range fromO to 16.

house_.y = [0, 0, 10, 16, 10, 0, O, 10, 16, 10]

; The z values range from 30 to 54.

house_z = [54, 54, 54, 54, 54, 30, 30, 30, 30, 30]

; Define max and min xy values to scale.

; Slightly larger than data range.

mnx =-4& mx_x = 20.

; Set x data scale to range from-4 to 20.

IX.S =1[-(-4), 1.1/(20 - (-4))

; Sane for y.

Y. S =IXS

; The z range is from10 to 70.

1Z.S =[-10, 1.]/(70 - 10)

; Indices of front face.

face = [INDGEN(5), O]

;. Draw front face.

PLOTS, house_x[face], house_y[face], $
house_z[face], /T3D, /DATA
Draw back face.

PLOTS, house_x[face + 5], house_y[face + 5], $
house_z[face + 5], /T3D, /DATA

; Connecting lines fromfront to back.

FOR | =0, 4 DO PLOTS, [house x[i], house x[i + 5]], $
[house_y[i], house y[i + 5]], $
[house_z[i], house_z[i + 5]], /T3D, /DATA

; Annotate front peak.

XYQUTS, house_x[3], house_y[3], Z
[/ T3D, /DATA, SIZE = 2

;. Annot at e back.

XYQUTS, house_x[8], house_y[8], Z
/ T3D, /DATA, SIZE = 2

house_z[3], 'Front', $

house z[8], 'Back', $
END

The HOUSE procedure could be called from the IDL command line to produce a
number of different plots. For example:

Set up no rotation, scale, and draw house.
T3D, /RESET & HOUSE
; Create a handy constant.
H=10.5 0.5, 0.5]
; Straight projection after rotating 30 degrees about x and y axes.
T3D, /RESET, TRANS = -H, ROT = [30, 30, 0] &%
T3D, TR = H & HOUSE
No rotation, oblique projection, z factor = 0.5, angle = 45.

Three-Dimensional Graphics Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 317

T3D, /RESET, TRANS = -H, ROI=[0, 0, 0], OBLIQUE=[.5, -45] & $
T3D, TR = H & HOUSE
Rotate 6 degrees about x and y, then apply perspective.
T3D, /RESET, TR=-H ROI=[-6, 6, 0], PERS=4 & $
T3D, TR=H & HOUSE

ack
ont
TR ront
elgly

Figure 18-9: lllustration of Different Three-Dimensional Transformations

Thefigureillustrates the different transformations. The four rotations are:
e Upper left: no rotation, plain projection
e Upper right: oblique projection, factor = 0.5, angle = 45

« Bottom left: rotation of 30 degrees about both the x-and y-axes, plain
projection

« Bottom right: rotation of —6 degrees about the x-axis and +6 degrees about the
y-axis, and perspective projection with the eye at 4.
Rotating the House

A common procedure for visualizing three-dimensional dataisto animate the data by
rotating it about one or more axes. To make an animation of the house in the
preceding example with the XINTERANIMATE procedure, use the following
example.

Using IDL Three-Dimensional Graphics

318

Chapter 18: Plotting Multi-Dimensional Arrays

c Initialize aninmation: set franme size and nunmber of franes.
sizx = 300

sizy = 300

nfranes = 16

XI NTERANI MATE, SET=[si zx, sizy, nframes]

Rot ate about the z axis. Draw the house. Save t he w ndow.

FORi =0, nfranmes - 1 DOBEG N $
SCALE3, AX =75, AZ =i * 360. / nfranes & $
ERASE & $
HOUSE & $
SCALE3, AX =75, AZ =i * 360. / nfranes & $
XI NTERANI MATE, FRAME=i, W NDOW:E! D. W NDOW & $
ENDFOR

; Show t he ani mati on.
XI NTERANI MATE

In the above example, SCALES3 rather than SCALE3D is used to maintain the same
scaling in all rotations. If you prefer not to enter the IDL code by hand, run the batch
file ani mhaus with the following command at the IDL prompt:

@ni mhaus

See “Running the Example Code” on page 290 if IDL does not find the batch file.

Three-Dimensional Graphics Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 319

Three-Dimensional Transformations

Using IDL

The CONTOUR and PLOT procedures output their results using the three-
dimensional coordinate transformation contained in 'P.T when the keyword T3D is
specified. Note that !P.T must contain avalid transformation matrix prior to using the
T3D keyword.

PLOT and its variants output graphs in the xy-plane at the normal coordinate z value
given by the keyword ZVALUE. If this keyword is not specified, the plot is drawn at
the bottom of the unit cube at z=0.

CONTOUR drawsitsaxesat z= 0 and its contours at their zdatavalueif ZVALUE is
not specified. If ZVALUE is present, CONTOUR draws both the axes and contoursin
the xy-plane at the given z value.

Combining CONTOUR and SURFACE

It is easy to combine the results of SURFACE with the other IDL graphics
procedures. The keyword parameter SAVE causes SURFACE to save the graphic
transformation it used in 'PT. Then, when either CONTOUR or PLOT is caled with
the keyword parameter T3D, its output is transformed with the same projection. For
example, the figure below illustrates how SURFACE and CONTOUR can be
combined. In essence, this is a combination of figures from 2 previous sections.

|
. ||II"'I \
bt
|

Figure 18-10: Combining CONTOUR with SURFACE, Maroon Bells Data

Three-Dimensional Transformations

320 Chapter 18: Plotting Multi-Dimensional Arrays

Using the same variables as in the earlier sections of this chapter, the figure was
produced with the following statements:

Restore vari abl es.
@nt our 01
Resi ze the original data into a 72 x 92 array,
setting all data val ues which are | ess than
2650 (the | owest elevation we wish to show) to 2650.
surf = REBIN(el ev > 2650, 360/5, 460/5)
Make the nesh.
SURFACE, surf, X, Y, SKIRT=2650, /SAVE
Specify T3D to align with SURFACE, at ZVALUE of 1.0.
Suppress clipping as the plot is outside the normal plot w ndow
CONTOUR, surf, X, Y, /T3D, /NOCERASE, TITLE = 'Contour Plot', $
MAX_VAL = 5000., ZVALUE = 1.0, /NOCLIP, $
LEVELS = 2750. + FINDGEN(6) * 250

More Complicated Transformations

The figure below illustrates the application of three-dimensional transforms to the
output of CONTOUR and PLOT. Using the two-dimensional Gaussian array z
defined in “The SURFACE Procedure” on page 306, it draws athree-dimensional
contour plot with the contours stacked above the axes in the z direction. It then plots
the sum of the columns, also a Gaussian, in the xz-plane, and the sum of the rowsin
the yz plane.

Figure 18-11: PLOT and CONTOUR with a Three-dimensional Transform

It was constructed as follows:

Three-Dimensional Transformations Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 321

Using IDL

First, the SCALE3 procedure is called to establish the default three- to two-
dimensional transformation used by SURFACE, as explained above. The
default rotations are 30 degrees about both the x- and z-axes.

Next, avector, POS, defining the cube containing the plot window is defined
in normalized coordinates. The cube extendsfrom 0.1to 1.0 inthexandy
directions and from 0 to 1 in the z direction. Each call to CONTOUR and
PLOT must explicitly specify this window to align the plots. Thisis necessary
because the default margins around the plot window are different in each
direction.

CONTOUR is called to draw the stacked contours with the axes at z= 0.
Clipping is disabled to allow drawing outside the default plot window, whichis
only two-dimensional .

The procedure T3D is called to exchange the y- and z-axes. The original xyz
coordinate system is now xzy.

PLOT iscalled to draw the column sums which appear in front of the contour
plot. The expression Z#REPLICATE(1., N) creates a row vector containing
the sum of each row in the two-dimensional array z. The NOERASE and
NOCLIP keywords are specified to prevent erasure and clipping. This plot
appearsin the xz-plane because of the previous axis exchange.

T3D is called again to exchange the x- and z-axes. This makes the original xyz
coordinate system, which was converted to xzy, now correspond to yzx.

PLOT iscalled to produce the column sumsin the yz-plane in the same manner
asthefirst plot. The original x-axisisdrawn in the y-plane, and the y-axisisin
the z-plane. One unavoidable side effect of this method isthat the annotation of
this plot is backwards. If the plot is transformed so the letters read correctly,
the x-axis of the plot would be reversed in relation to the y-axis of the contour
plot.

The IDL code used to draw the figure is as follows:

;. Create the Z vari abl e:
Z = SH FT(DI ST(40), 20, 20)
Z = EXP(-(2/10)"2)

NX and NY are the X and Y di nensions of the Z array:
NX = (SIZE(2)) (1)
NY = (SIZE(Z)) (2)
; Set up 'P.T with default SURFACE transformation.
SCALE3

Define the three-dinensional plot
; window. x = 0.1to 1, Y=0.1to 1, and z =0 to 1.
POs=[.1, .1, 1, 1, 0, 1]

Three-Dimensional Transformations

322

Chapter 18: Plotting Multi-Dimensional Arrays

;. Make the stacked contours. Use 10 contour |evels.
CONTOUR, Z, /T3D, NLEVELS=10, /NOCLIP, POSIT=POS, CHARSI ZE=2
; Swap y and z axes. The original xyz systemis now xzy:
T3D, /YZEXCH
; Plot the colum sums in front of the contour plot:
PLOT, Z#REPLI CATE(1., NY), /NOERASE, /NOCLIP, /T3D, $

TI TLE=' COLUW SUMS', PCSI TION = PCS, CHARSI ZE = 2
; Swap x and z—eriginal xyz is now yzx:
T3D, / XZEXCH

Pl ot the row suns along the right side of the contour plot:
PLOT, REPLICATE(1., NX)#Z, /NOERASE, /T3D, /NOCLIP, $

TITLE = ' ROWSUMS' , POSI TION = POS, CHARSIZE = 2

If you prefer not to enter the IDL code by hand, run the batch file cnt our 06 with the
following command at the IDL prompt:

@nt our 06

See " Running the Example Code” on page 290 if IDL does not find the batch file.

Three-Dimensional Transformations Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 323

Combining Images with Three-Dimensional Graphics

Images are combined with three-dimensional graphics, as shown in the figure below,
using the transformation techniques described above.

4500: =
4002 :
3500: ¥
3009 :
aE00 :

Jelolale}

4000

2500

Figure 18-12: Using SHOW3 to Overlay an Image, Surface Mesh, and Contour

Using IDL

The rectangular image must be transformed so that it fits underneath the mesh drawn
by SURFACE. The general approach is asfollows:

Use SURFACE to establish the general scaling and geometrical
transformation. Draw no data, as the graphics made by SURFACE will be
over-written by the transformed image.

For each of the four corners of the image, translate the data coordinate, which
issimply the subscript of the corner, into a device coordinate. The data
coordinates of the four corners of an (m, n) image are (0, 0), (m-1, 0), (O, n-1),
and (m-1, n—1). Call this data coordinate system (X, y). Using a procedure or
function similar to CVT_TO_2D (see “Three-Dimensional Coordinate
Conversion” on page 314) convert to device coordinates, which in this
discussion are called (U, V).

Three-Dimensional Transformations

324 Chapter 18: Plotting Multi-Dimensional Arrays

« Theimageistransformed from the original Xy coordinatesto anew imagein
UV coordinates using the POLY _2D function. POLY _2D accepts an input
image and the coefficients of a polynomial in UV giving the xy coordinatesin
the original image. The equations for x and y are below.

X=S0* S oU +S0V +5,,UV
Y= TO,O + T]_’Ou + Tl'ov + Tl']_UV

We solve for the four unknown S coefficients using the four equations relating
the x corner coordinatesto their U coordinates. The T coefficients are similarly
found using the y and V coordinates. This can be done using matrix operators
and inversion or more simply, with the procedure POLY_WARP.

* Thenew imageisarectangle that encloses the quadrilateral described by the
UV coordinates. Its sizeis specified in the formula below:

(MAX(U) = MIN(U) +2, MAX(V) — MIN(V) +1)

e« POLY_2D iscalledto form the new image which is displayed at device
coordinate (MIN(U), MIN(V)).

* SURFACE iscalled once again to display the mesh surface over the image.

¢ Finaly, CONTOURis called with ZVALUE set to 1.0, placing the contour
above both the image and the surface.

The SHOW3 procedure performs these operations. It should be examined for details
of how images and graphics can be combined.

Thefollowing IDL commands were used to create the previous image:

; Restore variabl es:
@nt our 01
Reduce the size of elev array:
new = REBI N(el ev, 360/5, 460/5)
; Create an array of |levels for CONTOUR
| evs = (FI NDGEN(10) *100) +3500
Use SHOMB. Note the use of keywords E_SURFACE
; and E_CONTOUR to pass values to the SURFACE and
; CONTOUR routines used wthin SHOWB.
SHOWB, new, E_SURFACE={mi n: 2000}, E_CONTOUR={l evel s: | evs}

Three-Dimensional Transformations Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 325

Shaded Surfaces

The SHADE_SURF procedure creates a shaded representation of a surface made
from regularly gridded elevation data. The shading information can be supplied asa
parameter or computed using a light-source model. Displays are easily constructed
depicting the surface elevation of avariable shaded as a function of itself or another
variable. This procedureis similar to the SURFACE routine, but it rendersthe visible
surface as a shaded image rather than a mesh.

Parameters are identical to those of the SURFACE procedure. See SHADE_SURF in
the IDL Reference Guide for details.

Shading Method

Using IDL

The shading applied to each polygon, defined by its four surrounding elevations, can
be either constant over the entire cell or interpolated. Constant shading takeslesstime
because only one shading value needs to be computed for the entire polygon.
Interpolated shading gives smoother results. The Gouraud method of interpolation is
used: the shade values are computed at each elevation point, coinciding with each
polygon vertex. The shading is then interpolated along each edge, finally, between
edges along each vertical scan line.

Light-source shading is computed using a combination of depth cueing, ambient
light, and diffuse reflection, adapted from Foley and Van Dam (1982, Chapter 19):

| =l+digL e N)

where

I3 Term due to ambient light. All visible objects have at |east this
intensity, which is approximately 20 percent of the maximum
intensity.

Io(L o N) Term due to diffuse reflection. The reflected light is
proportional to the cosine of the angle between the surface
normal vector N and the vector pointing to the light source, L.
Ip is approximately 0.9.

d Term for depth cueing, causing surfaces further away from the
observer to appear dimmer. The normalized depth is
d=(z+2)/3, ranging from zero for the most distant point to one
for the closest.

Shaded Surfaces

326 Chapter 18: Plotting Multi-Dimensional Arrays

Shading Parameters

Parameters affecting the method of shading interpolation, light source direction, and
rejection of hidden faces are set with the SET_SHADING procedure. Defaults are
Gouraud interpolation, light-source direction [0, 0, 1], and rejection of hidden faces
enabled. See the description of SET_SHADING in the IDL Reference Guide for a
more complete description of the parameters.

Note
The REJECT keyword has no effect on the output of SHADE SURF—it is used

only with solids.

Examples Using SHADE_SURF

The following figure illustrates the application of SHADE_SURF, with light-source
shading, to the two-dimensional Gaussian (also drawn asamesh in Figure 18-7). This
figure was produced by the following statements.

; Create a 40-by-40 array in which each el enent

; is equal to the Euclidean distance fromthe center.
Z = SH FT(DI ST(40), 20, 20)

;. Make Gaussian with a 1/e width of 10:

Z = EXP(-(2/ 10)"2)

SHADE_SURF, Z

Theright half of the following figure shows the use of an array of shades, whichin
this case is simply the surface elevation scaled into the range of bytes.

1.0 . .
n.Br iy \
T
i “\‘?’i"
) B B
O ’ ;“a é&%‘#‘l‘a‘}ﬁ\ .

0.4y 0.4
0.2F 0.2
0 O,

s

Figure 18-13: Shaded Representations of a Two-Dimensional Gaussian

Shaded Surfaces Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 327

The output of SURFACE is superimposed over the shaded image with the statements
bel ow.

; Show Gaussian with shades created by scaling
el evation into the range of bytes.

SHADE SURF, Z, SHADES=BYTSCL(Z, TOP = !D. TABLE_SI ZE)
Draw the mesh surface over the shaded figure.
Suppr ess the axes:

SURFACE, Z, XST = 4, YST = 4, ZST = 4, | NCERASE

The next figure shows the Maroon Bells data as a light-source shaded surface (this
datais also shown in the right half of Figure 18-8). It was produced by the following
statements:

Restore vari abl es.
@ntour 01
SHADE_SURF, el ev, AZ=210, AX=45, XST=4, YST=4, ZST=4

The AX and AZ keywords specify the orientation. The axes are suppressed by the
axis-style keyword parameters; asin this orientation, the axes are behind the surface.

Figure 18-14: Maroon Bells Data Shown as a Shaded Surface

Using IDL Shaded Surfaces

328 Chapter 18: Plotting Multi-Dimensional Arrays

Volume Visualization

A common problem in data visualization is how to display a constant density surface
(also known as an isosurface), given athree-dimensional grid of density
measurements. In medical imaging, stacking a series of two-dimensional images
created by computed tomography or magnetic resonance creates agrid of density
measurements that can be contoured to display the surfaces of anatomical structures.
Atmospheric scientists create three-dimensional grids of water densities that can be
contoured at the proper density level to show the surface of clouds. It isrelatively
easy to produce these surfaces using the SHADE_VOLUME procedurein
conjunction with the POLY SHADE function.

SHADE_VOLUME accepts athree-dimensional grid of densitiesand a contour level.
It outputs the set of polygons that describe the surface of the contour. The polygons
are described by a (3, n) array of vertices and a polygon list array that contains the
vertices belonging to each polygon. Given avolume array with dimensions of (Dg,
D,, Dy), theresulting vertex coordinates range between 0 and Dy —1inx, 0 and D —
liny,and 0 and D, — 1inz Keyword parametersto SHADE_VOLUME include the
following:

LOW

A flag indicating which side of the contour surfaceisto be viewed: 1 for the high side
and O for the low (the default). If the contour to be viewed encloses high data values,
asinthe”Cloud Example’ data, set the LOW keyword parameter to 1.

SHADES

An array of shading values for each volume element (voxel). On completion,
SHADE_VOLUME replaces this array with the interpolated shading for each vertex
of the surface.

These polygons are then fed to the POLY SHADE function to produce the shaded
surface representation. It must be noted that the maximum volume size and polygon
complexity are limited by the amount of available memory, as these routines store the
density measurements, vertex list, and polygon list in memory.

Volume Visualization Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 329

Cloud Example

This next figure, produced by the following IDL code, shows the three-dimensional
contour surface of the precipitating region of athunderstorm simulated by athree-
dimensional cloud model.

s X

Figure 18-15: A 3-dimensional Contour Surface of a Cloud’s Precipitating Region

The data were provided by the National Center for Atmospheric Research. The
original data are contained in an array called clouds, a (55, 55, 32) element floating-
point array. Each array element contains the amount of water contained in the
corresponding volume of air.

Restore the data:
RESTORE, FILEPATH(' cl ouds3d.dat', SUBDI R=['exanples','data'])
Create the contour surface polygons (v and p)
at density 0.1, fromclouds. Show the | ow side:
SHADE VOLUME, clouds, 0.1, v, p, /LOW
; Qobtain the dinensions of the vol une.
; Variables S[1], S[2], and S[3] now contain
t he nunber of colums, rows, and slices in the vol une:
s = S| ZE(cl ouds)

Using IDL Volume Visualization

330 Chapter 18: Plotting Multi-Dimensional Arrays

Use SCALE3 to establish the three-di nmensional
; transformation matrix. Rotate 45 degrees about the z-axis:
SCALE3, XRANGE=[O, S[1]], YRANGE=[O, S[2]], $

ZRANGE=[0, [3]], AX=0, AZ=45

Render and displ ay the pol ygons:
TV, POLYSHADE(v, p, /T3D)

If you prefer not to enter the IDL code by hand, run the batch file cl ouds with the
following command at the IDL prompt:

@l ouds
See " Running the Example Code” on page 290 if IDL does not find the batch file.

The shaded volume can be viewed from different rotations by changing the three-
dimensional transformation matrix, !P.T, and calling POLY SHADE for each view.
The following code displays 20 views of the volume, each separated by 18 degrees.

Define nunber of views:

nframes = 20

FORi =0, nfranmes - 1 DOBEG N & $
; Translate the center of the (0, 1) unit cube
; to (0,0) and rotate about the x-axis:
T3D, TR=[-.5, -.5, -.5], ROT=[0, 360./NFRAMES, 0] & $
; Translate the center back to (0.5, 0.5, 0.5):
T3D, TR=[.5, .5, .5] &%
; Show t he surface:
TV, POLYSHADE(v, p, /T3D) & $

ENDFOR

The animation rate of the above loop will not be very fast, especially with alarger
number of polygons. Each image could be saved for rapid replay by writing it to a
disk file. Given enough memory and/or display resources, the XINTERANIMATE
procedure could be used to animate the views.

Volume Visualization Tools

IDL also includes two interactive volume visualization tools;
SLICERS3

SLICERS3, implemented using IDL Direct Graphics, isatool used to view isosurfaces
and dlices of volume data. See SLICERS3 in the IDL Reference Guide for more
information.

Volume Visualization Using IDL

Chapter 18: Plotting Multi-Dimensional Arrays 331

XVOLUME

XVOLUME, implemented using IDL Object Graphics, isa utility for viewing and
interactively manipulating volumes and isosurfaces. The utility provides a graphical
interface for manipulating the volume orientation, adjusting the color table and
opacity, viewing image planes and contours, and adjusting the color, opacity, and
threshold value of an isosurface. See XVOLUME in the IDL Reference Guide for
more information.

Using IDL Volume Visualization

332 Chapter 18: Plotting Multi-Dimensional Arrays

References

Foley, J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Co.

References Using IDL

Chapter 19:

Map Projections

The following topics are covered in this chapter:

OVEIVIEW ..ot 334
The MAP_SET Procedure 336
The MAP_GRID Procedure
The MAP_CONTINENTS Procedure 339
Graphics Techniques for Mapping
Map Projections Described 342

Using IDL

Azimuthal Projections 343
Cylindrical Projections............... 353
Pseudocylindrical Projections 358
Putting DataonMaps 361
High-Resolution Continent Outlines 363
References 365

333

334

Chapter 19: Map Projections

Overview

Overview

The IDL mapping package contains the following procedures:
MAP_SET

This procedure establishes the coordinate conversion mechanism for mapping points
on aglobe’s surface to points on a plane, according to one of 16 possible projections.
This procedure also sets up the clipping parameters of the region to be mapped, the
center of the map, and the polar rotation. Mapping transformation values are stored in
the IMAP system variable. MAP_SET must be called to set up amap projection
before any other mapping routines are called. See MAP_SET in the IDL Reference
Guide for more information.

MAP_GRID

This procedure draws the graticule of parallels and meridians (grid lines) according
to the specifications established by MAP_SET. See MAP_GRID inthe IDL
Reference Guide for more information.

MAP_CONTINENTS

This procedure draws continental or other boundaries over a map projection
established by MAP_SET. Continents, coastlines, rivers, and political borders can be
draw in either low or high resolution. Continents may also be filled with solid colors.
See MAP_CONTINENTS in the IDL Reference Guide for more information.

MAP_IMAGE and MAP_PATCH

These functions return an image warped to fit the current map projection. See
MAP_IMAGE and MAP_PATCH in the IDL Reference Guide for more information.

MAP_PROJ_INIT

This function establishes the coordinate conversion mechanism for mapping points
on a globe's surface to points on a plane, according to either one of the IDL
projections or one of the General Cartographic Transformation Package (GCTP) map
projections. Unlike MAP_SET, this function does not modify the IMAP system
variable, but rather returns a!MAP structure variable that can be used by the map
transformation functions MAP_PROJ FORWARD and MAP_PROJ INVERSE. See
MAP_PROJ INIT inthe IDL Reference Guide for more information.

Using IDL

Chapter 19: Map Projections 335

MAP_PROJ_FORWARD, and MAP_PROJ_INVERSE

These functions transform map coordinates between latitude/l ongitude and Cartesian
(X, Y) coordinates. Both functions can use the map transformation values from either
the IMAP system variable or a!MAP structure created by MAP_PROJ INIT. See
MAP_PROJ FORWARD and MAP_PROJ INVERSE inthe IDL Reference Guide

for more information.

Example Graphics

The examplesin this chapter are all written to take advantage of IDL Direct Graphics.
Examples and techniques using IDL Object Graphics are contained in the later

chapters of this manual.

Using IDL Overview

336 Chapter 19: Map Projections

The MAP_SET Procedure

The MAP_SET procedure establishes the axis type and coordinate conversion
mechanism for mapping points on the Earth’s surface, expressed in latitude and
longitude, to points on a plane, according to one of 16 possible map projections.
Many other keywords are available to control various graphics options. For
information on all the available keywords, see MAP_SET inthe DL Reference Guide
for more information.

You can select the map projection, the map center, polar rotation, and geographical
limits. The system variable |MAP retains the information needed to effect coordinate
conversionsto the plane and inversely from the projection plane to points on the earth
in latitude and longitude. Do not change the values of the fieldsin IMAP directly.
You can plot the graticule and continental boundaries with MAP_SET by setting the
GRID and CONTINENT keywords. The procedure has the calling sequence:

MAP_SET[, Pgjats Poion. Rot]
where the keywords are described as follows:

I:)Olat

Poiat isthe latitude of the point on the Earth’s surface at the center of the projection
plane. Latitude is measured in degrees North of the equator, where —90° < Pg 4 < 90°.
If Pgjat 1S NOt set, the default valueis zero.

I:)Olon

Poion IS thelongitude of the point on the Earth’s surface to be mapped to the center of
the map projection. Longitude is measured in degrees east of the Greenwich meridian
and —180° < P < 180°. If Pgon IS NOt set, the default valueis zero.

Rot

Rot is the angle through which the North direction should be rotated around the line L
between the Earth’s center and the point (Pg;4t, Pojon)- ROt is measured in degrees
with the positive direction being clockwise rotated around L. Rot should satisfy
—180 < Rot < 180.

If the center is at the North Pole, the North direction isin the direction of Py, + 180
degrees. If the origin is at the South Pole, then North isin the direction of Pgq,. The
default value of Rot is zero.

The MAP_SET Procedure Using IDL

Chapter 19: Map Projections 337

MAP_SET Keywords

MAP_SET accepts many keywords that customize the projection attributes of the
map. A few of the important ones are described below. See MAP_SET inthe IDL
Reference Guide for descriptions of all the keywords.

CONTINENTS
Set this keyword to plot the continental boundaries.
GRID
Set this keyword to draw the grid of parallels and meridians.
ISOTROPIC
Set this keyword to produce a map that has the same scale in the X and Y directions.
LIMIT

Set this keyword to afour- or eight-element vector. The four-element vector, [Lat,,,
LoNpin, Latax LONay] . SPecifies the boundaries of asimple region to be mapped.
(Latyjn, Lonyin) and (Lat, gy Longgy) are the latitudes and longitudes of two points
diagonal from each other on the region’s boundary. For more complex regions or
projections, the eight-element vector, [Latg, Long, Lat,, Lon,, Lat,, Lony, Latg, Long]
specifies four points located, respectively, on the left, top, right and bottom edges of
the map.

SCALE

Set this keyword to construct an isotropic map with the given scale, set to the ratio of
l:scale. If SCALE is not specified, the map isfit to the window. The typical scale for
global mapsisin theratio of between 1:100 million and 1:200 million. For
continents, the typical scaleisin theratio of approximately 1:50 million. For
example, SCALE=100ES6 sets the scale at the center of the map to 1:100 million,
whichisin the sameratio as 1 inch to 1578 miles (1 cm to 1000 km).

Using IDL The MAP_SET Procedure

338 Chapter 19: Map Projections

The MAP_GRID Procedure

MAP_GRID drawsthe graticule of parallels and meridians according to the
specifications established by MAP_SET. The MAP_SET procedure should be called
before MAP_GRID to establish the projection type, the center of the projection, polar
rotation, and geographical limits. Latitude and/or longitude lines can be drawn in
different line styles, colors, and spacings. See MAP_GRID in the IDL Reference
Guide for moreinformation on all the available options.

The MAP_GRID Procedure Using IDL

Chapter 19: Map Projections 339

The MAP_CONTINENTS Procedure

Using IDL

MAP_CONTINENTS draws the projection of the continental boundaries, according
to the specifications established by MAP_SET. MAP_SET should be called before
MAP_CONTINENTS to establish the projection type, the center of the projection,
polar rotation, and geographical limits. See MAP_CONTINENTS in the IDL
Reference Guide for more information on all the available options.

The MAP_CONTINENTS Procedure

340 Chapter 19: Map Projections

Graphics Techniques for Mapping

Standard graphics techniques are insufficient when projecting areas on asphere to a
two-dimensional surface for two reasons. First, two points on a sphere are connected
by two different lines. Second, areas may wrap around the edges of cylindrical and
pseudo-cylindrical projections.

Graphical entities on the surface of a sphere can be properly represented on any map
by using a combination of the following four stages: splitting, 3D clipping,
projection, and rectangular clipping. The MAP_SET procedure automatically sets up
the proper mapping technique to best fit the projection selected by the user.

Warning
For proper rendering, splitting, and clipping, polygons must be traversed in counter-
clockwise order when observed from outside the sphere. If this requirement is not
met, the exterior, instead of the interior, of the polygons may befilled. Also, vectors
connecting the points spanning the singular line for cylindrical projectionswill be
drawn in the wrong direction if polygons are not traversed in the correct order.

Splitting

The splitting stage is used for cylindrical and pseudo-cylindrical projections. The
singular line, one half of agreat circle line, islocated opposite the center of the
projection; points on this line appear on both edges of the map. The singular lineis
the intersection of the surface of the sphere with a plane passing through the center of
projection, one of the poles of projections, and the center of the sphere.

3D Clipping

Map graphics are clipped to one side of an arbitrary clipping planein one or more
clipping stages. For example, to draw a hemisphere centered on a given point, the

clipping plane passes through the center of the sphere and has a normal vector that
coincides with the given point.

Projection

In the projection stage, a point expressed in latitude and longitude istransformed to a
point on the mapping plane.

Graphics Techniques for Mapping Using IDL

Chapter 19: Map Projections 341

Rectangular Clipping

After the map graphics have been projected onto the mapping plane, a conventional
rectangular clipping stage ensures that the graphics are properly bounded and closed
in the rectangular display area.

Using IDL Graphics Techniques for Mapping

342 Chapter 19: Map Projections

Map Projections Described

In the following sections, the available IDL projections are discussed in detail. The
projections are grouped within three categories: azimuthal, cylindrical, and pseudo-
cylindrical.

Note
The General Cartographic Transformation Package (GCTP) map projections are not

described here. Documentation for the GCTP package is available from the US
Geologic Survey at ht t p: / / mappi ng. usgs. gov.

Note
In thistext, the plane of the projection isreferred to as the UV plane with horizontal

axis u and vertical axisv.

Map Projections Described Using IDL

Chapter 19: Map Projections 343

Azimuthal Projections

With azimuthal projections, the UV plane is tangent to the globe. The point of
tangency is projected onto the center of the plane and its latitude and longitude are
Poiat @d Pgon, respectively. Rot is the angle between North and the v-axis.

Important characteristics of azimuthal maps include the fact that directions or
azimuths are correct from the center of the projection to any other point, and great
circles through the center are projected to straight lines on the plane.

The IDL mapping package includes the following azimuthal projections;
orthographic, stereographic, gnomonic, azimuthal equidistant, Aitoff, Lambert’s
azimuthal equal area, Hammer-Aitoff, and satellite.

Orthographic Projection

The orthographic projection was known by the Egyptians and Greeks 2000 years ago.
This projection looks like a globe because it is a perspective projection from infinite
distance. Assuch, it maps one hemisphere of the globeinto the UV plane. Distortions
are greatest along the rim of the hemisphere where distances and land masses are
compressed.

The following statements are used to produce an orthographic projection centered
over Eastern Spain at ascale of 70 millionto 1:

MAP_SET, /ORTHOGRAPHI C, 40, 0, SCALE=70e6, /CONTI NENTS, $
/ GRI D, LONDEL=15, LATDEL=15, $
TITLE = ' Obl i que Ot hographic’

The output of these statementsis shown in the following figure.

Oblique Orthographic

Figure 19-1: Orthographic Projection

Using IDL Azimuthal Projections

344 Chapter 19: Map Projections

Stereographic Projection

The stereographic projection is atrue perspective projection with the globe being
projected onto the UV plane from the point P on the globe diametrically opposite to
the point of tangency. The whole globe except P is mapped onto the UV plane. There
is great distortion for regions close to P, since P maps to infinity.

The stereographic projection is the only known perspective projection that is aso
conformal. Itisfrequently used for polar maps. For example, a stereographic view of
the north pole has the south pole asits point of perspective.

The following statement uses the stereographic projection to draw the hemisphere
centered on the equator at longitude —105 degrees and produces an equatorial
stereographic map:

MAP_SET, /STEREO, 0, -105, /ISOTROPIC, $
/ GRID, LATDEL = 20, LONDEL = 20, /HORI ZON, /CONTI NENT, $
TITLE = ' Equat ori al Stereographic'

The output of this statement is shown in the following figure:

Equatcrial Stereagrophic

Figure 19-2: An Azimuthal Projection

Azimuthal Projections Using IDL

Chapter 19: Map Projections 345

Sincethe LATDEL and LONDEL keywords are set to 20, parallels and meridians are
spaced 20 degrees apart. The GRID and CONTINENT keywords signal that the grid
and continents should be drawn.

Gnomonic Projection

The gnomonic projection (also called Central or Ghomic) projects al great circlesto
straight lines. The gnomonic projection is the perspective, azimuthal projection with
point of perspective at the center of the globe. Hence, with the gnomonic projection,
the interior of a hemispherical region of the globe is projected to the UV plane with
the rim of the hemisphere going to infinity. Except at the center, there is great
distortion of shape, area, and scale. The default clipping region for the gnomonic
projection is a circle with aradius of 60 degrees at the center of projection.

MAP_SET, /GNOM C, 40, -105, LIMT = [20, -130, 70, -70], $

/1 SOTROPI C, /GRI D, /CONTINENT, $
TI TLE = ' Obl i que Gnononi ¢’

This projection is centered around the point at latitude 40 degrees and longitude —105
degrees. The region on the globe that is mapped lies between 20 degrees and 70
degrees of latitude and —130 degrees and —70 degrees of longitude.

The output of these statements is shown in the following figure:

Oblique Gnomanic

Figure 19-3: A Gnomonic Projection

Using IDL Azimuthal Projections

346 Chapter 19: Map Projections

Azimuthal Equidistant Projection

The azimuthal equidistant projection isalso not atrue perspective projection, because
it preserves correctly the distances between the tangent point and all other points on
the globe. The point P opposite the tangent point is mapped to a circle on the UV
plane, and hence, the whole globe is mapped to the plane. Thereisinfinite distortion
close to the outer rim of the map, which is the circular image of P.

If the keyword LIMIT is not set, the whole globe is mapped to the UV plane.

MAP_SET, /AZI MJTHAL, /ISOTROPIC, -90, $
/ GRI D, LONDEL=20, LATDEL=20, / CONTI NENT, $
/HORI ZON, TITLE = 'Pol ar Azi mut hal '

Itis centered at the South Pole and shows the entire globe.

The output of these statementsis shown in the following figure:

Palar Azimuthal

Figure 19-4: An Azimuthal Equidistant Projection

Azimuthal Projections Using IDL

Chapter 19: Map Projections 347

Aitoff Projection

The Aitoff projection modifies the equatorial aspect of one hemisphere of the
azimuthal equidistant projection, described above. Lines paralld to the equator are
stretched horizontally and meridian values are doubled, thereby displaying the world
as an ellipse with axesin a 2:1 ratio. Both the equator and the central meridian are
represented at true scale; however, distances measured between the point of tangency
and any other point on the map are no longer true to scale.

An Aitoff projection centered on the international dateline can be produced by the
command:

MAP_SET, 0, 180, /Aitoff, /GRID, /CONTINENTS, /|SOTROPIC, $
TITLE= 'Aitoff Projection

The output of these statementsis shown in the following figure:

AiteTf Projection

Figure 19-5: An Aitoff Projection

Lambert’'s Equal Area Projection

Using IDL

Lambert’s equal area projection adjusts projected distances in order to preserve area.
Hence, it is not atrue perspective projection. Like the stereographic projection, it
maps to infinity the point P diametrically opposite the point of tangency. Note also
that to preserve area, distances between points become more contracted as the points
become closer to P. Lambert’s equal area projection has less overall scale variation
than the other azimuthal projections.

MAP_SET, /LAMBERT, 90, 0, -105, /ISOTROPIC, $

Azimuthal Projections

348 Chapter 19: Map Projections

/ GRI D, LATDEL=20, LONDEL=20, $
/ CONTI NENTS, E_CONTI NENTS={ FI LL: 1}, /HORI ZON, $
TITLE = ' Pol ar Lanbert'

The output of these statementsis shown in the following figure:

Polar Lambert

Figure 19-6: A Lambert’'s Equal Area Projection

Note

This map shows the Northern Hemisphere rotated counterclockwise 105 degrees,
filling the continents with a solid color

Hammer-Aitoff Projection

Although the Hammer-Aitoff projection is not truly azimuthal, it isincluded in this
section because it is derived from the equatorial aspect of Lambert’s equal area
projection limited to a hemisphere (in the same way Aitoff’s projection is derived
from the equatorial aspect of the azimuthal equidistant projection). In this derivation,

the hemisphere is represented inside an ellipse with the rest of the world in the lunes
of the dllipse.

Azimuthal Projections Using IDL

Chapter 19: Map Projections 349

Because the Hammer-Aitoff projection produces an equal area map of the entire
globe, it isuseful for visual representations of geographically related statistical data
and distributions. Astronomers use this projection to show the entire celestial sphere
on one map in away that accurately depicts the relative distribution of the starsin
different regions of the sky.

A Hammer-Aitoff projection centered on the international dateline can be produced
by the command:

MAP_SET, 0, 180, /HAMVER, /GRID, /CONTINENTS, /ISOTRCPIC, $
/ HORI ZON, TI TLE= ' Hammer-Aitof f Projection’

The output of these statements is shown in the following figure:

Hammer—Aitafl Prajection

Figure 19-7: The Hammer-Aitoff Projection

Satellite Projection

Using IDL

The satellite projection, also called the General Perspective projection, simulates a
view of the globe as seen from a camerain space. If the camerafaces the center of the
globe, the projection is called a Vertical Perspective projection (note that the
orthographic, stereographic, and gnomonic projections are special cases of this
projection), otherwise the projection is called a Tilted Perspective projection.

The globe is viewed from a point in space, with the viewing plane touching the
surface of the globe at the point directly beneath the satellite (the sub-satellite point).
If the projection plane is perpendicular to the line connecting the point of projection
and the center of the globe, a Vertical Perspective projection results. Otherwise, the

Azimuthal Projections

350 Chapter 19: Map Projections

projection planeis horizontally turned I" degrees clockwise from the north, then tilted
o degrees downward from horizontal.

For the satellite projection, Pg 4 and Pg, o, represent the latitude and longitude of the
sub-satellite point. Three additional parameters, P, Omega, and Gamma (supplied as
athree-element vector argument to the SAT_P keyword), are required where:

« Pisthedistance of the point of perspective (camera) from the center of the
globe, expressed in units of the radius of the globe.

¢ Omegaisthe downward tilt of the camera, in degrees from the new horizontal.
If both Gamma and Omega are O, a Vertical Perspective projection results.

* Gammaistheangle, expressed in degrees clockwise from north, of the rotation
of the projection plane.

Note
Since all meridians and parallels are obliquelines or arcs, the LIMIT keyword must

be supplied as an eight-element vector representing four points that delineate the
limits of the map. The extent of the map limits, when expressed in
latitude/longitude is a complicated polygon, rather than a simple quadrilateral.

Azimuthal Projections Using IDL

Chapter 19: Map Projections 351

The map in the accompanying figure, which shows the eastern seaboard of the United
States from an altitude of about 160km, above Newburgh, NY, was produced with the
code that follows.

Satellite / Tilted Perspective

Figure 19-8: Satellite Projection

The parameters for this satellite projection are:
e Center of projection = 41.5N latitude, —74W longitude
+ P (dtitude) = 1.025 = (1.0 + 160 / 6371km)
e Gamma (rotation of projection plane) = 150 degrees
e Omega (tilt of projection plane) = 55 degrees

* Theeight element LIMIT keyword array specifies the |atitude/longitude
locations of points at the bottom, left, top, and right of the map respectively.

