Building IDL
Applications

IDL Version 6.0

July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Research Systems Inc.

0703IDL60BLD

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fithess for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, |ON Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, PO. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

(@ AT YT S RUS 13
What isan IDL APPHICALIONT ...cccueecieciecie ettt ee s ee e st e e e s sre e e e reenre e nee s 14
About Building ApplicationSiN IDLccccveeeiiiiiiceeeese e 15

Part I: Components of the IDL Language

Chapter 2:

EXPressions and OPEratorSueeeeciiiirieeeeeeeieeeeeeeeiiiiiar e e e e e e 19
L@ < V=SS 20
1B I @01 o] £ T TSRS 21
(O] 01 (0 gl 1= 0= 0 = 0= RS 38
Data Type and Structure of EXPreSSIONScccceceieieeeeieneseseeeese e esae s sae e 41

Building IDL Applications 3

Chapter 3:

Constants and Variablesccoooiiiiiiiii e 45
(D= = R 1Y = T TP SUSRRPRRTIN 46
LO00] 015 7= | £ TSROSO 49
Type CONVErSION FUNCLIONSc.ccuieeieiiiiesieeiesie e ete ettt ste e e besresnaennenes 56
RV A T= o =S O EROPSROI 59
SYSEEM VATADIES ..ottt sttt s ae s besreene s 62
COMMON BIOCKS ...ttt ettt et ettt eaee e are e sateesbe e eaeeeneas 63

Chapter 4:

Procedures and FUNCLIONSuuiiiiiiiiiiiiiiiiiiiaee e 67
(@< V= RSP OTRR 68
DEfiNiNG @PrOCEOUNEc.coiiiiieiieieeee sttt 69
(0= T aTo = o o Tor = L1 70
DefiNiNg @FUNCLIONoviiiiiieiiieeeee et 71
PAIBIMELENS ... ettt b et e et bbb nr e e e s 74
USING KEYWOIrd ParaMELEN'Sccireeeriinierieieierie sttt sn e nne s 77
KeyWord INNEMTANCEeecieieccecece et ere e sreens 79
Entering Procedure DEfINITIONSc.cooiieieinireseee e 86
HOW IDL ReSOIVES ROULINES ..ottt ettt 88
Parameter Passing MeChaniSIM ..o 89
Caling MEChANISIMeeeiicecee e e sae e s esneesreenre e e 91
Setting Compilation OPLIONSc.coervirierieieirese et e b e 93
Advice for Library AULNOISc.cooeeiieie e 95
Chapter 5:

1L] Lo 1 T TP PPPPPPPUPPPPN 97
OVEIVIBIW .ottt b e bttt b et ae bt sb et et s b e nb et et ebenbebe e 98
SEING OPEIALIONSeeeiitiieieieree et ee et e s et e e e seesteese e e e steseeeseeseneeseeeneensenseseesneas 99
Non-string and NON-scalar ArQUMENLSoceviereerieseiesee e e eee e e e eee e s sne e e 100
S T 0ol @0 aTor= 1= g = o o ST 101
Using STRING t0 FOrMat Dataccccviveeeerieiiesieeeesie sttt 102
Byte ArgumentS @and SEHNGSoo.eeeereiiieeere e e e enes 103
(025 o] Lo 11 o S 105
WWHITESDACE .. .eeeeeeeeeeie ettt ettt ettt et st e e e e seeeneeneeeeseesaeeneenseseesreennas 106
Finding the Length of @StrNgcceee i 108
IS0 01 1 S 109

Contents Building IDL Applications

Splitting and JOINING SIHNGS .eecveeieiececere e e ens 112
COMPATNG SITTNGS -.evevereeeieriesre et e st e e sr e sre et ere e e e e e sresnennennas 113
Learning About Regular EXPrESSIONScceeveeieieieeiesie e seeseessesresseessesresresseesessesnens 117

Chapter 6:

ATTAYS et 121
(@< V= T 122
F N A= VS ¥ o e] o 11 o SRS 125
SUDSCIIPE RANGES ...cveviiiieieeiesie ettt n e b ne e 129
Dimensionality Of SUDBITAYSccveeeiieiir et 131
USING ATTAYS 8S SUDSCIPLS ...uvueeieeiesieieesieste sttt s e 133
CombINING SUDSCIIPLS ..vveveeieeiieerie et re e sre e e e sneesre e seenree e 135
Storing Elements with Array SUDSCIIPLSc.cooviirererineseeenie s 137
Columns, Rows, and Array M Orityccceeceeieiiiiir e see e e e nee e 138
Chapter 7:

SETUCTUIES et e ettt e e e e et e e e e e e raa e e e aeenes 143
OVEIVIBIW ..ttt b sttt b e ettt b e bbb st et et e b e sbe it e 144
Creating and DefiniNg SLIUCIUIEScoouiiiiieieririeseeie et 145
SITUCTUIE REFEIENCES ...ttt st 148
USINg HELP With SIFUCIUIESo.eiieeee e 150
Parameter Passing With SITUCLUIEScouvieeieie e 151
ATTAYS OF SEIUCKUINES ..ottt sttt e et e aeseesre e e e neesne e 153
SErUCtUre INPUE/OULPULoveeveeiesie sttt e ettt e sre e sn et s re e e nnesrennis 155
AdvanCed SITUCIUNE USAgEovueeieeeieiisie et ee ettt sne e e ee e 157
Automatic Structure DEfINITIONcoooeeiriniie e e 159
Relaxed Structure ASSIGNMENTeooeeiiiieeeee et s eeeseesnea 161
Chapter 8:

POINTEIS i 165
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 166
HEBP VaTADIES ...ttt eneenee e nneas 167
Creating HEap VariablESocveiiiececee ettt 169
Saving and Restoring Heap Variablescooeiiieiieiene e 170
Pointer HEap Variables ..ottt 171
0TI o T = S 172
OpErationS 0N POINLEISccecueeieiieiieceeies ettt st ae st e b e e s tesre s e e nnesreanis 175

Building IDL Applications Contents

Dangling REFEIENCESocuveiecieiice ettt sre e re s 179
Heap Variable LEaKAGEcoiereeeeeeirieieeeese e 180
0T H 10 V=T [S 182
= = Vo o] 1= £ 183
POINLEr EXAMPIES ..ottt sttt re e snesreennenes 184

Part 1l: Basics of IDL Programming

Chapter 9:

Introduction to IDL Programmingcccccccceeeeeeinininnniniiieiiieeeeeeeee 193
What iS@n IDL Program?cccceceeneneneeesesiesie e sne st sessesnennas 194
Creating a SiIMPIE PrOgramcccveieeieiieeieseeseeseeseeseessee e s sseesreesseesseenseessesnsesnsesnsens 197
Compiling and RUNNING Y OUr Prograimccoeceeereneneeeseseseeseeesie s 198
Commenting YOUr IDL COUEcccvviieiiieircer s seeseesteestee e e sreesreeste e enseeneeeeesne e 201
Saving Compiled IDL Prograimsc.coceveeeerieseneseeseesieseseeseeseesseeseessessessessesssessessenns 202
Restoring Compiled IDL Programs and Datalccoeeeererenereene e 209
Chapter 10:

Files and INPUt/OULPUL ..o 213
OVEIVIBIW .ttt sttt b bbbt b e st et et be e b et et et ebene et 214
L= 7O T N 1 S 215
Unformatted INPUL/OULPULocvieerie ettt 220
Formatted INPUL/OULPULcoeiieeeeeiireesiee e 221
(@70 o110 1 T - 223
L0 o 1= o 81 =S 224
Logical Unit NUMDBErS (LUNS) ...oceeceieceeeese ettt 225
Reading and Writing Very Large Fil€Scoooiiieieieecee e 228
Using Free Format INPULY/OULPULcc.ecveiveeiere ettt 230
Using Explicitly Formatted INPU/OULPULcooeireiieininereesieeeesesee e 235
FOIMEL COUBS ...ttt sttt st ettt nb e e nes 240
Using Unformatted INPUE/OULPULcoeeiere et 265
Portable Unformatted INPUL/OULPULcceevieiieiieeiece et 272
ASSOCiated NPUL/OULPULeeeeieeeeeieee ettt see e eesee e e eneeseesreeneas 277
File Manipulation OPEratioNSccccciiieeieeieieseeeese s eree e ee ettt aesaesresreenes 282
UNIX-SPeCific INFOrMELIONcoieieieeee ettt nee e 294
Windows-SpecCific INFOMELIONcccvieeeeiere et 297
SCIENtific Dala FOMMELSc.oiiieeeeese et e et e sae e 298
Support for Standard Image File FOrMatScoveceiiie e 299

Contents Building IDL Applications

Chapter 11:

N1 o |1 1= 1 301
Overview of the ASSIgnMENt SLAEEMENTcceeviieiieiese e 302
Assigning aValueto aVariable ... 304
Assigning Scalarsto Array EIEMENtScceeeeviiiiice e 305
Assigning ArraySto Array EI@MENEScooeeiiiiiiee e 306
AvOoid USiNg RANGE SUDSCIIPLS ...vvveeeeeiisii sttt sae et 308
Compound ASSIgNMENt OPEIELOTScooververeeeieereereereeeeesee e seeeeste e eeeeeseesseseeseeseesns 310
Using Associated File VariableSccviiieece e 312
Chapter 12:

Program CONTIOl ... 313
(@< V= 314
COMPOUNT SEALEMENEScuveeveeieeie e eree et esre e sre e sreesraesaeesreesseesreenes 315
Conditional SEALEMENTSccveeveeesr et re e nae e nns 318
[0 0] 0= (1 T RSPSSR 325
JUMP SEBEEMIENLS ...ttt sb bt bt se b sr e nn e e e 332
Definition of True and FalSe ..o e 335
Chapter 13:

Writing Efficient IDL Programseveeeeiiiininneeeeeeeeeeeeeeecvieenne s 337
OVEIVIBIW ..ttt b sttt b e ettt b e bbb st et et e b e sbe it e 338
EXpression EValuation OFAENcoeeeierenineeeeseses s 339
AVOIA [F SEBEEMENTS ...ttt 340
Use Vector and Array OPEIALiONScceeeerrereerenerieseseeesesee e seesessessessessenens 341
Use System FUNCtions and ProCEAUIEScc.ecviviieiiene e ste e 343
Use Constants Of the COrreCt TYPEoveiereeee et eeee e ee et ee e e 344
Eliminate INvariant EXPreSSIONSc.ccviieieeieie e seeeesse e sesssessessessesssesaestesseesessessens 345
RV L 00 = Y= 01T o S 346
T T T 40101 T= 01011 (] o 351
The IDL COUE PrOfIIEr ...ttt 352
Chapter 14:

Multithreading iN IDLouuiiiiiiiiiiieeee e 357
The IDL THread POOL ..ottt 358
Controlling the IDL Thread POOIcocieiiiieenereseee e 361
Routines that Use the Thread POO0I ..o 367

Building IDL Applications Contents

Chapter 15:

Solutions to Common IDL TasksSccccccciiiiiiiiiiiiieeee s 371
Determining Variabl@ SCOPEcvveeveieieeeese sttt 372
Determining if @ KeYWOrd iSSELccviiiieeiirieree s 373
Determining the Number of Array Elementsin an Expression or Variable 374
Determining if aVariable iSDEfiNedccooiiiiieeee e 375
Supplying Values for Missing KE@YWOIScvceeeeieieeeeie e ceeees e sae e saeeaens 376
Supplying Values for Missing ArQUIMENTSccueieererreeeeeesieseeseesee e seesee e eneeeens 377
Determining the Size/Type of @N AITAYccvvieieeie e 378
Determining if a Variable Containsa Scalar or Array Valuecooevvveieecennneeenne 381
Calling Functions/ProcedureS INAIFECHIYccvieiiece e 382
Executing Dynamically-Created IDL COUEcccceeeiriiiriere e 383
Chapter 16:

Building Cross-Platform Applicationsccccvvriiiiiiciiiieeeeeeeee, 385
(@< V= T 386
Which Operating System iSRUNNING? ..ot 387
File and Path SPeCifiCaliONSc.ccveieeiieieere et re e 388
ENVIronment VariableScooiiiiiere et 390
[T =S3= 0T I L SR 391
MEEN EXCEPLIONS ..ottt et 394
OPErating SYSIEM ACCESS ...ueciviecieeieeiieeteeteererseeseeseesseesseestessreesreesteesseenseensesnsesnsesnsens 395
Display CharacteristicS and PalEIESccciiiririeererereese e 396
FFONES .ttt ettt et ae e e he e she e sae e naeenne e reenre e 397
PIINEING ettt b bbbt bbb r e et en e e e 398
SAVE aN0d RESTOREoooiiiieieierienie sttt st ne e ene s 399
WWIAGELS ettt b e bttt eb et n e e e nn b e 400
USING EXTErNal COUEoveieeiece sttt et s s e s re e e 403
DL DAAMINES ISSUESoviivieeieeiiesteeieseestestesseeaeseestesseesseseessesseessessessessesssessessesssnssnsees 404
Chapter 17:

Debugging an IDL Program ... 405
(@< V= ST 406
Debugging COMIMANGSccueiviiiiieie st e see e e ste st re e te st s re e e e resresreeaessesreereenes 407
The Variable WatCh WINAOWcc.ooiiiiiee e 413

Contents Building IDL Applications

Chapter 18:

CoNtrolliNg EITOIS ooviieeeeiiiiiciis st e e e e e e e e e e e e e eeneeennnnes 417
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 418
Default Error-Handling MeChaniSmcoeeeiiii e 419
Disappearing VariablEScccciiieieie ettt st 420
Controlling Errors USING CATCH ...t 421
Controlling Errors Using ON_ERRORcccoiiiiiiieiesc et 425
Controlling INPUL/OULPUL ETTOIScovriiiieeeiiriesieseeesesie e 426
ErTOr SIgNAIING .voiveceeieie ettt ettt s re s reenaennenrenreas 428
Obtaining Traceback INfOrMELIONcccoiiiieiieiireeee e 430
ErrOr HANAIING ..veveceeee ettt st reenaennenrenneas 431
= 1 = 0] USSP 433
Chapter 19:

Providing Online Help For Your Applicationccccccvveeeeeeeiiinnnnnnn. 439
(@< V= TSP 440
Providing Help Within the User INterfacecccvvineneenneneeeese e 441
(DTS o = 1o T = A T = 444
USING @N EXTEMNEl VIBWES ...ttt 445
About IDL’SONIINE HEIP SYSLEM ..o s 446
USING IDL’ S ONIINE HEIP VIBWEL'S ..ot 449

Part Ill: Creating Applications in IDL
Chapter 20:

Creating IDL ProJECES ..ovvuuuiiiiiiiii e e e et e e e e e e e e e e e e eeeeennnnnes 459
OVEIVIBIW ...ttt sttt b et b e s bbbt b e st et et e besbe it e 460
Whereto Store the Filesfor aProjeCtcooeoeiiieie e 464
(O 110 =N (0] 1=t S 466
Opening, Closing, and Saving ProjECEScooeiirereeiene e 468
MOdifying ProjECt GIOUPSc.cceieeieriesiesieeiesiesteeteeeete s ese e s e seeste e sesresressaensessesnens 469
Adding, Moving, and RemMOVING FIlEScccoiiiiiiee e 471
Working With FII€SIN @aProjECtccoiiiiiiee e 475
Setting the OptioNS fOr aPIOJECEooveee s 479
Selecting the BUild OFderccccviieecese ettt 482
Compiling an Application from @aProjectcccoeeeereniieeeerere e 484
BUITAING @PIOJEC ...ttt sttt sreeneas 485

Building IDL Applications Contents

10

Running an Application from aProjeCtccccvevinineincreseeesese e 487
(a0 Lo = W] = S 4388
Chapter 21:

Distributing IDL ApPliCAtIONSvvveiiiiiiiii e 495
What is a Stand-Alone IDL APPIICEHIONTccceeieeieeiie e eee e e s 496
Building aNative IDL APPIICALIONco.evueerieririereeeeesiesie e 499
Licensing Optionsfor IDL APPIICALIONSc.cccuevierieeneeiee s see e see e see e esseeseeeseeens 501
The IDL Virtual MaChinecccooiiiieee et 503
[gl ol e o (<o J I Torc o ST oo 508
RUNEIME LICENSING ..ottt sttt et sn e e 514
(21011 1o [T o N0 1N 12N o o] o 4 o o S 522
Preparing @ DiStriDULTIONcooieiiiee e s 531
Installing your APPIICALIONccceeieeiie e e 538
Incorporating the IDL Daa MINES ... 539

Part IV: Using IDL Objects
Chapter 22:

(@] o JL=T ot g = = T o PPN 543
Object-Oriented Programmingccceceveeeereeiiiiceese e sne s 544
1 I o] =ox A Y=Y/ = SRR 545
ClASS SITUCTUIES ..ottt sttt sttt b e et b et benbe it 547
g 0TS =TT 549
Object HEap VariableSccueiiiieciece et st 551
N T I = o £ 554
The OBJECE LIfECYCIE ..ottt st eneas 555
OpErationS 0N ODJECLSccueriiiieeeeiere e eee et seeee e ste e see e sae e e seestesneeeeneeseesneensesens 558
Obtaining Information about ODJECESccceceeiiiieie e 560
= T To I Lo 1= 562
VTS 1o To M@= g ¢ [T ol U 566
(@ o= ot B = 0] 0= T 569
Chapter 23:

Using the XML Parser Object Classccccccccvviiiiiiiiiiiiiiiiiiiiiiee 571
ADOUL XIML ottt et n et e et senansenennas 572
USING e XIML PaISErooiiiiiiiieieesie ettt sttt e en e e 574
Example: Reading Data INnto @n ATTaYcoecevieiieiee e cee s e e s e e eneeenee e 579

Contents Building IDL Applications

Example: Reading Data INtO SEIUCLUIESccvecveiieiieieie et 586
Building Complex Data SIUCIUIEScccoeiirieeeenerieseseee s 593

Part V: Creating Graphical User Interfaces in IDL

Chapter 24:

Using the IDL GUIBUIIAErooiiiiiiiiiiiiaiieeeeeee e 597
(@< V= P 598
Starting the IDL GUIBUITEScc.ocveeecie ettt s e e e s 600
Creating an Example APPIICALIONcooeieiriniereereee s 602
IDL GUIBUIIAES TOOIS ...ttt 613
WidQEL OPEIELIONSeueevireireeieieeie sttt sttt b e et sb e b et se b s b e 628
LT aTc] Lo T S 631
IDL GUIBUIldEr EXAMPIES ...t 633
WidQet PrOPEITIESooeiieeeieieeie ettt sttt st aesae e e e neesneene e 647
CommOoN Widget PropertieSccvieeeeiese ettt sttt ens 648
Base Widget PrOPErtiEScooiiiieeere ettt nneas 654
BULtON WiIdQEL PrOPEMTIES ...oveeviiecteeee ettt st nrenne s 666
TeXt Widget PrOPEITIEScoeeeeieeeeee ettt e et nee e enas 671
Label WIdget PrOPEITIESccecoiiiieiiecesie sttt ettt st eneenestenneas 676
Slider Widget PropertieScooeoeieeeeese et 678
Droplist Widget PropErtiEScc.vceiieeieie et e st st sae e nesresneas 680
LiSthoX Widget PrOPEITIESccooiieeeie et nneas 682
Draw Widget PrOpErti€Sccccoiiiiecece ettt e st sttt sneas 685
Table Widget Propertiesccooi oot 692
Tah Widget PrOPETiESeeeeeee ettt sttt sttt enas 700
Tree Widget PrOPEITIEScoiieieeeee ettt ee e e enas 702
Chapter 25:

WG LS et 705
OVEIVIBIW ...ttt st b b sttt b e ettt b ettt b e st et et e besbete s 706
WidQEt PriMITIVES ..ottt sttt sne e e neesneene e 709
(@001 070181010 VAV T [0 1= £ ST 722
1= oo USRS 731
UBHITIES ottt nn e 733

Building IDL Applications Contents

12

Chapter 26:

Creating Widget ApplicationSccoovviviiiieiiiicccee e 737
About Widget APPIICALIONScceeveiieiiieie et s sa et sae e 738
Widget Programming CONCEPLSceierrereririerierieieeesressesseesse s sseseesesnesneneas 739
Example 1: A Simple Widget AppliCatioNccccceviiiriere e 742
Widget Application LITECYCIE ..ot 744
Manipulating WIAQELSoceiuieiee ettt st nne e 747
WOrKing With WIdQEL IDSooueeeeieseee ettt e eneas 752
WiAQEL USEN VAIUES ...ttt ettt sttt st saeereennas 754
Widget EVENE PrOCESSINGeeiveiieeieierieiieeeesieste st e ettt seeseeseeseeeneeeeseesreeneeneesaesneeneas 755
Example 2: Event Processing and USer ValUESccccvveeveveiecie e 761
Managing APPliCatioN SEALEcoceeieieieeere et 763
(0091070101010 VAV To [0 1= £ 767
Example 3: Compound WIdQELccoceieeeie e 770
Debugging Widget APPlICALIONSccviiieierie ettt 779
Chapter 27:

Widget Application TEChNIQUEScoovvviiiiiiieiiiiiiie e 781
Working With Widget EVENEScooviiiiieeree et 782
Using Multiple Widget HIErarChi€scccovoeeieeveeseeseese st 787
Creating MENUSocuiiiiiiiitestee ettt sttt b e b e e e b e e 790
RTAT T Lo = S T4 o 803
Tipson Creating Widget APPlICELIONSccueveiriirerieieerese e 809
USING BUON WIAGELSeeveecie ettt s enne e e nne e 811
USING DIraW WIGGQELS ..ottt 815
Using Property Sheet WIAQELSooceiieeiec et st 827
USING TADIE WILGELS ...ttt 848
L0 LS Tl T 1= o JNAT o (o 859
USING TrEE WITGELS ..ottt st 868
IO EX ettt 875

Contents Building IDL Applications

Chapter 1:
Overview

This chapter includes information about the following topics:

What isan IDL Application?............ 14 About Building Applicationsin IDL

Building IDL Applications

13

14 Chapter 1: Overview

What is an IDL Application?

We use the term “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the very
simple (aMAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing asmall program to analyze asingle data set or a
large-scale application for commercial distribution, it isuseful to understand the
programming concepts used by the IDL language.

Can | Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and otherswho use IDL. (If you intend to distribute your applications, it is a good
ideato avoid any code that depends on the qualities of a specific platform. See
“I'VERSION” in the IDL Reference Guide manual and “ Tips on Creating Widget
Applications’ on page 809 for some hints on writing platform-independent code.) Of
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have accessto an IDL license.

If you would like to distribute your I DL application to people who do not have access
toan IDL license, you have several options. Many IDL applications will run in the
freely-available IDL Virtual Machine. If your application uses features not available
in the virtual machine, you may wish to consider aruntime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. See Chapter 21, “Distributing IDL Applications’ for a complete
discussion of the different ways you can distribute an application writtenin IDL.

What is an IDL Application? Building IDL Applications

Chapter 1: Overview 15

About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL isatime-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

IDL isacomplete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

IDL’sflexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including BMP,
JPEG, and XWD) and scientific data formats (CDF, HDF, and NetCDF).

IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

IDL programs run the same across all supported platforms (Microsoft
Windows and awide variety of Unix systems) with little or no modification.
This application portability allows you to easily support avariety of
computers.

Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine’.

Building IDL Applications About Building Applications in IDL

16 Chapter 1: Overview

About Building Applications in IDL Building IDL Applications

Part I: Components
of the IDL Language

Chapter 2:
Expressions and
Operators

The following topics are covered in this chapter:

OVEIVIEW ... 20 Operator Precedence 38
IDL Operatorscovvviviinnann. 21 DataType and Structure of Expressions .. 41

Building IDL Applications 19

20

Chapter 2: Expressions and Operators

Overview

Overview

Variables, constants, and function results are combined into expressions using
operators. The value of an expression depends on the values of the operands and the
operator involved. Expressions can be combined with other expressions, variables,
and constants to yield more complex expressions. In IDL, unlike FORTRAN or C,
expressions can be scalar- or array-valued.

IDL has alarge number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and logical arithmetic (& &, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

Functions, which are operatorsin themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!Pl) evaluates the variable A multiplied by the value of =, then
applies the trigonometric sine function. Thisresult can be used as an operand to form
amore complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI)) evaluates €3 ™),

Building IDL Applications

Chapter 2: Expressions and Operators 21

IDL Operators

As described above, operators are used to combine terms and expressions. IDL
supports the following types of operators:

¢ Parentheses

e Square Brackets

¢ Mathematical Operators

¢ Minimum and Maximum Operators
e Matrix Multiplication

e Array Concatenation

e Logical Operators

e Bitwise Operators

¢ Relationa Operators

Parentheses

Parentheses are used to group expressions and to enclose function parameter lists.
Parentheses can be used to override the order of operator evaluation described above.
Examples:

; Parent heses encl ose function argunment |ists.
SIN(ANG * PI/180.)

; Parent heses specify order of operator eval uation.
(A+5)/B

Theright parenthesis must always close the list begun by the left parenthesis.
Square Brackets

Square brackets are used to create arrays and to enclose array subscripts.

; Use brackets when assigning elenments to an array.
ARRAY = [1, 2, 3, 4, 5]

; Brackets encl ose subscripts.
ARRAY[X, Y]

Building IDL Applications IDL Operators

22 Chapter 2: Expressions and Operators

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()" on page 128 for additional
details.

Mathematical Operators

There are seven basic IDL mathematical operators, described below.
Assignment

The equal sign (=) isthe assignment operator. The value of the expression on theright
hand side of the equal sign is stored in the variable, subscript element, or range on the
left side. For example, the following assigns the value 32 to A.

A =32
See Chapter 11, “Assignment” for more information.
Compound Assignment Operators

In addition to the standard assignment operator, there are numerous compound
operators (+=, -=, etc.) that combine assignment with another operator. Compound
assignment operators provide succinct syntax for expressions in which the same
variable would otherwise be present on both sides of the equal sign. For example, the
following statements both add 100 to the current value of the variable A:

A= A + 100

A += 100
See “Compound Assignment Operators’ in Chapter 11 for more information and a
list of compound assignment operators.

Addition

The positive sign (+) is the addition operator. When applied to strings, the addition
operator concatenates the strings. For example:

;Store the sumof 3 and 6 in B.
B=3+6

;Store the string value of "John Doe" in B.
B ='John" +' ' + 'Doe'

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 23

Subtraction and Negation

The negative sign (-) is the subtraction operator. Also, the minus sign is used as the
unary negation operator. For example:

;Store the value of 5 subtracted from9 in C
C=9-5

; Change the sign of C
CcC=-C

Multiplication

The asterisk (*) isthe multiplication operator. For example:

; Store the product of 2 and 5 in variable C
C=2=*5

Division
The forward dlash (/) is the division operator. For example:

; Store the result of 10.0 divided by 3.2 in variable D
D =10.0/3.2

Exponentiation

The caret () isthe exponentiation operator. A*B isequal to A raised to the B power.
For real numbers, A*B is evaluated as follows:

« If Alisareal number and B is of integer type, repeated multiplication is
applied.

« If both A and B arereal (non-integer), the formula AB = eB™ js evaluated.

« Alisdefinedas 1.

For complex numbers, A*B is evalutated as follows. The complex number A can be
represented as A = a + ib, where aisthereal part, and ib isthe imaginary part. In
polar form, we can represent the complex number as A = ré®=r cosd +ir sing,
wherer cos0 istherea part, andir sind isthe imaginary part:

« If Aiscomplex and B isreal, the formula AB = (ré®)B = rB (cosB0 + isinB) is
eval uated.

« If Aisrea and B is complex, the formula AB = eB™ s evaluated.

« If both A and B are complex, the formula AB = e®M is evaluated, and the
natural logarithm is computed to be In(A) = In(re'e) =In(r) +i6.

Building IDL Applications IDL Operators

24 Chapter 2: Expressions and Operators

Modulo

The keyword MOD isthe modul o operator. | MOD Jis equal to the remainder when |
isdivided by J. The magnitude of the result isless than that of J, and its sign agrees
with that of 1. For example:

; Assign the value of 9 nmobdulo 5 (4) to A
A =9 MDS5

; Comput e angl e nodul o 2p.
A =(ANGLE + B) MOD (2 * IPI)

Increment/Decrement

Theincrement (++) and decrement (--) operators can be applied to variables
(including array subscripts or structure tags) of any numeric type. The ++ operator
increments the target variable by one. The -- operator decrements the target by one.
When written in front of the target variable (that is, using prefix notation), the
operations are known as preincrement and predecrement, respectively. When written
following the target variable (using postfix notation), they are called postincrement
and postdecrement.

Note
Theincrement and decrement operators can only be applied to variable expressions
to which avalue can be assigned. Hence, the following is not allowed:

A = 23++

because it attempts to apply the increment operator to a constant. Another way of
stating thisrule is to say that it must be possible for the expression being
incremented or decremented to appear on the left-hand side of the equal sign.

The increment and decrement operators can be used either as standal one statements
or within alarger enclosing expression. Although the two forms are very similar, the
expression form has some efficiency and side-effect issues (described below) that do
not apply to the statement form.

Increment/Decrement Statements

Increment and decrement operators can be used, along with avariable, as standalone
Statements:

o A++0r++A

o A-oOr--A

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 25

The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable is incremented in place and no temporary copies of the
data are made.

Increment/Decrement Expressions

Increment and decrement operators can be used within expressions. When the
operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of the variable A is 27, while B is 28:

B
A

27
B++

In contrast, after executing the following statements, both A and B have avalue of 26:

B
A

27
--B

Efficiency of Prefix vs. Postfix Operations — When used as part of an expression,
the prefix form of the increment and decrement operators has an efficiency advantage
over the postfix form. The reason for thisis that the postfix form requires IDL to
make a copy of the data, while the prefix form does not. The operations carried out by
IDL to execute a prefix increment or decrement operation are:

1. Fetch thetarget variable.
2. Increment or decrement the target variable in place (no copies are made).
3. Usethe variable when evaluating the surrounding expression.

Thisisvery efficient. In contrast, the postfix form requires IDL to make a copy of the
variablein order to use its old value in the surrounding expression following the
increment/decrement. The operations carried out by IDL to execute a postfix
increment or decrement operation are;

1. Fetchthetarget variable.

2. Make atemporary copy of the variable.

3. Increment or decrement the original variable.

4. Usethetemporary copy when evaluating the surrounding expression.

If your computation requires the postfix form, then these operations are necessary
and reasonable. If not, the prefix form will use fewer resources and is the better

Building IDL Applications IDL Operators

26

Chapter 2: Expressions and Operators

choice. The larger the datainvolved, the more important this becomes. It isnot a
concern for small variables.

Order Of Side Effects — The way that the increment and decrement operators
change the value of avariablein addition to using its value in a surrounding
expression is called a side effect. In most cases, the side effects are desired, and cause
no problems. Side effects can cause problems, however, if the increment or
decrement operator is applied to a variable that appears more than once within a
single statement or expression. Consider the following statement (taken from The C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie):

Ali] = i++

Which value of i isused to index A?Isit the original value of i, or the incremented
value? The answer depends on the order in which the various parts of the statement
are evaluated. Either answer might be considered correct, and IDL does not require
one or the other. Similarly, in the statements

23
B++ + B

B
A

the value of A could be either 47 or 46, depending on which part of the expressionis
evaluated first.

Note that this situation falls outside the rules of operator precedence — it isthe order
in which the variables themselves are eval utated that affects the result. Let’s examine
the situation closely:

¢ Herethe“old” value of B (23) is always used for the first occurrence of B in
the statement.

* | the sub-statement B++ is evaluated first, the value of the second occurrence
of B in the statement uses the “new” value of B (24), giving A the value 47.

e If the sub-statement that contains only the variable B is evaluated first, the
“old” value of B will be used for both occurrences, and A will get the value 46.

As with most languages that implement increment and decrement operators, IDL
does not require any particular ordering of evaluation within an expression in which
such side effects occur. Different versions or implementations of IDL may evaluate
the same expression differently. As aresult, you should avoid writing code that
depends on a particular ordering of the side effects.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 27

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below. Note that negated values must be enclosed in
parentheses in order for IDL to interpret them correctly.

The Minimum Operator
The “lessthan” sign (<) isthe IDL minimum operator. The value of “A < B” isegua
to the smaller of A or B. For example:
;Set A equal to 3.
A=5<3
;Set A equal to -6.
A =5 < (-6)

;Syntax Error. IDL attenpts to performa subtraction operation if
;the "-6" is not enclosed in parentheses.
A=5<-6

;Set all points in array ARR that are |arger than 100 to 100.
ARR = ARR < 100

;Set X to the snallest of the three operands.
X = X0 < X1 < X2

For complex numbers the absolute value (or modulus) is used to determine which
value is smaller. If both values have the same magnitude then the first valueis

returned.

For example:

; Set A equal to 1+2i, since ABS(1+2i) is |ess than ABS(2-4i)
A = COWLEX(1,2) < COWPLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COMPLEX(1,-2) < COMPLEX(-2, 1)

The Maximum Operator

The " greater than” sign (>) isthe IDL maximum operator. “A > B” isequal to the
larger of A or B. For example:

;"> is used to avoid taking the | og of zero or negative nunbers.
C = ALOG D > 1E - 6)

;Plot positive points only. Negative points are plotted as zero.

Building IDL Applications IDL Operators

28

Chapter 2: Expressions and Operators

PLOT, ARR > 0

For complex numbers the absolute value (or modulus) is used to determine which
valueislarger. If both values have the same magnitude then thefirst value is returned.
For example:

; Set A equal to 2-4i, since ABS(2-4i) is greater than ABS(1+2i)
A = COWLEX(1,2) > COWLEX(2,-4)

; Set A equal to 1-2i, since ABS(1-2i) equals ABS(-2+i)
A = COMPLEX(1,-2) > COMPLEX(-2, 1)

Matrix Multiplication

IDL hastwo operators used to multiply arrays and matrices.
The # Operator

The # operator computes array elements by multiplying the columns of thefirst array
by the rows of the second array. The second array must have the same number of
columns asthefirst array has rows. The resulting array has the same number of
columns asthefirst array and the same number of rows as the second array.

Tip
If one or both of the arrays are also transposed as part of a matrix multiplication,
such as TRANSPOSE(A) # B, it is more efficient to use the MATRIX_MULTIPLY
function, which does the transpose simultaneously with the multiplication.

The ## Operator

The ## operator does what is commonly referred to as matrix multiplication. It
computes array elements by multiplying the rows of the first array by the columns of
the second array. The second array must have the same number of rows as the first
array has columns. The resulting array has the same number of rows asthefirst array
and the same number of columns as the second array.

For an exampleillustrating the difference between the two, see “Multiplying Arrays’
in Chapter 22 of the Using IDL manual.

Array Concatenation

The square brackets are used as array concatenation operators. Operands enclosed in
square brackets and separated by commas are concatenated to form larger arrays. The

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 29

expression [A,B] isan array formed by concatenating A and B, which can be scalars
or arrays, along the first dimension.

Similarly, [A,B,C] concatenates A, B, and C. The second and third dimensions can be
concatenated by nesting the bracket levels; [[1,2],[3,4]] is a 2-element by 2-element
array with the first row containing 1 and 2 and the second row containing 3 and 4.
Operands must have compatible dimensions; al dimensions must be equal except the
dimension that is to be concatenated, e.g., [2,INTARR(2,2)] are incompatible.
Examples:

;Define C as three-point vector.
c=1[-1, 1, -1]

;Add 12 to the end of C
C=[C 12]

;lnsert 12 at the beginning of C
C=1[12, C

; Plot ARR2 appended to ARRL.
PLOT, [ARR1, ARRZ?]

; Define a 3x3 matri x.
KER = [[1,2,1], [2,4,2], [1,2,1]]
Note
Array concatenation is arelatively inefficient operation, and should only be
performed once for a given set of dataif possible.

Logical Operators

There are three logical operatorsin IDL: &&, ||, and ~.

&&

Thelogical && operator performs the logical short-circuiting “and” operation on two
scalars or one-element arrays, returning 1 if both operands are true and O if either
operand isfalse.

Thelogica | | operator performsthe logical short-circuiting “or” operation on two
scalars or one-element arrays, returning 1 if either of the operandsistrueand 0 if both
arefalse.

Building IDL Applications IDL Operators

30 Chapter 2: Expressions and Operators

Thelogica ~ operator performsthe logical “not” operation on ascalar or array
operand. If the operand isascalar, it returns scalar 1 if the operand isfalse or scalar 0
if the operand istrue. If the operand is an array, it returns an array containing a1l for
each element of the operand array that isfalse, and a 0 for each element that is true.

Note
Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1's complement),
and for! to be used for logical negation. Thisisnot thecasein IDL: ! isusedto
reference system variables, the NOT operator performs bitwise negation, and ~
performslogical negation.

When is an Operand True?

When evaluated by alogica operator, an expression is considered to be “true” under
the following conditions:

e For numerical operands, if the value is non-zero.
e For string operands, if the value is non-null.

« For heap variables (pointers and object references), if the value is non-null.
Short-circuiting

The&& and | | logical operators are short-circuiting operators. This meansthat IDL
does not evaluate the second operand unlessit is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, sinceit allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Opl && Op2

IDL does not evaluate Op2 if Op1 isfase, because it aready knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Opl || Op2

IDL does not evaluate Op2 if Op1 istrue, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the LOGICAL_AND and
LOGICAL_OR functions or the bitwise AND and OR operators.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 31

Logical Operator Examples

Results of relational expressions can be combined into more complex expressions
using the logical operators. Some examples of relational and logical expressions are
asfollows:

;True if Ais between 25 and 50. If Ais an array, then the result
;is an array of zeros and ones.
(A LE 50) && (A CE 25)

;True if Ais less than 25 or greater than 50. This is the inverse
;of the first.
(A GI 50) || (ALT 25

Bitwise Operators

There are four bitwise operatorsin IDL: AND, NOT, OR, and XOR. For integer
operands (byte, signed- and unsigned-integer, longword, and 64-bit longword data
types), bitwise operators operate on each bit of the operand or operands
independently.

AND

The bitwise AND operator performs the logical “and” operation on two scalar or
array operands. If the operands are scalars, it returns a scalar value. If either operand
isan array, it returns an array containing one value for each element of the shortest
array operand. The returned values are as follows:

e For integer operands, AND performs abitwise “and” operation and returns the
result. For example, the statement

5 AND 6 = 4
is represented in binary as follows:
0101 AND 0110 = 0100

* For floating-point and complex operands, AND returns the second operand if
the first operand is not equal to zero; otherwise, the returned value is zero.

e For string operands, AND returns the second operand if the first operand is
non-null; otherwise, the returned value is the null string.

¢ Thebitwise AND operator is not valid for heap variable operands.
NOT

The bitwise NOT operator returns the bitwise inverse of its scalar or array operand. If
the operand isascalar, it returnsascalar value. If the operand isan array, it returns an

Building IDL Applications IDL Operators

32

Chapter 2: Expressions and Operators

array containing one value for each element of the operand array. The returned values
areasfollows:

e For integer operands, NOT returns the complement of each bit of the operand.
For example, the statement

NOT 4 = -5
is represented in binary as follows:
NOT 0100 = 1011

¢ For floating-point operands, NOT returns 1.0 if the operand is zero; otherwise,
it returns zero.

e Thebitwise NOT operator isnot valid for string, complex, or heap variable
operands.

Warning
Use caution when using the return value from the bitwise NOT operator as an
operand for the logical operators && and | | . See “Note on the NOT Operator” on
page 33 for additional discussion.

Note
Modern computers use the “ 2s complement” representation for negative signed
integers. Thismeansthat to arrive at the decimal representation of a negative binary
number (astring of binary digits with a one as the most significant bit), you must
take the complement of each bit, add one, convert to decimal, and prepend a
negative sign. For example, NOT 0 equals -1, NOT 1 equals -2, €tc.

OR

The bitwise OR operator performsthe logical “inclusive or” operation on two scalar
or array operands. If the operands are scalars, it returns a scalar value. If either
operand is an array, it returns an array containing one value for each element of the
shortest array operand. The returned values are as follows:

« For integer operands, OR performs a bitwise inclusive “or” operation and
returns the result. For example, the statement

3 OR5 equals 7
isrepresented in binary as follows:
0011 OR 0101 = 0111

« For floating-point and complex operands, OR returns the first operand if itis
non-zero, or the second operand otherwise.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 33

« For string operands, OR returns the first operand if it is non-null, or the second
operand otherwise.

e Thebitwise NOT operator is not valid for heap variable operands.
XOR

The bitwise XOR operator performs the logical “exclusive or” operation on two
scalar or array operands. If the operands are scalars, it returns a scalar value. If either
operand is an array, it returns an array containing one value for each element of the
shortest operand array. The returned values are as follows:

¢ For integer operands, XOR setsabit in the result to 1 if the corresponding bits
in the operands are different or to O if they are equal. For example, the
Statement:

4 XOR3 =7
is represented in binary as follows:
0100 XOR 0011 = 0111
e The bitwise XOR operator is not valid for other types.

Bitwise Operator Examples

Some examples of bitwise expressions are as follows:

Di spl ays the “negative” of an image contained in the array | Ma
TV, NOT | MG

; Adds the hexadeci mal constant FF (255 in decimal) to the array
; ARR This masks the | ower 8-bits and zeros the upper bits.
ARR AND ' FF' X

Note on the NOT Operator

Due to the bitwise nature of the NOT operator, logical negation operations should
always use ~ in preference to NOT, reserving NOT exclusively for bitwise
computations. Consider a statement such as:

I F ((NOT ECF(lun)) && device_ready) THEN statenent

which wants to execute statement if the file specified by the variable | un has data
remaining, and the variable devi ce_r eady is non-zero. When EOF returns the
value 1, the expression NOT EOF(| un) yields -2, dueto the bitwise nature of the
NOT operator. The && operator interprets the value -2 as true, and will therefore
attempt to execute statement incorrectly in many cases. The proper way to write the
above statement is:

Building IDL Applications IDL Operators

34 Chapter 2: Expressions and Operators
IF ((~ BEOF(lun)) && device_ready) THEN st at enent
Relational Operators

The IDL relational operators can be used to test the relationship between two
arguments. The six relational operators are described in the following table:

Operator Description
EQ Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Lessthan or equal to
LT Lessthan

Table 2-1: Relational Operators

Relational operators apply arelation to two operands and return alogical value of
true or false. Theresulting logical value can be used asthe predicatein IF, WHILE or
REPEAT statements can be combined using Boolean operators with other logical
values to make more complex expressions. For example: “1 EQ 1” istrue, and
“1GT 3" isfase.

The rulesfor evaluating relational expressions with operands of mixed modes are the
same as those given above for arithmetic expressions. For example, in the relational
expression “2 EQ 2.0”, the integer 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression istrue, as represented by a byte 1.

In DL, the value “true” is represented by the following:
¢ Any odd, nonzero value for byte, integer, and longword data types

* Any nonzero value for single, double-precision, and the real part of a complex
number (the imaginary part isignored)

e Any non-null string

Conversdly, falseis represented as anything that is not true—zero or even-valued
integers, zero-valued, floating-point quantities; and the null string.

Therelational operators return avalue of 1 for true and O for false. The type of the
result is aways byte.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 35

EQ

EQ istherelational “equal to” operator. This operator returns true if its operands are
equal; otherwise, it returns false. This operator always returns a byte value of 1 for
true and a byte value of O for false.