* TheHORIZON keyword draws a horizon line.

Using IDL Azimuthal Projections

352 Chapter 19: Map Projections

Example: Labeling and Drawing Projections

Labeling and drawing a vector on a satellite projection.

MAP_SET, /SATELLITE, SAT_P=[1.0251, 55, 150], 41.5, -74., $
/1 SOTRCPI C, /HORI ZON, $
LIMT=[39, -74, 33, -80, 40, -77, 41,-74], $
/ CONTI NENTS, TITLE="Satellite / Tilted Perspective'
; Set up the satellite projection:
MAP_GRI D, /LABEL, LATLAB=-75, LONLAB=39, LATDEL=1, LONDEL=1
: Get North vector:
p = convert_coord(-74.5, [40.2, 40.5], /TO_NORM
;. Draw North arrow
ARROW p(0,0), p(1,0), p(0,1), p(1,1), /NORVAL
XYQUTS, -74.5, 40.1, '"North', ALIGNMENT=0.5

Azimuthal Projections Using IDL

Chapter 19: Map Projections 353

Cylindrical Projections

A cylindrical projection maps the globe to a cylinder which is formed by wrapping
the UV plane around the globe with the u-axis coinciding with agreat circle. The
parameters Pg 41, Pgion, @d Rot determine the great circle that passes through the
point C=(Pgat, Poion)- 1N the discussions below, this great circle is sometimes
referred to as EQ. Rot isthe angle between North at the map’s center and the v-axis
(which is perpendicular to the great circle). The cylinder is cut along the line parallel
to the v-axis and passing through the point diametrically oppositeto C. It isthen
rolled out to form a plane.

The cylindrical projectionsin IDL include: Mercator, Transverse Mercator,
cylindrical equidistant, Miller, Lambert’s conformal conic, and Alber’'s equal-area
conic.

Mercator Projection

Mercator’s projection is partially devel oped by projecting the globe onto the cylinder
from the center of the globe. Thisis apartial explanation of the projection because
vertical distances are subjected to additional transformations to achieve conformity—
that is, local preservation of shape. To properly use the projection, the user should be
aware that the two points on the globe 90 degrees from the central great circle (e.g.,
the North and South Polesin the case that the selected great circle is the equator) are
mapped to infinite distances. By default, the keyword LIMIT is set to [-80, —180, 80,
180] because of the great distortions around the poles when the equator is sel ected.

The following statement produces a simple Mercator projection:

MAP_SET, /MERCATOR, 0, 0, /ISOTRCOPIC, $
/ GRI D, /CONTINENTS, $
TITLE = ' Sinpl e Mercator'

Using IDL Cylindrical Projections

354 Chapter 19: Map Projections

Theresult of this statement is shown in the upper-left corner of the following figure.

Slrple Mercator Transverse Mercator

Jblique Cylindricol Equidistant

Figure 19-9: Cylindrical Projections

Latitudes range from —80 degrees to 80 degrees.
Transverse Mercator Projection

The Transverse Mercator (also called the UTM, and Gauss-Krueger in Europe)
projection rotates the equator of the Mercator projection 90 degrees so that it follows
a specified central meridian. In other words, the Transverse Mercator involves
projecting the Earth onto a cylinder which is always in contact with a meridian
instead of with the Equator.

The central meridian intersects two meridians and the Equator at right angles; these
four lines are straight. All other meridians and parallels are complex curveswhich are
concave toward the central meridian. Shape is true only within small areas and the
areas increase in size as they move away from the central meridian. Most other IDL
projections are scaled in the range of +/— 1 to +/— 2 Pi; the UV plane of the
Transverse Mercator projection is scaled in meters. The conformal nature of this
projection and its use of the meridian makesit useful for north-south regions.

Cylindrical Projections Using IDL

Chapter 19: Map Projections 355

The Clarke 1866 ellipsoid is used for the default, but its parameters can be altered
with the ELLIPSOID keyword.

Example: The UTM Map

To create aUTM map, centered near London, with ascale of 10 million to one, type
the following:

MAP_SET, /TRANSVERSE, 51, 0, SCALE=10e6, $
/ GRI D, LATDEL=2.5, LONDEL=2.5, /LABEL, LONLAB=48, $
/ CONTI NENTS, E_CONT={ COUNTRI ES: 1, COASTS: 1}, $
TI TLE=' UTM Pr oj ecti on’

When the eccentricity of the Earth is not important, global scale Transverse Mercator
projections can be easily created using the Mercator projection with the
CENTRAL_AZIMUTH keyword set to 90 degrees, and setting Rot to rotate the map
90 degrees. For example, to create the Transverse Mercator map showing North and
South America, with a central meridian of —90 degrees West and centered on the
Equator, shown in the upper-right corner of the figure in the “Mercator Projection”
section. It is produced by the following statement:

MAP_SET, /MERCATOR, 0, -75, 90, CENTRAL_AZI MJTH=90, $
/1SOTROPIC, LIMT=[32,-130, 70,-86, -5,-34, -58, -67], $
/ GRI D, LATDEL=15, LONDEL=15, /CONTI NENTS, $
TI TLE = ' Transverse Mercator'

Cylindrical Equidistant Projection

The cylindrical equidistant projection is one of the simplest projections to construct.
If EQ isthe equator, this projection simply lays out horizontal and vertical distances
on the cylinder to coincide numerically with their measurements in latitudes and
longitudes on the sphere. Hence, the equidistant cylindrical projection maps the
entire globe to a rectangular region bounded by

-180<u<180

and
-90<v<90

If EQ isthe equator, meridians and parallels will be equally spaced parallél lines.

Thefollowing codeis used to produce asimple cylindrical equidistant projection and
an oblique cylindrical equidistant projection as shown in the lower-left and lower-
right sections of the figure under the “Mercator Projection” heading:

Using IDL Cylindrical Projections

356 Chapter 19: Map Projections

MAP_SET, /CYLINDRICAL, O, O, /GRID, /CONTINENTS, $
TITLE = 'Sinple Cylindrical Equidistant’

Now rotate the projection by 45%:

MAP_SET, /CYLINDRICAL, 0, 0, 45, $
/ GRI D, /CONTINENT, /HORIZON, $
TI TLE=' ol i que Cylindrical Equidistant'

Miller Cylindrical Projection

The Miller projection is a simple mathematical modification of the Mercator
projection, incorporating some aspects of cylindrical projections. It isnot equal-area,
conformal or equidistant along the meridians. Meridians are equidistant from each
other, but latitude parallels are spaced farther apart as they move away from the
Equator, thereby keeping shape and area distortion to a minimum. The meridians and
parallelsintersect each other at right angles, with the poles shown as straight lines.
The Equator isthe only line shown true to scale and free of distortion.

Conic Projection

The Lambert’s conformal conic with two standard parallelsis constructed by
projecting the globe onto a cone passing through two parallels. Additional scaling
achieves conformity. The pole under the cone's apex is transformed to a point, and
the other pole is mapped to infinity. The scale is correct along the two standard
parallels. Parallels are projected onto circles and meridians onto equally spaced
straight lines. The STANDARD_PARALLEL S keyword specifies the latitudes of one
or two standard parallels.

The following statement produces the map shown in the accompanying figure, which
features North America with standard parallels at 20 degrees and 60 degrees:
MAP_SET, /CONIC, 40, -80, STANDARD PARALLELS=[20, 60], $
/1SOTROPIC, LIMT=[0, -260, 90, 100], $

/ GRI D, LATDEL=15, LONDEL=20, / CONTI NENT, $
TI TLE= ' Lanbert’s Conic'

Cylindrical Projections Using IDL

Chapter 19: Map Projections 357

Lombert's Canic

Figure 19-10: Lambert’s Conformal Conic with Standard Parallels at 20° and 60°

Albers Equal-Area Conic Projection

The Albers Equal-Area Conic is like most other conicsin that meridians are equally
spaced radii, parallels are concentric arcs of circles and scale is constant along any
paralel. To maintain equal area, the scale factor along meridiansis the reciprocal of
the scale factor along parallels, with the scale aong the parallels between the two
standard parallels too small, and the scale beyond the standard parallels too large.
Standard parallels are correct in scale along the parallel, aswell asin every direction.

The Albers projectionis particularly useful for predominantly east-west regions. Any
keywords for the Lambert conformal conic also apply to the Albers conic.

Using IDL Cylindrical Projections

358 Chapter 19: Map Projections

Pseudocylindrical Projections

Pseudocylindrical projections are distinguished by the fact that in their simplest form,
lines of latitude are parallel straight lines and meridians are curved lines.

Robinson Cylindrical

This pseudocylindrical projection was designed by Arthur Robinson in 1963 for
Rand McNally. It is suitable for World maps and is a compromise to best fulfill a
number of conflicting requirements, including an uninterrupted format, minimal
shearing, minimal apparent area-scale distortion for magjor continents, and simplicity.
It was designed to make the world look right. Sinceits introduction, it has been
adopted by the National Geographic Society for many of their world maps.

Each individual parallel isequally divided by the meridians. The poles are
represented by lines rather than points to avoid compressing the northern land
masses.

Note
The central meridian should always be 0 degrees longitude to retain the correct
balance of shapes, sizes, and relative positions.

The next statement produces the Robinson projection shown in the lower-left corner
of the figure which follows.

MAP_SET, /ROBINSON, 0, O, /ISOTROPIC, /GRID, $
/ HORI ZON, E_CONTI NENTS={FI LL: 1}, TI TLE=' Robi nson’

Sinusoidal Projection

With the sinusoidal projection, the central meridian isastraight line and all other
meridians are equally spaced sinusoidal curves. The scaling is true along the central
meridian aswell asalong all parallels.

The sinusoidal projection is one of the easiest projections to construct. The formulas
below from Snyder (1987) give the relationship between the latitude ¢ and longitude
A of apoint on the globe and itsimage on the UV plane.

U = ACOoS}
V=0

Pseudocylindrical Projections Using IDL

Chapter 19: Map Projections 359

The parameters Py, 5 and Rot of the MAP_SET procedure must be zero. If they are
not, an error message results and the procedure MAP_SET will reset both of these
parametersto zero and continue. By default, Pg o, (the central longitude) is zero, but
the user can set it to any other value between —180 and 180. If the keyword LIMIT is
undefined, the entire globe is the region selected for mapping.

The following statements produces the sinusoidal map of the whole globe centered at
longitude O degrees and latitude O degrees:

MAP_SET, /SINUSO DAL, /ISOTRCPIC, $
/ CONTI NENTS, TI TLE=" Si nusoi dal '
MAP_GRI D, LONDEL=20, /HORI ZON

Theresult of these statements is shown in the upper-left corner of the following
figure.

Sinuseoidal Oblique Mollweide

Figure 19-11: Pseudocylindrical Projections

Mollweide Projection

Using IDL

With the Mollweide projection, the central meridian is a straight line, the meridians
90 degrees from the central meridian are circular arcs and all other meridians are
eliptical arcs. The Mollweide projection maps the entire globe onto an ellipsein the
UV plane. The circular arcs encompass a hemisphere and the rest of the globeis
contained in the lunes on either side.

Pseudocylindrical Projections

360

Chapter 19: Map Projections

If the keyword LIMIT is not set, the whole globe will be mapped to the plane. The
following statement produces a Mollweide projection in oblique form, asillustrated
in the upper-right corner of the previousfigure:

VAP_SET, /MOLLWEIDE, 45, 0, /ISOTROPIC, $
/ GRI D, LATDEL=20, LONDEL=20, $
/ HORI ZON, E_CONTI NENTS={FI LL: 1}, $
TI TLE=' ol i que Mol | wei de'

Since the center of the projection is not on the equator, parallels of latitude are not
straight lines, just as they are not straight lines with an oblique Mercator or
cylindrical equidistant projection.

Goode’s Homolosine Projection

The Goode interrupted Homol osine projection, developed by J. Paul Goode, in 1923,
is designed for World maps to show the continents with minimal scale and shape
distortion. Thisis accomplished by interrupting the projection and choosing several
central meridiansto coincide with large land masses. This projectionisafusion of the
Sinusoidal projection between the latitudes of 44.7 degrees North and South, and the
Mollweide projection between these parallels and the poles.

The following statement produced the example of Goode's Homolosine projection in
the lower-right corner of the previous figure:

MAP_SET, /GOODESHOMOLCSINE, 0, 0, /ISOTROPIC, /GRID, $
LATDEL=15, LONDEL=20, /HORI ZON, E_CONTI NENTS={FILL: 1}, $
Tl TLE=' Goode Honol osi ne'

Pseudocylindrical Projections Using IDL

Chapter 19: Map Projections 361

Putting Data on Maps

The procedures PLOT, OPLOT, PLOTS, XYOUTS, and CONTOUR can be used to
display and annotate geographical data on maps created by the routines MAP_SET,
MAP_GRID, and MAP_CONTINENTS. The MAP_IMAGE procedure can be used
to warp regularly-gridded images to map projections.

Example—Using CONTOUR with MAP_SET

The following simple example creates a CONTOUR plot over a Mollweide map

proj ection and then over apolar stereographic projection. The resulting map is shown
bel ow.

Mollweide Contour

Figure 19-12: Combining CONTOUR with MAP_SET

Using IDL Putting Data on Maps

362 Chapter 19: Map Projections

; Make a 10 degree latitude/longitude grid covering the Earth:
| at = REPLI CATE(10., 37) # FINDGEN(19) - 90.
I on = FINDGEN(37) # REPLI CATE(10, 19)
; Convert lat and lon to Cartesian coordinates:
COS(!DTOR * lon) * COS(!DTOR * |at)
SIN(!DTOR * lon) * COS(!DTOR * |at)
SIN(! DTOR * | at)
; Create the function to be plotted, set it equal
; to the distance squared from(1,1,1):
F=(X21)"2 + (Y-1.)"2 + (Z-1.)"2
MAP_SET, /MOLLWEIDE, O, O, /ISOTRCPIC, $
/HORI ZON, /GRI D, /CONTINENTS, $
TI TLE=' Mol | wei de Cont our'
CONTOUR, F, lon, lat, NLEVELS=7, $
/ OVERPLOT, /DOMHI LL, /FOLLOW
Fill the contours over the northern hem sphere and
; display in a polar sterographic projection:
MAP_SET, /STEREO, 90, 0, $
/1 SOTRCOPI C, /HORI ZON, E_HORI ZON={FI LL: 1}, $
TI TLE=" St er eogr aphi ¢ Cont our’
; Display points in the northern hem sphere only:
CONTOUR, F(*,10:*), lon(*,10:*), lat(*,10:*), $
/ OVERPLOT, /FILL, NLEVELS=5
MAP_GRI D, /LABEL, COLOR=255
MAP_CONTI NENTS, COLOR=255

N < X~
I n

Limitations

Filling contours or polygons over maps that cover more than a hemisphere will
produce incorrect results. Thisis because of the ambiguity between polygons that
enclose an area, and those that enclose the entire surface of the sphere outside the
area; and because of the ambiguity of determining the clockwise-ness of polygons on
a sphere that cover more than a hemisphere.

Putting Data on Maps Using IDL

Chapter 19: Map Projections 363

High-Resolution Continent Outlines

IDL supports two different datasets that contain continent outlines and other
geographical and political boundaries. The default data set is alow-resolution
continental outline database that is automatically installed when you install IDL. The
high-resolution database was adapted from the 1993 CIA World Map database by
Thomas Oetli of the Swiss Meteorological Institute. The high-resolution outlines are
found in an optional data set that may not have been installed when your copy of IDL
was first installed.

To access the high-resolution data set, simply set the HIRES keyword when calling
MAP_CONTINENTS with the COASTS, COUNTRIES, FILL_CONTINENTS, or
RIVERS keywords. You can also get high-resolution continent boundaries by calling
MAP_SET with the HIRES and CONTINENTS keywords set. See
MAP_CONTINENTS n the IDL Reference Guide for an example of using the high-
resolution outlines.

Resolution of Map Databases

Data points in the CIA World Map database are approximately one kilometer apart.
Note, however, that in the case of the coast and river databases, actual distances
between the data points may be much smaller because of convolutionsin the
coastline or riverbed.

Data points in the low-resolution map database are either a subset of the high-
resolution database (rivers and country boundaries) or are based on the continental
map database used in previous versions of IDL (the file suprmap. dat inthe
resour ce/ maps subdirectory of the IDL distribution). Data points in the low-
resolution database are approximately 10 kilometers apart.

Neither of the map databases is intended for high-precision work.

The following table compares the low-resolution and high-resolution map databases:

Feature Low-Resolution High-Resolution
Coastlines, idlands, and | Datain filesupnap. dat . Entire CIA World Map
lakes (including
continental outlines)

Table 19-1: Comparison of Low- and High-resolution Map Databases

Using IDL High-Resolution Continent Outlines

364 Chapter 19: Map Projections

Feature Low-Resolution High-Resolution
Continental polygons Data extracted from Every 20th point of CIA
supmap. dat . World Map.
Rivers Every 250th point of the CIA | Entire CIA World Map.
World Map.
National boundaries Every 100th point of CIA Entire CIA World Map.
World Map.

Table 19-1: Comparison of Low- and High-resolution Map Databases

High-Resolution Continent Outlines Using IDL

Chapter 19: Map Projections 365

References

Using IDL

Greenwood, David (1964), Mapping, University of Chicago Press, Chicago.

Pearson, Frederick Il (1990), Map Projections. Theory and Applications, CRC Press,
Inc., Boca Raton.

Snyder, John P. (1987), Map Projections—A Working Manual, U.S. Geological
Survey Professional Paper 1395, U.S.Government Printing Office, Washington, D.C.

References

366 Chapter 19: Map Projections

References Using IDL

Chapter 20:

Image Display

Routines

The following topics are found in this chapter:

OVEIVIEW ..ot 368
Images ... 369
Imaging Routines. 370
ImageDisplay 371
Reading from the Display Device 375
Using IDL

ColorTablesooott. 377
TrueColor Displays 385
Controlling the DeviceCursor 389
References 390

367

368 Chapter 20: Image Display Routines

Overview

IDL provides a powerful environment for image processing and display. The routines
described in this chapter provide the interface between IDL and the image display
system. This chapter describes these image display and control routines and provides
examples of their use.

Image Display with iTools

Beginning with IDL 6.0, you can also usethe IDL Intelligent Tools (i Tools) to display
image data. The iTools provide an easy-to-use interface that allows you to manipul ate
your data after it has been displayed. See* Introducing the iTools” in Chapter 1 of the
iTool User’s Guide manual for more on iTools.

Graphics Used in Examples

The examplesin this chapter are all written to take advantage of IDL Direct Graphics.

Overview Using IDL

Chapter 20: Image Display Routines 369
Images

Animage consists of atwo-dimensional array of pixels. The value of each pixel
represents the intensity and/or color of that position in the scene. Images of thisform
are known as sampled or raster images, because they consist of a discrete grid of
samples. Such images come from many different sources and are a common form of
representing scientific and medical data.

Using IDL Images

370 Chapter 20: Image Display Routines
Imaging Routines

The following IDL routines are used for the display and manipulation of images:
TVCRS

This procedure manipul ates the image device cursor. TVCRS allows the cursor to be
enabled and disabled, as well as allowing it to be positioned.

TV
This procedure displays images on the image display.
TVSCL

This procedure scales the intensity values of the image into the range of the display
device, then displays the result on the image display.

TVLCT
This procedure loads a new color table into the display device.

TVRD

This function reads image pixels back from the display device.

In addition, most routines used for plotting and graphics can be used with the display
of images aswell. These routines are described in Chapter 17, “Direct Graphics
Plotting” and Chapter 20, “Image Display Routines’. For example, to overlay an
image and its contour plot, the output of the CONTOUR procedure is combined with
that of TV. The CURSOR routine, described in “Using the CURSOR Procedure”’ on
page 287, reads the position of the interactive pointing device and may also be used
to determine the location of image pixels.

Imaging Routines Using IDL

Chapter 20: Image Display Routines 371

Image Display

The TV and TV SCL procedures display images on the screen. These procedures use
the same arguments and keywords and differ only in that TV SCL scales the image
into the intensity range of the display device, while TV displays the image directly.
They have the form:

TV, |MAGE[, POSITION

TV, IMAGE[, X, Y[, CHANNEL]]
TVSCL, | MAGE[, POSI TION|
TVSCL, IMAGE[, X, Y[, CHANNEL]]

where the arguments and keywords are as follows:
IMAGE

A vector or two-dimensional matrix to be displayed as an image. If not already of
byte type, it is converted prior to use.

X, Y
If present, these arguments specify the lower-left coordinate of the displayed image.
POSITION

Position number of the image. Image positions are discussed in detail below.

CHANNEL

Some image display devices are capable of storing more than a single image or can
combine three single color images to form a TrueColor image. CHANNEL specifies
the memory channel to be written. It is assumed to be zero if not specified. This
parameter isignored on display systems that have only one memory channel.

If no optional parameters are present, IMAGE is output to the display with its lower-
left corner at coordinate (O, 0). The optional parameters can be used to specify the
screen position of the image in a variety of ways.

Image Orientation

Using IDL

The screen coordinate system for image displays puts the origin, (0, 0), at the lower-
left corner of the device. The upper-right corner has the coordinate (xsize-1, ysize-1),
where xsize and ysize are the dimensions of the visible area of the display. The
descriptions of the image display routines that follow assume a display size of

512 x 512, although other sizes may be used.

Image Display

372

Chapter 20: Image Display Routines

The system variable |ORDER controls the order in which the image is written to the
screen. Images are normally output with the first row at the bottom, i.e., in bottom-to-
top order, unless'ORDER is 1, in which case images are written on the screen from
top to bottom. The ORDER keyword also can be specified with TV and TVSCL. It
worksin the same manner as! ORDER except that its effect only lasts for the duration
of the single call—the default reverts to that specified by 'ORDER.

An image can be displayed with any of the eight possible combinations of axis
reversal and transposition by combining the display procedures with the ROTATE
function.

Image Position

Image positions run from the left of the screen to the right and from the top of the
screen to the bottom. If a position number is used instead of x and y, the position of
theimageis cal culated from the dimensions of the image (using integer arithmetic) as
follows:

Xsize» Ysize = Size of display or window

Xgdims Ydim = dimensions of array

Ny = X 26/ Xdim = iIMages across screen

X = XgimPOSitiONpygulonx = Startingx

Y = Ysze — Ydaim (1 + Position/N,) = startingy

For example, when displaying 128 x 128 images on a512 x 512 display, the position
numbers run from O to 15 as follows:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Image Size

Most image devices have afixed number of display pixels. Common sizes are

512 x 512, 1280 x 1024, and 900 x 1152 (for Sun workstations). Such pixels have a
fixed size which cannot be changed. For such devices, the area written on the screen
isthe same size as the dimensions of the image array. One-dimensional vectors are
considered row vectors. The x and y parameters specify the coordinates of the lower-
left corner of the area written on the display.

There are some devices, however, that have the ability to place an image with any
number of pixelsinto an area of arbitrary size. PostScript devices are a notable

Image Display Using IDL

Chapter 20: Image Display Routines 373

example. Such devices are said to have scal able pixels, because thereis no direct
connection between the number of pixelsin the image and the physical spaceit
occupies in the displayed image. When the current image device has scalable pixels,
IDL setsthefirst bit of !D.FLAGS. The following IDL statement can be used to
determine if the current device has scalable pixels:

SP = I D. FLAGS AND 1

SPwill be nonzero if the device has scalable pixels. When displaying an image on a
device with scalable pixels, the default uses the entire display surface for the image.
The XSIZE and Y SIZE keywords can be used to override this default and specify the
width and height that should be used.

The XSIZE and Y SIZE keywords also should be used when positioning images with
the POSITION argument to TV or TVSCL. POSITION normally usesthe size of the
image in pixels to determine the placement of the image, but thisis not possible for
devices with scalable pixels. Instead, the default for such devicesisto assume a
single position that fills the entire available display surface. However, if XSIZE and
Y SIZE are specified, POSITION will use them to determine image placement.

Examples

; Set all display nenory to 100:
TV, REPLI CATE(100B, 512, 512)
Define a 50 columm by 100 row array:
ABC = BYTARR(50, 100)
Di splay array ABC starting at location x = 300, y=400.
Di splay pixels in colums 300 to 349, and
; rows 400 to 499 are zeroed.
TV, ABC, 300, 400
Di splay i mage divided by 2 at position nunber 12:
TV, ABC/ 2, 12
; Qutput image to nenory channel 2, |ower-left
; corner at (256, 256).
TV, A 256, 256, 2
; Assune file one contains a sequence of 64 x 64 byte arrays:
AA = ASSCC(1, BYTARR(64, 64))
Di splay 64 images fromfile, fromleft to right and
; top to bottom filling a 512 x 512 area:
FORI =0, 63 DO TV, AAlI], |

Image Scaling

An image can be contrast enhanced so any subrange of pixel values are scaled to fill
the entire range of displayed brightnesses using a variety of methods.

Using IDL Image Display

374

Chapter 20: Image Display Routines

For example, if the image A contains an object superimposed on avarying
background and the pixel values in the object range from a value of Sto the brightest
value in the image the IDL statement:

TVSCL, A > S

will use the entire range of display brightnesses to display the object. The expression
A > Sresultsin an image in which each pixel in Alessthan Sissetto S Thus, S
becomes the new minimum intensity. The TV SCL procedure scales the new image
into the available number of color-table entries before loading it into the display.
Again, theimage A is not changed.

Another method that is more efficient, although slightly obscure, isto use the
BYTSCL function to scale the array as follows:

TV, BYTSCL(A, MN = S, TOP = !D. TABLE_SI ZE)

This method is more efficient because the value Sis known and avoids scanning the
array for the minimum and maximum values. Also, one less array operation is
required.

If the object in A has values from 2.6 to 9.4, the statements

;' Sl ow net hod.

TVSCL, A > 2.6 < 9.4

; Fast er net hod.

TV, BYTSCL(A, M N=2.6, MAX=9.4, TOP = !D. TABLE SI ZE)

will truncate the image so 2.6 is the new minimum and 9.4 is the new maximum
before scaling and display.

Some examples of using the TV SCL function follow.

; Display square root of inmage:

TVSCL, SQRT(A)

; Displ ay unsharp masked i nmage:

TVSCL, A - SMOOTH(A, 3)

;Display scaled sumat position nunber 12:
TVSCL, A + B, 12

Image Display Using IDL

Chapter 20: Image Display Routines 375

Reading from the Display Device

The TVRD function reads the contents of the display device memory back into an
IDL variable. One use for this capability isto build up acomplex display using many
IDL statements, and then read the resulting image back as a single unit for storagein
afile.

The TVRD function returns the contents of the specified rectangular portion of the
display subsystem’s memory. The coordinate (Xq, o) i the starting coordinate of the
datato be read, and N,, Ny isthe size of the rectangle in columns and rows. This
resultsin abyte array of dimensions Ny x Ny.

A Note on Reading Data from Windows

On some systems, when backing store is provided by the window system
(RETAIN=1), reading data from awindow using TVRD(') may cause unexpected
results. For example, data may be improperly read from the window even when the
image displayed on screenis correct. Having IDL provide the backing store
(RETAIN=2) ensures that the window contents will be read properly.

The TVRD function has the form:
TVRD([Xo, [Yo, [Nx, [Ny[, Channel]]111)

where the arguments are described as follows.
Xo

Specifies the starting column of datato read.
Yo

Specifies the starting row of datato read.
Nx

The number of columns to read.
Ny

The number of rows to read.

Using IDL Reading from the Display Device

376 Chapter 20: Image Display Routines

Channel

The memory channel to be read. It is assumed to be zero if not specified. This
parameter is ignored on display systems that only have one memory channel.

If the system variable 'ORDER is set to zero, then data are read from the bottom up;
otherwise, data are read in the top-down direction.

Example
The following statement inverts the 100 x 100 area of the display starting at
(200, 300):

; Reverse area:
TV, NOT TVRD(200, 300, 100, 100)

Ability to Read from Display

Not all image devices are able to support reading pixels back from device memory. If
the current device has this ability, IDL sets the eighth bit of !|D.FLAGS.

; Determine if the current device allows reading

; fromdisplay nenory:

TEST = ! D. FLAGS AND 128

TEST will be nonzero if the device allows such operations.

Reading from the Display Device Using IDL

Chapter 20: Image Display Routines 377

Color Tables

Using IDL

There are numerous systems for the measuring and specification of color. Most
systems are three-dimensional in nature. For a complete discussion of color systems,
refer to Foley and Van Dam (1982, Chapter 17). Parts of this discussion are taken
from that chapter.

Most devices capable of displaying color use the RGB (red, green, and blue) color
system. Other common color systemsinclude the Munsell, HSV (hue, saturation, and
value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and yellow)
color systems. Algorithms exist to convert colors from one system to another. IDL
accepts color specificationsin the RGB, HLS, or HSV color systems.

The RGB color system, asimplemented in IDL, uses athree-dimensional Cartesian
coordinate system with the value of each color ranging from 0 to 255. Each
displayable color is a point within this cube, shown in Figure 20-1 (after Foley and
Van Dam). The origin, (0, 0, 0), where each color coordinate is 0, is black. The point
at (255, 255, 255) iswhite and represents an additive mixture of the full intensity of
each of the three colors. Points along the main diagonal—where the intensities of
each of the three primary colors are equal—are shades of gray. The color yellow is
represented by the coordinate (255, 255, 0), or a mixture of 100% red, plus 100%
green, and no blue.

Typically, digital display devices represent each component of an RGB color
coordinate as an n-bit integer in the range of 0to 2" —1. Each displayable color is an
RGB coordinate triple of n-bit numbers yielding a pal ette containing 23" total colors.
Therefore, for 8-bit colors, each color coordinate can range from 0 to 255, and the
total palette contains 22* or 16,777,216 colors.

A display with an m-bit pixel can represent 2™ colors simultaneously, given enough
pixels. In the case of 8-hit colors, 24-bit pixels are required to represent all colors.
The more common case is adisplay with 8 bits per pixel which alows the display of
28 = 256 colors selected from the much larger palette.

If there are not enough bitsin a pixel to represent all colors, m< 23" acolor
trandation table is used to associate the value of a pixel with acolor triple. Thistable
isan array of color triples with an element for each possible pixel value. Given 8-bit
pixels, acolor table containing 28 = 256 elementsis required. The color table element
with an index of i specifies the color for pixels with avalue of i.

To summarize, given a display with an n-bit color representation and an m-bit pixe,
the color trandlation table, C, isa 2™ long array of RGB triples:

Ci={r,g, b}, 0<i<2™

Color Tables

378 Chapter 20: Image Display Routines

0< ri, Gi» bi <2n
Objects containing a value, or color index, of i are displayed with a color of C;.

The IDL COLOR_CONVERT procedure can be used to convert color triplesto and
from the RGB color system and the HLS and HSV systems.

Blus (0,0,255) Cyan (0,255,253)

N : ¢ White (255,255,255)
- ¥

N f
Magenta (255,0,235) ’

-7 . Green (0,253,0)

o
Black (0,0,0) ﬁk -
4 YRTI 255,255.0
Red (255,0,0) ellow (253,255,0)

Figure 20-1: RGB Color Cube. (Note: grays are on the main diagonal.)

You can display TrueColor images on pseudo-color displays by using the
COLOR_QUAN function. Thisfunction creates a pseudo-color palette for displaying
the TrueColor image and then maps the TrueColor image to the new palette. See
COLOR_QUAN in the IDL Reference Guide for more information.

Loading Color Tables

IDL maintainsits own internal color table which is read and written by the TVLCT
procedure. When thistable is modified, it isloaded into the currently selected
graphics output device. A call to this procedure has the form:

TVLCT, V4, Vy, V3 [, Sart]
where the arguments and keywords are as follows:

Color Tables Using IDL

Chapter 20: Image Display Routines 379

V1, Vo, and V3

The vectors containing the intensity or value of each color for each index in the RGB,
HLS, or HSV color systems. Standard devices have an 8-bit color representation so
the color values should range from 0 to 255. These vectors can contain up to 2™
elements (usually 256), assuming the display contains m bit pixels.

Start

The starting index in the color trandlation table into which V4, V,, and V3 are loaded.
If not specified, avalue of 0 is used, causing the tables to be loaded starting at the
first element of the trandlation vectors. The Start argument can be used to change
only part of the color table.

In addition, the following keyword parameters can aso be present:

GET

Returns the RGB values from the internal color table into the three variables.

HLS

Indicates that the parameters specify color using the HLS color system. The plain
argument parameters are in the order H-L-S. Hue is expressed in degrees, and the
lightness and saturation range from 0 to 1.

HSV

Indicates that the parameters specify color using the HSV color system. The plain
argument parameters are in the order H-S-V. As above, hueisin degrees, and the
saturation and value range from 0 to 1.

Example

Using IDL

This example creates a graph with the axes drawn in white, then successively adds
red, green, blue, and yellow lines. Asthere are five distinct colors, plus one color for
the background, a six-element color tableis created. Usually, color index O represents
black (0, 0, 0). We arbitrarily choose color index 1 to bewhite (1, 1, 1), 2 asred (1, O,
0), 3asgreen (0, 1, 0), 4 asblue (0, 0, 1), and 5 as yellow (1, 1, 0). The display must
have at least 3 bits per pixel to represent six colors simultaneously, and an 8-bit color
table is assumed.

Color Tables

380

Color Tables

Chapter 20: Image Display Routines

; Specify the red conponent of each color:
RED = [0, 1, 1, 0, 0, 1]

; Specify the green conponent of each col or:
GREEN = [0, 1, O, 1, O, 1]

; Speci fy the blue conponent of each col or:
BLUE = [0, 1, O, O, 1, O]

;Load the first six elenents of the color table:
TVLCT, 255 * RED, 255 * GREEN, 255 * BLUE
;Draw the axes in white, color index 1:
PLOT, COLOR = 1, /NODATA, ...

;Draw in red:

OPLOT, COLOR = 2,

;Draw in green:

OPLOT, COLCR = 3,

:Draw i n bl ue.

OPLOT, COLCR = 4,

;Draw in yel | ow

OPLOT, COLOR = 5,

The INDGEN function is handy when creating larger color tables in which each
color'sintensity can be expressed as afunction of itsindex:

; Straight line, AllI] =1:

A = | NDGEN(256)

; Display inage with a linear red scale, disable green and bl ue:
TVLCT, A, A* 0, A* 0

; Display with linear black and white scal e:

TVLCT, A A A

; Warm body tenperature scale. Red is |inear,

; green starts at 128, and blue starts at 192:

TVLCT, A, 2 * (A - 128) > 64, 4 * (A- 192) >0

Color Table Procedures
The following IDL procedures are used to manipulate color tables:

LOADCT

Load predefined color tables. LOADCT has one parameter: the index of the
predefined color table to be loaded. There are 40 pre-defined color tablesin thefile

Using IDL

Chapter 20: Image Display Routines

Using IDL

381

colorsl.tbl, which is supplied with IDL. To obtain a menu listing the avail able color
tables, call LOADCT with no parameters. Standard tables are listed below.

Number Name Number Name

0 Black & White Linear 21 Hue Sat Value 1

1 Blue/White Linear 22 Hue Sat Value 2

2 Green-Red-Blue-White 23 Purple-Red +
Stripes

3 Red Temperature 24 Beach

4 Blue-Green-Red-Yellow 25 Mac Style

5 Standard Gamma- 1| 26 Eos A

6 Prism 27 EosB

7 Red-Purple 28 Hardcandy

8 Green/White Linear 29 Nature

9 Green/White Exponential 30 Ocean

10 Green-Pink 31 Peppermint

11 Blue-Red 32 Plasma

12 16 Leve 33 Blue-Red 2

13 Rainbow 34 Rainbow 2

14 Steps 35 Blue Waves

15 Stern Special 36 Volcano

16 Haze 37 Waves

17 Blue-Pastel-Red 38 Rainbow18

18 Pastels 39 Rainbow + white

19 Hue Sat Lightness 1 40 Rainbow + black

20 Hue Sat Lightness 2

Table 20-1: Predefined Color Tables

Color Tables

382

Chapter 20: Image Display Routines

XLOADCT

This procedure provides awidget interface to LOADCT. Pre-defined color tables can
be loaded and manipulated using thistool. Tables can be stretched and Gamma
corrected interactively using this procedure.

XPALETTE

This widget procedure allows you to create your own color tables using a set of three
dliders. This procedure can interpolate the space between color indices (to create
smooth color transitions) or edit individual colors.

MODIFYCT
Saves color tables for later use by LOADCT.
HSV

Makes and loads color tables based on the HSV color system. A spiral through the
single-ended HSV cone istraced. The color representation of pixel valuesislinearly
interpolated from beginning and ending values of hue, saturation, and value.

HLS

Makes and loads color tables based on the HL S color system which is based on the
Otswald color system. Aswith the HSV procedure, spirals are interpolated in the
three-dimensional color space.

PSEUDO

Generates and |oads a pseudo-color table based on the LHB (lightness, hue, and
brightness) system.

STRETCH

Linearly expands the entire range of the last color table loaded to cover a given range
of pixel values. STRETCH has two parameters: the pixel value to be displayed with
color index 0 and the pixel value to be displayed with the maximum color index:

STRETCH, LOWN H CH

Color Tables Using IDL

Chapter 20: Image Display Routines 383

Example

; Expand the color tables so that pixels in
; the range of 100 to 150 fill the entire col or range:
STRETCH, 100, 150

To revert to anormal color table, call STRETCH with no parameters.

Note
The window-oriented procedures will not work without awindow system.

Obtaining the Color Tables

All of the IDL color-table procedures maintain the current color table in acommon
block called COLORS, defined as follows:

COWON COLORS, Rorig, Gorig, Borig, Rcurr, Gcurr, B curr

The variables are integer vectors of length equal to the number of color indices. Your
program can access these variables by defining the common block. The conventionis
that routines that modify the current color table should read it from R_orig, G_orig,
and B_orig, then load the color table using TVLCT and leave the resulting color table
in R_curr, G_curr, and B_curr.

Color Tables—Switching Between Devices

Using IDL

Usethe SET_PLOT procedure to direct the graphics output to different devices.
Because devices have differing capabilities and not all are capable of representing the
same number of colors, the treatment of color tables when switching devicesis
somewhat tricky.

After selecting a new graphics output device, SET_PLOT will perform one of the
following color-table actions depending upon which keyword parameters are
specified:

¢ Thedefault isto do nothing. The problem with this treatment is that the

internal color tables incorrectly reflect the state of the device's color tables
until TVLCT iscalled (usualy viaLOADCT).

« If the COPY keyword parameter is set, theinternal color tables are copied into
the device. Thisis straightforward if both devices have the same number of
color indices. If the new device has more colors than the old device, some
color indiceswill beinvalid. If the new device has less colors than the old, not
all the colors are saved. Thisisthe preferred method if you are displaying
graphics and each color index is explicitly loaded.

Color Tables

384 Chapter 20: Image Display Routines
¢ When the INTERPOLATE keyword is set, the new device'stableisloaded by

interpolating the old color table to span the new number of color indices. This
method works best when displaying images with continuous color ranges.

Color Tables Using IDL

Chapter 20: Image Display Routines 385

TrueColor Displays

IDL supports the use of some TrueColor displays with 24 bits per pixel. TrueColor
displays have multiple channels. That is, they store information about each primary
color component (red, green, and blue) of a pixel separately. A TrueColor display
with n bits per memory channel can display 23" simultaneous colors, as opposed to
the 2" simultaneous colors available with a normal indexed (pseudo) color display.
Images can be transferred to and from each individual memory channel, or to all
channels simultaneously.

The X Window visuals TrueColor and DirectColor are among the TrueColor devices
supported by IDL.

Configuration

The TrueColor display is configured as a single display with three channels:

oonrel | outp
0 All colors
1 Red
2 Green
3 Blue

Table 20-2: TrueColor Display Channels

Lookup Tables

Using IDL

Warning
Not all TrueColor display systems have writable color |lookup tables.

Each output channel, red, green, or blue, is routed through its own 8-bit deep, 256
element lookup table. The lookup tables can be used to compensate for color
inaccuracies generated by the display hardware or present in the acquisition process.
Initially, each lookup table is loaded with alinear ramp, mapping its input directly to
its output.

TrueColor Displays

386

Chapter 20: Image Display Routines

Asthe TrueColor lookup tables are of the same size and number of elements as those
on a pseudo-color display, operation of the TVLCT procedure, which loads the
lookup tables, is unchanged.