For complex numbers both the real and imaginary parts must be equal. For example:
print, COMPLEX(1,2) EQ COMPLEX(1,2) ; returns true
print, COMPLEX(1,2) EQ COMPLEX(1,-2) ; returnsfalse

NE

NE isthe " not-equal-to” relational operator. This operator returns true whenever the
operands are different. For example "sun" NE "fun" returns true.

For complex numbers both the real and imaginary parts must be equal to return a
false value. For example:

print, COMPLEX(1,2) NE COMPLEX(1,2) ; returnsfalse
print, COMPLEX(1,2) NE COMPLEX(1,-2) ; returnstrue

GE

GE isthe “greater than or equal to” relational operator. The GE operator returns true
if the operand on the left is greater than or equal to the one on the right. One use of
relational operatorsisto mask arrays as shown in the following statement:

A = ARRAY * (ARRAY GE 100)

This command sets A equal to ARRAY whenever the corresponding element of
ARRAY is greater than or equal to 100. If the element is less than 100, the
corresponding element of A is set to zero.

Strings are compared using the ASCI|I collating sequence: " " islessthan "0" isless
than "9" islessthan "A" islessthan "Z" islessthan "a" which isless than "z".

For complex numbers the absolute value (or modulus) is used for the comparison.
GT

GT isthe “greater than” relational operator. This operator returns true if the operand
on the left is greater than the operand on the right. For example, “6 GT 5” returns
true.

For complex numbers the absolute value (or modulus) is used for the comparison.

Building IDL Applications IDL Operators

36 Chapter 2: Expressions and Operators

LE

LE isthe “less-than or equal-to” relational operator. This operator returnstrue if the
operand on the left is less than or equal to the operand on the right. For example, “4
LE 4” returns true.

For complex numbers the absolute value (or modulus) is used for the comparison.

LT

LT isthe “less-than” relational operator. This operator returns true if the operand on
the left is less than the operand on the right. For example, “3 LT 4” returnstrue.

For complex numbers the absolute value (or modulus) is used for the comparison.
Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression, ARR* (ARR LE 100)
isan array equal to ARR except that all points greater than 100 have been reduced to
zero. The expression (ARR LE 100) isan array that contains a 1 where the
corresponding element of ARR islessthan or equal to 100, and zero otherwise. For
example, to print the number of positive elementsin the array ARR:

PRI NT, TOTAL(ARR GT 0)
Using Relational Operators with Infinity and NaN Values

On Windows and Solaris x86 platforms, using relationa operators with the values
infinity or NaN (Not a Number) causes an “illegal operand” error. The FINITE
function’s INFINITY and NAN keywords can be used to perform comparisons
involving infinity and NaN values. For more information, see “FINITE” inthe IDL
Reference Guide manual and “ Special Floating-Point Values’ on page 434.

Conditional Expression

The conditional expression—written with the ternary operator ?—has the lowest
precedence of all the operators. It provides away to write simple constructions of the
IF...THEN...EL SE statement in expression form. In the following example, Z receives
the larger of the values contained by A and B:

IF (AGIr B) THEN Z = AELSE Z = B

This statement can be written more concisely using a conditional expression:
Z=(AGIB) ?A: B

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 37

The general form of a conditional expressionis:
exprl ? expr2 : expr3

The expression exprl is evaluated first. If exprlistrue, then the expression expr2 is
evaluated and set as the value of the conditional expression. If exprlisfase, expr3is
evaluated and set as the value of the conditional expression. Only one of expr2 or
expr3 is evaluated, based on the result of exprl. (See “Definition of True and False”
on page 335 for details on how the “truth” of an expression is determined.)

Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around expr 1. However, parentheses are often used in this situation, as
they enhance the readability of the expression.

Building IDL Applications IDL Operators

38

Operator Precedence

Chapter 2: Expressions and Operators

IDL operators are divided into the levels of algebraic precedence found in common
arithmetic. Operators with higher precedence are evaluated before those with lesser
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into eight classes of precedence as shown in the following

table.

Priority

Operator

First (highes)

() (parentheses, to group expressions)

[] (brackets, to concatenate arrays)

Second

. (structure field dereference)

[] (brackets, to subscript an array)

() (parentheses, used in a function call)

Third

* (pointer dereference)

A (exponentiation)

++ (increment)

-- (decrement)

Fourth

* (multiplication)

and ## (matrix multiplication)

/ (division)

MOD (modulus)

Fifth

+ (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (Bitwise negation)

Table 2-2: Operator Precedence

Operator Precedence

Building IDL Applications

Chapter 2: Expressions and Operators 39

Priority Operator

Sixth EQ (equality)
NE (not equal)

LE (lessthan or equal)

LT (lessthan)

CE (greater than or equal)
GT (greater than)

Seventh AND (Bitwise AND)

OR (Bitwise OR)

XOR (Bitwise exclusive OR)
Eighth && (Logical AND)

|| (Logical OR)

~ (Logical negation)

Ninth ?. (conditional expression)

Table 2-2: (Continued) Operator Precedence

The effect of a given operator is based on both position and the rules of operator
precedence. This concept is shown by the following examples.

A=4+5%*2

A isequal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A= (4+5 *2

Inthis case, A equals 18 because the parentheses have higher operator precedence
than the multiplication operator; the expression inside the parentheses is evaluated
first, and the result is multiplied by two.

Position within the expression is used to determine the order of evaluation when two
or more operators share the same operator precedence. Consider the following:

A=6/2*3

Inthis case, A equals 9, since the division operator is to the left of the multiplication
operator. The subexpression 6 / 2 isevauated before the multiplication is done,

Building IDL Applications Operator Precedence

40 Chapter 2: Expressions and Operators

even though the multiplication and division operators have the same precedence.
Again, parentheses can be used to override the default evaluation order:

A=61/ (2* 3)
Inthiscase, A equals 1, because the expression inside parentheses is evaluated first.

A useful rule of thumb is, “when in doubt, parenthesize’. Some examples of
expressions are provided in the following table.

Expression Value

A+1 The sum of A and 1.

A<2+1 The smaller of A or two, plus one.

A<2*3 The smaller of A and six, since* has
higher precedence than <.

2* SQRT(A) Twice the square root of A.

A + Thursday' The concatenation of the strings A
and “Thursday.” An error resultsif A
isnot astring

Table 2-3: Examples of Expressions

Operator Precedence Building IDL Applications

Chapter 2: Expressions and Operators 41

Data Type and Structure of Expressions

Every entity in IDL has an associated data type and structure. The twelve atomic data
typesin decreasing order of precedence are as follows:

¢ Double-precision complex floating-point

¢ Complex floating-point

¢ Double-precision floating-point

* Floating-point

e Signed and unsigned 64-bit integer

e Signed and unsigned longword (32-hit) integer

e Signed and unsigned (16-bit) integer

* Byte

* String
The structure of an expression determines whether the expression can represent a
single value or multiple values. IDL expressions can be either scalars (with exactly
one value) or arrays (with one or more values). The datatype and structure of an
expression depend on the data type and structure of its operands. Unlike many other
languages, the data type and structure of most expressionsin IDL cannot be
determined until the expression is evaluated. Because of this, care must be taken

when writing programs. For example, a variable can be a scalar byte variable at one
point in a program while at alater point the same variable can hold a complex array.

Expression Type

IDL attempts to evaluate expressions containing operands of different data typesin
the most accurate manner possible. The result of an operation becomes the same data
type as the operand with the greatest precedence or potential precision. For example,
when adding a byte variable to a floating-point variable, the byte variable is first
converted to floating-point, then added to the floating-point variable, yielding a
floating-point result. When adding a double-precision variable to acomplex variable,
the result is double-precision complex, because the double-precision complex type
has a higher position in the hierarchy of data types.

Building IDL Applications Data Type and Structure of Expressions

42 Chapter 2: Expressions and Operators

Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed data types, care must be taken to obtain the
desired results. For example, assumethe variable A isan integer variable with avalue
of 5. The following expressions yield the indicated results:

;Integer division is performed. The remai nder is di scarded.
Al 2 =2

; The value of Ais first converted to floating.
Al 2. =2.5

;Integer division is done first because of operator precedence.
;Result is floating point.
Al 2+ 1 =3

;Division is done in floating, then the 1 is converted to floating
;and added.
Al 2. +1 =3.5

; Si gned and unsi gned i nteger operands have the sane precedence, so
;the | eft-nost operand deternmines the type of the result as signed
;i nteger.

A+ 5U =10

; As above, the |left-nost operand deternines the result type
; between types with the sane precedence
50U+ 1 = 10U

Note
When other data types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric datatype, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 isfirst converted to integer type.
In the same manner, 'ABC' + 123 also causes a conversion error.

Expression Structure

IDL expressions can contain operands that are either scalars or arrays, just asthey can
contain operands with different types. Conversion of variables between the scalar and

Data Type and Structure of Expressions Building IDL Applications

Chapter 2: Expressions and Operators 43

array formsisindependent of data type conversion. An expression will yield an array
result if any of its operandsis an array, as shown in the following table:

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Table 2-4: Structure of Expressions

Functions exist to create arrays of the datatypes IDL supports: BY TARR, INTARR,
UINTARR, LONARR, ULONARR, LON64ARR, ULON64ARR, FLTARR,
DCOMPLEXARR, DBLARR, COMPLEXARR, OBJARR, PTRARR, and
STRARR. The dimensions of the desired array are the parameters to these functions.
Theresult of FLTARR(5) is afloating-point array with one dimension, a vector, with
five elementsinitialized to zero. FLTARR(50,100) is atwo-dimensiona array, a
matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array; the
last 50 points of the larger array are ignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array always yields an array of identical dimensions. When two arrays of
equal size (number of elements) but different dimensionality are operands, the result
is of the same dimensionality as the first operand. For example:

;Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, arow vector is added to a column vector and arow vector is
obtained because the operands are the same size. This causes the result to take the
dimensionality of thefirst operand. Here are some examples of expressionsinvolving
arrays:
;An array in which each elenent is equal to the sane el ement in ARR
;plus one. The result has the sanme dinensions as ARR |If ARR s
;byte or integer, the result is of integer type; otherw se, the
;result is the same type as ARR
ARR + 1

;An array obtained by summing two arrays.
ARR1 + ARR2

Building IDL Applications Data Type and Structure of Expressions

44 Chapter 2: Expressions and Operators

;An array in which each element is set to twice the smaller of
;either the corresponding el enent of ARR or 100.
(ARR < 100) * 2

;An array in which each elenent is equal to the exponential of the
;sane el ement of ARR divided by 10.
EXP(ARK/ 10.)

;An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./ MAX(ARR)

In the last example, each point in ARR ismultiplied by three, then divided by the

largest element of ARR. The MAX function returns the largest element of its array
argument. Thisway of writing the statement requires that each element of ARR be
operated on twice. If (3./MAX(ARR)) is evaluated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the

time.

Data Type and Structure of Expressions Building IDL Applications

Chapter 3:
Constants and
Variables

The following topics are covered in this chapter:

DataTypescovviiii i 46 Variables............., 59
Constants 49 SystemVariables 62
Type Conversion Functions 56 CommonBlocks..................... 63

Building IDL Applications 45

46

Chapter 3: Constants and Variables

Data Types

The IDL language is dynamically typed. This means that an operation on avariable
can change that variable s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision.

For example, if an integer variable is added to afloating-point variable, the result will
be a floating-point variable.

Basic Data Types

Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to avariable is determined either by the syntax used when
creating the variable, or as aresult of some operation that changes the type of the
variable.

IDL’s basic data types are discussed in more detail beginning with “Constants” on
page 49.

¢ Byte: An 8-bit unsigned integer ranging in value from 0 to 255. Pixelsin
images are commonly represented as byte data.

* Integer: A 16-bit signed integer ranging from —32,768 to +32,767.
e Unsigned Integer: A 16-bit unsigned integer ranging from 0O to 65535.

e Long: A 32-bit signed integer ranging in value from approximately minus two
billion to plus two billion.

« Unsigned Long: A 32-bit unsigned integer ranging in value from 0 to
approximately four billion.

e 64-bit Long: A 64-bit signed integer ranging in value from —
9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

e 64-bit Unsigned Long: A 64-bit unsigned integer ranging in value from O to
18,446,744,073,709,551,615.

¢ Hoating-point: A 32-bit, single-precision, floating-point number in the range
of +103®, with approximately six or seven decimal places of significance.

« Double-precision: A 64-bit, double-precision, floating-point number in the
range of £103%8 with approximately 14 decimal places of significance.

Building IDL Applications

Chapter 3: Constants and Variables a7

e Complex: A real-imaginary pair of single-precision, floating-point numbers.
Complex numbers are useful for signal processing and frequency domain
filtering.

* Double-precision complex: A real-imaginary pair of double-precision,
floating-point numbers.

Note
In previous versions of IDL prior to version 4, the combination of adouble-
precision number and a complex number in an expression resulted in asingle-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex data type. Starting with IDL version 4, this combination
resultsinaDCOMPLEX number.

e String: A sequence of characters, from 0 to 2147483647 (2.1 GB) charactersin
length, which isinterpreted as text.

Precision of Floating-Point Numbers

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver dlightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, thisis something you
should consider.

For more information on floating-point mathematics, see Chapter 22, “Mathematics’
in the Using IDL manual. For information on your machine’s precision, see
“MACHAR” in the IDL Reference Guide manual.

Complex Data Types
e Structures: Aggregations of data of various types. Structures are discussed in

Chapter 7, “ Structures”.

« Pointers: A reference to a dynamically-allocated heap variable. Pointers are
discussed in Chapter 8, “Pointers’.

¢ Object References: A reference to a special heap variable that containsan IDL
object structure. Object references are discussed in Chapter 22, “ Object
Basics'.

Building IDL Applications Data Types

48

Chapter 3: Constants and Variables

Determining the Data Type of a Variable or Array

Data Types

The SIZE function can be used to determine the datatype of avariable. See
“Determining the Size/Type of an Array” on page 378 for an example.

Building IDL Applications

Chapter 3: Constants and Variables

Constants

Integer Constants

49

Numeric constants of different types can be represented by a variety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B
Integer nornS 12,12S,425,425S
Unsigned Integer nU or nUS 12U,12US
Long nL 12L, 94L
Unsigned Long nuUL 12UL, 94UL
64-bit Long nLL 12LL, 94LL
Unsigned 64-bit nULL 12ULL, 94ULL
Long

Hexadecimal Byte 'n'XB '2E'XB
Integer n'X 'OFX
Unsigned Integer | 'n'XU "OF XU
Long "n'’XL 'FF'XL
Unsigned Long 'n'XUL "FF XUL
64-bit Integer 'n'XLL "FF XLL
Unsigned 64-bit n'XULL 'FFXULL
I nteger

Building IDL Applications

Table 3-1: Integer Constants

Constants

50 Chapter 3: Constants and Variables
Radix Type Form Examples
Octal Byte "nB "12B
I nteger "n "12
n'o ‘3770
Unsigned Integer | "nU "12U
'n'OU '377'0U
Long "nL "12L
'n'OL 777r77TToL
Unsigned Long "nUL "12UL
'n'OUL 7T77T77T7'OUL
64-bit Long "nLL "12LL
n'OLL 777r777TOLL
Unsigned 64-bit "nULL "12ULL
Long nOULL 777r77r'OULL
Table 3-1: (Continued) Integer Constants
Digits in hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.
Type Absolute Value Range
Byte 0-255
I nteger 0-32767
Unsigned Integer 0—65535
Long 0-2%1-1
Unsigned Long 0-2%2.1
Table 3-2: Absolute Value Range Of Integer Constants
Constants Building IDL Applications

Chapter 3: Constants and Variables 51

Type Absolute Value Range
64-bit Long 0-288.1
Unsigned 64-hit Long 0-204-1

Table 3-2: (Continued) Absolute Value Range Of Integer Constants

Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it istoo large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Unacceptable Reason Acceptable
256B Too large, limit is 255 255B
'123L Missing apostrophe '123'L
'03G'x Invalid character "129
'27'L No radix '27'0L
650X L No apostrophes '650'XL

"129 9isaninvalid octal digit "124

Table 3-3: Examples of Integer Constants
Floating-Point and Double-Precision Constants
Floating-point and double-precision constants can be expressed in either conventional

or scientific notation. Any numeric constant that includes adecimal point isa
floating-point or double-precision constant.

Building IDL Applications Constants

52 Chapter 3: Constants and Variables

The syntax of floating-point and double-precision constantsis shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for

example, E- 2.
Form Example

n. 102.

.n 102

n.n 10.2

nE 10E

nEsx 10E5

n.Esx 10.E-3
.NESX AE+12
n.nEsx 2.3E12

Table 3-4: Syntax of Floating-Point Constants

Double-precision constants are entered in the same manner, replacing the E with aD.
For example, 1. 0DO0, 1D, and 1. D each represent a double-precision numeral 1.

Note
The nE and nD forms are shorthand for nEO and nDO, and are usually used to

indicate the type of the number, either single or double precision. When using these
formsin expressions, be sure to leave a space after the E or Dif the next term has a
+or - sign.

For example, the expression 1D+45 is evaluated as 1x10* in double precision,
while 1D + 45 (note the spaces) evaluates to the number 46 in double precision.
Similarly, the expression 1D+x gives an error, because there was no space after the
D. The correct way to write this expressionis1D + x (note the spaces).

Complex Constants

Complex constants contain areal and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which caseit is assumed to be zero. The form of acomplex constant is as follows:

COVPLEX(REAL_PART, | MAG NARY_PART)

Constants Building IDL Applications

Chapter 3: Constants and Variables 53

or
COVPLEX(REAL_PART)

For example, COMPLEX(1,2) isacomplex constant with areal part of one, and an
imaginary part of two. COMPLEX(1) isacomplex constant with area part of one
and a zero imaginary component. To extract thereal part of acomplex expression, use
the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
quotes ("). The value of the constant is simply the characters appearing between the
leading delimiter (* or ") and the next occurrence of the same delimiter. A double
apostrophe (' ') or quote (" ") is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g., 'Don"t' returns Don't. This syntax often can be avoided by
using adifferent delimiter; e.g., "Don't" instead of 'Don"t'. The following table
illustrates valid string constants.

Expression Resulting String
'Hi there' Hi there
"Hi there" Hi there
" Null String
"I'm happy" I’'m happy
'I"m happy’ I"m happy
‘counter’ counter
129 129

Table 3-5: Examples of Valid String Constants

Thefollowing table illustrates invalid string constants. In the last entry of the table,
"129" isinterpreted as an illegal octal constant. Thisis because a quote character

Building IDL Applications Constants

54

Chapter 3: Constants and Variables

followed by adigit from 0 to 7 represents an octal numeric constant, not a string, and
the character 9 isan illegal octal digit.

String Value Unacceptable Reason
Hi there 'Hi there" Mismatched delimiters
Null String ' Missing delimiter
I’m happy 'I'm happy" Apostrophein string
counter "counter™ Double apostrophe is null string
129 "129" Illegal octal constant

Table 3-6: Examples of Invalid String Constants

Note

While an IDL string variable can hold up to 64 Kbytes of information, the buffer

than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the
IDL command prompt, split the variable into multiple sub-variables and combine
them with the “+” operator:

var = var l+var2+var3

Thislimit only affects string constants created at the IDL command prompt.

Representing Non-Printable Characters

Constants

The ASCII characters with value less than 32 or greater than 126 do not have
printable representations. Such characters can be included in string constants by
specifying their ASCII value as a byte argument to the STRING function. The
following table gives examples of using octal or hexadecimal character notation.

Specified String Actual Contents Comment
STRING(27B)+'[;H' '<Esc>[;H<Esc>[2J Erase ANSI terminal
+STRING(27B)+[2J
STRING(7B) Bell Ring the bell
STRING(8B) Backspace Move cursor |eft

Table 3-7: Specifying Non-Printable Characters

Building IDL Applications

Chapter 3: Constants and Variables 55

Note that ASCII characters may have different effects (or no effect) on platforms that
do not support ASCII terminal commands.

Building IDL Applications Constants

Chapter 3: Constants and Variables

Type Conversion Functions

IDL alows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output datain a mode compatible with
other programs, etc. The conversion functions are in the following table

Function Description
STRING Convert to string
BYTE Convert to byte
FIX Convert to 16-bit integer, or optionally other type
UINT Convert to 16-bit unsigned integer
LONG Convert to 32-bit integer
ULONG Convert to 32-bit unsigned integer
LONG64 Convert to 64-bit integer
ULONG64 Convert to 64-bit unsigned integer
FLOAT Convert to floating-point
DOUBLE Convert to double-precision floating-point
COMPLEX Convert to complex value
DCOMPLEX Convert to double-precision complex value

Table 3-8: Type Conversion Functions

Conversion functions operate on data of any structure: scalars, vectors, or arrays, and
variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

Define A. Note that the value of Ais outside the range

; of integers, and is automatically created as a | ongword
; integer by IDL
A = 33000

Type Conversion Functions Building IDL Applications

Chapter 3: Constants and Variables 57

;Bis silently truncated.
B = FI X(A)
PRI NT, B

IDL prints:
- 32536

Applying FIX creates a short (16-hit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See Chapter 18, “ Controlling Errors’, for
more information.

Converting Strings

When converting from astring argument, it is possibl e that the string does not contain
avalid number and no conversion is possible. The default action in such casesisto
print awarning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jJumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. Theresult of the BY TE function applied to astring or string array isabyte array
containing the ASCII codes of the characters of the string. Converting a byte array
withthe STRING function yields astring array or scalar with one less dimension than
the byte array.

Dynamic Type Conversion

The TY PE keyword to the FIX function allowstype conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TY PE keyword:

PRO EXAVPLE_FI XTYPE
Define a variable as a doubl e:
A = 3D

Store the type of Ain a variable:
typeA = SI ZE(A, / TYPE)
PRINT, "Ais type code', typeA

Pronpt the user for a numeric val ue:
READ, UserVal, PROWPT='Enter any Numeric Val ue:
Convert the user value to the type stored in typeA:
ConvUserVal = FI X(UserVal, TYPE=typeA)

Building IDL Applications Type Conversion Functions

58

PRI NT, ConvUser Val
END

Examples of Type Conversion

Chapter 3: Constants and Variables

See the following table for examples of type conversions and their results.

Operation Results
FLOAT(2) 1.0
FIX(1.3+1.7) 3
FIX(1.3) + FIX(L.7) 2
FIX(1.3, TYPE=5) 1.3000000
BYTE(1.2) 1
BYTE(-1) 255b (Bytes are modul o 256)
BYTE(01ABC') [48b, 49b, 65b, 66b, 67b]
STRING([65B, 66B, 67B]) 'ABC’
FLOAT(COMPLEX(L, 2)) 1.0

COMPLEX([1, 2], [4, 5])

[COMPLEX(1,4),COMPLEX(2,5)]

Table 3-9: Uses of Type Conversion Functions

Type Conversion Functions

Building IDL Applications

Chapter 3: Constants and Variables 59

Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL datatypes. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and atype.

Structure

A variable can contain asingle value (ascalar) or anumber of values of the sametype
(an array) or data entities of potentially differing type and size (a structure). Strings
are considered as single values, and a string array contains a number of variable-
length strings.

In addition, a variable can associate an array structure with afile; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in “ASSOC” in the
IDL Reference Guide manual.

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When avariable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.

Building IDL Applications Variables

60 Chapter 3: Constants and Variables

Variable Names

IDL variables are named by identifiers. Each identifier must begin with aletter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after the first 128 are ignored. Names are case insensitive. Lowercase letters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptabl e variable names.

Unacceptable Reason Acceptable
EOF Conflicts with function name | A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE
AB@ Illega character ABCS$DEF
abcd Embedded space My_variable

Table 3-10: Unacceptable and Acceptable IDL Variable Names

Warning
A variable cannot have the same name as a function (either built-in or user-defined)
or areserved word (see the following list). Giving a variable such a name resultsin
asyntax error or in “hiding” the variable.

Thefollowing tablelists al of the reserved wordsin IDL.

AND BEGIN BREAK

CASE COMMON COMPILE_OPT
CONTINUE DO ELSE

END ENDCASE ENDELSE
ENDFOR ENDIF ENDREP
ENDSWITCH ENDWHILE EQ

FOR FORWARD_FUNCTION FUNCTION

Table 3-11: IDL Reserved Words

Variables Building IDL Applications

Chapter 3: Constants and Variables

GE

IF

LT

NOT

OR
SWITCH
WHILE

GOTO
INHERITS
MQOD

OF

PRO
THEN
XOR

61

GT

LE

NE
ON_IOERROR
REPEAT
UNTIL

Table 3-11: (Continued) IDL Reserved Words

Building IDL Applications

Variables

62 Chapter 3: Constants and Variables

System Variables

System variables are a specia class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set variousinternal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSY SV
procedure.

System variables are discussed in Appendix D, “System Variables’ in the IDL
Reference Guide manual.

System Variables Building IDL Applications

Chapter 3: Constants and Variables 63

Common Blocks

Common blocks are useful when there are variables that need to be accessed by
several IDL procedures or when the value of a variable within a procedure must be
preserved across calls. Once a common block has been defined, any program unit
referencing that common block can access variablesin the block as though they were
local variables. Variables in acommon statement have a global scope within
procedures defining the same common block. Unlike local variables, variablesin
common blocks are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and reference
Statements.

Common Block Definition Statements

The common block definition statement creates acommon block with the designated
name and places the variables whose names follow into that block. Variables defined
in acommon block can be referenced by any program unit that declares that common
block. The general form of the COMMON block definition statement is as follows:

COMCN Bl ock_Nane, Variableq, Variable,, ..., Variable,

The number of variables appearing in the common block definition statement
determines the size of the common block. The first program unit (main program,
function, or procedure) defining the common block sets the size of the common
block, which can never be expanded. Other program units can reference the common
block with any number of variables up to the number originally specified. Different
program units can give the variables different names, as shown in the example below.

Common blocks share the same space for al procedures. In IDL, common block
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variablein agiven IDL common block will always
be the same asthe third variablein al declarations of the common block regardless of
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define are
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same manner
as normal variables. Variables appearing as parameters cannot be used in common
blocks. There are no restrictions on the number of common blocks used, although
each common block uses dynamic memory.

Building IDL Applications Common Blocks

64 Chapter 3: Constants and Variables

Example

Thetwo proceduresin the following example show how variables defined in common
blocks are shared.

PRO ADD, A
COMWON SHAREL, X, Y, Z, Q R
A=X+Y+Z+Q+R
PRINT, X Y, Z Q R A
RETURN

END

PRO SUB, T
COWON SHARE1, A, B, C, D
T=A-B-C-D
PRINT, AL B, C, D T
RETURN

END

Thevariables X, Y, Z, and Q in the procedure ADD are the same as the variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD isnot used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an error
would occur when the COMMON definition in ADD was compiled. Thisis because
SUB has already declared the size of the common block, SHAREL, which cannot be
extended.

Common Block Reference Statements

The common block reference statement duplicates the common block and variable
names from a previous definition. The common block need only be defined in the
first routine to be compiled that references the block.

Example

The two procedures in the following example share the common block SHARE2 and
all itsvariables.

PRO MULT, M
COWON SHAREZ2, E, F, G
M=E* F* G
PRINT, M E F, G
RETURN

END

PRODYV, D

COVWON SHARE2
D=E/ F

Common Blocks Building IDL Applications

Chapter 3: Constants and Variables 65

PRINT, D, E F, G
RETURN
END

The MULT procedure uses a common block definition statement to define the block
SHARE2. The DIV procedure then uses a common block reference statement to gain
access to al the variables defined in SHAREZ2. (Note that MULT must be defined
before DIV in order for the common block reference to succeed.)

Building IDL Applications Common Blocks

66 Chapter 3: Constants and Variables

Common Blocks Building IDL Applications

Chapter 5:

Strings

The following topics are covered in this chapter:

OVEIVIBW ..ot 98
String Operationsoovu. .. 99
Non-string and Non-scalar Arguments . .. 100
String Concatenation 101
Using STRING to Format Data 102
Byte Argumentsand Strings 103
CaseFolding 105

Building IDL Applications

Whitespace 106
Finding the Lengthof aString 108
SUBbSLHNGS . ..o 109
Splitting and Joining Strings 112
Comparing Strings 113
Learning About Regular Expressions ... 117

97

98 Chapter 5: Strings

Overview

An DL string isasequence of characters from 0 to 2147483647 (2.1 GB) characters
in length. Strings have dynamic length (they grow or shrink to fit), and thereis no
need to declare the maximum length of astring prior to using it. Aswith any data
type, string arrays can be created to hold more than a single string. In this case, the
length of each individual string in the array depends only on its own length and is not
affected by the lengths of the other string elements.

A Note About the Examples

In some of the examplesin this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', '"Birch', 'Mahogany', 'Maple', 'Cak', $
"Pine', 'Wal nut']

Executing the statement,
PRI NT, "> + trees + '<'
resultsin the following output:
>Beech< >Birch< >Mahogany< >Maple< >Cak< >Pine< >Wal nut<

Overview Building IDL Applications

Chapter 5: Strings 99

String Operations

IDL supports severa basic string operations, as described below.
Concatenation

The Addition operator, “+”, can be used to concatenate strings together.
Formatting Data

The STRING function is used to format datainto astring. The READS procedure can
be used to read values from a string into IDL variables.

Case Folding

The STRLOWCA SE function returns a copy of its string argument converted to
lowercase. Similarly, the STRUPCA SE function converts its argument to uppercase.

White Space Removal

The STRCOMPRESS and STRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Length
The STRLEN function returns the length of its string argument.
Substrings

The STRPOS, STRPUT, and STRMID routineslocate, insert, and extract substrings
from their string arguments.

Splitting and Joining Strings

The STRSPLIT function is used to break strings apart, and the STRJOIN function
can be used to and glue strings together.

Comparing Strings

The STRCMP, STRMATCH, and STREGEX functions perform string comparisons.

Building IDL Applications String Operations

100 Chapter 5: Strings

Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument that is the string on which they act.

If the argument is not of type string, IDL convertsit to type string using the same
default formatting rules that are used by the PRINT/PRINTF or STRING routines.
The function then operates on the converted result. Thus, the IDL statement,

PRI NT, STRLEN(23)
returns the result
8

because the argument “23” isfirst converted to the string ' 23' that happens to
be a string of length 8.

If the argument is an array instead of ascalar, the function returns an array result with
the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

; Get an uppercase version of TREES.
A = STRUPCASE(tr ees)

; Show that the result is also an array.
HELP, A

;Display the original.
PRI NT, trees

;Display the result.
PRI NT, A

produce the following outpuit:

A STRI NG = Array(7)
Beech Birch Mahogany Maple Cak Pi ne Wl nut
BEECH Bl RCH MAHOGANY MAPLE QAK PI NE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptionsin the IDL Reference Guide.

Non-string and Non-scalar Arguments Building IDL Applications

Chapter 5: Strings 101

String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A ="'This is' + ' a concatenation exanple.'
PRI NT, A

resultsin the following output:
This is a concatenation exanpl e.

Thefollowing IDL statements build a scalar string containing a comma-separated list
of the names found in the TREES string array:

; Use REPLI CATE to nake an array with the correct nunber of conmmas
;and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

; Show the resulting list.
PRI NT, nanes

Running the above statements results in the following outpult:
Beech, Birch, Mahogany, Maple, Oak, Pine, Wl nut

Building IDL Applications String Concatenation

102 Chapter 5: Strings

Using STRING to Format Data

The STRING function has the following form:
S = STRING(Expressiony, ..., Expression,,)

It convertsits parameters to characters, returning the result as astring expression. It is
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. Aswith PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
freeformat and explicitly formatted input/output (“ Free Format 1/O” on page 221) for
details of dataformatting. For more information on the STRING function, see
“STRING” in the IDL Reference Guide manual.

Asasimple example, the following IDL statements:

; Produce a string array.
A = STRI NG FORMAT=' ("The values are:", /, (1))', I NDGEN(5))

; Show its structure.
HELP, A

;Print the result.
FOR1 =0, 4 DO PRINT, All]

produce the following output:

A STRING = Array(6)
The val ues are:

0

1

2

3

Reading Data from Strings

The READS procedure performsformatted input from a string variable and writes the
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of afile.

This routine is useful when you need to examine the format of a datafile before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS’ in the IDL Reference Guide manual for more details.

Using STRING to Format Data Building IDL Applications

Chapter 5: Strings 103

Byte Arguments and Strings

There is a close association between a string and a byte array—a string is simply an
array of bytesthat istreated as a series of ASCII characters. Therefore, it is
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the original argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])
produces the output bel ow:
Hell o

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Itsfirst element is 72B which isthe ASCI|
code for “H,” the second is 101B which isan ASCII “e,” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte datain
the usual way.

Asdiscussed in Chapter 10, “Filesand Input/Output”, it is easier to read fixed-length
string data from binary filesinto byte variables instead of string variables. Therefore,
it is convenient to read the datainto a byte array and use this special behavior of
STRING to convert the datainto string form.

Another usefor thisfeatureisto build strings that contain nonprintable charactersin a
way such that the character is not entered directly. This results in programs that are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
areimplemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRI NT, STRING([65B, 66B, 0B, 67B])
produces the following output:
AB

This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.

Building IDL Applications Byte Arguments and Strings

104 Chapter 5: Strings

Note
The BY TE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in abyte array containing the
same byte values asits string argument. For additional information about the BY TE
function, see “ Type Conversion Functions’ on page 56.

Byte Arguments and Strings Building IDL Applications

Chapter 5: Strings 105

Case Folding

The and STRUPCA SE functions are used to convert arguments to lowercase or
uppercase. They have the form:

S = STRLOWCA SE(String)
S = STRUPCASE(Sring)
where Sring is the string to be converted to lowercase or uppercase.

Thefollowing IDL statements generate atable of the contents of TREES showing
each namein its actual case, lowercase and uppercase:

FOR 1=0, 6 DO PRINT, trees[l], STRLOANCASE(trees[!]),$
STRUPCASE(trees[1]), FORMAT = ' (A Ti5, A T30, A"

The resulting output from running this statement is as follows:

Beech beech BEECH

Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the response, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yes or no” style questions:

;Create a string variable to hold the response.
answer = ''

; Ask the question.

READ, ' Answer yes or no: ', answer

| F (STRUPCASE(answer) EQ 'YES') THEN $
; Conpare the response to the expected answer.
PRI NT, ' YES' ELSE PRI NT, 'NO

Building IDL Applications Case Folding

106 Chapter 5: Strings

Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white
space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)
where Sring is the string to be compressed.

The default action is to replace each section of white space with a single space.
Setting the REMOVE_ALL keyword causes white space to be completely eliminated.
For example,

;Create a string with undesirable white space. Such a string mght
;be the result of reading user input with a READ statenent.
A=" Thi s is a poorly spaced sentence.

;Print the result of shrinking all white space to a single blank.
PRI NT, '>', STRCOWRESS(A), '<'

;Print the result of renpving all white space.
PRI NT '>', STRCOWPRESS(A, /REMOVE ALL), '<

resultsin the output:

> This is a poorly spaced sentence. <
>Thi si sapoor | yspacedsent ence. <

Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S= STRTRIM(Srring[, Flag])

where Sring is the string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag is O or is not present, trailing white spaceis
removed. If itis 1, leading white space is removed. Both trailing and leading white
space are removed if Flag isequal to 2. For example:

;Create a string with unwanted | eading and trailing bl anks.

Whitespace Building IDL Applications

Chapter 5: Strings 107

A ="' This string has leading and trailing white space

; Renove trailing white space.
PRINT, '>', STRTRIMA), '<

; Renmove | eadi ng white space.
PRINT, '>', STRTRRMA 1), '<

: Renove bot h.
PRINT, '>', STRTRIMA 2), '<

Executing these statements produces the output below.

> This string has | eading and trailing white space<
>This string has leading and trailing white space <
>This string has |l eading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to
remove leading and trailing white space and shrink any white space in the middle
down to single spaces.

;Create a string with undesirable white space.
A = 'Yet anot her poorly spaced sent ence.

; Eli m nate unwanted white space.
PRI NT, '>'" STRCOMPRESS(STRTRIMA 2)), '<

Executing these statements gives the result below:

>Yet anot her poorly spaced sentence. <

Building IDL Applications Whitespace

108 Chapter 5: Strings

Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:
L = STRLEN(String)

where String isthe string for which the length isrequired. For example, the following
Statement

PRI NT, STRLEN(' This sentence has 31 characters')
resultsin the output
31

whilethefollowing IDL statement prints the lengths of all the names contained in the
array TREES.

PRI NT, STRLEN(trees)
The resulting output is as follows:
5 5 8 5 3 4 6

Finding the Length of a String Building IDL Applications

Chapter 5: Strings 109

Substrings

IDL providesthe STRPOS, STRPUT, and STRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

The STRPOS function is used to search for the first occurrence of a substring. It has
theform

S = STRPOS(Object, Search_string[, Position])

where Object is the string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the search is
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog”:

PRO Ani mal s

; The search string, "dog", appears three tinmes.
animal s = 'dog cat duck rabbit dog cat dog'

; Start searching in character position O.
I =0

: Number of occurrences found.
cnt =0

; Search for an occurrence.
WHI LE (I NE -1) DO BEG N
| = STRPCS(ani mals, 'dog', 1)

IF (I NE -1) THEN BEG N
; Update counter.
cnt =cnt + 1

;lncrement | so as not to count the same instance of 'dog'
twice.
I =1 +1

ENDI F
ENDWHI LE

;Print the result.

PRINT, 'Found ', cnt, " occurrences of 'dog'"
END

Building IDL Applications Substrings

110 Chapter 5: Strings

Running the above program produces the result below.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makesiit easy to find
the last occurrence of asubstring within astring. In the following example, we search
for the last occurrence of the letter “1” (or “i") in a sentence:

sentence = 'IDL is fun.'

sent ence = STRUPCASE(sent ence)

|l asti = STRPOS(sentence, 'I', [/ REVERSE SEARCH)
PRI NT, |asti

Thisresultsin:
4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where O is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedure is used to insert the contents of one string into another. It has
theform,

STRPUT, Destination, Source], Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position isthe first character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwriteis started at the
first character (character position 0). The following IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “ CAT” in the
string “dog cat duck rabbit dog cat dog”:

animal s = 'dog cat duck rabbit dog cat dog'
; The string to search, "dog", appears three tines.

;Whi l e any occurrence of "dog" exists, replace it.
WH LE (((I = STRPOCS(animals, 'dog'))) NE -1) DO $
STRPUT, aninals, 'CAT', |

; Show the resulting string.
PRI NT, ani mals

Substrings Building IDL Applications

Chapter 5: Strings 111

Running the above statements produces the result below.
CAT cat duck rabbit CAT cat CAT

Extracting Substrings

The STRMID function is used for extracting substrings from alarger string. It hasthe
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,

First Character isthe starting position within Expression of the substring (the first
position is position 0), and Length isthe length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

;String containing all the nmonth nanes.
nmont hs = ' JANFEBMARAPRMAYJ UNJ UL AUGSEPOCTNOVDEC

; Extract each name in turn. The equation (1-1)*3 calcul ates the
;position within MONTH for each abbreviation

FORI =1, 12 DO PRINT, I, ' %

STRM D(nmonths, (I - 1) * 3, 3)

The result of executing these statementsis as follows:

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
10 CCT
11 NOV
12 DEC

O©COoO~NOOULDA,WNPE

Building IDL Applications Substrings

112 Chapter 5: Strings
Splitting and Joining Strings

The STRSPLIT function is used to break apart a string, and the STRJOIN functionis
used to glue together separate strings into a single string.

The STRSPLIT function uses the following syntax:
Result = STRSPLIT(String [, Pattern])

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or aregular expression, asimplemented by the
STREGEX function.

The STRJOIN function uses the following syntax:
Result = STRJOIN(Sring [, Delimiter])

where Sring isthe string or string array to be joined, and Delimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

strl = '"Hello Cruel World'

words = STRSPLI T(str1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]
PRI NT, STRJO N(newwords, ' ")

This code results in the following output:
Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsets indicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space asin the above example, we could use adifferent delimiter as
follows:

strl = "Hello Cruel Wrld'

words = STRSPLI T(strl1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]

PRI NT, STRJO N(newwords, ' Kind ')

This code results in the following output:
Hello Kind Wirld

Splitting and Joining Strings Building IDL Applications

Chapter 5: Strings 113
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N
Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only thefirst N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP(Stringl, String2 [, N])

where Sringl and Sring2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOQ” requires the following steps:

A
B

' Mbose'
1100

C=STRM D(A, 0, 3)

I F (STRLONCASE(C) EQ STRLOACASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:
A=' Mbose'
B=' m0O
I|F (STRCMP(A, B, 3, /FOLD CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function alows usto easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.

Building IDL Applications Comparing Strings

114 Chapter 5: Strings

String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:
Result = STRMATCH(String, SearchString)
where Sring is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

B Description
Character
* Matches any string, including the null string.
? Matches any single character.
[..] Matches any one of the enclosed characters. A pair of

characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [isa!, any character not enclosed is matched. To
prevent one of these characters from acting as awildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" isthesame as"a").

Table 5-1: Wildcard Characters used by STRMATCH

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter wordsin astring array that begin with “f” or “F” and end
with “t” or “T":

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRMATCH(str, 'f??t', /FOLD CASE) EQ 1)]

Thisresultsin:
foot Feet FAST fort
Example 2: Find words of any length that begin with “f” and end with “t”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

Comparing Strings Building IDL Applications

Chapter 5: Strings 115

PRI NT, str[WHERE(STRVATCH(str, 'f*t', /FOLD CASE) EQ 1)]
Thisresultsin:
foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “0” and “€” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRI NT, str[WHERE(STRVATCH(str, 'f[eo][eo]t', /FOLD CASE) EQ 1)]
Thisresultsin:

f oot Feet

Example 4: Find al words beginning with “f” and ending with “t” whose second
character is not the letter “0”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD CASE) EQ 1)]

Thisresultsin:
Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “0” in between. Thiswould
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRINT, STREGEX(str, '~f[”o]*t$', /EXTRACT, /FOLD_CASE)

This statement resultsin:
Feet FAST ferret
Note the following about this example:

e Unlikethe* wildcard character used by STRMATCH, the * meta character
used by STREGEX appliesto the item directly on itsleft, which in this caseis
[*o], meaning “any character except the letter ‘0’ . Therefore, [*0]* means
“zero or more characters that are not ‘0’ ”, whereas the following statement
would find only words whose second character isnot “0”:

PRI NT, str[WHERE(STRVMATCH(str, 'f[lo]*t', /FOLD CASE) EQ 1)]

Building IDL Applications Comparing Strings

116 Chapter 5: Strings

* Theanchors (" and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would also return
“fat”, which isasubstring of “fate”.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which iswhy the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see “STREGEX” in the IDL Reference Guide
manual, and for an introduction to regular expressions, see “Learning About Regular
Expressions’ on page 117.

Comparing Strings Building IDL Applications

Chapter 5: Strings 117

Learning About Regular Expressions

Regular expressions are avery powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940's, their mathematical
foundation was established during the 1950's and 1960’s. Their use has along history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

The topic of regular expressionsis a very large one, complicated by the arbitrary
differences in the implementations found in various tools. Anything beyond an
extremely simplistic sketch iswell beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as“Mastering Regular
Expressions’, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-257-
3). Thefollowing isan abbreviated, simplified, and incomplete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from left
toright. The matching is considered to be “ greedy”, because at any given point, it will
always match the longest possible substring. For example, if aregular expression
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “ meta characters’, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backslash character (e.g. *'). The meta characters are
described in the following table:

Character Description

The period matches any character.

Table 5-2: Meta characters

Building IDL Applications Learning About Regular Expressions

118

Chapter 5: Strings

Character

Description

[]

The open bracket character indicates a “bracket expression”,
which is discussed below. The close bracket character
terminates such an expression.

The backslash suppresses the special meaning of the character
it precedes, and turnsit into an ordinary character. To insert a
backdlash into your regular expression pattern, use adouble
backslash ("\V').

0

The open parenthesis indicates a “ subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters are used to specify repetition. The repetition
is applied to the character or expression directly to the left of
the repetition operator.

Zero or more of the character or expression to the left. Hence,

'‘a*' means “zero or more instances of 'a ”.

One or more of the character or expression to the left. Hence,
'at' means “one or more instances of 'a”.

Zero or one of the character or expression to the left. Hence,
'a? will match 'a’ or the empty string "

{}

Aninterval qualifier allows you to specify exactly how many
instances of the character or expression to the left to match. If
it encloses asingle unsigned integer length, it means to match
exactly that number of instances. Hence, 'a{ 3} ' will match
‘aad. If it encloses 2 such integers separated by a comma, it
specifies arange of possible repetitions. For example, 'a&f 2,4}
will match 'aa, 'aad, or 'aaad. Note that '{ 0,1} " is equivalent to
ol

Alternation. This operator is used to indicate that one of
several possible choices can match. For example, '(alb|c)z' will
match any of ‘az', 'bz', or 'cZ'.

Table 5-2: (Continued) Meta characters

Learning About Regular Expressions Building IDL Applications

Chapter 5: Strings 119

Character Description

g Anchors. A "' matches the beginning of a string, and'$'
matches the end. As we have seen above, regular expressions
usually match any possible substring. Anchors can be used to
change this and require a match to occur at the beginning or
end of the string. For example, “*abc' will only match strings
that start with the string 'abc’. “*abc$' will only match a string
containing only 'abc'.

Table 5-2: (Continued) Meta characters

Subexpressions

Subexpressions are those parts of aregular expression enclosed in parentheses. There
are two reasons to use subexpressions:

« To apply arepetition operator to more than one character. For example,
‘(fun){ 3} ' matches ‘funfunfun’, while 'fun{ 3} matches ‘funnn'.

¢ Toadlow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of charactersthat can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs as the first character in the expression (after an
initial "N, if any).

There are severa different forms of bracket expressions, including:

e Matching List — A matching list expression specifies alist that matches any
one of the charactersin the list. For example, ‘[abc]' matches any of the
characters'd, 'b', or 'c'.

* Non-Matching List — A non-matching list expression begins with a*', and
specifies alist that matches any character not in the list. For example, '[*abc]’
matches any characters except 'a, 'b', or 'c'. The "M only has this special
meaning when it occursfirst in the list immediately after the opening .

¢ RangeExpression — A range expression consists of 2 characters separated by
ahyphen, and matches any characters lexically within the range indicated. For

Building IDL Applications Learning About Regular Expressions

120 Chapter 5: Strings

example, TA-Za-z]' will match any alphabetic character, upper or lower case.
Another way to get this effect isto specify [a-z]' and use the FOLD_CASE
keyword to STREGEX.

Learning About Regular Expressions Building IDL Applications

Chapter 4:

Procedures and

Functions

The following topics are covered in this chapter:

OVEIVIBW ..ot 68
DefiningaProcedure 69
DefiningaFunction 71
Parameters 74
Using Keyword Parameters 77
Keyword Inheritance 79

Building IDL Applications

Entering Procedure Definitions 86
How IDL ResolvesRoutines 88
Parameter Passing Mechanism 89
Cdling Mechanism 91
Setting Compilation Options 93
Advicefor Library Authors 95

67

68

Chapter 4: Procedures and Functions

Overview

Overview

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the keyboard or from other
programs. When a procedure or function is finished, it executesa RETURN
statement that returns control to its caller. Functions always return an explicit result.
A procedureis called by a procedure call statement, while afunction iscalled by a
function reference. For example, if ABC isaprocedure and XY Z isafunction, the
caling syntax is:

;Call procedure ABC with two paraneters.
ABC, A 12

;Call function XYZ with one paraneter. The result of XYZ is stored
;in variable A
A = XYZ(C D)

Building IDL Applications

Chapter 4: Procedures and Functions 69

Defining a Procedure

A sequence of one or more IDL statements can be given aname, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

The general format for the definition of a procedureis as follows:

PRO Nane, Paraneterl, ..., Paranetern
; Statemrent s defining procedure
Statenment 1
St at enent 2

; End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that isin adirectory in the IDL search path (!PATH)
and has the same name as the prefix of the. SAV or . PROfile, causes the procedure to
be read from the disk, compiled, and executed without interrupting program
execution.

Building IDL Applications Defining a Procedure

70 Chapter 4: Procedures and Functions

Calling a Procedure

The syntax of the procedure call statement is as follows:
Procedure_Name, Paraneterq, Parameter,, ..., Paraneter,

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:
e System procedures provided with IDL.

e User-written procedures written in IDL and compiled with the .RUN
command.

e User-written proceduresthat are compiled automatically becausethey residein
directories in the search path. These procedures are compiled the first time
they are used. See “ Defining a Function” on page 71.

* Procedureswrittenin IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

¢ Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Example

Some procedures can be called without any parameters. For example:
ERASE

Thisis aprocedure call to a subroutine to erase the screen. There are no explicit
inputs or outputs. Other procedures have one or more parameters. For example, the
Statement:

PLOT, ClRCLE
callsthe PLOT procedure with the parameter CIRCLE.

Calling a Procedure Building IDL Applications

Chapter 4: Procedures and Functions 71

Defining a Function

A function is a program unit containing one or more IDL statements that returns a
value. This unit executes independently of its caler. It hasits own local variables and
execution environment. Once afunction has been defined, references to the function
cause the program unit to be executed. All functions return a function value which is
given as a parameter in the RETURN statement used to exit the function. Function
names can be up to 128 characters long.

The genera format of afunction definition is as follows:

FUNCTI ON Name, Paraneterq, ..., Parameter,
St at enent 4
St at enent ,

RETURN, Expression
END

Example

To define afunction called AVERAGE, which returns the average value of an array,
use the following statements:

FUNCTI ON AVERAGE, arr
RETURN, TOTAL(arr)/N ELEMENTS(arr)
END

Once the function AV ERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRI NT, AVERAGE(X"2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. Parameters passed to functions are identified by their position or by akeyword.
See “Using Keyword Parameters’ on page 77.

Automatic Execution

IDL automatically compiles and executes a user-written function or procedure when
itisfirst referenced if:

1. The source code of the function isin the current working directory or in a
directory in the IDL search path defined by the system variable !PATH.

Building IDL Applications Defining a Function

72 Chapter 4: Procedures and Functions

2. The name of the file containing the function is the same as the function name
suffixed by .pro or .sav. Under UNIX, the suffix should be in lowercase | etters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be named with lowercase.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For information on how to access routines, see “Running IDL Program Files’ in
Chapter 9 of the Using IDL manual.

Forward Function Definition

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

This problem has been addressed beginning with IDL version 5.0 by the use of square
brackets“[] instead of parenthesesto specify array subscripts. See “Array Subscript
Syntax: [] vs. ()" on page 128 for a discussion of the IDL version 5.0 and later
syntax. However, because parentheses are still allowed in array subscripting
statements, the need for amechanism by which the programmer can “reserve’” aname
for afunction that has not yet been defined remains. The FORWARD_FUNCTION
statement addresses this need.

As mentioned above, ambiguities can arise between function calls and array
references when afunction has not yet been compiled, or there is no file with the
same name as the function found in the IDL path.

For example, attempting to compile the IDL statement:
A = xyz(1l, COLOR=1)

will cause an error if the user-written function XY Z has not been compiled and the
filename xyz.proisnot found in the IDL path. IDL reports asyntax error, because xyz
isinterpreted as an array variable instead of a function name.

Defining a Function Building IDL Applications

Chapter 4: Procedures and Functions 73

This problem can be eliminated by using the FORWARD_FUNCTION statement.
This statement has the following syntax:

FORWARD_FUNCTI ON Nane;, Name,, ..., Nanmey

where Name is the name of afunction that has not yet been compiled. Any names
declared as forward-defined functions will be interpreted as functions (instead of as
variable names) for the duration of the IDL session.

For example, we can resolve the ambiguity in the previous example by adding a
FORWARD_FUNCTION definition:

; Define XYZ as the name of a function that has not yet been
; conpi | ed.
FORWARD FUNCTI ON XYZ

;1 DL now understands this statenent to be a function call instead
;of a bad variable reference.
a = XYZ(1, COLOR=1)

Note
Declaring afunction that will be merged into IDL viathe LINKIMAGE command
with the FORWARD_FUNCTION statement will not have the desired effect.
Routines merged via LINKIMAGE are considered by IDL to be built-in routines,
and thus need no compilation or declaration. They must, however, be merged with
IDL before any routinesthat call them are compiled.

Building IDL Applications Defining a Function

74

Chapter 4: Procedures and Functions

Parameters

The variables and expressions passed to the function or procedure from its caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the examples at the beginning of this section, the actual
parameters in the procedure call are the variable A and the constant 12, while the
actual parameter in the function cal isthe value of the expression (C/D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
anumber of placesin other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

Parameters

A keyword parameter, which can be either actual or formal, isan expression or
variable name preceded by a keyword and an equal sign (“=") that identifies which
parameter is being passed.

When calling aroutine with akeyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEY WORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

For example, a procedure is defined with a keyword parameter named TEST.
PRO XYZ, A, B, TEST = T

The caller can supply avalue for the formal (keyword) parameter T with the
following calls:

;Supply only the value of T. A and B are undefined inside the
; procedure.

Building IDL Applications

Chapter 4: Procedures and Functions 75

XYZ, TEST = A

; The value of Ais copied to formal paranmeter T (note the
;abbreviation for TEST), Qto A and Rto B.
Xyz, TE=A Q R

;Variable Qis copied to formal parameter A. B and T are undefi ned
;inside the procedure.
XYz, Q
Note
When supplying keyword parameters for afunction, the keyword is specified inside
the parentheses:

result = FUNCTI ON(Argl, Arg2, KEYWORD = val ue)
Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, viaa RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or afunction can be called with fewer arguments than were defined in
the procedure or function. For example, if aprocedure is defined with 10 parameters,
the user or ancther procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into
parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parametersin the calling list can be found
by using the system function N_PARAMS. Usethe N_ELEMENTS function to
determineif avariableis defined.

Building IDL Applications Parameters

76

Chapter 4: Procedures and Functions

Example

Parameters

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTI ON GRAD, i mage
;Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

; Evaluate and return the result.
RETURN, ABS(inmage - SH FT(inmage, 1, 0)) + $
ABS(i mage- SHI FT(i mage, 0, 1))

; End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within amodule (i.e., they are not parameters and
are not contained in common blocks).

The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

;Store gradient of Bin A
A = GRAD(B)

; Display gradient of | MAGE sum
TVSCL, GRAD(abc + def)

Building IDL Applications

Chapter 4: Procedures and Functions 77

Using Keyword Parameters

A short example of afunction that exchanges two columns of a4 x 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

; Function to swap columms of T. XYEXCH swaps colums 0 and 1,
; XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTI ON SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

;Swap colums 0 and 1 if keyword XYEXCH is set.
| F KEYWORD_SET(XY) THEN S=[0,1] $

;Check to see if xz is set.
ELSE | F KEYWORD _SET(XZ) THEN S=[0,2] $

; Check to see if yz is set.
ELSE | F KEYWORD SET(YZ) THEN S=[1,2] $

;1 f nothing is set, return.
ELSE RETURN, T

; Copy matrix for result.
R=T

; Exchange two columms using matrix insertion operators and
; subscri pt ranges.

RIS[1], 0] = T[S[0], *]

RES[O], O] = T[S[1], *]

:Return result.
RETURN, R

END
Typical calsto SWAP are asfollows:

Q = SWAP(! P. T, /XYEXCH)

Q = SWAP(Q / XYEX)

Q = SWAP(I NVERT(Z), YZ = 1)

Q=SWAP(Z, XYE=1 EQO, XZE = | EQ1, YZE = | EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variablell.

Building IDL Applications Using Keyword Parameters

78 Chapter 4: Procedures and Functions

This function exampl e uses the system function KEYWORD_SET to determineiif a

keyword parameter has been passed and if it is nonzero. Thisis similar to using the
condition:

IF N_ELEMENTS(P) NE O THEN IF P THEN ...
to test if keywords that have a true/false value are both present and true.

Using Keyword Parameters Building IDL Applications

Chapter 4: Procedures and Functions 79

Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to the routines that they
call. Routines are able to accept keywords on behalf of the routines they call without
explicitly processing each individual keyword. The resulting code is ssimple, and
requires significantly less maintenance. Keyword inheritance is of particular value
when writing:

e Wrapper routines, which are variations of a system or user-provided routine.
Such wrappers usually augment the behavior of another routinein asmall way,
largely passing arguments and keywords through without interpretation.
Keyword inheritance allows such wrappersto be very simple, and benefit from
not having to specify all the details of the underlying routine's interface.
Maintenance of the wrapper is also greatly simplified, because the wrapper
does not require modification every time the underlying routine changes.

« Methods for an object. In an object hierarchy, each subclass has the option of
overriding the methods provided by its superclasses. Often, the subclass
method calls the superclass version. Keyword inheritance makesit simple to
pass on keywords without having to be explicitly aware of them, and without
having to be concerned with filtering out those keywords that are not accepted
by the superclass method. In addition to enhancing maintainability, this allows
subclassing from a base class without having detailed knowledge of itsinternal
implementation, an important consideration for object oriented programming.

There are two steps required to use keyword inheritance in an IDL routine:

1. Theroutine must declare that it accepts inherited keywords. Thisis done by
specifying either the EXTRA or _REF EXTRA keyword in the formal
parameter list of the routine (note the leading underscore in these names). IDL
will use one of its two available keyword inheritance mechanisms depending
on which of these keyword parameters is used. The first inheritance
mechanism (_EXTRA) passes keywords by value, while the other
(_LREF_EXTRA) passes them by reference. The difference between these
methods is explained in “Keyword Inheritance Mechanisms’ on page 80.
Advice on how to choose the best one for your needs can be found in
“Choosing a Keyword Inheritance Mechanism” on page 82. Only one of these
two keywords can be specified for a given routine.

2. Theroutine passes the inherited keywords to a called routine, by including
either the _EXTRA or _STRICT_EXTRA keyword in the call to that routine.
_EXTRA and _STRICT_EXTRA differ only in how IDL behaves when an

Building IDL Applications Keyword Inheritance

80

Chapter 4: Procedures and Functions

inherited keyword is not accepted by the called routine. EXTRA causes such
keywordsto be quietly ignored, while_STRICT_EXTRA causes IDL to issue
an error and stop execution. EXTRA isthe usual choice, while
_STRICT_EXTRA isused primarily for wrapper routines.

When using keyword inheritance, the following points should be kept in mind:

The mechanism used by aroutine for inherited keywords is solely determined
by which keyword (EXTRA or _REF _EXTRA) isused in the formal
parameter list for that routine. Hence, REF EXTRA isonly used in the
formal parameter list of aroutine, and never in acall to that routine. This also
means that you can change an existing routine from using one mechanism to
the other by simply changing the name of the keyword. Thereisno need to
change any of the calls to the routine, just the formal parameter list of the
routine itself.

Attempting to use boththe EXTRA and REF EXTRA keywordstogether in
the formal parameter list of afunction or procedure will cause an error to be
issued. You can only use one or the other.

Only the caller of aroutine can dictate whether keywords that are not
understood by the called routine should be ignored (EXTRA) or should
generate an error (_STRICT_EXTRA). For thisreason, STRICT_EXTRA is
only used in acall to aroutine, and not in the formal parameter list for the
routine.

Attempting to use both the _EXTRA and _STRICT_EXTRA keywords
together in acall to afunction or procedure will cause an error to be issued.
You can only use one or the other.

Keyword Inheritance Mechanisms

Asdescribed above, there are two possible mechanisms used by IDL to passinherited
keywords. The one used by aroutineis determined by the formal parameter list of the
routine.

_EXTRA: Passing Keyword Parameters by Value

You can cause inherited keyword parameters to be passed to aroutine by value by
adding the keyword parameter EXTRA to the formal argument list of that routine.
Passing parameters by value meansthat you are giving the called routine a copy of the

value of the passed parameter, and not the original. As such, any changes made to the
value of such akeyword is not passed back to the caller.

Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 81

When aroutine is defined with the formal keyword parameter EXTRA, and
keywords that are not recognized by that routine are passed to it inacall, IDL
constructs an anonymous structure to contain the keyword inheritance information.
Each tag in this structure has the name of an inherited keyword, and the value of that
tag is a copy of the value that was passed to that keyword. If no unrecognized
keywords are passed in acall, the value of the _EXTRA keyword will be undefined,
indicating that no inherited keyword parameters were passed.

Modifying Inherited Keyword Values

If extra keyword parameters have been passed by value, their values are stored in an
anonymous structure. The inheriting routine has the opportunity to modify these
values and/or to filter them prior to passing them to another routine. The
CREATE_STRUCT, N_TAGS, and TAG_NAMES functions can al be of usein
performing such operations. For example, here is an example of adding a keyword
named COLOR with value 12 to an _ EXTRA structure:

PRO SOVEPRCC, _EXTRA = ex
if (N_ELEMENTS(ex) NE 0) $
THEN ex = CREATE_STRUCT(’ COLOR , 12, ex) $
ELSE ex = { COLOR: 12 }
SOVE_UNDERLYI NG PROC, _EXTRA=ex
END

Theuse of N_ELEMENTS is necessary because if the caller does not supply any
inherited keyword, the variable EX will have an undefined value, and an attempt to
use that value with CREATE_STRUCT will cause an error to be issued. Hence, we
only use CREATE_STRUCT if we know that inherited keywords are present.

_REF_EXTRA: Passing Keyword Parameters by Reference

You specify that a routine accepts inherited keywords by reference, by adding the
keyword REF EXTRA tothe formal argument list of the routine. When aroutineis
defined with _REF EXTRA, inherited keywords are passed using IDL’s standard
parameter passing mechanism, as with any other variable. Unlike regular variables
however, the values of these keywords are not available within the routine itself.
Instead, the names of these keywords are passed as a string array to the routine asthe
value of the _REF_EXTRA keyword. The presence of anameinthe REF EXTRA
value indicates that a keyword of that name was passed, and its value is available to
be passed on in afunction or procedure call (using either EXTRA or
_STRICT_EXTRA). If no unrecognized keywords are passed in acal, the value of
the EXTRA keyword will be undefined, indicating that no inherited keyword
parameters were passed.

Building IDL Applications Keyword Inheritance

82

Chapter 4: Procedures and Functions

If inherited keywords passed by reference are modified by a called routine, those
changes will be passed back to the caller.

The pass by reference keyword inheritance mechanism is especialy useful when
writing object methods.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names viathe EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:
PRO SOVEPROC, _REF_EXTRA = ex
ONE, _EXTRA=[' MOOSE', ' SQUI RREL']
TWO, _EXTRA=' SQUI RREL'
END

If we call the SOMEPROC routine with three keywords:
SOVEPROC, MOOSE=nmose, SQUI RREL=3, SPY=PTR_NEW noose)

e it will pass the keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

e itwill passthe keyword SQUIRREL and its value to procedure TWO,

e it will do nothing with the keyword SPY, or any other keyword that might be
passed to it.

Choosing a Keyword Inheritance Mechanism

The two available keyword inheritance mechanisms have different strengths and
weaknesses. The one to choose depends on the requirements of your routine:

< If your routine needs to see the values of the inherited keywords, and you do
not need to pass modified values back to the caller, use EXTRA (pass by
value).

« If your routine does not need to see the values of the inherited keywords, and it
is OK to pass back modified keyword values, use_ REF_EXTRA (pass by
reference).

e If your routineis an object method, REF EXTRA ismost likely the correct
choice for your application.

Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 83

e If either mechanism will serve your needs, asis often the case, then RS
recommends REF EXTRA, which has aminor efficiency advantage over
_EXTRA, dueto the fact that it does not have to construct an anonymous
structure and copy the original valuesinto it.

Example: Writing a Wrapper Routine

One of the most common uses for the keyword inheritance mechanism is to create
wrapper routines that extend the functionality of existing routines. This example
shows how to write such a wrapper, using both avail able inheritance mechanisms.

By Value

In most wrapper routines, thereis no need to return modified keyword values back to
the calling routine — the aim is simply to provide the complete set of keywords
available to the existing routine from the wrapper routine. Hence, the by value form
(_EXTRA) of keyword inheritance can be used.

For example, suppose that procedure TEST is awrapper to the PLOT procedure. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, EXTRA = e
END

Thiswrapper passes all keywords it does not accept directly to PLOT using keyword
inheritance. If such akeyword is not accepted by the PLOT procedure, it is quietly
ignored. If you wish to catch such errors, you would re-write TEST to use the
_STRICT_EXTRA keyword in the call to PLOT:

PRO TEST, a, b, _EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be placed into an anonymous structure assigned to the variable
e. If there are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, TH CK=5

variable e, within TEST, contains an anonymous structure with the value:
{ LINESTYLE: 4, THCK 5}

These keyword/value pairs are then passed from TEST to the PLOT routine using the
_EXTRA keyword:

Building IDL Applications Keyword Inheritance

84

Chapter 4: Procedures and Functions

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into aroutine via_EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR 12}
specifies acolor index of 12 to PLOT.

By Reference

It is extremely simple to modify the by value (EXTRA) version of the TEST
procedure from the previous section to use by reference keyword inheritance. It
suffices to change the _EXTRA keyword to _REF_EXTRA in the formal parameter
list:

PRO TEST, a, b, _REF EXTRA = e, COLOR = col or

PLOT, a, b, COLOR = color, _STRICT_EXTRA = e
END

This definition of the TEST procedure causes unrecognized keywords (any keywords
other than COLOR) to be passed to TEST using the normal IDL parameter passing
mechanism. However, their values are not visible within TEST itself. Instead, astring

array containing the inherited keyword names is assigned to the variable e. If there
are no unrecognized keywords, e will be undefined.

For example, when procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THI CK=5

variable e, within TEST, contains an anonymous structure with the value:
[*LINESTYLE', ‘THI CK]

These inherited keywords are then passed from TEST to the PLOT routine using the
_EXTRA keyword. Note that keywords passed into aroutine via_EXTRA override
previous settings of that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR 12}

specifies acolor index of 12 to PLOT. Also note that we are passing a structure (the
by value format used by EXTRA) as the value of the extra keyword to aroutine that
uses the by reference keyword inheritance mechanism (REF_EXTRA). Thereisno
problem in doing this, because each routine establishes its own inheritance
mechanism independent of any other routines that may be calling it. However, any
keyword values that are changed within PLOT will fail to bereturned to the caller due
to the use of the by-value mechanism.

Keyword Inheritance Building IDL Applications

Chapter 4: Procedures and Functions 85

Example: By Value Versus By Reference

The pass by reference keyword inheritance mechanism allows you to change the
value of avariable in the calling routine’s context from within the routine, whereas
the pass by value mechanism does not. To demonstrate this difference between
_EXTRA and REF _EXTRA, consider the following simple example procedures.

PRO HELP_BYVAL, _EXTRA = ex
HELP, EXTRA = ex
END

PRO HELP_BYREF, _REF _EXTRA = ex
HELP, EXTRA = ex
END

Both HELP BYVAL and HELP_BY REF are simple wrappers to the HELP
procedure. The HEL P procedure accepts a keyword named OUTPUT that passes
back avalueto the caller. Observe the result when we call each wrapper, specifying
OUTPUT as an inherited keyword parameter:

HELP_BYVAL, OQUTPUT = out & HELP, out

IDL prints:
% At HELP_BYVAL 2 /dev/tty
% $MVAI NS
EX UNDEFI NED = <Undefi ned>

Conpi | ed Procedures:
$MAI N$ TEST1
Conpi | ed Functi ons:

This occurs because the HEL P call within HELP_BY VAL is passed a variable that
cannot be used to return avalue, due to the use of by value keyword inheritance. It
therefore reverts to the default of writing to the user’s screen, and no valueis returned
to the caller for the OUTPUT keyword.

Now run HELP_BY REF:
HELP_BYREF, OUTPUT = out & HELP, out
IDL prints:
ouT STRI NG = Array| 8]
HELP_BY REF returns the value of the HELP OUTPUT keyword as desired.

Building IDL Applications Keyword Inheritance

86 Chapter 4: Procedures and Functions

Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commandsis as follows:

_RUN [File; , Filey, ...]
_COMVPILE [File; , File, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see “.RUN” and “.COMPILE” in the IDL Reference Guide
manual.

To enter program text directly from the keyboard, simply enter .RUN at the

IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
adirectly entered program. Aslong as IDL requires more text to complete a program
unit, it prompts with the “-" character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as awhole.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

Thefirst non-empty line the IDL compiler reads determines the type of the program
unit; procedure, function, or main program. If the first non-empty lineis not a
procedure or function definition statement, the program unit is assumed to be amain
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is already
compiled, it is replaced by the new program unit.

Note Regarding Functions

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable PATH, must be compiled before the first reference to the
function is compiled. Thisis necessary because the IDL compiler is unable to
distinguish between areference to a variable subscripted with parentheses and a call
to a presently undefined user function with the same name. For example, in the
Statement

A = XYZ(5)
itisimpossible to tell by context aloneif XYZ isan array or afunction.

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all

Entering Procedure Definitions Building IDL Applications

Chapter 4: Procedures and Functions 87

new code. See “Array Subscript Syntax: [] vs. ()" on page 128 for additional
details.

When IDL encounters references that may be either afunction call or a subscripted
variable, it searches the current directory, then the directories specified by 'PATH, for
files with names that match the unknown function or variable name. If one or more
files matching the unknown name exist, IDL compiles them before attempting to
evaluate the expression. If no function or variable with the given name exists, IDL

displays an error message.
There are several ways to avoid this problem:

¢ Compilethe lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

e Placethe function in afile with the same name as the function, and place that
filein one of the directories specified by 'PATH.

¢ Usethe FORWARD _ FUNCTION definition statement to inform IDL that a
given name refers to a function rather than a variable. See “ Forward Function
Definition” on page 72.

e Manually compile al functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.

Building IDL Applications Entering Procedure Definitions

88

Chapter 4: Procedures and Functions

How IDL Resolves Routines

When IDL encounters a call to afunction or procedure, it must find the routine to
call. To do this, it goes through the following steps. If a given step yields a callable
routine, IDL arranges to call that routine and the search ends at that point:

1

If the routine is known to be a built in intrinsic routine (commonly referred to
as asystemroutine), then IDL calls that system routine.

If auser routine written in the IDL language with the desired name has already
been compiled, IDL calls that routine.

If afile with the name of the desired routine (and ending with the filename
suffix . pr o) existsin the current working directory, IDL assumes that thisfile
contains the desired routine. It arranges to call a user routine, but does not
compilethefile. Thefilewill be compiled when IDL actually needsit. In other
words, it is compiled at run time when IDL actually attemptsto call the
routine, not when the code for the call is compiled.

IDL searches the directories given by the !PATH system variable for afile with
the name of the desired routine ending with the filename suffix . pr o. If sucha
fileexists, IDL assumesthat thisfile containsthe desired routine. It arrangesto
call auser routine, but does not compile the file, as described in the previous
step.

If the above steps do not yield a callable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parentheses to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 6, “Arrays’ for adiscussion of thisambiguity). In either case, the
result is not a callable routine.

How IDL Resolves Routines Building IDL Applications

Chapter 4: Procedures and Functions 89

Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It isimportant to recognize the distinction between these two
methods.

* Expressions, constants, system variables, and subscripted variable references
are passed by value.

e Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:

PRO ADD, A, B
A=A+8B
RETURN

END

This procedure adds its second parameter to the first, returning the result in the first.
Thecall

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A
No error message isissued. Similarly, if ARR is an array, the call
ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as

follows:
TEMP = ARR[5]
ADD, TEMP, 4

ARR 5] = TEMP

Building IDL Applications Parameter Passing Mechanism

90 Chapter 4: Procedures and Functions

Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “ Parameter
Passing with Structures’ on page 151 for additional details.

Parameter Passing Mechanism Building IDL Applications

Chapter 4: Procedures and Functions 91

Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1

All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

The actual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

The function or procedure is executed until aRETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
auser-written function is passed back to the caller by specifying it asthe value
of aRETURN statement. RETURN statements in procedures cannot specify a
return value.

All local variablesin the procedure, those variables that are neither parameters
nor common variables, are deleted.

The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actua parameters that were passed by
value are deleted.

Control resumesin the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., aprogram calling itself) is supported for both procedures and
functions.

Example

Hereis an example of an IDL procedure that reads and plots the next vector from a
file. Thisexampleillustrates using common variablesto store values between calls, as
local parameters are destroyed on exit. It assumes that the file containing the dataiis
open on logica unit 1 and that the file contains a number of 512-element, floating-
point vectors.

; Read and plot the next record fromfile 1. If RECNOis specified,
;set the current record to its value and plot it.
PRO NXT, recno

; Save previous record nunber.

Building IDL Applications Calling Mechanism

92 Chapter 4: Procedures and Functions

COVMON NXT_COM | astrec

; Set record nunber if paraneter is present.
| F N_PARAMS(0) GE 1 THEN |l astrec = recno

;Define LASTREC if this is first call.
| F N_ELEMENTS(| astrec) LE O THEN | astrec = 0

:Define file structure.
AA = ASSOC(1, FLTARR(512))

; Read and pl ot record.
PLOT, AA[l astrec]

;I ncrement record for next tinme.
| astrec = lastrec + 1

RETURN A

END

Once the user has opened thefile, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.

Calling Mechanism Building IDL Applications

Chapter 4: Procedures and Functions 93

Setting Compilation Options

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears. The syntax of
COMPILE_OPT isasfollows:

COMPILE_OPT opt, [,0pt,, ..., 0pt,]
where opt,, is any of the following:
e |IDL2— A shorthand way of saying:
COWPI LE_OPT DEFINT32, STRI CTARR

e« DEFINT32 — IDL should assume that lexical integer constants are the 32-bit
LONG type rather than the default of 16-bit integers. Thistakes effect from the
point where the COMPILE_OPT statement appears in the routine being
compiled.

e« HIDDEN — Thisroutine should not be displayed by HEL P, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side effect of making aroutine hidden isthat IDL will not print a“Compile
module” message for it when it is compiled from the library to satisfy acall to
it. This makes hidden routines appear built in to the user.

e OBSOLETE — If the user has 'WARN.OBS ROUTINES set to True,
attempts to compile acall to this routine will generate warning messages that
thisroutine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

¢ STRICTARR — While compiling this routine, IDL will not allow the use of
parenthesisto index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good ideafor library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTION
definition.

RSI recommends the use of
COVPI LE_OPT | DL2

Building IDL Applications Setting Compilation Options

94 Chapter 4: Procedures and Functions

in all new code intended for use in areusable library. We further recommend the use
of

COWPI LE_OPT idl 2, H DDEN

in al such routines that are not intended to be called directly by regular users (e.g.
hel per routines that are part of alarger package).

Setting Compilation Options Building IDL Applications

Chapter 4: Procedures and Functions 95

Advice for Library Authors

An ordinary end user programmer needs only to solve his or her own problemsto the
desired level of quality, reusability, and robustness. Life is more difficult for alibrary
author. In addition to the challenges facing any programmer, library authors face
additional challenges:

¢ The structure and organization of the library needs to encourage reuse and
generality.

e Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

e Errors must be gracefully handled whenever possible. See Chapter 18,
“Controlling Errors’ for more on error control.

e Themost useful libraries are written to work correctly on awide variety of
platforms, without requiring their users to be aware of the details.

e Documentation must be provided, or the library will not find users.

e Libraries must be able to co-exist with other code over which they have no
control. They must not to alter the global environment in ways that cause
conflicts. In doing this, they must also take care to prefix the names of all
routines, common blocks, systems variables, and any other global resources
they use. This prevents a given library from conflicting with other libraries on
the same system, and protects the library from changesto IDL that may occur
in newer releases.

The need to use a unique prefix for the namesin your library is very important. New
releases of IDL occur on aregular schedule. These new rel eases contain new routines,
system variables, common blocks, and other globally visible items. If one of these
new names is the same as a name used in your library, the conflict will prevent your
library from being usable with that new version until you take steps to change the
troublesome name. Thisis difficult for you and inconvenient for your users. The use
of aproper prefix eliminatesthisrisk and makesit easier for your library to work with
new versions of IDL without the need to take special action with each new IDL
release.

In selecting a prefix for your library, you should select a name that is short,
mnemonic, and unlikely to be chosen by others. For example, such a name might use
the name of your organization or project in an abbreviated form.

Non-prefixed names, and names prefixed by “IDL” are reserved by RSI. New names
of these forms can and will appear without warning in new versions of IDL, and

Building IDL Applications Advice for Library Authors

96 Chapter 4: Procedures and Functions

should be avoided when naming new libraries. Failure to use prefixed naming can
lead to considerable difficulty once the library is established. It isimportant to
establish a naming convention early and enforce its systematic use throughout.

Advice for Library Authors Building IDL Applications

Chapter 6:

Arrays

The following topics are covered in this chapter:

OVEIVIEW ..ot 122
Array Subscripting 125
SubscriptRanges 129
Dimensionality of Subarrays 131

Building IDL Applications

Using Arraysas Subscripts
Combining Subscripts
Storing Elements with Array Subscripts .
Columns, Rows, and Array Magjority

121

122

Chapter 6: Arrays

Overview

Overview

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. An array can be of any IDL datatype; saying that an array isof a
particular type means that all elements of the array are of that datatype. Array
subscripts provide a means of selecting one or more elements of an array for retrieval
or modification.

One-dimensional arrays are often called vectors. Thefollowing IDL statement creates
avector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often called matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:
PRINT, array

IDL prints:

1 2 3
4 5 6

Arrays can have up to eight dimensionsin IDL. The following IDL statement creates
athree-column by four-row by five-layer deep three-dimensional array. In this case,
we usethe IDL FINDGEN function to create an array whose elements are set equal to
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL isan array-oriented language. This means that any operation on an array is
performed on all elements of the array, without the need for the user to write an
explicit loop. The resulting code is easier to read and understand, and executes more
efficiently. For example, suppose you have a three-dimensional array and wish to
divide each element by two. A language that does not support array operations would
require you to write aloop to perform the division for each element; IDL can
accomplish the division in asingle line of code:

array = array/?2

Building IDL Applications

Chapter 6: Arrays 123

Array Subscripts

Subscripts are used to select individual elements of an array for retrieval or
modification. The subscript of an array element denotes the address of the element
within the array. In the simple case of a one-dimensional array (that is, an n-element
vector), elements are numbered starting at 0 with the first element, 1 for the second
element, and running to n — 1, the subscript of the last element.

The syntax of a subscript referenceis:
Variable_Name [Subscript_ List]

or
(Array_Expression)[Subscript_List]

The Subscript_List issimply alist of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commasif there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts.

When a subscripted variable reference appears in an expression, the values of the
selected array elements are extracted. For example, the following statements extract
the first two values from ar r ay by subscripting with a second array (i ndi ces) and
store the valuesin the variable new_ar r ay:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
indices = [0, 1]

new array = array[indices]

PRI NT, new_ array

IDL prints:
1.0 2.0

When a subscript reference appears on the left side of an assignment statement, new
values are stored in selected array elements, without atering the remaining elements.
For example, the following statements change the third element of array:

array = [1.0, 2.0, 3.0, 4.0, 5.0]
array[2] = 9.0
PRI NT, array

IDL prints:
1. 00000 2.00000 9. 00000 4. 00000 5. 00000

Chapter 11, “Assignment” discusses the use of the different types of assignment
statements when storing into arrays.

Building IDL Applications Overview

124 Chapter 6: Arrays

Similarly, arrays with multiple dimensions are addressed by specifying a subscript
expression for each dimension. A two-dimensional array with n columns and mrows,
is addressed with a subscript of theform[i, j], where0<i <nand 0 <j <m. Thefirst
subscript, i, isthe column index; the second subscript, j, is the row index. For
example, the following statements select and print the element in the first column of
the second row of ar r ay:

array = [[1, 2, 3], [4, 5, 6]]
PRI NT, array[O, 1]

IDL prints:
4

Overview Building IDL Applications

Chapter 6: Arrays 125

Array Subscripting

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elementsto receive new values. The expressionar r [12] denotesthe
value of the 13th element of ar r (because subscripts start at 0), while the statement
arr[12] = 5 storesthe number 5 in the 13th element of ar r without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. IDL’s notational convention isthat for generic arrays and images, the first
subscript denotes the column and the second subscript denotes the row. When arrays
are used for mathematical operations (linear algebra, for example), the convention is
reversed: the first subscript denotes the row and the second subscript denotes the
column.

If Aisa2-element by 3-element array (using [column, row] notation), the elements
are stored in memory as follows:

Stored in Memory
Aoo Ao L owest memory address
Ao A11
Ao A1 Highest memory address

Table 6-1: Storage of IDL Array Elements in Memory

The elements are ordered in memory as: A, A1 0. Ag 1, A11, Ag 2 Ao This
ordering is like Fortran. It is the opposite of the order used by C/C++. For more
information on how IDL arranges multidimensional datain memory, see “Columns,
Rows, and Array Mgjority” on page 138. For adiscussion of how the ordering of such
datarelatesto IDL mathematics routines, see “Arrays and Matrices’ in Chapter 22 of
the Using IDL manual.

Note
When comparing IDL's memory layout to other languages, remember that those
languages usually use a mathematical [row, column] notation for array dimensions,
which is the reverse of the array notation used for the example above. See

Building IDL Applications Array Subscripting

126 Chapter 6: Arrays

“Columns, Rows, and Array Mgjority” on page 138 for more on comparing IDL's
array layout to that of other languages.

Arraysthat contain image data are usually displayed in graphics displays with row
zero at the bottom of the screen, matching the display’s coordinate system (although
this order can be reversed by setting the system variable 'ORDER to a nonzero
value). Array data are printed to standard text output (such asthe IDL output log or
console window) with the first row on top.

Elements of multidimensional arrays also can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points. In the
above example, A[2] isthesameelementasA[0, 1], andA[5] isthe same element
asA 1, 2].

If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension minus
1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expressionis
not integer, alongword integer copy is made and used to evaluate the subscript.

Note
When floating-point numbers are converted to longword integers, they are
truncated, not rounded. Thus, specifying Al 1. 99] isthe same as specifying A[1] .

Extra Dimensions

When creating arrays, IDL eliminates all size 1, or “degenerate’, trailing dimensions.
Thus, the statements

A = I NTARR(10, 1)
HELP, A

print the following:
A I NT = Array[10]

Thisremoval of superfluous dimensionsis usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. Therefore,
IDL alowsyou to specify “extra’ dimensions for an array as long as the extra
dimensions are all zero. For example, consider a vector defined as follows:

arr = | NDGEN(10)

Thefollowing are all valid references to the sixth element of arr :

Array Subscripting Building IDL Applications

Chapter 6: Arrays 127

X = arr[5]
X = arr[5, 0]
X =arr[5 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

The REFORM function can be used to add degenerate trailing dimensionsto an array
if desired. For example, the following statements create a 10 element integer vector,
and then alter the dimensionsto be [10, 1]:

A
A

| NTARR(10)
REFORM A, 10, 1, / OVERWRI TE)

Subscripting Scalars

Scalar quantitiesin IDL can be thought of as the first element of an array with one
dimension. They can be subscripted with a zero reflecting the first and only position.
Therefore,

; Assign the value of 5 to A
A=5
;Print the value of the first el enent of A
PRI NT, A[0]

IDL prints:
5

If we redefine the first element of A:
;Redefine the first elenment of A
A[0] =6
PRI NT, A

IDL prints:

6

Note

You cannot subscript avariable that has not yet been defined. Thus, if thevariable B
has not been previoudly defined, the statement:

B[O] = 9

will fail with the error “variable is undefined.”

Building IDL Applications Array Subscripting

128 Chapter 6: Arrays

Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parentheses in avisualy identical way to specify argument lists.
Asaresult, the IDL compiler was not able to distinguish between arrays and
functions by looking at the statement syntax. For example, the IDL statement

val ue = fish(5)

could either set the variable value equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to afunction called fish.

To determineif it is compiling an array subscript or afunction call, IDL checksits
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish, in the above example), it calls that function
with the argument specified. If IDL does not find afunction with the correct namein
itstable of known functions, it assumes that the unknown element is an array, and
attempts to return the value of the designated element of that array. Thisrule
generally gives the desired result, but it can be fooled into the wrong choice under
certain circumstances, much to the surprise of the unwary programmer.

For thisreason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in thisway is
unambiguously interpreted as an array under all circumstances. In IDL 5.0 and later:

val ue = fish[5]
sets value to the sixth element of an array named fish.

Due to the large amount of existing IDL code written in the older syntax, aswell as
theingrained habits of thousands of IDL users, IDL continuesto allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

val ue = fish[5]
is unambiguous,
val ue = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
toversion 5.0

Since the older syntax has been used widely, you should not be surprised to see it
from time to time. However, square brackets are the preferred form, and should be
used for new code.

Array Subscripting Building IDL Applications

Chapter 6: Arrays 129

Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges. There are six
types of subscript ranges:

* A range of subscripts, written [ey:€4], denoting all elements whose subscripts
range from the expression e through e; (g must not be greater than e,). For
example, if the variable vec is a50-element vector, vec[5: 9] isafive-
element vector composed of vec[5] throughvec] 9] .

* A range of subscripts, written [ey:e;:€,], denoting every eth element within
the range of subscripts e0 through e; (ey must not be greater than e). e, is
referred to as the subscript stride. The stride value must be greater than or
equal to 1. If it is set to the value 1, the resulting subscript expression is
identical in meaning to [ey:e;], as described above. For example, if the variable
vec isab0-element vector, vec[5: 13: 2] isafive-element vector composed
of vec[5], vec[7] ,vec[9], vec[11] , and vec[13] .

¢ All elementsfrom agiven element to the last element of the dimension, written
as[ey:*]. Using the above example, vec|[10: *] isa40-element vector made
fromvec[10] throughvec[49] .

* Every e;th element from a given element to the last element of the dimension,
written as[ey:*:ey]. & isreferred to as the subscript stride. The stride value
must be greater than or equal to 1. If it is set to the value 1, the resulting
subscript expression isidentical in meaning to [ey:*], as described above.
Using the above example, vec[10: *: 4] isa 10-element vector made from
every fourth element between vec[10] throughvec[49] .

e A simple subscript, [n]. When used with multidimensional arrays, smple
subscripts specify only elements with subscripts equal to the given subscript in
that dimension.