Furthermore, if the same image isloaded into each channel, operation of the display
mimics that of a standard 8-bit deep pseudo-color display. Most, but not all, IDL
image processing procedures written for a standard color display will run on a
TrueColor display without modification. The routines that transfer imagesto the
display, TV and TV SCL, write the same 8-bit data to each channel (channel 0) if no
channel parameter is present. The function TVRD, which reads datafrom the display,
returns the maximum value contained in the three-color channels for each pixel if no
channel parameter is present.

Color Indices

The color index specifier can range from 0 to 22*—1. The system variable field
ID.N_COLORS, which contains the number of colors, is set to 224 on a TrueColor
display.The system variable field, |D.TABLE_SIZE, contains the number of RGB
color table elements.

The low 8 bits, bits 0 to 7, of the color index are written to the red channel; bits 8 to
15 are written to the green; and bits 16 to 23 are written to the blue. For example, a
given RGB, theindex isR + 256(G + 256B). To create a plot with a given color
(assuming linear lookup tables), use the following statement:

PLOT, X, Y, COLOR = R + 256L * (G + 256L * B)

TrueColor Images

Images can be transferred to and from the display in either 8-bit or 24-bit mode. The
CHANNEL parameter specifies the source or destination channel number for 8-bit
images, and the TRUE keyword indicates for 24-bit images the method of channel
interleaving. If neither keyword parameter is present, the 8-bit image is written to all
three-color channels, yielding the same effect asiif the channel parameter is specified
asO.

For example, to transfer three 8-bit images contained inthe arrays R, G, and B to their
respective channels, use the following statements:

;Load red in channel 1:
TV, R 0, 0, 1

;Load green in channel 2:
TV, G 0, 0, 2

;Load blue in channel 3:
TV, B, 0, 0, 3

TrueColor Displays Using IDL

Chapter 20: Image Display Routines 387

The position parameters (0, 0 above) can be altered to write to any location in the
window.

For 24-bit images, the RGB data can be interleaved by pixel, by line, or by image.
Use the TRUE parameter to specify the method of interleaving. A c column by | line
TrueColor image is dimensioned as follows:

TRUE Value Dimensions Interleaving
1 (3,¢c1) Pixel
2 (c, 3, 1) Line
3 (c,1,3) Image

Table 20-3: Values for the TRUE Keyword

For example, to write a TrueCoalor, line interleaved image contained in the variablet,
with its lower-left corner at coordinate (100, 200), use the following statement:

TV, T, 100, 200, TRUE = 2

Reading Images

Using IDL

To read from the display to an IDL variable or expression, use the TVRD function
with either the CHANNEL parameter or TRUE keyword parameter. The calling
sequence for TVRD is:

Result = TVRD([Xq, Yo, Ny, Ny, Channel])

where (Xo, Yg) specifies the window coordinate of the lower-left corner of the
rectangle to be read, and (N,, Ny) contains the number of columns and rows to read.
Note that all parametersto TVRD are optional. If no arguments are supplied, the
entire area of the display deviceis returned.

When used without the TRUE parameter, TVRD returns an (N,, Ny) byte image read
from the indicated channel. If the channel number is not specified or is zero, the
maximum RGB value of each pixel isreturned, approximating the luminance.

If present and nonzero, the TRUE keyword indicates that a TrueColor image isto be
read and specifies the index of the dimension over which color isinterleaved. The
resultisa(3, Ny, Ny) pixel interleaved array if TRUE is 1; or an (Ny, 3, Ny) line
interleaved array if TRUE is 2; or an (Ny, Ny, 3) image interleaved array if TRUE is3.

TrueColor Displays

388 Chapter 20: Image Display Routines

Some examples of TVRD follow.

; Read a 512 x 512 inmmge, starting at (0, 0),

: fromthe red channel into R

R = TVRD(0, 0, 512, 512, 1)

; Read a TrueColor 512 x 512, line interleaved image,
starting at (0, 0) into T. The variable Tis

; now di nensi oned (512, 3, 512):

T = TVRD(0, 0, 512, 512, TRUE = 2)

; Read the nmaxi num RGB val ue of each pixel into L:

L = TVRD(0, 0, 512, 512)

TrueColor Displays Using IDL

Chapter 20: Image Display Routines 389

Controlling the Device Cursor

The TV CRS function manipulates the cursor of the image display. Normally, the
cursor is disabled and is not visible. TVCRS with one argument allows the cursor to
be enabled or disabled. While TV CRS with two parameters enables the cursor and
placesit on pixe location (X, y). TVCRS has the form

TVCRS[, ON_OFF]
TVCRS[, X, VY]

where the arguments and keywords are as follows:

ON_OFF

Specifies whether the cursor should be on or off. If present and nonzero, the cursor is
enabled. If ON_OFF is zero or no parameters are specified, the cursor is turned off.

X
The column to which the cursor will be set.
Y

The row to which the cursor will be set.

TVCRS also takes various keywords that affect how it positions the cursor. Notably,
the keywords DATA, DEVICE, and NORMAL specify the coordinate system. See
the entry for TVCRS in the IDL Reference Guide for details.

Using IDL Controlling the Device Cursor

390 Chapter 20: Image Display Routines

References

Foley, J.D., and A. Van Dam (1982), Fundamentals of Interactive Computer
Graphics, Addison-Wesley Publishing Company.

References Using IDL

Chapter 21.

Signal Processing

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 392
Digital Signals 393
Signal Analysis Transforms. 396
The Fourier Transform 397
Interpreting FFT Results 398
Displaying FFT Results 399
UsingWindows 405
Aliasing ..o 409
FFT Algorithm Details 410
TheHilbert Transform 411

Using IDL

TheWavelet Transform 413
Convolution 414
Correlation and Covariance 415
Digital Filtering 416

Finite Impulse Response (FIR) Filters ... 417

FIR Filter Implementation 421
Infinite Impulse Response Filters 423
Routines for Signal Processing 427
References 429

391

392

Chapter 21: Signal Processing

Overview

A signal, by definition, contains information. Any signal obtained from a physical
process also contains noise. It is often difficult or impossible to make sense of the
information contained in adigital signal by looking at it initsraw form—that is, asa
sequence of real values at discrete pointsin time. Signal analysis transforms offer
natural, meaningful, alternate representations of the information contained in a
signal.

This chapter describes IDL’s digital signal processing tools. Most of the procedures
and functions mentioned here work in two or more dimensions. For simplicity, only
one dimensional signals are used in the examples.

Running the Example Code

Overview

The examplesin this chapter are all written to take advantage of IDL Direct Graphics.
Examples and techniques using IDL Object Graphics are contained in the later
chapters of this manual.

The example code used in this chapter is part of the IDL distribution. All of thefiles
mentioned are located in the exanpl es/ doc subdirectory of the IDL distribution.
By default, this directory is part of IDL’s path; if you have not changed your path,
you will be able to run the examples as described here. See “!PATH” in Appendix D
of the IDL Reference Guide manual for information on IDL’s path.

Using IDL

Chapter 21: Signal Processing 393

Digital Signals

A one-dimensional digital signal is a sequence of data, represented as a vector in an
array-oriented language like IDL. The term digital actually describes two different
properties.

1. Thesignal isdefined only at discrete pointsin time as aresult of sampling, or
because the instrument which measured the signal is inherently discrete-time
in nature. Usually, the timeinterval between measurements is constant.

2. Thesignal can take on only discrete values.

In this discussion, we assume that the signal is sampled at atimeinterval. The
concepts and techniques presented here apply equally well to any type of signa—the
independent variable may represent time, space, or any abstract quantity.

The following IDL commands create a simulated digital signal u(k), sampled at an
interval del t . Thissimulated signal will be used in exampl es throughout this chapter.
The simulated signal contains 1024 time samples, with a sampling interval of 0.02
seconds. The signal contains a DC component and components at 2.8, 6.5, and 11.0
cycles per second.

Enter the following commands at the IDL prompt to create the simulated signal:

N = 1024

delt = 0.02

u=-0.3%
+ 1.0 * SIN(2 * IPl * 2.8 * delt * FINDGEN(N)) $
+1.0 * SIN(2 * 1Pl * 6.25 * delt * FINDGEN(N)) $
+ 1.0 * SIN(2 * 'Pl * 11.0 * delt * FINDGEN(N))

Alternately, you can run the following batch file to create the signal:
@i gprcO1
See “Running the Example Code” on page 392 if IDL does not find the batch file.

Using IDL Digital Signals

394 Chapter 21: Signal Processing

Because the signdl is digitd, the conventional way to display it iswith a histogram (or
step) plot. To create ahistogram plot, set the PSYM keyword to the PLOT routine equal
to 10. A section of the example signal u(k) is plotted in the figure below.

Portion of Sampled Time Signal u(k)
— T T T T [T T T T T T T T T T

-]

b RN R R RN R RN AR AR R RN RR AR RN

amplitude
(o)

1.2 1.4 1.6 1.8
time in seconds

3
]

Figure 21-1: Histogram plot of sample signal u(k).

Note
When the number of sampled data pointsislarge, the stepsin the histogram plot are
too small to see. In such cases you should not plot in histogram mode.

Enter the following commands at the IDL prompt to create the plot:

Conpute tine data sequence u.
@i gprcO1
; Vector of discrete times:
t = delt * FINDGEN(N)

Begi nning of plot time range:

tl1 =1.0
End of plot tine range:
t2 =2.0

PLOT, t+delt/2, u, PSYM=10, XRANGE=[t1,t2], $
XTITLE="tinme in seconds', YTITLE="anplitude', $

Digital Signals Using IDL

Chapter 21: Signal Processing 395

TI TLE=' Portion of Sanpled Tinme Signal u(k)'
Alternately, you can run the following batch file to create the plot:
@i gprc02
See “Running the Example Code” on page 392 if IDL does not find the batch file.

Using IDL Digital Signals

396 Chapter 21: Signal Processing

Signal Analysis Transforms

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components. The result of such decomposition is a frequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a signal
and prepare it for analysis: the Fourier transform, the Hilbert transform, and the
wavelet transform.

Signal Analysis Transforms Using IDL

Chapter 21: Signal Processing 397

The Fourier Transform

The Discrete Fourier Transform (DFT) isthe most widely used method for
determining the frequency spectra of digital signals. Thisis due to the development
of an efficient algorithm for computing DFTs known as the Fast Fourier Transform
(FFT).

The discrete Fourier transform, v(m), of an N-element, one-dimensional function,
u(k), is defined as:

N-1
v(m) = % " u(k)exp[j 2nmk/N]

k=0

The inverse transform is defined as;

N-1
uk) = z v(m)exp[j2rnmk/N]

m=0

IDL implements the Fast Fourier Transform in the FFT function. You can find details
on using IDL’s FFT function in the following sectionsand in FFT in the IDL
Reference Guide.

Using IDL The Fourier Transform

398 Chapter 21: Signal Processing

Interpreting FFT Results

Just as the sampled time data represents the value of asignal at discrete pointsin
time, the result of a (forward) Fast Fourier Transform represents the spectrum of the
signal at discrete frequencies. These discrete frequencies are a function of the
frequency index (m), the number of samples collected (N), and the sampling interval

(5):

f(m) = %

The frequencies for which the FFT of a sampled signal are defined are sometimes
called frequency bins, which refers to the histogram-like nature of a discrete
spectrum. The width of each frequency bin is 1/(N*3).

Due to the complex exponentia in the definition of the DFT, the spectrum has a
cyclic dependence on the frequency index m. That is:

v(m+pN) = v(m)

for p = any integer.

The frequency spectrum computed by IDL’s FFT function for aone-dimensional time
sequence is stored in a vector with indices running from 0 to N-1, whichisaso a
valid range for the frequency index m. However, the frequencies associated with
frequency indices greater than N/2 are above the Nyquist frequency and are not
physically meaningful for ssmpled signals. Many textbooks choose to define the
range of the frequency index mto be from — (N/2 — 1) to N/2 so that it is (nearly)
centered around zero. From the cyclic relation above with p = —1:

V(= (N/2-1)) =v(N/2+1—N) =v(N/2 + 1)

V(= (N/2=2)) = i(N/2 + 2= N) = V(N/2 + 2)

V(-2)=V(N—-2—-N)=v(N-2)
V(D) =v(N-1-N)=v(N-1)

Thisindex shift is easily accomplished in IDL with the SHIFT function (see the
following example).

Interpreting FFT Results Using IDL

Chapter 21: Signal Processing 399

Displaying FFT Results

Depending on the application, there are many waysto display spectral data, the result
of the (forward) FFT function.

Real and Imaginary Components

The most direct way isto plot the real and imaginary parts of the spectrum as a
function of frequency index or as a function of the corresponding frequencies. The
following figure displays the real and imaginary parts of the spectrum v(m) of the
sampled signal u(k) for frequencies from —«(N/2 — 1)/(N*8) to (N/2)/(N*5) cycles per
second.

Spectrum of uf

5 04T B

3 0.2 =

z r]

o []

5 0.0f JF :

g -02f .

o —0.4L ‘ ‘ . 1
—20 —10 20

Frequency in Cyc\es / second

E

c

T 0.BF ‘ ‘ ' ' E

o 04F 3

w

w5 02F E

t 0.0

o E

> —0.2F =

= E 7

= —0.4F =

‘& —0.6E ‘ ‘ . . .]

e —20 10 0 10 20

Frequency in cycles / second

Figure 21-2: Real and Imaginary parts of the sample signal.

Using IDL Displaying FFT Results

400 Chapter 21: Signal Processing

Enter the following commands at the IDL prompt to create the plot:

; Conmpute tine sequence data:
@i gprcO1
Conput e spectrum v:
V = FFT(U)
M= (INDCGEN(N) - (N 2-1))
Frequenci es corresponding to min cycl es/second:
F =M/ (Ndelt)
Set up for two plots in w ndow
'P. MULTI =[O0, 1, 2]
PLOT, F, FLOAT(SH FT(V,N2-1)), $
YTI TLE='real part of spectrumi, $
XTI TLE=' Frequency in cycles / second', $
XRANGE=[- 1, 1]/ (2*del t), XSTYLE=1, $
TI TLE=' Spectrum of u(k)'
PLOT, F, I MAG NARY(SH FT(V,N2-1)), $
YTI TLE="i magi nary part of spectrumi, $
XTI TLE=' Frequency in cycles / second' , $
XRANGE=[- 1, 1]/ (2*del t), XSTYLE=1
'P. MULTI =0

Alternately, you can run the following batch file to create the plot:
@i gprc03
See “Running the Example Code” on page 392 if IDL does not find the batch file.

IDL’s FFT function always returns a single- or double-precision complex array with
the same dimensions as the input argument. In the case of aforward FFT performed
on aone-dimensional vector of N real values, the result is an N-element vector of
complex quantities, which takes 2N real values to represent. It would seem that there
istwice as much information in the spectral data asthereisin the time sequence data.
Thisis not the case. For areal valued time sequence, half of the information in the
frequency sequence is redundant. Specifically:

1 redundant val ue:
| MAG NARY(Vv(0)) = 0.0
1 redundant val ue:
I MAG NARY(V(N2)) = 0.0

and

; for mrFl to N 2-1, N2 redundant val ues:
V(NmM = CONJ(v(m))

so that exactly N of the single- or double-precision values used to represent the
frequency spectrum are redundant. This redundancy is evident in the previous figure.
Notice that the real part of the spectrum is an even function (symmetric about zero),

Displaying FFT Results Using IDL

Chapter 21: Signal Processing 401

and the imaginary part of the spectrum is an odd function (anti-symmetric about
zero). Thisis adways the case for the spectra of real-valued time sequences.

Because of the redundancy in such spectra, it is common to display only half of the
spectrum of areal time sequence. That is, only the spectral values with frequency
indicesfrom O to N/2, which correspond to frequenciesfrom 0 to 1/(2* 8), the Nyquist
frequency. This vector of positive frequenciesis generated in IDL with the following
command:

. f =[0.0, 1.0/(Ndelt), ... , 1.0/(2.0*delt)]
F = FI NDGEN(N 2+1)/ (N*del t)

Magnitude and Phase

It isaso common to display the magnitude and phase of the spectrum, which have
physical significance, as opposed to the real and imaginary parts of the spectrum,
which do not have physical significance. Since there is a one-to-one correspondence
between a complex number and its magnitude and phase, no information islost in the
transformation from a complex spectrum to its magnitude and phase. In IDL, the
magnitudeis easily determined with the absolute value (ABS) function, and the phase
with the arc-tangent (ATAN) function. By one widely used convention, the
magnitude of the spectrum is plotted in decibels (dB) and the phase is plotted in

Using IDL Displaying FFT Results

402

Chapter 21: Signal Processing

Spectrum of u(k)

Magnitude in dB

—80

10
Frequency in cycles / secand

180

20

—S0

(o]
LA i I B

Phase in degrees

-180

10
Freguency Tn cycles / second

Figure 21-3: Magnitude and phase of the sample signal.

Enter the following commands at the IDL prompt to create the plot:

; Conpute time sequence data:

@i gprcO1
; Conpute spectrum v:
V = FFT(U)
F=1[0.0 1.0/(Ndelt), ... , 1.0/(2.0*delt)]:

F = FINDGEN(N 2+1) / (N¢delt)
; Magnitude of first half of v:
mag = ABS(V(0: N 2))
; Phase of first half of v:
phi = ATAN(V(0: N 2), [/ PHASE)

Set up for two plots in w ndow
'P. MULTI = [0, 1, 2]

degrees, against frequency on alogarithmic scale. The magnitude and phase of our
sample signal are plotted in the figure below.

; Create log plots of nmagnitude in dB and phase in degrees:

PLOT, F, 20*ALOGLO(mmg), YTITLE=" Magnitude in dB',
XTI TLE=' Frequency in cycles / second', /XLOG $

XRANGE=[1. 0, 1.0/ (2. 0*del t)], XSTYLE=1l, $
TI TLE=' Spectrum of u(k)'

Displaying FFT Results

$

Using IDL

Chapter 21: Signal Processing 403

Using IDL

PLOT, F, phi/!DTOR, YTITLE=' Phase in degrees', $
YRANGES[- 180, 180], YSTYLE=1, YTICKS=4, YM NOR=3, $
XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1.0, 1.0/ (2. 0*del t)], XSTYLE=1

'P. MULTI = 0

Alternately, you can run the following batch file to create the plot:
@i gprc04
See " Running the Example Code” on page 392 if IDL does not find the batch file.

Using alogarithmic scale for the frequency axis has the advantage of spreading out
the lower frequencies, while higher frequencies are crowded together. Note that the
spectrum at zero frequency (DC) islost completely on a semi-logarithmic plot.

The previous figure shows the strong frequency components at 2.8, 6.25, and 11.0
cycles/second as peaksin the magnitude plot, and as discontinuities in the phase plot.
The magnitude peak at 6.25 cycles/second is a narrow spike, as would be expected
from the pure sine wave component at that frequency in the time data sequence. The
peaks at 2.8 and 11.0 cycles/second are more spread out, due to an effect known as
smearing or leakage. This effect is adirect result of the definition of the DFT and is
not due to any inaccuracy in the FFT. Smearing is reduced by increasing the length of
the time sequence, or by choosing a sample size which includes an integral number of
cycles of the frequency component of interest. There are an integral number of cycles
of the 6.25 cycles/second component in the time sequence used for this example,
which iswhy the peak at that frequency is sharper.

The apparent discontinuity in the phase plot at around 7.45 cycles/second isan
anomaly known as phase wrapping. It is aresult of resolving the phase from the real
and imaginary parts of the spectrum with the arctangent function (ATAN), which
returns principa values between —180 and +180 degrees.

Displaying FFT Results

404 Chapter 21: Signal Processing

Power Spectrum
Finally, for many applications, the phase information is not useful. For these, it is

often customary to plot the power spectrum, which is the square of the magnitude of
the complex spectrum. The resulting plot is shown in the figure below.

Power Spectrum of ufk}

1 10
Freguency in cycles / second

Figure 21-4: Power spectrum of the sample signal.

Enter the following commands at the IDL prompt to create the plot:

Conpute tine sequence data.

@i gprcO1
Conput e spectrum v:
V = FFT(U)
F=1[0.0 1.0/(Ndelt), ... , 1.0/(2.0*delt)]:

F = FINDGEN(N 2+1) / (N+delt)
Create log-10g plot of power spectrum

PLOT, F, ABS(V(0:N 2))72, YTITLE=' Power Spectrumof u(k)', $
/ YLOG, XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1.0, 1.0/ (2.0*del t)], XSTYLE=1

Alternately, you can run the following batch file to create the plot:
@i gpr c05

See “Running the Example Code” on page 392 if IDL does not find the batch file.

Displaying FFT Results Using IDL

Chapter 21: Signal Processing 405

Using Windows

The smearing or leakage effect mentioned previoudly is a direct consequence of the
definition of the Discrete Fourier Transform and of the fact that a finite time sample
of asignal often does not include an integral number of some of the frequency
componentsin the signal. The effect of this truncation can be reduced by increasing
the length of the time sequence or by employing a windowing algorithm. IDL’s
HANNING function computes two windows which are widely used in signa
processing: the Hanning window and the Hamming window.

Hanning Window

The Hanning window is defined as:

w(k) = %(1—005(5?9)

Theresulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hanning window and then applies the FFT function:

v_n = FFT(HANNI NG(N) * U)

Using IDL Using Windows

406 Chapter 21: Signal Processing

The power spectrum of the Hanning windowed signal shows the mitigation of the
truncation effect (see the figure below).

Power Spectrum of u(k) with Hanning Window (solic
and without Window (dashed)

10°

2|

o
|

Power Spectrum
o
|
N
5
\
S
-
.
|

1 10
Frequency in cycles / second

Figure 21-5: Power spectrum of the sample signal after applying a Hanning
window.

Enter the following commands at the IDL prompt to create the plot:

Conpute tine sequence data:

@i gprcO1

; F=10.0, 1.0/ (Ndelt), ... , 1.0/(2.0*delt)]:

F = FINDGEN(N 2+1) / (N+delt)

v_n = FFT(HANNI NG N) * U)

;Create a log-log plot of power spectrum

PLOT, F, ABS(v_n(0:N2))72, YTITLE=' Power Spectrum, $
/ YLOG YRANGE=[1.0e-8,1.0], YSTYLE=1, YMARG N=[4,4], $
XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1.0, 1.0/ (2.0*del t)], XSTYLE=1, $
TI TLE=" Power Spectrum of u(k) w th Hanning Wndow ' $
+' (solid)!Cand w thout Wndow (dashed)"’
Overpl ot wi thout w ndow.

OPLOT, F, ABS((FFT(U))(0:N2))72, LINESTYLE=2

Alternately, you can run the following batch file to create the plot:
@i gpr c06
See " Running the Example Code” on page 392 if IDL does not find the batch file.

Using Windows Using IDL

Chapter 21: Signal Processing 407

Hamming Window

The Hamming window is defined as:

w(k) = O.54—O.46cos(l\2|7ik])

Theresulting vector is multiplied element-by-element with the sampled signal vector
before applying the FFT. For example, the following IDL command computes the
Hamming window and then applies the FFT function:

v_m = FFT(HANNI NG(N, ALPHA=0. 56) * U)

The power spectrum of the Hamming windowed signal shows the mitigation of the
truncation effect (see the figure below).

Power Spectrum of u{k) with Hamming Window
(solid) and without Window {dashed)

Fower Spectrum

1 10
Frequency in cycles / second

Figure 21-6: Power spectrum of the sample signal after applying a Hamming
window.

Enter the following commands at the IDL prompt to create the plot:

Conpute tine sequence data.
@i gprcO1
; F=1[0.0, 1.0/(Ndelt), ... , 1.0/(2.0*delt)]:
F = FINDGEN(N 2+1) / (N+delt)
v_m = FFT(HANNI NG(N, ALPHA=0. 54) *U)

Create log-10og plot of power spectrum
PLOT, F, ABS(v_n{0:N2))"2, YTITLE=" Power Spectrum, $

/ YLOG YRANGE=[1.0e-8,1.0], YSTYLE=1, YMARG N=[4,4], $

XTI TLE=' Frequency in cycles / second' , $

Using IDL Using Windows

408 Chapter 21: Signal Processing

/ XLOG XRANGE=[1.0,1.0/(2.0*delt)], XSTYLE=1, $
TI TLE=' Power Spectrum of u(k) wi th Hamm ng W ndow
+' 1C(solid) and without Wndow (dashed)’
Overpl ot wi thout w ndow.
OPLOT, F, ABS((FFT(U))(0:N2))~2, LINESTYLE=2

Alternately, you can run the following batch file to create the plot:
@i gpr c07
See " Running the Example Code” on page 392 if IDL does not find the batch file.

Using Windows Using IDL

Chapter 21: Signal Processing 409

Aliasing

Using IDL

Aliasing isawell known phenomenon in sampled data analysis. It occurs when the
signal being sampled has components at frequencies higher than the Nyquist
frequency, which is equal to half the sasmpling frequency. Aliasing is a consequence
of the fact that after sampling, every periodic signal at a frequency greater than the
Nyquist frequency looks exactly like some other periodic signal at afrequency less
than the Nyquist frequency.

For example, suppose we add a 30 cycle per second periodic component to our
sampled data sequence u(t). The power spectrum of the augmented signal isshownin
the figure below.

Power Spectrum with (solid} and without
(dashed) Aligsed 30 ¢/s Component

Power Spectrum

1 10
Frequency in cycles / second

Figure 21-7: Power spectrum of the sample signal after adding a 30 cycles per

second component.

Because the frequency of the new component is above the Nyquist frequency of 25
cycles per second (25 = 1/(2* delt)), the power spectrum shows the contribution of the
new component as an alias at 20 cycles per second.

To prevent aliasing, frequency components of a signal above the Nyquist frequency
must be removed before sampling.

You can run the following batch file to create the plot:

@i gprc08
See “Running the Example Code” on page 392 if IDL does not find the batch file.

Aliasing

410 Chapter 21: Signal Processing

FFT Algorithm Details

IDL’s implementation of the fast Fourier transform is based on the Cooley-Tukey
algorithm. The algorithm takes advantage of the fact that the discrete Fourier
transform (DFT) of adiscrete time series with an even number of pointsis equal to
the sum of two DFTSs, each half the length of the original. For data lengths that are a
power of 2, this algorithm is used recursively, each iteration subdividing the datainto
smaller setsto be transformed. In the IDL FFT, this method is also extended to
powers of 3 and 5. If the number of pointsin the original time series does not contain
powersof 2, 3, or 5, the original data are still subdivided into data sets with lengths
equal to the prime factors of N. The resulting subdivisions with lengths equal to
prime numbers other than 2, 3, or 5 must be transformed using a slow DFT. The slow
DFT is mathematically equivalent to the FFT, but requires N operations instead of
NIog2(N).

This implementation means that the FFT function is fastest when the number of
pointsisrichin powersof 2, 3, or 5. The slowest case is when the number of samples
isalarge prime number. In this case, a significant improvement in efficiency can be
gained by padding the data set with zeros to increase the number of data pointsto a
power of 2, 3, or 5.

For real input data of even lengths, the FFT algorithm also takes advantage of the fact
that the real array can be packed into a complex array of half the length, and
unpacked at the end, thus cutting the running time in half.

FFT Algorithm Details Using IDL

Chapter 21: Signal Processing 411

The Hilbert Transform

Using IDL

The Hilbert transform is a time-domain to time-domain transformation which shifts
the phase of asignal by 90 degrees. Positive frequency components are shifted by
+90 degrees, and negative frequency components are shifted by — 90 degrees.
Applying aHilbert transform to asignal twice in succession shifts the phases of all of
the components by 180 degrees, and so produces the negative of the original signal.
IDL’s HILBERT function accepts both real and complex valued signals as inputs; the
imaginary part of the result is zero for real inputs.

In optics and signal analysis, the Hilbert transform of the time signal r(t) is known as
the quadrature function of r(t), which is used to form a complex function known as
the analytic signal. The analytic signal is defined as:

r(t) = r(t)—jH(r(t))

where j isthe square root of —1 and H is the Hilbert function.

The projection of the analytic signal onto the plane defined by the real axis and the
time axisisthe original signal. The projection onto the plane defined by the
imaginary axis and the time axis is the Hilbert transform of the original signal.

The Hilbert Transform

412 Chapter 21: Signal Processing

The following example plots the complex analytic signal of a periodic time signal
with aslowly varying amplitude.

Analytic Signal for r(t) Using Hilbert Transform

O

imaginary

|
\

W
A

(60\

D

A .
< = P

ATV e =

Figure 21-8: Analytic signal for r(t).

Enter the following commands at the IDL prompt to create the plot:

; Nunber of tine sanples in data set:

N = 1024

; Sanpling interval in seconds:

delt = 0.02

; Vector of discrete tines:

T = delt * FI NDGEN(N)

f1 5.0/ ((n-1)*delt)

f2 0.5/ ((n-1)*delt)

R = SIN(2*!PI *f1*T) * SIN(2*! Pl *f2*T)

PLOT_3DBOX, T, R -FLOAT(H LBERT(R)), $
AX=40, AZ=15, XTI CKS=5, XCHARSIZE=2, $

XTITLE = "tinme in seconds', YTICKS=2, YCHARSIZE=2, $
YTITLE = "real', YMARG N=[4, 8], ZTICKS=2, ZCHARSIZE=2, $
ZTI TLE = "i magi nary'

XYQUTS, 0.5, 0.95, /NORMVAL, ALIGNMENT=0.5, SIZE=1.5, $
"Ana;lytic Signal for r(t) Using Hilbert Transform

Alternately, you can run the following batch file to create the plot:

@i gpr c09
See “Running the Example Code” on page 392 if IDL does not find the batch file.

The Hilbert Transform Using IDL

Chapter 21: Signal Processing 413

The Wavelet Transform

Using IDL

Like the discrete Fourier transform, the discrete wavel et transform (DWT) isalinear
operation that defines aforward and inverse relationship between the time-domain
and the frequency-domain, also called the wavelet domain. Thisrelationship is
expressed through the use of basis functions. In the case of the DFT, trigonometric
sines and cosines of varying angles are used. In the case of the DWT, the basis
functions are more complicated and usually called mother functions or wavelets.
Also like the DFT, the DWT is orthogonal, making many operations computationally
efficient. For example, the inverse wavelet transform, when viewed as a matrix
operator, is simply the transpose of the forward transform.

Most of the usefulness of wavelets relies on the fact that wavel et transforms can
usefully be severely truncated—that is, they can be effectively turned into sparse
expressions. This property is aresult of the simultaneous compact representation of
the wavelet basis functions in the time and frequency domains. See WTN in the IDL
Reference Guide for an example using the wavelet transform.

The Wavelet Transform

414 Chapter 21: Signal Processing

Convolution

Discrete convolution in digital signal processing is used (among other things) to
smooth sampled signals using a weighted moving average. It also has many
applications outside of signal processing.

IDL hastwo functions for doing discrete convolution: BLK_CON and CONVOL.
BLK_CON takes advantage of the fact that the convolution of two signalsisthe
Inverse Fourier transform of the product of the Fourier transforms of the two signals.
BLK_CON isfaster than CONVOL, but not as flexible. Among the many
applications for discrete convolution is the implementation of digital filters. See the
example in the “Finite Impulse Response (FIR) Filters’ on page 417.

Convolution Using IDL

Chapter 21: Signal Processing 415

Correlation and Covariance

Correlation and covariance (which is correlation with any non-zero mean values of
the signals removed beforehand) are closely related to convolution. They are useful
in analyzing signals with random components. Autocorrelation and autocovariance of
signals are computed with the A_ CORREL ATE function, and crosscorrelation and
crosscovariance are computed with the C_CORRELATE function. See“ Time-Series
Analysis’ on page 481 for details.

Using IDL Correlation and Covariance

416 Chapter 21: Signal Processing

Digital Filtering

Digital filters can be implemented on a computer to remove unwanted frequency
components (noise) from a sampled signal. Two broad classes of filters are Finite
Impulse Response (FIR) or Moving Average (MA) filters, and Infinite Impulse
Response (11R) or AutoRegressive Moving Average (ARMA) filters. Both of these
classes of filters are described bel ow.

Digital Filtering Using IDL

Chapter 21: Signal Processing 417

Finite Impulse Response (FIR) Filters

Using IDL

Digital filtersthat have an impul se response which reaches zero in a finite number of
steps are (appropriately enough) called Finite Impulse Response (FIR) filters. An FIR
filter can be implemented non-recursively by convolving itsimpul se response (which
is often used to define an FIR filter) with the time data sequence it isfiltering. FIR
filters are somewhat simpler than Infinite Impulse Response (I1R) filters, which
contain one or more feedback terms and must be implemented with difference
equations or some other recursive technique.

IDL's DIGITAL_FILTER function computes the impul se response of an FIR filter
based on Kaiser's window, which in turn is based on the modified Bessel function.
The Kaiser filter is“nearly optimum in the sense of having the largest energy in the
mainlobe for a given peak sidelobe level” [Jackson, Leland B., Digital Filtersand
Sgnal Processing]. The DIGITAL_FILTER function constructs lowpass, highpass,
bandpass, or bandstop filters.

The figure below plots a bandstop filter which suppresses frequencies between 7
cycles per second and 15 cycles per second for data sampled every 0.02 seconds.

Frequency Response for Bandstop
FIR Filter (Kaiser)

0T]

S 0
£ L]
48} " r 7
E =20 B 1
= C]
5, i]
(=] L —
2 40 i
—60 L]

=

10
Frequency in cycles / second

Figure 21-9: Bandstop FIR filter.

Finite Impulse Response (FIR) Filters

418 Chapter 21: Signal Processing

Enter the following commands at the IDL prompt to create the plot:
; Sanpling period in seconds:

delt = 0.02
; Frequenci es above f_low will be passed:
f low = 15.

Frequenci es below f_high will be passed:
f_high = 7.

; Ripple anplitude will be |less than -50 dB:
a_ripple = 50.
;. The order of the filter:
nterns = 40
Conpute the inmpulse response = the filter coefficients:
bs_ir_k = DIA TAL_FI LTER(f _I ows2*del t, f_high*2*delt, $
a_ripple, nternmns)
; The frequency response of the filter is the FFT of its
; i mpul se response:
nfilt = N_ELEMENTS(bs_ir_k)
where nfilt = nunber of points in inpulse response.
; Scal e frequency response by number of points:
bs_fr_k = FFT(bs_ir_k) * nfilt
; Create a log plot of magnitude in decibels:
f_filt = FINDGEN(nfilt/2+1) / (nfilt*delt)
; Magni tude of bandstop filter transfer function:
mag = ABS(bs_fr_k(0:nfilt/2))
pLor, f_filt, 20*ALOGLO(rmag), YTITLE=' Magnitude in dB', $
XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1.0, 1.0/ (2.0*del t)], XSTYLE=1, $
TI TLE=' Frequency Response for Bandstop! CFIR Filter (Kaiser)'

Alternately, you can run the following batch file to create the plot:
@i gprclo
See “Running the Example Code” on page 392 if IDL does not find the batch file.

Other FIR filters can be designed based on the Hanning and Hamming windows (see
“Using Windows’ on page 405), or any other user-defined window function. The
design procedure issimple:

1. Compute the impulse response of an ideal filter using the inverse FFT

2. Apply awindow to the impulse response. The modified impulse response
defines the FIR filter.

Finite Impulse Response (FIR) Filters Using IDL

Chapter 21: Signal Processing 419

Using IDL

The figure below shows the plot using the same sampling period and frequency
cutoffs as above, and the corresponding ideal filter is constructed in the frequency
domain using the Hanning window.

Frequency Response for Bandstop
FIR Filter (Hanning)

20 ']
aal of |
w i
c i
= 00k .
m i 1
= r 4
3 = 4
T 4O 7
o L 4
2 3]
= —Bor 7]
8oL i

10
Frequency in cycles / second

—

Figure 21-10: Bandstop filter using Hanning Window.

Enter the following commands at the IDL prompt to create the plot:

Sanpling period in seconds:
delt = 0.02
; Frequenci es above f_low will be passed:
f_low = 15.
; Frequencies below f_high will be passed:
f_high = 7.
The length of the filter:
nfilt = 81
f_filt = FINDGEN(nfilt/2+1) / (nfilt*delt)
; Pass frequencies greater than f_l ow and | ess than f_high:
ideal _fr = (f_filt GI f_low OR (f_filt LT F_high)
Convert frombyte to floating point:
ideal _fr = FLOAT(ideal fr)
; Replicate to obtain values for negative frequencies:
ideal _fr = [ideal _fr, REVERSE(ideal _fr[1:*])]
; Now use an inverse FFT to get the inpul se response
; of the ideal filter:
ideal _ir = FLOAT(FFT(ideal fr, /INVERSE))
Ideal _fr is an even function, so the result is real.
; Scale by the # of points:
ideal _ir =ideal _ir / nfilt
; Shift it before applying the w ndow

Finite Impulse Response (FIR) Filters

420 Chapter 21: Signal Processing

ideal _ir = SH FT(ideal _ir, nfilt/2)
; Apply a Hanning window to the shifted ideal inmpulse response.
;. These are the coefficients of the filter:
bs_ir_n = ideal _ir*HANNI NG nfilt)
; The frequency response of the filter is the FFT
; of its inmpulse response. Scal e by the nunber of points:
bs_ fr_n = FFT(bs_ir_n) * nfilt
; Create a |log plot of magnitude in decibels
; Magni tude of Hanning bandstop filter transfer function:
mag = ABS(bs_fr_n(0:nfilt/2))
pLor, f_filt, 20*ALOGLO(rmmg), YTITLE=' Magnitude in dB', $
XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1.0, 1.0/ (2. 0*delt)], XSTYLE=1, $
TI TLE=' Frequency Response for Bandstop! CFIR Filter (Hanning)'

Alternately, you can run the following batch file to create the plot:
@igprcll
See “Running the Example Code” on page 392 if IDL does not find the batch file.

Finite Impulse Response (FIR) Filters Using IDL

Chapter 21: Signal Processing 421

FIR Filter Implementation

Using IDL

The simplest FIR filter to apply to asignal isthe rectangular or boxcar filter, whichis
implemented with IDL’s SMOOTH function, or the closely related MEDIAN
function.

Applying other FIR filtersto signalsis straightforward since the filter is non-
recursive. Thefiltered signal is simply the convolution of the impul se response of the
filter with the original signal. The impulse response of the filter is computed with the
DIGITAL_FILTER function or by the procedure in the previous section.

IDL’s BLK_CON function provides a simple and efficient way to convolve afilter
with asignal. Using u(k) from the previous example and the bandstop filter created
above creates the plot shown in the figure below.

Spectrum of u(k) Before ’gso\'\d) and
After (dashed) Digital Filtering

Power Spectrum

1 10
Frequency in cycles / second

Figure 21-11: Digital signal before and after filtering.

The frequency response of the filtered signal shows that the frequency component at
11.0 cycles/ second has been filtered out, while the frequency components at 2.8 and
6.25 cycles/ second, as well as the DC component, have been passed by the filter.

Enter the following commands at the IDL prompt to create the plot:

; Conpute tinme data sequence u:

@i gprcO1

; Conpute the Kaiser filter coefficients
; Wth the sanpling period in seconds:
delt = 0.02

FIR Filter Implementation

422

f_

f_

Chapter 21: Signal Processing

Frequenci es above f_low wi |l be passed:
| ow = 15.

Frequenci es below f_high will be passed:
high = 7.

Ri pple anplitude will be less than -50 dB:

a_ripple = 50.

The order of the filter:

nterms = 40

Conpute the inmpul se response = the filter coefficients:

bs_ ir_k = DIG TAL_FILTER(f | ow*2*delt, f_high*2*delt, $

a_ripple, ntermns)
Convol ve the Kaiser filter with the signal:

u_filt = BLK_ CON(bs_ir_k, u)

Vv

Spectrum of original signal:
= FFT(u)
Spectrum of the filtered signal:

v filt = FFT(u_filt)

Create a log-1og plot of power spectra.
F=1[0.0, 1.0/(Ndelt), ... , 1.0/(2.0*delt)]

F = FINDGEN(N 2+1) / (N+delt)
PLOT, F, ABS(v(0:N 2))72, YTITLE=' Power Spectrumi, /YLOG $

XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1.0, 1. 0/ (2. O*del t)], XSTYLE=1, $

TI TLE=' Spectrum of u(k) Before (solid) and!CAfter $
(dashed) Digital Filtering'

Alternately, you can run the following batch file to create the plot:

@i gprcl2

See “Running the Example Code” on page 392 if IDL does not find the batch file.