¢ All elements of adimension, written [*]. Thisform is used with
multidimensional arraysto select all elements along the dimension. For
example, if arr isal10-column by 12-row array, arr [*, 11] isthelast row
of ar r, composed of elements[arr[0, 11], arr[1,11], ...,
arr[9,11]], andisal0-element row vector. Similarly, arr[0, *] isthe
firstcooumnofarr,[arr[0,0], arr[O0,1],..., arr[0,11]],andits
dimensions are 1 column by 12 rows.

Building IDL Applications Subscript Ranges

130 Chapter 6: Arrays

Multidimensional subarrays can be specified using any combination of the above
forms. For example, arr[*, 0:4] ismadefrom all columns of rows0to 4 of arr
or a 10-column, 5-row array. The table below summarizes the possible forms of
subscript ranges:

Form Description
e A simple subscript expression
€p-€1 Subscript range from eg to e
€p:€1:€) Subscript range from e to e, with astride of e,
€p:* All points from element e to end
ep*:e) All points from element e to end with astride of e,
* All pointsin the dimension

Table 6-2: Subscript Ranges

Subscript Ranges Building IDL Applications

Chapter 6: Arrays 131

Dimensionality of Subarrays

The dimensions of an extracted subarray are determined by the size in each
dimension of the subscript range expression. In general, the number of dimensionsis
equal to the number of subscripts and subscript ranges. The size of the n-th dimension
isequal to oneif asimple subscript was used to specify that dimension in the
subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. If ar r
isa 10-column by 12-row array, the expressionarr [*, 11] resultsin arow vector
with asingle dimension. (The result of the expression is a 10-column by 1-row array;
the last dimension is degenerate and is removed.) On the other hand, the expression
arr[0, *] became acolumn vector with dimensions of [1, 12], showing that the
structure of columnsis preserved because the dimension with a size of one does not
appear at the end.

To see this, enter the following statementsin IDL:

arr = | NDGEN(10, 12)
HELP, arr

HELP, arr[*, 11]
HELP, arr[O0, *]

Examples

In the following examples, vec isa50-element floating-point vector, and ar r isa10-
column by 12-row integer array. Some typical subscript range expressions are as
follows:

vec
arr

FI NDGEN(50)
| NDGEN(10, 12)

; Elements 5 through 10 of vec, a six-elenent vector.
vec[5: 10]

;A three-el enent vector.
vec[l - 1:1 + 1]

; The sane vector.
[vec[l - 1], vec[l], vec[l + 1]]

; Elenents fromvec[4] to the end, a 46-el ement (50-4) vector.
vec[4:*]

Val ues of the elenents with even subscripts in vec:

Building IDL Applications Dimensionality of Subarrays

132 Chapter 6: Arrays

vec[0: *: 2]

; Val ues of the elenents with odd subscripts in vec:
vec[1: *: 2]

; The fourth colum of arr, a 1 colum by 12 row vector.
arr[3, *]

;The first row of arr, a 10-elenent row vector. Note, the | ast
;di mension was renoved because it was degenerate.

[arr[3, O], arr[3, 1], ..., arr[3, 11]]

arr[*, 0]

; The ni ne-poi nt nei ghbor hood surrounding arr[X Y], a 3 by 3 array.
arr[X - 1: X+ 1, Y- 1:Y + 1]

; Three colums of arr, a 3 by 12 subarray:
arr[3:5, *]

See Chapter 11, “Assignment” for a description of the process of assigning valuesto
subarrays.

Dimensionality of Subarrays Building IDL Applications

Chapter 6: Arrays 133

Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the subscript array
selects an element in the subscripted array. When subscript arrays are used in
conjunction with subscript ranges (as discussed in “ Combining Subscripts’ on

page 135), more than one element may be selected for each element of the subscript

array.
If no subscript ranges are present, the length and dimensionality of the result isthe
same as that of the subscript expression. The type of the result is the same as that of

the subscripted array. If only one subscript is present, all subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript array, the process can be described as follows:

Vg if 0<S<n

VI[S] = V, if S <0 for0<i<m
Vi qif S;zn

Here, the vector V has n elements, and the subscript array Shas m elements. The
result V[has the same dimensionality and number of elementsas S

Clipping

If an element of the subscript array is lessthan or equal to zero, the first element of
the subscripted array is selected. If an element of the subscript array is greater than or
equal to the last subscript in the subscripted array, the last element is selected. This
clipping of out of bounds elements can be disabled within aroutine by using the
STRICTARRSUBS option to the COMPILE_OPT statement. (See the documentation
for “COMPILE_OPT” in the IDL Reference Guide manual for details.) If
STRICTARRSUBS sin force, then array subscripts that refer to out of bounds
elements will instead cause IDL to issue an error and stop execution, just as an out-
of-range scalar subscript does.

Example

As an example, consider the commands:

Building IDL Applications Using Arrays as Subscripts

134 Chapter 6: Arrays

A=1[6, 5 1, 8, 4, 3]
B=1[0 2 4, 1]
C=AB

PRINT, C

This produces the following output:
6145

Thefirst element of Cis 6 because that is the number in the O position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so on.

As another example, assume the variable Aisa 10 by 10 array. Here, the subscripts of
the diagonal elements (A[0, 0], A[1,1], ..., A[9, 9])areequa toO, 11, 22,
..., 99. The elements of the vector | NDGEN(10) *11 also areequal to 0, 11, 22, ...,
99, so the expression Al | NDGEN(10) * 11] yields a 10-element vector containing
to the diagonal elements of A.

The WHERE function, which returns avector of subscripts, can be used to select
elements of an array using expressions similar to Al WHERE(A GT 0)], which results
in avector composed only of the elements of A that are greater than 0.

Using Arrays as Subscripts Building IDL Applications

Chapter 6: Arrays 135

Combining Subscripts

Subscript arrays can be combined with subscript ranges, simple scalar subscripts, and
other subscript arrays.

When IDL encounters a multidimensional subscript expression that contains one or
more subscript arrays, ranges, or scalars, it builds a subscript array by processing
each element in the subscript expression from left to right. The resulting subscript
array isthen applied to the variable to be subscripted. As with other subscript
operations, trailing degenerate dimensions (those with a size of 1) are eliminated.

Subscript Ranges

When combining a subscript array with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of the result is equal
to the number of elementsin the corresponding subscript array or range.

For example, theexpresson A[[1, 3, 5], 7:9] isanine-element, 3 x 3 array
composed of the following elements:

A1,7 A3,7 A5,7

A1,8 A3,8 A5,8

A1,9 A3,9 A5,9
Each element of the three-element subscript array [1, 3, 5] is combined with each
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of atwo-
dimensional n x marray:

:Zero the first and | ast rows.
Al*, [0, M1]] =0

;Zero the first and | ast columms.
A[[0, N- 1], *] =0

Other Subscript Arrays

When combining two subscript arrays, each element of the first subscript array is
combined with the corresponding element of the second subscript array. The two

Building IDL Applications Combining Subscripts

136 Chapter 6: Arrays

subscript arrays must have the same number of elements. The resulting subscript
array has the same number of elements asits constituents. For example, the
expresson Al [1, 3], [5, 9]] yieldstheelementsA[1, 5] and Al 3, 9] .

Scalars

Combining an n-element subscript range or n-element subscript array with a scalar
yields an n-element result. The value of the scalar is combined with each element of
therange or array. For example, the expression A[[1, 3, 5], 8] yieldsthethree-
element vector composed of the elements Al 1, 8] , A 3, 8] ,and A[5, 8] . The
second dimension of theresult is1 and is eliminated because it is degenerate. The
expression Al 8, [1, 3, 5]] isthel x 3-column vector A[8, 1], A 8, 3], and
Al 8, 5], illustrating that leading dimensions are not eliminated.

Combining Subscripts Building IDL Applications

Chapter 6: Arrays 137

Storing Elements with Array Subscripts

One or more values can be stored in selected elements of an array by using an array
expression as a subscript for the array on the left side of an assignment statement.
Values are taken from the expression on the right side of the assignment statement
and stored in the elements whose subscripts are given by the array subscript. The
right-hand expression can be either ascalar or array.

The subscript array is converted to longword type before use if necessary. Regardless
of structure, this subscript array is interpreted as a vector. For details and examples of
storing with vector subscripts, see Chapter 11, “Assignment”.

Examples

The statement:
Al[2, 4, 6]] =0

zeroes elements A[2], Al 4], and A[6] , without changing other elements of A. The
statement:

Al[2, 4, 6]] =[4, 16, 36]
stores4inA[2],16inA[4] ,and 36in A 6] .
One way to create asguare n x n identity matrix is as follows:

A = FLTARR(N, N)
A[INDGEN(N) * (N + 1)] = 1.0

Theexpression | NDGEN(N) * (N + 1) resultsin avector containing the subscripts of
thediagona elements[0, N+1, 2N+2, ..., (N-1)*(N+1)].

Yet another way isto use two array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts[[0,0], [1,1], ..., [n-1, n-1]]. Thestatement:
Al WHERE(A LE 0)] = -1

sets elements of A with values of zero or lessto -1.

The following statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1

Building IDL Applications Storing Elements with Array Subscripts

138 Chapter 6: Arrays

Columns, Rows, and Array Majority

Computer hardware does not directly support the concept of multidimensional arrays.
Computer memory is unidimensional, providing memory addresses that start at zero
and increase serialy to the highest available location. Multidimensional arrays are
therefore a software concept: software (IDL in this case) maps the elements of a
multi-dimensional array into a contiguous linear span of memory addresses. There
are two ways that such an array can be represented in one-dimensional linear
memory. These two options, which are explained below, are commonly called row
major and column major. All programming languages that support multidimensional
arrays must choose one of these two possibilities. This choice is a fundamental
property of the language, and it affects how programs written in different languages
share data with each other.

Before describing the meaning of these terms and IDL’s relationship to them, it is
necessary to understand the conventions used when referring to the dimensions of an
array. For mnemonic reasons, people find it useful to associate higher level meanings
with the dimensions of multi-dimensional data. For example, a 2-D variable
containing measurements of ozone concentration on auniform grid covering the earth
might associate latitude with the first dimension, and longitude with the second
dimension. Such associations help people understand and reason about their data, but
they are not fundamental properties of the language itself. It isimportant to realize
that no matter what meaning you attach to the dimensions of an array, IDL isonly
aware of the number of dimensions and their size, and does not work directly in terms
of these higher order concepts. Another way of saying thisisthat arr [d1, d2]
addresses the same element of variable arr no matter what meaning you associate
with the two dimensions.

In the IDL world, there are two such conventions that are widely used:

¢ Inimage processing, the first dimension of an image array is the column, and
the second dimension isthe row. IDL iswidely used for image processing, and
has deep roots in this area. Hence, the dominant convention in IDL
documentation is to refer to the first dimension of an array as the column and
the second dimension as the row.

¢ Inthe standard mathematical notation used for linear algebra, the first
dimension of an array (or matrix) is the row, and the second dimension is the
column. Note that thisis the exact opposite of the image processing
convention.

Columns, Rows, and Array Majority Building IDL Applications

Chapter 6: Arrays

139

In computer science, the way array elements are mapped to memory is always
defined using the mathematical [row, column] notation. Much of the following
discussion utilizes the m x n array shown in Figure 6-1, with mrows and n columns:

AO,O AO,l AO,n—l
Al,O Al,l Al,n—l

Figure 6-1: An m x n array represented in mathematical notation.

Given such a 2-dimensional matrix, there are two ways that such an array can be
represented in 1-dimensional linear memory — either row by row (row major), or
column by column (column major):

Contiguous First Dimension (Column Major): In this approach, all elements
of thefirst dimension (min this case) are stored contiguously in memory. The
1-D linear address of element Ay, ¢ istherefore given by the formula
(d2*m + d1).Asyou move linearly through the memory of such an array,
thefirst (Ieftmost) dimension changes the fastest, with the second dimension
(n, in this case) incrementing every time you come to the end of the first
dimension:

AO,O' Al,O’ ey Am_]_’o, AO,l’ Al,l’ ey Am-l,l'

Computer languages that map multidimensional arraysin this manner are
called column major, following the mathematical [row, column] notation. IDL
and Fortran are both examples of column-major languages.

Contiguous Second Dimension (Row M ajor): In this approach, all elements
of the second dimension (n, in this case) are stored contiguously in memory.
The 1-D linear address of element Ay; , istherefore given by the formula
(d1*n + d2).Asyou move linearly through the memory of such an array,
the second dimension changes the fastest, with the first dimension (min this
case) incrementing every time you come to the end of the second dimension:

A0,0, AO,l’ . AO,n-ll Al,O’ Al,l' . Al,n-l’

Computer languages that map multidimensional arrays in this manner are
known as row major. Examples of row-major languages include C and C++.

Building IDL Applications Columns, Rows, and Array Majority

140

Chapter 6: Arrays

The terms row major and column major are widely used to categorize programming
languages. It isimportant to understand that when programming languages are
discussed in this way, the mathematical convention — in which thefirst dimension
represents the row and the second dimension represents the column — isused. If you
use the image-processing convention — in which the first dimension represents the
column and the second dimension represents the row — you should be careful to
make note of the distinction.

Note
IDL users who are comfortable with the IDL image-processing-oriented array
notation [column, row] frequently follow the reasoning outlined above and
incorrectly conclude that IDL isarow-mgjor language. The often-overlooked cause
of this mistake is that the standard definition of the terms row major and column
major assume the mathematical [row, column] notation. In such cases, it can be
helpful to look beyond the row/column terminology and think in terms of which
dimension is contiguous in memory.

Note that the mx n array discussed above could be represented with equal accuracy as
having m columns and n rows, as shown in Figure 6-2. This corresponds to the
image-processing [column, row] notation. It’s important to note that while the
representation shown is the transpose of the representation in Figure 6-1, the data
stored in the computer memory are identical. Only the two-dimensional
representation, which takes its form from the notational convention used, has
changed.

AO,O Al,O Am—l,O
AOl Al,l Am—l,l

>

_Ao’n_l Al,n—l cen A
Figure 6-2: An m x n array represented in image-processing notation.

IDL’s choice of column-major array layout reflectsits roots as an image processing
language. The fact that the elements of the first dimension are contiguous means that
the elements of each row of an image array (using [column, row] notation, as shown
in Figure 6-2) are contiguous. Thisisthe order expected by most graphics hardware,
providing an efficiency advantage for languages that naturally store data that way.

Columns, Rows, and Array Majority Building IDL Applications

Chapter 6: Arrays 141

Also, this ordering minimizes virtual memory overhead, since images are accessed
linearly.

It should be clear that the higher-level meanings associated with array dimensions
(row, column, latitude, longitude, etc.) are nothing more than a human notational
device. In general, you can assign any meaning you wish to the dimensions of an
array, and as long as your use of those dimensionsis consistent, you will get the
correct answer, regardless of the order in which IDL choosesto store the actual array
elements in computer memory. Thus, it is usually possible to ignore these issues.
There are times however, when understanding memory layout can be important:

Sharing Data With Other Languages — If binary data written by arow major
language is to be input and used by IDL, transposition of the datais usually required
first. Similarly, if IDL iswriting binary datafor use by a program written in arow
major language, transposition of the data before writing (or on input by the other
program) is often required.

Calling Code Written In Other Languages — When passing IDL data to code
written in arow major language viadynamic linking (CALL_EXTERNAL,
LINKIMAGE, DLMs), it is often necessary to transpose the data before passing it to
the called code, and to transpose the results.

Matrix Multiplication — Understanding the difference between the IDL # and ##
operators requires an understanding of array layout. For a discussion of how the
ordering of such datarelatesto IDL mathematics routines, see “Arrays and Matrices’
in Chapter 22 of the Using IDL manual.

1-D Subscripting Of Multidimensional Array — IDL allows you to index
multidimensional arrays using a single 1-D subscript. For example, given atwo
dimensional 5x7 array, ARRAY[2, 3] and ARRAY[17] refer to the same array
element. Knowing this requires an understanding of the actual array layout in
memory (d2*m + d1, or 3*5+2, which yields 17).

Efficiency — Accessing memory in the wrong order can impose a severe
performance penalty if your datais larger than the physical memory in your
computer. Accessing elements of an array along the contiguous dimension minimizes
the amount of memory paging required by the virtual memory subsystem of your
computer hardware, and will therefore be the most efficient. Accessing memory
across the non-contiguous dimension can cause each such access to occur on a
different page of system memory. Thisforces the virtual memory subsystem into a
cyclein which it must continually force current pages of memory to disk in order to
make room for new pages, each of which is only momentarily accessed. This
inefficient use of virtual memory is commonly known as thrashing.

Building IDL Applications Columns, Rows, and Array Majority

142 Chapter 6: Arrays

Columns, Rows, and Array Majority Building IDL Applications

Chapter 7:
Structures

The following topics are covered in this chapter:

OVEIVIBN ..o 144
Creating and Defining Structures 145
Structure References, 148
Using HELP with Structures 150

Parameter Passing with Structures

Building IDL Applications

Arraysof Structures 153
Structure Input/Output 155
Advanced StructureUsage 157
Automatic Structure Definition 159
Relaxed Structure Assignment 161

143

144 Chapter 7: Structures

Overview

IDL supports structures and arrays of structures. A structure isacollection of scalars,
arrays, or other structures contained in avariable. Structures are useful for
representing datain anatural form, transferring data to and from other programs, and
containing agroup of related items of varioustypes. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of nhamed structure is defined by a unique structure name. The first
time a structure nameis used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and a definition of each field that is a member of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structure is created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of atag name and atag definition that contains the type
and structure of the data contained in thefield. A field isreferred to by its tag name.
The tag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field' s type, structure, and value. Aswith
structure definitions, afield definition is fixed and cannot be changed. The contents
of afield can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of structures.

Overview Building IDL Applications

Chapter 7: Structures 145

Creating and Defining Structures

A named structure is created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name, : Tag_Definitiony, ..., Tag_Name, : Tag_Definition,,}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Namel : Tag_Definition, , ..., Tag_Name, : Tag_Definition,}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names may not be IDL Reserved Words, and must be unique within a given
structure, although the same tag name can be used in more than one structure.
Structure names and tag names follow the rules of IDL identifiers: they must begin
with aletter; following characters can be letters, digits, or the underscore or dollar
sign characters; and case isignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to itstag
definition.

A named structure that has aready been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Sructure_ Name}
Theresult of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, al
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only atemplate for that type of data.

Also, when making a named structure that has already been defined, the tag names
need not be present:

{Structure_Name, expressiony, ..., expression,}

Building IDL Applications Creating and Defining Structures

146 Chapter 7: Structures

All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag name
and the structure of each tag field must agree with the original definition. Anonymous
structures do not have this restriction because each instance has its own definition.

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause one
structure to inherit tags from another, use the INHERITS specifier. For example, if
we define a structure one as follows:

A = {one, datala:0, datalb:OL }

we can define a second structure two that includes the tags from the one structure
with the following definition statement:

B ={ tw, INHERI TS one, data2:0.0 }
Thisis the same as defining the structure two with the statement:
B ={ tw, datala:0, datalb:0L, data2:0.0 }

Note that the fields of the one structure are included in the two structure in the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be sure
that the tag names in the inherited structure do not conflict with the tag namesin the
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can be
defined. If a structure inherits tags from another structure that is not yet defined, IDL
will search for aroutine to define the inherited structure as outlined in “Automatic
Structure Definition” on page 159. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful when
dealing with object class structures. When the INHERITS specifier isused in aclass
structure definition, it has the added effect of defining the inheriting object as a
subclass of the inherited class. For adiscussion of object-oriented IDL programming,
see Chapter 22, “Object Basics’.

Example of Creating a Structure

Assume that a star catalog is to be processed. Each entry for a star contains the
following information: star name, right ascension, declination, and an intensity

Creating and Defining Structures Building IDL Applications

Chapter 7: Structures 147

measured each month over the last 12 months. A structure for thisinformation is
defined with the following IDL statement:

A = {star, name:'', ra: 0.0, dec:0.0, inten: FLTARR(12)}

This structure definition is the basis for al examplesin this chapter. The statement
above defines a structure type named star, which contains four fields. The tag names
are name, ra, dec, and inten. Thefirst field, with the tag name, contains a scalar string
as given by its tag definition. The following two fields each contain floating-point
scalars. The fourth field, inten, contains a 12-element, floating-point array. Note that
the type of the constants, 0.0, is floating point. If the constants had been written as 0,
the fields ra and dec would contain short integers.

The same structure is created as an anonymous structure by the statement:

A={nanme:'', ra:0.0, dec:0.0, inten: FLTARR(12)}
or by using the CREATE_STRUCT function:
A = CREATE_STRUCT(' nane', '', 'ra', 0.0, 'dec', 0.0, $

"inten', FLTARR(12))

Building IDL Applications Creating and Defining Structures

148 Chapter 7: Structures

Structure References

The basic syntax of areference to afield within a structure is as follows:
Variable Name.Tag Name

Variable Name must be avariable that contains a structure. Tag_Name is the name of
the field and must exist in the structure. If thefield referred to by the tag name isitself
astructure, the Tag_Name can optionally be followed by one or more additional tag
names, as shown by the following example:

var.tagl. tag2
Each tag name, except possibly the last, must refer to afield that contains a structure.

Subscripted Structure References

A subscript specification can be appended to the variable or tag namesif the variable
isan array of structures or if the field referred to by the tag contains an array. Scalar
fields within a structure can also be subscripted, provided the subscript is zero.

Variable Name. Tag_Name[Subscripts]
Variable Name[Subscripts] . Tag_Name...
Variable_Name[Subscripts] . Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, an array of subscripts, or a
subscript range. If avariable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Similarly, when a
variable that contains an array of structuresis referenced without a subscript but with
atag name, the designated field in all array elementsis affected. The complete syntax
of references to structures follows. (Optional items are enclosed in braces, {}.)

Sructure_reference;= Variable Name{[Subscripts]} . Tags
Tags.={Tags.} Tag
Tag:= Tag_Name{ [Subscripts] }

For example, all of the following are valid structure references:

A B

A B[N, M
A[12].B
A[3:5].B[*, N

Structure References Building IDL Applications

Chapter 7: Structures 149

A[12].B. O X *]

The semantics of storing into a structure field using subscript rangesis slightly
different than that of smple arrays. Thisis because the structure of arraysin fieldsare
fixed. See“ Storing Into Array Fields’ on page 151 for details.

Examples of Structure References

The name of the star contained in A isreferenced as A.NAME. The entire intensity
array isreferredto as A.INTEN, while the n-th element of A.INTEN isA.INTEN[N].
Thefollowing are valid IDL statements using the STAR structure:

;Store a structure of type STARinto variable A Define the val ues
;of all fields.
A = {star, name:'SIRIUS', ra:30., dec:40., inten:|NDGEN 12)}

;Set nane field. Other fields remain unchanged.
A. name = ' BETELGEUSE'

;Print nanme, right ascension, and declination.
PRI NT, A name, A.ra, A dec

;Set Qto the value of the sixth elenent of Alinten. Qwll be a
; floating-point scalar.
Q= A inten[5]

:Set ra field to 23.21.
Ara = 23.21

;Zero all 12 elements of intensity field. Because the type and si ze
;of Alinten are fixed by the structure definition, the semantics of
;assignnent statenments is different than with normal vari abl es.
Ainten = 0

;Store fourth thru seventh el enents of inten field in variable B.
B = A inten[3:6]

; The integer 12 is converted to string and stored in the nane field
; because the field is defined as a string.
A name = 12

;Copy Ato B. The entire structure is copied and B contains a STAR

;structure.
B=A

Building IDL Applications Structure References

150 Chapter 7: Structures

Using HELP with Structures

Use the HEL R/STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored into
variable A. The statement,

HELP, /STRUCTURE, A
prints the following information:
** Structure STAR, 4 tags, |ength=40:

NAVE STRING 'SIRIUS

RA FLOAT 30. 0000
DEC FLOAT 40. 0000
| NTEN | NT Array(12)

Using HEL P with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HEL P with the STRUCTURE keyword
and no parameters printsalist of all defined, named structure types and their tag
names.

Using HELP with Structures Building IDL Applications

Chapter 7: Structures 151

Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure are
passed by value. For example, the following statement prints the value of the structure
field A.name:

PRI NT, A. nane

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence A.name is an expression and is passed by value. Thisworks as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A. nane

does not read into A.name but interprets its parameter as a prompt string. The proper
codeto read into thefield is as follows.

; Copy type and attributes to variable.
B = A nane

;Read into a sinple variable.
READ, B

;Store result into field.
A .nane = B

Storing Into Array Fields

As mentioned previoudly, the semantics of storing into structure array fieldsis
dlightly different than storing into simple arrays. The main difference is that with
structures, a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use the
subscript of the lower-left corner, not a range specification. Other differences occur
because the size and type of afield are fixed by the original structure definition, and
the normal IDL semantics of dynamic binding are not applicable. The rules for
storing into array fields are as follows:

VAR.ARRAY_TAG = Scalar_Expression
All elements of VAR.tag are set to Scalar_Expression. For example:

:Set all 12 elenments of A inten to 100.
A inten = 100

Building IDL Applications Parameter Passing with Structures

152 Chapter 7: Structures

VAR.TAG = Array_Expression

Each element of Array Expression is copied into the array VAR.tag. If
Array Expression contains more elements than the destination array does, an error
results. If it contains fewer e ements than VAR.TAG, the unmatched elementsremain
unchanged. For example:

:Set Ainten to the 12 nunbers 0, 1, 2,..., 11.

A inten = FI NDGEN(12)

;Set Alinten[0] to 1 and Ainten[1l] to 2. The other el enents
; remai n unchanged.
Ainten = [1, 2]

VAR.TAG[Subscript] = Scalar_Expression
The value of the scalar expression is simply copied into the designated element of the

destination. If Subscript is an array of subscripts, the scalar expression is copied into
the designated elements. For example:

;Set the sixth element of Ainten to 100.
A inten[5] = 100
:Set elenents 2, 4, and 6 to 100.
Ainten[[2, 4, 6]] = 100
VAR.TAG[Subscript] = Array_Expression
Unless VAR .tag isan array of structures, the subscript must be an array. Each element

of Array_Expression is copied into the element given by the corresponding element
subscript. For example:

;Set elenents 2, 4, and 6 to the values 5, 7, and 9 respectively.
Alinten[[2, 4, 6]] =[5, 7, 9]

VAR.TAG[Subscript_Range] = Scalar_Expression
The value of the scalar expression is stored into each element specified by the
subscript range. For example:

;Sets elenents 8, 9, 10, and 11 to the val ue 5.
Ainten[8:*] =5

VAR.TAG[Subscript_Range] = Array_Expression
Each element of the array expression is stored into the element designated by the

subscript range. The number of elementsin the array expression must agree with the
size of the subscript range. For example:

:Sets elenents 3, 4, 5, and 6 to the nunbers 0, 1, 2, and 3,
;respectively.
A inten[3:6] = FI NDGEN(4)

Parameter Passing with Structures Building IDL Applications

Chapter 7: Structures 153

Arrays of Structures

An array of structuresis simply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structuresisto use the REPLICATE function.
Thefirst parameter to REPLICATE is areference to the structure of each element.
Using the example in “ Examples of Structure References’ on page 149 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLI CATE({star}, 100)
Alternatively, since the variable A contains an instance of the structure STAR, then
cat = REPLI CATE(A, 100)

Or, to define the structure and an array of the structure in one step, use the following
Statement:

cat = REPLI CATE({star, name:'', ra:0.0, dec:0.0, $
i nten: FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are quite general and lead to many possibilities, only a
small number of which can be explained here. In general, any structures that are
similar to the examples above are allowed.

Examples of Arrays of Structures

This example uses the above definition in which the variable CAT contains a star
catalog of STAR structures.

;Set the nane field of all 100 el enents to "EMPTY."
cat.nanme = ' EMPTY'

:Set the i-th elenent of cat to the contents of the star structure.
cat[l] = {star, 'BETELGEUSE , 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat[1].ra, ..., 99.0 into
;cat[99].ra
cat.ra = | NDGEN(100)

;Prints name field of all 100 el enents of cat, separated by commas

Building IDL Applications Arrays of Structures

154

Chapter 7: Structures

;(the last field has a trailing conms).
PRI NT, cat.nanme + ','

;Find index of star with nane of SIRI US.
I = WHERE(cat.nane EQ 'SIRI US')

;Extract intensity field fromeach entry. Qwll be a 12 by 100
; floating-point array.
Q= cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

; Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2: 8]

;Sort the array into ascending order by nanmes. Store the result
:back into cat.
cat = cat (SORT(cat.nane))

;Determine the nonthly total intensity of all stars in array.
;monthly is now a 12-el enent array.
nmonthly = cat.inten # REPLI CATE(1, 100)

Arrays of Structures Building IDL Applications

Chapter 7: Structures 155

Structure Input/Output

Structures are read and written using the formatted and unformatted input/output
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate datatype. The
entire structureis enclosed in braces: “{}”. Each array begins a new line. For
example, printing the variable A, as defined in the first example in this chapter,
resultsin the following output.

{SIRIUS 30.0000 40.0000 0 1 234567 89 10 11}

When reading a structure with READ or READF and the default format, white space
should separate each element. Reading string elements causes the remainder of the
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these proceduresto override the default formats.
The length of string elements is determined by the format specification (i.e, to read
the next 10 characters into a string field, use an (A 10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element, without interpretation or modification, except in
the case of strings. Each IDL datatype, except strings, has afixed length expressed in
bytes. This length (which is padded when using ASSOC, but not padded when using
READU/WRITEU) is also the number of bytes read or written for each element.

All instances of structures contain an even number of bytes. On machines whose
native C compilersforce short integersto begin on an even byte boundary, IDL begins
fieldsthat are not of type byte on an even byte boundary. Thus, a“padding byte” may
appear (when using ASSOC for 1/0) after abyte field to cause the following non-
byte-type field to begin on an even byte. A padding byte is never added before a byte
or byte array field. For example, the structure:

{exanple, tl:1b, t2:1}

Building IDL Applications Structure Input/Output

156 Chapter 7: Structures

occupies four bytes on a machine where short integers must begin on an even byte
boundary. When using ASSOC, a padding byte is added after field t1 to cause the
integer field t2 to begin on an even-byte boundary.

Strings

Strings are exceptions to the above rules because the length of strings within
structuresis not fixed. For example, one instance of the { star} structure can contain a
name field with a five-character name, while another instance of the same structure
can contain a 20-character name. When reading into a structure field that contains a
string, IDL reads the number of bytes given by the length of the string. If the string
field contains a 10-character string, 10 characters are read. If the data read contains a
null byte, the length of the string field is truncated, and the null and following
characters are discarded. When writing fields containing strings with the unformatted
procedure WRITEU, IDL writes each character of the string and does not append a
terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU,
make each string in a given field the same length to be compatible with C and to be
able to read the data back into IDL. You must know how many characters exist to
read into a string element. One way around this problem is using the STRING
function with aformat specification that sets the length of all elementsto some
maximum number. For example, it is easy to set the length of all name fieldsin the
cat array to 20 characters by using the following statement.

cat.name = STRI NG cat.nane, FORMAT = ' (A20)')

This statement will truncate names longer than 20 characters and will pad with blanks
those names shorter than 20 characters. The structure or structure array then can be
output in aformat suitable to be read by C or FORTRAN programs. For example, to
read into the cat array from afile in which each name field occupies 26 bytes, use the
following statements.

; Make a 100-el enent array of {STAR} structures, storing a

; 26-character string in each name field.

cat = REPLI CATE({star, STRING' ', FORVAT = '(A26)'), $
FLTARR(O., 0.12)}, 100)

;Read the structure. As nmentioned above, 26 bytes will be read for
;each nanme field. The presence of a null byte in the file will
;truncate the field to the correct nunber of bytes.

READU, 1, cat

Structure Input/Output Building IDL Applications

Chapter 7: Structures 157

Advanced Structure Usage

Facilities exist to process structures in ageneral way using tag numbers rather than
tag names. A tag can be referenced using its index, enclosed in parentheses, as

follows:
Variable Name.(Tag_Index)...
The Tag_Index ranges from zero to the number of fields minus one.

Note
The Tag_Index is an expression, the result of which is taken to be atag position. In

order for the IDL parser to understand that thisis the case, you must enclose the
Tag_Index in parentheses. Thisis not an array indexing operation, so the use of
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Structure) returns the number of fieldsin a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the/LENGTH keyword.

Names of Structure Tags

The function TAG_NAMES(Structure) returns a string array containing the names of
each tag. To return the name of the structure itself, call TAG_NAMES with the

ISTRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure that
reads into a structure from the keyboard. The procedure prompts the user with the
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, fromthe keyboard wth

; pronpts.
PRO READ_STRUCTURE, S

; Get the names of the tags.

NAMES = TAG _NAMES(S)

; Loop for each field.

FOR1 =0, N.TAGS(S) - 1 DO BEG N
; Define variabl e A of same type and structure as the i-th field.
A=5S(I)

Building IDL Applications Advanced Structure Usage

158 Chapter 7: Structures

;Use HELP to print the attributes of the field. Pronpt user with
;tag name of this field, and then read into variable A. S. (1) =
;A. Store back into structure fromA

HELP, S. (1)
READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR

END

Note
In the above procedure, the READ procedure reads into the variable A rather than
S.(1) because S.(1) isan expression, not asimple variable reference. Expressions
are passed by value; variables are passed by reference. The READ procedure
prompts the user with parameters passed by value and reads into parameters passed
by reference.

Advanced Structure Usage Building IDL Applications

Chapter 7: Structures 159

Automatic Structure Definition

Inversions of IDL prior to version 5, references to an undefined named structure
would cause IDL to halt with an error. This behavior was changed in IDL version 5 to
allow the automatic definition of named structures.

When IDL encounters areference to an undefined named structure, it will
automatically search the directories specified in 'PATH for a procedure named
Name__ DEFINE, where Name is the actual name of the structure. If this procedureis
found, IDL will call it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the desired
operation.

Note
There are two underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, and that
no procedure named mystruct__define.pro existsin the directories specified by

IPATH. A call to the HEL P procedure produces the following output:
HELP, { nystruct }, /STRUCTURE
IDL prints:

% Attenpt to call undefined procedure/function:' MYSTRUCT__DEFI NE .
% Structure type not defined: MYSTRUCT.
% Execution halted at: $MAI N

Suppose now that we define a procedure named mystruct__ define.pro asfollows, and
place it in one of the directories specified by 'PATH:

PRO nystruct __define
tnp = { nystruct, a:1.0, b:'string" }
END

With this structure definition routine available, the call to HELP produces the
following output:

HELP, { nystruct }, /STRUCTURE
IDL prints:

% Conpi | ed nodul e: MYSTRUCT__ DEFI NE.

** Structure MYSTRUCT, 2 tags, |ength=12:
A FLOAT 0. 00000
B STRI NG

Building IDL Applications Automatic Structure Definition

160 Chapter 7: Structures

Remember that the fields of a structure created by copying a named structure
definition arefilled with zeroes or null strings. Any structure created in this way—
either viaautomatic structure definition or by explicitly creating a new structure from
an existing structure—must be initialized to contain val ues after creation.

Automatic Structure Definition Building IDL Applications

Chapter 7: Structures 161

Relaxed Structure Assignment

The IDL “=" operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definition
SRC, asfollows:

source = { SRC, A:FINDGEN(4), B: 12}

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A INDGEN(2), C: 20 }

Attempting to execute these two statements at the IDL command prompt gives the
following results:

% Conflicting data structures: <INT Array[2] >, SRC.
% Execution halted at: $MAI N$

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this problem.

The STRUCT_ASSIGN procedure performs “ relaxed structure assignment,” whichis
afield-by-field copy of astructure to another structure. Fields are copied according to
the following rules:

1. Any fieldsfound in the destination structure that are not found in the source
structure are “ zeroed” (set to zero, the empty string, or anull pointer or object
reference depending on the type of field).

2. Any fieldsin the source structure that are not found in the destination structure
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at atime. If necessary, type conversion is done to make their types
agree. If afield in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elementsin
the field in the destination structure are zeroed. If afield in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSI G\, source, dest, /VERBOSE

IDL prints:
% STRUCT_ASSI GN: SRC tag A is |onger than destination.

Building IDL Applications Relaxed Structure Assignment

162 Chapter 7: Structures
The end will be clipped.
% STRUCT_ASSI G\: Destination |acks SRC tag B. Not copi ed.

If we check the variable dest, we see that it has the definition of the dest structure and
the data from the source structure:

HELP, dest, /STRUCTURE

IDL prints:
** Structure DEST, 2 tags, |ength=6:
A I NT Array[2]
C I NT 0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where thistype
of structure definition is very useful isin restoring object structuresinto an
environment where the structure definition may have changed since the restored
objects were saved.

Suppose you have created an application that saves datain structures. Your
application may use the IDL SAVE routine to save the data structures to disk files. If
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application’s
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
allows you to make relaxed assignments in such cases.

To see how thisworks, try the following exercise:

1. Start IDL, create anamed structure, and use the SAVE procedureto saveit to a
file:

mystruct = { STR A 10, B:20L, C'a string' }
SAVE, nystruct, FILE='test.dat'

2. Exitandrestart IDL.
3. Create anew structure definition with the same name you used previously:
newstruct = { STR, A:20L, B:10.0, C'a string', D:ptr_new) }
4. Attempt to restore the variable mystruct from the test.dat file:
RESTORE, 'test.dat’
IDL prints:

% W ong nunber of tags defined for structure: STR
% RESTORE: Structure not restored due to conflict with

Relaxed Structure Assignment Building IDL Applications

Chapter 7: Structures 163

existing definition: STR
5. Now userelaxed structure definition when restoring:
RESTORE, 'test.dat', /RELAXED STRUCTURE_ASSI GNVENT
6. Check the contents of mystruct:
HELP, mnystruct, /STRUCTURE

IDL prints:
** Structure STR 4 tags, |ength=20:
A LONG 10
B FLOAT 20. 0000
C STRI NG "a string'
D PO NTER <Nul | Poi nt er >

The structure in the variable mystruct now uses the definition from the new version of
the STR structure, but contains the data from the old (restored) structure. In cases
where the data type of afield has changed, the data type of the old data element has
been converted to the new data type. Fields in the new structure definition that do not
correspond to fields in the old definition contain “zero” values (zeroes for numeric
fields, empty strings for string fields, null pointer or references for pointer or
reference fields).

Building IDL Applications Relaxed Structure Assignment

164 Chapter 7: Structures

Relaxed Structure Assignment Building IDL Applications

Chapter 8:
Pointers

The following topics are covered in this chapter:

OVEIVIEW ..ot 166
Heap Variables 167
Creating Heap Variables 169
Saving and Restoring Heap Variables 170
Pointer Heap Variables 171
IDL Pointers 172

Building IDL Applications

Operationson Pointers 175
Dangling References 179
Heap VariableLeakage 180
Pointer Validity 182
FreeingPointers 183
Pointer Examples 184

165

166

Chapter 8: Pointers

Overview

Overview

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the

variable that actually holds the data must be separate from the lifetime of the tokens
that are used to accessiit.

Beginning with IDL version 5, IDL includes a new pointer datatype to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it isimportant
to understand that they are not the same thing. IDL pointers are ahigh level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of thefiles
mentioned are located in the examples/doc subdirectory of the IDL distribution. By
default, this directory is part of IDL’s path; if you have not changed your path, you
will be able to run the examples as described here. See “!PATH” inthe IDL Reference
Guide manual for information on IDL’s path.

Building IDL Applications

Chapter 8: Pointers 167

Heap Variables

Heap variables are aspecial class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 22, “ Object
Basics’ for more information on IDL objects.) In IDL documentation of pointers and
objects, heap variables accessible via pointers are called pointer heap variables, and
heap variables accessible via object references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which isthat
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use bothin
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
» Facilitate object oriented programming.
e Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap

variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

« Aremanipulated primarily via pointers or object references using built in
language operators rather than specia functions and procedures.

e Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.

Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide a more complete and robust way of building

Building IDL Applications Heap Variables

168 Chapter 8: Pointers

dynamic data structures, RSI recommends that you use pointers rather than handles
when devel oping new code. See Appendix I, “Obsolete Features’ in the IDL
Reference Guide manual for adiscussion of RSI’s policy on language features that
have been superseded in this manner.

Heap Variables Building IDL Applications

Chapter 8: Pointers 169

Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ_NEW. (See Chapter 22, “Object Basics’ for a
discussion of object creation.) Copying a pointer or object reference does not create a
new heap variable. Thisis markedly different from the way IDL handles“regular”
variables. For example, with the statement:

A=10

you create anew IDL floating-point variable with avalue of 1.0. The following
Statement:

B=A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:
C = PTR_NEW 2. 0d)

the variable C contains not the doubl e-precision floating-point value 2.0, but a pointer
to aheap variable that contains that value. Copying the variable C with the following
Statement:

D=C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HEL P command would reveal:

% At $SMAIN$

A FLOAT = 1. 00000
B FLOAT = 1. 00000
C PO NTER = <PtrHeapVar 1>
D PO NTER = <PtrHeapVar 1>

The variables C and D are both pointers to the same heap variable. (The actual name
assigned to a heap variable is arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencing is
discussed in “Dereference” on page 175).

Destroying or redefining either C, D, or both variables would leave the contents of the
heap variable unchanged. When all pointers or references to a given heap variable are
destroyed, the heap variable still exists and holds whatever memory has been
allocated for it. See “Heap Variable Leakage” on page 180 for further discussion. If
the heap variable itself is destroyed, pointers to the heap variable may still exist, but
will beinvalid. See “Dangling References’ on page 179.

Building IDL Applications Creating Heap Variables

170

Chapter 8: Pointers

Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work for
all other supported types. When IDL saves a pointer or object referencein asavefile,
it recursively saves the heap variables that are referenced by that pointer or object
reference. SAVE handles circular data structures correctly. You can build alarge,
complicated, self-referential data structure, and then save the entire construct with a
call to SAVE to save the single pointer or object reference that points to the head of
the structure. For example, you can save a pointer to the root of a binary tree and the
entire tree will be saved.

Theinternal identifier of a given heap variable is dynamically allocated at run time,
and will differ between IDL sessions. As aresult, the RESTORE operation maps all
saved pointers and object references to their new valuesin the current session.

Saving and Restoring Heap Variables Building IDL Applications

Chapter 8: Pointers 171

Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only via pointers.
While there are many similarities between object references and pointers, it is
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using the PTR_NEW and
PTRARR functions. For more information on objects, see Chapter 22, “ Object
Basics'.

Building IDL Applications Pointer Heap Variables

172 Chapter 8: Pointers

IDL Pointers

Asillustrated above, you must use a special IDL routine to create a pointer to a heap
variable. Two routines are available: PTR_NEW and PTRARR. Before discussing
these functions, however, it is useful to examine the concept of a null pointer.

Null Pointers

The Null Pointer is a specia pointer value that is guaranteed to never point at avalid
heap variable. It isused by IDL to initialize pointer variables when no other
initializing value is present. It is also a convenient value to use at the end nodesin
data structures such as trees and linked lists.

It isimportant to understand the difference between anull pointer and a pointer to an
undefined or invalid heap variable. The second case isavalid pointer to aheap
variable that does not currently contain a usable value. To make the difference clear,
consider the following IDL statements:

; The variable A contains a null pointer.

A = PTR_NEW)

; The variable B contains a pointer to a heap variable with an
;undefi ned val ue.