FIR Filter Implementation Using IDL

Chapter 21: Signal Processing 423

Infinite Impulse Response Filters

Using IDL

Digital filters which must be implemented recursively are called Infinite Impulse
Response (I1R) filters because, theoretically, the response of these filtersto an
impulse never settles to zero. In practice, the impul se response of many IIR filters
approaches zero asymptotically, and may actually reach zero in afinite number of
samples due to the finite word length of digital computers.

One method of designing digital filters starts with the Laplace transform
representation of an analog filter with the required frequency response. For example,
the Laplace transform representation (or continuous transfer function) of a second
order notch filter with the notch at f, cycles per second is:

y(s) 529)
() (1 + 25(%) + 32)

where sisthe Laplace transform variable. Then the continuous transfer function is
converted to the equivalent discrete transfer function using one of several techniques.
One of these isthe bilinear (Tustin) transform, where

(2/8)*(z-1)/(z+1)

is substituted for the Laplace transform variable s. In this expression, zis the unit
delay operator.

For the notch filter above, the bilinear transformation yields the following discrete
transfer function:

2
1+c

y(z):(2

u(z) (c*—2cz+ 7%

2
—Zcz+1+C 22)
2

wherec = (1 —n*fg*8) / (1 + n*fy*5).

Enter the following IDL statements to compute the coefficients of the discrete
transfer function:

Infinite Impulse Response Filters

424 Chapter 21: Signal Processing

delt = 0.02
Not ch frequency in cycles per second:
= 6.5
(1.0-!'PI*FO*delt) / (1.0+! PI*FO*delt)
[(1+cn2)/2, -2*c, (1+c"2)/2]
[cr2, -2*c, 1]

fo
c
b

a
Alternately, you can run the following batch file to compute the coefficients:

@i gprcl3
See “Running the Example Code” on page 392 if IDL does not find the batch file.

lIR Filter Implementation

Since an Infinite Impulse Response filter contains feedback loops, its output at every
time step depends on previous outputs, and the filter must be implemented
recursively with difference equations. The discrete transfer function

by+b,z+...+b.2z"
y(z) = (L = n:Ju(z)

g+ Z+ ... +a,,Z

isimplemented with the difference equation

_ (bou(k—nb) + blu(k—nb +1)+...+ bnbu(k)—aoy(k—na) —aly(k—na+ 1)—... —a4_ ly(k—l))
%ha

y(k)

AnlIR filter is stable if the absolute values of the roots of the denominator of the
discrete transfer function a(z) are al less than one. The impulse response of a stable
IR filter approaches zero as the time index k approaches infinity. The frequency
response function of astable IR filter isthe Discrete Fourier Transform of thefilter's
impulse response.

Infinite Impulse Response Filters Using IDL

Chapter 21: Signal Processing

Using IDL

425

The figure below plots the impulse and frequency response functions of the notch

filter defined above using recursive difference equations.

Frequency Response Function of b(z)/a(z)

—10
—20
—30

—40
~50

Magnitude in dB

10

Frequency in cycles / second

180
20

-390
—180

Phase in degrees
o

‘I\‘I\l\l

P

10
Frequency in cycles / second

Figure 21-12: Impulse and frequency response of a notch filter.

Enter the following commands at the IDL prompt to create the plot:

; Load the coefficients for the notch filter:
@i gprcl3
; Degree of denoninator pol ynomi al:
na = N_ELEMENTS(A)-1
; Degree of nunerator polynom al:
nb = N_ELEMENTS(B)-1
N = 1024L
Create an inpul se U
U = FLTARR(N)
U 0] = FLOAT(N)
Y = FLTARR(N)
Y[0] = B[2]*U 0] / Alna]
; Recursively compute the filtered signal:
FORK=1, N1DO$
Y(K) = (TOTAL(B[nb-K>0:nb]*U K-nb>0:K]) $
- TOTAL(Al na-K>0:na-1]*Y[K-na>0:K-1])) / Al na]
; Conpute spectrum V:

Infinite Impulse Response Filters

426 Chapter 21: Signal Processing

V = FFT(Y)
. F=1[0.0, 1.0/(Ndelt), ... , 1.0/(2.0*delt)]
F = FINDGEN(N 2+1) / (N¢-delt)

; Magnitude of first half of V:
mag = ABS(V(0: N 2))
; Phase of first half of V:
phi = ATAN(V(0: N 2), /PHASE)
; Create log plots of magnitude in decibels and phase in degrees.
; Set up for two plots in w ndow
IP.MULTI = [0, 1, 2]
PLOT, F, 20*ALOGLO(mag), YTITLE=' Magnitude in dB, $
XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1. 0, 1. 0/ (2. O*del t)], XSTYLE=1, $
TI TLE=' Frequency Response Function of b(z)/a(z)'
PLOT, F, phi/!DTOR, YTITLE=' Phase in degrees', $
YRANGE=[- 180, 180], YSTYLE=1, YTICKS=4, YM NOR=3, $
XTI TLE=' Frequency in cycles / second', /XLOG $
XRANGE=[1. 0, 1. 0/ (2. 0*del t)], XSTYLE=1
I'P. MULTI =0
Note
Because the impul se response approaches zero, IDL may warn of floating-point
underflow errors. Thisis an expected consequence of the digital implementation of
an Infinite Impulse Response filter.

Alternately, you can run the following batch file to create the plot:
@i gprcla
See “Running the Example Code” on page 392 if IDL does not find the batch file.

The same code could be used to filter any input sequence u(k).

Infinite Impulse Response Filters Using IDL

Chapter 21: Signal Processing 427

Routines for Signal Processing

Below is abrief description of IDL routines for signal processing. More detailed
information is available in the IDL Reference Guide.

Routine

Description

A_CORRELATE

Computes autocorrel ation.

BLK_CON Convolves input signal with impul se-response sequence.
C CORRELATE Computes cross correlation.

CONVOL Convolves two vectors or arrays.

CORRELATE Computes the linear Pearson correlation.

DIGITAL_FILTER

Calculates coefficients of a non-recursive, digital filter.

FFT

Returns the Fast Fourier Transform of an array.

HANNING Creates Hanning and Hamming windows.

HILBERT Constructs a Hilbert transform.

INTERPOL Performs linear interpolation on vectors.
M_CORRELATE Computes multiple correlation coefficient.

MEDIAN Returns the median value of an array or applies amedian

filter.

P_CORRELATE

Computes partia correlation coefficient.

R_CORRELATE

Computes rank correlation.

SAVGOL Returns coefficients of Savitzky-Golay smoothing filter.
SMOQOTH Smooths with a boxcar average.

TS COEF Computes the coefficients for autoregressive time-series.
TS DIFF Computes the forward differences of atime-series.

TS FCAST Computes future or past values of a stationary time-series.
TS SMOOTH Computes moving averages of atime-series.

Table 21-1: Signal Processing Routines in IDL

Routines for Signal Processing

428 Chapter 21: Signal Processing

Routine Description

WTN Returns wavelet transform of the input array.

Table 21-1: Signal Processing Routines in IDL

Routines for Signal Processing Using IDL

Chapter 21: Signal Processing 429

References

Bracewell, Ronald N., The Fourier Transform and Its Applications, New York:
McGraw-Hill, 1978. ISBN 0-07-007013-X

Chen, Chi-Tsong, One-Dimensional Digital Sgnal Processing, New York: Marcel
Dekker, Inc., 1979. ISBN 0-8247-6877-9

Jackson, Leland B., Digital Filtersand Sgnal Processing, Boston: Kluwer Academic
Publishers, 1986. ISBN 0-89838-174-6

Mayeda, Wataru, Digital Sgnal Processing, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1993. ISBN 0-13-211301-5

Morgera, Salvatore D. and Krishna, Hari, Digital Sgnal Processing: Applicationsto
Communications and Algebraic Coding Theories, Boston: Academic Press, 1989.
ISBN 0-12-506995-2

Oppenheim, Alan V. and Schafer, Ronald W., Discrete-time signal processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN 0-13-216292-X

Peled, Abraham and Liu, Bede, Digital Signal Processing, New York: John Wiley &
Sons, Inc., 1976. ISBN 0-471-01941-0

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Proakis, John G. and Manolakis, Dimitris G., Digital Sgnal Processing: Principles,
Algorithms, and Applications, New York: Macmillan Publishing Company, 1992.
ISBN 0-02-396815-X

Rabiner, Lawrence R. and Gold, Bernard, Theory and application of digital signal
processing, Englewood Cliffs, NJ: Prentice-Hall, 1975. ISBN 0-139-14101-4

Strang, Gilbert and Nguyen, Truong, Wavelets and Filter Banks, Wellesley, MA:
Wellesley-Cambridge Press, 1996. ISBN 0-961-40887-1

Using IDL References

430 Chapter 21: Signal Processing

References Using IDL

Chapter 22:

Mathematics

The following topics are covered in this chapter:

IDL’s Numerical Recipes Functions 433
Accuracy & Floating-Point Operations . .. 434
Arraysand Matrices 436
Correlation Analysis 442
Curveand Surface Fitting 446
Eigenvalues and Eigenvectors 449
Gridding and Interpolation 455
HypothesisTesting 457

Using IDL

Integration 460
Linear Systems 466
Nonlinear Equations 474
Optimization 476
SParSEAITaYS ..o 478
Time-SeriesAnalysis 481
Multivariate Analysis 484
References 490

431

432

Chapter 22: Mathematics

This chapter documentsIDL’s mathematics and statistics procedures and functions.
These include Numerical Recipes™ algorithms published in Numerical Recipesin C:
The Art of Scientific Computing (Second Edition).

This chapter also includes introductory discussions of the following topics and an
overview of theway IDL handles the particular problems involved:

* Arraysand Matrices

e Correlation Analysis

e Curveand Surface Fitting
e Eigenvalues and Eigenvectors
e Gridding and Interpolation
¢ Hypothesis Testing

e Integration

e Linear Systems

¢ Nonlinear Equations

e Optimization

e Sparse Arrays

e Time Series Analysis

References are provided at the end of each section for amore detailed description and
understanding of the topic.

Research Systems, Inc. is extremely interested in the accuracy of its algorithms. Bug
reports, documentation errors and suggestions for future mathematics and statistics
enhancements can be sent to RSI via:

Internet: support @S| nc. com
Fax: (303) 786-9909

Using IDL

mailto:support@RSInc.com

Chapter 22: Mathematics 433

IDL’s Numerical Recipes Functions

Using IDL

IDL includes a number of routines based on algorithms published in Numerical
Recipesin C: The Art of Scientific Computing (Second Edition). Routines derived
from Numerical Recipes are noted as such in the IDL Reference Guideandinthe DL
Online Help.

InIDL versionsup to and including IDL version 3.6, mathematics functions based on
Numerical Recipes algorithms required that input be in column-major format. Thisis
no longer the case. Routines based on Numerical Recipes algorithms have been
reworked and renamed, so that all IDL functions now expect input arraysto bein
row-major format (composed of row vectors).

Note
To maintain compatibility with IDL programs based on earlier versions, the old
routines (using the older input convention) are still available. No alterations need be
made to existing code as aresult of this changein IDL. We recommend that all new
IDL programs take advantage of the new names and input convention.

IDL’s Numerical Recipes Functions

434 Chapter 22: Mathematics

Accuracy & Floating-Point Operations

In acomputer, real numbers are represented with finite precision. Whilein most cases
it is safe to assume that the result of an arithmetical operation done on your computer
iscorrect, it isimportant to remember that this finite-precision representation leads to
unavoidable errors, especially when floating-point numbers, which are digital
approximations to real numbers, are involved.

To understand why floating-point numbers are inherently inaccurate, consider the
following:

¢ Floating-point numbers must be made to fit in a space (astring of binary digits
in acomputer’s memory register) that can only hold an integer and a scaling
factor.

* Floating-point numbers are represented by strings of alimited number of bits,
but represent numbers much larger or smaller than that number of digits can be
made to express.

In other words, floating-point values are finite-precision approximations of infinitely
precise numbers.

Roundoff Error

When working with floating-point arithmetic, it is helpful to consider the quantity
known as the machine accuracy or the floating-point accuracy of your particular
computer. Thisisthe smallest number that, when added to 1.0, produces a floating-
point result that is different from 1.0.

A useful way of thinking about machine accuracy isto consider it to be the fractional
accuracy to which floating-point numbers are represented. In other words, the
machine accuracy roughly corresponds to a change of the least significant bit of the
floating-point mantissa—precisely what can happen if a number with more
significant digits than fit in the floating-point mantissais rounded to fit the space
available. Generally speaking, every floating-point arithmetic operation introduces an
error at least equal to the machine accuracy into the result. This error is known as
roundoff error.

Roundoff errors are cumulative. Depending on the algorithm you are using, a
calculation involving n arithmetic operations might have atotal roundoff error
between SQRT(n) times the machine accuracy and n times the machine accuracy.

Accuracy & Floating-Point Operations Using IDL

Chapter 22: Mathematics 435

Note that the machine accuracy is not the same as the smallest fl oating-point number
your computer can represent. To find these and other machine-dependent quantities
for your own computer, see MACHAR in the IDL Reference Guide.

Truncation Error

Another type of error is also present in some numerical algorithms. Truncation error
isthe error introduced by the process of numerically approximating a continuous
function by evaluating it at a finite number of discrete points. Often, accuracy can be
increased (again at some cost of computation time) by increasing the number of
discrete points evaluated.

For example, consider the process of calculating

2 3 n
X = 1+x+ X+, X
21 3! n!
Obviously, the answer becomes more accurate as n approaches infinity. When
performing the actual computation, however, a cutoff value must be specified for n.
Increasing n reduces truncation error at the expense of computational effort.

Severa IDL routines allow you to specify cutoff valuesin such cases (see, for
example, INT_2D of the IDL Reference Guide). When writing your own routinesin
IDL, it isimportant to consider this trade-off between accuracy and computational
time.

Routines for Mathematical Error Assessment

Below isabrief description of IDL routines for checking math error status and
machine characteristics. More detailed information is available in the IDL Reference
Guide.

CHECK_MATH | Returns and clears accumulated math error status.

FINITE Returns Trueif its argument is finite.

MACHAR Determines and returns machine-specific parameters affecting
floating-point arithmetic.

Table 22-1: Mathematical Error Assessment Routines in IDL

Using IDL Accuracy & Floating-Point Operations

436 Chapter 22: Mathematics

Arrays and Matrices

IDL provides avariety of mechanisms for working with multidimensional data sets.
Understanding these mechanisms requires a familiarity with linear algebra and the
concept of atwo-dimensional data set.

Note
There are two terms commonly used to refer to two-dimensional data sets: array
and matrix. People who work with images tend to call two-dimensional data sets
arrays, while mathematicians tend to call two-dimensional data sets matrices. The
terms are interchangeabl e, but the different conventions assumed by people who use
them may lead to confusion.

Consider atwo-dimensional data set, with dimensions m and n. In a compuiter, the
data from this data set is stored in a unidimensional set of memory addresses; what
makes the data “two-dimensional” is the way the individual elements are indexed by
the software that accesses the datain memory. Thistopic is discussed in detail in
“Columns, Rows, and Array Mgjority” in Chapter 6 of the Building IDL Applications
manual; if you are unsure of your understanding of the process of mapping
multidimensional datainto unidimensional computer memory, please read that
section carefully.

There are two possible ways to depict atwo-dimensional data set on paper — row by
row or column by column. For example, the standard mathematical representation of
an mx n data set is shown in Figure 22-1, with m rows and n columns:

AOO AOl AO,n—l

>

AlO Al,l Al,n—l

Am—l,O Am—l,l Am—l,n—l

Figure 22-1. An m x n array represented in mathematical notation.

Here, the first dimension (m) represents the row index, and the second dimension (n)
represents the column index. Thus, if the data set is represented using this notation,
theterm Arr ay[3, 2] refersto an element that is four rows down from the top row
and three columns to the right of the leftmost row. (Note that indices are zero-based.)

Arrays and Matrices Using IDL

Chapter 22: Mathematics 437

Figure 22-2 depicts the standard image-processing representation of the same data
set, with m columns and n rows:

AO,O Al,O Am—l,O
AO,l Al,l Am—l,l

_AO,n—l Al,n—l Am—l,n—l

Figure 22-2: An m x n array represented in image-processing notation.

Here, the first dimension (m) represents the column index, and the second dimension
(n) represents the row index. Thus, if the data set is represented using this notation,
theterm Arr ay[3, 2] refersto an element that is four columnsto the right of the
leftmost column and three rows down from the top row. Thisis the representation
used by IDL.

It isimportant to understand that these are two views of the same data; all that has
changed is the notational convention applied. Why is this notational convention
important? Because when reading or writing datain atwo-dimensional data set,
performance improves if elements that are contiguous in the computer’s memory are
accessed consecutively. Incrementing the index of the first dimension by one shifts
one “slot” in computer memory, whereas incrementing the index of the second
dimension by one shifts a number of “dots’ at least as large as the size of the first
dimension.

Note
The terms column-major and row-major are commonly used to define which
dimension of atwo-dimensional array represents the column index and which
represents the row index. These terms are defined and discussed in detail in
“Columns, Rows, and Array Mgjority” in Chapter 6 of the Building IDL
Applications manual.

Transposing Arrays

You should be aware that many numerical algorithms — especially those that are
written in arow-major language such as C or C++ — assume data is indexed (row,
column). Since IDL assumes data is indexed (column, row), it is important to keep

Using IDL Arrays and Matrices

438 Chapter 22: Mathematics

this distinction in mind. In order to work with data indexed (row, column), you can
use IDL’s TRANSPOSE function to interchange the order of the indices.

Note that it is possible for an array to be indistinguishable from its transpose. In this
case the number of columns and rows are identical and there is a symmetry between
the rows of the array and the columns of its transpose. Arrays satisfying this
condition are said to be symmetric. When dealing with symmetric arrays the use of
the TRANSPOSE function is unnecessary, since AT = A.

Multiplying Arrays

IDL has two operators used to multiply arrays. To illustrate the difference between
the two operators, consider the following two arrays:

;A 3-colum by 2-row array:
A= 1[0 1, 2],%
[3, 4, 5] 1]

;A 2-colum by 3-row array:

B=1[[0, 1].,%
[2, 3],%
(4, 5]]

The # Operator

The # operator computes array elements by multiplying the columns of the first array
by the rows of the second array. The resulting array has the same number of columns
asthefirst array and the same number of rows as the second array. The second array
must have the same number of columns asthe first array has rows.

For example, consider the arrays defined above:

01

A=F1?B=23
345

45

We obtain the elements of A # B asfollows:

Ao 0BootAp1B1o A1oBootA11Bro Az 0BootA21Bio
ApoBo1tAp1B11 ApoBo1tAL1Br1 AuoBoi1tA1Bia

Ap oBo2tAp1B12 ApoBo2tA1L1Bro AyoBo2tAL1B1 o

Arrays and Matrices Using IDL

Chapter 22: Mathematics 439

Or, using the actual values from the arrays:

OO+ D) (DO +HAL) (2O +(3)(D)
0)(2)+(3)B) DR+ HEB) (2(2)+(5)(3)
(0)(AH+(3)B) (DAH+HE) B+

Therefore, when we issue the following command:

PRI NT, A#B
IDL prints:
3 4 5
9 14 19
15 24 33

Tip
If one or both of the arrays are a so transposed, such as TRANSPOSE(A) #B, itis
more efficient to usethe MATRIX_MULTIPLY function, which does the transpose
simultaneously with the multiplication.

Note on the Definition of Matrix Multiplication

While the definition of the IDL # operator may appear to be at odds with the standard
mathematical definition of matrix multiplication — namely, that the operator
multiplies each row of thefirst matrix by each column of the second matrix — thisis
acase of dightly imprecise terminology. The confusion arises from the mappings of
the words “row” and “column” — which refer to elementsin atwo-dimensional
entity called an array or amatrix — to the one-dimensional vector of values stored in
computer memory. In reality, what the matrix multiplication operator doesis multiply
the elements of the first dimension of the first array/matrix by the elements of the
second dimension of the second array/matrix. IDL’s convention isto consider the first
dimension to be the column and the second dimension to be the row, whereas the
standard mathematical convention considersthefirst dimension to be the row and the
second dimension to be the column. For amore compl ete discussion of thistopic, see
“Columns, Rows, and Array Mgjority” in Chapter 6 of the Building IDL Applications
manual.

The ## Operator

The ## operator computes array elements by multiplying the rows of thefirst array by
the columns of the second array. The resulting array has the same number of rows as

Arrays and Matrices

440 Chapter 22: Mathematics

thefirst array and the same number of columns as the second array. The second array
must have the same number of rows as thefirst array has columns.

For example, consider the arrays defined above:

01
A=[012 g2 |5
345

45
We obtain the elements of A ## B asfollows:

Ao,0BootA10Bo1tA20Bo2 Ao oBiotA1LoBr1tA20B12
Ap1Bo ot AL 1Bo1t A2 1Bo s AgiBiotAy By tA; 1By,

Or, using the actual values from the arrays:

{ (0)(O)+(D(2)+(2)(4) O)D)+ (D) + (2)(5)}
(3O +(DH(2)+(3)(4))+ (H(3)+(3)(3)

Therefore, when we issue the following command:

PRI NT, A##B

IDL prints:
10 13
28 40

Multiplying Vectors

When using the # and ## operators to multiply vectors, note the following:

e For A #B,where A and B are vectors, IDL performs A # TRANSPOSE(B). In
this case, C = A # B isamatrix with Cij = Ai Bj. Mathematically, thisis
equivalent to the outer product, usually denoted by A ® B.

e For A ## B, where A and B are vectors, IDL performs TRANSPOSE(A) ## B.
Inthiscase, C = A ## B isamatrix with Cij = Bi Aj.

Arrays and Matrices Using IDL

Chapter 22: Mathematics 441

e To compute the dot product, usually denoted by A - B, use
TRANSPOSE(A) # B.

Notes on the # and ## Operators

Note the following with regard to the array multiplication operators:
e The# and ## operators are order specific.
 A#B=B##A
« A#B=(B"T#ANT
Routines for Multiplying Arrays

The MATRIX_MULTIPLY and MATRIX_POWER routines are also available:

e MATRIX_MULTIPLY calculates the value of the # operator applied to two
(possibly transposed) arrays. See“MATRIX_MULTIPLY” inthe IDL
Reference Guide manual for details.

« MATRIX_POWER computes the product of a matrix with itself. See
“MATRIX_POWER” inthe IDL Reference Guide manual for details.

Using IDL Arrays and Matrices

442 Chapter 22: Mathematics

Correlation Analysis

Given two n-element sample populations, X and Y, it is possible to quantify the degree
of fit to alinear model using the correlation coefficient. The correlation coefficient, r,
isascaar quantity in theinterval [-1.0, 1.0], and is defined as the ratio of the
covariance of the sample populations to the product of their standard deviations.

= covariance of X and Y
(standard deviation of X)(standard deviation of Y')

or

N-1 N-1 N-1
1 Xy Yk
N-1 ! N i N
‘= i=0 k=0 k=0
N-1 N-1 2 N-1 N-1 2
X
B OO - S o VN [ol £
N-1 N N-1 N
i=0 k=0 i=0 k=0

The correlation coefficient is a direct measure of how well two sample populations
vary jointly. A value of r = +1 or r = —1 indicates a perfect fit to a positive or negative
linear model, respectively. A value of r close to +1 or —1 indicates a high degree of
correlation and agood fit to alinear model. A value of r close to O indicates a poor fit
to alinear model.

Correlation Example

The following sample populations represent a perfect positive linear correlation.

X=1[-8.1, 1.0, -14.3, 4.2, -10.1, 4.3, 6.3, 5.0, 15.1, -2.2]
Y=[-9.8 -0.7, -16.0, 2.5, -11.8, 2.6, 4.6, 3.3, 13.4, -3.9]
; Conmpute the correlation coefficient of X and Y.

PRI NT, CORRELATE(X, V)

IDL prints:
1. 00000

Correlation Analysis Using IDL

Chapter 22: Mathematics 443

The following sample populations represent a high negative linear correlation.

X=[1.8, -2.7, 0.7, -0.5, -1.3, -0.9, 0.6, -1.5, 2.5, 3.0]
Y=[-4.7, 9.8, -3.7, 2.8 5.1, 3.9, -3.6, 5.8, -7.3, -7.4]
; Conpute the correlation coefficient of X and Y:

PRI NT, CORRELATE(X, Y)

IDL prints:
-0. 979907
The following sample populations represent a poor linear correlation.

X [-2.8, 0.1, -0.1, 1.9, 0.5, 1.1, 1.9, 0.3, -0.2, -1.0]
Y=[1.5 -1.0, -0.6, 1.1, 0.7, -0.7, 1.1, -0.1, 0.6, -0.1]
; Conmpute the correlation coefficient of X and V:

PRI NT, CORRELATE(X, Y)

IDL prints:
0. 0322859

Notes on Interpreting the Correlation Coefficient

When interpreting the value of the correlation coefficient, it isimportant to remember
the following two caveats:

1. Although ahigh degree of correlation (avalue close to +1 or —1) indicates a
good mathematical fit to alinear model, its applied interpretation may be
completely nonsensical. For example, there may be a high degree of
correlation between the number of scientists using IDL to study atmospheric
phenomena and the consumption of alcohol in Russia, but the two events are
clearly unrelated.

2. Although a correlation coefficient close to 0 indicates a poor fit to alinear
model, it does not mean that there is no correlation between the two sample
populations. It is possible that the relationship between X and Y is accurately
described by a nonlinear model. See " Curve and Surface Fitting” on page 446
for further details on fitting data to linear and nonlinear models.

Multiple Linear Models

Using IDL

The fundamental principles of correlation that apply to the linear model of two
sample populations may be extended to the multiple-linear model. The degree of
relationship between three or more sample populations may be quantified using the
multiple correlation coefficient. The degree of relationship between two sample
populations when the effects of all other sample populations are removed may be
guantified using the partial correlation coefficient. Both of these coefficients are

Correlation Analysis

444

Chapter 22: Mathematics

scalar quantitiesin theinterval [0.0, 1.0]. A vaue of +1 indicates a perfect linear
relationship between populations. A value closeto +1 indicates a high degree of
linear relationship between populations; whereas a va ue close to 0 indicates a poor
linear relationship between populations. (Although avalue of 0 indicates no linear
relationship between populations, remember that there may be a nonlinear

relationship.)

Partial Correlation Example

Define the independent (X) and dependent () data.

Correlation Analysis

X = [[0.477121, 2.0, 13.0], $
[0.477121, 5.0, 6.0], $
[0.301030, 5.0, 9.0], $
[0.000000, 7.0, 5.5], $
[0.602060, 3.0, 7.0], $
[0.698970, 2.0, 9.5], $
[0.301030, 2.0, 17.0], $
[0.477121, 5.0, 12.5], $
[0.698970, 2.0, 13.5], $
[0.000000, 3.0, 12.5], $
[0.602060, 4.0, 13.0], $
[0.301030, 6.0, 7.5], $
[0.301030, 2.0, 7.5], $
[0.698970, 3.0, 12.0], $
[0.000000, 4.0, 14.0], $
[0.698970, 6.0, 11.5], $
[0.301030, 2.0, 15.0], $
[0.602060, 6.0, 8.5], $
[0.477121, 7.0, 14.5], $
[0. 000000, 5.0, 9.5]]

Y = [97.682, 98.424, 101.435, 102.266, 97.067, 97.397, $
99. 481, 99.613, 96.901, 100.152, 98.797, 100.796, $
98.750, 97.991, 100.007, 98.615, 100.225, 98.388, $
98.937, 100.617]

Compute the multiple correlation of Y on the first column of X. The result should be
0.798816.

PRI NT, M CORRELATE(X[O, *], V)
IDL prints:
0.798816

Compute the multiple correlation of Y on the first two columns of X. The result
should be 0.875872.

PRI NT, M CORRELATE(X[0:1,*],)

Using IDL

Chapter 22: Mathematics

445

Compute the multiple correlation of Y on all columns of X. The result should be

sanpl e popul ati ons.

33, 35, 29]

0.34, 0.30, 0.30, 0.35]
70, 70, 60]

2800, 3100, 2750, 3050]

IDL prints:
0. 875872
0.877197.
PRI NT, M CORRELATE(X, Y)
IDL prints:
0. 877197
;Define the five
X0 = [30, 26, 28,
X1 = [0.29, 0.33,
X2 = [65, 60, 65,
X3 = [2700, 2850,
Y =[37, 33, 32,

37, 36, 33]

Compute the partial correlation of X1 and Y with the effects of X0, X2 and X3

removed.

PRI NT, P_CORRELATE(X1, Y, REFORM[X0, X2, X3], 3, N_ELEMENTS(X1)))

IDL prints:
0.996017

Routines for Computing Correlations

Below is abrief description of IDL routines for computing correlations. More
detailed information is available in the IDL Reference Guide.

A_CORRELATE

Computes autocorrel ation.

C_CORRELATE

Computes cross correlation.

CORRELATE

Computes the linear Pearson correlation.

M_CORRELATE

Computes multiple correlation coefficient.

P_CORRELATE

Computes partial correlation coefficient.

R_CORRELATE

Computes rank correlation.

Table 22-2: Correlation Routines in IDL

Using IDL

Correlation Analysis

446 Chapter 22: Mathematics

Curve and Surface Fitting

The problem of curve fitting may be stated as follows:

Given atabulated set of data values{x;, y;} and the general form of a mathematical
model (afunction f(x) with unspecified parameters), determine the parameters of the
model that minimize an error criterion. The problem of surface fitting involves
tabulated data of the form {X;, y;, z} and afunction f(x, y) of two spatial dimensions.

For example, we can use the CURV EFIT routine to determine the parameters A and B
of auser-supplied function f(x), such that the sums of the sgquares of the residuals
between the tabulated data {x;, y;} and function are minimized. We will use the
following function and data:

f(x)=a (-
x; = [0.25, 0.75, 1.25, 1.75, 2.25]
y; =[0.28, 0.57, 0.68, 0.74, 0.79]

First we must provide a procedure written in IDL to evaluate the function, f, and its
partial derivatives with respect to the parameters ag and a;:

PRO funct, X, A F, PDER
F=A0 * (1.0 - EXP(-A[1] * X))
If the function is called with four paraneters,
calculate the partial derivatives:
| F N_PARAMS() CGE 4 THEN BEG N
PDER s col umm dinension is equal to the nunber of
elements in xi and its row dinmension is equal to
; the nunber of paraneters in the function F:
pder = FLTARR(N_ELEMENTS(X), 2)
Conpute the partial derivatives with respect to
a0 and place in the first row of PDER
pder[*, 0] = 1.0 - EXP(-A[1] * X
; Conpute the partial derivatives with respect to
al and place in the second row of PDER
pder[*, 1] = A[0] * x * EXP(-A[1] * X
ENDI F
END

Note
The function will not calculate the partial derivatives unlessit is called with four
parameters. This allows the calling routine (in this case CURVEFIT) to avoid the
extra computation in cases when the partial derivatives are not needed.

Curve and Surface Fitting Using IDL

Chapter 22: Mathematics

447

Next, we can use the following IDL commands to find the function’s parameters:

:Define the vectors of tabul ated:
X =1[0.25, 0.75, 1.25, 1.75, 2.25]

;data val ues:

Y =[0.28, 0.57, 0.68, 0.74, 0.79]
; Define a vector of weights:

W=1.0/Y
;Provide an initial

A=11.0,

guess of the function's paraneters:

; Comput e the paraneters a0 and al:
yfit = CURVEFIT(X, Y, W A SIGVA A FUNCTION NAME = 'funct')
;Print the paraneters, which are returned in A

PRINT, A
IDL prints:

0. 787386

Thus the nonlinear function that best fits the datais:
f (x) = 0.787386 (1 —e' 171602

Routines for Curve and Surface Fitting

Using IDL

Below is abrief description of IDL routines for curve and surface fitting. More
detailed information is available in the IDL Reference Guide.

COMHIT Fits paired data using one of six common filtering
functions.

CRVLENGTH Computes the length of acurve.

CURVEHIT Fits multivariate data with a user-supplied function.

GAUSS2DFIT Fitsa 2D elliptical Gaussian equation to rectilinearly
gridded data.

GAUSSHIT Fits the sum of a Gaussian and a quadratic.

GRID_TPS Usesthin plate splines to interpolate a set of values
over aregular 2D grid, from irregularly sampled data
values.

KRIG2D Interpolates set of points using kriging.

LADFIT Fits paired data using |east absolute deviation method.

Table 22-3: Curve and Surface Fitting Routines in IDL

Curve and Surface Fitting

448 Chapter 22: Mathematics

LINFIT Fits by minimizing the Chi-square error statistic.

LMFIT Does a non-linear least squares fit.

MIN_CURVE_SURF Interpolates points with a minimum curvature surface
or athin-plate-spline surface. Useful with
CONTOUR.

POLY_FIT Performs a least-square polynomial fit.

REGRESS Computes fit using multiple linear regression.

SFIT Performs polynomial fit to a surface.

SVDFIT Multivariate least squares fit using SVD method.

TRIGRID Interpolates irregularly-gridded datato aregular grid
from atriangulation.

Table 22-3: Curve and Surface Fitting Routines in IDL

Curve and Surface Fitting Using IDL

Chapter 22: Mathematics 449

Eigenvalues and Eigenvectors

Consider a system of equations that satisfies the array-vector relationship Ax = Ax,
where A is an n-by-n array, x is an n-element vector, and A isascalar. A scalar A and
nonzero vector X that simultaneously satisfy this relationship are referred to as an
eigenvalue and an eigenvector of the array A, respectively. The set of all eigenvectors
of the array A isthen referred to as the eigenspace of A. Ideally, the eigenspace will
consist of n linearly-independent eigenvectors, although thisis not always the case.

IDL computes the eigenvalues and eigenvectors of areal symmetric n-by-n array
using Householder transformations and the QL a gorithm with implicit shifts. The
eigenvalues of areal, n-by-n nonsymmetric array are computed from the upper
Hessenberg form of the array using the QR algorithm. Eigenvectors are computed
using inverse subspace iteration.

Although it is not practical for numerical computation, the problem of computing
eigenvalues and eigenvectors can a so be defined in terms of the determinant
function. The eigenvalues of an n-by-n array A are the roots of the polynomial
defined by det(A—Al), where | isthe identity matrix (an array with 1son the main
diagonal and Os elsewhere) with the same dimensions as A. By expressing
eigenvalues as the roots of a polynomial, we see that they can be either real or
complex. If an eigenvalue is complex, its corresponding eigenvectors are also
complex.

The following examples demonstrate how to use IDL to compute the eigenval ues and
eigenvectors of real, symmetric and nonsymmetric n-by-n arrays. Note that it is
possible to check the accuracy of the computed eigenvalues and eigenvectors by
algebraically manipulating the definition given above to read Ax —Ax = 0; in this case
0 denotes an n-element vector, al elements of which are zero.

Symmetric Array with n Distinct Real Eigenvalues

Example

Using IDL

To compute eigenvalues and eigenvectors of areal, symmetric, n-by-n array, begin
with a symmetric array A.

Note
The eigenvalues and eigenvectors of areal, symmetric n-by-n array are red
numbers.

A=1[[3.0, 1.0, -4.0], $
[1.0, 3.0, -4.0], $

Eigenvalues and Eigenvectors

450 Chapter 22: Mathematics

[-4.0, -4.0, 8.0]]

Conpute the tridiagonal formof A
TRIRED, A, D, E

Conpute the eigenvalues (returned in vector D) and
; the eigenvectors (returned in the rows of the array A):
TRIQ., DL E A

Print eigenval ues:
PRI NT, D

IDL prints:
2.00000 4.76837e-07 12.0000
The exact values are: [2.0, 0.0, 12.0].

;Print the eigenvectors, which are returned as row vectors in A
PRI NT, A

IDL prints:

0.707107 -0.707107 0. 00000
-0.577350 -0.577350 -0.577350
-0.408248 -0.408248 0. 816497

The exact eigenvectors are:

1/J/2 -1//2 0
-1//3 -1//3 -1//3
-1/./6 -1/./6 2//6

Nonsymmetric Array with n Distinct Real and
Complex Eigenvalues
Example

To compute the eigenvalues and eigenvectors of areal, nonsymmetric n-by-n array,
begin with an array A. In this example, there are n distinct eigenvalues and n linearly-
independent eigenvectors.

Eigenvalues and Eigenvectors Using IDL

Chapter 22: Mathematics 451
A=[[1.0, 0.0, 2.0], $
[0.0, 1.0, -1.0], $
[-1.0, 1.0, 1.0]]
Reduce to upper Hessenberg format:
hes = ELNMHES(A)
; Conpute the eigenval ues
eval s = HQR(hes)

; Print the eigenval ues
PRI NT, evals

IDL prints:

(1.00000, -1.73205)(1.00000, 1.73205)
(1.00000, 0.00000)

Note
The three eigenvalues are distinct, and that two are complex. Note also that
complex eigenvalues of an n-by-n real, nonsymmetric array always occur in
complex conjugate pairs.

; Initialize a variable to contain the residual
residual =1
; Conpute the eigenvectors and the residual for each
; eigenval ue/ ei genvector pair, using double-precision arithnetic
evecs = EI GENVEC(A, evals, /DOUBLE, RESIDUAL=residual)
Print the eigenvectors, which are returned as
; row vectors in evecs
PRI NT, evecs[*, 0]

IDL prints:

(0.68168704, 0.18789033)(-0.34084352, -0.093945164)
(0.16271780, -0.59035830)
PRI NT, evecs[*, 1]

IDL prints:

(0.18789033, 0.68168704) (-0.093945164, -0.34084352)
(-0.59035830, 0. 16271780)
PRI NT, evecs[*, 2]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
(-2.3570226e-21, 0.0000000)

We can check the accuracy of these results using the relation Ax —Ax = 0. The array
contained in the variable specified by the RESIDUAL keyword contains the result of
this computation.

PRI NT, residua

Using IDL Eigenvalues and Eigenvectors

452 Chapter 22: Mathematics

IDL prints:

(-1.2021898e-07, 1.1893681e-07)(6.0109490e-08, -5.9468404e-08)
(1.0300230e-07, 1.0411269e-07)
(1.1893681e-07, -1.2021898e-07)(-5.9468404e-08, 6.0109490e-08)
(1.0411269e-07, 1.0300230e-07)
(0. 0000000, 0. 0000000) (0. 0000000, 0. 0000000)

Theresults are al zero to within machine precision.
Repeated Eigenvalues

Example

To compute the eigenvalues and eigenvectors of areal, nonsymmetric n-by-n array,
begin with an array A. In thisexample, there are fewer than n distinct eigenvalues, but
n independent eigenvectors are available.

A=1[[8.0, 0.0, 3.0], $
[2.0, 2.0, 1.0], $
[2.0, 0.0, 3.0]]
; Reduce A to upper Hessenberg form and conpute the eigenval ues.
; Note that both operations can be conbined into a single conmand.
eval s = HQR(ELMHES(A))
Print the eigenval ues
PRI NT, evals

IDL prints:

(9.00000, 0.00000) (2.00000, 0.00000)
(2.00000, 0.00000)

Note
The three eigenvalues are real, but only two are distinct.

; Initialize a variable to contain the residual
residual =1

; Conpute the eigenvectors and residual, using

; doubl e-precision arithnetic:

evecs = EI GENVEC(A, evals, /DOUBLE, RESIDUAL=resi dual)
; Print the eigenvectors

PRI NT, evecs[*, 0]

IDL prints:

(0.90453403, 0.0000000)(0.30151134, 0.0000000)
(0.30151134, 0.0000000)
PRI NT, evecs[*, 1]

Eigenvalues and Eigenvectors Using IDL

Chapter 22: Mathematics 453

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)
PRI NT, evecs[*, 2]

IDL prints:

(-0.27907279, 0.0000000)(-0.78140380, 0.0000000)
(0.55814557, 0.0000000)

We can compute an independent eigenvector for the repeated eigenvalue (2.0) by
perturbing it slightly, allowing the algorithm EI GENVEC to recognize the eigenvalue
as distinct and to compute a linearly-independent eigenvector.

new esidual =1

evecs[*, 2] = ElI GENVEC(A, eval s[2]+1.0e-6, /DOUBLE, $
RESI DUAL = new esi dual)

PRI NT, evecs[*, 2]

IDL prints:

(-0.33333333, 0.0000000)(0.66666667, 0.0000000)
(0.66666667, 0.0000000)

Once again, we can check the accuracy of these results by checking that each element
in the residuals —for both the original eigenvectors and the perturbed eigenvector—
is zero to within machine precision.