B = PTR_NEW/ ALLOCATE_HEAP)

HELP, A B, *B

IDL prints:
A PO NTER = <Nul | Poi nt er >
B PO NTER = <PtrHeapVar 1>

<Pt r HeapVar 1> UNDEFI NED = <Undefi ned>

The primary differenceisthat it is possible to write a useful value into a pointer to an
undefined variable, but thisis never possible with anull pointer. For example, attempt
to assign the value 34 to the null pointer:

*A = 34
IDL prints:

% Unabl e to dereference NULL pointer: A
% Execution halted at: $MAIN$

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRI NT, *B

IDL Pointers Building IDL Applications

Chapter 8: Pointers 173

IDL prints:
34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(O0) returns a pointer to a heap variable that has been initialized with the
integer value 0.

The PTR_NEW Function

Usethe PTR_NEW function to create a single pointer to a new heap variable. If you
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptrl = PTR_NEW FI NDGEN(10))
creates a new heap variable that contains the ten-element floating point array created
by FINDGEN, and places a pointer to this heap variablein ptrl.

Note that the argument to PTR_NEW can be of any IDL datatype, and can include
any IDL expression, including callsto PTR_NEW itself. For example, the command:

ptr2 = PTR_ NEW{nane:"'"', next:PTR_NEW)})

creates a pointer to a heap variable that contains an anonymous structure with two
fields: thefirst field is a string, the second is a pointer. We will develop thisidea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be anull pointer. If
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

See “PTR_NEW?” in the IDL Reference Guide manual for further details.
The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensions.
By default, every element of the array created by PTRARR is set to the null pointer.
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2, 2)

;Display the contents of the ptarray variable, and of the first

;array el enent.
HELP, ptarray, ptarray(O0,0)

Building IDL Applications IDL Pointers

174 Chapter 8: Pointers

IDL prints:

PTARR PO NTER
<Expr essi on> PO NTER

Array(2, 2)
<Nul | Poi nt er >

If you want each element of the array to point to a new heap variable (as opposed to
being anull pointer), usethe ALLOCATE_HEAP keyword. Note that in either case,
you will need to initialize the array with another IDL statement.

See “PTRARR” in the IDL Reference Guide manual for further details.

IDL Pointers Building IDL Applications

Chapter 8: Pointers 175

Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or plot
them. You can, of course, do these things with the heap variables referenced by such
pointers, assuming that they contain appropriate data for the task at hand. Pointers
exist to allow the construction of dynamic data structures that have lifetimes that are
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference,
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for pointer types and are not defined.

Many non-computational functions and proceduresin IDL do work with pointer
variables. Examplesare SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noting
that the only 1/0 allowed directly on pointer variables is default formatted output,
where they are printed as a symbolic description of the heap variable they point at.
Thisis merely adebugging aid for the IDL programmer—input/output of pointers
does not make sense in general and is not allowed. Please note that this does not
imply that I/O on the contents of non-pointer data held in heap variables is not
allowed. Passing the contents of a heap variable that contains non-pointer data to the
PRINT command is a simple example of thistype of I/0.

Assignment

Assignment works in the expected manner—assigning a pointer to avariable gives
you another variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW FI NDGEN(10))
B=A
HELP, A B

A and B both point at the same heap variable and we see the outpuit:

A PO NTER = <PtrHeapVar 1>
B PO NTER = <PtrHeapVar 1>
Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you
must use the dereference operator, which is* (the asterisk). The dereference operator
precedes the variable dereferenced. For example, if you have entered the above
assignments of the variables A and B:

PRI NT, *B

Building IDL Applications Operations on Pointers

176

Chapter 8: Pointers

IDL prints:

0. 00000 1. 00000 2. 00000 3. 00000 4.00000 5. 00000
6. 00000 7.00000 8. 00000 9. 00000

That is, IDL printsthe contents of the heap variable pointed at by the pointer variable
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires a scalar pointer operand. This means that
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create a three-element pointer array, allocating a new heap
variable for each element:

ptarr = PTRARR(3, /ALLOCATE HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer two,
you would use the following statement:

FOR 1 = 0,2 DO *ptarr[I] =1
Note
The dereference operator is dereferencing only element | of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed at
by the pointers in ptarr, you might be tempted to try the following:

PRI NT, *ptarr
IDL prints:

% Expression nust be a scalar in this context: PTARR
% Execution halted at: $MAINS$

To print the contents of the heap variables, use the statement:
FOR 1 = 0, N ELEMENTS(ptarr)-1 DO PRINT, *ptarr[1]

Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to access data
pointed at indirectly via multiple pointers. For example, the statement:

A = PTR_NEW PTR_NEW 47))
assignsto A apointer to a pointer to a heap variable containing the value 47.

To print this value, use the following statement:

Operations on Pointers Building IDL Applications

Chapter 8: Pointers 177

PRI NT, **A
Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For example,
if you define the following structure:

struct = {data:'10.0', pointer:ptr_new 20.0)}

you would use the following command to print the value of the heap variable pointed
at by the pointer in the pointer field:

PRI NT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEWstruct)

you would use the following command to print the value of the heap variable pointed
at by the pointer field of the struct structure, which is pointed at by ptstruct:

PRI NT, *(*pstruct).pointer
Note that you must dereference both the pointer to the structure and the pointer
within the structure.
Dereferencing the Null Pointer
Itisan error to dereference the NULL pointer, an invalid pointer, or a non-pointer.
These cases all generate errorsthat stop IDL execution. For example:
PRI NT, *45
IDL prints:

% Pointer type required in this context: <INT(45) >,
% Execution halted at: $MAI N$

For example:
A = PTR.NEW) & PRINT, *A
IDL prints:

% Unabl e to dereference NULL pointer: A
% Execution halted at: $MAI N$

For example:
A = PTR NEW23) & PTR FREE, A & PRINT, *A

Building IDL Applications Operations on Pointers

178 Chapter 8: Pointers

IDL prints:
% Invalid pointer: A.
% Execution halted at: $MAINS$

Equality and Inequality

The EQ and NE operators allow you to compare pointers to seeif they point at the
same heap variable. For example:

; Make A a pointer to a heap variabl e containing 23.
A = PTR_NEW 23)

;B points at the sane heap variable as A
B=A

; C contains the null pointer.

C = PTR_NEW)

PRINT, "AEQB ', AEQB& $

PRINT, "ANEB ', ANEB&S

PRINT, '"AEQC ', AEQC& $

PRINT, 'C EQ NULL: ', C EQ PTR.NEW) & $

PRINT, 'C NE NULL:', C NE PTR_NEW)
IDL prints:

A EQ B: 1

A NE B: 0

A EQ C 0

C EQ NULL: 1

C NE NULL: O

Operations on Pointers Building IDL Applications

Chapter 8: Pointers 179

Dangling References

If aheap variableis destroyed, any remaining pointer variable or object reference that
il referstoit is said to contain adangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap vari abl e.
A = PTR_NEW 23)
;Print A and the value of the heap variable A points to.
PRI NT, A *A
IDL prints:
<Pt r HeapVar 13> 23
For example:

; Destroy the heap vari abl e.
PTR_FREE, A

;Try to print again.
PRI NT, A *A

IDL prints:

% I nvalid pointer: A
% Execution halted at: $MAI N

There are several possible approaches to avoiding such errors. The best optionisto
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (viathe
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereference.

Building IDL Applications Dangling References

180 Chapter 8: Pointers

Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.

For example:

;Create a new heap vari abl e.
A = PTR_NEW 23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first command is |ost.
A=0
Usethe HEAP_VARIABLES keyword to the HEL P procedure to view alist of heap
variables currently in memory:

HELP, / HEAP_VARI ABLES

IDL prints:
<PtrHeapVar 14> | NT = 23

In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but there
is no way to reference the variable. There are two options: manually create a new
pointer to the existing heap variable using the PTR_VALID function (see
“PTR_VALID” inthe IDL Reference Guide manual), or do manual “Garbage
Collection” and use the HEAP_GC command to destroy all inaccessible heap
variables.

Warning
Object reference heap variables are subject to the same problems as pointer heap
variables. See “OBJ VALID” in the IDL Reference Guide manual for more
information.

The HEAP_GC procedure causes IDL to hunt for al unreferenced heap variables and
destroy them. It isimportant to understand that thisis a potentially computationally
expensive operation, and should not be relied on by programmers as away to avoid
writing careful code. Rather, the intent isto provide programmers with a debugging
aid when attempting to track down heap variable leakage. In conjunction with the
VERBOSE keyword, HEAP_GC makes it possible to determine when variables have
leaked, and it provides some hint as to their origin.

Heap Variable Leakage Building IDL Applications

Chapter 8: Pointers 181

Warning
HEAP_GC uses arecursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such aslarge linked lists, a
potentialy large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, istoo slow to be
provided automatically by IDL, and careful programming can easily avoid this pitfall.
Furthermore, implementing a reference counted data structure on top of IDL pointers
is easy to do in those cases where it is useful, and such reference counting could take
advantage of its domain specific knowledge to do the job much faster than the general
case.

Another approach would be to write all ocation and freeing routines—Ilayered on top
of the PTR_NEW and PTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to keep
track of the allocated pointers. Such afacility could offer the ability to alocate
pointers in named groups, and might provide a routine that frees all heap variablesin
agiven group. Such an operation would be very efficient, and is easier than reference
counting.

Building IDL Applications Heap Variable Leakage

182 Chapter 8: Pointers

Pointer Validity

Use the PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointersto existing
heap variables. If supplied with asingle pointer asitsargument, PTR_VALID returns
TRUE (1) if the pointer argument points at avalid heap variable, or FALSE (0)
otherwise. If supplied with an array of pointers, PTR_VALID returns an array of
TRUE and FAL SE values corresponding to the input array. If no argument is
specified, PTR_VALID returns an array of pointersto all existing pointer heap
variables. For example:

; Create a new pointer and heap vari abl e.
A = PTR_NEW 10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRI NT, "A does not point to a valid heap variable."

IDL prints:
A points to a valid heap vari abl e.
For example:

; Destroy the heap vari abl e.
PTR_FREE, A

I F PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRI NT, "A does not point to a valid heap variable."

IDL prints:
A does not point to a valid heap variable.

See“PTR_VALID" inthe IDL Reference Guide manual for further details.

Pointer Validity Building IDL Applications

Chapter 8: Pointers 183

Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied asits arguments. Any memory used by the heap variable isreleased, and the
heap variable ceasesto exist. PTR_FREE is the only way to destroy a pointer heap
variable; if PTR_FREE is not called on a heap variable, it continues to exist until the
IDL session ends, even if no pointers remain to reference it.

Note that the pointers themselves are not destroyed. Pointers that point to nonexistent
heap variables are known as dangling references, and are discussed in more detail in
“Dangling References’ on page 179.

See"PTR_FREE" in the IDL Reference Guide manual for further details.

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When avalid pointer or object referenceis
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In thisway, all heap variables that
arereferenced directly or indirectly by the input argument are located. Once all such
heap variables areidentified, HEAP_FREE releases them in afinal pass. Pointers are
released asif the PTR_FREE procedure was called. Objects are released as with a
call to OBJ DESTROY.

HEAP_FREE is recommended when:

¢ Thedatastructuresinvolved are highly complex, nested, or variable, and
writing cleanup codeis difficult and error prone.

* The data structures are opague, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE" in the IDL Reference Guide manual for further details.

Building IDL Applications Freeing Pointers

184 Chapter 8: Pointers

Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists and
trees. The following examples demonstrate how pointers are used to build several
types of dynamic structures. Note that the purpose of these examplesisto illustrate
simply and clearly how pointers are used. As such, they may not represent the * best”
or most efficient way to accomplish a given task. Readers interested in learning more
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointers to create and manipulate alinked list. One
procedure reads string input from the keyboard and creates alist of pointers to heap
variables that have the strings as their values. Another procedure prints the strings,
given the pointer to the beginning of the linked list. A third procedure uses amodified
“bubble sort” algorithm to reorder the values so the strings are in alphabetical order.

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing alist
element—an anonymous structure with two fields; oneto hold the string data and one
to hold apointer to the next list element. Any number of strings can be entered. When
the user isfinished entering strings, the program can be exited by entering a period by
itself at the “Enter string:” prompt.

The text of the program shown below can be found in thefile ptr_read.pro in the
examples/doc subdirectory of the IDL distribution.

; PTR_READ accepts one argunent, a naned variable in which to return
;the pointer that points at the beginning of the Iist.
PRO ptr_read, first

;lnitialize the input string variable.
newstring = "'

; Create an anonynous structure to contain list elements. Note that
;the next field is initialized to be a null pointer.
Ilist = {name:""', next:PTR_NEW)}

;Print instructions for this program

PRINT, 'Enter a list of nanes.'
PRINT, 'Enter a period (.) to stop list entry.'

Pointer Examples Building IDL Applications

Chapter 8: Pointers 185

; Conti nue accepting input until a period is entered.
VWH LE newstring NE "." DO BEG N

READ, newstring, PROWT='Enter string: '
;Read a new string fromthe keyboard.

;Check to see if a pointer called first exists. If not, this is
;the first elenent. Create a pointer called first and initialize
;it to be alist elenment. Create a second pointer to the heap
;variable pointed at by first.
IF newstring NE '.' THEN BEG N
IF ~(PTR_VALID(first)) THEN BEG N
first = PTR_.NEWI Iist)
current = first
ENDI F

;Create a pointer to the next list elenment.
next = PTR_NEWIlist)

;Set the nane field of current to the input string.
(*current).nane = newstring

;Set the next field of current to the pointer to the next |ist
;el enent .
(*current).next = next

;Store the "current" pointer as the "last" pointer.
last = current

; Make the "next" pointer the "current" pointer.
current = next

ENDI F
ENDWHI LE

;Set the next field of the last elenment to the null pointer.
IF PTR_VALID(last) THEN (*l ast).next = PTR_NEW)

; End of PTR_READ program
END

Run the PTR_READ program by entering the following command at the IDL
prompt:

ptr_read, first

Type astring, press Return, and the program prompts for another string. You can
enter as many strings as you want. Each time a string is entered, PTR_READ creates

Building IDL Applications Pointer Examples

186

first:—»| wilma —»| biff

Chapter 8: Pointers

anew list element with that string as its value. For example, you could enter the
following three strings (used in the rest of this example):

Enter a list of nanes.

Enter a period (.) to stop list entry.
Enter string: wilm

Enter string: biff

Enter string: cosno

Enter string:

The following figure shows one way of visualizing the linked list that we've created.

name: next: name: next: name: next:
cOsSmo null

A 4

Table 8-1: One way of visualizing the linked list created by the PTR_READ

procedure

Printing the Linked List

The next program in our example accepts the pointer to the first element of the linked
list and prints all the valuesin the list in order. To illustrate how the list islinked, we
will aso print the name of the heap variable that contains each element, and the name
of the heap variable in the next field of that element.

The text of the program shown below can be found in the file ptr_print.pro in the
examples/doc subdirectory of the IDL distribution.

; PTR_PRI NT accepts one argunent, a pointer to the first el enent of
;a linked list returned by PTR READ. Note that the PTR_PRI NT

; program does not need to know how nmany el ements are in the |ist,
;nor does it need to explicitly know of any pointer other than the
;first.

PRO ptr_print, first

;Create a second pointer to the heap variable pointed at by first.
current = first

;PTR VALID returns O if its argunment is not a valid pointer. Note
;that the null pointer is not a valid pointer.
VWH LE PTR_VALI D(current) DO BEG N

;Print the list elenent informtion.
PRI NT, current, ', named ', (*current).nane, $
', has a pointer to: ', (*current). next

Pointer Examples Building IDL Applications

Chapter 8: Pointers 187

; Set current equal to the pointer in its own next field.
current = (*current). next

ENDWHI LE

; End of PTR_PRI NT program
END

If werunthe PTR_PRINT program with the list generated in the previous example:
IDL> ptr_print, first
IDL prints:

<PtrHeapVar 1>, naned wi | m, has a pointer to: <PtrHeapVar2>
<PtrHeapVar 2>, named biff, has a pointer to: <PtrHeapVar3>
<Pt r HeapVar 3>, naned cosnp, has a pointer to: <Null Pointer>

A Simple Sorting Routine for the Linked List

The next example program takes a list generated by PTR_READ and moves the
values so that they are in aphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting with
the last element in the list and letting lower values “rise” to the top, this example
starts at the top of thelist and lets higher (“heavier”) values “sink” to the bottom of
the list. Note that thisis not a very efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL’s SORT
function.

The text of the program shown below can be found in the file ptr_sort.pro in the
examples/doc subdirectory of the IDL distribution.

; PTR_SORT accepts one argument, a pointer to the first el ement of a
;linked list returned by PTR_ READ. Note that the PTR_SORT program
; does not need to know how nmany elements are in the list, nor does
;it need to explicitly know of any pointer other than the first.
pro ptr_sort, first

;Initialize swap fl ag.

swap = 1

;Create an anonynous structure to contain list elenments. Note that
;the next field is initialized to be a pointer.

Ilist = {name:'"', next:PTR_NEW)}

;Create a pointer to this structure, to be used as "swap space."
junk = ptr_new(llist)

Building IDL Applications Pointer Examples

188 Chapter 8: Pointers

; Continue the sorting until no swaps are nade. |f no adjacent
;elenents need to be swapped, the list is in al phabetical order.
WH LE swap NE 0 DO BEG N

;Create a second pointer to the heap variable pointed at by
cfirst.
current = first

; Create another pointer to the heap variable held in the next
;field of current.
next = (*current).next

; Set swap fl ag.
swap = 0

; Continue the sorting until next is no longer a valid pointer.
; Note that the null pointer is not a valid pointer.
WH LE PTR_VALI D(next) DO BEG N

; Get values to conpare.
valuel = (*current).nane
val ue2 = (*next).nane

; Conpare val ues and exchange if first is greater than second.
I F (val uel GT value2) THEN BEG N

; Use the "swap space" pointer to exchange the name fiel ds of
;current and next.

(*junk).nane = (*current).nane

(*current).nane = (*next).nane

(*next).nanme = (*junk).nane

;Set current to next to advance through the Iist.
current = next

; Reset swap fl ag.
swap = 1

1 f valuel is |l ess than value2, set current to next to advance
;through the list.
ENDI F ELSE current = next

; Redefi ne next pointer.
next = (*current).next
ENDVWHI LE
ENDWHI LE
END

Pointer Examples Building IDL Applications

Chapter 8: Pointers 189

To run the PTR_SORT routine with the list from our previous examples as input,
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:
ptr_print, first

IDL prints:

<PtrHeapVar 1>, named biff, has a pointer to: <PtrHeapVar2>
<Pt r HeapVar 2>, naned cosnp, has a pointer to: <PtrHeapVar3>
<Pt r HeapVar 3>, naned wi |l nma, has a pointer to: <Null Pointer>

and we see that now the names are in alphabetical order.

Example Files—Using Pointers to Create Binary
Trees

Two more-complicated exampl e programs demonstrate the use of IDL pointers to
create and search a simple tree structure. Thesefiles, namedi dl _tree. pro and
tree_exanpl e. pr o, can be found in the examples/doc subdirectory of the IDL

distribution.

To run the tree examples, enter the following commands at the IDL prompt:

;Conpile the routines in idl _tree. The exanple routine calls the
;routines defined in this file.
.run idl _tree

; Run the tree_exanple.

tree_exanpl e
The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nodes
whose values are structures that contain random values for two fields, “Time” and
“Data’. The TREE_EXAMPLE routine then prints the tree sorted by both time and
data. It then searches for and del etes the nodes containing the fourth and second data
values. The resulting 8-node trees are again printed in both time and data order.

A detailed explication of the TREE_EXAMPLE and IDL_TREE routinesis beyond
the scope of this chapter. Interested users should examine the files, starting with
tree_example.pro, to see how the trees are created and searched.

Building IDL Applications Pointer Examples

190 Chapter 8: Pointers

Pointer Examples Building IDL Applications

Part |I: Basics of
IDL Programming

Chapter 9:

Introduction to IDL
Programming

The following topics are covered in this chapter:

What isan IDL Program? 194
CreatingaSimpleProgram 197
CreatingaSimpleProgram 197

Compiling and Running Your Program ... 198

Building IDL Applications

Commenting Your IDL Code 201
Saving Compiled IDL Programs 202
Restoring Compiled IDL Programsand Data. 209

193

194 Chapter 9: Introduction to IDL Programming

What is an IDL Program?

There are three types of IDL programs: main-level programs, include files, and
program files.

Note
Although any text editor can be used to create an IDL program file, the IDL Editor
contains features that simplify the process of writing IDL code. See Chapter 3,
“Using the IDL Editor” in the Using IDL manual for details on using the IDL
Editor.

Main-Level Programs

Main-level programs are entered at the IDL command line, and are useful when you
have afew commands you want to run without creating a separate file to contain your
commands. Main-level programs consist of a series of statements that are not
preceded by a procedure or function heading. They do, however, require an END
statement. Since there is ho heading, the program cannot be called from other
routines and cannot be passed in arguments. When IDL encounters amain program
astheresult of a. RUN executive command, it compilesit into the special program
named $MAI N$ and immediately executesit. Afterwards, it can be executed again by
using the . GO executive command.

To create and run a simple main-level program, do the following:
1. StartIDL
2. Atthe DL command line, enter the following:
A=2

3. Enter. RUNat the IDL command line. The command line prompt changesfrom
IDL>10-.

4. Enter the following:
A=A*2
PRI NT, A
END
5. Thiscreatesamain-level program, which compiles and executes. IDL prints 4.

6. Enter. GOat the IDL command line. The main-level program is executed
again, and now IDL prints 8.

What is an IDL Program? Building IDL Applications

Chapter 9: Introduction to IDL Programming 195

Include Files

An include file contains one or more IDL statements or commands. Each line of the
include file is read and executed before proceeding to the next line. This makes
include files different form main-level programs, in which the main-level programis
compiled as a unit before being executed, and program files, in which all modules
contained in the file are compiled as an unit before being executed. A file created by
the JOURNAL routineis an example of an include file. For information on running
include files, see Chapter 10, “ Executing Batch Jobsin IDL” in the Using IDL
manual.

Program Files

Most IDL applications arein the form of program files. Program files are text files
that contain IDL procedures and/or functions:

e A procedureis a self-contained sequence of IDL statements with an unique
name that performs awell-defined task. Procedures are defined with the
procedure definition statement, PRO.

« A function is a self-contained sequence of IDL statements that performs a
well-defined task and returns a value to the calling program unit when it is
executed. Functions are defined with the function definition statement,
FUNCTION.

For example, suppose you have afile called hel | o_wor | d. pr o containing the
following code:

PRO hel |l o_worl d
PRINT, '"Hello World'
END

ThisIDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension . pr o. When IDL searchesfor a
user-defined procedure or function, it searches for files consisting of the name of the
procedure or function, followed by the . pr o extension.

Procedures and functions can also contain arguments and keywords. Arguments allow
variablesto beinputted into and/or outputted from a procedure or function. Keywords
are usually used to set specific parameters pertaining to a procedure or function.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

Building IDL Applications What is an IDL Program?

196 Chapter 9: Introduction to IDL Programming

PRO hel |l o_worl d, nane, |NCLUDE_NAME = i ncl ude
| F (KEYWORD_SET(i nclude)) THEN PRINT, 'Hello Wrld From' + $
nane ELSE PRINT, 'Hello World'
END

Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the name variable, supplied viathe
name argument.

Procedures and functions can also be referred to as routines. An IDL program file
may contain one or many routines, which can be amix of procedures and functions.
These routines can be written into an IDL program file using the IDL Editor.

What is an IDL Program? Building IDL Applications

Chapter 9: Introduction to IDL Programming 197

Creating a Simple Program

In this section, we'll create asimple “Hello World” program consisting of two . pr o
files:

1. Startthe|DLDE.

2. Start the IDL Editor by selecting File — New or clicking the New File button
on the toolbar.

3. Typethefollowing inthe IDL Editor window:

PRO hel | o_nmai n
nane = "'
READ, nane, PROVPT='Enter Nane: '
str = HELLO WHQ(nane)
PRI NT, str
END

4., Tosavethefile select File — Save or click Save button on the toolbar. Save
thefilewith thenamehel | o_mai n. pr o inthemain IDL directory (which the
Save Asdialog should already show).

5. Open anew Editor window by selecting File — New, and enter the following
code:

FUNCTI ON hel | o_who, who
RETURN, 'Hello ' + who
END

6. Savethefileashel | o_who. pro inthemain IDL directory.

We now have a simple program consisting of a user-defined procedure, which callsa
user-defined function.

Building IDL Applications Creating a Simple Program

198 Chapter 9: Introduction to IDL Programming

Compiling and Running Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (afunction or procedure built into IDL, such as PLOT) is called, either from
the command line or from another procedure, IDL already knows about this routine
and compiles it automatically. When a user-defined function or procedure is called,
IDL must find the function or procedure and then compile it. When you enter the
name of an uncompiled user-defined procedure at the command line or call the
procedure from another procedure, IDL searches the current directory for
filename.pro, then filename.sav, where filename is the name of the procedure. If no
fileisfound in the current directory, IDL searches each directory specified by 'PATH.
(For more on the IDL path, see “!PATH” in the IDL Reference Guide manual.) If a
fileisfound, IDL automatically compiles the contents and executes the function or
procedure that has the same name as the file specified (excluding the suffix).

There are several ways to compile a procedure or function:

e |Ifthefileisopeninthe IDL Editor, select Compile from the Run menu or
click the Compile button on the toolbar.

« Usethe . COWPI LE executive command at the IDL command line.

» Enter the name of the procedure or function at the IDL command line. Multiple
procedures and/or functions can be defined in the same. pr o file, soif thefile
defines more than one procedure or function, only the procedure or function
with the name entered at the command line will be compiled (and subsequently
executed). For example, suppose afile named pr ocl. pr o containsthe
following procedure definitions:

PRO procl
PRI NT, 'This is procl'
END

PRO proc2
PRI NT, 'This is proc2'
END

PRO proc3
PRI NT, 'This is proc3
END
If you enter proc1 at the IDL command line, only the pr oc1 procedure will
be compiled and executed. If you enter pr oc2 or pr oc3 at the command line,
you will get an error informing you that you attempted to call an undefined
procedure.

Compiling and Running Your Program Building IDL Applications

Chapter 9: Introduction to IDL Programming 199

If you select the Compile button on the IDLDE toolbar or you enter

. COVPI LE pr oc1 at thecommand line, all three procedures will be compiled.
You can then enter either pr oc1, proc2, or pr oc3 at the command line to
execute the corresponding procedure.

In our “Hello World” example, we have a user-defined procedure that contains a call
to auser-defined function. If you enter the name of the user-defined procedure,
hello_main, at the command line, IDL will compile and execute the hello_main
procedure. After you provide the requested input, acall to the hello_who function is
made. IDL searchesfor hel | o_who. pr o, and compiles and executes the function.

In general, the name of the IDL program file should be the same as the name of the
last procedure or function within thisfile. This last routine is usually the main
routine, which calls al the other routines within the IDL program file. Using this
convention for your IDL program files ensures that all the related routines within the
file are compiled before being called by the last main routine.

Many program files within the IDL distribution use this formatting style. For
example, open the program file for the XLOADCT procedure, x| oadct . pr o, inthe
IDL Editor. Thisfileisintheli b/ utiliti es subdirectory of the IDL distribution.
Thisfile contains several routines. The main routine (XLOADCT) is at the bottom of
the file. When thisfile is compiled, the IDL Output Log notes al the routines within
thisfile that are compiled:

I DL> . COWPI LE XLOADCT

% Conpi | ed nodul e: XLCT_PSAVE.

% Conpi | ed nodul e: XLCT_ALERT_CALLER
% Conpi | ed nodul e: XLCT_SHOW

% Conpi | ed nodul e: XLCT_DRAW CPS.

% Conpi | ed nodul e: XLCT_TRANSFER

% Conpi | ed nodul e: XLOADCT_EVENT.

% Conpi | ed nodul e: XLOADCT.

Since these routines are now compiled, you can run XLOADCT:

| DL> XLQADCT

% Conpi | ed nodul e: XREG STERED.
% Conpi | ed nodul e: LOADCT.

% Conpi | ed nodul e: FI LEPATH.

% Conpi | ed nodul e: CW BGROUP.
% Conpi | ed nodul e: XMANAGER.

The remaining compiled modules are other IDL program files contained within the

distribution. These files (routines) are called within the XLOADCT routine.

Tip
When editing a program file containing multiple functions and/or procedures in the
IDL Editor, you can easily move to the desired function or procedure by selecting

Building IDL Applications Compiling and Running Your Program

200 Chapter 9: Introduction to IDL Programming

7

its name from the Functions/Procedures M enu. See “ Functions/Procedures Menu
in Chapter 3 of the Using IDL manual for more information.

Compilation Errors

If an error occurs during compilation, the error is reported in the Output Log of the
IDLDE. For example, because the END statement is commented out, the following
user-defined procedure will result in a compilation error:

PRO procedure_wi t hout END

PRINT, 'Hello Verld

; END
When trying to compile this procedure (after saving it into afile named
procedur e_wi t hout _END. pr o), you will receive the following error in the IDL
Output Log:

| DL> . COVPI LE procedure_wi t hout END

% End of file encountered before end of program
% 1 Conpilation errors in nodul e PROCEDURE_W THOUT_END.

Note
Under Microsoft Windows, the IDL Editor window displays ared dot to the left of

each line that contains an error.

Compiling and Running Your Program Building IDL Applications

Chapter 9: Introduction to IDL Programming 201

Commenting Your IDL Code

In IDL, the semicolon is the comment character. When IDL encounters the
semicolon, it ignores the remainder of the line. It is good programming practice to
fully annotate programs with comments. There are no execution-time or space

penalties for commentsin IDL.
A comment can exist on aline by itself, or can follow another IDL statement, as
shown below:

; This is a coment
COUNT = 5 ; Set the variable COUNT equal to 5.

Building IDL Applications Commenting Your IDL Code

202 Chapter 9: Introduction to IDL Programming

Saving Compiled IDL Programs

The SAVE procedure can be used to quickly save simple IDL routines in a binary
format that can be shared with other IDL users. This section covers how to create a
. sav file of simple routine containing a call to a secondary . sav file containing
image variable data. Using SAV E works well with simple routines.

Note
Variables and routines cannot be stored in the same.. sav file.

If your program or utility requires multiple program (. pr o) files, each procedure or
function used by your program must resolved and contained in a. sav file. When
multiple routines are required by your IDL application, you have the following
options:

e Includeal routinesinamain . sav filethat isrestored first. This makes all
routines available without having to restore any additional . sav files. The
easiest way to do thisistoadd all . pr o filesto an IDL Project and build the
project, which createsasingle . sav file. See Chapter 20, “Creating IDL
Projects’.

e Create aseparate . sav filefor each routine used by your application.
Assuming each . sav file has the same name as the procedure or function it
contains, this allows you to call each routine without having to explicitly
restoreits. sav file. Thisis because IDL will search for the . sav fileand
restore it automatically when it encountersthefirst call to the routine.

If your program also contains additional variable data, you must create a separate

. sav file containing the variable data. Variable data must be restored before any
routine attempts to use the variables contained in the file. If you are working with
multiple data, image and program files, consider using the IDL Project interface to
create asingle. sav file. See Chapter 20, “Creating IDL Projects’ for more
information. Alternately, you will need to restore the variables using the RESTORE
procedure before referencing the variablesin any IDL program. See “Restoring
Compiled IDL Programs and Data’ on page 209 for more information.

Note
A . sav file containing datawill always be restorable. However, . sav filesthat
contain IDL procedures, functions, and programs are not always portable between
different versions of IDL. In this case, you will need to recompile your original
. pr o filesand re-create . sav filesusing the current version of IDL.

Saving Compiled IDL Programs Building IDL Applications

Chapter 9: Introduction to IDL Programming 203

Creating a .sav File of a Simple Routine

The following example createstwo . sav files. One. sav filewill contain variable
data, animagefile. This. sav fileisthen restored inthe main . sav filewhich usesa
simple call to the ARROW procedure to point out an area of interest within the
image. To create these files, complete the following steps:

1. Start afresh session of IDL to avoid saving unwanted session information.

2. Opentheimagefile of aMRI proton density scan of a human thorax and read
the data into a variable named image:
READ_JPEG, (FILEPATH(' pdthorax124.jpg', SUBDI RECTORY= $
['exanples', 'data'])), inmage
3. Usethe SAVE procedure to save the image variable within a. sav file by
entering the following:

SAVE, image, FILENAME='inmmgefile.sav'
This storesthe . sav filein your current working directory.

Note
When using the SAV E procedure, some usersidentify binary files containing

variable datausing a. dat extension instead of a. sav extension. While any
extension can be used to identify files created with SAVE, it isrecommended
that you use the . sav extension to easily identify files that can be restored.

4. Createthefollowing IDL program that first restores the image variable
contained within the secondary . sav file, i magefil e. sav. Thisvariableis
used in the following program statements defining the size of the window and
in the TV routine which displays the image. The ARROW routine then draws
an arrow within the window. Enter the following linesin atext editor.

PRO draw_arrow

Restore i nmage data.
RESTORE, 'inmgefile.sav'

CGet the dinmensions of the image file.
s = Sl ZE(i mage, /DI MENSI ONS)

Prepare display device and di splay inmage.
DEVI CE, DECOMPCSED = 0
W NDOW 0, XSl ZE=s[0], YSIZE=s[1], TITLE="Point of Interest"
TV, inage

Draw t he arrow.

Building IDL Applications Saving Compiled IDL Programs

204 Chapter 9: Introduction to IDL Programming

ARROW 40, 20, 165, 115

END

5. Savethefileasdraw arr ow. pr o. Next, createa. sav file of this program
file.

6. Exitandrestart IDL or enter FULL_RESET_SESSION at the IDL prompt
before creating a. sav fileto avoid saving unwanted session information.

7. Opendraw_arrow. pro and compileit by entering:
. COWPI LE draw_arrow

8. Use RESOLVE_ALL toiteratively compile any uncompiled user-written or
library procedures or functions that are called in any already-compiled
procedure or function:

RESOLVE_ALL
Note
RESOLVE_ALL doesnot resolve procedures or functionsthat are called via quoted
strings such as CALL_PROCEDURE, CALL_FUNCTION, or EXECUTE, or in
keywords that can contain procedure names such as TICKFORMAT or
EVENT_PRO. You must manually compile these routines.

9. Createa. sav filecaled dr aw_ar r ow. sav containing the user-defined
draw_arrow procedure. When the SAVE procedure is called with the
ROUTINES keyword and no arguments, it create a. sav file containing all
currently compiled routines. Because the procedures within the draw_arrow
procedures are the only routines that are currently compiled, in the IDL
session, create the . sav file asfollows:

SAVE, /ROUTI NES, FILENAVE=' draw arrow. sav'

Note
When the name of the . sav fileisthe same asthe main level program, it can be
called from another routine or restored from the IDL command line by smply
stating the name of the file, minusthe . sav extension. This method of naming
. sav filesis recommended.

Customizing and Saving an ASCII Template

When importing an ASCI| datafileinto IDL, you must first describe the format of the
data using the interactive ASCII_ TEMPLATE function. If you have a number of
ASCII files that have the same format, you can create and save a customized ASCI|

Saving Compiled IDL Programs Building IDL Applications

Chapter 9: Introduction to IDL Programming 205

template using the SAVE procedure. After creating a. sav file of your custom
template, you can avoid having to repeatedly define the same fields and records when
reading in ASCII files that have the same structure.

1

At the IDL command line, enter the following to create the variable
plotTemplate, which will contain your custom ASCII template:

pl ot Tenpl ate = ASCI | _TEMPLATE()
A dialog box appears, prompting you to select afile.
Select pl ot . t xt located in the exanpl es/ dat a directory.

Note
Another way to import ASCII dataisto usethe Import ASCII Filetoolbar
button on the IDLDE toolbar. To use thisfeature, simply click the button and
select pl ot . t xt from thefile selection dialog.

After selecting thefile, the Define Data Type/Range dialog appears. First,
choose the field type. Since the datafile is delimited by tabs (or whitespace)
select the Delimited button. In the Data Starts at Linefield, specify to begin
reading the data at line 3, not line 1, since there are two comment lines at the
beginning of the file. Click Next to continue.

In the Define Delimiter /Fields dialog box, select Tab asthe delimiter between
data elements since it is known that tabs were used in the original file. Click
Next.

In the Field Specification dialog box, name each field as follows:
e Click onthefirst row (row 1). In the Namefield, enter t i ne.
e Select the second row and enter t enper at ur el.

e Select thethird row and enter t enper at ur e2.

Click Finish.

Type the following line at the IDL command linetoread inthe pl ot . t xt file
using the custom template, pl ot Tenpl at e:

PLOT_ASCI| = READ ASCI | (FI LEPATH(' pl ot.txt', SUBD RECTORY = $
['exanples', 'data']), TEMPLATE = pl ot Tenpl at e)

Enter the following lineto print the pl ot . t xt file data:
PRI NT, PLOT_ASC |

Building IDL Applications Saving Compiled IDL Programs

206 Chapter 9: Introduction to IDL Programming

Thefile contents are printed in the Output Log window. Your output will resemble the
following display.

o PRINT, PLOT_ASCIT ;I
{ 1 1z 13 14 15 15 17 13 19
2,90000 3. 20000 £,00000 . 50000 9, 20000 9,50000 12, 7000 . 20000 5.8
L.50000 3., 90000 7. 10000 7. 30000 10,1000 ,50000 13,9000 7. 20000 .5
-
| | B
Mame Type | Walue
PLOTTEMPLATE STRUCT { <Anonpmouss }
PLOT_&SCI STRUCT { <Anonpmouss }
zl]\Locals {Paramsg Commong System | 1 | | _’I

Figure 9-1: PLOT_ASCII Printout

9. Createabinary . sav file of your custom template by entering the following:
SAVE, pl ot Tenpl ate, FILENAME=' nyPl ot Tenpl at e. sav'

10. To restore the template so that you can read another ASCI| file, enter:
RESTORE, ' nyPl ot Tenpl at e. sav'

Thisfile contains your custom ASCII template information stored in the
structure variable, pl ot Tenpl at e.

Note
If you are attempting to restore afile that is not in your current working directory or
the IDL search path, you will need to specify a path to the file. See “RESTORE” in
the IDL Reference Guide manual for more information.

11. After restoring your custom template, you can read another ASCII filethat is
delimited in the same way asthe original file by using the READ_ASCI|I
function and specifying pl ot Tenpl at e for the TEMPLATE:

PLOT_ASCI| = READ ASCI | (FI LEPATH(' plot.txt', $
SUBDI RECTORY = ['exanples', 'data']), $
TEMPLATE = pl ot Tenpl at e)

12. Enter the following to display the contents of the file using the customized
ASCII template structure previously defined using the dialog.

PRI NT, PLOT_ASCI |

Saving Compiled IDL Programs Building IDL Applications

Chapter 9: Introduction to IDL Programming 207

Saving and Restoring the XROI Utility and Image ROI
Data

You can easily share your own IDL routines or utilities with other IDL users by using
the SAVE routine to create a binary file of your compiled code. The following
example creates a. sav file of the XROI utility (a. pro file) and from within this
file, restores asecondary . sav file containing selected regions of interest.

1. Type XRO at the command line to open the XROI utility.

2. Inthefile selection dialog, select ni ner al . png located in the
exanpl es/ dat a directory.

3. Select the Draw Polygon toolbar button and roughly outline the three large,
angular areas of the image.

4. Select File— Save ROIsand namethefile ni ner al RO . sav. Thiscreatesa
. sav file containing the regions of interest selected within the image.

5. Inan DL Editor or text editor, enter the following routine:
PRO ny XRoi

Restore RO object data by specifying a value for the
RESTORED _OBJECTS keywor d.
RESTORE, 'mineral RO.sav', RESTORED OBJECTS = nyRA

; Open XRO, specifying the previously defined value for the
restored object data as the value for "REG ONS_I N'.
XRO , READ PNG(FI LEPATH(' mi neral .png', $
SUBDI RECTORY = ['exanples', 'data'])), $
REG ONS_IN = nyRO, /BLOCK

END
Save the routine as my XRoi . pr o

6. Exitandrestart IDL or enter FULL_RESET_SESSION at the IDL command
line before creating a. sav file to avoid saving unwanted session information.

7. After re-opening the my XRoi routine, compile the program you just created:
. COWPI LE nyXRoi . pro

8. Use RESOLVE_ALL toiteratively compile any uncompiled user-written or
library procedures or functions that are called in any aready-compiled
procedure or function:

RESCOLVE_ALL

Building IDL Applications Saving Compiled IDL Programs

208

Note

Chapter 9: Introduction to IDL Programming

RESOLVE_ALL does not resolve class methods, nor procedures or functions that
are called via quoted strings such as CALL_PROCEDURE, CALL_FUNCTION,
or EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO. You must manually compile these routines.

10.

Create a. sav file named ny XRoi . sav, containing all of the XROI utility
routines. When the SAVE procedure is called with the ROUTINES keyword
and no arguments, it createsa. sav file containing al currently compiled
routines. Because the routines associated with the XROI utility are the only
ones that are currently compiled in our IDL session, we can create a. sav file
asfollows:

SAVE, /ROUTINES, FILENAME=" nyXRoi . sav'

It is not necessary to use RESTORE to open nmy XRoi . sav. If themain level
routineis named the same asthe. sav file, and all necessary files (in this case,
mi ner al RO . sav and nyXRoi . sav) are stored in the current working
directory or the IDL search path, simply type the name of the file, minus the

. sav extension, at the command line:

my XRoi

The following figure will appear, showing the selected regions of interest.

#)ROI [_[O]x]
File Edit

FRE R .

Figure 9-2: Example of Restoring the XROI Utility and ROI Image Data

Saving Compiled IDL Programs Building IDL Applications

Chapter 9: Introduction to IDL Programming 209

Restoring Compiled IDL Programs and Data

This section covers various ways to restore files created with the SAVE procedure,
which typically have a. sav extension. The options for restoring these files include
the following:

¢ Restoring . sav filesfrom the command line. This method istypically used to
restore and run . sav files containing an IDL routine with the same name as
the. sav file. See“Restoring .sav Filesfrom the Command Line” on page 209.

e Using the RESTORE procedureto explicitly restorea. sav file. You must use
RESTORE to restore variable data. You may also need to use RESTORE if
your . sav file contains multiple routines or aroutine that has a different name
than the. sav file. See“Using RESTORE to Explicitly Restore a.sav File” on
page 209.

e Restoring asecondary . sav file from withinamain . sav file. Thisis
commonly doneto restore variable data before it is needed by the IDL program
or routine. See “Creating a.sav File of a Simple Routine” on page 203 for an
example.

Restoring .sav Files from the Command Line

Torestorea. sav file containing an IDL program file with the same name as the

. sav file, smply type the name of thefile, minusthe. sav extension, at the IDL
command line. For example, to restore the file, dr aw_ar r ow. sav, containing the
dr aw_ar r owroutine (created in the previous section, “ Creating a .sav File of a
Simple Routine” on page 203), enter the following at the command line:

draw _arrow

When afileis specified by typing only the filename at the IDL prompt, IDL searches
the current directory for dr aw_ar r ow. pr o and thenfor dr aw_ar r ow. sav. If nofile
isfound in the current directory, IDL searches in the same way in each directory
specified by 'PATH. See “!PATH” in the IDL Reference Guide manual for more
information. If thefileisnot located in your current working directory or IDL search
path, IDL will report that the file cannot be found. See “RESTORE” in the IDL
Reference Guide manual for information on how to define a path to thefile.

Using RESTORE to Explicitly Restore a .sav File

You must use the RESTORE procedure to explicitly restore any file containing
variable data. In the previous section, “Creating a .sav File of a Simple Routine” on

Building IDL Applications Restoring Compiled IDL Programs and Data

210 Chapter 9: Introduction to IDL Programming

page 203, two . sav fileswere created; i magefi |l e. sav and dr aw_ar r ow. sav.
Thei magefi | e. sav file contains image variable data. To explicitly restore the
image data, enter the following at the IDL command line:

RESTORE, 'inmmgefile.sav'

Information about the variable, image, which is contained within the . sav file,
appearsin the IDLDE Variable Watch window.

Note
If the file you are attempting to restore is not located in your current working
directory or the IDL search path, you will need to specify a path to thefile. See
“RESTORE” in the IDL Reference Guide manual for information on how to define
apathto thefile.

You also need to use the RESTORE procedure when your . sav file contains multiple
routines or aroutine that has a different name that the . sav file. In such cases, you
must use RESTORE to restore the main . sav file before calling any of the routines
within the . sav file. For example, suppose you have a. sav file containing the

dr aw_ar r ow routine created in the previous section, but you have named thefile
nmyar r ow. sav (instead of dr aw_ar r ow. sav) as shown in the following statement:

SAVE, /ROUTI NES, FILENAME=' nyarrow. sav’

In this case you must use the RESTORE procedure to restore the . sav file before
caling thedr aw_ar r ow routine.

RESTORE, ' nyarrow. sav', /VERBOSE

This restores al routines associated with the file. Use the VERBOSE keyword to
print an informative message about each restored object. To run the dr aw_ar r ow
routine, now enter the following at the command line;

draw_arr ow

Note on IDL 5.4 SAVE Files

With IDL 5.4, RSl released aversion of IDL that was 64-bit capable. The original
IDL SAVE/RESTORE format used 32-bit offsets. In order to support 64-bit memory
access, the IDL SAVE/RESTORE file format was modified to allow the use of 64-bit
offsets within the file, while retaining the ability to read old files that use the 32-bit
offsets.

The SAVE command always begins reading any . sav file using 32-bit offsets. If the
64-bit offset command is detected, 64-bit offsets are then used for any subsequent
commands.

Restoring Compiled IDL Programs and Data Building IDL Applications

Chapter 9: Introduction to IDL Programming 211

In IDL versions capable of writing large files
('VERSION.FILE_OFFSET_BITS EQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

SAVE always startsreading any . sav file using 32-bit offsets. If it seesthe 64-
bit offset command, it switches to 64-bit offsets for any commands following
that one.

This configuration is fully backward compatible, in that any IDL program can read
any . sav fileit has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
fileswritten by newer IDL versionsto sites where they are restored by older versions
of IDL (that is new files being input by old programs). It is not generally reasonable
to expect this sort of forward compatibility, and it does not fit the usual definition of
backwards compatibility. RSl has always strived to maintain this compatibility.
However, in IDL 5.4 thiswas not the case. The following steps have been taken in
IDL 5.5 to minimize the problems that have been caused by the IDL 5.4 save format:

64-bit offsets encoding has been improved. The . sav fileswritten within IDL
5.5 and subsequently should be readable by any previousversion of IDL, if the
file data does not exceed 2.1 GB in length.

IDL 5.5 and subsequent versions will retain the ability to read the 64-bit offset
files produced by IDL 5.4.x, thus ensuring backwards compatibility.

The. sav fileswritten within IDL 5.5 or subsequent versions, which contain
file data exceeding 2.1GB in length are not readable by older versions of IDL,
but will be readable by IDL 5.5 and subsequent versions of IDL that have
I'VERSION.MEMORY_BITS equal to 64.

The CONVERT_SR54 procedure, apart of the IDL 5.5 user library, can be
used to convert .sav fileswritten within IDL 5.4 into the newer IDL 5.5 format.
This allows existing data files to become readable by previous IDL versions.
The CONVERT_SR54 procedureislocated inthe RSI - DI R/ | i b/ obsol et e.

Building IDL Applications Restoring Compiled IDL Programs and Data

212 Chapter 9: Introduction to IDL Programming

Restoring Compiled IDL Programs and Data Building IDL Applications

Chapter 10:

Files and Input/Output

The following topics are covered in this chapter:

OVEIVIEW ..ot 214
Filel/OinIDL 215
Unformatted Input/Output 220
Formatted Input/Output 221
OpeningFiles....................... 223
ClosingFiles 224
Logical Unit Numbers (LUNS) 225
Reading and Writing Very Large Files ... 228

Using Free Format Input/Output 230
Using Explicitly Formatted Input/Output . 235

Building IDL Applications

FormatCodes 240
Using Unformatted Input/Output 265
Portable Unformatted Input/Output 272
Associated Input/Output 277
File Manipulation Operations.. 282
UNIX-Specific Information 294
Windows-Specific Information 297
Scientific DataFormats 298

Support for Standard Image File Formats 299

213

214 Chapter 10: Files and Input/Output

Overview

IDL provides powerful facilities for file input and output. Few restrictions are
imposed on data files by IDL, and there is no unique IDL format. This chapter
describes IDL input/output methods and routines and gives examples of programs
which read and write datausing IDL, C, and FORTRAN.

The first section of this chapter provides a description for how IDL input/output
works. It isintentionally brief and isintended to serve only as an introduction.
Additional details are covered in the following sections. For the IDL user, perhapsthe
largest single difference between platformsis input/output. The mgjority of this
chapter covers information that isrequired in al of the environments IDL supports.
Operating system specific information is concentrated in the final sections of this
chapter.

Overview Building IDL Applications

Chapter 10: Files and Input/Output 215

File I/O in IDL

Before any file input or output can be performed, it is necessary to open afile. Thisis
done using either the OPENR (Open for Reading), OPENW (Open for Writing), or
OPENU (Open for Update) procedures. When afileis opened, it is associated with a
Logical Unit Number, or LUN. All file input and output routinesin IDL usethe LUN
rather than the filename, and most require that the LUN be explicitly specified. Once
afileisopened, severa input/output routines are available for use. Each routinefillsa
particular need — the one to use depends on the particular situation.

There are three exceptions to the need to open any file before performing input/output
on it. Three files are always open —in fact, the user is not allowed to close them.
Thesefiles are the standard input (usually the keyboard), the standard output (usually
the IDL log window), and the standard error output (usually the terminal screen).
These three files are associated with LUNS O, -1, and -2, respectively. Because these
files are always open, there is no need to open them prior to using them for
input/output. The READ and PRINT procedures automatically use these files, so
basic formatted input/output is extremely simple.

Simple Examples

It is easy to use input/output using the default input and output files. The IDL
command:

PRINT, 'Hello Wrld.'
causes IDL to print the line:
Hell o Worl d.

on theterminal screen. This happens because PRINT formatsits arguments and prints
them to LUN -1, which isthe standard output file. It is only slightly more
complicated to use other files. The following IDL statements show how the above
“Hello World” example could be sent to afile named hello.dat:

;Open LUN 1 for hello.dat with wite access.
OPENW 1, 'hello.dat’

;Do the output operation to the file.
PRINTF, 1, 'Hello World.'

;Close the file.
CLCSE, 1

Building IDL Applications File /0 in IDL

216

Chapter 10: Files and Input/Output

Routines for Input/Output

The following routines are useful when doing input/output operations. For more
information on these commands, see the IDL Reference Guide.

Routine

Description

ASCII_TEMPLATE

Presents a GUI that generates atemplate
defining an ASCI| file format.

ASSOC

Associates an array structure with afile.

BINARY_TEMPLATE

Presents a GUI for interactively generating a
template structure for usewith READ_BINARY.

Alphabetical Listing of CDF
Routines

Common Data Format routines.

CLOSE

Closes the specified files.

DIALOG_READ_IMAGE

Presents GUI for reading image files.

DIALOG_WRITE_IMAGE

Presents GUI for writing image files.

EOF

Tests the specified file for the end-of-file
condition.

Alphabetical Listing of EOS
Routines

HDF-EOS (Hierarchical Data Format-Earth
Observing System) routines.

FILEPATH Returns full path to afilein the IDL distribution.
FINDFILE Finds al files matching given file specification.
FLUSH Flushes file unit buffers.

FREE LUN Frees previously-reserved file units.

FSTAT Returns information about a specified file unit.
GET_KBRD Getsoneinput IDL character.

GET_LUN Reserves alogical unit number (file unit).

Alphabetical Listing of HDF
Routines

Hierarchical Data Format routines.

File /0 in IDL

Table 10-1:

Routines for Input/Output

Building IDL Applications

Chapter 10: Files and Input/Output

217

Routine

Description

Alphabetical Listing of HDF5
Routines

Hierarchical Data Format (version 5) routines.

HDF_BROWSER

Opens GUI to view contents of HDF, HDF-EQS,
or NetCDF file.

HDF_READ Extracts HDF, HDF-EOS, and NetCDF data and
metadata into an output structure.

IOCTL Performs special functions on UNIX files.

MPEG_CLOSE Closes an MPEG sequence.

MPEG_OPEN Opens an MPEG sequence.

MPEG_PUT Inserts an image array into an MPEG sequence.

MPEG_SAVE Saves an MPEG sequence to afile.

Alphabetical Listing of NCDF
Routines

Network Common Data Format routines.

OPEN Opensfilesfor reading, updating, or writing.
POINT_LUN Sets or gets current position of the file pointer.
PRINT/PRINTF Writes formatted output to screen or file.
READ/READF Reads formatted input from keyboard or file.
READ_ASCII Reads data from an ASCI| file.
READ_BINARY Reads the contents of abinary file using apassed
template or basic command line keywords.
READ_BMP Reads Microsoft Windows bitmap file (.BMP).
READ_DICOM Reads an image from a DICOM file.
READ_IMAGE Reads the image contents of afile and returnsthe

image in an IDL variable.

READ_INTERFILE

Reads Interfile (v3.3) file.

READ_JPEG

Reads JPEG file.

Table 10-1: (Continued) Routines for Input/Output

Building IDL Applications

File 1/0O in IDL

218 Chapter 10: Files and Input/Output
Routine Description

READ_PICT Reads Macintosh PICT (version 2) bitmap file.

READ_PNG Reads Portable Network Graphics (PNG) file.

READ_PPM Reads PGM (gray scale) or PPM (portable
pixmap for color) file.

READ_SRF Reads Sun Raster Format file.

READ_SYLK Reads Symbolic Link format spreadsheet file.

READ_TIFF Reads TIFF format file.

READ_ WAV Reads the audio stream from the named . WAV
file.

READ_WAVE Reads Wavefront Advanced Visualizer file.

READ X11 BITMAP Reads X 11 bitmap file.

READ_XWD Reads X Windows Dump file.

READS Reads formatted input from a string variable.

READU Reads unformatted binary data from afile.

SOCKET Opens aclient-side TCP/IP Internet socket as an
IDL file unit.

TVRD Reads an image from awindow into avariable.

WRITE_BMP Writes Microsoft Windows Version 3 device
independent bitmap file (BMP).

WRITE_IMAGE Writes an image and its color table vectors, if
any, to afile of aspecified type.

WRITE_JPEG Writes JPEG file.

WRITE_NRIF Writes NCAR Raster Interchange Format
rasterfile.

WRITE_PICT Writes Macintosh PICT (version 2) bitmap file.

WRITE_PNG Writes Portable Network Graphics (PNG) file.

Table 10-1: (Continued) Routines for Input/Output
File 1/0 in IDL Building IDL Applications

Chapter 10: Files and Input/Output 219

Routine Description

WRITE_PPM Writes PPM (true-color) or PGM (gray scale)
file.

WRITE_SRF Writes Sun Raster File (SRF).

WRITE_SYLK Writes SYLK (Symbolic Link) spreadsheet file.

WRITE_TIFF Writes TIFF file with 1 to 3 channels.

WRITE_WAV Writes the audio stream to the named . WAV file.

WRITE_WAVE Writes Wavefront Advanced Visualizer (. WAV)
file.

WRITEU Writes unformatted binary datato afile.

Table 10-1: (Continued) Routines for Input/Output

Building IDL Applications File /0 in IDL

220 Chapter 10: Files and Input/Output

Unformatted Input/Output

Unformatted Input/Output is the most basic form of input/output. Unformatted
input/output transfers the internal binary representation of the data directly between
memory and the file.

Advantages of Unformatted I/O

Unformatted input/output is the ssimplest and most efficient form of input/output. It is
usually the most compact way to store data.

Disadvantages of Unformatted I/O

Unformatted input/output isthe least portable form of input/output. Unformatted data
files can only be moved easily to and from computers that share the same internal
datarepresentation. It should be noted that XDR (eXternal Data Representation) files,
described in “Portable Unformatted | nput/Output” on page 272, can be used to
produce portable binary data.

Unformatted input/output is not directly human readable, so you cannot typeit out on
aterminal screen or edit it with atext editor.

Unformatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 221

Formatted Input/Output

Formatted output converts the internal binary representation of the datato ASCI|
characters which are written to the output file. Formatted input reads characters from
the input file and converts them to internal form. Formatted 1/O can be either “Free”
format or “Explicit” format, as described below.

Advantages of Formatted 1/O

Formatted input/output is very portable. It isasimple process to move formatted data
filesto various computers, even computers running different operating systems, as
long as they all usethe ASCII character set. (ASCII isthe American Standard Code
for Information Interchange. It is the character set used by amost all current
computers, with the notable exception of large IBM mainframes.)

Formatted files are human readable and can be typed to the terminal screen or edited
with atext editor.

Disadvantages of Formatted 1/O

Formatted input/output is more computationally expensive than unformatted
input/output because of the need to convert between internal binary dataand ASCII
text. Formatted data requires more space than unformatted to represent the same
information. Inaccuracies can result when converting data between text and the
internal representation.

Free Format I/O

With free format input/output, IDL uses default rules to format the data.
Advantages of Free Format 1/O

The user isfree of the chore of deciding how the data should be formatted. Free
format is extremely simple and easy to use. It provides the ability to handle the
majority of formatted input/output needs with a minimum of effort.

Disadvantages of Free Format 1/O

The default formats used are not always exactly what isrequired. In this case, explicit
formatting is necessary.

Building IDL Applications Formatted Input/Output

222

Chapter 10: Files and Input/Output

Explicit Format 1/O

Explicit format 1/0 allows you to specify the exact format for input/output.

Advantages of Explicit I1/10

Explicit formatting allows agreat deal of flexibility in specifying exactly how data
will be formatted. Formats are specified using a syntax that is similar to that used in
FORTRAN format statements. Scientists and engineers already familiar with
FORTRAN will find IDL formats easy to write. Commonly used FORTRAN format
codes are supported. In addition, IDL formats have been extended to provide many of
the capabilities found in the scanf () and printf () functions commonly found in the C
language runtime library.

Disadvantages of Explicit I/O

Using explicitly specified formats requires the user to specify more detail—they are,
therefore, more complicated to use than free format.

The type of input/output to use in agiven situation is usually determined by
considering the advantages and disadvantages of each method as they relate to the
problem to be solved. Also, when transferring data to or from other programs or
systems, the type of input/output is determined by the application. The following
suggestions are intended to give arough idea of the issuesinvolved, though there are
always exceptions:

¢ Images and large data sets are usually stored and manipulated using
unformatted input/output in order to minimize processing overhead. The IDL
ASSOC function is often the natural way to access such data.

« Datathat need to be human readable should be written using formatted
input/output.

« Datathat need to be portable should be written using formatted input/output.
Another option is to use unformatted XDR files by specifying the XDR
keyword with the OPEN procedures. Thisis especially important if moving
between computers with markedly different internal binary dataformats. XDR
is discussed in “Portable Unformatted Input/Output” on page 272.

* Freeformat input/output is easier to use than explicitly formatted input/output
and about as easy as unformatted input/output, so it is often a good choice for
small files where there is no strong reason to prefer one method over another.

e Special well-known complex file formats are usually supported directly with
specia IDL routines (e.g. READ_JPEG for JPEG images).

Formatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 223
Opening Files

Before afile can be processed by IDL, it must be opened using one of the procedures
described in the following table. All open files are associated with a LUN (Logical
Unit Number) within IDL, and all input/output routines refer to files via this number.
For example, to open the file named data.dat for reading on file unit 1, use the
following statement:

OPENR, 1, 'data.dat'’

The OPEN procedures can be used with certain keywords to modify their normal
behavior. Some keywords are generally applicable, while others only have effect
under a given operating system. Some operating system specific keywords are
allowed (and ignored) under other operating systems in order to facilitate writing
portable routines.

Procedure Description
OPENR Opens an existing file for input only.
OPENW Opens anew filefor input and output. If the named file already

exists, its old contents are overwritten.

OPENU Opens an existing file for input and output.

Table 10-2: IDL File Opening Commands
Platform-Specific Keywords to the OPEN Procedure
Different computers and operating systems perform input/output in different ways.

See “OPEN” in the IDL Reference Guide manual for keywords to the OPEN
procedures that apply under UNIX or Microsoft Windows.

Building IDL Applications Opening Files

224

Chapter 10: Files and Input/Output

Closing Files

Closing Files

After work involving the fileis complete, it should be closed. Closing a file removes
the association between the file and its unit number, thus freeing the unit number for
use with adifferent file. Thereis usually an operating system-imposed limit on the
number of files a user may have open at once. Although this number is large enough
that it rarely causes problems, situations can occur where afile must be closed before
another file may be opened. In any event, it is good style to only keep needed files
open.

There are three waysto close afile:
e Usethe CLOSE procedure.

¢ Usethe FREE_LUN procedure on a LUN that has been allocated by
GET_LUN.

e ExitIDL. IDL closesall open fileswhen it exits.

Calling the CLOSE procedure is the most common way to close afile unit. For
example, to close file unit number 1, use the following statement:

CLCSE, 1

In addition, if FREE_LUN is called with afile unit number that was previously
allocated by GET_LUN, it calls CLOSE before deallocating the file unit. Finally, all
open files are automatically closed when IDL exits.

Building IDL Applications

Chapter 10: Files and Input/Output 225

Logical Unit Numbers (LUNS)

IDL Logical Unit Numbers (LUNSs) fall within the range —2 to 128. Some LUNs are
reserved for special functions as described below.

The Standard Input, Output, and Error LUNs

The three LUNSs described below have special meanings that are operating system
dependent:

UNIX

Logical Unit Numbers 0, -1, and -2 are tied to stdin, stdout, and stderr, respectively.
This meansthat the normal UNIX file redirection and pipe operationswork with IDL.
For example, the shell command

%d <id.inp >&idl.out &

will cause IDL to execute in the background, reading its input from the fileidl.inp
and writing its output to the file idl.out. Any messages sent to stderr are also sent to
idl.out.

When using the IDL Development Environment (IDLDE), Logical Unit NumbersO, -
1, and -2 are tied to stdin (the command line), stdout (the log window), and stderr
(the log window), respectively.

Windows

Logical Unit Numbers O, -1, and -2 aretied to stdin (the command line), stdout (the
log window), and stderr (the log window), respectively.

These special file units are described in more detail below.
File Unit O

This LUN represents the standard input stream, which is usually the keyboard.
Therefore, the IDL statement:

READ, X
is equivalent to the following:

READF, 0, X

Building IDL Applications Logical Unit Numbers (LUNS)

226 Chapter 10: Files and Input/Output

File Unit -1

This LUN represents the standard output stream, which isusually the terminal screen.
Therefore, the IDL statement:

PRI NT, X
is equivalent to the following:
PRINTF, -1, X

File Unit -2

This LUN represents the standard error stream, which is usually the terminal screen.
File Units (1-99)

These are the file units for normal interactive use. When using IDL interactively, the
user arbitrarily selects the file units used. The file units from 1 to 99 are available for
thisuse.

File Units (100-128)

These are thefile units managed by the GET_LUN and FREE L UN procedures. If an
IDL procedure or function that usesfiles is written to explicitly use agiven file unit,
thereisachance that it will conflict with other routines that use the same unit. It is
therefore necessary to avoid explicit file unit numbers when writing IDL procedures
and functions. The GET_LUN and FREE_LUN procedures provide a standard
mechanism for IDL routinesto obtain unique file units. GET_LUN alocates afile
unit from a pool of free unitsin the range 100 to 128. This unit will not be allocated
again until it isreleased by acall to FREE_LUN. Meanwhile, it is available for the
exclusive use of the program that allocated it. A typical procedure that needs afile
unit might be structured as follows:

PRO DEMO
;Get a unique file unit and open the file.
OPENR, UNI'T, /GET_LUN

; Body of program goes here.

;Return file unit.
FREE_LUN, UNIT

Logical Unit Numbers (LUNS) Building IDL Applications

Chapter 10: Files and Input/Output 227

;Since the file is still open, FREE LUN will automatically call
; CLOSE.
END
Note
All IDL procedures and functions that open files should use GET_LUN/ FREE_LUN
to obtain file units. Furthermore, the file units between 100 and 128 should never be
used unless previously allocated by GET_LUN.

Building IDL Applications Logical Unit Numbers (LUNS)

228

Chapter 10: Files and Input/Output

Reading and Writing Very Large Files

IDL on al platformsis able to read and write data from files up to 2/31-1 bytesin
length. On some platforms, it is aso able to read and write data from files longer than
this limit.

Tip
To seeif IDL on your platform supports large files, use the following:

PRI NT, !VERSI ON. FI LE_OFFSET_BI TS

IF “64” isreturned, the platform supports large files. For more information, see
“I'VERSION” in the IDL Reference Guide manual.

When reading and writing to files smaller than this limit, there is no differencein
behavior between the platforms that can and those that cannot handle larger files. IDL
uses longword integers for file position arguments (e.g. POINT_LUN, FSTAT) and
keywords, as before. However, when dealing with files that exceed this limit, IDL
uses signed 64-bit integersin order to be able to properly represent the offset.
Consider the following example:

;Open the file
OPENW 1, 'test.dat'

;Initial position should be 0.
PO NT_LUN, -1, POCS

;Print the position and its type.
HELP, PCS

;Move the file pointer past the signed 32-bit boundary.
PO NT_LUN, 1, '000000ffffffffff'x

; The position is now too |arge to represent as a | ongword.
PO NT_LUN, -1, PCS

;Print the position and its type.
HELP, POS

CLCSE, 1
Executing these statements results in the following output:

PGS LONG
PCs LONG64

0
1099511627775

Reading and Writing Very Large Files Building IDL Applications

Chapter 10: Files and Input/Output 229

Initially, the file position is 0, which fits easily into a 32-bit integer. Once thefile
position exceeds the range of a signed 32-bit number, IDL automatically shifts to the
64-bit integer type.

Limitations of Large File Support

There are limitations on IDL’s support for very large files that must be understood by
the IDL programmer:

On any platform, the amount of datathat IDL can transfer in asingle operation
islimited by the amount of memory it can allocate. On most platforms, IDL is
a 32-bit program, and as such, can theoretically address up to 2°31-1 bytes of
memory (approximately 2.3GB). On these 32-bit platforms, reading, writing,
and processing data larger than this limit must be done in multiple operations.
Most systems do not have 2.3 GB of memory available, and other programs
running on the system also compete for the same memory, so the actual
memory availableislikely to be considerably smaller.

To seeif your platform is 32- or 64-bit, use the following:
PRI NT, ! VERSI ON. MEMORY_BI TS

IF“32" isreturned, your platform is 32-bit. If “64” isreturned, your platform
is 64-bit. For more information, see “!VERSION” in the IDL Reference Guide
manual.

The ability to read or writeto very largefilesis constrained by the ability of the
underlying file system to support such files. Many platforms can only support
large files on certain file systems. For example, many platforms will be unable
to support these operations on NFS mounted file systems because NFS version
3 and later must be in use on both client and server. Some platforms, such HP-
UX, can only support such operations on specia large file systems, and only if
they are mounted using the appropriate mount options. Consult your system
documentation to determine the limitations present on your system and the
procedures for supporting very largefile.

Building IDL Applications Reading and Writing Very Large Files

230 Chapter 10: Files and Input/Output

Using Free Format Input/Output

Use of formatted datais most appropriate when the data must be in human readable
form, such aswhen it isto be prepared or modified with atext editor. Formatted data
also are highly portable between various computers and operating systems.

In addition to the PRINT, PRINTF, READ, and READF routines already discussed,
the STRING function can be used to generate formatted output that is sent to a string
variableinstead of afile. The READS procedure can be used to read formatted input
from astring variable.

The exact format of the character data may be specified to these routines by providing
aformat string viathe FORMAT keyword. If no format string is given, default
formats for each type of data are applied. This method of formatted input/output is
called free format. Free format input/output is suitable for most applications
involving formatted data. It is designed to provide input/output abilities with a
minimum of programming.

Structures and Free Format Input/Output

IDL structures present a special problem for default formatted input and output. The
default format for displaying structure datais to surround the structure with curly
braces ({}). For example, if you define an anonymous structure:

struct = { A2, B3, C'AString }

and then use default formatted output viathe PRINT command:
PRI NT, struct

IDL prints:
{ 2 3 A String}

You might suppose that default formatted input would recognize that the curly braces
are part of the formatting and ignore them. Thisis not the case, however. By default,
to read the third field in the structure (the string field) IDL will read from the “A” to
the end of the line, including the closing brace.

This behavior, while unsymmetric, seems to be the best choice for default behavior—
displaying theresult of the PRINT statement on the computer screen. We recommend

that you use explicitly formatted input/output when reading and writing structures to

disk files, so as hot to haveto explicitly code around the possibility that your structure
may include strings.

Using Free Format Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 231

Free Format Input

Thefollowing rules are used by IDL to perform free format input:

1. Inputisperformed on scalar variables. Array and structure variables are treated
as collections of scalar variables. For example,

A = | NTARR(5)
READ, A

causes IDL to read five separate values to fill each element of the variable A.

2. If the current input line is empty and there are variables |eft requiring input,
read another line.

3. If the current input lineis not empty but there are no variables |eft requiring
input, the remainder of the line isignored.

4. Input data must be separated by commas or white space (tabs, spaces, or new
lines).

5. When reading into avariable of type string, all characters remaining in the
current input line are placed into the string.

6. When reading into numeric variables, every effort is made to convert the input
into a value of the expected type. Decimal points are optiona and exponential
(scientific) notation is allowed. If afloating-point datum is provided for an
integer variable, the value is truncated.

7. When reading into avariable of complex type, the real and imaginary parts are
separated by a comma and surrounded by parentheses. If only asinglevalueis
provided, it istaken asthereal part of the variable, and theimaginary part is set
to zero. For example:

;Create a conpl ex vari abl e.
A = COVPLEX(0)

;1 DL pronpts for input with a col on:
READ, A

; The user enters "(3,4)" and Ais set to COWLEX(3, 4).
(3, 4)

;1 DL pronpts for input with a col on:
READ, A

; The user enters "50" and Ais set to COVPLEX(50, 0).
150

Building IDL Applications Using Free Format Input/Output

232 Chapter 10: Files and Input/Output

Free Format Output

Thefollowing rules are used by IDL to perform free format output:

1. Theformat used to output numeric datais determined by the data type. The
formats used are summarized in the table below. The formats are specified in
the FORTRAN-like style used by IDL for explicitly formatted input/output.

Data Type Format
Byte 14
Int, Ulnt 18
Long, ULong 112
Float G13.6
Long64, ULong64 122
Double G16.8
Complex '(,G13.6,', G136,
Double-precision Complex '(,G16.8,'), G16.8, ")
String Output full string on current line.

Table 10-3: Formats Used for Free-Format Output

2. Thecurrent output lineisfilled with characters until one of the following
happens:

A. Thereisno more datato output.

B. Theoutput lineisfull. When output isto afile, the default line width is 80
columns (you can override this default by setting the WIDTH keyword to
the OPEN procedure). When the output is to the standard output, IDL uses
the current width of your tty or command log window.

C. Anentirerow isoutput in the case of multidimensional arrays.

3. When outputting a structure variable, its contents are bracketed with “{” and
“}” characters.

Using Free Format Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 233

Example: Free Format Input/Output

IDL free format input/output is extremely easy to use. The following IDL statements
demonstrate how to read into a complicated structure variable and then print the
results:

;Create a structure naned "types" that contains seven of the basic
;1 DL data types, as well as a floating-point array.
A = {TYPES, A 0B, B:0, COL, D1.0, E1D $

F: COPLEX(0), G 'string', E: FLTARR(5)}

;Read free-formatted data from i nput
READ, A

;1 DL pronpts for input with a colon. We enter values for the first
;six nuneric fields of A and the string.
12345(6,7) EIGHT

Notice that the complex value was specified as (6, 7). If the parentheses had been
omitted, the complex field of A would have received the value COMPLEX(6, 0), and
the 7 would have been input for the next field. When reading into a string variable,
IDL starts from the current point in the input and continues to the end of the line.
Thus, we do not enter values intended for the rest of the structure on this line.

; There are still fields of A that have not received data, so |DL
;pronpts for another |ine of input.
9 10 11 12 13

;Show the result.
PRI NT, A

Executing these statements results in the following outpuit:

{ 1 2 3 4. 00000 5. 0000000
(6. 00000, 7.00000) ei ght

9. 00000 10. 0000 11. 0000 12. 0000 13. 0000
}

When producing the output, IDL uses default rules for formatting the values and
attemptsto place as many items as possible onto each line. Becausethe variable Aisa
structure, braces{} are placed around the output. As noted above, when IDL reads
stringsit continues to the end of the line. For thisreason, it is usually convenient to
place string variables at the end of thelist of variablesto be input. For example, if Sis
astring variableand | isan integer:

;Read into the string first.
READ, S, |

;1 DL pronpts for input. We enter a string value followed by an

Building IDL Applications Using Free Format Input/Output

234 Chapter 10: Files and Input/Output

;i nteger.
Hello Wrld 34

; The entire previous line was placed into the string variable S

;and | still requires input. IDL pronpts for another |ine.
34

Using Free Format Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 235

Using Explicitly Formatted Input/Output

The FORMAT keyword can be used with the formatted input/output routines to
explicitly specify the appearance of the data. The syntax of IDL format stringsis
extremely similar to that used in FORTRAN. The format string specifiestheformat in
which dataisto be transferred as well as the data conversion required to achieve that
format. The format specification strings supplied by the FORMAT keyword have the
form:

FORMAT = " (gafgs3fpsp ... fpan)’
where g, f, and s are described below.

Record Terminators

g is zero or more slash (/) record terminators. On output, each record terminator
causes the output to move to a new line. On input, each record terminator causes the
next line of input to be read.

Format Codes

f isaformat code. Some format codes specify how data should be transferred while
others control some other function related to how input/output is handled. The code f
can aso be a nested format specification enclosed in parentheses. Thisiscaled a
group specification and has the following form:

DNl (aafasaf oSy oo fad) -

A group specification consists of an optional repeat count n followed by aformat
specification enclosed in parentheses. Use of group specifications allows more
compact format specifications to be written. For example, the format specification:

FORMAT = ' ("Result: ", "<",15,">", "<" |5 ">")"
can be written more concisely using a group specification:
FORMAT = ' ("Result: ", 2("<",15,">"))"
If the repeat count is 1 or is not given, the parentheses serve only to group format
codes for use in format reversion (discussed in the next section).
Field Separators

sisafield separator. A field separator consists of one or more commas (,) and/or
slash record terminators (/). The only restriction is that two commas cannot occur
side-by-side.

Building IDL Applications Using Explicitly Formatted Input/Output

236 Chapter 10: Files and Input/Output

The arguments provided in a call to aformatted input/output routine are called the
argument list. The argument list specifies the data to be moved between memory and
thefile. All dataare handled in terms of basic IDL components. Thus, an array is
considered to be a collection of scalar data elements, and a structure is processed in
terms of its basic components. Complex scalar values are treated as two floating-
point values.

Rules for Explicitly Formatted Input/Output

IDL uses the following rulesto process explicitly formatted input/output:

1. Traversetheformat string from left to right, processing each record terminator
and format code until an error occurs or no datais|eft in the argument list. The
comma field separator serves no purpose except to delimit the format codes.

2. ltisanerror to specify an argument list with aformat string that does not
contain aformat code that transfers data to or from the argument list because
an infinite loop would result.

3. When adash record terminator (/) is encountered, the current record is
completed, and anew oneis started. For output, this meansthat anew lineis
started. For input, it means that the rest of the current input record isignored,
and the next input record is read.

4. When aformat code that does not transfer datato or from the argument list is
encountered, process it according to its meaning. The format codes that do not

Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 237

transfer data to or from the argument list are summarized in the following
table:

Code Action

Quoted String | On output, the contents of the string are written out. On input,
quoted strings are ignored.

The colon format code in aformat string terminates format
processing if no more items remain in the argument list. It has no
effect if data still remainson thelist.

$ On output, if a$ format codeis placed anywhere in the format
string, the new line implied by the closing parenthesis of the
format string is suppressed. On input, the $ format codeis

ignored.

nH FORTRAN-style Hollerith string. Hollerith strings are treated
exactly like quoted strings.

nXx Skips n character positions.

Tn Tab. Sets the character position of the next item in the current
record.

TLn Tab Left. Specifies that the next character to be transferred to or

from the current record is the n-th character to the |l eft of the
current position.

TRn Tab Right. Specifies that the next character to be transferred to or
from the current record is the n-th character to the right of the
current position.

Table 10-4: Format Codes that do not Transfer Data

5. When aformat code that transfers data to or from the argument list is
encountered, it is matched up with the next datum in the argument list. The

Building IDL Applications Using Explicitly Formatted Input/Output

238

Chapter 10: Files and Input/Output

format codes that transfer data to or from the argument list are summarized in
the following table:

Code Action

Transfer character data.

C0

Transfer calendar (Julian date and/or time) data.

Transfer double-precision, floating-point data.

Transfer floating-point data using scientific (exponential) notation.

Transfer floating-point data.

| T m O

Use F or E format depending on the magnitude of the value being
processed.

Transfer integer data.

O

Transfer octal data.

Obtain the number of charactersin the input record remaining to
be transferred during a read operation. In an output statement, the
Q format code has no effect except that the corresponding
input/output list element is skipped.

Transfer Hexadecimal data.

6.

Table 10-5: Format Codes that Transfer Data

On input, read datafrom the file and format it according to the format code. If
the data type of the input data does not agree with the data type of the variable
that isto receive the result, do the type conversion if possible; otherwise, issue
atype conversion error and stop.

On output, write the data according to the format code. If the data type does
not agree with the format code, do the type conversion prior to doing the output
if possible. If the type conversion is not possible, issue a type conversion error
and stop.

If the last closing parenthesis of the format string is reached and there are no
data |eft on the argument list, then format processing terminates. If, however,
there are till datato be processed on the argument list, then part or all of the
format specification is reused. This processis called format reversion.

Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 239

Format Reversion

In format reversion, the current record isterminated, a new oneisinitiated, and
format control reverts to the group repeat specification whose opening parenthesis
matches the next-to-last closing parenthesis of the format string. If the format does
not contain a group repeat specification, format control returnsto the initial opening
parenthesis of the format string. For example, the IDL command:

PRINT, FORMAT = '("The values are: ", 2("<", I1, ">"))', $
| NDGEN(6)

results in the output

The val ues are: <0><1>
<2><3>
<4><5>

The processinvolved in generating this output is as follows:
1. Output the string “The values are: .

2. Process the group specification and output the first two values. The end of the
format specification is encountered, so end the output record. Data are
remaining, so move back to the group specification

2("<", 11, ">")
by format reversion.

3. Repeat Step 2 until no dataremain. End the output record. Format processing
is complete.

Building IDL Applications Using Explicitly Formatted Input/Output

240 Chapter 10: Files and Input/Output

Format Codes

“A” Format Code

The A format code transfers character data. The format is

[n] Al W
where:

n—isan optional repeat count (1 < n) specifying the number of times the format
code should be processed. If nis not specified, arepeat count of oneis used.

w —is an optional width (1 <w) specifying the number of charactersto be
transferred. If wis not specified, the entire string istransferred. On output, if wis
greater than the length of the string, the string is right justified. On input, IDL strings
have dynamic length, so w specifies the resulting length of input string variables.

For example, the IDL statement,

PRI NT, FORMAT = '(A6)', '123456789'
generates the following output:

123456

Note

While an IDL string variable can hold up to 2.1 Gbytes of information, the buffer
than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the

IDL command prompt, split the variable into multiple sub-variables and combine
them with the “+" operator:

var = varl+var2+var3

Thislimit only affects string constants created at the IDL command prompt.

“:" Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list. For example, the IDL statement,

PRINT, FORMAT = '(6(11, :, ", "))', |NDGEN(6)
will output the following comma-separated list of integer values:
0, 1, 2, 3, 4, 5

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 241

The use of the colon format code prevented a comma from being output following the
final item in the argument list.

“$” Format Code

When IDL completes output format processing, it normally outputs a newline to
terminate the output operation. However, if a“$” format code is found in the format
specification, this default newlineis not output. The “$’ format code is only used on
output; it isignored during input formatting. The most common use for the “$”
format code isin prompting for user input. For example, the IDL statements,

; Pronpt for input. Suppress the carriage return.
PRI NT, FORMAT = '($, "Enter value: ")’

; Read the response.
READ, VALUE

will prompt for input without forcing the user’s response to appear on a separate line
from the prompt.

11 F1” 11 D’” 111 E,” and 11 G” Format Codes

TheF, D, E, and G format codes are used to transfer floating-point values between
memory and the specified file. The format is

[n] F[w. d]

[n] D[w. d]
[n]E[w.d] or [n]Ew dEe]
[n]dw.d] or [n]Jd w dEe]

where

n—isan optional repeat count (1 < n) specifying the number of times the format
code should be processed. If nisnot specified, arepeat count of 1 is used.

w.d —is an optional width specification (1 <w< 256, 1 <d <w). Thevariablew
specifies the number of charactersin the external field. For the F, D, and E format
codes, d specifies the number of positions after the decimal point. For the G format
code, d specifies the number of significant digits displayed.

e—isan optional width (1 < e < 256) specifying the width of exponent part of the
field. IDL ignoresthis value—it is allowed for compatibility with FORTRAN.

Oninput, the F, D, E, and G format codes all transfer w characters from the external
field and assign them as areal value to the corresponding input/output argument list
datum.

Building IDL Applications Format Codes

242

Chapter 10: Files and Input/Output

The F and D format codes are used to output values using fixed-point notation. The
valueisrounded to d decimal positions and right-justified into an external field that is
w characters wide. The value of w must be large enough to include aminus sign when
necessary, at least one digit to the left of the decimal point, the decimal point, and d
digitsto theright of the decimal point. The code D isidentical to F (except for its
default values for w and d) and existsin IDL primarily for compatibility with
FORTRAN.

The E format code is used for scientific (exponential) notation. The value is rounded
to d decimal positions and right-justified into an external field that is w characters
wide. The value of w must be large enough to include a minus sign when necessary, at
least one digit to the left of the decimal point, the decimal point, d digitsto the right
of the decimal point, a plus or minus sign for the exponent, the character “€” or “E”,
and at |east two characters for the exponent.

Note
IDL uses a standard 1/O function to format numbers and their exponents. Asa
result, different platforms may print different numbers of exponent digits.

The G format code uses the F output style when reasonable and E for other values,
but displays exactly d significant digits rather than d digits following the decimal
point.

On output, if the field provided is not wide enough, it isfilled with asterisks (*) to
indicate the overflow condition. If wis zero, the “natural” width for the valueis
used—the value is read or output using a default format without any leading or
trailing whitespace, in the style of the C standard input/output library pri ntf (3S)
function. See “ C printf-Style Quoted String Format Code” on page 255 for more
information on C pri nt f -style formatting.

If w, d, or e are omitted, the values specified in the following table are used.

Data Type w d e
Float, Complex 15 7 2 (3 for Windows)
Double 25 16 2 (3 for Windows)
All Other Types 25 16 2 (3 for Windows)

Table 10-6: Floating Format Defaults

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 243

Using avalue of zero for the w parameter is useful when reading tables of datain
which individual elements may be of varying lengths. For example, if your data
reside in tables of the following form:

26.01 92.555 344.2
101.0 6.123 99. 845
23.723 200.02 141.93

setting the format to
FORMAT = ' (3F0)"
ensures that the correct number of digits are read or output for each element.

Normally, the case of the format code isignored by IDL. However, the case of the E
and G format codes determines the case used to output the exponent in scientific
notation. The following table gives examples of several floating-point formats and the
resulting output.

Format Internal Value Formatted Output
F 100.0 bbbb100.0000000
F 100.0D bbbbb100.0000000000000000
F10.0 100.0 bbbbbb100.
F10.1 100.0 bbbbb100.0
F10.4 100.0 bb100.0000
F2.1 100.0 o
ell4 100.0 b1.0000e+02

1.0000e+002 (Windows)

Note that “€10.4” would not work on
Windows because the extra“ 0" added
after the “€” makes the string longer
than 10 characters.

E114 100.0 b1.0000E+02
1.0000E+002 (Windows)
gl10.4 100.0 bbbbb100.0

Table 10-7: Floating-Point Output Examples (“b” represents a blank space)

Building IDL Applications Format Codes

244 Chapter 10: Files and Input/Output
Format Internal Value Formatted Output
010.4 10000000.0 b1.000e+07
1.000e+007 (Windows)
G104 10000000.0 b1.000E+07
1.000E+007 (Windows)

Table 10-7: (Continued) Floating-Point Output Examples (“b” represents a
“I,” “O,” and “Z” Format Codes

Thel, O, and Z format codes are used to transfer integer values to and from the
specified file. The | format code is used to output decimal values, O is used for octal
values, and Z is used for hexadecimal values.

The format is as follows:

(L iw orfnp I [wm

[(MQaw or [N Qwm
[N Z[wW] or[n] Z[wm

where

n—isan optional repeat count (1 < n) specifying the number of times the format
code should be processed. If nis not specified, arepeat count of 1 is used.

w —isan optional integer value (1 < w < 256) specifying the width of the field in
characters. The default values used if wis omitted are specified in the following table:

Data Type w

Byte, Int, Ulnt

7

Long, ULong, Float 12

Long64, ULong64 22
Double 23
All Other Types 12

Table 10-8: Integer Format Defaults

If the field provided is not wide enough, it isfilled with asterisks (*) to indicate the
overflow condition. If wis zero, the “natural” width for the value is used—the value

Format Codes

Building IDL Applications

Chapter 10: Files and Input/Output 245

isread or output using adefault format without any leading or trailing white space, in
the style of the C standard input/output library pri nt f (3S) function. See “C printf-
Style Quoted String Format Code” on page 255 for more information on C pri nt f -

style formatting.

Note that using a value of zero for the w parameter is useful when reading tables of
datain which individual e ements may be of varying lengths. For example, if your
datareside in tables of the following form:

26 92 344
101 6 99
23 200 141

setting the format to
FORMAT = ' (310)"
ensures that the correct number of digits are read or output for each element.

m— On output, m specifies the minimum number of nonblank digits required
(1< m< 256). Thefield is zero-filled on the left if necessary. If misomitted or zero,
the external field is blank filled.

Normally, the case of the format code isignored by IDL. However, the case of the Z
format codes determines the case used to output the hexadecimal digits A-F. The
following table gives examples of several integer formats and the resulting outpui.