Example 4: The So-called Defective Case

In the so-called defective case, there are fewer than n distinct eigenvalues and fewer
than n linearly-independent eigenvectors. Begin with an array A:

A=1([[2.0, -1.0], $
[1.0, 0.0]]
Reduce A to upper Hessenberg form and conpute the eigenval ues.
Note that both operations can be conbined into a single comand.
eval s = HQR(ELMHES(A))
Print the eigenval ues:
PRI NT, evals

IDL prints:

(1.00000, 0.00000)(1.00000, O0.00000)
Note
The two eigenvalues are real, but not distinct.

Using IDL Eigenvalues and Eigenvectors

454 Chapter 22: Mathematics

; Conput e the eigenvectors, using double-precision arithnetic:
evecs = ElI GENVEC(A, evals, /DOUBLE)

;Print the eigenvectors

PRI NT, evecs[*, 0]

IDL prints:

(0.70710678, 0.0000000)(0.70710678, 0.0000000)
PRI NT, evecs[*, 1]

IDL prints:
(0.70710678, 0.0000000)(0.70710678, 0.0000000)

We attempt to compute an independent eigenvector using the method described in the
previous example:

evecs[*, 1] = ElI GENVEC(A, eval s[1] +1.0e-6, /DOUBLE)
PRI NT, evecs[1, *]

IDL prints:
(0.70710678, 0.0000000)(0.70710678, 0.0000000)

In this example, n independent eigenvectors do not exist. This situation is termed the
defective case and cannot be resolved analytically or numerically.

Routines for Computing Eigenvalues and
Eigenvectors

Below isabrief description of IDL routines for computing eigenval ues and
eigenvectors. More detailed information is available in the IDL Reference Guide.

EIGENQL Computes eigenvalues and eigenvectors of areal, symmetric
array.

EIGENVEC Computes eigenvectors of areal, non-symmetric array.

ELMHES Reduces nonsymmetric array to upper Hessenberg form.

HQOR Returns all eigenvalues of an upper Hessenberg array.

TRIQL Determines eigenvalues and eigenvectors of tridiagonal array.

TRIRED Reduces areal, symmetric array to tridiagonal form.

Table 22-4: Eigenvalue and Eigenvector Routines in IDL

Eigenvalues and Eigenvectors Using IDL

Chapter 22: Mathematics 455

Gridding and Interpolation

Given aset of tabulated datain n-dimensions with each dimension being described as
follows:

L {x,y=f()},
2. {% Yz =10y}, or
3. {X. ¥z, W =f (%, Y, z)}

it ispossible to calculate intermediate values of the function f using interpolation.
IDL includes a variety of routinesto solve this type of problem.

The determination of intermediate values is based upon an interpolating function that
establishes a relationship between the tabulated data points. Different algorithms
employ different types of interpolating functions suitable for different types of data
trends.

Unlike curve-fitting algorithms, interpolation requires that the interpolating function
be an exact fit at each of the tabulated data points. Interpolation does not use any type
of error analysis and its accuracy depends upon the behavior of the interpolating
function between successive data points. Polynomial, spline, nearest-neighbor, and
kriging are among the interpolation methods used in IDL.

Gridding, atopic closely related to interpolation, is the problem of creating
uniformly-spaced planar data from irregularly-spaced data. IDL handles this type of
problem by constructing a Delaunay triangulation. This method is highly accurate
and has great utility since many of 1DL’s graphics routines require uniformly-gridded
data. Extrapolation, the estimation of values outside the range of tabulated data, is
also possible using this method.

Routines for Gridding and Interpolation

Below isabrief description of IDL routines for gridding and interpolation. More
detailed information is available in the IDL Reference Guide.

Routine Description
BILINEAR Computes array using bilinear interpolation.
GRID_TPS Uses thin plate splines to interpolate a set of values over
aregular 2D grid, from irregularly sampled data values.

Table 22-5: Gridding and Interpolation Routines in IDL

Using IDL Gridding and Interpolation

456

Chapter 22: Mathematics

Routine Description
GRID3 Creates aregularly-gridded 3D dataset from a set of
scattered 3D nodes.
INTERPOL Performs linear interpolation on vectors.
INTERPOLATE Returns an array of interpol ates.
KRIG2D Interpolates set of points using kriging.

MIN_CURVE_SURF

Interpolates points with a minimum curvature surface or
athin-plate-spline surface. Useful with CONTOUR.

POLAR_SURFACE

Interpolates a surface from polar coordinates to
rectangular coordinates.

SPH_SCAT Performs spherical gridding.

SPL_INIT Establishes the type of interpolating spline.
SPL_INTERP Performs cubic spline interpolation (Numerical Recipes).
SPLINE Performs cubic spline interpolation.

SPLINE_P Performs parametric cubic spline interpolation.
TRI_SURF Interpolates gridded set of points with a smooth quintic

surface.

TRIANGULATE

Constructs Delaunay triangulation of a planar set of
points.

TRIGRID

Interpolates irregularly-gridded datato a regular grid
from atriangulation.

VALUE_LOCATE

Finds the intervals within a given monotonic vector that
brackets a given set of one or more search values.

VORONOI

Computes Voronoi polygon given Delaunay
triangulation.

Table 22-5: Gridding and Interpolation Routines in IDL (Continued)

Gridding and Interpolation

Using IDL

Chapter 22: Mathematics 457

Hypothesis Testing

Hypothesistesting tests one or more sample popul ations for a statistical characteristic
or interaction. The results of the testing process are generally used to formulate
conclusions about the probability distributions of the sample populations.

Hypothesis testing involves four steps:
e Theformulation of ahypothesis.
e Theselection and collection of sample population data.
e Theapplication of an appropriate test.
e Theinterpretation of the test results.

For example, suppose the FDA wishes to establish the effectiveness of anew drugin
the treatment of a certain ailment. Researchers test the assumption that the drug is
effective by administering it to a sample population and collecting data on the
patients' health. Once the data are collected, an appropriate statistical test is selected
and the results analyzed. If the interpretation of the test results suggests a statistically
significant improvement in the patients' condition, the researchers conclude that the
drug will be effective in general.

It isimportant to remember that avalid or successful test does not prove the proposed
hypothesis. Only by disproving competing or opposing hypotheses can a given
assumption’s validity be statistically established.

One- and Two-sided Tests

In the above example, only the hypothesis that the drug would significantly improve
the condition of the patients receiving it was tested. This type of test is called one-
sided or one-tailed, because it is concerned with deviation in one direction from the
norm (in this case, improvement of the patients' condition). A hypothesis designed to
test the improvement or ill-effect of thetrial drug on the patient group would be
called two-sided or two-tailed.

Parametric and Nonparametric Tests

Using IDL

Tests of hypothesisare usualy classified into parametric and nonparametric methods.
Parametric methods make assumptions about the underlying distribution from which
sample populations are selected. Nonparametric methods make no assumptions about
a sample population’s distribution and are often based upon magnitude-based

ranking, rather than actual measurement data. In many casesit is possibleto replacea

Hypothesis Testing

458 Chapter 22: Mathematics

parametric test with a corresponding nonparametric test without significantly
affecting the conclusion.

The following example demonstrates this by replacing the parametric T-means test
with the nonparametric Wilcoxon Rank-Sum test to test the hypothesis that two
sample populations have significantly different means of distribution.

Define two sample populations.

X = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263, $
305, 270, 260, 251, 275, 288, 242, 304, 267]
Y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197, $

271, 214, 216, 175, 192, 208, 150, 281, 196]

Compute the T-statistic and its significance, using IDL’s TM_TEST function,
assuming that X and Y belong to Normal populations with the same variance.

PRINT, TM_TEST(X, Y)
IDL prints:
5.52839 2.52455e- 06

The small value of the significance (2.52455e-06) indicates that X and Y have
significantly different means.

Compute the Wilcoxon Rank-Sum Test, using IDL's RS _TEST function, to test the
hypothesis that X and Y have the same mean of distribution.

PRI NT, RS_TEST(X, Y)
IDL prints:
-4.26039 1.01924e-05

The small value of the computed probability (1.01924e-05) requires the rejection of
the proposed hypothesis and the conclusion that X and Y have significantly different
means of distribution.

Each of IDL’s 11 parametric and nonparametric hypothesis testing functionsis based
upon awell-known and widely-accepted statistical test. Each of these functions
returns atwo-element vector containing the statistic on which the test is based and its
significance. Examples are provided and demonstrate how the result is interpreted.

Hypothesis Testing Using IDL

Chapter 22: Mathematics

Routines for Hypothesis Testing

Using IDL

Below isabrief description of IDL routines for hypothesis testing. More detailed

information is available in the IDL Reference Guide.

459

Routine Description
CTI_TEST Performs chi-sguare goodness-of -fit test.
FV_TEST Performs the F-variance test.

KW_TEST Performs Kruskal-Wallis H-test.

LNP_TEST Computes the Lomb Normalized Periodogram.
MD_TEST Performs the Median Delta test.

R _TEST Runs test for randomness.

RS TEST Performs the Wilcoxon Rank-Sum test.

S TEST Performs the Sign test.

TM_TEST Performs t-means test.

XSQ_TEST Computes Chi-square goodness-of-fit test.

Table 22-6: Hypothesis Testing Routines in IDL

Hypothesis Testing

460

Chapter 22: Mathematics

Integration

Integration

Numerical methods of approximating integrals are important in many areas of pure
and applied science. For afunction of asingle variable, f (X), it is often the case that
the antiderivative F = [f (x) dx is unavailable using standard techniques such as
trigonometric substitutions and integration-by-parts formulas. These standard
techniques become increasingly unusable when integrating multivariate functions,
f(x,y) and f (x, Y, 2). Numerically approximating the integral operator providesthe
only method of solution when the antiderivative is not explicitly available. IDL offers
the following numerical methods for the integration of uni-, bi-, and trivariate
functions:

Integration of a univariate function over an open or closed interval is possible
using one of several routines based on well known methods developed by
Romberg and Simpson.

| = jx i bf(x)dx

X =

The problem of integrating over atabulated set of data{ x;, y; = f (x;) } can be
solved using a highly accurate 5-point Newton-Cotes formula. This method is
more accurate and efficient than using interpolation or curve-fitting to find an
approximate function and then integrating.

Integration of a bivariate function over aregular or irregular region in the x-y
plane is possible using an iterated Gaussian Quadrature routine.

X=b.y=0q(x)
| = I I f(x, y)dydx
x=a’y = p(x)

Integration of atrivariate function over aregular or irregular region in x-y-z
space is possible using an iterated Gaussian Quadrature routine.

Using IDL

Chapter 22: Mathematics 461

X=b.y=q(x).z=V(Xy)
| = I I J. f(x,y, z)dzdydx
x=a’y=p(x)"z=uxy)

Note
IDL’siterated Gaussian Quadrature routines, INT_2D and INT_3D, follow the dy-
dx and dz-dy-dx order of evaluation, respectively. Problems not conforming to this
standard must be changed as described in the following example.

A Bivariate Function

Example

Suppose that we wish to evaluate

y=4,x=2

5
jy on_ yy- cos(x™)dxdy

The order of integration isinitially described as a dx-dy region in the x-y plane. Using
the diagram below, you can easily change the integration order to dy-dx.

e

Figure 22-3: The Bivariate Function

Using IDL Integration

462

Integration

Chapter 22: Mathematics
Theintegral is now of the form

X=2 y:)(2 5
j I y - cos(x")dydx
x=0"y=0

The new expression can be evaluated using the INT_2D function.

Touse INT_2D, we must specify the function to be integrated and expressions for the
upper and lower limits of integration. First, we write an IDL function for the
integrand, the function f (x, y):

FUNCTION fxy, X Y
RETURN, Y * COS(X"5)
END
Next, we write afunction for the limits of integration of the inner integral. Note that
the limits of the outer integral are specified numerically, in vector form, while the
limits of the inner integral must be specified asan IDL function even if they are
constants. In this case, the functioniis:

FUNCTION pg_limts, X
RETURN, [0.0, X°2]
END

Now we can use the following IDL commands to print the value of the integral
expressed above. First, we define avariable AB_LIMITS containing the vector of
lower and upper limits of the outer integral. Next, we call INT_2D. The first
argument is the name of the IDL function that represents the integrand (FXY, in this
case). The second argument is the name of the variable containing the vector of limits
for the outer integral (AB_LIMITS, in this case). The third argument is the name of
the IDL function defining the lower and upper limits of the inside integral
(PQ_LIMITS, inthis case). The fourth argument (48) refers to the number of
transformation points used in the computation. As ageneral rule, the number of
transformation points used with iterated Gaussian Quadrature should increase as the
integrand becomes more oscillatory or the region of integration becomes more
irregular.

ab_limts =[0.0, 2.0]

PRINT, INT_2D('fxy', ab_limts, 'pg_limts', 48)

IDL prints:
0. 055142668

Thisisthe exact solution to 9 decimal accuracy.

Using IDL

Chapter 22: Mathematics 463

A Trivariate Function

Example

Suppose that we wish to evaluate

X=2 y=Ja_x? 7= Ja_xP_y2 3/2
y X" ez X" —y
J' z(x2+y2+22) dzdydx
X:—Z y:_ 4_X2 Z:0

Thisintegral can be evaluated using the INT_3D function. Aswith INT_2D, we must
specify the function to be integrated and expressions for the upper and lower limits of
integration. Note that in this case IDL functions must be provided for the upper and
lower integration limits of both inside integrals.

For the above integral, the required functions are the integrand f (x, v, 2):

FUNCTI ON fxyz, X, VY, Z
RETURN, Z * (X*2 + Y*2 + Z7"2)"1.5
END

The limits of integration of the first inside integral:

FUNCTION pg_limts, X
RETURN, [-SQRT(4.0 - X*2), SQRT(4.0 -X"2)]
END

The limits of integration of the second inside integral:

FUNCTION uv_limits, X, Y
RETURN, [0.0, SQRT(4.0 - X*2 - YA2)]
END

We can use the following IDL commands to determine the value of the above integral
using 6, 10, 20 and 48 transformation points.

For 6 transformation points:

PRINT, INT_3D('fxyz', [-2.0, 2.0], $
"po_limts', 'uv_limts', 6)
IDL prints:
57.417720

Using IDL Integration

464 Chapter 22: Mathematics

For 10 transformation points:

PRI NT, INT_3D('fxyz', [-2.0, 2.0], $
"po_limts', 'uv_limts', 10)
IDL prints:
57. 444248

20 transformation points:

PRI NT, INT_3D('fxyz', [-2.0, 2.0], $
"p_limts', ‘uv_limts', 20)

IDL prints:
57. 446201
48 transformation points:

PRI NT, INT_3D('fxyz', [-2.0, 2.0], $
"p_limts', ‘uv_limts', 48)

IDL prints:
57. 446265
The exact solution to 6-decimal accuracy is57.446267.

Routines for Differentiation and Integration

Below isabrief description of IDL routines for differentiation and integration. More
detailed information is available in the IDL Reference Guide.

CRVLENGTH Compurtes the length of a curve.

DERIV Performs differentiation using 3-point Langrangian
interpolation.

DERIVSIG Computes standard deviation of derivative found by DERIV.

INT_2D Computes the double integral of a bivariate function.

INT_3D Computes thetripleintegral of atrivariate function.

INT_TABULATED | Integrates atabulated set of data.

LSODE Advances a solution to a system of ordinary differential
equations one time-step H.

Table 22-7: Differentiation and Integration Routines in IDL

Integration Using IDL

Chapter 22: Mathematics 465

QROMB Evaluates integral over a closed interval.

QROMO Evaluates integral over an open interval.

QSIMP Evaluates integral using Simpson’srule.

RK4 Solves differential equations using fourth-order Runge-
Kutta method.

Table 22-7: Differentiation and Integration Routines in IDL

Using IDL Integration

466 Chapter 22: Mathematics

Linear Systems

IDL offersavariety of methods for the solution of simultaneous linear equations. In
order to use these routines successfully, the user should consider both existence and
uniqueness criteria and the potential difficulties in finding the solution numerically.

The solution vector x of an n-by-n linear system Ax = b is guaranteed to exist and to
be unique if the coefficient array A isinvertible. Using asimple algebraic
manipulation, it is possible to formulate the solution vector x in terms of the inverse
of the coefficient array A and the right-side vector b: x = A™lb. Although this
relationship provides a concise mathematical representation of the solution, it isnever
used in practice. Array inversion is computationally expensive (requiring alarge
number of floating-point operations) and prone to severe round-off errors.

An dternate way of describing the existence of a solution isto say that the system
Ax=bissolvableif and only if the vector b may be expressed as alinear
combination of the columns of A. This definition isimportant when considering the
solutions of non-square (over- and under-determined) linear systems.

While the invertabiltiy of the coefficient array A may ensure that a solution exists, it
does not help in determining the solution. Some systems can be solved accurately
using numerical methods whereas others cannot. In order to better understand the
accuracy of anumerical solution, we can classify the condition of the system it
solves.

The scalar quantity known as the condition number of alinear system is ameasure of
asolution’s sensitivity to the effects of finite-precision arithmetic. The condition
number of an n-by-n linear system Ax = b is computed explicitly as|A[JA™| (where| |
denotes a Euclidean norm). A linear system whose condition number issmall is
considered well-conditioned and well suited to numerical computation. A linear
system whose condition number islarge is considered ill-conditioned and proneto
computational errors. To some extent, the solution of an ill-conditioned system may
be improved using an extended-precision data type (such as double-precision float).
Other situations require an approximate solution to the system using its Singular
Value Decomposition.

The following two examples show how the singular value decomposition may be
used to find solutions when alinear system is over- or underdetermined.

Linear Systems Using IDL

Chapter 22: Mathematics 467

Overdetermined Systems

Example

Using IDL

In the case of the overdetermined system (when there are more linear equations than
unknowns), the vector b cannot be expressed as a linear combination of the columns
of array A. (In other words, b lies outside of the subspace spanned by the columns of
A.) Using IDL’s SVDC procedure, it is possible to determine a projected solution of
the overdetermined system (b is projected onto the subspace spanned by the columns
of A and then the system is solved). Thistype of solution has the property of
minimizing the residual error E = b — Ax in aleast-squares sense.

Suppose that we wish to solve the following linear system:
1.0 20 4.0
XO _
1.0 30 « - 150
0.0 00/Y |60

The vector b does not lie in the two-dimensional subspace spanned by the columns of
A (thereisno linear combination of the columns of A that yield b), and therefore an
exact solution is not possible.

b

/vcol umn2 .
>
Pb
column 1

Figure 22-4: Overdetermined System Diagram

Itis possible, however, to find a solution to this system that minimizes the residual
error by orthogonally projecting the vector b onto the two-dimensional subspace
spanned by the columns of the array A. The projected vector is then used as the right-
hand side of the system. The orthogonal projection of b onto the column space of A
may be expressed with the array-vector product A(ATA)ATb, where A(ATA) AT is
known as the projection matrix, P.

Linear Systems

468 Chapter 22: Mathematics
In this example, the array-vector product Pb yields:

4.0
5.0
0.0

and we wish to solve the linear system

1.0 2.0 4.0
1.0 3.0 *ol= 5.0/ Where Xo| = {20}

1.0
0.0 00U |00 X1

In many cases, the explicit calculation of the projected solution is numerically
unstable, resulting in large accumulated round-off errors. For this reason it is best to
use singular value decomposition to effect the orthogonal projection of the vector b
onto the subspace spanned by the columns of the array A.

Thefollowing IDL commands use singular value decomposition to solve the system
in anumerically stable manner. Begin with the array A:

A=1[[1.0, 2.0], $
[1.0, 3.0], $
[0.0, 0.0]]

; Define the right-hand side vector B:

B=1[4.0, 5.0, 6.0]

; Conpute the singular val ue deconposition of A:
SVDC, AL W U, V

Create adiagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 x 10™ are reciprocated.
N = N_ELEMENTS(W
WP = FLTARR(N, N)
FORK=0, N1DOS$
| F ABS(WK)) GE 1.0e-5 THEN WP(K, K) = 1.0/ WK)

Linear Systems Using IDL

Chapter 22: Mathematics 469

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipes for aderivation of thisformula.)

X = V ## WP ## TRANSPOSE(U) ## B
; Print the solution:
PRI NT, X

IDL Prints:
2. 00000
1. 00000

Underdetermined Systems

Example

In the case of the underdetermined system (when there are fewer linear equations
than unknowns), a unique solution is not possible. Using IDL’s SYDC procedureit is
possible to determine the minimal norm solution. Given a vector norm, this type of
solution has the property of having the minimal length of all possible solutions with
respect to that norm.

Suppose that we wish to solve the following linear system.

Xo
1.0 3.03020 x| 1.0
20 6.09.050 o 5.0
-1.0-303.000[|% 5.0
X3

Using elementary row operationsit is possible to reduce the system to

Xo
1.0 3.0 3.0 2.0 x| 1.0
0.0 0.0 3.0 1.0 o 3.0
0.0 0.0 0.0 0.0/ |2 0.0
X3

It is now possible to express the solution x in terms of X; and Xg:

The values of x; and X3 are completely arbitrary. Setting x; = 0 and x3 = 0 resultsin
one possible solution of this system:

Another possible solution is obtained using singular value decomposition and results
in the minimal norm condition. The minimal norm solution for this systemis:

Using IDL Linear Systems

470 Chapter 22: Mathematics

-2.0
0.0
1.0
0.0

X =

—0.211009
—0.633027
0.963303
0.110092

Note that this vector also satisfies the solution X as it is expressed in terms of x; and
X3.

Thefollowing IDL commands use singular value decomposition to find the minimal
norm solution. Begin with the array A:

A=1[[1.0, 3.0, 3.0, 2.0], $
[2.0, 6.0, 9.0, 5.0], $
[-1.0, -3.0, 3.0, 0.0]]
Define the right-hand side vector B:
B=[1.0, 5.0, 5.0]
; Conpute the deconposition of A:
SVDC, AL W U, V

Create adiagonal array WP of reciprocal singular values from the output vector W.
To avoid overflow errors when the reciprocal values are calculated, only elements
with absolute values greater than or equal to 1.0 x 10™ are reciprocated.

N = N_ELEVENTS(W
W = FLTARR(N, N)
FORK=0 N1DOS$
I|F ABS(WK)) GE 1.0e-5 THEN WP(K, K) = 1.0/ WK)

X =

Linear Systems Using IDL

Chapter 22: Mathematics 471

We can now express the solution to the linear system as a array-vector product. (See
Section 2.6 of Numerical Recipesfor aderivation of thisformula.) The solution is
expressed in terms of x; and Xz with minimal norm.

X =V ## WP ## TRANSPOSE(U) ## B
;Print the solution:
PRI NT, X

IDL Prints:;

-0.211009
-0.633027
0. 963303
0.110092

Complex Linear Systems

Example

Wecanuse IDL'sLU_COMPLEX function to compute the solution to alinear system
with real and complex coefficients. Suppose we wish to solvethe following linear system:

-1+0i 1-3i 2+0i 3+3i 15-2i
—-2+0i —1+3i 0+1i 3+1i - -2-1
3+0i O0+4i 0-1i 0-3i —20 + 11i
2+0i 1+1i 2+1i 2+1i — 10+ 10i

;First we define the real part of the conplex coefficient array:
re =[[-1, 1, 2, 3], $
[-2, -1, 0, 3], $
1,
1]
efine the imaginary part of the coefficient array:
im=1[[0, -3, O, 3], $
[0, 3, 1, 1], $

0,
2,
i

[0, 4, -1, -3], $
[0, 1, 1, 1]]
Conbine the real and inmaginary parts to form
a single conplex coefficient array:
A = COWLEX(re, im
Define the right-hand side vector B:
B = [COWLEX(15,-2), COWPLEX(-2,-1), COWPLEX(-20,11), $
COWPLEX(- 10, 10)
Conpute the solution using doubl e-precision conplex arithnetic:
Z = LU COWLEX(A, B, /DOUBLE)

Using IDL Linear Systems

472

Chapter 22: Mathematics

PRI NT, TRANSPOSE(Z), FORMAT = '(f5.2, ",", 5.2, "i")"
IDL prints:
-4.00, 1.00i
2.00, 2.00i
0.00, 3.00i
-0.00, - 1. 00i
We can check the accuracy of the computed solution by computing the residual,
Az-D:
PRI NT, A##Z-B
IDL prints:
(0. 00000, 0. 00000)
(0. 00000, 0. 00000)
(0. 00000, 0. 00000)
(0. 00000, 0. 00000)

Routines for Solving Simultaneous Linear Equations

Below is abrief description of IDL routines for solving simultaneous linear
equations. More detailed information is available in the IDL Reference Guide.

CHOLDC Constructs Cholesky decomposition of a matrix.

CHOLSOL Solves set of linear equations (use with CHOLDC).

COND Computes the condition number of a square matrix.

CRAMER Solves system of linear equations using Cramer’srule.

CROSSP Computes vector cross product.

DETERM Computes the determinant of a square matrix.

GS ITER Solves linear system using Gauss-Seidel iteration.

IDENTITY Returns an identity array.

INVERT Computes the inverse of a square array.

LINBCG Solves a set of sparse linear equations using the iterative
biconjugate gradient method.

LU_COMPLEX | Solvescomplex linear system using LU decomposition.

Table 22-8: Routines for Solving Simultaneous Linear Equations

Linear Systems

Using IDL

Chapter 22: Mathematics

Using IDL

473

LUDC Replaces array with the LU decomposition.

LUMPROVE Uses LU decomposition to iteratively improve an approximate
solution.

LUSOL Solves a set of linear equations. Use with LUDC.

NORM Computes Euclidean norm of vector or Infinity norm of array.

SvDC Computes Singular Value Decomposition of an array.

SVSOL Solves set of linear equations using back-substitution.

TRACE Computes the trace of an array.

TRISOL Solvestridiagonal systems of linear equations.

Table 22-8: Routines for Solving Simultaneous Linear Equations

Linear Systems

474 Chapter 22: Mathematics

Nonlinear Equations

The problem of finding a solution to a system of n nonlinear equations, F(x) = 0, may
be stated as follows:

given F: R" - R", find x« (an element of R™) such that F(x«) =0

For example:

X« =[0, 3] or x« =[3, 0]

Note
A solution to a system of nonlinear equations is not necessarily unique.

The most powerful and successful numerical methods for solving systems of
nonlinear equations are loosely based upon a simple two-step iterative method
frequently referred to as Newton's method. This method begins with an initial guess
and constructs a solution by iteratively approximating the n-dimensional nonlinear
system of equations with an n-by-n linear system of equations.

Thefirst step formulates an n-by-n linear system of equations (Js = —F) where the
coefficient array Jisthe Jacobian (the array of first partial derivativesof F), sisa
solution vector, and — F is the negative of the nonlinear system of equations. Both J
and — F are evaluated at the current value of the n-element vector x.

H) 5= —F(x)

The second step uses the solution s, of the linear system as adirectional update to the
current approximate solution x, of the nonlinear system of equations. The next
approximate solution X1 isalinear combination of the current approximate solution
Xy and the directional update s;.

Xer1 = X T S
The success of Newton’'s method relies primarily on providing an initial guess close

to a solution of the nonlinear system of equations. In practice this proves to be quite
difficult and severely limits the application of this simple two-step method.

IDL provides two algorithms that are designed to overcome the restriction that the
initial guess be close to a solution. These algorithms implement aline search which
checks, and if necessary modifies, the course of the algorithm at each step ensuring

Nonlinear Equations Using IDL

Chapter 22: Mathematics 475

progress toward a solution of the nonlinear system of equations. IDL's NEWTON
and BROY DEN functions are among a class of algorithms known as quasi-Newton
methods.

The solution of an n-dimensional system of nonlinear equations, F(x) = 0, is often
considered aroot of that system. As aone-dimensional counterpart to NEWTON and
BROYDEN, IDL providesthe FX_ROOT and FZ_ROOTS functions.

Routines for Solving Nonlinear Equations

Below isabrief description of IDL routines for solving systems of nonlinear
equations. More detailed information is available in the IDL Reference Guide.

BROY DEN Solves nonlinear equations using Broyden's method.

FX_ROQOT Computes real and complex roots of a univariate nonlinear
function using an optimal Muller’s method.

FZ ROOTS Finds the roots of a complex polynomial using Laguerre's
method.

NEWTON Solves nonlinear equations using Newton’s method.

Table 22-9: Routines for Solving Nonlinear Equations

Using IDL Nonlinear Equations

476

Chapter 22: Mathematics

Optimization

Optimization

The problem of finding an unconstrained minimizer of an n-dimensional function, f,
may be stated as follows:

givenf: R" - R, find x« (an element of R") such that f(x«) isaminimum of f.

For example:

(9 = (6 =3)*+ (%, - 2
Xs = [3, 2]
In minimizing an n-dimensional function f, it is a necessary condition that the

gradient at the minimizer x«, Vf(x«), be the zero vector. Mathematically expressing
this condition defines the following system of nonlinear equations.

of(x)

0Xg

of(x)

0Xq

o)
aXn—l

Thisrelation might suggest that finding aminimizer is equivalent to solving a system
of linear equations based on the gradient. In most cases, however, thisisnot true. It is
just as likely that a solution, x, of Vf(X)=0 be a maximizer or alocal minimizer of f.
Thus the gradient alone does not provide sufficient information in determining the
role of X.

IDL provides two algorithms that do sufficiently determine the global minimizer of
an n-dimensiona function. IDL’s DFPMIN routine is among a class of algorithms
known as variable metric methods and requires a user-supplied analytic gradient of
the function to be minimized. IDL’s POWELL routine implements a direction-set
method that does not require a user-supplied analytic gradient. The utility of the
POWELL routineis evident as the function to be minimized becomes more
complicated and partial derivatives become more difficult to calculate.

Using IDL

Chapter 22: Mathematics 477

Routines for Optimization

Below is abrief description of IDL routines for optimization. More detailed
information is available in the IDL Reference Guide.

AMOEBA Minimizes afunction using downhill ssmplex method.

CONSTRAINED_MIN Minimizes afunction using Generalized Reduced
Gradient Method.

DFPMIN Minimizes afunction using Davidon-Fletcher-Powell
method.

POWELL Minimizes afunction using the Powell method.

Table 22-10: Optimization Routines in IDL

Using IDL Optimization

478 Chapter 22: Mathematics

Sparse Arrays

The occurrence of zero elementsin alarge array is both a computational and storage
inconvenience. An array in which alarge percentage of elements are zerosisreferred
to as being sparse.

Because standard linear algebra techniques are highly inefficient when dealing with
sparse arrays, IDL incorporates a collection of routines designed to handle them
effectively. These routines use the row-indexed sparse storage method, which stores
the array in structure form, as a vector of dataand a vector of indices. The length of
each vector is equal to 1 plus the number of diagonal elements of the array plusthe
number of off-diagonal elements with an absolute magnitude greater than or equal to
a specified threshold value. Diagonal elements of the array are always retained even
if their absolute magnitude is less than the specified threshold. Sparse array routines
that handle array-vector and array-array multiplication, file input/output, and the
solution of systems of simultaneous linear equations are included.

Note
For more information on IDL’s sparse array storage method, see section 2.7,
“Sparse Linear Systems,” in Numerical Recipesin C: The Art of Scientific
Computing (Second Edition), published by Cambridge University Press.

When considering using IDL’s sparse array routines, remember that the
computational savings gained by working in sparse storage format is at least partially
offset by the need to first convert the arrays to that format. Although an absolute
determination of when to use sparse format is not possible, the example below
demonstrates the time savings when solving a 500 by 500 linear system in which
approximately 50% of the coefficient array’s elements as zeros.

Diagonally-Dominant Array

Example

Create a 500-by-500 element pseudo-random diagonally-dominant floating-point
array in which approximately 50% of the elements as zeros. (In a diagonally-
dominant array, the diagonal element in agiven row is greater than the sum of the
absolute values of the non-diagonal elementsin that row.)

N = 500L

A = RANDOWMN(SEED, N, N)*10

; Set elements with absol ute nagnitude greater than or
; equal to eight to zero:

I = WHERE(ABS(A) CE 8)

Sparse Arrays Using IDL

Chapter 22: Mathematics 479

All]l] =0.0

; Set each diagonal elenent to the absol ute sum of

; its row elements plus 1.0:

diag = TOTAL(ABS(A), 1)

A(INDGEN(N) * (N+1)) = diag + 1.0

; Create a right-hand side vector, b, in which 40% of
: the elenents are ones and 60% are twos.

B = [REPLI CATE(1.0, 0.4*N), REPLICATE(2.0, 0.6*N)]

We now calculate a solution to this system using two different methods, measuring
the time elapsed. First, we compute the solution using the iterative biconjugate
gradient method and a sparse array storage format. Note that we include everything
between the start and stop timer commands as a single operation, so that only
computation time (as opposed to typing time) is recorded.

;Begin with an initial guess:

X = REPLI CATE(1.0, N_ELEMENTS(B))
;Start the tinmer:

start = SYSTIME(1l) & $

; Sol ve the system

resultl = LINBCG(SPRSIN(A), B, X) & $
;Stop the tiner.

stop = SYSTI ME(1)

;Print the time taken, in seconds:

PRINT, 'Time for Iterative Biconjugate Gradient:', stop-start
IDL prints:
Time for lterative Biconjugate G adient 1. 1259040

Remember that your result will depend on your hardware configuration.

Next, we compute the solution using LU decomposition.

;Start the tinmer:

start = SYSTIME(1l) & $

; Conpute the LU deconposition of A

LUDC, A, index & $

; Comput e the sol ution:

result2 = LUSOL(A, index, B) & $

;Stop the tiner:

stop = SYSTI ME(1)

;Print the tine taken, in seconds:

PRINT, 'Time for LU Deconposition:', stop-start

IDL prints:
Time for LU deconposition 14.871168

Finally, we can compare the absolute error between resultl and result2. The
following commands will print the indices of any elements of the two results that

Using IDL Sparse Arrays

480 Chapter 22: Mathematics

differ by more than 1.0 x 10°°, or a—1 if the two results are identical to within five
decimal places.

error = ABS(resultl-result?2)
PRI NT, WHERE(error GI 1.0e-5)

IDL prints:
-1

See the documentation for the WTN function for an example using IDL’s sparse array
functions with image data.

Note
The times shown here were recorded on a DEC 3000 Alphaworkstation running

OSF/1; they are shown as examples only. Your times will depend on your specific
computing platform.

Routines for Handling Sparse Arrays

Below isabrief description of IDL routines for handling sparse arrays. More detailed
information isavailablein the IDL Reference Guide. Note that SPRSIN must be used
to convert to sparse storage format before the other routines can be used.

FULSTR Restores a sparse matrix to full storage mode.

LINBCG Solves a set of sparse linear equations using the iterative
biconjugate gradient method.

READ_SPR Reads a row-indexed sparse matrix from afile.

SPRSAB Performs matrix multiplication on sparse matrices.

SPRSAX Multiplies sparse matrix by avector.

SPRSIN Converts matrix to row-index sparse matrix.

SPRSTP Constructs the transpose of a sparse matrix.

WRITE_SPR Writes row-indexed sparse array structure to afile.

Table 22-11: Sparse Array Routines in IDL

Sparse Arrays Using IDL

Chapter 22: Mathematics 481

Time-Series Analysis

Using IDL

A time-seriesis a sequential collection of data observations indexed over time. In
most cases, the observed datais continuous and is recorded at a discrete and finite set
of equally-spaced points. An n-element time-seriesis denoted as x = (Xg, X1, Xo, ... ,
Xn_1), Where the time-indexed distance between any two successive observations is
referred to as the sampling interval.

A widely held theory assumes that atime-series is comprised of four components:
e A trend or long term movement.
e A cyclica fluctuation about the trend.
e A pronounced seasonal effect.
e Aresidud, irregular, or random effect.

Coallectively, these components make the analysis of atime-series afar more
challenging task than just fitting alinear or nonlinear regression model. Adjacent
observations are unlikely to be independent of one ancther. Clusters of observations
are frequently correlated with increasing strength as the time intervals between them
become shorter. Often the analysis is a multi-step process involving graphical and
numerical methods.

Thefirst step in the analysis of atime-seriesisthe transformation to stationary series.
A stationary series exhibits statistical properties that are unchanged as the period of
observation is moved forward or backward in time. Specifically, the mean and
variance of a stationary time-series remain fixed in time. The sample autocorrelation
function isacommonly used tool in determining the stationarity of atime-series. The
autocorrelation of a time-series measures the dependence between observations as a
function of their time differences or lag. A plot of the sample autocorrelation
coefficients against corresponding lags can be very helpful in determining the
stationarity of atime-series.

For example, suppose the IDL variable X contains time-series data:

X = [5.44, 6.38, 5.43, 5.22, 5.28, $
5.21, 5.23, 4.33, 5.58, 6.18, $
6.16, 6.07, 6.56, 5.93, 5.70, $
5.36, 5.17, 5.35, 5.61, 5.83, $
5.29, 5.58, 4.77, 5.17, 5.33]

Time-Series Analysis

482 Chapter 22: Mathematics

The following IDL commands plot both the time-series data and the sample
autocorrelation versus the lags.

;Set the plotting wi ndow to hold two plots:
I'P. MULTI =[0, 1, 2]

;Plot the data:

PLOT, X

Compute the sample autocorrelation function for time lagged values 0 — 20 and plot.

lag = | NDGEN(21)

result = A CORRELATE(X, | ag)

PLOT, lag, result

;Add a reference line at zero:

PLOTS, [0,20], [0,0], /DATA

;Set the plotting wi ndow back to a single plot:
I'P. MULTI =0

The following figure shows the resulting graph.

Figure 22-5: The top graph plots time-series data. The bottom graph plots the
autocorrelation of that data versus the lag. Because the time-series has a
significant autocorrelation up to a lag of seven, it must be considered non-

stationary.

Time-Series Analysis Using IDL

Chapter 22: Mathematics 483

Nonstationary components of atime-series may be eliminated in a variety of ways.
Two frequently used methods are known as moving averages and forward
differencing. The method of moving averages dampens fluctuations in atime-series
by taking successive averages of groups of observations. Each successive
overlapping sequence of k observations in the series is replaced by the mean of that
sequence. The method of forward differencing replaces each time-series observation
with the difference of the current observation and its adjacent observation one step
forward in time. Differencing may be computed recursively to eliminate more
complex nonstationary components.

Once atime-series has been transformed to stationarity, it may be modeled using an
autoregressive process. An autoregressive process expresses the current observation,
X, @ acombination of past time-series values and residual white noise. The simplest
case is known as afirst order autoregressive model and is expressed as

X = 0% + ot

The coefficient ¢ is estimated using the time-series data. The general autoregressive
model of order pis expressed as

X = ¢1%e-1 thoXe o * .+ dpXep + O

Modeling a stationary time-series as a p-th order autoregressive process allows the
extrapolation of data for future values of time. This process is know as forecasting.

Routines for Time-Series Analysis

Using IDL

Below isabrief description of IDL routines for time-series analysis. More detailed
information is available in the IDL Reference Guide.

A_CORRELATE Computes autocorrelation.

C_CORRELATE Computes cross correlation.

SMOOTH Smooths with a boxcar average.

TS COEF Computes the coefficients for autoregressive time-series.
TS DIFF Computes the forward differences of atime-series.

TS FCAST Computes future or past values of a stationary time-series.
TS SMOOTH Computes moving averages of atime-series.

Table 22-12: Time-Series Analysis Routines in IDL

Time-Series Analysis

484 Chapter 22: Mathematics

Multivariate Analysis

IDL provides a number of tools for analyzing multivariate data. These tools are
broadly grouped into two categories: Cluster Analysis and Principal Components
Analysis.

Cluster Analysis

Cluster Analysis attempts to construct a sensible and informative classification of an
initially unclassified sample population using a set of common variables for each
individual. The clusters are constructed so as to group samples with the similar
features, based upon a set of variables. The samples (contained in the rows of an
input array) are each assigned a cluster number based upon the values of their
corresponding variables (contained in the columns of an input array).

In computing a cluster analysis, a predetermined number of cluster centers are
formed and then each sample is assigned to the unique cluster which minimizes a
distance criterion based upon the variables of the data. Given an m-column, n-row
array, IDL’s CLUST_WTS and CLUSTER functions compute n cluster centers and n
clusters, respectively. Conceivably, some clusterswill contain multiple sampleswhile
other clusters will contain none. The choice of clustersis arbitrary; in general,
however, the user will want to specify a number less than the default (the number of
rowsin the input array). The cluster number (the number that identifies the cluster
group) assigned to a particular sample or group of samplesis not necessarily unique.

It is possible that not all variables play an equal role in the classification process. In
this situation, greater or lesser importance may be given to each variable using the
VARIABLE_WTS keyword to the CLUST_WTS function. The default behavior isto
assume all variables contained in the data array are of equal importance.

Under certain circumstances, a classification of variables may be desired. The
CLUST_WTS and CLUSTER functions provide this functionality by first
transposing the m-column, n-row input array using the TRANSPOSE function and
then interchanging the roles of variables and samples.

Example of Cluster Analysis

Define an array with 5 variables (columns) and 9 samples (rows):

array = [[99, 79, 63, 87, 249],
[67, 41, 36, 51, 1141,
[67, 41, 36, 51, 114],
[94, 191, 160, 173, 124],
[42, 108, 37, 51, 411,

P Ph B PP

Multivariate Analysis Using IDL

Chapter 22: Mathematics 485

67, 41, 36, 51, 1141, $
94, 191, 160, 173, 124], $
99, 79, 63, 87, 2491, $
67, 41, 36, 51, 114 1]
Conpute the cluster weights with four cluster centers:
wei ghts = CLUST_WIS(array, N_CLUSTERS = 4)
Conpute the cluster assignnments, for each sanple,
into one of four clusters:
result = CLUSTER(array, weights, N _CLUSTERS = 4)
Di splay the cluster assignnent and correspondi ng sanple (row):
FORk =0, 8 DO $
PRI NT, result[Kk], array[*, K]

————

IDL prints:
1 99 79 63 87 249
3 67 41 36 51 114
3 67 41 36 51 114
0 94 191 160 173 124
2 42 108 37 51 41
3 67 41 36 51 114
0 94 191 160 173 124
1 99 79 63 87 249
3 67 41 36 51 114

Samples 0 and 7 contain identical dataand are assigned to cluster #1. Samples 1, 2, 5,
and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain
identical data and are assigned to cluster #0. Sample 4 is unique and is assighed to
cluster #2.

If this exampleisrun several times, each time computing new cluster weights, it is
possible that the cluster number assigned to each grouping of samples may change.

Principal Components Analysis

Using IDL

Principal components analysis is amathematical technique which describes a
multivariate set of data using derived variables. The derived variables are formulated
using specific linear combinations of the original variables. The derived variables are
uncorrelated and are computed in decreasing order of importance; the first variable
accounts for as much as possible of the variation in the original data, the second
variable accounts for the second largest portion of the variation in the original data,
and so on. Principal components analysis attempts to construct a small set of derived
variables which summarize the original data, thereby reducing the dimensionality of
the original data.

The principal components of a multivariate set of data are computed from the
eigenvalues and eigenvectors of either the sample correlation or sample covariance

Multivariate Analysis

486

Chapter 22: Mathematics

matrix. If the variables of the multivariate data are measured in widely differing units
(large variations in magnitude), it is usually best to use the sample correlation matrix
in computing the principal components; thisis the default method used in IDL’s
PCOMP function.

Another alternative is to standardize the variables of the multivariate data prior to
computing principal components. Standardizing the variables essentially makes them
all equally important by creating new variables that each have a mean of zero and a
variance of one. Proceeding in this way allows the principal components to be
computed from the sample covariance matrix. IDL’s PCOMP function includes
COVARIANCE and STANDARDIZE keywords to provide this functionality.

For example, suppose that we wish to restate the following data using its principal
components. There are three variables, each consisting of five samples.

Var 1 Var 2 Var 3
Sample 1 20 10 3.0
Sample 2 4.0 20 3.0
Sample 3 4.0 10 0.0
Sample 4 20 3.0 3.0
Sample 5 5.0 10 9.0

Table 22-13: Data for Principal Component Analysis

We compute the principal components (the coefficients of the derived variables) to 2
decimal accuracy and store them by row in the following array.

0.87 -0.70 0.69
0.01 -0.64 —0.66
049 0.32 -0.30

The derived variables {z;, z,, z3} are then computed as follows:

Multivariate Analysis Using IDL

Chapter 22: Mathematics 487

20 1.0 3.0
40 20 3.0
21 = (0.87)|40| + (=0.70) |1 o| + (0.69)|00
20 3.0 3.0
5.0 1.0 9.0)
20| 1.0 3.0
4.0 20 3.0
22 = (0.01)| 40 +(-0.64) 10 +(-066) 00
20 3.0 3.0
5.0] 1.0 9.0
20 1.0 3.0
4.0 20 3.0
23 = (049)| 40| + (032)| 19| +(-030) g0
20 3.0 3.0
5.0) 1.0 9.0)

In this example, analysis shows that the derived variable z; accounts for 57.3% of the
total variance of the original data, the derived variable z, accounts for 28.2% of the
total variance of the original data, and the derived variable z3 accounts for 14.5% of
the total variance of the original data.

Example of Derived Variables from Principal Components

The following example constructs an appropriate set of derived variables, based upon
the principal components of the original data, which may be used to reduce the
dimensionality of the data. The data consist of four variables, each containing of
twenty samples.

; Define an array with 4 variables and 20 sanpl es:

data = [[19.5, 43.1, 29.1, 11.9], $
[24.7, 49.8, 28.2, 22.8], $
[30.7, 51.9, 37.0, 18.7], $
[29.8, 54.3, 31.1, 20.1], $
[19.1, 42.2, 30.9, 12.9], $

Using IDL Multivariate Analysis

488

initialized as nonzero values prior to calling PCOMP,

coef

result
El GENVALUES = eval ,

PRI NT,

IDL prints:

81.
102.
109.
110.

81.
104.
121.
111.

97.
102.
118.
118.

81.

88.

74.
113.
109.
117.

91.
102.

Multivariate Analysis

i

OO NDAWOOUIOUIOUIO WWOOoOo O N

[25.
[31.
[27.
[22.
[25.
[31.
[30.
[18.
[19.
[14.
[29.
[27.
[30.
[22.
[25.

The variables that will contain the values returned by the COEFFICIENTS,
EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be

1 & eval
; Conpute the derived variabl es based upon
; the principal
= PCOWP(data, COEFFI Cl ENTS = coef,
VARI ANCES = var)

; Display the array of derived variabl es:

NNNUONNAPRPOROMAD

N

result,

OO UT~NOUPOFRPNOAIOOFRLNREPOWEREOO

53.
58.
52.
49.
53.
56.
56.
46.
44.
42.
54.
55.
58.
48.
51.

NOWANNUONOOOGTOR OO

o

23.
27.
30.
23.
24.
30.
28.
23.
28.
21.
30.
25.
24.
27.
27.

PONPWOWOOWOWONODO O N

o

1 & var

conponent s.

21.
27.

25

1

77,
1],

- 4],
21.
19.
25.
27.
11.
17.
12.
23.
22.
25.
14.
21.

3],
3],
4],
2],
77,
8],
8],
9],
6],
4],
8],
1]]

FORMAT = ' (4(f5.1,

-5.
-4.
- 6.
- 6.
-4.
- 5.
-5.
-4.
-4.
- 6.
- 5.
-4.
- 6.
-3.
-4.
-5.
- 5.
- 5.
- 6.
-4.

OFRP~NOPFRPOOWNWEFEPMAPONPOWNE O

COOLOLOLOLOLOLOOOO0O0O0O0O0O0O00OO0

[l Ne el le Mool el e le e N>l e Mo lNe) R I

PO O PP DDP DD NP DD

2x))"

$

Chapter 22: Mathematics

Using IDL

Chapter 22: Mathematics 489

Display the percentage of total variance for each derived variable:
PRI NT, var
IDL prints:

0.712422

0. 250319

0. 0370950
0. 000164269

Display the percentage of variance for the first two derived variables; the first two
columns of the resulting array above.

PRI NT, TOTAL(var[O0:1])
IDL prints:
0. 962741

Thisindicates that the first two derived variables (the first two columns of the
resulting array) account for 96.3% of the total variance of the original data, and thus
could be used to summarize the original data.

Routines for Multivariate Analysis

Using IDL

Below isabrief description of IDL routines for multivariate analysis. More detailed
information is available in the IDL Reference Guide.

CLUST _WTS Computes the cluster weights of an array for cluster
analysis.

CLUSTER Performs cluster analysis.

CTI_TEST Performs chi-square goodness-of -fit test.

KW_TEST Performs Kruskal-Wallis H-test.

M_CORRELATE Computes multiple correlation coefficient.

P_CORRELATE Computes partial correlation coefficient.

PCOMP Computes principal components/derived variables.

STANDARDIZE Computes standardized variables.

Table 22-14: Multivariate Analysis Routines in IDL

Multivariate Analysis

490 Chapter 22: Mathematics

References

Accuracy and Floating Point Operations
Burden, Richard L., J. Douglas Faires, and Albert C. Reynolds. Numerical Analysis.
Boston: PWS Publishing, 1993. ISBN 0-534-93219-3

Stoer, J., and R. Bulirsch. Introduction to Numerical Analysis. New York: Springer-
Verlag, 1980. ISBN 0-387-90420-4

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Correlation Analysis
Harnet, Donald L. Introduction to Statistical Methods. Reading, M assachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Neter, John., William Wasserman, and G.A. Whitmore. Applied Satistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Curve and Surface Fitting
Bevington, Philip R. Data Reduction and Error Analysis for the Physical Sciences.
New York: McGraw-Hill, 1969.
Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0
Eigenvalues and Eigenvectors
Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

References Using IDL

Chapter 22: Mathematics 491

Gridding and Interpolation

Lancaster, Peter and Kestutis Salkauskas. Curve and Surface Fitting (An
Introduction). San Diego: Academic Press, 1986. ISBN 0-124-36060-0

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Hypothesis Testing

Harnett, Donald H. Introduction to Satistical Methods. Reading, M assachusetts:
Addison-Wesley, 1975. ISBN 0-201-02752-6

Kraft, Charles H. and Constance Van Eeden. A Nonparametric Introduction to
Satistics. New York: Macmillan, 1968.

Sprent, Peter. Applied Nonparametric Satistical Methods. London: Chapman and
Hall, 1989. ISBN 0-412-30600-X

Integration

Chapra, Steven C. and Raymond P. Canale. Numerical Methods for Engineers. New
York: McGraw-Hill, 1988. ISBN 0-070-79984-9

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Linear Systems

Using IDL

Golub, Gene H. and Van Loan, Charles F. Matrix Computations. Baltimore: Johns
Hopkins University Press, 1989. ISBN 0-8018-3772-3

Kreyszig, Erwin. Advanced Engineering Mathematics. New York: Wiley & Sons,
Inc., 1993. ISBN 0-471-55380-8

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Strang, Gilbert. Linear Algebra and Its Applications. San Diego: Harcourt Brace
Jovanovich, 1988. ISBN 0-155-551005-3

References

492

Chapter 22: Mathematics

Nonlinear Equations

Dennis, J.E. Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Optimization

Dennis, J.E. J. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
ISBN 0-136-27216-9

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Sparse Arrays

Press, William H. et al. Numerical Recipesin C: The Art of Scientific Computing.
Cambridge: Cambridge University Press, 1992. ISBN 0-521-43108-5

Time-Series Analysis

Chatfield, C. The Analysis of Time Series. London: Chapman and Hall, 1975. ISBN
0-412-31820-2

Neter, John., William Wasserman, and G.A. Whitmore. Applied Statistics. Newton,
Massachusetts: Allyn and Bacon, 1988. ISBN 0-205-10328-6

Multivariate Analysis

References

Jackson, Barbara Bund. Multivariate Data Analysis. Homewood, Illinois: R.D. Irwin,
1983. ISBN 0-256-02848-6

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Kachigan, Sam Kash. Multivariate Satistical Analysis. New York: Radius Press,
1991. ISBN 0-942154-91-6

Using IDL

Part IV: Object
Graphics

Chapter 23:

Object Graphics

This chapter discusses the difference between IDL Direct Graphics and IDL Object Graphics, and
provides an overview of the IDL Object Graphics classes.

OVEIVIEW ..ot 496
Direct versus Object Graphics.......... 498
How to Use Object Graphics 500
Overview of Object Graphics Classes 502
Container Objects 504
StructureObjects, 505
Atomic Graphic Objects 506

Using IDL

CompositeObjects 509
Attribute Objects 510
Helper Objects 511
Destination Objects 512
FileFormat Objects 513
Propertiesof Objects 515

Undocumented Graphic Object Classes .. 517

495

496

Chapter 23: Object Graphics

Overview

Overview

The IDL Object Graphics system is a collection of pre-defined object classes, each of
which is designed to encapsulate a particular visual representation. Actions (such as
the modification of attributes, or data picking) may be performed on instances of
these object classes by calling corresponding pre-defined methods. These objects are
designed for building complex three-dimensional data visualizations.

For example, the IDLgrAXxis object provides an encapsulation of all of the
components associated with a graphical representation of an axis. One of the actions
that can be performed on an axisis retrieving the current value of one or more of its
attributes (such asits color, tick values, or datarange). This action may be performed
viathe IDLgrAXxis::GetProperty method. A complete listing of the types of objects
included in the Object Graphics system are described beginning in “ Overview of
Object Graphics Classes” on page 502.

Object Graphics should be thought of as a collection of building blocks. In order to
display something on the screen, the user selects the appropriate set of blocks and
puts them together so that as a group they provide avisual result. In this respect,
Object Graphics are quite different than Direct Graphics. A singleline of codeis
unlikely to produce a complete visualization. Furthermore, a basic understanding of
the IDL object system isrequired (for instance, how to create an object, how to call a
method, how to destroy an object, etc.). Because of the level at which these objects
are presented, Object Graphics are aimed at application programmers rather than
command line users.

Object Graphics do not interact in any way with the system variables (such as!P, X,
1Y, and !Z). Each graphic object is intended to encapsulate all of the information
required to fully describe itself. Reliance on external structuresis not condoned. The
advantage of this approach is that once an object is created, it will always behavein
the same way even if the system state is modified by another program, or if the object
is moved to another user’s IDL session, where the system state may have been
customized in a different way than the state in which the object was originally
defined.

Object Graphics are designed for building interactive three-dimensional visualization
applications. Direct manipulation tools (such as the Trackball object) are provided to
aid the application developer. Selection and data picking are also built in, so the
developer can spend less time working out data projection issues and more time
focusing on domain specific data analysis and visualization features.

Using IDL

Chapter 23: Object Graphics 497

Using IDL

Over time, Research Systems, Inc., will continue to build higher-level applications
with these objects, applications that are suitable for users who prefer not to become
programmers to interact with their data. The IDL Intelligent Tools (iTools) are good

examples of currently available applications built using Object Graphics. For more
information, see theiTools User’s Guide.

Additional examples based on Object Graphics can be found in the IDL demo.

Overview

498 Chapter 23: Object Graphics

Direct versus Object Graphics

Beginning with IDL version 5.0, IDL supports two distinct graphics modes: Direct
Graphics and Object Graphics. Direct Graphics rely on the concept of a current
graphics device; IDL commands like PLOT or SURFACE create images directly on
the current graphics device. Object Graphics use an object-oriented programmers
interface to create graphic objects, which must then be drawn, explicitly, to a
destination of the programmers choosing.

IDL Direct Graphics

If you have used versions of IDL prior to version 5.0, you are aready familiar with
IDL Direct Graphics. The salient features of Direct Graphics are:

« Direct Graphics use agraphics device (‘X' for X-windows systems displays,
‘WIN’ for Microsoft Windows displays, ‘PS' for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

¢ IDL commandsthat existed in IDL 4.0 use Direct Graphics. Commands like
PLOT, SURFACE, XYOUTS, MAP_SET, etc. all draw their output directly on
the current graphics device.

¢ Once adirect-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This meansthat if you wish to re-create the graphic on a
different device, you must re-issue the IDL commands to create the graphic.

* When you add anew item to an existing direct-mode graphic (using aroutine
like OPLOT or XYOUTS), the new item is drawn in front of the existing
items.

Documentation for IDL Direct Graphics routinesis found in the following volumes
of the IDL Documentation set: Using IDL, Building IDL Applications, and the IDL
Reference Guide.

IDL Object Graphics

Versions of IDL beginning with version 5.0 include Object Graphicsin addition to
Direct Graphics. The salient features of Object Graphics are:

¢ Object graphics are rendered in three dimensions. Rendering implies many
operations not needed when drawing Direct Graphics, including cal culation of
normal vectors for lines and surfaces, lighting considerations, and general
object overhead. As aresult, the time needed to render a given object—a

Direct versus Object Graphics Using IDL

Chapter 23: Object Graphics 499

surface, for example—will often be longer than the time taken to draw the
analogous image in Direct Graphics.

e Object graphics are device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

« Object graphics are object oriented. Graphic objects are meant to be created
and re-used; you may create a set of graphic objects, modify their attributes,
draw them to awindow on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing all of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.

e Object Graphics use a programmersinterface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics are designed to be used in programsthat are compiled and run. While
itisdtill possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program off line than to create graphics abjects on the fly.

« Because Object Graphics persist in memory, there is a greater need for the
programmer to be cognizant of memory issues and memory leakage. Efficient
design—remembering to destroy unused object references and cleaning up—
will avert most problems, but even the best designs can be memory-intensive if
large numbers of graphic objects (or large datasets) are involved.

Explanatory material on IDL’s object system is contained in Chapter 22, “ Object
Basics’ in the Building IDL Applications manual. For reference material describing
IDL’s object classes, see the “ Object Class and Method Reference” inthe IDL
Reference Guide manual.

Using IDL Direct versus Object Graphics

500 Chapter 23: Object Graphics

How to Use Object Graphics

All Object Graphics applications require at least two basic building blocks. These
include:

¢ A destination object - the device (such as awindow, memory buffer, file,
clipboard, or printer) to which the visualization is to be rendered. For more
information, see “ Destination Objects’ on page 512

* A view object - the viewport rectangle (within the destination) within which
the rendering is to appear (as well as how data should be projected into that
rectangle).

For example:

;Create a destination object, in this case a w ndow
oW ndow = OBJ_NEW' | DLgr W ndow)

;Create a viewport that fills the entire w ndow
oView = OBJ_NEW' I DLgrView)

;Draw the view within the w ndow.

OW ndow >Dr aw, oVi ew

By themselves, awindow and a single view are not particularly enlightening, but you
will find that these two types of objects are utilized by al Object Graphics
applications. To change an attribute of an object, you do not have to create a new
instance of that object. Instead, use the SetProperty method on the original object to
modify the value of the attribute.

For example, to change the color of the view to gray:

;Set the color property of the view
OVi ew >Set Property, COLOR=[60, 60, 60]
; Redr aw:

OW ndow >Dr aw, oVi ew

If more than one view isto be drawn to the destination, then an additional object is
required:

e A sceneobject - a container of views
For example:

Create a scene and add our original viewto it:
OScene = OBJ_NEW' | DLgr Scene’)
oScene->Add, oView
Modi fy our original view so that it covers
; the upper left quadrant of the w ndow.
OVi ew >Set Property, LOCATION=[0.0,0.5], DIMENSIONS=[0.5,0.5], $
UNI TS=3

How to Use Object Graphics Using IDL

Chapter 23: Object Graphics 501

Create and add a second red view that covers
; the right half of the w ndow.
Oview2 = OBJ_NEW' I DLgrView , LOCATION=[0.5,0.0], $
DI MENSI ONS=[0. 5, 1. 0] , UNI TS=3, COLOR=[255, 0, 0])
OScene- >Add, oVi ew2
Now draw t he scene, rather than the view, to the w ndow
OW ndow >Dr aw, o0Scene

In the examples so far, the views have been empty canvases. For data visualization
applications, these views will need some graphical content. To draw visual
representations within the views, two additional types of objects are required:

e A model object - atransformation node

* Anatomic graphic object - a graphical representation of data (such as an axis,
plot line, or surface mesh). For more information, see “Atomic Graphic
Objects’” on page 506.

For example, to include atext label within aview:

Create a nodel and add it to the original view
oMbdel = OBJ_NEW'' | DLgr Model ')
oVi ew >Add, oMbdel
Create a text object and add it to the nodel:
oText = OBJ_NEW' I DLgrText',' Hello World', ALI GNMENT=0. 5)
oModel - >Add, oText
Redraw t he scene:
OW ndow >Dr aw, 0Scene

Notice that the scene, views, model, and text are all combined together into a self-
contained hierarchy. It isthe overal hierarchy that is drawn to the destination object.

The transformation associated with the model can be modified to impact the text it
contains. For example:

Rot ate by 90 degrees about the Z-axis:
oModel ->Rotate, [0,0,1], 90

Redr aw:.
OW ndow >Dr aw, oScene

When the objects are no longer required, they need to be destroyed. Destination
objects must be destroyed separately, but the graphic hierarchies can be destroyed in
full by simply destroying the root of the hierarchy. For example:

OBJ_DESTROY, oW ndow
OBJ_DESTROY, o0Scene

In this example, the destruction of the scene will cause the destruction of al of its
children (including the views, model, and text).

Using IDL How to Use Object Graphics

502 Chapter 23: Object Graphics

Overview of Object Graphics Classes

The following sections provide an overview of the different types of objectsincluded
inthe IDL Object Graphics classlibrary. In order to describe the attributes of the IDL
Object Graphics classes, we have grouped the objects into functional categories:
Container Objects, Structure Objects, Atomic Graphic Objects, Composite Objects,
Attribute Objects, Helper Objects, Destination Objects, and File Format Objects.

Note
These category names are purely descriptive; for example, structure objects contain
the IDLgrModel, IDLgrScene, and IDLgrView classes, but no class named
structure. There is one exception to this rule: the container objects category which
includesthe IDL_Container class.

This chapter does not describe the relationships between object classes. See Chapter
24, “The Graphics Object Hierarchy” for a discussion of the object tree.

Naming Conventions

In general, object classes shipped with IDL have names of the form:
| DLxxYyyy

where xx represents the broad functional grouping (gr for graphics objects, db for
database objects, and an for analysis, for example). Yyyy isthe class name itself
(such as Axi s or Sur f ace). Object classes that are useful in more than one
functional context (container objects, for example) omit the functional grouping code
entirely (IDL_Container). All object classes shipped with IDL are prepended with the
letters IDL—we strongly suggest that you do not use this prefix when writing your
own object classes, aswe will continue to add new object classes using this
convention.

The typographica convention used to describe IDL objectsis slightly different from
that used for non-object functions and procedures. Whereas non-object procedures
are presented in upper case letters, object classes and methods use mixed case. For
example, we refer to the PLOT routine, but to the IDLgrPlot object. Method names
are also presented in mixed case (IDLgrAXxis::GetProperty).

Overview of Object Graphics Classes Using IDL

Chapter 23: Object Graphics 503

Common Methods

In addition to their own specific methods, all object classes shipped with IDL except
for the IDL_Container class have four methods in common: Cleanup, Init,
GetProperty, and SetProperty. The Cleanup and Init methods are life-cycle methods,
and cannot be called directly except within a subclass' Cleanup or Init method. (See
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.) The
GetProperty and SetProperty methods allow you to inspect (get) or change (set) the
various properties associated with a given object. Properties associated with graphics
objects include things like color, location, line style, or data.

Using IDL Overview of Object Graphics Classes

504 Chapter 23: Object Graphics

Container Objects

IDL’s container object, realized in the IDL_Container class, provides away to group
disparate IDL objects into single object. Container objects provide a convenient way
to move or destroy groups of objects; when a container is destroyed, its Cleanup
method automatically calls the Cleanup methods of all the objects in the container
and destroys them as well.

See“IDL_Container” in the IDL Reference Guide manual for details.

Container Objects Using IDL

Chapter 23: Object Graphics 505

Structure Objects

Structure objects create a hierarchy of graphic objects—an object tree. Structure
objects aso contain the information necessary to transform graphics objectsin space.
Building an object tree allows you to manipulate groups of graphic objects easily by
transforming a single IDLgrModel object to which members of the group belong.
(See Chapter 24, “The Graphics Object Hierarchy” for a discussion of the object
tree)

Model

Objects of the IDLgrModel class serve as containers for individual graphic objects
(plot lines, axes, text, etc.) and for other model objects. Model objects include a
three-dimensional transformation matrix that describes how the model and all of its
components are positioned in space. Altering the model’s transformation matrix
changes the position and orientation of any objects the model contains. If amodel
object contains another model object, the contained model is positioned according to
both its own transformation matrix and that of its container.

See“IDLgrModel” in the IDL Reference Guide manual for further details.
View

Objects of the IDLgrView class serve as containers for model objects. A view object
can be supplied as the argument to a Draw method.

See“IDLgrView” inthe IDL Reference Guide manual for further details.
Viewgroup

Objects of the IDLgrViewgroup class serve as containers for views. A viewgroup
object can be supplied as the argument to a Draw method.

See“IDLgrViewgroup” in the IDL Reference Guide manual for further details.

Scene

Objects of the IDLgrScene class serve as containers for view and view group objects.
A scene object can be supplied as the argument to a Draw method.

See“IDLgrScene” in the IDL Reference Guide manual for further details.

Using IDL Structure Objects

506 Chapter 23: Object Graphics

Atomic Graphic Objects

Atomic Graphic Objects, or graphics atoms, are the low-level objects used to create
images. Graphics atoms have attributes such as size, color, width, or associated color
palette. Graphics atoms do hot include a transformation matrix and do not contain
other abjects.

AXis
Objects of the IDLgrAXxis class are individual axes. One axis object isrequired for

each axis line to be rendered.
See“IDLgrAXis’ in the IDL Reference Guide manual for further details.

Contour
Objects of the IDLgrContour class are lines representing contour information plotted
from user data.

See“IDLgrContour” in the IDL Reference Guide manual for further details.
Image
Objects of the IDLgrImage class are two-dimensional arrays of datawith an

associated mapping of the data values to pixel values.
See“IDLgrImage’ in the IDL Reference Guide manual for further details.

Light

Objectsof the IDLgrLight class are light sources by which atomic graphic objects are
illuminated. Light objects are not actually rendered, but are included as graphics
atoms (meaning they must be contained in amodel object) so that they can be
positioned and transformed along with the graphic objects they illuminate. If no light
object isincluded in a particular view, default lighting is supplied.

See“IDLgrLight” in the IDL Reference Guide manual for further details.

Plot

Objects of the IDLgrPlot class are individual plot lines, created from a user-supplied
vector of dependent data values (and, optionally, a vector of independent data
values). Plot objects do not include axes.

Atomic Graphic Objects Using IDL

Chapter 23: Object Graphics 507
See“IDLgrPlot” in the IDL Reference Guide manual for further details.
Polygon
Objects of the IDLgrPolygon class are individual polygons, created from a user-

supplied array of data values.
See “IDLgrPalygon” in the IDL Reference Guide manual for further details.

Polyline

Objects of the IDLgrPolyline class are individual polylines, created from a user-
supplied array of data points. Locations of the data points supplied are connected by a
singleline.

See"IDLgrPolyline” in the IDL Reference Guide manual for further details.
Region of Interest

Objects of the IDLgrROI class are representations of aregion of interest. Regions of
interest are described as a set of verticesthat may be connected to generate apath or a
polygon, or may be treated as separate points.

See“IDLgrROI” in the IDL Reference Guide manual for further details.

Objects of the IDLgrROIGroup class are representations of a group of regions of
interest.

See “IDLgrROIGroup” in the IDL Reference Guide manual for further details.
Surface

Objects of the IDLgrSurface class are individual three-dimensional surfaces, created
from a user-supplied array of data values.

See“IDLgrSurface” in the IDL Reference Guide manual for further details.
Text

Objects of the IDLgrText class are text strings that can be positioned within the
rendering area.

See“IDLgrText” in the IDL Reference Guide manual for further details.

Using IDL Atomic Graphic Objects

508 Chapter 23: Object Graphics

Volume

Objects of the IDLgrVolume class map athree-dimensional array of datavaluesto a
three-dimensional array of voxel colors, which, when drawn, are projected to two
dimensions.

See“IDLgrVolume” in the IDL Reference Guide manual for further details.

Atomic Graphic Objects Using IDL

Chapter 23: Object Graphics 509

Composite Objects

A composite object is an encapsulation of agroup of other objects that together
provide a commonly useful graphical representation.

Colorbar

Objects of the IDLgrColorbar class are annotations that provide information about
the data val ues associated with colors used in a visualization.

See"IDLgrColorbar” in the IDL Reference Guide manual for further details.
Legend

Objects of the IDLgrLegend class are annotations that provide information about the
meaning of individual dataitemsor linesin avisualization.

See“IDLgrLegend” in the IDL Reference Guide manual for further details.

Using IDL Composite Objects

510 Chapter 23: Object Graphics

Attribute Objects

Attribute objects are used when rendering graphic objects, but exist outside the
hierarchy of Model-View-Scene objects that are actually rendered.

Font

Objects of the IDLgrFont class define the typeface, size, weight, and style of text
used when rendering a text object.

See"IDLgrFont” in the IDL Reference Guide manual for further details.
Palette

Objects of the IDLgrPalette class define a color lookup table that mapsindicesto red,
green, and blue values.

See“IDLgrPalette” in the IDL Reference Guide manual for further details.
Pattern

Objects of the IDLgrPattern class defines which pixels are filled and which are | eft
blank when a graphic abject isfilled.

See"IDLgrPattern” in the IDL Reference Guide manual for further details.
Symbol

Objects of the IDLgrSymbol class define graphical element that can be used when
plotting data.

See"IDLgrSymbol” in the IDL Reference Guide manual for further details.

Attribute Objects Using IDL

Chapter 23: Object Graphics 511

Helper Objects

Helper objects alter datain useful ways or provide other services. They exist outside
the hierarchy of Model-View-Scene objects that are actually rendered.

Tessellator

Objects of the IDLgrTessellator class convert a simple concave polygon (or asimple
polygon with holes) into a number of simple convex polygons (general triangles).
Tessdllation is useful because IDL’s polygon object handles only convex polygons.

See"IDLgrTessellator” in the IDL Reference Guide manual for further details.
TrackBall

Objects of the TrackBall class provide asimpleinterfaceto allow the user to trandlate
and rotate three-dimensional Object Graphics hierarchies displayed in an IDL
WIDGET_DRAW window using the mouse.

See“TrackBall” in the IDL Reference Guide manual for further details.

Using IDL Helper Objects

512 Chapter 23: Object Graphics

Destination Objects

Destination objects are objects on which object trees can be rendered (displayed on a
screen or printed on a printer).

Buffer

Objects of the IDLgrBuffer class represent an off-screen, in-memory data area that
may serve as a graphics source or destination.

See"IDLgrBuffer” in the IDL Reference Guide manual for further details.
Clipboard

Objects of the IDLgrClipboard class send Object Graphics to the operating system’s
native clipboard in bitmap format.

See"IDLgrClipboard” in the IDL Reference Guide manual for further details.
Printer

Objects of the IDLgrPrinter class represent a hardcopy graphics destination. By
default, printer objects represent the default system printer; you can use the IDL
routines DIALOG_PRINTJOB and DIALOG_PRINTERSETUP to change the

printer associated with a printer object.

See“IDLgrPrinter” in the IDL Reference Guide manual for further details.
VRML

Objects of the IDLgrVRML class allow you to save the contents of an Object
Graphics hierarchy asaVRML 2.0 format file.

See“IDLgrVRML"” inthe IDL Reference Guide manual for further details.
Window

Objects of the IDLgrwWindow class represent an on-screen areaon adisplay devicein
which graphic objects can be rendered.

See“IDLgrWindow” in the IDL Reference Guide manual for further details.

Destination Objects Using IDL

Chapter 23: Object Graphics 513
File Format Objects

DICOM

Objects of the IDLffDICOM class contain the data for one or more images embedded
inaDICOM Part 10file.

See“IDLffDICOM” in the IDL Reference Guide manual for further details.
DXF

Objects of the IDLffDXF class contain geometry, connectivity and attributes for
graphics primitives.

See“IDLffDXF" in the IDL Reference Guide manual for further details.
Language Catalogs

Objects of the IDLffLanguageCat class provide an interface to IDL language catalog
files.

See " IDLffLanguageCat” in the IDL Reference Guide manual for further details.
MrSID

Objects of the IDLffMrSID class are used to query information about and load image
datafrom aMrSID (. si d) imagefile.

See“IDLffMrSID” in the IDL Reference Guide manual for further details.
MPEG

Objects of the IDLgrMPEG class allow you to save an array of image frames as an
MPEG movie.

See"IDLgrMPEG” in the IDL Reference Guide manual for further details.
Shape Files

Objects of the IDLffShape class contain geometry, connectivity and attributes for
graphics primitives accessed from ESRI Shapefiles.

See " IDLffShape” in the IDL Reference Guide manual for further details.

Using IDL File Format Objects

514 Chapter 23: Object Graphics

VRML

Objects of the IDLgrVRML class allow you to save the contents of an Object
Graphics hierarchy asaVRML 2.0 format file.

See”IDLgrVRML” in the IDL Reference Guide manual for further details.
XML

Objects of the IDLFEXMLSAX class represent an XML SAX level 2 parser. The
XML parser alows you to read an XML file and store arbitrary datafrom thefilein
IDL variables.

See“IDLffXMLSAX” in the IDL Reference Guide manual for further details.

File Format Objects Using IDL

Chapter 23: Object Graphics 515

Properties of Objects

IDL’s graphics objects have anumber of associated properties—thingslike color, line
style, size, etc. Properties are set or changed via keywords to the object’s Init method
(specified when the object is created) or to the object’s SetProperty method. If you
are familiar with IDL Direct Graphics, many of the keywords used by IDL Object
Graphicswill be familiar to you. Note, however, that unlike IDL Direct Graphics, the
IDL Object Graphics system allows you to change the value of an object’s properties
without re-creating the entire object. (Objects must be redrawn, however, with a call
to the destination object’s Draw method, for the changes to become visible.)

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for the first time.
Do this by specifying any keywords to the object’s Init method directly in the call of
OBJ _NEW that creates the object. For example, suppose you are creating a plot and
wishto useared lineto draw the plot line. You could specify the COLOR keyword to
the IDLgrPlot::Init method directly in the call to OBJ_NEW:

myPlot = OBJ_NEW'IDLgrPlot', xdata, ydata, COLOR=[255, 0, 0])

Remember that in most cases, an object’s Init method cannot be called directly.
Argumentsto OBJ NEW are passed directly to the Init method when the object is
created.

For some graphics objects, you can specify a keyword that has the same meaning as
an argument. In Object Graphics, the value of the keyword overrides the value set by
the argument. For example,

myPlot = OBJ_NEW'IDLgrPlot', xdata, ydata, DATAX=newXDat a)
The Plot object uses the datain newXDat a for the plot's X data

Setting Properties of Existing Objects

Using IDL

After you have created an object, you can set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the single
call to OBJ_NEW shown above:
myPlot = OBJ_NEW' IDLgrPlot', xdata, ydata)
myPl ot -> SetProperty, COLOR=[255, 0, 0]
Note
Not all keywords available when the object is being initialized are necessarily
available via the SetProperty method. Keywords available when using an object’s

Properties of Objects

516 Chapter 23: Object Graphics

SetProperty method are noted with the word Set in parentheses after the keyword
name in the list of keywordsto the object’s Init method.

Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty

method. The GetProperty method accepts alist of keyword-variable pairs and returns
the value of the specified properties in the variables specified. For example, to return
the value of the COL OR property of the plot object in our example, use the statement:

myPl ot -> GetProperty, COLOR=pl otcol or
This returns the value of the COLOR property in the IDL variable plotcolor.

You can retrieve the values of all of the properties associated with a graphics object
by using the ALL keyword to the object’s GetProperty method. The following
Statement:

nyPl ot -> GetProperty, ALL=all props

returns an anonymous structure in the variabl e all props; the structure contains the
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily
available via the GetProperty method. Keywords available when using an object’s
GetProperty method are noted with the word Get in parentheses after the keyword
name in the list of keywordsto the object’s Init method.)

Properties of Objects Using IDL

Chapter 23: Object Graphics 517

Undocumented Graphic Object Classes

Several of IDL’s graphics objects are subclassed from more generic IDL objects. You
may see references to the generic IDL objects when using IDL’s HEL P procedure to
get information on an object, or when you use the OBJ ISA or OBJ CLASS
functions. You may also notice that the generic objects are not documented in the
“Object Class and Method Reference” in the IDL Reference Guide manual. Thisis
not an oversight.

We have chosen not to document the workings of the more generic objects from
which the IDL graphics objects are subclassed because we reserve the right to make
changes to their operation. We strongly recommend that you do not use the
undocumented object classes directly, or subclass your own object classes from them.
Research Systems, Inc. does not guarantee that user-written code that uses
undocumented features will continue to function in future releases of I1DL.

Using IDL Undocumented Graphic Object Classes

518 Chapter 23: Object Graphics

Undocumented Graphic Object Classes Using IDL

Chapter 24.

The Graphics Object

Hierarchy

The following topics are covered in this chapter:

OVEIVIBN ..o 520
SCENES ... 521
VIiewgroupsc.ooviiiiiiii 522
VIEWS .. 523
Models 524

Using IDL

Atomic Graphic Objects 525
Attribute and Helper Objects 526
The Rendering Process 527
SimplePlot Example 529

519

520

Chapter 24: The Graphics Object Hierarchy

Overview

Overview

In this chapter we will discuss the organization of a group of graphics objectsinto a
hierarchy or tree. A graphicstree may have any number of branches, each of whichin
turn may have any number of sub-branches, etc.

For example, a graphics object tree with four graphics atoms might be contained in
three separate model objects, which are in turn contained in two distinct view objects,
both of which are contained in one scene object. In this example (shown in the figure
below), the scene object is the root of the graphicstree.

graphics| |graphics| |graphics graphics
atom atom atom atom
Model Model Model
View View
Scene

Figure 24-1: A graphics object tree.

The advantage of organizing graphic objects into a tree structure is that by
manipulating any of the branches of the tree, all of the sub-branches of that branch
can be altered simultaneously. In our example, changes to the spatial transformation
associated with the model containing two graphics atoms will affect both of the
atoms. Similarly, calling awindow or printer object’s Draw method on the scene
object will render al of the objectsin the tree to that window or printer.

Using IDL

Chapter 24: The Graphics Object Hierarchy 521

Scenes

Using IDL

A scene, or instance of the IDLgrScene class, isthe root-level object of most graphics
trees. Instances of the IDLgrScene class have Add and Remove methods, which allow
you to include or remove IDLgrView or IDLgrViewgroup objectsin ascene. A scene
object is one of the possible arguments for a destination object’s Draw method.

It is not necessary to create a scene object if your graphics tree contains only one
view abject; in that case, the view can serve asthe root of the tree.

Scenes

522 Chapter 24: The Graphics Object Hierarchy
Viewgroups

A viewgroup, or instance of the IDLgrViewgroup class, is asimple container object,
similar to the Scene object. The Viewgroup differs from the Scene in two ways:

1. 1t will not cause an erase to occur on a destination when the destination
object’s Draw method is called.

2. It can contain objects which do not have Draw methods.

Viewgroups are designed to be placed within a scene, and therefor do not typically
serve as the root-level object of a graphicstree. Instances of the IDLgrViewgroup
class have Add and Remove methods, which allow you to include or remove objects
in aviewgroup.

Viewgroups Using IDL

Chapter 24: The Graphics Object Hierarchy 523
Views

A view, or instance of the IDLgrView class, can also serve as the root-level object of
agraphicstree. Instances of the IDLgrView class have Add and Remove methods,
which alow you to include or remove IDLgrModel objectsin aview. A view object
is one of the possible arguments for a destination object’s Draw method.

Every graphics tree must contain at least one view object. Often, it is convenient to

divide the objects being rendered into separate views, which are then contained by a
viewgroup or scene object.

Using IDL Views

524

Chapter 24: The Graphics Object Hierarchy

Models

Models

A model, or instance of the IDLgrModel class, is a container for atomic graphic
objects or for other model objects. The model object incorporates a transformation
matrix (see Chapter 25, “ Transformations” for an in-depth discussion of
transformation matrices) that appliesto al of the graphics atoms and model objectsit
contains. In addition to Add and Remove methods, the model object has methods to
Rotate, Scale, and Translate the model and its contents.