Format Internal Formatted
Value Output

I 3000 bbb3000
16.5 3000 b03000
15.6 3000 il
12 3000 *x
@] 3000 bbb5670
06.5 3000 b05670
05.6 3000 ikl
02 3000 *x
z 3000 bbbbbb8

Table 10-9: Integer Output Examples (“b” represents a blank space)

Building IDL Applications Format Codes

246 Chapter 10: Files and Input/Output

Format Internal Formatted
Value Output
4 3000 bbbbBB8
Z6.5 3000 b00bb8
756 3000 Rk
Z2 3000 *x

Table 10-9: (Continued) Integer Output Examples (“b” represents a blank
“Q” Format Code

The Q format code returns the number of charactersin the input record remaining to
be transferred during the current read operation. It isignored during output
formatting. Format Q is useful for determining how many characters have been read
on aline. For example, the following IDL statements count the number of characters
in file demo.dat:

;Open file for reading.
OPENR, 1, "deno. dat"

;Create a longword integer to keep the count.
N = OL

; Count the characters.
WH LE(~ EOF(1)) DO BEG N

READF, 1, CUR, FORMAT = '(q)' & N= N+ CUR
END

; Report the result.
PRI NT, FORMAT = '("counted", N, "characters.")'

;Close file.
CLCSE, 1

Quoted String and “H” Format Codes

On output, any quoted strings or Hollerith constants are sent directly to the output. On
input, they are ignored. For example, the IDL statement,

PRI NT, FORMAT = '("Value: ", 10)", 23

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 247

11 T”

resultsin the following output:
Val ue: 23

Notice the use of single quotes around the entire format string and double quotes
around the quoted string inside the format. This is necessary because we are
including quotes inside a quoted string. It would have been equally correct to use
double quotes around the entire format string and single quotes internally. Another
way to specify the string is with a Hollerith constant as follows:

PRINT, FORVAT = '(7Hvalue: , 10)', 23
The format for aHollerith constant is:
nHcicy c3 ...cn
where
n —isthe number of charactersin the constant (1 < n < 255).

¢; — isthe characters that make up the constant. The number of characters must agree
with the value provided for n.

See “ C printf-Style Quoted String Format Code” on page 255 for an aternate form of
the Quoted String Format Code that supports C pri nt f -style capabilities.

Format Code

The T format code specifies the absolute position in the current record. The format is
Tn
where

n —is the absolute character position within the record to which the current position
should be set (1 < n).

T — differsfromthe TL, TR, and X format codes primarily in that it requires an
absolute position rather than an offset from the current position. For example,

PRINT, FORMAT = '("First", 20X, "Last", T10, "Mddle")’
produces the following output:
Fi r st bbbbM ddI ebbbbbbbbbbLast

where “b” represents a blank space.

Building IDL Applications Format Codes

248 Chapter 10: Files and Input/Output

“TL” Format Code

The TL format code moves the current position in the external record to the left. The
format is

TLn
where

n —is the number of charactersto move left from the current position (1 < n). If the
value of nisgreater than the current position, the current position is moved to column
one.

TL — isused to move backwardsin the current record. It can be used on input to read
the same data twice or on output to position the output nonsequentially. For example,

PRINT, FORVAT = '("First", 20X, "Last", TL15, "Mddle")"
produces the following output:

Fi r st bbbbbbbbbM ddi ebbbbbLast
where “b” represents a blank space.

“TR” and “X” Format Codes

The TR and X format codes move the current position in the record to the right. The
format is

TRn
nX

where

n —isthe number of charactersto skip (1 < n). Oninput, n charactersin the current
input record will be passed over. On output, the current output position is moved n
charactersto the right.

The TR or X format codes can be used to leave whitespace in the output or to skip
over unwanted datain the input. For example,

PRINT, FORMAT = '("First", 15X, "Last")'
or

PRINT, FORMAT ='("First", TRL5, "Last")'
resultsin the following outpuit:

Fi r st bbbbbbbbbbbbbbbLast
where “b” represents a blank space.

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 249

These two format codes differ in one way. Using the X format code at the end of an
output record will not cause any characters to be written unlessit is followed by
another format code that causes characters to be output. The TR format code always
writes characters in this situation. Thus,

PRI NT, FORMAT = '("First", 15X)°
does not leave 15 blanks at the end of the line, but the following statement does:
PRI NT, FORMAT = '("First", TR15)'

“C()” Format Code

The C() format code is used to transfer calendar (Julian date and/or time) data. The
format is

[n]C([cO,c1,..., cx])
where:

n—isan optional repeat count (1 < n) specifying the number of times the format
code should be processed. If nisnot specified, arepeat count of 1 is used.

c; — represents optional calendar format subcodes, or any of the standard format
codes that are allowed within a calendar specification, as described below. If no ¢; are
provided, the datawill be transferred using the standard 24-character system format
that includes the day, date, time, and year, as shown in this string:

Thu Aug 13 12:01:32 1979
For input, this default is equivalent to:

C(CDWA, X, CWbA, X, CDI, X, CH, X, CM, X, CSI, CVYI5)
For output, this default is equivalent to:

C(CDWA, X, CWbA, X, CDI2.2, X, CHI2.2, ":", CM2.2, ":", CSI2.2,
CYI 5)

Note
The C() format code represents an atomic data transfer. Nesting within the
parentheses is not allowed.

Note
For input using the calendar format codes, asmall offset is added to each Julian date
to eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS* Julian, where Julian
istheinteger portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x10~19 (which corresponds to
5x10™° seconds). This offset ensuresthat if the Julian date is converted back to hour,

Building IDL Applications Format Codes

250 Chapter 10: Files and Input/Output

minute, and second, then the hour, minute, and second will have the same integer
values as were originally input.

Note
Calendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

Calendar Format Subcodes

Thefollowingisalist of the subcodes allowed within the parenthesis of the C format
code:

“CMOA” subcodes

The CMOA subcodes transfers the month portion of adate as a string. The format for
an all upper case month string is:

CMVOA[W]
The format for a capitalized month string is:

CMVOA[W
The format for an all lower case month string is:

CmoAl W]

Note

The case of the ‘M’ and ‘O’ of these subcodes will be ignored on input, or if the
MONTHS keyword for the current routine is explicitly set.

For these subcodes:

w —isan optional width (0 < w < 256) specifying the number of characters of the
month name to be transferred. If wis not specified, three characters will be
transferred. If wis O, the natural length of the month nameistransferred. On output, if
wis greater than the natural length of the month name, the string will be right
justified.

“CMOI" subcode

The CMOI subcode transfers the month portion of a date as an integer. The format is
asfollows:

CMO [w] or CMO [w. ni
where:

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 251

w—isan optional width (1 <w < 256) specifying the width of the field in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digits required (L<m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CDI"” subcode

The CDI subcode transfers the day portion of adate as an integer. The format is as
follows:

CDI[w] or CDI[wmM

where;

w —isan optional width (1 < w < 256) specifying the width of thefield in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digits required (1 <m
< 256). Thefield is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.

“CYI" subcode

The CY| subcode transfers the year portion of adate as an integer. The format is as
follows:

CYl[w] or CYI[w
where:

w—isan optional width (1 < w < 256) specifying the width of the field in characters.
The default width is 4.

m— On output, m specifies the minimum number of nonblank digits required (1 < m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CHI” subcodes

The CHI subcodes transfer the hour portion of a date as an integer. The format for 24
hour based integer is:

CH[w or CH[wm
The format for a 12 hour based integer is:
Cchi[w] or Chl[wm

Building IDL Applications Format Codes

252

Chapter 10: Files and Input/Output

For these subcodes:

w—isan optional width (1 < w < 256) specifying the width of the field in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digits required (1 <m
< 256). Thefield is zero-filled on the | eft if necessary. If misomitted or zero, the
external field is blank filled.

“CMI” subcode

The CMI subcode transfers the minute portion of adate asan integer. Theformat isas
follows:

CM[w or CM[w m
where:

w —isan optional width (1 < w < 256) specifying the width of thefield in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digits required (L<m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CSI” subcode

The CSI subcode transfers the seconds portion of adate as an integer. The format is
asfollows:

CSI[w] or CSI[w

where;

w—isan optional width (1 < w < 256) specifying the width of the field in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digits required (1 <m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CSF” subcode

The CSF subcode transfers the seconds portion of a date as a floating-point value.
The format is asfollows:

CSF[w. d]

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 253

where:

w.d —is an optional width specification (1 <w< 256, 1 <d<w). Thevariablew
specifies the number of charactersin the external field; the default is5. The variabled
specifiesthe number of positions after the decimal point; the default is 2. The value of
w must be large enough to include at least one digit to the left of the decimal point,
the decimal point, and d digitsto the right of the decimal point. On output, if the field
provided is not wide enough, it isfilled with asterisks (*) to indicate the overflow
condition. If wis zero, the “natural” width for the value is used — the value is read or
output using a default format without any leading or trailing whitespace, in the style
of the C standard library printf (3S) function.

“CDWA" subcodes

The CDWA subcodes transfers the day of week portion of adataasastring. The
format for an all upper case day of week stringis.

CDVA[Wi

The format for a capitalized day of week string is:
CDwWA[Wi

The format for an all lower case day of week string is:

CdwA[W]

Note

The case of the*D’ and ‘W’ of these subcodes will be ignored on input, or if the
DAYS OF WEEK keyword for the current routine is explicitly set.

For these subcodes:

w —isan optional width (0 < w < 256), specifying the number of characters of the
day of week name to be transferred. If wis not specified, three characters will be
transferred. If wis 0, the natural length of the day of week nameis transferred. On
output, if wis greater than the natural length of the day of week name, the string will
beright justified.

“CAPA” subcodes

The CAPA subcodes transfers the am or pm portion of a date as a string. The format
for an al upper case AM or PM stringis:

CAPA[W]
The format for a capitalized AM or PM string is:

CAPAl W

Building IDL Applications Format Codes

254

Chapter 10: Files and Input/Output

The format for an all lower case AM or PM string is:

CapAl W]

Note

The case of thefirst ‘A’ and ‘P’ of these subcodes will beignored on input, or if the
AM_PM keyword for the current routine is explicitly set.

For these subcodes:

w —isan optional width (0 < w < 256), specifying the number of characters of the
AM or PM string to be transferred. If wis not specified, two characters will be
transferred. If wis 0, the natural length of the AM or PM string is transferred. On
output, if wis greater than the natural length of the AM or PM string, the string will
beright justified.

Standard Format Codes Allowed within a Calendar
Specification

None of these subcodes are allowed outside of a C() format specifier. In addition to
the subcodes listed above, only quoted strings, “TL”, “TR”, and “ X" format codes are
allowed inside of the C() format specifier.

Example:
To print the current date in the default format:
PRI NT, FORVAT='(C())', SYSTIME(/JULI AN)
The printed result should look something like:
Fri Aug 14 12:34:14 1998
Example:

To print the current date as atwo-digit month value followed by a slash followed by a
two-digit day value:

PRI NT, FORMAT='(C(CMO,"/",CDI))", SYSTI ME(/JULI AN)
The printed result should look something like:
8/ 14

Example:

To print the current time in hours, minutes, and floating-point seconds, all zero-filled
if necessary, and separated by colons:

PRI NT, FORMAT= $
"(QCHI2.2,":",CM 2.2,":", CSF5. 2, TL5, CSI 2. 2)) ', SYSTI ME(/ JULI AN)

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 255

The printed result should look something like:
09:59:07.00

Note that to do zero-filling for the floating-point seconds, it is necessary to use “TL”
(tab left) and then overwrite the integer portion.

C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in smple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functionssuch aspri ntf () and
sprintf().Most programmers are very familiar with such formats. In this style,
text and format codes (prefixed by a % character) are intermixed in a single string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and writein
common simple cases.

IDL supportsthe use of pri nt f -style formats within format specifications, using a
special variant of the Quoted String Format Code (discussed in “ Quoted String and
“H” Format Codes’ on page 246) in which the opening quote starts with a %
character (e.g. %" or %' rather than " or). The presence of this % before the opening
guote (with no whitespace between them) tellsIDL that thisisapri nt f -style quoted
string and not a standard quoted string.

Asasimple example, consider the following IDL statement that uses normal quoted
string format codes:

PRI NT, FORMAT=' ("Il have ", 10, " nobnkeys, ", A ".")', $
23, 'Scott'

Executing this statement yields the output:
I have 23 nonkeys, Scott.

Using apri nt f -style quoted string format code instead, this statement could be
written:

PRI NT, FORMAT=' (% | have % nonkeys, 9%.")', 23, 'Scott'

These two statements are completely equivalent in their action. In fact, IDL compiles
both into an identical internal representation before processing them.

Thepri nt f -style quoted string format codes can be freely mixed with any other
format code, so hybrid formats like the following are allowed:

Building IDL Applications Format Codes

PRI NT, $
FORVAT=" (9% |
23, 'Scott',

have % nonkeys, 9%s,"
5

This generates the output:

I have 23 nonkeys,

Scott,

Supported “%” Formats

" and ", 10, "

and 5 parrots.

Chapter 10: Files and Input/Output

parrots.")',$

The following table lists the % format codes allowed within apri nt f -style quoted
string format code, as well as their correspondence to the standard format codes that
do the same thing. In addition to the format codes described in the table, the special
sequence %% causes a single % character to be written to the output. This%is
treated as aregular character instead of as aformat code specifier.

Normal Style Described

Printf-Style Normal-Style in Section

%[w.d]e or %[w.d]E e[w.d] or E[w.d] ““F”“D,” “E,” and“G”
Format Codes’ on page 241

%[w]d or %[w]D [[w] ““1,7*0,” and “Z" Format

%[wmD or %wmD | I[wd] Codes” on page 244

%[w]i or %[w]l Tw]

%[w.m]i or %[w.m]| Iw.d]

%[w.d]f or %o[w.d]F Flw.d] ““F’“D,” “E” and“G”
Format Codes’ on page 241

%[w.d]g or %[w.d]G g[w.d] or G[w.d] “F"“D,” “E) and“G"
Format Codes’ on page 241

%[w]o or %[w]O Oo[w] ““17 0, and “Z” Format

9%[w.m]o or Y%[w.m|O o[w.d] Codes’ on page 244

%[w]s or %[w]S Alw] ““A” Format Code” on

page 240

Table 10-10: Supported “%” Formats

Format Codes

Building IDL Applications

Chapter 10: Files and Input/Output 257

Printf-Style Normal-Style Normali nStgéit[i);?crlbed
%[w]x or %[w] X Z[w] ““1," *0O,” and “Z” Format
%[W.m]x or %6[w.m]X Z[w.d] Codes” on page 244
%[w]z or %[w]Z Z[w]

%[w.m]z or %[w.m]Z Z[wd]

Table 10-10: Supported “%” Formats

Asindicated in the above table, there is a one to one correspondence between each
pri nt f -style % format code and one of the normal format codes documented earlier
in this chapter. When reading this table, please keep the following considerationsin

mind:

The %d (or %D) format isidentical to the %i (or %l) format. Note that %D
does not correspond to the normal-style D format.

Thew, d, and e parameters listed as optional parameters (i.e. between the
square brackets, []) are the same values documented for the normal-style
format codes, and behave identically to them.

The default value for the w parametersfor pri nt f -style formatting is O,
meaning that pri nt f -style output produces “natural” width by default. For
example, a%d format code corresponds to a normal format code of 10 (not I,
which would use the default value for w based on the data type). Similarly, a
%e format code corresponds to a normal format code of €0 (not €).

The E and G format codes allow the following styles for compatibility with
FORTRAN:

E[w. dEe] or e[w. dEe]
G w. dEe] or g[w dEe]

These styles are not available using the pr i nt f -style format codes. In other
words, the following formats are not allowed:

% w. dEe] E or % w. dEe] e
% w. dEe] G or % w. dEe] g

Normal-style format codes allow repetition counts (e.g. 510). The
pri nt f -style format codes do not allow this. Instead, each pri nt f -style
format code has an implicit repetition count of 1.

Like normal format codes (but unlike the C language pri nt f () function),
pri nt f -style format codes are allowed to be upper or lower case (e.g. %d and

Building IDL Applications Format Codes

258 Chapter 10: Files and Input/Output

%D mean the same thing). Whether or not case has an influence on the
resulting output depends on the specific format code. The specific behavior is
the same as with the normal-style version for each code.

Supported “\” Character Escapes

The C programming language allows * escape sequences’ that start with the backslash
character, \, to appear within strings. These escapes are used in several ways:

1. To specify characters that have no printed representation. For example, \n
means linefeed, and \r means carriage return.

2. Toremove any special meaning that a character might normally have. For
example, \" alows you to create a string containing a double-quote character
even though double-quote normally delimits a string. Note that backslash can
also be used to escapeitself, so "\\" corresponds to a string containing asingle
backslash character.

3. Tointroduce arbitrary charactersinto a string using octal or hexadecimal
notation.

Although IDL does not normally support backslash escapes within strings, the
escapes described in the following table are allowed within pri nt f -style quoted
string format codes. If a character not specified in thistable is preceded by a
backslash, the backslash is removed and the character isinserted into the output
without any special interpretation. This meansthat \" putsasingle" character into the
output and that " does not terminate the string constant. Another useful exampleis
that \% causes a single % character to be placed into the output without starting a
format code. Hence, \% and %% mean the same thing: a single % character with no
specia meaning.

SESEZ?\ie ASCII code
\A\a BEL (7B)
\B\b Backspace (8B)
\F\f Formfeed (12B)
\N \n Linefeed (10B)
\R\r Carriage Return (13B)

Table 10-11: Supported "\" Character Escapes

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output 259

sgéﬁiﬂie ASCII code
\T t Horizontal Tab (9B)
\V \v Vertical Tab (11B)
\ooo Octal value ooo (Octal value of 1-3 digits)
\xhh Hexadecimal value xx (Hex value of 1-2 digits)

Table 10-11: (Continued) Supported "\" Character Escapes

Differences Between C printf() and IDL printf-Style Formats

IDL’spri nt f -style quoted string format code is very similar to asimplified C
language pri nt f () format string. However, there are important differences that an
experienced C programmer should be aware of:

The IDL PRINT and PRINTF procedures implicitly add an end-of-line
character to the end of the line (unless suppressed by use of the $ format code).
Hence, the use of \n at the end of the format string to end the line is neither
necessary nor recommended.

Only the % format sequences listed in the table under “ Supported “ %"
Formats’ on page 256 are understood by IDL. Most C pri nt f functions
accept more codes than these, but those codes are not necessary in IDL.

For example, the C pri nt f /scanf functions require the use of the %u format
code to indicate an unsigned value, and also use type modifiers (h, I, II) to
indicate the size of the data being processed. IDL uses the type of the
arguments being substituted into the format to determine this information.
Therefore, the u, h, I, and Il codes are not required in IDL and are not accepted.

The % and \ sequencesin IDL pri nt f -style strings are case-insensitive. C
printf iscase-sensitive (e.g. \n and \N do not both mean the linefeed
character asthey doin IDL).

The Cpri nt f function allows the use of %n$d notation to specify that
arguments should be substituted into the format string in a different order than
they arelisted. IDL does not support this.

TheCprintf function allows the use of %*d notation to indicate that the
field width will be supplied by the next argument, and the argument following
that supplies the actual value. IDL does not support this.

Building IDL Applications Format Codes

260

Format Codes

Chapter 10: Files and Input/Output

TheCprint f function allows the use of %-wd notation to specify that the
datashould beleft justified in afield of w characters. IDL does not support this
notation.

IDL pri nt f -style formats allow %z for hexadecimal output as well as %ox.
TheCprintf () function does not understand %z. This deviation from the
usual implementation isallowed by IDL because IDL programmers are used to
treating Z as the hexadecimal format code.

Example: Reading Tables of Formatted Data

IDL explicitly formatted input/output has the power and flexibility to handle almost
any kind of formatted data. A common use of explicitly formatted input/output
involves reading and writing tables of data. Consider a data file containing employee
data records. Each employee has a name (String, 32 columns) and the number of
years they have been employed (Integer, 3 columns) on the first line. The next two
lines contain each employee’s monthly salary for the last twelve months. A sample
file named employee.dat with this format might look like the following:

Bul | wi nkl e 10

1000.0 9000. 97 1100.0 2000.0
5000. 0 3000. 0 1000. 12 3500.0 6000. 0 900.0
Bori s 11

400.0 500.0 1300. 10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
Nat asha 10

950.0 1050.0 1350. 0 410.0 797.0 200. 36
2600. 0 2000.0 1500.0 2000.0 1000.0 400.0
Rocky 11

1000.0 9000. 0 1100.0 0.0 0.0 2000. 37
5000. 0 3000.0 1000. 01 3500.0 6000. 0 900. 12

Thefollowing IDL statements read data with the above format and produce a
summary of the contents of thefile:

; Open data file for input.
OPENR, 1, 'enployee.dat"’

;Create variables to hold the name, nunber of years, and nonthly
;sal ary.
name = '' & years = 0 & salary = FLTARR(12)

; Qut put a heading for the summary.
PRI NT, FORMAT=' (" Nane", 28X, "Years", 4X, "Yearly Salary")’

; Note: The actual dashed line is longer than is shown here.
PRI NT, ' ========

Building IDL Applications

Chapter 10: Files and Input/Output 261

; Loop over each enpl oyee.
WH LE (~ EOF(1)) DO BEG N

; Read the data on the next enpl oyee.
READF, 1, $
FORMAT = ' (A32,13,2(/,6F10.2))"', name, years, salary

; Qut put the enployee information. Use TOTAL to sum the nonthly
;salaries to get the yearly salary.

PRI NT, FORMAT='(A32,15,5X, F10.2)"', nane, years, TOTAL(sal ary)
ENDWHI LE

CLCSE, 1
The output from executing these statements on employee.dat is as follows:

Nare Year s Yearly Sal ary
Bul I wi nkl e 10 32501. 09
Borris 11 6805. 35
Nat asha 10 14257. 36
Rocky 11 32500. 50

Example: Reading Records that Contain Multiple
Array Elements

Frequently, data are written to files with each record containing single elements of
more than one array. One example might be afile consisting of observations of
altitude, pressure, temperature, and velocity with each line or record containing a
value for each of the four variables. Because IDL has no equivalent of the FORTRAN
implied DO list, special procedures must be used to read or write this type of file.

Thefirst approach, which isthe simplest, may be used only if al of the variables have
the same data type. An array is created with as many columns as there are variables
and as many rows as there are elements. The dataare read into thisarray, the array is
transposed storing each variable as arow, and each row is extracted and stored into a
variable which becomes avector. For example, the FORTRAN program which writes
the data and the IDL program which reads the data are as follows:

FORTRAN Write:
DI MENSI ON ALT(100) , PRES(100) , TEMP(100) , VELQ(100)
CPEN (UNIT = 1, STATUS=' NEW, FILE=' TEST')

WR TE(1, ' (4(1x, g15.5))")
(ALT(1), PRES(1), TEMP(1), VELQ(1), | =1, 100)

Building IDL Applications Format Codes

262 Chapter 10: Files and Input/Output

IDL Read:

;Open file for input.
OPENR, 1, 'test'

; Define variable (NVARS by NOBS).
A = FLTARR(4, 100)

: Read the dat a.
READF, 1, A

; Transpose so that col ums becone rows.
A = TRANSPOSE(A)

:Extract the vari abl es.
ALT = Al *, 0]
PRES = A[*, 1]
TEMP = A[*, 2]
VELO = A[*, 3]

Note that this same example may be written without the implied DO list, writing all
elements for each variable contiguously and simplifying matters considerably:

FORTRAN Write:

DI MENSI ON' ALT(100) , PRES(100) , TEMP(100) , VELQ(100)
OPEN (UNIT = 1, STATUS=' NEW, FILE=' TEST')
WR TE (1,' (4(1x, G15.5))') ALT, PRES, TEMP, VELO

IDL Read:

; Define vari abl es.

ALT = FLTARR(100)

PRES = ALT & TEMP = ALT & VELO = ALT
OPENR, 1, 'test'

READF, 1, ALT, PRES, TEMP, VELO

A different approach must be taken when the columns contain different data types or
the number of lines or records are not known. This method involves defining the
arrays, defining a scalar variable to contain each datum in one record, then writing a
loop to read each line into the scalars, and then storing the scalar values into each
array. For example, assume that afifth variable, the name of an observer which is of
string type, is added to the variable list. The FORTRAN output routine and IDL input
routine are as follows:

FORTRAN Write:

DI MENSI ON ALT(100) , PRES(100) , TEMP(100) , VELQ(100)

Format Codes Building IDL Applications

Chapter 10: Files and Input/Output

CHARACTER * 10 OBS(100)
OPEN (UNIT = 1, STATUS = 'NEW, FILE = 'TEST)
WR TE (1,' (4(1X, GL5.5),2X A)")

(ALT(1), PRES(1), TEMP(1), VELQ(1), OBS(1), | =1, 100)

IDL Read:

;Access file. Read files containing from1l to 200 records.

OPENR, 1, 'test’

; Define vector, nake it |arge enough for the biggest case.

ALT = FLTARR(200)

; Define other vectors using the first.
PRES = ALT & TEMP = ALT & VELO = ALT

; Define string array.
OBS = STRARR(200)

; Define scalar string.
oBSS = '

;lnitialize counter.
I =0

VWH LE ~ EOF(1) DO BEG N
; Read scal ars.
READF, 1, $

FORMAT = ' (4(1X, Gl5.5), 2X, A10)', $
ALTS, PRESS, TEWPS, VELOS, OBSS

;Store in each vector.
ALT[I] = ALTS & PRES[I] = PRESS & TEMP[I] = TEMPS
VELQ I] = VELCS & OBS[I] = OBSS

;I ncrement counter and check for too many records.

IF I LT 199 THENI =1 + 1 ELSE STOP, 'Too many records’

ENDWHI LE

263

If desired, after the file has been read and the number of observationsis known, the
arrays may be truncated to the correct length using a series of statements similar to

the following:
ALT = ALT[O:1-1]

The above statement represents a worst case example. Reading is greatly simplified

by writing data of the same type contiguously and by knowing the size of thefile.

Building IDL Applications Format Codes

264

Chapter 10: Files and Input/Output

One frequently used technique is to write the number of observations into the first
record so that when reading the data the size is known.

Warning

It might be tempting to implement aloop in IDL which reads the data values
directly into array elements, using a statement such as the following:

FOR | = 0, 99 DO READF, 1, ALT[I], PRES[1], TEMP[1], VELOI]

This statement isincorrect. Subscripted elements (including ranges) are temporary
expressions passed as values to procedures and functions (READF in this example€).
Parameters passed by value do not pass results back to the caller. The proper
approach isto read the datainto scalars and assign the values to the individual array
elements as follows:

A=0 &P=0. &T=0. &V =0.

FOR| = 0, 99 DO BEG N

READF, 1, A P, T, V

ALT[1] = A& PRES[I] = P & TEMP[I] = T & VELOI] = V
ENDFOR

Format Codes

Building IDL Applications

Chapter 10: Files and Input/Output 265

Using Unformatted Input/Output

Unformatted input/output involves the direct transfer of data between afile and
memory without conversion to and from a character representation. Unformatted
input/output is used when efficiency isimportant and portability is not an issue. It is
faster and requires | ess space than formatted input/output. IDL provides three
procedures for performing unformatted i nput/output:

READU
Reads unformatted data from the specified file unit.
WRITEU

Writes unformatted data to the specified file unit.
ASSOC

Maps an array structure to alogical file unit, providing efficient and convenient direct
access to data.

This section discusses READU and WRITEU, while ASSOC isdiscussed in
“Associated Input/Output” on page 277. The READU and WRITEU procedures
provide IDL’s basic unformatted input/output capabilities. They have the form:

READU, Unit, Var,, ..., Var,
WRI TEU, Unit, Var,, ..., Var,
where

Unit — The logical file unit with which the input/output operation will be performed.
Var; — One or more IDL variables (or expressionsin the case of output).

The WRITEU procedure writes the contents of its arguments directly to the file, and
READU reads exactly the number of bytesrequired by the size of its arguments. Both
cases directly transfer binary data with no interpretation or formatting.

Unformatted Input/Output of String Variables

Strings are the only basic IDL data type that do not have afixed size. A string
variable has a dynamic length that is dependent only on the length of the string
currently assigned to it. Thus, although it is always possible to know the length of the
other types, string variables are a special case. IDL uses the following rulesto
determine the number of characters to transfer:

Building IDL Applications Using Unformatted Input/Output

266 Chapter 10: Files and Input/Output

Input

Input enough bytes to fill the origina length of the string. The length of the resulting
string is truncated if the string contains a null byte.

Output
Output the number of bytes contained in the string. This number is the same number
returned by the STRLEN function and does not include a terminating null byte.

Note that these rulesimply that when reading into a string variable from afile, you
must know the length of the original string so asto be ableto initialize the destination
string to the correct length. For example, the following IDL statements produce the
following output, because the receiving variable A was not long enough.

;Open a file.
OPENW 1, 'tenp.tnp'

;Wite an 11-character string.
WRITEU, 1, "Hello Wrld'

;Rewind the file.
PONT_LUN, 1, O

; Prepare a nine-character string.
A= :

; Read back in the string.
READU, 1, A

; Show what was i nput.
PRI NT, A

CLCSE, 1
produce the following, because the receiving variable A was not long enough:
Hel | o Wor

The only solution to this problem is to know the length of the string being input. The
following IDL statements demonstrate a useful “trick” for initializing stringsto a
known length:

;Open a file.
OPENW 1, 'tenp.tnp'

;Wite an 11-character string.
WRI TEU, 1, 'Hello World'

Using Unformatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 267

Rewind the file.
PONT _LUN, 1, O

;Create a string of the desired length initialized with blanks.

; REPLI CATE creates a byte array of 11 el enents, each el ement
;initialized to 32, which is the ASCII code for a blank. Passing
;this byte array to STRING converts it to a scalar string
;containing 11 bl anks.

A = STRI NG REPLI CATE(32B, 11))

;Read in the string.
READU, 1, A

; Show what was i nput.
PRI NT, A

CLCSE, 1

This example takes advantage of the special way in whichthe BY TE and STRING
functions convert between byte arrays and strings. See the description of the BY TE
and STRING functions for additional details.

Example: Reading C-Generated Unformatted Data
with IDL

The following C program produces afile containing employee records. Each record
stores the first name of each employee, the number of years he has been employed,
and his salary history for the last 12 months.

#i ncl ude <stdio. h>

mai n()
{
static struct rec {
char name[32]; /* Empl oyee's nane */
int years; [* # of years with conpany */
float salary[12]; /* Salary for last 12 nonths */
} enployees[] = {
¢, u e ytw it 't Nk e, 10,
{1000. 0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
5000. 0, 3000.0, 1000.12, 3500.0, 6000.0, 900.0} },{
{B,'o,'r,'r,"i"," s}, 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0
200.0, 100.0, 100.0, 50.0, 60.0, 0.25} 1},
{{'N,"a,"'t","a",'s","h","a"}, 10
{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36
2600. 0, 2000.0, 1500.0, 2000.0, 1000.0, 400.0} },

Building IDL Applications Using Unformatted Input/Output

268

Chapter 10: Files and Input/Output

{{'R,'0",'c',"k',"y'}, 11,
{1000. 0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,
5000. 0, 3000.0, 1000.01, 3500.0, 6000.0, 900.12}}

I
FILE *outfile;

outfile = fopen("data.dat", "w');
(void) fwite(enpl oyees, sizeof(enployees), 1, outfile);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the employee records. The
following IDL statements can be used to read and print thisfile:

;Create a string with 32 characters so that the proper nunber of
;characters will be input fromthe file. REPLICATE is used to
;create a byte array of 32 el enents, each containing the ASCI| code
;for a space (32). STRING turns this byte array into a string
;contai ning 32 bl anks.

STR32 = STRI NG REPLI CATE(32B, 32))

;Create an array of four enployee records to receive the input
; dat a.
A = REPLI CATE({ EMPLOYEES, NAME: STR32, YEARS:O0L, $

SALARY: FLTARR(12)}, 4)

;Open the file for input.
OPENR, 1, 'data.dat'

: Read the dat a.
READU, 1, A

CLCSE, 1

: Show the results.
PRI NT, A

Executing these IDL statements produces the following output:

{ Bul I wi nkle 10

1000. 00 9000. 97 1100. 00 0. 00000 0. 00000 2000. 00
5000. 00 3000. 00 1000. 12 3500. 00 6000. 00 900. 000
}{Borris 11

400. 000 500. 000 1300. 10 350. 000 745. 000 3000. 00
200. 000 100. 000 100. 000 50. 0000 60. 0000 0. 250000
}{ Nat asha 10

950. 000 1050. 00 1350. 00 410. 000 797.000 200. 360
2600. 00 2000. 00 1500. 00 2000. 00 1000. 00 400. 000
}{ Rocky 11

Using Unformatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 269

1000. 00 9000. 00 1100. 00 0. 00000 0. 00000 2000. 37
5000. 00 3000. 00 1000. 01 3500. 00 6000. 00 900. 120

}

Example: Reading IDL-Generated Unformatted Data
with C

Thefollowing IDL program creates an unformatted datafile containing a5 x 5 array
of floating-point values:

;Open a file for output.
OPENW 1, 'data.dat'

;Wite 5x5 array with each elenent set to its 1-di nmensional index.
WRI TEU, 1, FINDGEN(5, 5)

CLCSE, 1
Thisfile can be read and printed by the following C program:

#i ncl ude <stdi o. h>

mai n()
{
float data[5][5];
FILE *infile; int i, j;
infile = fopen("data.dat", "r");
(void) fread(data, sizeof(data), 1, infile);
(void) fclose(infile);
for (i =0; i <5; i++) {
for (j =0;] <5 j++) {
printf("98.1f", datalil[j]);

printf("\n");
}
}
}
Running this program gives the following output:
0.0 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0
10.0 11.0 12.0 13.0 14.0
15.0 16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0 24.0

Building IDL Applications Using Unformatted Input/Output

270

Using Unformatted Input/Output

Chapter 10: Files and Input/Output

Example: Reading a Sun Rasterfile from IDL

Sun computers use rasterfiles to store scanned images. This example shows how to
read such an image and display it using IDL. In the interest of keeping the example
brief, anumber of simplifications are made, no error checking is performed, and only

8-bit deep rasterfiles are handled. See the READ_SRF procedure (the file

read_srf.prointheli b subdirectory of the IDL distribution) for a complete

example. The format used for rasterfiles is documented in the C header file

/usr/include/rasterfile.h.Thatfile providesthe following information:
Each file starts with a fixed header that describes the image. In C, this header is

defined as follows:

struct rasterfile{
int ras_mmgic; /* magic nunber */
int ras_width; /* width (pixels) of imge */
int ras_height; /* height (pixels) of inage */
int ras_depth; /* depth (1, 8, or 24 bits) */
int ras_length; /* length (bytes) of inmage */
int ras_type; /* type of file */
int ras_maptype; /* type of colormap */
int ras_maplength; /* |ength(bytes) of colormap */ };

The color map, if any, follows directly after the header information. The image data

follows directly after the color map.

Thefollowing IDL statements read an 8-bit deep image from thefiler as. dat :

;Define IDL structure that matches the Sun-defined rasterfile
;structure. A Cint variable on a Sun corresponds to an | DL LONG

rint.
h = {rasterfile, magic:0L, w dth:0L, height:0L, depth: OL, $
| engt h: OL, type:OL, maptype: OL, napl engt h: OL}

;Open the file, allocating a file unit at the sane tine.
OPENR, unit, file, /GET_LUN

: Read the header information.
READU, unit, h

;ls there a col or nap?
IF ((h.maptype EQ 1) AND (h. maplength NE 0)) THEN BEG N

; Cal cul ate | ength of each vector.
mapl en = h. mapl ength/ 3

;Create three byte vectors to hold the col or map.
r=(g=(b=BYTARR(mapl en, /NOZERO)))

Building IDL Applications

Chapter 10: Files and Input/Output 271

; Read the col or map.
READU, unit, r, g, b

ENDI F

;Create a byte array to hold imge.
i mage = BYTARR(h.wi dth, h.height, /NOZERO)

; Read the inmmge.
READU, unit, inmage

; Free the previously-allocated Logical Unit Number and cl ose the

file.
FREE LUN, unit

Building IDL Applications Using Unformatted Input/Output

272

Chapter 10: Files and Input/Output

Portable Unformatted Input/Output

Normally, unformatted input/output is not portable between different machine
architectures because of differencesin the way various machines represent binary
data. However, it is possible to produce binary files that are portable by specifying the
XDR keyword with the OPEN procedures. XDR (for eXternal Data Representation)
is ascheme under which al binary datais written using a standard “ canonical”
representation. All machines supporting X DR understand this standard representation
and have the ability to convert between it and their own internal representation.

XDR represents a compromise between the extremes of unformatted and formatted
input/output:

Itisnot as efficient as purely unformatted input/output because it does involve
the overhead of converting between the external and internal binary
representations.

It is still much more efficient than formatted input/output because conversion
to and from ASCII characters is much more involved than converting between
binary representations.

It is much more portable than purely unformatted data, although it is still
limited to those machinesthat support XDR. However, XDR isfreely available
and can be moved to any system.

XDR Considerations

The primary differencesin the way IDL input/output procedures work with XDR
files, as opposed to files opened normally are as follows:

To use XDR, you must specify the XDR keyword when opening the file.

The only input/output data transfer routines that can be used with afile opened
for XDR are READU and WRITEU.

XDR converts between the internal and standard external binary
representations for datainstead of simply using the machine’sinternal
representation.

Since XDR adds extra“ bookkeeping” information to data stored in thefile and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using XDR.

OPENW and OPENU normally open files for both input and output. However,
XDR files can only be opened in one direction at atime. Thus, using these

Portable Unformatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 273

procedures with the XDR keyword resultsin afile open for output only.
OPENR works in the usual way.

e Thelength of stringsis saved and restored along with the string. This means
that you do not haveto initialize a string of the correct length before reading a
string from the XDR file. (Thisis necessary with normal unformatted
input/output and is described in “Using Unformatted | nput/Output” on
page 265).

e For efficiency reasons, byte arrays are transferred as a single unit; therefore,
byte variables must be initialized to the correct number of elementsfor the data
to beinput, or an error will occur. For example, given the statements,

;Open a file for XDR out put.
OPENW /XDR, 1, 'data.dat’

;Wite a 10-el enent byte array.
VWRI TEU, 1, BI NDGEN(10)

;Close the file and re-open it for input.
CLOSE, 1 & OPENR, /XDR, 1, 'data.dat’

then the statement,

;Try to read the first byte only.
B = 0B & READU, 1, B

results in the following error:
% READU: Error encountered reading fromfile unit: 1.

Instead, it is necessary to read the entire byte array back in one operation using
a statement such as:

; Read the whol e array back at once.
B=BYTARR(10) & READU, 1, B

This restriction does not exist for other data types.
IDL XDR Conventions for Programmers
IDL uses certain conventions for reading and writing XDR files. If your only use of

XDRisthrough IDL, you do not need to be concerned about these conventions
because IDL takes care of it for you. However, programmers who want to create IDL -

Building IDL Applications Portable Unformatted Input/Output

Chapter 10: Files and Input/Output

compatible XDR files from other languages need to know the actual XDR routines
used by IDL for various data types. The following table summarizes this information.

Data Type XDR routine
Byte xdr_bytes()
Integer xdr_short()
Long xdr_long()
Float xdr_float()
Double xdr_double&()
Complex xdr_complex()
String xdr_counted_string()

Double Complex

xdr_dcomplex()

Unsigned Integer

xdr_u_short()

Unsigned Long

xdr_u_long()

64-bit Integer

xdr_long_long_t()

Unsigned 64-bit Integer

xdr_u long_long t()

Table 10-12: XDR Routines Used by IDL

The routines used for type COMPLEX, DCOMPLEX, and STRING are not primitive
XDR routines. Their definitions are as follows:

bool _t xdr_conpl ex(xdrs, p)
XDR *xdrs;
struct conplex { float r, i} *p;
{
return(xdr_float(xdrs, (char *) &p->r) &&
xdr_float(xdrs, (char *) &p->i));

}
bool _t xdr_dconpl ex(xdrs, p)

XDR *xdrs;

struct dconmplex { double r, i} *p;
{

return(xdr_doubl e(xdrs, (char *) &p->r) &&
xdr _doubl e(xdrs, (char *) &p->i));
}
bool _t xdr_counted_string(xdrs, p)
XDR *xdrs;

Portable Unformatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 275

}

char **p;

int input = (xdrs->x_op == XDR_DECODE)
short | ength;

/* If witing, obtain the length */
if ('input) length = strlen(*p);

/* Transfer the string length */
if (!xdr_short(xdrs, (char *) & ength)) return(FALSE)

/* 1If reading, obtain roomfor the string */
if (input)
{

*p = mal l oc((unsigned) (length + 1));

p[length] = '\0"; / Null termnation */

}
[* If the string length is nonzero, transfer it */
return(length ? xdr_string(xdrs, p, length) : TRUE);

Example: Reading C-Generated XDR Data with IDL

The following C program produces afile containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>

[

xdr _conpl ex() and xdr_counted_string() included here]

mai n()

{

static struct { /* Qutput data */
unsi gned char c;
short s;
| ong |
float f;
doubl e d;
struct conplex { float r, i } cnp;
char *str;
}
data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
u_int c_len = sizeof(unsigned char); /* Length of a char */

char *c_data = (char *) &data.c; /* Addr of byte field */
FILE *outfile; /* stdio streamptr */
XDR xdr s; /* XDR handl e */

/* Open stdio stream and XDR handl e */

Building IDL Applications Portable Unformatted Input/Output

276 Chapter 10: Files and Input/Output

outfile = fopen("data.dat", "w');
xdrstdi o_create(&xdrs, outfile, XDR ENCODE);

/* Qutput the data */
(void) xdr_bytes(&xdrs, &c_data, &c_len, c_len);
(void) xdr_short(&xdrs, (char *) &data.s);
(void) xdr_long(&xdrs, (char *) &data.l);
(void) xdr_float(&drs, (char *) &data.f);
(void) xdr_doubl e(&xdrs, (char *) &data.d);
(void) xdr_conpl ex(&xdrs, (char *) &data.cnp);
(void) xdr_counted_string(&xdrs, &data.str);

/* C ose XDR handl e and stdio stream */
xdr _destroy(&xdrs);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the XDR data. The
following IDL statements can be used to read thisfile and print its contents:

;Create structure containing correct types.
DATA={S, C. 0B, S:0, L:0L, F:0.0, D:0.0D, CWP: COWPLEX(0), STR''}

; Open the file for input.
OPENR, /XDR, 1, 'data.dat'

: Read the data.
READU, 1, DATA

;Close the file.
CLCSE, 1

;Show the results.
PRI NT, DATA

Executing these IDL statements produces the output:

{ 1 2 3 4. 00000 5. 0000000
(6. 00000, 7.00000) Hell o}

For further details about XDR, consult the XDR documentation for your machine.
Sun users should consult their Network Programming manual.

Portable Unformatted Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 277

Associated Input/Output

Unformatted data stored in files often consists of a repetitive series of arrays or
structures. A common example is a series of images. DL -associated file variables
offer a convenient and efficient way to access such data.