Using IDL

Chapter 24: The Graphics Object Hierarchy 525

Atomic Graphic Objects

An atomic graphic object, or graphic atom, is an instance of one of the following
classes: IDLgrAXxis, IDLgrContour, IDLgrimage, IDLgrLight, IDLgrPlot,
IDLgrPolygon, IDLgrPolyline, IDLgrSurface, IDLgrText, or IDLgrVolume.
Graphics atoms combined in amodel object (using the model object’s Add method)
share the same transformation matrix and can be rotated, scaled, or translated
together.

Using IDL Atomic Graphic Objects

526 Chapter 24: The Graphics Object Hierarchy

Attribute and Helper Objects

Attribute objects are used by atomic graphic objects to define how the graphics atom
will be rendered; attribute objects themselves are not drawn, and thus do not need to
be added to a model object. Attribute objects are instances of one of the following
classes: IDLgrFont, IDLgrPalette, IDLgrPattern, or IDLgrSymbol. For example, a
text object (agraphic atom) defines which type style it will be rendered in by setting
its FONT property equal to an instance of the IDLgrFont object.

Helper objects are used to change or create data to make it suitable for a particular
type of rendering. In IDL, there are several helper objects which are instances of the
following classes: IDLgrTessellator and TrackBall. The tessellator object changes a
simple concave polygon (or a simple polygon with holes) into a number of simple
convex polygons (general triangles) suitable for use by objects of the IDLgrPolygon
class. The trackball object translates widget events from a draw widget (created with
the WIDGET_DRAW function) into transformations that emulate a virtual trackball
(for transforming object graphics in three dimensions).

For more information, see Chapter 27, “Using Attributes and Helpers”.

Attribute and Helper Objects Using IDL

Chapter 24: The Graphics Object Hierarchy 527

The Rendering Process

In Object Graphics, rendering occurs when the Draw method of a destination object
iscalled. A scene, viewgroup, or view istypically provided as the argument to this
Draw method. This argument represents the root of a graphics hierarchy. When the
destination’s Draw method is called, the graphics hierarchy istraversed, starting at
the root, then proceeding to children in the order in which they were added to their
parent.

For example, suppose we have the following hierarchy:
oW ndow = OBJ_NEW' | DLgr W ndow)
oView = OBJ_NEW' I DLgrView)
oMbdel = OBJ_NEW'' | DLgr Model ')
oVi ew >Add, oMbdel
OXAxis = OBJ_NEW' | DLgrAxi s’, 0)
oModel - >Add, oXAxi s
OYAXi s = OBJ_NEW' I DLgrAxis', 1)
oMbdel - >Add, oYAXi s
To draw the view (and its contents) to the window, the Draw method of the window is
called with the view as its argument:

oW ndow >Dr aw, oVi ew

The window’s Draw method will perform any window-specific drawing setup, then
ask the view to draw itself. The view will then perform view-specific drawing (for
example, clearing arectangular areato a color), then calls the Draw method for each
of its children (in this case, thereis only one child, amodel). The model’s Draw
method will push its transformation matrix on a stack, then step through each of its
children (in the order in which they were added) and ask them to draw themselves. In
this example, oXAxiswill be asked to draw itself first; then oYAxiswill be asked to
draw itself. Once each of the model’s children is drawn, the transformation matrix
associated with the model is popped off of the stack.

Thus, for each object in the hierarchy, drawing essentially consists of three steps:
e Perform setup drawing for this object.
e Step through list of contained children and ask them to draw themselves.
e Perform follow-up drawing actions before returning control to parent.

The order in which objects are added to the hierarchy will have an impact on when
the objects are drawn. Drawing order can be changed by using the Move method of a
scene, viewgroup, view, or model to change the position of a specific object within
the hierarchy.

Using IDL The Rendering Process

528 Chapter 24: The Graphics Object Hierarchy

Thefirst time a graphic atom (such as an axis, plot line, or text) is drawn to agiven
destination, a device-specific encapsulation of its visual representation is created and
stored as a cache. Subsequent draws of this graphic atom to the same destination can
then be drawn very efficiently. The cache is destroyed only when necessary (for
example, when the data associated with the graphic atom changes). Graphic attribute
changes (such as color changes) typically do not cause cache destruction. To gain
maximum benefit from the caches, modification of atomic graphic properties should
be kept to bare minimum.

The Rendering Process Using IDL

Chapter 24: The Graphics Object Hierarchy 529

Simple Plot Example

The following section shows the IDL code used to create a simple object tree. While
you are free to enter the commands shown at the IDL command line, remember that
the IDL Object Graphics APl is designed as a programmer’s interface, and is not as
well suited for interactive, ad hoc work at the IDL command prompt as are IDL
Direct Graphics.

Thefollowing IDL commands construct asimple plot of an array versus the integer
indices of the array. Note that no axes, title, or other annotations are included; the
commands draw only the plot line itself. (This exampleis purposefully simple; itis
meant to illustrate the skeleton of a graphicstree, not to produce a useful plot.)

Create a view 2 units high by 100 units wi de
; Wth its origin at (0,-1):
view = OBJ_NEW' | DLgrView , VIEWLANE RECT=[O0, -1, 100, 2])
;. Create a nodel:
nmodel = OBJ_NEW'' | DLgr Model ')
; Create a plot line of a sine wave:
plot = OBJ_NEW ' IDLgrPlot', SINFINDGEN(100)/10))
; Create a window into which the plot line will be drawn:
wi ndow = OBJ_NEW' | DLgr W ndow)
; Add the plot line to the nodel object:
nmodel -> ADD, pl ot
; Add the nodel object to the view object:
view -> ADD, nodel
; Render the contents of the view object in the wi ndow
wi ndow - > DRAW Vi ew

To destroy the window and remove the objects created from memory, use the
following commands:

OBJ_DESTROY, W ndow

; Destroying the view object destroys all

; of the objects contained in the view
OBJ_DESTROY, view

Using IDL Simple Plot Example

530 Chapter 24: The Graphics Object Hierarchy

Simple Plot Example Using IDL

Chapter 25:

Transformations

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 532
Viewport 533
Projection.......................... 535
EyePosition........................ 537
ViewVolume 539

Using IDL

Model Transformations 542
Coordinate Conversion 545
Example: Centeringanimage 547
Example: DisplayingaSurface 550

Virtual Trackball and 3D Transformations 553

531

532

Chapter 25: Transformations

Overview

Unlike IDL Direct Graphics, the IDL Object Graphics system does not automatically
position and size the objects to be rendered. It is up to you, as a programmer, to
properly define how your graphic elements will be positioned when rendered.

There are three aspectsto this transformation from a generic depiction of your datato
arepresentation that can be rendered to an output device (a graphics destination
object, such asawindow or printer) with the perspective, size, and location you want.

Viewport

The first aspect is the view of the graphics objects to be rendered: the size of the
viewing area (the viewport), the type of projection used, the position of the viewer’'s
eye asit looks at the graphics objects, and the particular view volumein three-
dimensional space that will be rendered to the viewing area. These elements of the
view of your graphics objects are, appropriately, controlled by properties of the
IDLgrView object being rendered.

Location

The second aspect of the transformation is the location and position of your graphics
objects with respect to the viewing area. Graphics objects can be trans ated, rotated,
or scaled by setting the appropriate properties of the IDLgrModel object that contains
them.

Note
The viewport and location of an object are independent: It is possible, for example,
to trand ate a graphic object so that it is no longer within the viewing areathat is
rendered in awindow or on a printer.

Coordinate Systems and Scaling

Overview

The third aspect of the transformation is the conversion between data, device, and
normalized coordinates. The IDL Object Graphics system gives you full control over
which data values are used, which are displayed, and which coordinate systems are
used. This means that you must explicitly ensure that the objects to be rendered and
the view object to which they belong use the same coordinate system and are scaled

appropriately.

This chapter discusses the properties and methods used to size and position both your
viewing area and the graphics objects you wish to render.

Using IDL

Chapter 25: Transformations 533

Viewport

Using IDL

One of the first stepsin determining how graphics objects will appear when rendered
on a graphics destination object isto select the location and dimensions of the
rectangular area—the viewport—on the destination in which the rendering will be
displayed. Set the location and dimensions of the viewport using the LOCATION and
DIMENSIONS keywords to the IDLgrView::Init method when creating the view
object (or after creation using the SetProperty method). For example, the following
statement creates a view object with aviewport that is 300 pixels by 200 pixels, with
its lower left corner located 100 pixels up from the bottom and 100 pixels to the right
of the left edge of the destination object:

nyVi ew = OBJ_NEW' | DLgr Vi ew , LOCATI ON=[100, 100], $
DI MENSI ONS=[300, 200])

DIMENSION][0]

Viewport

[TINOISNAWIA

LOCATION (x,y)

Origin (0,0)

Figure 25-1: Positioning a view on the screen.

Both the LOCATION and DIMENSIONS properties of the view object honor the
value of the UNITS property, which specifies the type of units in which
measurements are made. (Pixels are the default units, so no specification of the
UNITS keyword was necessary in the above example.)

The viewport of an existing view can be changed using the SetProperty method:
myVi ew -> Set Property, LOCATI ON=[0, 0], DI MENSI ONS=[200, 200]

Viewport

534 Chapter 25: Transformations

changes the location of the viewport to have itslower |eft corner at (0, 0) and asize of
200 pixels by 200 pixels.

Note
The eye is positioned in only one dimension (along the z-axis) and always pointsin
the —z direction.

Viewport Using IDL

Chapter 25: Transformations 535

Projection

When three-dimensional graphics are displayed on aflat computer screen or printed
on paper, they must be projected onto the viewing plane. A projection is away of
converting positionsin 3D space into locationsin the 2D viewing plane. IDL
supports two types of projections—parallel and perspective—for each view.

Parallel Projections

A parallel projection projects objectsin 3D space onto the 2D viewing plane along
parallel rays. The figure below shows a parallel projection; note that two objects that

are the same size but at different locations still appear to be the same size when
projected onto the viewplane.

<— +Zaxis Z=0 -Zaxis —>

Figure 25-2: In a parallel projection, rays do not converge at the eye.

View objects use aparallel projection by default. To explicitly set aview object to use
aparaléel projection, set the PROJECTION keyword to the IDLgrView::Init method
equal to 1 (or use the SetProperty method to set the projection for an exiting view
object):

myVi ew -> Set Property, PROJECTION = 1

Using IDL Projection

536 Chapter 25: Transformations

Perspective Projections

A perspective projection projects objectsin 3D space onto the 2D viewing plane
along rays that converge at the eye position. The figure below shows a perspective
projection; note that objects that are farther from the eye appear smaller when
projected onto the viewplane.

€— +Zazis Z=0 -Zazis —>

Figure 25-3: In a perspective projection, rays converge at the eye.

Set the PROJECTION keyword to the IDLgrView::Init method equal to 2 (or use the
SetProperty method to set the projection for an exiting view object) to use a
perspective projection:;

myVi ew -> Set Property, PROJECTION = 2

Projection Using IDL

Chapter 25: Transformations 537

Eye Position

The eye position isthe position along the z-axis from which a set of objects contained
in aview object are seen. Use the EY E keyword to the IDLgrView::Init method to
specify the distance from the eye position to the viewing plane (or use the
SetProperty method to ater the eye position of an existing view object). The eye
position must be az value larger than the z value of the near clipping plane (see “Near
and Far Clipping Planes’ on page 539) or zero, whichever is greater. That is, the eye
must always be located at a positive z value, and must be outside the volume bounded
by the near and far clipping planes.

For example, the following moves the eye positionto z=5:
nmyVi ew -> Set Property, EYE=5

The eyeisaways positioned directly in front of the center of the viewplane rectangle.
That is, if the VIEWPLANE_RECT property isset equal to [-1, -1, 2, 2], the eye will
be located at X=0, Y=0.

Changing the position of the eye has no effect when you are using a parallel
projection. Changing the eye position when you are using a perspective projection
has a somewhat counter-intuitive affect: moving the eye closer to the near clipping
plane causes objects in the volume being rendered to appear smaller rather than
larger. To understand why this should be true, consider the following diagram.

€ +Zams Z=0 -Zamis —>

Figure 25-4: Moving the eye closer to the viewplane causes objects to appear
smaller.

Using IDL Eye Position

538 Chapter 25: Transformations

In a perspective projection, rays from the graphic objects in the view volume
converge at the eye position. When the eyeis close to the viewing plane, the projected
rays cross the viewing plane (where rendering actually occurs) in arelatively small
area. When the eye moves farther from the viewing plane, the projected rays become
more nearly parallel and occupy alarger area on the viewing plane when rendered.

Eye Position Using IDL

Chapter 25: Transformations 539

View Volume

The view volume defines the three-dimensional volume in space that, once projected,
isto fit within the viewport. There are two parts to the view volume: the viewplane
rectangle and the near and far clipping planes.

Viewplane Rectangle

The viewplane rectangle defines the bounds in the X and Y directions that will be
mapped into the viewport. Objects (or portions of objects) that lie outside the
viewplane rectangle will not be rendered. The viewplane rectangle is always located
at Z=0.

Usethe VIEWPLANE_RECT keyword to the IDLgrView::Init method (or use the
SetProperty method if you have already created the view object) to set the location
and extent of the viewplane rectangle. Set the keyword equal to afour-element
floating-point vector; the first two elements specify the X and Y location of the lower
left corner of the rectangle, and the second two elements specify the width and
height. The default rectangle is located at (-1.0, -1.0) and is two units wide and two
units high ([-1.0, —1.0, 2.0, 2.0]). For example, the following command changes the
viewplane rectangle to be located at (0.0, 0.0) and to be one unit square:

myVi ew -> Set Property, VIEWPLANE RECT = [0.0, 0.0, 1.0, 1.0]

Near and Far Clipping Planes

Using IDL

The near and far clipping planes define the bounds in the Z direction that will be
mapped into the viewport. Objects (or portions of objects) that lie nearer to the eye
than the near clipping plane or farther from the eye than the far clipping plane will
not be rendered. The figure below shows near and far clipping planes.

Use the ZCLIP keyword to the IDLgrView::Init method (or use the SetProperty
method if you have already created the view object) to set the near and far clipping
planes. Set the keyword equal to a two-element floating-point vector that defines the
positions of the two clipping planes: [near, far]. The default clipping planes are at
Z=1.0and Z=-1.0([1.0,-1.0]). For example, the following command changes the
near and far clipping planesto be located at Z = 2.0 and Z = —3.0, respectively.

myVi ew -> Set Property, ZCLIP = [2.0, -3.0]

View Volume

540

Chapter 25: Transformations

he B T
1 I
1 1
1 I -
| et
1 Lt 1
1 R 1
1 : 1
i { : Yoo
S 1
I TR
RO ° 1
T T R SRR
N 1
Eye . | :
[R > B
g [
v B < [AR
5.0 = 58
el=v] er=y
|:v—g_] 2 ':"D
=e. ’p__..d l*uE'
c: E i
= - =
= o =
=
- !
- o = -
€<— +Zagls Z=0 -Zaxis —>

Figure 25-5: Near and Far Clipping Planes. Object 2 is not rendered, because it

does not lie between the near and far clipping planes.

Finding an Appropriate View Volume

View Volume

Finding an appropriate view volume for a given object treeis relatively simplein
theory. To find the appropriate viewplane rectangle, you must find the overall X and Y
range of the object (usually amodel or scene abject) that contains the items drawn in
the object tree, accounting for any transformations of objects contained in the tree.
Similarly, to find the appropriate near and far clipping planes, you can find the Z
range of the object that contains the items drawn in the object tree. In practice,
however, finding, adding, and transforming the ranges for alarge object tree can be
complicated.

Two routines contained in the IDL distribution provide an example of how the view
volume can be computed in many cases. These routines are defined in the files

set _vi ew. pro and get _bounds. pr o, located in the

exanpl es/ vi sual /uti | ity subdirectory of the IDL distribution. The
SET_VIEW procedure accepts as arguments the object references of aview object
and a destination object, computes an appropriate view volume for the view object,
and setsthe VIEWPLANE_RECT property of the view object accordingly. The

Using IDL

Chapter 25: Transformations 541

Using IDL

SET_VIEW procedure callsthe GET_BOUNDS procedure to compute the X, Y, and
Z ranges of the objects contained in the view object.

The SET_VIEW and GET_BOUNDS routines are used in the examplesin this
volume, and are available for your use when creating and displaying object
hierarchies. They are, however, example code, and are not truly generic in the
situations they address. When you encounter a situation for which these routines do

not produce the desired result, we encourage you to copy and alter the code to suit
your own needs.

Inspect the SET_VI EW PROand GET_BOUNDS. PROfiles for further details.

View Volume

542 Chapter 25: Transformations

Model Transformations

An|DLgrModel object isa container for any graphics atoms that are to be rotated,
trandated, or scaled. Each IDLgrModel object has a transformation property (set via
the TRANSFORM keyword to the IDLgrModel::Init or SetProperty method), which
isa4 x 4 floating-point matrix. For ageneral discussion of transformation matrices
and three-dimensional graphics, see “Three-Dimensional Graphics’ in Chapter 18.

Note
A model object’stransformation matrix is akin to the transformation matrix used by
IDL Direct Graphics and stored in the 'P.T system variable field. Transformation
matrices associated with a model object do not use the value of 'P.T, however, and
are not affected by the T3D procedure used in Direct Graphics.

By default, amodel object’s transformation matrix is set equal to a 4-by-4 identity
matrix:

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.00.0 1000
0.00.00.0 10

You can change the transformation matrix of a model object directly, using the
TRANSFORM keyword to the IDLgrModel::Init or SetProperty method:
myModel = OBJ_NEW' | DLgr Mbdel ', TRANSFORM = tmatri x)

where tmatrix is a 4-by-4 transformation matrix. Alternatively, you can use the
Trangdlate, Rotate, and Scale methods to the IDLgrModel object to alter the model’s
transformation matrix.

Translation

The IDLgrModel:: Translate method takes three arguments specifying the amount to
translate the model object and its contentsin the X, Y, and Z directions. For example,
to translate amodel and its contents by 1 unit in the X-direction, you could use the
following statements:

dx =1 &dy =0 &dz =0
nmyModel -> Translate, dx, dy, dz

Model Transformations Using IDL

Chapter 25: Transformations 543

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define translation val ues:
dx =1 &dy =0 &dz =0
; Get existing transformation matri x:
myMbdel -> GetProperty, TRANSFORM = ol dT
; Provide a transformation matrix that perfornms the translation:
transT = [[1.0, 0.0, 0.0, dx], $
[0.0, 1.0, 0.0, dy], $
[0.0, 0.0, 1.0, dz], $
[0.0, 0.0, 0.0, 1.0]]
; Multiply the existing transformati on matrix by
; the matrix that perfornms the translation:
newl = ol dT # transT
; Apply the new transformation matrix to the nodel object:
myModel -> SetProperty, TRANSFORM = newTl

Rotation

Using IDL

The IDLgrModel::Rotate method takes two arguments specifying the axis about
which to rotate and the number of degreesto rotate the model object and its contents.
For example, to rotate amodel and its contents by 90 degrees around the y-axis, you
could use the following statements:

axis = [0,1,0] & angle = 90
myMbdel -> Rotate, axis, angle

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define rotation val ues:
axis =[0,1,0] & angle = 90
; CGet existing transformation matrix:
myMbdel -> GetProperty, TRANSFORM = ol dT
Define sine and cosine of angle:
cosa = COS(! DTOR*angl e)
sina = SI N(! DTOR*angl e)
; Provide a transformation matrix that performs the rotation:
rotT = [[cosa, 0.0, sina, 0.0], $
[0.O, 1.0, 0.0, 0.0], $
[-sina, 0.0, cosa, 0.0], $
[0.0, 0.0, 0.0, 1.0]]
; Miultiply the existing transformation matrix
; by the matrix that perfornms the rotation.
newl = ol dT # rotT
; Apply the new transformation matrix to the nodel object:
myModel -> SetProperty, TRANSFORM = newTl

Model Transformations

544 Chapter 25: Transformations

Scaling

TheDLgrModel:: Scale method takes three arguments specifying the amount to scale
the model object and its contentsin the x, y, and z directions. For example, to scale a
model and its contents by 2 unitsin they direction, you could use the following
Statements:

sx =1 &sy =2 &sz =1
myModel -> Scale, sx, sy, sz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

Defi ne scaling val ues:
sx =1 &sy =2&sz=1
Get existing transfornmation matrix:
myModel -> GetProperty, TRANSFORM = ol dT
Provide a transformation matrix that performs the scaling:
scaleT = [[sx, 0.0, 0.0, 0.0], $
[0.0, sy, 0.0, 0.0], $
[0.0, 0.0, sz, 0.0], $
[0.0, 0.0, 0.0, 1.0]]
Mul tiply the existing transformation matrix
by the matrix that perforns the scaling.
newl = ol dT # scal eT
Apply the new transformation matrix to the nodel object:
myModel -> SetProperty, TRANSFORM = newTl

Combining Transformations

Note that model transformations are cumulative. That is, amodel object contained in
another model is subject to both its own transformation and to that of its container.
All transformation matrices that apply to agiven model object are multiplied together
when the object is rendered. For example, consider amodel that contains another

model:
nmodel 1 = OBJ_NEW ' | DLgr Model ', TRANSFORM = transl)
nodel 2 = OBJ_NEW' | DLgr Mbdel ', TRANSFORM = trans2)

nodel 2 -> Add, nodel 1

The model 1 object is now subject to both its own transformation matrix (transl) and
to that of its container (trans2). The result isthat when model 1 is rendered, it will be
rendered with a transformation matrix = transl # trans2.

Model Transformations Using IDL

Chapter 25: Transformations 545

Coordinate Conversion

Using IDL

Most transformations are handled by the transformation matrix of amodel object. For
convenience, however, graphic atoms may also have a simplified transformation
applied to them. Coordinate transformations applied to individual graphic atoms
allow you to change only the trandlation (position) and scale; thisis useful when
converting from one coordinate system to another. For example, you may build your
view object using normalized coordinates, so that values range between zero and one.
If you create a graphic object—a surface object, say—based on the range of data
values, you would need to convert your surface object (built with a data coordinate
system) to match the view object (built with anormal coordinate system). To do this,
use the [XYZ]COORD_CONV keywords to the graphic object in question. The
[XYZ]COORD_CONV keywords take as their argument a two-element vector that
specifies the trandlation and scale factor for each dimension.

For example, suppose you have a surface object whose data is specified in arange
from [0, O, ZMin] to [xMax, yMax, zMax]. If you wanted to work with this surface as
if it werein anormalized [-1, -1, —1] to [1, 1, 1] space, you could use the following
coordinate conversions:

;. Create sone data:
nmyZdata = DI ST(60)
Use SIZE to determine size of each dinmension of nyZdata:

sz = Sl ZE(mnyZdat a)

; Create a scale factor for the X dinension:

xs = 2.0/ (sz[1]-1)

; Create a scale factor for the Y dinension:

ys = 2.0/ (sz[2]-1)

; Create a scale factor for the Z di nension:

zs = 2.0/ MAX(nyZdat a)

Now, use the [XYZ]COORD_CONV keywordsto the IDLgrSurface::Init method to
trandate the surface by minus one unit in each direction, and to scale the surface by
the scale factors:

mySurface = OBJ_NEW' I DLgr Surface', nyZdata, $
XCOORD CONV = [-1, xs], YCOORD CONV = [-1, ys], $
ZCOORD CONV = [-1, zs])

Remember that using the [XY Z]COORD_CONYV keywordsissimply a
convenience—the above example could also have been written as follows:

; Create some data:
myZdata = DI ST(60)

Use SIZE to determi ne the size of each dinension of nyZdata:
sz = Sl ZE(mnyZdat a)

Coordinate Conversion

546

Chapter 25: Transformations

Create a scale factor for the X di mension:
xs = 2.0/ (sz(1)-1)

Create a scale factor for the Y di mension:
ys = 2.0/ (sz(2)-1)

Create a scale factor for the Z di mension:
zs = 2.0/ (MAX(myZdat a)

Create a nodel object:
myMbdel = OBJ_NEW' | DLgr Mbdel ")
; Apply scale factors:
nmyMobdel -> Scale, xs, ys, zs
; Transl ate:
myMbdel -> Translate, -1, -1, -1

Create surface object:
mySurface = OBJ_NEW' | DLgr Sur face', nyZdata)
; Add surface object to nodel object:
nmyMobdel -> Add, nySurface

A Function for Coordinate Conversion

Often, it is convenient to convert minimum and maximum data values so that they fit
in the range from 0.0 to 1.0 (that is, so they are normalized). Rather than adding the
code to make this coordinate conversion to your code in each placeit isrequired, you
may wish to define a coordinate conversion function.

For example, the following function definition accepts atwo-element array
representing minimum and maximum values returned by the XY ZRANGE keyword
to the GetProperty method, and returns two-element array of scaling parameters
suitable for the XYZCOORD_CONV keywords:

FUNCTI ON NORM_COORD, range
scale = [-range[0]/(range[1]-range[0]), 1/(range[l]-range[0])]
RETURN, scal e

END

If you define afunction like thisin your code, you can then call it whenever you need
to scale your data ranges into normalized coordinates. The following statements
create a plot object from the variable data, retrieve the values of the X and Y ranges
for the plot, and the use the XY COORD_CONV keywordsto the SetProperty method
and the NORM _COORD function to set the coordinate conversion.

plot = OBJ_NEW'IDLgrPlot', data)

pl ot -> GetProperty, XRANGE=xr, YRANGE=yr

pl ot -> SetProperty, XCOORD CONV=NORM COORD(xr), $

YCOORD_CONV=NORM_COORD(yr)

The function NORM_COORD is defined in the file nor m coor d. pro inthe
exanpl es/ vi sual /utility subdirectory of the IDL distribution.

Coordinate Conversion Using IDL

Chapter 25: Transformations 547

Example: Centering an Image

Using IDL

The following example steps through the process of creating an image object and
provides two options for centering it within a window.

The first method establishes a viewplane rectangle within aview object. The image
object isadded to amodel object. The model object isthen transglated to the center of
the window object.

The second method does not establish a viewplane rectangle. Instead coordinate
conversions are calculated and applied to the image object to center it within the
model. This method works within the normalized coordinate system of the model.

This example uses the image from the wor | del v. dat filefound in the
exanpl es/ dat a directory.

PRO Cent eri ngAnl mage

; Determine path to file.
wor | del vFil e = FI LEPATH(' worl delv.dat', $
SUBDI RECTORY = ['exanples', 'data'])

; Initialize i mage paraneters.
wor | del vSi ze = [360, 360]
wor | del vl nage = BYTARR(wor | del vSi ze[0], worl del vSi ze[1])

; Open file, read in inmage, and close file.
OPENR, unit, worldelvFile, /GET_LUN

READU, unit, worldel vl nage

FREE_LUN, unit

; Initialize wi ndow paraneters.
wi ndowSi ze = [400, 460]
wi ndowMargi n = (w ndowSi ze - worl del vSize)/2

First Method: Defining the Viewdl ane and
; Transl ating the Model.

; Initialize objects required for an Object G aphics
; display.
oW ndow = OBJ_NEW' I DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TITLE = "World Elevation: First Method')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., w ndowSi ze])
oMbdel = OBJ_NEW'' | DLgr Model ')

Example: Centering an Image

548

Chapter 25: Transformations

; Initialize palette with STD GAMVA-II| color table and

; use it toinitialize the imge object.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LOADCT, 5

ol mage = OBJ_NEW' | DLgr I nage', worl del vl mage, PALETTE = oPal ette)

; Add inmage to nodel, which is added to view Mbdel

; is translated to center the image within the w ndow.

; Then view is displayed in w ndow.

oMbdel -> Add, ol mage

oView -> Add, oMbdel

oMbdel -> Translate, w ndowivargin[0], w ndowMargin[1], O.
oW ndow -> Draw, oVi ew

; Cl ean-up object references.
OBJ_DESTROY, [oView, oPalette]

; Second Method: Using Coordinate Conversions.

; Initialize objects required for an Object G aphics
; display.
oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TITLE = "World El evation: Second Method')
oView = OBJ_NEW' I DLgr Vi ew)
oMbdel = OBJ_NEW'' | DLgr Model ')

; Initialize palette with STD GAMVA-II color table and

; use it to initialize the image object.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LOADCT, 5

ol mage = OBJ_NEW' I DLgr |l mage', worldel vl mage, $
PALETTE = oPal ette)

; Obtain initial coordinate conversions of image object.
ol mage -> GetProperty, XCOORD CONV = xConv, $
YCOORD_CONV = yConv, XRANGE = xRange, YRANGE = yRange

; Qutput initial coordinate conversions.
PRINT, 'Initial xConv: ', xConv
PRINT, 'Initial yConv: ', yConv

; Applying margins to coordi nate conversions.

xTransl ati on = (2. *FLOAT(w ndowvar gi n[0])/ wi ndowSi ze[0]) - 1.
xScal e = (-2.*xTransl ati on)/worl del vSi ze[0]

xConv = [xTransl ation, xScal e]

yTransl ation = (2. *FLOAT(w ndowMar gi n[1])/ wi ndowSi ze[1]) - 1.
yScale = (-2.*yTransl ation)/worl del vSi ze[1]

Example: Centering an Image Using IDL

Chapter 25: Transformations 549

Using IDL

yConv = [yTransl ati on, yScal e]

; Qutput resulting coordinate conversions.
PRI NT, 'Resulting xConv: ', xConv
PRI NT, 'Resulting yConv: ', yConv

; Apply resulting conversions to the imge object.
ol mage -> Set Property, XCOORD CONV = xConv, $
YCOORD_CONV = yConv

; Add inmage to nodel, which is added to view Display
; the view in the w ndow.

oMbdel -> Add, ol mage

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; O eanup object references.
OBJ_DESTROY, [oView, oPalette]

END

Example: Centering an Image

550 Chapter 25: Transformations

Example: Displaying a Surface

The following example steps through the process of creating a surface object and all
of the supporting objects necessary to display it.

Note
You do not need to enter the example code yourself. The example code shown here
isduplicated in the procedure filet est _sur f ace. pr o, located in the
exanpl es/ vi sual subdirectory of the IDL distribution. You can run the example
procedure by entering TEST _SURFACE at the IDL command prompt.

When creating this procedure, we allow the user to specify keywords that will return
object references to the view, model, surface, and window objects. This allows usto
manipul ate the objects directly from the IDL command line after the procedure has
been run.

PRO test _surface, VIEW-oVi ew, MODEL=oMbdel, $
SURFACE=0Sur f ace, W NDOWM-oW ndow

;. Create sone data:
zData = DI ST(60)

; Create a view object. We set the color of the view
; area to a dark grey using the COLOR keyword,
; and set the viewpl ane to a square area occupyi ng one
; unit in each quadrant of the XY plane—a nornalized
coordi nate system-dsi ng the VI EWPLANE_RECT keywor d.
o\/ iew = OBJ_NEW'IDLgrView, COLOR=[60,60,60], $
VI EWPLANE_RECT=[-1, -1, 2, 2])

; Create a nodel object:
oMbdel = OBJ_NEW' | DLgr Model ')

; Add the nodel object to the view object:
oVi ew >Add, oMbdel

; Create a surface object. W set the color of
; the surface to pure red, using the COLOR keyword:
oSurface = OBJ_NEW ' I DLgr Surface', zData, col or=[255,0,0])

; Add the surface object to the nodel object:
oMbdel - >Add, oSurface

; Next, we use the GetProperty method of the surface

object to retrieve the data range of the surface:
oSur f ace- >Get Pr oper t y, XRANGE=xr ange, YRANGE=yr ange, ZRANGE=zr ange

Example: Displaying a Surface Using IDL

Chapter 25: Transformations 551

Using IDL

Scal e surface to nornalized units and center using
the SetProperty nethod of the surface object to change
t he [XYZ] COORD_CONV properti es:

Xs = [-0.5, 1/(xrange[1]-xrange[0])]
ys = [-0.5, 1/(yrange[1]-yrange[O0])]
zs = [-0.5, 1/(zrange[1]-zrange[0])]

oSur f ace- >Set Property, XCOORD_CONV=xs, YCOORD_CONvV=ys, $
ZCOORD_CONV=zs

; Now we rotate the nodel object to display a standard view
oMbdel - >Rotate,[1,0,0], -90

oMbdel ->Rot ate, [0, 1,0], 30

oMbdel - >Rot ate,[1,0,0], 30

Finally, we create a wi ndow (destination) object
; and draw the contents of the view object to it:
oW ndow = OBJ_NEW' | DLgr W ndow)
oW ndow >Dr aw, oVi ew
END

Play with the example to learn how object transformations work and interact. Try the
following commands at the IDL prompt to observe what they do:

First, compilet est _surf ace. pro:
.RUN test_surface.pro

Now, execute the procedure. The variables you supply viathe SURFACE, MODEL,
VIEW, and WINDOW keyword will contain object references you can manipulate
from the command line:

test _surface, VIEWnyvi ew, MODEL=nynodel, $
SURFACE=mnysur f, W NDOMnmyw n

Thiswill create awindow object and display the surface. Now try the following to
trandlate the object to the right:

mynodel -> Translate, 0.2, 0, O

The model transformation changes as soon as you issue this command. The window
object, however, will not be updated to reflect the new position until you issue a Draw
command:

mywi n -> Draw, myview
Try arotation in the y direction:

mynodel -> Rotate, [0,1,0], 45
mywin -> Draw, myview

Example: Displaying a Surface

552 Chapter 25: Transformations

Repeat the commands several times and observe what happens.

Try some of the following. Remember to issue a Draw command after each changein
order to see what you have done.

nmynodel -> Scale, 0.5, 0.5, 0.5

mynodel -> Scale, 1, 0.5, 1

mynodel -> Scale, 1, 2, 1

mynodel -> Rotate, [O0,0,1], 45

mysurf -> SetProperty, COLOR = [0, 255, 0]

nmyvi ew -> Set Property, PROJECTION = 2, EYE = 2
myvi ew -> SetProperty, EYE = 1.1

nyvi ew -> Set Property, EYE = 6

Example: Displaying a Surface Using IDL

Chapter 25: Transformations 553

Virtual Trackball and 3D Transformations

Using IDL

To create truly interactive object graphics, you must allow the user to transform the
position or orientation of objects using the mouse. One way to do thisisto provide a
virtual trackball that lets the user manipulate objects interactively on the screen.

The procedurefilet rackbal | __defi ne. pro, foundinthel i b directory of the
IDL distribution, contains the object definition procedure for avirtual trackball
object. Thistrackball object is used in several of the examples presented later in this
volume, and is also used by other example and demonstration code included with
IDL. Thetrackball object has three methods: Init, Update, and Reset. These methods
allow you to retrieve mouse movement events and alter your model transformations
accordingly.

The trackball object behaves asif there were an invisible trackball, centered at a
position you specify, overlaid on a draw widget. The widget application’s event
handler uses the widget event information to update both the trackball’s state and the
model transformation of the objects displayed in the draw widget’s window object.
When the user clicks and dragsin the draw widget, objectsin the draw widget rotate
asif the user were manipulating them with a physical trackball.

See“TrackBall” in the IDL Reference Guide manual for details on creating and using
trackball objects. Several of the other example files located in the

exanpl es/ vi sual subdirectory of the IDL distribution include trackball objects,
and may be studied for further insight into the mechanics of transforming object
hierarchies based on user input.

Virtual Trackball and 3D Transformations

554 Chapter 25: Transformations

Virtual Trackball and 3D Transformations Using IDL

Chapter 26:

Working with Color

The following topics are covered in this chapter:

OVEIVIBN ..o 556
Colorand Digital Data. 557
Indexed Color Model 558
RGB ColorModel 559

Using IDL

Color and Destination Objects . . .
Palettes
UsingColor

How IDL Interprets Color Values

555

556 Chapter 26: Working with Color

Overview
Color isoften anintegral part of the process of visualizing a dataset. The IDL Object
Graphics system allows you to use color in anumber of different ways; this chapter
explains how to specify color when using Object Graphics and how IDL interacts
with the destination devices on which graphics are finally displayed.

Overview Using IDL

Chapter 26: Working with Color 557

Color and Digital Data

The IDL Object Graphics system provides two color models for you to choose
between when creating destination (window or printer) objects: an Indexed Color
Model and an RGB Color Model. Indexed color allows you to map data values to
color values using a color palette. RGB color allows you to specify color values
explicitly, using an RGB triple. (See* Specifying RGB Values’” on page 562 for more
information on RGB triples.) You choose one of these two color models to associate
with each destination object.

Note
For some X 11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for al display situations.

The devices on which graphics are rendered—computer displays, printers, plotters,
frame buffers, etc.—also support one or more color models. IDL performs any
conversions necessary to support either the Indexed or RGB color model on any
physical device. That is, the color model used by IDL is entirely independent of the
color model used by the physical device. “How IDL Interprets Color Values’ on
page 564 explains how IDL’s Object System color models interact with different
device color models.

Note
You can specify the color of any graphic object using either a color index or red,
green, and blue (RGB) value, regardless of the color model used by the destination
object or the physical destination device. See“Using Color” on page 562 for details.

Using IDL Color and Digital Data

558 Chapter 26: Working with Color

Indexed Color Model

In the Indexed color model, you have control over how colors are loaded into a color
lookup table. You do this by specifying a palette, which maps color index valuesinto
RGB values, for the destination object. When the contents of your destination object
are rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values from the palette are either:

e passed directly through to the physical device (if it uses RGB values), or
* loaded into the physical device's lookup table (if it uses Indexed values).

Specify that a destination object should use the Indexed color model by setting the
COLOR_MODEL property of the object equal to 1 (one):

myW ndow = OBJ_NEW' | DLgr W ndow , COLOR_MODEL = 1)

Specify a palette object by setting the PALETTE property equal to an object of the
IDLgrPalette class:
myW ndow -> Set Property, PALETTE=nyPal ette

If you do not specify a palette object for a destination object that uses the Indexed
color model, a grayscale ramp palette is|oaded automatically.

When you assign a color index to an object that is drawn on the destination device,
the color index is used to look up an RGB value in the specified palette. When you
assign an RGB value to an object that is drawn on the destination device, the nearest
match within the destination object’s palette is found and used to represent that color.

Indexed Color Model Using IDL

Chapter 26: Working with Color 559

RGB Color Model

Using IDL

In the RGB color model, IDL takes responsibility for filling the color lookup table on
the destination device (if necessary). When the contents of your destination object are
rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values are either:

e passed directly through to the physical device (if it uses RGB values), or

» matched as nearly as possible with colors loaded in the physical device's
lookup table (if it uses Indexed values).

Specify that a destination object should use the RGB color model by setting the
COLOR_MODEL property of the object equal to O (zero):

myW ndow = OBJ_NEW' | DLgr W ndow , COLOR_MODEL = 0)
Thisisthe default for newly-created destination objects.

RGB Color Model

560

Chapter 26: Working with Color

Color and Destination Objects

Each destination object has one of the two color models described above associated
with it. Destination objects use the Indexed color model if the COLOR_MODEL
property is set equal to 1 (one) or the RGB color model if the COLOR_MODEL
property is set equal to O (zero, the default). Once a destination object has been
created, you cannot change the associated color model.

You can, however, create destination objects that use different color modelsin the
same IDL session. That is, it is possible to have two window objects—one using the
Indexed color model and one using the RGB color model—on your computer screen
at the same time.

Remember also that you can specify the color of any graphic object using either a
color index or an RGB value, regardless of the color model used by the destination
object or the physical destination device. The main distinction between the two color
models liesin how IDL manages the color lookup table (if any) of the physical
destination device. See “Using Color” on page 562 for details.

A Note about Draw Widgets

Drawable areas created with the WIDGET _DRAW function deserve a special
mention. When a draw widget is created with the GRAPHICS LEVEL keyword set
equal to 2, the widget contains an instance of an IDLgrWindow object rather than an
IDL Direct Graphics drawable window. By default, the window object uses the RGB
color model; to use the indexed color model, set the COLOR_MODEL keyword to
WIDGET_DRAW equal to 1 (one).

Color and Destination Objects Using IDL

Chapter 26: Working with Color 561

Palettes

Using IDL

Objects of the IDLgrPalette class are used to create color lookup tables. The
following statements create a pal ette object that reverses a standard grayscale ramp
palette:

rval = (gval = (bval = REVERSE(| NDGEN(256))))
myPal ette = OBJ_NEW' I DLgrPal ette', rval, gval, bval)

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic atoms:

myW ndow - > Set Property, PALETTE=nyPal ette
or

nyl nage -> Set Property, PALETTE=nyPal ette
Note
Pal ettes associated with graphic atoms are only used when the destination object
uses an RGB color model; if the destination object uses an indexed color model, the
destination object’s palette is always used.

See“IDLgrPalette” in the IDL Reference Guide manual for details on creating pal ette
objects.

Palettes

562

Chapter 26: Working with Color

Using Color

The color of agraphic object is specified by the COLOR property of that object. You
can set the color of an object either when the object is created or afterwards. For
example, the following statement creates a view object and setsits color value to the
RGB triple [60, 60, 60] (adark gray).

nyView = OBJ_NEW' I DLgrView , COLOR = [60, 60, 60])

The following statement changes the color value of an existing axis object to the
color value specified for entry 100 in the color palette associated with the axis object.

myAxi s -> SetProperty, COLOR=100

Remember that color palettes associated with individual graphic atoms are only used
when the destination object uses an RGB color model.

Specifying RGB Values

Using Color

RGB values are specified with RGB triples. An RGB triple is a three-element vector
of integer values, [r, g, b], generally ranging between 0 and 255. A value of zero is
the darkest possible value for each of the three channels—thus an RGB triple of

[0, O, O] represents black, [0, 255, Q] represents bright green, and [255, 255, 255]
represents white.

For example, suppose we create a plot line with the following statements:

myW ndow = OBJ_NEW' | DLgr W ndow)

nmyVi ew = OBJ_NEW' I DLgr Vi ew , VI EWPLANE _RECT=[0, 0, 10, 10])

myModel = OBJ_NEW' | DLgr Model ')

myPl ot = OBJ_NEW'IDLgrPlot', FINDGEN(10), THICK = 5, $
COLOR=[255, 255, 255])

myModel -> Add, nyPl ot

nmyVi ew -> Add, nyMbdel

nmyW ndow -> Draw, nyView

Notice the following aspects of the above example:

1. The newly-created window (destination) object uses an RGB color mode (the
default).

2. Thedefault color of the view object—the background against which the plot
lineis drawn—is white ([255, 255, 255]).

3. Thedefault color of the plot object (and all objects, for that matter) is black.
Thismeansthat it is necessary to specify acolor other than black for the object
if wewish it to show up against the black background.

Using IDL

Chapter 26: Working with Color

Try changing the colors with the following statements:

[150, 0, 150]
[75, 250, 75]

myPl ot -> SetProperty, COLOR
myVi ew -> Set Property, COLOR
myW ndow -> Draw, nyView

Using IDL

563

Using Color

564 Chapter 26: Working with Color

How IDL Interprets Color Values

IDL determines colors to display differently based on whether the destination object
uses an Indexed or RGB color model, and on whether the physical destination device
supports an Indexed or RGB color model.

Indexed Color Model

If the destination object uses an Indexed color model, the color displayed is
calculated from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

» If the physical device usesan Indexed color model, the specified color index is
used as an index into the physical device's lookup table. (Remember that the
physical device's color lookup table isloaded viathe PALETTE keyword to

the destination object.)

¢ If the physical device uses an RGB color model, the specified color index is
used as an index into the destination object’s palette. The RGB triple stored at
the index’s location in the palette is used as the physical device's color value.

If an RGB Triple is Specified

e |f the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

e If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

RGB Color Model

If the destination object uses an RGB color model, the color displayed is calculated
from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

If the graphic object for which the color is being determined has a pal ette associated
with it, the RGB triple at that palette’s color index is retrieved. Otherwise, the RGB
triple at the specified index in the destination object’s palette is retrieved.

e If the physical device uses an Indexed color model, the RGB triple retrieved is
mapped to the index of the nearest match in the device's color lookup table.

How IDL Interprets Color Values Using IDL

Chapter 26: Working with Color 565

e If the physical device uses an RGB color model, the RGB tripleretrieved is
passed directly to the device.

If an RGB Triple is Specified

» If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device's color lookup table.

« If the physical device uses an RGB color model, the RGB tripleis passed
directly to the device.

Using IDL How IDL Interprets Color Values

566 Chapter 26: Working with Color

How IDL Interprets Color Values Using IDL

Chapter 27:

Using Attributes and

Helpers

The following topics are covered in this chapter:

OVEIVIBW ..ot 568
FontObjects. ...t 569
PaetteObjects 572

Using IDL

Pattern Objects . . .
Symbol Objects ..

Tessellator Objects

567

568

Chapter 27: Using Attributes and Helpers

Overview

Overview

Attribute objects are not rendered directly, but are used to determine how graphic
objects will be rendered. There are four attribute object classes: IDLgrFont,
IDLgrPalette, IDLgrPattern, and IDLgrSymbal.

Helper abjects perform operations on object instance data. There are two helper
object classes: IDLgrTessellator and Trackball. For additional information the
trackball object, see “Virtual Trackball and 3D Transformations’ on page 553.

Using IDL

Chapter 27: Using Attributes and Helpers 569

Font Objects

Font objects allow you to specify the type style and size used when rendering objects
of the IDLgrText class. You can use either TrueType outline fonts or IDL’s built-in
Hershey vector fonts.

Fonts used by font objects are specified in a string constant constructed from afont
name and one or more optional modifiers. The font name is the name by which your
computer system knows the font (Times for the Times Roman font, for example).
Modifiers specify the weight, angle, and other attributes of the font (Bold specifiesa
weight, italic an angle). The font name string looks like this:

' f ont nane*wei ght *angl e*ot her _nodi fi ers’

where other_modifiers can be any other font property supported by a given font, such
as adant. For example, the font name string for Helveticabold itaic is:

"hel vetica*bol d*italic'
The font name string for Times Roman Regular is:
"tinmes'
While the font name must come first in the font name string, the order in which the
modifiers are specified is not important.
IDL’s default font is 12 point Helveticaregular.

See “IDLgrFont” in the IDL Reference Guide manual for details on creating font
objects.

Determining Available Fonts

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey fonts will not be returned as they
are fixed—see Appendix H, “Fonts’ in the IDL Reference Guide manual for more
information.

Outline Fonts

Using IDL

IDL provides five TrueType outline fonts for usein font objects: Courier, Helvetica,
Monospace Symbol, Symbol, and Times. Your system may support additional
TrueType fonts —use them in the same way as those supplied by IDL.

Font Objects

570 Chapter 27: Using Attributes and Helpers

The five TrueType fonts provided by IDL support the following modifiers:

Font Modifier
Courier bold, italic
Helvetica bold, italic
Monospace Symbol none
Symbol none
Times bold, italic

Table 27-1: TrueType Font Modifiers
Hershey Fonts

IDL supplies a set of vector fonts designed by Dr. A.J. Hershey. See Appendix H,
“Fonts” in the IDL Reference Guide manual for information on Hershey fonts.

You can use Hershey fonts when creating font objects by specifying afontname of
the form Hershey* fontnum to the IDLgrFont::1nit method.

Creating Font Objects

Specify afont name string when you create afont object. You can also specify asize,
in points, for the font upon creation. For example, the following statement creates a
font object using abold version of the Times Roman font, with a size of 20 points:

myFont = OBJ_NEW' IDLgrFont', 'times*bold' , SIZE=20)

To create afont object using a Hershey font, omit the font name string and specify the
Hershey font’s index number with the HERSHEY keyword to the IDLgrFont::Init
method. The following statement creates afont object using the Duplex Roman
Hershey font, with asize of 14 points:

myHer sheyFont = OBJ_NEW' | DLgr Font', 'hershey*5', SIZE=14)
Using Font Objects

To use afont object, use the FONT keyword to the IDLgrText::Init method (or
change the text object’s font via the SetProperty method):

Font Objects Using IDL

Chapter 27: Using Attributes and Helpers 571

myText = OBJ_NEW ' IDLgrText', 'Ay, Carunmba', FONT = nyFont)
or
myText -> SetProperty, FONT=nyHer sheyFont
If no font object is specified, IDL uses the Helvetica font with a size of 12 points.

See “Text Objects’ on page 601 for details on creating Text objects.
Font Objects and Resource Use
Because font objects are relatively complex, each font object uses arelatively large

amount of system resources. Asaresult, it is better to re-use an existing font object
than to create a second identical font object.

Using IDL Font Objects

572 Chapter 27: Using Attributes and Helpers

Palette Objects

Objects of the IDLgrPalette class are used to create color lookup tables. Color lookup
tables assign individual numerical values to color values; this allows you to specify
the color of a graphic object with a single number (a color index) rather than
explicitly providing the red, green, and blue color values (an RGB triple). Palettesare
most useful when you want data values to correspond to color values—that is, if you
want a data value of 200, for example, to always correspond to asingle color. This
correspondence is one of the main uses of the Indexed Color Model. See “Working
with Color” in Chapter 3 of the Image Processing in IDL manual for additional
discussion of indexed color and its uses.

Creating Palette Objects

Specify three vectors representing the red, green, and blue values for the pal ette when
you call the IDLgrPalette::Init method. The valuesin the red, green, and blue vectors
must be integers between zero and 255, and the length of each vector must not exceed
256 elements. For example, the following statements create a pal ette object that
reverses a standard grayscale ramp palette:

rval = (gval = (bval = REVERSE(| NDGEN(256))))

myPal ette = OBJ_NEW' I DLgr Pal ette', rval, gval, bval)
See“IDLgrPalette” in the IDL Reference Guide manual for details on creating pal ette
objects.

Using Palette Objects

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic atoms:

myW ndow -> Set Property, PALETTE=nyPal ette

or

nmyl mage -> Set Property, PALETTE=nyPal ette
Note
Pal ettes associated with graphic atoms are only used when the destination object
uses an RGB color model; if the destination object uses an Indexed color model, the
destination object’s palette is always used. See “Working with Color” in Chapter 3
of the Image Processing in IDL manual for details.

Palette Objects Using IDL

Chapter 27: Using Attributes and Helpers 573

Pattern Objects

Objects of the IDLgrPattern class are used to fill objects of the IDLgrPolygon class.
Pattern objects can create a solid fill (the default), aline fill (with control over the
orientation, spacing, and thickness of the lines used), or a pattern fill (using a byte
pattern you specify). Pattern objects do not have a color of their own; patterns take
their color from the COLOR property of the polygon they fill.

Creating Pattern Objects

Specify afill-pattern style when you call the IDLgrPattern::Init method. Set the
argument to the Init method equal to zero to create asolid fill, equal to oneto create a
line pattern, or equal to two to use abitmap byte array asthefill pattern. For example,
the following statement creates a pattern object with a solid fill:

myPattern = OBJ_NEW' | DLgrPattern', 0)

The following statement creates a pattern object with lines ten pixels apart, 5 pixels
wide, at an angle of 30 degrees:

nyPattern = OBJ_NEW' IDLgrPattern', 1, SPACI NG=10, THI CK=5, $
ORI ENTATI ON=30)

To create a pattern fill, specify a32-by-4 byte array viathe PATTERN property of the
pattern object. The byte array you specify will betiled over the area of the polygon to
be filled. For example, the following statements create a pattern fill with arandom
speckle. Thefirst statement creates a 32-by-4 byte array with random values ranging
between 0 and 255. The second statement creates the pattern object.

pattern = BYTE(RANDOVN(seed, 32, 4)*255)
myPattern = OBJ_NEW' I DLgrPattern', 2, PATTERN=pattern)

See “IDLgrPattern” in the IDL Reference Guide manual for details on creating
pattern objects.

Using Pattern Objects

Using IDL

To fill apolygon with the pattern specified by a pattern object, set the
FILL_PATTERN property equal to the pattern object reference:

myPol ygon -> SetProperty, FILL_PATTERN = nyPattern

The following statements create atriangle and fills it with the random speckle
pattern:

pattern = BYTE(RANDOVN(seed, 32, 4)*255)
myPattern = OBJ_NEW' I DLgrPattern', 2, PATTERN=pattern)

Pattern Objects

574 Chapter 27: Using Attributes and Helpers

nyView = OBJ_NEW' I DLgrView , VI EWLANE_RECT=[O, 0, 10, 10])

myMbdel = OBJ_NEW' | DLgr Mbdel ")

nyPol ygon = OBJ_NEW' I DLgr Pol ygon', [4, 7, 3], [8, 6, 3],9%
col or=[255, 0, 255], fill_pattern=nyPattern)

myVi ew -> Add, myMbdel

nyMdel -> Add, myPol ygon

myW ndow = OBJ_NEW' | DLgr W ndow)

myW ndow -> Draw, nyView

Pattern Objects Using IDL

Chapter 27: Using Attributes and Helpers 575

Symbol Objects

Objects of the IDLgrSymbol class are used to display individual data points, either in
an IDLgrPlot object or an IDLgrPolyline object. You can create symbol objects that
display one of seven pre-defined symbols, any atomic graphic object, or any model
object.

Creating Symbol Objects

Specify the type of symbol to use when you call the IDLgrSymbol::Init method.

To Use a Pre-defined Symbol

Specify one of the following values for the symbol type:
e 1=Plussign (the default)

o 2=Asterisk

e 3=Peiod

e 4 =Diamond
e« 5=Triangle
e 6=Squae

e 7=X

For example, to create a symbol object using ared triangle for the symbol, use the
following statement:

mySymbol = OBJ_NEW | DLgr Symbol ', 5, COLOR=[255, 0, 0])

To Use a Graphic Object as a Symbol

Using IDL

You can use an atomic graphic object or amodel object as a symbol. For best results,
create an object that fills the domain between —1 and 1 in all directions. For example,
the following statements create a polygon object in the shape of a pentagon and
define a symbol object to use the polygon:
pent agon=0BJ_NEW' | DLgr Pol ygon', [-0.8,0.0,0.8,0.4,-0.4], $
[0.2,0.8,0.2,-0.8,-0.8], COLOR=[0,0, 255])
mySynbol = OBJ_NEW' | DLgr Synbol ', pent agon)

Note that we create the pentagon to fit in the plane between —1 and 1 in both the X
and Y directions. We could also have created the pentagon to fit in a unit square and
then scaled it to fit the domain between —1 and 1.

Symbol Objects

576 Chapter 27: Using Attributes and Helpers

For example:

pent agon=0BJ_NEW' | DLgr Pol ygon', [0.1,0.5,0.9,0.7,0.3], $
[0.6,0.9,0.6,0.1,0.1], COLOR=[0, 0, 255])

synmvbdel = OBJ_NEW' | DLgr Model ')

synmvbdel -> Add, pentagon

syn\vbdel -> Scale, 2, 2, 1

syn\vbdel -> Translate, -1, -1, O

mySynbol = OBJ_NEW' | DLgr Synbol ', synibdel)

Note
We create the symbol object to use the model object rather than the polygon object.
Using amodel object as a symbol allows you to apply transformations to the
symbol even after it has been created.

Setting Size

By default, symbols extend one unit to each side of the data point they represent. Set
the SIZE property of the symbol object to a two-element vector that describes the
scaling factor in X and Y to apply to the symbol to change the size of the symbolsthat
are rendered. For example, to scale a symbol so that it extends one tenth of a unit to
each side of the data point, use the statement:

mySynmbol -> SetProperty, SIZE=[0.1, 0.1]
Setting Color

If you are using a pre-defined symbol, you can set its color using the COLOR
property of the symbol object. If you are using a graphic object as a symbol, the
symbol’s color is determined by the color of the graphic object and the setting of the
COLOR property of the symbol object itself isignored. For example, the following
statements create a symbol object that uses ared triangle:

mySymbol = OBJ_NEW' | DLgr Symbol ', 5, COLOR=[255, 0, 0])

See“IDLgrSymbol” in the IDL Reference Guide manual for details on creating
symbol objects.

Using Symbol Objects

To use asymbol, set the SYMBOL property of an IDLgrPlot or IDLgrPolyline object
equal to the symbol object reference:

myPl ot -> SetProperty, SYMBOL=nySynbol

Suppose you wish to create a symbol object using the pentagon we created above.
Suppose also that you wish to be able to use the pentagon code in more than one

Symbol Objects Using IDL

Chapter 27: Using Attributes and Helpers 577

Using IDL

instance, and would like to be able to make changes to the pentagon object’s color,
size, and orientation. You might create a procedure like the following to define a
pentagon object contained in amodel object, and return the object references.

Note
You do not need to enter the example code yourself. The example code shown here
is duplicated in the procedure file pent a. pr o, located in the exanpl es/ vi sual
subdirectory of the IDL distribution.

;All ow user to set the color and retrieve the object

;references to the synbol, and nodel objects created.

PRO penta, COLOR=col or, SYMBOL=synbol, MODEL=nbdel

;1f the color keyword is set, use the specified color.

;O herw se, use bl ue.

| F KEYWORD_SET(col or) THEN COLOR=col or ELSE COLOR=[0, 0, 255]

; Create a nodel object.

nodel = OBJ_NEW' | DLgr Model ')

;Create a polygon that takes up nost of the domain

:between -1 and 1 in the X and Y directions. Set its col or.

synmbol = OBJ_NEW' I DLgr Pol ygon', [-0.8, 0.0, 0.8, 0.4, -0.4], $
[0.2, 0.8, 0.2, -0.8, -0.8], CO.OR=col or)

; Add the polygon to the nodel.

nodel -> ADD, synbol

END

Once you have compiled the penta procedure, cal it with the SYMBOL and MODEL
keywords set equal to named variables that will contain the object references of the
model and polygon objects:

PENTA, SYMBOL=sym MODEL=synmmodel
Next, create a symbol object using the pentagon:

mySynbol = OBJ_NEW' | DLgr Synbol ', synmodel)
Now, create a plot object using the pentagon as the plot symbol:

myPlot = OBJ_NEW ' IDLgrPlot', FINDGEN(10), SYMBOL=nySynbol)
Next, display the plot:

nyView = OBJ_NEW' I DLgrView , VI EWPLANE_RECT=[O, 0O, 10, 10])
nyModel = OBJ_NEW' | DLgr Model ')

nyVi ew >Add, nyModel

myModel -> Add, nyPl ot

myW ndow = OBJ_NEW' | DLgr W ndow)

myW ndow -> Draw, nyView

Note that the plotting symbols are larger than you might wish. Try making them
smaller:

Symbol Objects

578

Chapter 27: Using Attributes and Helpers

mySynmbol -> Set Property, SIZE=[0.2,0.2]
myW ndow -> Draw, nyView

Or, create the following procedure to spin the pentagons around the z-axis (enter
. RUN at the command prompt, followed by these statements):

PRO SPI N, nodel , view, w ndow, steps
FOR i = 0, steps do begin
nmodel -> Rotate, [0,0,1], 10
w ndow -> Draw, view
END
END

After compiling the SPIN procedure, call it from the command line and watch the
pentagons spin:

SPIN, symmodel, nyView, nyWndow, 100
Whileitisunlikely that you will wish to create spinning plot symbols, this example
demonstrates one of the key advantages of IDL Object Graphics over IDL Direct

Graphics—once created, graphics objects can be easily manipulated in avariety of
ways without the need to recreate the entire graph or image after each change.

Symbol Objects Using IDL

Chapter 27: Using Attributes and Helpers 579

Tessellator Objects

The IDLgrTessellator classis a helper class that converts a simple concave polygon
(or asimple polygon with holes) into a number of simple convex polygons (general
triangles). A polygonissimpleif it includes no duplicate vertices, if the edges
intersect only at vertices, and exactly two edges meet at any vertex.

Tessellation is useful because the IDLgrPolygon object accepts only convex
polygons. Using the IDLgrTessellator object, you can convert a concave polygon into
agroup of convex polygons.

Creating Tessellator Objects

The IDLgrTessellator::1nit method takes no arguments. Use the following statement
to create a tessellator object:

myTess = OBJ_NEW ' | DLgr Tessel | ator')

See“IDLgrTessellator” in the IDL Reference Guide manual for details on creating
tessellator abjects.

Using Tessellator Objects

The procedurefile obj _t ess. pr o, located in the exanpl es/ vi sual subdirectory
of the IDL distribution, provides an example of the use of the IDLgrTessellator
object. To run the example, enter OBJ TESS at the IDL prompt. The procedure
creates a concave polygon, attempts to draw it, and then tessellates the polygon and
re-draws. Finally, the procedure demonstrates adding a hole to a polygon. (You will
be prompted to press Return after each step is displayed.) You can also inspect the
source code in the obj _t ess. pr o filefor hints on using the tessellator object.

Using IDL Tessellator Objects

580 Chapter 27: Using Attributes and Helpers

Tessellator Objects Using IDL

Chapter 28:
Working with Axes and
Text

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 582 TextObjects 601
AxisObjects, 583

Using IDL 581

582 Chapter 28: Working with Axes and Text

Overview

In IDL Object Graphics, axes and titles are not automatically included when plot or
surface objects are created. Instead, you create axis and text objects and placethemin
the object hierarchy to annotate your plots and graphs.

Overview Using IDL

Chapter 28: Working with Axes and Text 583

Axis Objects

Using IDL

AXis objects provide a visual notation of data values in two- and three-dimensional
plots and graphs. Each axis is represented by an individual axis object; that is, if you
haveaplot in X and Y, you will need to create an x-axis object and a y-axis object.

Note
AXxis objects do not take their range values from data values or other objects, asyou
might expect if you are familiar with IDL Direct Graphics. Instead, axis objects
have a default range of 0.0 to 1.0; you must explicitly set the range of values
covered by the axis object using the RANGE property.

Creating Axis Objects

To create an axis object, specify an integer argument to the IDLgrAXxis::Init method
when calling OBJ_NEW. Specify 0 (zero) to create an x-axis object, 1 (one) to create
ay-axisobject, or 2 to create a z-axis object:

xaxis = OBJ_NEW' | DLgrAxis', 0)
yaxis = OBJ_NEW' I DLgr Axis', 1)
zaxis = OBJ_NEW' I DLgr Axis', 2)

The various keywords to the Init method allow you to control the number of major
and minor ticks, thetick length and direction, the data range, and other attributes. For
example, to create an x-axis object whose data range is between -5 and 5, with the
tick marks below the axis line, use the following command:

xaxis = OBJ_NEW'IDLgrAxis', 0, RANGE=[-5.0, 5.0], TICKD R=1)
To suppress minor tick marks:
xaxis -> SetProperty, M NOR=0

See“IDLgrAXxis” in the IDL Reference Guide manual for details on creating axis
objects.

Using Axis Objects

Suppose you wish to create an X-Y plot of some data and wish to include both x- and
y-axes. First, we create some data to plot, the plot object, and the axis objects:

data = FI NDGEN(100)

myplot = OBJ_NEW' IDLgrPlot', data)
xaxis = OBJ_NEW' I DLgrAxis', 0)
yaxis = OBJ_NEW' I DLgrAxis', 1)

Axis Objects

584

Axis Objects

Chapter 28: Working with Axes and Text

Next, we retrieve the data range from the plot object and set the x- and y-axis objects’
RANGE properly so that the axes will match the data when displayed:
mypl ot -> GetProperty, XRANGE=xr, YRANCE=yr

xaxi s -> SetProperty, RANGE=xr
yaxis -> SetProperty, RANGE=yr

By default, major tickmarks are 0.2 data units in length. Since the datarange in this
example is 0 to 99, we set the tick length to 2% of the data range instead:

xtl = 0.02 * (xr[1] - xr[0])

ytl = 0.02 * (yr[1] - yr[0])

xaxis -> SetProperty, TICKLEN=xtI

yaxis -> SetProperty, TICKLEN=ytl

Create model and view objects to contain the object tree, and a window object to
display it:

mynodel = OBJ_NEW' | DLgr Mbdel ")

myview = OBJ_NEW ' I DLgrView)

mywi ndow = OBJ_NEW' | DLgr W ndow)

mynodel -> Add, nypl ot

mynodel -> Add, xaxis

nynodel -> Add, yaxis

nmyvi ew -> Add, nynodel

Usethe SET_VIEW procedure to add an appropriate viewplane rectangle to the view
object. (See “Finding an Appropriate View Volume” on page 540 for information on
SET_VIEW).

SET_VI EW nyvi ew, nyw ndow
Now, display the plot:
nmywi ndow -> Draw, nyview

The above example code isincluded in a procedure file named obj _axi s. pro,
located in the exanpl es/ vi sual subdirectory of the IDL distribution. You can run
the example code by entering obj _axi s at the IDL prompt. You can also examine
the. pr o fileitself for examples of some of the topics discussed in this section.

Using IDL

Chapter 28: Working with Axes and Text 585

100

80

60

40

20

%020 40 60 80 100

Figure 28-1: Axis Object

Logarithmic Axes

Creating aplot of logarithmic data requires that you create alogarithmic axis aswell.
The following example first creates alinear plot, then takes alogarithm of the same
data and creates alog-linear plot.

The example code below isincluded in a procedure file named obj _| ogaxi s. pro,
located in the exanpl es/ vi sual subdirectory of the IDL distribution. You can run
the example code by entering obj _| ogaxi s at the IDL prompt. You can also
examinethe. pr o fileitself for examples of some of the topics discussed in this
section.

;Create a wi ndow and a view.
PRO obj _I ogaxi s
oW ndow = OBJ_NEW' | DLgr W ndow)

;Create a nodel for the graphics; add to the view

oView = OBJ_NEW'IDLgrView , VI EWPLANE RECT=[-0.2,-0.2,1.4,1.4])
oMbdel = OBJ_NEW' | DLgr Model ')

Using IDL Axis Objects

586

Axis Objects

oVi ew >Add, oMbdel

;Create sone sinple data:
yDat a = FI NDGEN(50) * 20.

; Conpute data range in X and Y:

yMn = M N(yData, MAX=yMax)
yRange = yMax - yMn

XxMn =0

xMax = N_ELEMENTS(yDat a) -1
xRange = xMax - xMn

;Create an X-axis with a title:

oXTitle = OBJ_NEW' | DLgr Text ",

OXAxis = OBJ_NEW' I DLgrAxis',
TI CKLEN=(0. 1*yRange) ,

oMobdel - >Add, oXAxi s

:Create a Y-axis with atitle:
oYTitle = OBJ_NEW' | DLgr Text ",
OYAXxi s = OBJ_NEW' | DLgrAxi s',
TI CKLEN=(0. 1*xRange) ,
oModel - >Add, oYAXxi s

;Create a plot of the data:

Chapter 28: Working with Axes and Text

"Linear X Axis')
0, RANGE=[xmin, xmax], $
TI TLE=oXTi t 1 e)

"Linear Y Axis')
1, RANGES[yM n,yMax], $
TI TLE=0YTi tl e)

oPlot = OBJ_NEW'IDLgrPlot', yData, COLOR=[255,0,0])

oMbdel - >Add, oPI ot

; Scal e and transl ate the nodel
oModel - >Scal e, 1.0/ xRange,
oMbdel - >Tr ansl at e,

so the plot fits within the view
1.0/yRange, 1.0
- (xM n/ xRange),

-(yMn/yRange), 0.0

; Ensure that axis text recomputes its dinensions as needed:

OXAXi s- >Cet Property,

oXTi tl e->Set Property,
OXTi ckText - >Set Property,
OYAXi s- >Cet Property,
oYTi ckText - >Set Property,
oYTi t| e->Set Property,

;Draw the plot:
oW ndow >Dr aw, oVi ew

; Refresh the plot when ready:
val ="'

READ, val,
oW ndow >Dr aw, oVi ew

; Now that the original

Tl CKTEXT=0XTi ckText
RECOVPUTE_DI MENSI ONS=2
RECOVPUTE_DI MENSI ONS=2
Tl CKTEXT=0YTi ckText
RECOVPUTE_DI MENSI ONS=2
RECOVPUTE_DI MENSI ONS=2

PROVPT=' Press <Return> to refresh the w ndow. "

pl ot has been di spl ayed,

Using IDL

Chapter 28: Working with Axes and Text 587

;switch to a logarithmc version of the plot when ready:
READ, val, $
PROVPT=' Press <Return> to draw with a logarithmc Y axis.'

;Only positive values are valid when conputing
;the logarithmc data:
posEl ts = WHERE(yData GT 0, nPos)
IF (nPos GI 0) THEN BEG N
; Comput e new Y range:
yVal i dData = yDat a(posEl ts)
yValidMn = M N(yVal i dData, MAX=yVal i dMax)

; Comput e | ogarithmc data:
yLogData = ALOGLO(yVal i dDat a)

; Update the plot data:
oPl ot - >Set property, DATAY=yLogDat a
ENDI F ELSE BEG N
MESSACGE, 'Original plot data is entirely non-positive.', $
/ | NFORMATI ONAL
MESSAGE, 'Log plot will contain no data.', /NOPREFIX, $
/ | NFORMATI ONAL

;Create a fake | og axis range:
yvalidMn = 1.0
yVal i dMax 10.0

; Simply hide the plot, since no valid | og data exists:
oPl ot - >Set Property, /H DE
ENDEL SE

;Update the Y axis to be logarithmc, and nmodify the Y axis title:
OYAXi s->Set Property, /LOG RANCGE=[yValidM n, yValidMax]
oYTitl e->Set Property, STRING=' Logarithmc Y Axis'

;Get the new Y axis logarithnic range:
OYAXi s- >Cet Property, CRANGE=crange
yLogM n = crange[0]

yLogMax = crange[1]

yLogRange = yLogMax - yLogMn

; Update the X axis ticklen:
0XAxi s->Set Property, TICKLEN=(O0.1*yLogRange), $
LOCATI ON=[0, yLogM n, 0]

; Update the nodel transformto match the new data ranges:
oModel - >Reset

oMbdel - >Scal e, 1.0/ xRange, 1.0/yLogRange, 1.0

oMbdel - >Transl ate, -(xM n/xRange), -(yLogM n/yLogRange), 0.0

Using IDL Axis Objects

588

Axis Objects

Chapter 28: Working with Axes and Text

oW ndow >Dr aw, oVi ew
READ, val, PROWPT='Press <Return> to quit."'

OBJ_DESTROY,
OBJ_DESTROY,
OBJ_DESTROY,
OBJ_DESTROY,
END

1000

Logarithmic Y Axis

100

oVi ew

oW ndow
oXTitle
oYTitle

10 IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|
0 10 20 30 40 50

Linear X Axis

Figure 28-2: Logarithmic Axes

Using IDL

Chapter 28: Working with Axes and Text 589

Date/Time Axes

Using IDL

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Within IDL, dates and times are typically stored as Julian dates. A Julian date is
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows afew examples of calendar dates and their
corresponding Julian dates.

Calendar Date Julian Date

January 1, 4713 B.C.E., at 12pm 0
January 2, 4713 B.C.E., at 12pm 1
January 1, 2000 at 12pm 2451545

Table 28-1: Example Julian Dates

Julian dates can also include fractional portions of aday, thereby incorporating hours,
minutes, and seconds. If the day fraction isincluded in a Julian date, it is represented
as adouble-precision floating point value. The day fraction is computed as follows:

hour + Minute seconds

dayFraction =
ayFraction = = d " 1440.d | 86400.d

One advantage of using Julian dates to represent dates and timesisthat a given
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
dates just as for any other type of number.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Axis Objects

590 Chapter 28: Working with Axes and Text

Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precisionistypically limited by the data type of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

« Time values that require a high precision, and that span arange of afew days
or less, should be stored as double-precision values in units of “time elapsed”
since the starting time, rather than in Julian date format. An example would be
the “seconds elapsed” since the beginning of an experiment. In this case, the
data can be treated within IDL as standard numeric data without the need to
utilize IDL’s specialized date/time features.

« Date valuesthat do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of thisformat is 1 day.

» Datevalueswhereit is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian datesis limited to 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm
julian = JULDAY(1, 1, 2000, 12, 15, 0)

;. Get machine characteristics
nmachi ne = MACHAR(/ DOUBLE)

Mul tiply by floating-point precision
precision = julian*machi ne. eps

; Convert to seconds
PRI NT, precisi on*86400d0

How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
correspondsto a start date/time, and each subsequent value corresponds to the start

Axis Objects Using IDL

Chapter 28: Working with Axes and Text 591

date/time plus that array element's one-dimensional subscript multiplied by a step
size for agiven date/time unit. Unlike the other array generation routinesin IDL,
TIMEGEN includes a START keyword, whichis necessary if the starting date/timeis
originaly provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for afull year:

date time = TIMEGEN(12, UNIT = 'Mnths', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to 'Months' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000.

Theresults of the above call to TIMEGEN can be output using either of the following
methods:

1. Using the CALDAT routine to convert the Julian dates to calendar dates:

CALDAT, date_tinme, nonth, day, year

FORi = 0, (N_ELEMENTS(date_tinme) - 1) DO PRINT, $
month[i], day[i], year[i], $
FORMAT = " (i2.2, "/", i2.2, "I", i4)

2. Using the calendar format codes:
PRINT, date_tinme, format = '(C(CMO 2.2, "/", CDI2.2, "/", CYI))'
The resulting calendar dates are printed out as follows:

03/ 01/ 2000
04/ 01/ 2000
05/ 01/ 2000
06/ 01/ 2000
07/ 01/ 2000
08/ 01/ 2000
09/ 01/ 2000
10/ 01/ 2000
11/ 01/ 2000
12/ 01/ 2000
01/01/ 2001
02/ 01/ 2001

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see the TIMEGEN in the IDL Reference Guide.

Displaying Date/Time Data on an Axis in Object Graphics

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (x, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis

Using IDL Axis Objects

592

Axis Objects

Chapter 28: Working with Axes and Text

keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensiona and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after theinitial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

nunber _sanpl es = 37

date_time = TI MEGEN(nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

di spl acement = SI N(10. *! DTOR* FI NDGEN(nunber _sanpl es))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from afile; therefore, the datafor this example is created with the above
IDL commands.

Before displaying this one-dimensional data with the IDLgrPlot object, the format of
the date/time valuesis specified through the LABEL _DATE routine:

date_| abel = LABEL_DATE(DATE_FORMAT = ['%: 98])
where %l represents minutes and %S represents seconds.

Before applying the results from LABEL_DATE, we must first create (initialize) our
display objects:
oPl ot W ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [800, 600])
oPlotView = OBJ_NEW"' | DLgr Vi ew , /DQOUBLE)
oPl ot Mbdel = OBJ_NEW' | DLgr Mbdel ")
oPlot = OBJ_NEW'IDLgrPlot', date_tinme, displacenent, $
/ DOUBLE)

The oPlotModel object will contain the IDLgrPlot and IDLgrAXxis objects. The
oPlotView abject contains the oPlotModel object with the DOUBLE keyword. The
DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time
data is made up of double-precision floating-point values.

Although the date/time part of the datawill actually be contained and displayed
through the IDLgrAXxis object, the oPlot object is created first to provide a display
region for the axes:

Using IDL

Chapter 28: Working with Axes and Text

oPlot -> GetProperty, XRANGE = xr, YRANGE = yr

Xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
oPlot -> SetProperty, XCOORD CONV = xs,

593

YCOORD_CONV = ys

The NORM_COORD routineis used to create anormalized (0 to 1) display
coordinate system. This coordinate system will also apply to the IDLgrAXxis objects:

X-axis title.

oText XAxis = OBJ_NEW' | DLgrText', 'Tinme (seconds)')

X-axis (date/time axis).

oPl ot XAxis = OBJ_NEW' I DLgr Axis', 0, /EXACT, RANCE = xr,

$

XCOORD_CONV = xs, YCOORD _CONV = ys, TITLE = oText XAxis, $

LOCATION = [xr[O], yr[O]], TICKDOR =10, $

TICKLEN = (0.02*(yr[1] - yr[0])), $

TI CKFORMAT = [' LABEL_DATE'], TICKINTERVAL = 5,

TICKUNNTS = ['Tinme'])
Y-axis title.

oText YAXis = OBJ_NEW' | DLgr Text', 'Displacenment (inches)')
Y- axi s.

oPl ot YAxis = OBJ_NEW' I DLgrAxis', 1, /EXACT, RANCE = yr,

$

XCOORD_CONV = xs, YCOORD _CONV = ys, TITLE = oText YAxis, $

LOCATION = [xr[0], yr[0]], TICKDIR = 0, $

TICKLEN = (0.02*(xr[1] - xr[0])))
Plot title.

oPl ot Text = OBJ_NEW' I DLgr Text', 'Measured Signal "',

LOCATIONS = [(xr[0] + xr[1])/2., $
(yr[1] + (0.02*(yr[O] + yr[1])))].

XCOORD_CONV = xs, YCOORD CONV = ys, $

ALI GNVENT = 0. 5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-

axis as a date/time axis.

These objects are now added to the oPlotModel object and this model is added to the

oPlotView object:

oPl ot Mbdel -> Add, oPl ot

oPl ot Mbdel -> Add, oPIl ot XAxi s
oPl ot Mbdel -> Add, oPl ot YAXi s
oPl ot Mbdel -> Add, oPl ot Text
oPl ot Vi ew -> Add, oPIl ot Mbdel

Now the oPlotView object, which contains all of these objects, can be viewed in the

oPlotWindow object:

oPl ot Wndow -> Draw, oPl ot Vi ew

Using IDL

Axis Objects

594 Chapter 28: Working with Axes and Text

The Draw method to the oPlotWindow object produces the following results:

Measured Signal

1.0

Displacement (inches)
=) =)
o 3

&
P

PRI T T TR T S S A T NS R S N S S | P IR
5335 59:40 5345 59:50 59:55 00:00 00:05
Time (seconds)

Figure 28-3: Displaying Date/Time data with IDLgrPlot

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levelsto draw and the units used at each level with the TICKUNITS keyword. You
can specify the formatting for these levels by changing the DATE_ FORMAT
keyword setting to the LABEL_DATE routine:

date_| abel = LABEL_DATE(DATE FORMAT = $
["%:%8, "%, "D W %W'])
where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, the first level (closest to the axis) will contain minute and second
values separated by a colon (%l:%S). The second level (just below thefirst level) will
contain the hour values (%H). Thethird level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y'). For more information,
see LABEL_DATE inthe IDL Reference Guide.

Axis Objects Using IDL

Chapter 28: Working with Axes and Text 595

Using IDL

Besides the above change to the LABEL _DATE routine, we must also change the
settings of the IDLgrAXis properties to specify amultiple level axis:
oPl ot XAxi s -> SetProperty, $

TI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $

TICKUNITS = ['Time', 'Hour', 'Day']
The TICKFORMAT is now set to a string array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Measured Signal

1.0

Displacement (inches)
=) =)
o 3

&
P

10 L

PRI S T T T T T S T N T T S T NS S S | P IR
59:35 59:40 59:45 59:50 59:55 00:00 00:05
15

Mar 30, 2000
Time (seconds)

Figure 28-4: Displaying Three Levels of Date/Time data with IDLgrPlot
Notice the three levels of the X-axis. These levels are arranged as specified by the

previous call to the LABEL_DATE routine.

To maintain IDL's memory, the object references for oPlotView, oTextX Axis, and
oTextYAXis should be destroyed. Therefore, after the display is drawn, the
OBJ _DESTROQY routine should be called:

OBJ_DESTROY, [oPlotView, oTextXAxis, oText YAXis]

The display will remain until closed, but the object references are now freed from
IDL’'s memory.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on a sphere recorded at every second for 37 seconds

Axis Objects

596 Chapter 28: Working with Axes and Text

after the initia recording of 59 minutes and 30 seconds after 2 o’ clock pm (14
hundred hours) on the 30th day of March in the year 2000:

nunber _sanpl es = 37

date_time = TI MEGEN(nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

angl e = 10. *FI NDGEN(nunber _sanpl es)

tenperature = BYTSCL(SI N(10.*!DTOR* $
FI NDGEN(nunber _sanpl es)) # COS(! DTOR*angl e))

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows:

date_| abel = LABEL_DATE(DATE_FORMAT = $
['%: 9%, "%, ' %M %))

where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second val ues separated
by acolon (%l:%S). The second level (just below thefirst level) will contain the hour
values(%H). The third level (thefinal level farthest from the axis) will contain the

day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will befilled, we should define a color palette:

oContourPal ette = OBJ_NEW ' I DLgrPal ette')
oContour Pal ette -> LoadCT, 5

Asin the one-dimensional example, the display must be initialized:

oCont our W ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [800, 600])

oCont our View = OBJ_NEW' | DLgr Vi ew , / DOUBLE)

oCont our Mbdel = OBJ_NEW' | DLgr Mbdel ")

oContour = OBJ_NEW' I DLgrContour', tenperature, $
GEOWX = angle, GEOW = date tinme, GEOMZ = 0., $
/ PLANAR, /FILL, PALETTE = oContourPal ette, $
/ DOUBLE_GEOM C_VALUE =