An associated variable is a variable that maps the structure of an IDL array or
structure variable onto the contents of afile. Thefileistreated as an array of these
repeating units of data. Thefirst array or structure in the file has an index of zero, the
second has index one, and so on. Such variables do not keep datain memory like a
normal variable. Instead, when an associated variable is subscripted with the index of
the desired array or structure within thefile, IDL performs the input/output operation
required to access the data.

When their use is appropriate (the file consists of a sequence of identical arrays or
structures), associated file variables offer the following advantages over READU and
WRITEU for unformatted input/output:

e Input/output occurs when an associated file variable is subscripted. Thus, it is
possible to perform input/output within an expression without a separate
input/output statement.

e Thesizeof the data set islimited primarily by the maximum possible size of
the file containing the data instead of the maximum memory available. Data
sets too large for memory can be accessed.

¢ Thereisno need to declare the maximum number of arrays or structures
contained in thefile.

e Associated variables offer transparent access to data. Direct access to any
element in the fileis rapid and simple—there is no need to calculate offsets
into the file and/or position thefile pointer prior to performing the input/output
operation.

An associated file variableis created by assigning the result of the ASSOC function
to avariable. See “ASSOC” in the IDL Reference Guide manual for details.

Example of Using Associated Input/Output

Assumethat afile named data.dat exists, and that thisfile contains aseries of 10 x 20
arrays of floating-point data. The following two IDL statements open the file and
create an associated file variable mapped to the file:

;Open the file.
OPENU, 1, 'data.dat'

Building IDL Applications Associated Input/Output

278 Chapter 10: Files and Input/Output

;Make a file variable. Using the NOZERO keyword wi th FLTARR
;increases efficiency.
A = ASSOC(1, FLTARR(10, 20, /NOZERO))

The order of these two statements is not important—it would be equally valid to call
ASSOC first, and then open the file. Thisis because the association is between the
variable and the logica file unit, not the fileitself. It is also legitimate to close the
file, open anew file using the same LUN, and then use the associated variable
without first executing anew ASSOC. Naturally, an error occursif the fileisnot open
when the file variable is subscripted in an expression or if the file is open for the
wrong type of access (for example, trying to assign to an associated file variable
linked with afile opened for read-only access).

Asaresult of executing the two statements above, the variable A is now an associated
file variable. Executing the statement,

HELP, A
gives the following response:
A FLOAT = Fil e<data. dat> Array(10, 20)

The associated variable A maps the structure of a 10 x 20, floating-point array onto
the contents of the file data.dat. Thus, the response from the HEL P procedure shows
it as having the structure of atwo-dimensional array. An associated file variable only
performs input/output to the file when it is subscripted. Thus, the following two IDL
statements do not cause input/output to happen:

B=A
This assignment does not transfer data from the file to variable B because A is not

subscripted. Instead, B becomes an associated file variable with the same structure,
and to the same logical file unit, as A.

B =23

This assignment does not result in the value 23 being transferred to the file because
variable B (which became afile variable in the previous statement) is not subscripted.
Instead, B becomes a scalar integer variable containing the value 23. It isno longer an
associated file variable.

Reading Data from Associated Files
Once avariable has been associated with afile, data are read from the file whenever

the associated variable appears in an expression with a subscript. The position of the
array or structure read from thefile is given by the value of the subscript. The

Associated Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 279

following IDL statements assume that the associated file variable A is defined asin
the previous section, and give some examples of using file variables:

; Copy the contents of the first array into nornal variable Z. Zis
;now a 10 x 20, floating-point array.

Z = AO]

;Formthe sumof the first 10 arrays. (Z was initialized in the
;previous statenent to the value of the first array. This statenent
;adds the following nine to it.) Note the use of the conpound
;operator += to avoid creating a new copy of Z each time we add a
;new array.

FORI1 =1, 9 DO Z += Al 1]

;Read fourth array and plot it.
PLOT, Al 3]

;Subtract array four fromarray five, and plot the result. The
result of the subtraction is then di scarded.
PLOT, A[5] - Al 4]

Writing Data to Associated Files

When a subscripted associated variable appears on the | eft side of an assignment
statement, the expression on the right side is written into the file at the given array
position:

;Sets sixth record to zero.

Al 5] = FLTARR(10, 20)

;Wite ARRinto sixth record after any necessary type conversions.
Al 5] = ARR

; Averages records J and J+1, and wites the result into record J.
AlJ] = (A[J] + AlJ + 1])/2

Multiple Subscripts With Associated File Variables

Usually, when subscripts are used with associated file variables, only asingle
subscript is present, specifying an array within the associated file. Thisis the most
efficient way to access associated file variables. However, IDL allows you to specify
individual elements within the selected array using multiple subscripts. When
multiple subscripts are present with an associated file variable, the rightmost
subscript selects the array within the file, and the other subscripts specify the specific
element within that array.

Building IDL Applications Associated Input/Output

280 Chapter 10: Files and Input/Output

For example, consider the following statement using the variable A defined above:
Z=A0,0,1]

This statement assigns the value of element [0,0] of the second array within thefileto
the variable Z. The rightmost subscript is interpreted as the subscript of the array
within thefile, causing IDL to read the entire array into memory. Thisresulting array
expression is then further subscripted by the remaining subscripts.

Similarly, the statement:
Al2,3,4] = 45
assigns the value 45 to element [2,3] of the fifth array within thefile.

Note
Although the ability to directly refer to array elements within an associated file can
be convenient, it can also be very slow because every accessto an array element
causes the entire array to be transferred to or from memory. Unless only one
operation on the array isrequired, it is faster to assign the contents of the array to a
normal variable by subscripting the file variable with a single subscript, and then
access the individual array elements within the normal variable as needed. If you
make changesto the value of the normal variable that should be reflected in thefile,
afinal assignment to the associated variable, indexed with a single subscript, can be
used to update the file and compl ete the operation.

Files with Multiple Structures

The same file may be associated with a number of different structures. Assume a
number of 128 x 128-byte images are contained on afile. The statement,

ROW = ASSOC(1, BYTARR(128))

will map the file into rows of 128 bytes each. ROA[3] is the fourth row of the first
image, while RON128] isthe first row of the second image. The statement,

| MAGE = ASSOC(1, BYTARR(128, 128))
maps the file into entireimages; | MAGE[4] will be the fifth image.

Offset Parameter

The Offset parameter to ASSOC specifies the position in the file at which the first
array starts. This parameter is useful when afile contains a header followed by data
records. For example, if afile usesthefirst 1,024 bytes of the file to contain header
information, followed by 512 x 512-byte images, the statement,

Associated Input/Output Building IDL Applications

Chapter 10: Files and Input/Output 281

| MAGE = ASSOC(1, BYTARR(512, 512), 1024)
sets the variable IMAGE to access the images while skipping the header.

Efficiency

Arrays are accessed most efficiently if their length is an integer multiple of the block
size of the filesystem holding the file. Common values are powers of 2, such as 512,
2K (2048), 4K (4096), or 8K (8192) bytes. For example, on a disk with 512-byte
blocks, one benchmark program required approximately one-eighth of the time
required to read a 512 x 512-byte image that started and ended on a block boundary,
as compared to asimilar program that read an image that was not stored on even
block boundaries.

Each time a subscripted associated variable is referenced, one or more records are
read from or written to thefile. Therefore, if arecord isto be accessed more than a
few times, it is more efficient to read the entire record into a variable. After making
the required changes to the in-memory variable, it can be written back to thefileif
necessary.

Unformatted Data from UNIX FORTRAN Programs

Unformatted data files generated by FORTRAN programs under UNIX contain an
extralong word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. Thisistrue even
if the F77_UNFORMATTED keyword is specified on the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
isgiven in “Using Unformatted Input/Output” on page 265.

Building IDL Applications Associated Input/Output

282

Chapter 10: Files and Input/Output

File Manipulation Operations

IDL provides avariety of routines that allow you to retrieve information about and
manipulate files and directories.

IDL File Handling Routines

IDL file handling routines are listed in the following table:

File Handling Routine

Description

FILE_ CHMOD Allows you to change file access permissions.
FILE_COPY Allows you to copy files and directories.

FILE DELETE Allows you to delete files and empty directories.
FILE EXPAND_PATH Fully qualifiesfile and directory paths.

FILE INFO Returns file status information.

FILE LINES Returns the number of lines of text in a specified file.
FILE_LINK Creates UNIX links.

FILE MKDIR Creates directories.

FILE MOVE Allows you to rename files and directories.

FILE_READLINK

Returns the path to afile referenced by a UNIX
symbolic link.

FILE_SAME Allows you to determine whether two file namesrefer
to the samefile.

FILE_SEARCH Finds files whose names match a specified string.

FILE TEST Tests afile or directory for existence and other
specific attributes.

FILE WHICH Searches for a specified file in adirectory search path.

Table 10-13: IDL File Handling Routines

File Manipulation Operations

Building IDL Applications

Chapter 10: Files and Input/Output 283

Locating Files

The FILE_SEARCH function returns an array of strings containing the names of all
files that match its argument string. The argument string may contain any wildcard
characters understood by the command interpreter. For example, to determine the
number of IDL procedure files that exist in the current directory, use the following
Statement:

PRINT, '# IDL pro files:', N ELEMENTS(FI LE_SEARCH(' *.pro'))
See“FILE_SEARCH?” in the IDL Reference Guide manual for details.

Changing File Access Permissions

The FILE_CHMOD procedure allows you to change the current access permissions
(also referred to as modes) associated with afile or directory. File modes are specified
using the standard Posix convention of three protection classes (user, group, other),
each containing three attributes (read, write, execute). Thisis the same format
familiar to users of the UNIX chnod(1) command. For example, to make the file
noose. dat read-only to everyone except the owner of the file, but otherwise not
change any other settings:

FI LE_CHMOD, 'noose.dat', /u wite, g wite=0, o_wite=0

To make the file be readable and writable to the owner and group, but read-only to
anyone else, and remove any other modes:

FI LE_ CHMOD, 'npose.dat', '664'

To find the current protection settings for a given file, you can use the GET_MODE
keyword to the FILE_TEST function.

See“FILE_CHMOD” inthe IDL Reference Guide manual for details.
Copying Files and Directories
The FILE_COPY procedure allows you to copy files and directories from one

location to another. The copies retain the protection settings of the original files, and
belong to the user that performed the copy.

See“FILE_COPY” in the IDL Reference Guide manual for details.
Renaming Files and Directories

The FILE_MOVE procedure allows you to rename files and directories. The moved
filesretain their protection and ownership attributes. Within a given file system or

Building IDL Applications File Manipulation Operations

284 Chapter 10: Files and Input/Output

volume, FILE_MOVE does not copy file data. Rather, it simply changes the file
names by updating the directory structure of the file system.

See"FILE_MOVE” inthe IDL Reference Guide manual for details.
Deleting Files and Empty Directories

The FILE_DELETE procedure allows you to delete files and empty directories for
which they have appropriate permission. The process must have the necessary
permissions to remove the file, as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Microsoft Windows users should be careful to not specify atrailing backslash at the
end of a specification. For example:

FI LE_DELETE, 'c:\nydir\nyfile'
and not:
FI LE_DELETE, 'c:\nmydir\myfile\’
See“FILE_DELETE" in the IDL Reference Guide manual for details.

Expanding Files and Directory Paths

The FILE_EXPAND_PATH function can be used with a given afile or directory
name to convert the nameto its fully qualified form and return it. A fully-qualified
file path completely specifies the location of a file without the need to consider the
user’s current working directory.

Note
This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE_EXPAND_PATH
when it encountersawildcard is platform dependent, differs between platforms, and
should not depended on. These differences are due to the underlying operating
system, and are beyond the control of IDL. To expand the wildcard and obtain fully
gualified paths, combine the FILE_SEARCH function with
FILE_EXPAND_PATH:

A = FI LE_EXPAND PATH(FI LE_SEARCH(' *. pro'))

Alternatively, you can use the FULLY QUALIFY_PATH keyword to
FILE_SEARCH:

File Manipulation Operations Building IDL Applications

Chapter 10: Files and Input/Output 285

A = FILE_SEARCH(' *.pro', /FULLY_QUALI FY_PATH)

See“FILE_EXPAND_PATH” inthe IDL Reference Guide manual for details.
Creating Directories

You can create a directory using the FILE_MKDIR procedure. The resulting
directory or directories are created with default access permissions for the current
process. If needed, you can use the FILE_CHMOD procedure to alter access
permissions. If a specified directory has non-existent parent directories,

FILE_ MKDIR automatically creates all the intermediate directories as well. For
instance, to create a subdirectory named noose in the current working directory:

FI LE_MKDI R, 'noose'
See"FILE_MKDIR” inthe IDL Reference Guide manual for details.

Testing for a File’s Existence

The FILE_TEST function allows you to determine if afile exists without having to
openit. Additionally, using the FILE_TEST keywords providesinformation about the
file's attributes. For example, to determine whether your IDL distribution supports
the SGI IRIX operating system:

result = FILE_ TEST(!DIR + '/bin/bin.sgi', /D RECTORY)
PRINT, 'SG IDL Installed: ', result ? 'yes' : 'no'

See“FILE_TEST” inthe IDL Reference Guide manual for details.
Searching for a Specific File

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn. If adirectory containsthefile, the full
name of that file including the directory path is returned. If FILE_ WHICH does not
find the desired file, aNULL string is returned.

This command is modeled after the UNIX whi ch(1) command, but iswritten in the
IDL language and is available on all platforms. Its source code can be found in the
filefil e_which. prointheli b subdirectory of the IDL distribution.

As an example, the following line of code allows you to find the location of the
file_which. pro file

Result = FILE WHI CH(' fil e_which.pro')

Building IDL Applications File Manipulation Operations

286 Chapter 10: Files and Input/Output

Alternately, to find the location of the UNIX | s command:
Result = FILE WH CH(getenv(' PATH), 'Is")
See“FILE_WHICH?" in the IDL Reference Guide manual for details.

Working with UNIX Links

On UNIX platforms, you can create file links, both regular (hard) and symbolic. A
hard link isadirectory entry that referencesafile. UNIX alows multiple such links to
exist simultaneously, meaning that a given file can be referenced by multiple names.
The following limitations on hard links are enforced by the operating system:

e Hard links may not span file systems, as hard linking is only possible within a
singlefile system.

* Hard links may not be created between directories, as doing so has the
potential to create infinite circular loops within the hierarchical Unix file
system. Such loops will confuse many system utilities, and can even causefile
system damage.

A symboliclink isanindirect pointer to afile; its directory entry contains the name of
thefile to which it islinked. Symbolic links may span file systems and may refer to
directories.

Usethe FILE_LINK procedure to create hard and soft links on UNIX systems. See
“FILE_LINK"” in the IDL Reference Guide manual for details.

Usethe FILE_READLINK procedure to retrieve the path to afile referenced by a
UNIX symbolic link. See“FILE_READLINK” in the IDL Reference Guide manual
for details.

Usethe FILE_SAME function to determine whether two file names refer to the same
underlying file. See“FILE_SAME”" in the IDL Reference Guide manual for details.

Getting Help and Information

Information about currently open file unitsis available by using the FILES keyword
with the HEL P procedure. If no arguments are provided, information about all
currently open user file units (units 1-128) is given. For example, the following
command can be used to get information about the three special units (-2, -1, and 0):

HELP, /FILES, -2, -1, 0
This command results in output similar to the following:

Uni t Attributes Nare
-2 Wite, New, Tty, Reserved <stderr>

File Manipulation Operations Building IDL Applications

Chapter 10: Files and Input/Output

-1
0

Getting Information About a File

Wite, New, Tty, Reserved

Read, Tty, Reserved
See “HELP” inthe IDL Reference Guide manual for details.

287

<st dout >
<stdi n>

You can use the FILE_INFO function to retrieve information about afile that is not
currently open (that is, for which thereisno IDL Logical Unit Number available). To
get information about an open file, use the FSTAT function.

The FILE_INFO function returns a structure expression of type FILE_INFO
containing information about the file. For example, use to get information on the file
di st. pro withinthe IDL User Library:

HELP, / STRUCTURE, FI LE_I NFO(FI LEPATH(' dist.pro', $
SUBDI RECTORY = 'lib'))

The above command will produce output similar to:
** Structure FILE_ I NFO, 21 tags,

NAME

EXI STS

READ

VWRI TE

EXECUTE
REGULAR

DI RECTORY
BLOCK_SPECI AL

STRI NG
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

CHARACTER_SPECI AL

NAMED_PI PE
SETA D
SETU D
SOCKET
STICKY_BI T
SYMLI NK

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

DANGLI NG_SYM.I NK

MODE
ATI ME
CTI ME
MrT VE
S| ZE

BYTE
LONG
LONG64
LONG64
LONG64
LONGG4

1

OOPFr OO

[eNeoNeoNeoNoNoNo]

| engt h=72:
"fusr/local/rsi/idl/lib/dist.pro

420
970241431
970241595
969980845
1717

Thefields of the FILE_INFO structure provide various information about the file,
such asthe size of thefile, and the dates of |ast access, creation, and |ast modification.
For more information on the fields of the FILE_INFO structure, see“FILE_INFO” in

the IDL Reference Guide manual.

Building IDL Applications

File Manipulation Operations

288

Chapter 10: Files and Input/Output

Usethe FILE_LINES function to retrieve the number of lines of text in afile. See
“FILE_LINES’ inthe IDL Reference Guide manual for details.

The FSTAT Function

The FSTAT function can be used to retrieve information about afile that is currently
open (that is, for which thereisan IDL Logical Unit Number available). It returns a
structure expression of type FSTAT or FSTAT64 containing information about the
file. For example, to get detailed information about the standard input, use the
following command:

HELP, /STRUCTURES, FSTAT(0)
This displays the following information:
** Structure FSTAT, 17 tags, |ength=64:

UNIT LONG 0
NAVE STRING ' <stdin>
OPEN BYTE 1

| SATTY BYTE 0
| SAGUI BYTE 1

| NTERACTI VE BYTE 1
XDR BYTE 0
COVPRESS BYTE 0
READ BYTE 1
WRI TE BYTE 0
ATI VE LONG64 0
CTI MVE LONG64 0
MT1 VE LONG64 0
TRANSFER _COUNT LONG 0
CUR PTR LONG 0
Sl ZE LONG 0
REC LEN LONG 0

On some platforms, IDL can support files that are longer than 2°31-1 bytesin length.
If FSTAT isapplied to such afile, it returns an expression of type FSTAT64 instead of
the FSTAT structure shown above. FSTAT64 differs from FSTAT only in that the
TRANSFER_COUNT, CUR_PTR, SIZE, and REC_LEN fields are signed 64-bit
integers (type LONG64) in order to be able to represent the larger sizes.

The fields of the FSTAT and FSTAT64 structures provide various information about
the file, such as the size of thefile, and the dates of last access, creation, and last
modification. For more information on the fields of the FSTAT and FSTAT64
structures, see “FSTAT” in the IDL Reference Guide manual.

File Manipulation Operations Building IDL Applications

Chapter 10: Files and Input/Output 289

An Example Using FSTAT

The following IDL function can be used to read single-precision, floating-point data
from a stream file into a vector when the number of elementsin thefileis not known.
It uses the FSTAT function to get the size of the file in bytes and divides by four (the
size of asingle-precision, floating-point value) to determine the number of values.

; READ DATA reads all the floating point values froma streamfile
;and returns the result as a floating-point vector.
FUNCTI ON READ_DATA, file

;Get a unique file unit and open the data file.
OPENR, /GET_LUN, unit, file

;CGet file status.
status = FSTAT(unit)

;Make an array to hold the input data. The SIZE field of status
;gives the nunber of bytes in the file, and single-precision,
;floating-point values are four bytes each.

data = FLTARR(status.size / 4)

; Read the data.
READU, unit, data

:Deallocate the file unit. The file also will be cl osed.
FREE_LUN, unit

RETURN, data

END

Assuming that afile named dat a. dat exists and contains 10 floating-point values,
the READ_DATA function could be used as follows:

; Read fl oating-point val ues from data. dat .
A = READ_DATA(' data. dat"')

; Show the result.
HELP, A

The following output is produced:
A FLOAT = Array(10)

Flushing File Units

For efficiency, IDL buffersitsinput/output in memory. Therefore, when dataare
output, thereisawindow of time during which data are in memory and have not been

Building IDL Applications File Manipulation Operations

290

Chapter 10: Files and Input/Output

actually placed into the file. Normally, this behavior istransparent to the user (except
for the improved performance). The FLUSH routine exists for those rare occasions
where a program needs to be certain that the data has actually been written to the file
immediately. For example, use the statement,

FLUSH, 1
to flush file unit one.
See“FLUSH” inthe IDL Reference Guide manual for details.

Positioning File Pointers

Each open file unit has a current file pointer associated with it. This file pointer
indicates the position in the file at which the next input/output operation will take
place. Thefile position is specified as the number of bytes from the start of thefile.
Thefirst positionin thefile is position zero. The following statement will rewind file
unit 1 to its start:

PO NT_LUN, 1, O
The following sequence of statements will position it at the end of the file:

tnp = FSTAT(1)
PO NT_LUN, 1, tnp.size

POINT_LUN has the following operating-system specific behavior:

« UNIX: the current file pointer can be positioned arbitrarily — moving to a
position beyond the current end-of-file causes the file to grow out to that point.
The gap created isfilled with zeroes.

¢ Windows: the current file pointer can be positioned arbitrarily —moving to a
position beyond the current end-of-file causes the file to grow out to that point.
Unlike UNIX, the gap created isfilled with arbitrary datainstead of zeroes.

See “POINT_LUN” inthe IDL Reference Guide manual for details.

Testing for End-Of-File

The EOF function is used to test afile unit to seeif it is currently positioned at the
end of thefile. It returns true (1) if the end-of-file condition istrue and false (0)
otherwise.

For example, to read the contents of afile and print it on the screen, use the following
Statements:

; Open file deno.doc for reading.
OPENR, 1, 'deno. doc'

File Manipulation Operations Building IDL Applications

Chapter 10: Files and Input/Output 291

;Create a variable of type string.
LINE = "

; Read and print each line until the end of the file is encountered.
WH LE(~ EOF(1)) DO BEG N READF, 1, LI NE & PRI NT, LI NE & END

;Done with the file.
CLCSE, 1

See“EOF” in the IDL Reference Guide manual for details.
GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit zero) as a single character string. It takes a single parameter
named WAIT. If WAIT is zero, the function returns the null string if there are no
charactersin the terminal typeahead buffer. If it is nonzero, the function waits for a
character to be typed before returning.

Under Windows, the GET_KBRD function can be used to return Windows special
characters (in addition to the standard keyboard characters). To get a special
character, hold down the Alt key and type the character’s ANSI equivalent on the
numeric keypad while GET_KBRD iswaiting. Control + key combinations are not
supported.

See“GET_KBRD” in the IDL Reference Guide manual for details.

Note
RSl recommends the use of a GUI interface (e.g. WIDGET_BUTTON) instead of

GET_KBRD where possible.

Example—Using GET_KBRD

A procedure that updates the screen and exits when the carriage return is typed might
appear asfollows:

;Procedure definition.
PRO UPDATE,

; Loop forever.
VWH LE 1 DO BEG N

; Update screen here. ..

Building IDL Applications File Manipulation Operations

292 Chapter 10: Files and Input/Output

:Read character, no wait.
CASE GET_KBRD(0) OF

;Process letter A
DA

:Process letter B.
B

; Process other alternatives.
;Exit on carriage return (ASCI1 code = 15 octal).
STRING(" 15B) : RETURN

;lgnore all other characters.
ELSE:

ENDCASE
ENDWHI LE

; End of procedure.
END

Using the STRING Function to Format Data

The STRING function is very similar to the PRINT and PRINTF procedures. It can
be thought of as aversion of PRINT that places its formatted output into a string
variable instead of afile. If the output isasingle line, the result isa scalar string. If
the output has multiple lines, the result isastring array with each element of the array
containing a single line of the output.

Example—Using STRING with Explicit Formatting

The IDL statements:

; Produce a string array.
A=STRI N FORMAT=' (" The values are:", /, (1))', I NDGEN(5))

; Show its structure.
HELP, A

;Print out the result.
FOR1 =0, 5 DOPRINT, Al]

produce the following output:

File Manipulation Operations Building IDL Applications

Chapter 10: Files and Input/Output 293

A STRI NG = Array(6)
The val ues are:

0

1

2

3

4

See “STRING” in the IDL Reference Guide manual for details.
Reading Data from a String Variable

The READS procedure performs formatted input from astring variable and writesthe
results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of afile.

This routine is useful when you need to examine the format of a datafile before
reading the information it contains. Each line of the file can beread into astring using
READF. Then the components of that line can be read into variables using READS.

See the description of “READS’ in the IDL Reference Guide manual for more details.

Building IDL Applications File Manipulation Operations

294 Chapter 10: Files and Input/Output

UNIX-Specific Information

UNIX offersonly asingle type of file. All files are considered to be an uninterpreted
stream of bytes, and there is no such thing as record structure at the operating system
level. (By convention, records of text are simply terminated by the linefeed character,
which isreferred to as“newline.”) It is possible to move the current file pointer to any
arbitrary position in the file and to begin reading or writing data at that point. This
simplicity and generality form a system in which any type of file can be manipul ated
easily using asmall set of file operations.

Reading FORTRAN-Generated Unformatted Data with
IDL

The UNIX file system considers all files to be an uninterpreted stream of bytes.
Standard FORTRAN /0O considers al input/output to be done in terms of logical
records.

In order to reconcile the FORTRAN need for logical records with UNIX files, UNIX
FORTRAN programs add alongword count before and after each logical record of
data. These longwords contain an integer count giving the number of bytesin that
record. Note that direct-access FORTRAN 1/0O does not write data in this format, but
simply transfers binary data to or from thefile.

The use of the F77_UNFORMATTED keyword with the OPENR statement informs
IDL that the file contains unformatted data produced by a UNIX FORTRAN
program. When afile is opened with this keyword, IDL interprets the longword
counts properly and is able to read and write files that are compatible with
FORTRAN.

Reading data from a FORTRAN file

The following UNIX FORTRAN program produces a file containing a five-column
by three-row array of floating-point values with each element set to its one-
dimensional subscript:

PROGRAM f t n2i dl

| NTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="ftn2idl.dat", FORM="unfornmatted")
DO 100 j =1, 3
DO 100 i =1, 5
data(i,j) =((j - 1) *5) + (i - 1)

UNIX-Specific Information Building IDL Applications

Chapter 10: Files and Input/Output 295

print *, data(i,j)
100 CONTI NUE
WRI TE(1) data
END

Running this program creates the file ftn2idl.dat containing the unformatted array.
Thefollowing IDL statements can be used to read this file and print out its contents:

;Create an array to contain the fortran array.
data = FLTARR(5, 3)

;Open the fortran-generated file. The F77_UNFORVATTED keyword is
;necessary so that IDL will knowthat the file contains unformatted
;data produced by a UNI X FORTRAN program

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;Read the data in a single input operation.
READU, |un, data

; Rel ease the logical unit nunber and close the fortran file.
FREE LUN, lun

;Print the result.
PRI NT, data

Executing these IDL statements produces the following output:

0. 00000 1. 00000 2.00000 3. 00000 4. 00000
5. 00000 6. 00000 7.00000 8. 00000 9. 00000
10. 0000 11. 0000 12. 0000 13. 0000 14. 0000

Because unformatted data produced by UNIX FORTRAN unformatted WRITE
statements are interspersed with extra information before and after each logical
record, it isimportant that the IDL program read the data in the same way that the
FORTRAN program wroteit. For example, consider the following attempt to read the
above datafile onerow at atime:

;Create an array to contain one row of the FORTRAN array.
data = FLTARR(5, /NOZERO

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;One row at a tine.
FORI =0, 4 DO BEG N

; Read a row of data.
READU, |un, data

;Print the row.
PRI NT, data

Building IDL Applications UNIX-Specific Information

296 Chapter 10: Files and Input/Output

ENDFOR

;Close the file.
FREE _LUN, lun

Executing these IDL statements produces the output:

0. 00000 1. 00000 2. 00000 3. 00000 4. 00000
% READU: End of file encountered. Unit: 100

File: ftn2idl.daté
% Execution halted at $MAI N$(0).

Here, IDL attempted to read the single logical record written by the FORTRAN
program asif it were written in five separate records. IDL hit the end of the file after
reading the first five values of the first record.

Writing data to a FORTRAN file

Thefollowing IDL statements create a five-column by three-row array of floating-
point values with each element set to it's one-dimensional subscript, and writes the
array to a datafile suitable for reading by a FORTRAN program:

;Create the array.
data = FI NDGEN(5, 3)

;Open a file for witing. Note that the F77_UNFORMATTED keyword i s
;necessary to tell IDLto wite the data in a fornmat readable by a
; FORTRAN program

OPENW lun, 'idl2ftn.dat', /GET_LUN, /F77_UNFORVATTED

Wite the data.
WRI TEU, |un, data

;Close the file.
FREE_LUN, lun

The following FORTRAN program reads the data file created by IDL:
PROGRAM i dl 2ftn

I NTEGER i, |j
REAL data(5, 3)

OPEN(1, FILE="idl2ftn.dat", FORM="unformatted")

READ(1) data
DO 100 j =1, 3
DO 100 i =1, 5
PRINT *, data(i,j)
100 CONTI NUE
END

UNIX-Specific Information Building IDL Applications

Chapter 10: Files and Input/Output 297

Windows-Specific Information

Under Microsoft Windows, afileisread or written as an uninterrupted stream of
bytes-there is no record structure at the operating system level. Linesin a Windows
text file are terminated by the character sequence CR LF (carriage return, line feed).

The Microsoft C runtime library considers afile to be in either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs.
Programmers familiar with this situation may be concerned about how IDL handles
read and write operations. IDL is not affected by this quirk of the C runtime library,
and no special action isrequired to work around it. Read/write operations are handled
the same in Windows as in Unix: when IDL performs a formatted 1/0O operation, it
reads/writes the CR/LF line termination. When it performs a binary operation, it
simply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE
keywords to the OPEN procedures were provided to allow the user to change IDL's
default behavior during read/write operations. In IDL 5.4 and |ater versions, these
keywords are no longer necessary. They continue to be accepted in order to allow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versions of IDL.

Building IDL Applications Windows-Specific Information

298 Chapter 10: Files and Input/Output

Scientific Data Formats

IDL supportsthe HDF (Hierarchical Data Format), HDF-EOS (Hierarchical Data
Format-Earth Observing System), CDF (Common Data Format), and NetCDF
(Network Common Data Format) self-describing, scientific dataformats. Collections
of built-in routines provide an interface between IDL and these formats.
Documentation for specific routines and further discussion of the various formats can
be found in IDL Reference Guide.

Scientific Data Formats Building IDL Applications

Chapter 10: Files and Input/Output

299

Support for Standard Image File Formats

IDL includes routines for reading and writing many standard graphics file formats.
These routines and the types of files they support are listed in the table below.
Documentation on these routines can be found in the online help (enter “ 7" at the IDL

prompt).
Read/Write . A
Format Routines Query Routine Description
BMP READ _BMP QUERY_BMP Windows Bitmap (. bnp)
WRITE_BMP Format
Interfile | READ_INTERFILE n‘a Interfile version 3.3
(Write routine is n/a) Format
JPEG READ_JPEG QUERY _JPEG Joint Photographic
WRITE_JPEG Experts Group files
NRIF (Read routineis n/a) n/a NCAR Raster
WRITE NRIE Interchange Format
PICT READ_PICT QUERY_PICT Macintosh version 2
WRITE_PICT PICT files (bitmap only)
PNG READ_PNG QUERY_PNG Portable Network
WRITE_PNG Graphicsfile
PPM READ_PPM QUERY_PPM PPM/PGM Format
WRITE_PPM
SRF READ_SRF QUERY_SRF Sun Raster File
WRITE_SRF
TIFF READ_TIFF QUERY_TIFF 8-bit or 24-hit Tagged
WRITE_TIFF Image File Format
X11 READ X11 BITMAP | n/a X11 Bitmap format used
Bitmap | (Writeroutineisn/a) for reading bitmaps for
IDL widget button labels
XWD READ_XWD n/a X Windows Dump format

(Write routine is n/a)

Building IDL Applications

Table 10-14: IDL-Supported Graphics Standards

Support for Standard Image File Formats

300 Chapter 10: Files and Input/Output

Support for Standard Image File Formats Building IDL Applications

Chapter 11.

Assighment

The following topics are covered in this chapter:

Overview of the Assignment Statement .. 302

AssigningaValuetoaVariable 304
Assigning Scalarsto Array Elements 305
Assigning Arraysto Array Elements.. 306

Building IDL Applications

Avoid Using Range Subscripts .

Compound Assignment Operators

Using Associated File Variables

301

302 Chapter 11: Assignment

Overview of the Assignment Statement

The assignment statement stores avalue in a variable. There are three forms of the
assignment statement, as shown in the following table.

Subscript | Expression

Structure | Structure Effect

Syntax

Variable = Expression | None All Expressionisstoredin
Variable.

Variable[Subscripts| = | Scalar Scalar Expressionisstoredin
Expression asingle element of
Variable

Scalar Array Expression array is
inserted in Variable
array.

Array Scalar Expression scalar is

stored in designated
elements of Variable.

Array Array Elements of
Expression are stored
in designated
elements of Variable.

Table 11-1: Types of Assignment Statements

Overview of the Assignment Statement Building IDL Applications

Chapter 11: Assignment 303

Subscript | Expression

Structure Structure i

Syntax

Variable[Range] = Range Scalar When possible, range
Expression subscripts should be
avoided. See “Avoid
Using Range
Subscripts’ on

page 308.

Scalar isinserted into
subarray.

Range Array When possible, range
subscripts should be
avoided. See “Avoid
Using Range
Subscripts’ on

page 308.

If Variable[Range]
and Array are the
same size, elements of
Array specified by
Range are inserted in
Variable. lllegal if
Variable[Range] and
Array are different
Sizes.

Table 11-1: (Continued) Types of Assignment Statements

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()" on page 128 for additional
details.

Building IDL Applications Overview of the Assignment Statement

304 Chapter 11: Assignment

Assigning a Value to a Variable

The most basic form of the assignment statement is as follows:
Vari abl e = Expression

The old value of the variable, if any, is discarded, and the value of the expressionis
stored in the variable. The expression on the right side can be of any type or structure.

Examples

Some examples of the basic form of the assignment statement are as follows:

:Set nmax to val ue.
mmax = 100 * X + 2.987

;name becones a scalar string variable.
name = 'Mry'

; Make arr a 100-el enent, floating-point array.
arr = FLTARR(100)

;Discard points O to 49 of arr. It is now a 50-el ement array.
arr = arr[50: *]

Assigning a Value to a Variable Building IDL Applications

Chapter 11: Assignment 305

Assigning Scalars to Array Elements

The second type of assignment statement has the following form:
Vari abl e[Subscri pts] = Scal ar _Expressi on

Here, asingle element of the specified array is set to the value of the scalar
expression. The expression can be of any type and is converted, if necessary, to the
type of the variable. The variable on the left side must be either an array or afile
variable. Some examples of assigning scalar expressions to subscripted variables are:

:Set el enment 100 of data to val ue.
data[100] = 1.234999

;Store string in an array. nane must be a string array or an error
cwWill result.
nane[i ndex] = 'Joe'

;Set elenment [X, Y] of the 2-dinmensional array inage to the val ue
contained in pixel.
i mge[X, Y] = pixel

Using Array Subscripts

The subscripted variable can have either a scalar or array subscript. If the subscript
expression is an array, the scalar value is stored in the elements of the array whose
subscripts are elements of the subscript array. For example, the following statement
zeroes the four specified elements of data: data] 3], data[5], data] 7] and data[9]:

data[[3, 5, 7, 9]] =0

The subscript array is converted to integer type if necessary before use. Elements of
the subscript array that are negative, or greater than the highest subscript of the
subscripted array, are clipped to the target array boundaries. Note that a common
error isto use anegative scalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negative array subscripts (e.g., A[[-1]]) do not cause errors.

The WHERE function can be used to select array elements to be changed. For
example, the statement:

dat al WHERE(data LT 0)] = -1

sets all negative elements of datato -1 without changing the positive elements. The
result of the function, WHERE(data LT 0), isavector composed of the subscripts of
the negative elements of data. Using this vector as a subscript changes only the
negative elements.

Building IDL Applications Assigning Scalars to Array Elements

306 Chapter 11: Assignment

Assigning Arrays to Array Elements

The third type of assignment statement has the following form:
Vari abl e[Subscripts] = Array

Note that thisform is syntactically identical to the second type of assignment
statement, but that the expression on the right-hand-side is an array instead of a
scalar. Thisform of the assignment statement is used to insert one array into another.

The array expression on the right is inserted into the array appearing on the left side
of the equal sign starting at the point designated by the subscripts.

Examples

For example, to insert the contents of an array called A into array B, starting at point
B[13, 24], use the following statement:

B[13, 24] = A

If A isa5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.

In the next example, a subarray is moved from one position to another:
B[100, 200] = B[200: 300, 300: 400]

A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.

Using Array Subscripts

If the subscript expression applied to the variable is an array and an array appears on
the right side of the statement:

Variabl e[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. For example, the statement

B[[2, 4, 61] =1[4, 16, 36]
is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36

Assigning Arrays to Array Elements Building IDL Applications

Chapter 11: Assignment 307

Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A isal10 x n matrix, the element A[i, j] has the subscript i+10*%j. The
subscript array is converted to longword type before use, if necessary.

Asdescribed previously for the second form of assignment statement, elements of the
subscript array that are negative or larger than the highest subscript are clipped to the
target array boundaries. Note that a common error isto use a negative scalar
subscript (e.g., A[-1]). Using thistype of subscript causes an error. Negative array
subscripts (e.g., A[[-1]]) do not cause errors.

As another example, assume that the vector DATA contains data elements and that a
data drop-out is denoted by a negative value. In addition, assume that there are never
two or more adjacent drop-outs. The following statements replace all drop-outs with
the average of the two adjacent good points:

; Subscri pt vector of drop-outs.
bad = WHERE(data LT 0)

; Repl ace drop-outs with average of previous and next point.
data[bad] = (data[bad - 1] + data[bad + 1]) / 2

In this example, the following actions are performed:

* WeusethelLT (lessthan) operator to create an array, with the same dimensions
as data, that containsa 1 for every element of datathat is lessthan zero and a
zero for every element of datathat is zero or greater. We use this “ drop-out
array” as aparameter for the WHERE function, which generates a vector that
contains the one-dimensional subscripts of the elements of the drop-out array
that are nonzero. The resulting vector, stored in the variable bad, contains the
subscripts of the elements of data that are less than zero.

e Theexpression data[bad - 1] is a vector that contains the subscripts of the
points immediately preceding the drop-outs; while similarly, the expression
data[bad + 1] is a vector containing the subscripts of the points immediately
after the drop-outs.

e The average of these two vectors is stored in datg] bad], the points that
originaly contained drop-outs.

Building IDL Applications Assigning Arrays to Array Elements

308 Chapter 11: Assignment

Avoid Using Range Subscripts

It is possible to use range subscripts in an assignment statement, however, when
possible, you should avoid using range subscriptsin favor of using scalar or array
subscripts. This type of assignment statement takes the following form;

Vari abl e[Subscri pt _Range] = Expression

A subscript range specifies a beginning and ending subscript. The beginning and
ending subscripts are separated by the colon character. An ending subscript equal to
the size of the dimension minus one can be written as *.

For example, arr[l:J] denotes those pointsin the vector arr with subscripts between |
and Jinclusive. | must be less than or equal to J and greater than or equal to zero. J
denotes the points in arr from arr[1] to the last point and must be less than the size of
the dimension arr [1:*]. See Chapter 6, “Arrays’ for more details on subscript ranges.

Examples

Assuming the variable B isa 512 x 512-byte array, some examples are as follows:

;Store 1 in every element of the i-th row
array[*, 1] =1

;Store 1 in every elenment of the j-th col um.
array[J, *] =1

;Zero all the rows of columms 200 through 220 of array.
array[200: 220, *] =0

;Store the value 100 in all the elenents of array.
array[*] = 100

When possible, you should avoid using range subscriptsin favor of using scalar or
array subscripts. Consider the following example:

A = | NTARR(10)

X =1011,1]

PRINT, "A =", A
Sl ow way:

t =SYSTI ME(1) & FOR i =0L, 100000 DO A[4:6] = X &
PRI NT, ' Sl ow way: ', SYSTI ME(1)-t

PRINT, "A =", A

Correct way is 4 tines faster!!:

t =SYSTI ME(1) & FOR i =0L, 100000 DO a[4] = X &
PRI NT, 'Fast way: ', SYSTIME(1)-t

PRINT, "A =", A

Avoid Using Range Subscripts Building IDL Applications

Chapter 11: Assignment

309
IDL Prints:
A= 0 0 O o o o o o o0 o
Sl ow way: 0. 47000003
A= 0 0 0 O 1 1 1 O o0 ©O
Fast way: 0. 12100005

A= 0 0 0 O 1 1 1 0O 0 O

The statement Al 4] = X, where X isathree-element array, causes IDL to start at
index 4 of array A, and replace the next three elementsin A with the elementsin X.

Because of theway it isimplemented in IDL, A[4: 6] = Xismuch less efficient
than A 4] = X.

Building IDL Applications Avoid Using Range Subscripts

310 Chapter 11: Assignment

Compound Assignment Operators

In addition to the standard assignment operator, IDL supports the following
compound assignment operators:

Hh= #= *= += -=

1= <= >= AND= EQ=
GE= GT= LE= LT= MOD=
NE= OR= XOR= A=

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op isan IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression isany IDL
expression, produces the same result as the statement:

A = A op (expression)

The difference is that the statement using the compound operator makes more
efficient use of memory, because it performs the operation on the target variable A
in place. In contrast, the statement using the simple operators makes a copy of the
variable A, performs the operation on the copy, and then assigns the resulting value
back to A, temporarily using extra memory.

Note that the statement:
A op= expression
isidentical to the IDL statement:
A = TEMPORARY(A) op (expression)

which usesthe TEMPORARY function to avoid making a copy of the variable A.
While there is no efficiency benefit to using the compound operator rather than the
TEMPORARY function, the compound operator alows you to write the same
statement more succinctly.

Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate

Compound Assignment Operators Building IDL Applications

Chapter 11: Assignment 311

whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

Thefirgt statement assigns the value 23 to a variable named AAND. The second

statement performsthe AND operation between A and 23, storing the result back into
the variable A.

Compound operators that do not involve IDL keywords (+=, for example) do not

reguire whitespace in order to be properly parsed by IDL, although such whitespace
is recommended for code readability. That is, the statements

A+= 23
A += 23

are identical, but the latter is more readable.

Building IDL Applications Compound Assignment Operators

312 Chapter 11: Assignment

Using Associated File Variables

A special case occurs when using an associated file variable in an assignment
statement. For additional information regarding the ASSOC function, see “ASSOC”
in the IDL Reference Guide manual. When afile variable is referenced, the last (and
possibly only) subscript denotes the record number of the array within thefile. This
last subscript must be a simple subscript. Other subscripts and subscript ranges,
except the last, have the same meaning as when used with normal array variables.

Animplicit extraction of an element or subarray in a data record can also be
performed. For example:

;Variable A associates the file open on unit 1 with the records of
; 200-el enent, floating-point vectors
A = ASSOC(1, FLTARR(200))

;Then, X is set to the first 100 points of record nunber 2, the
;third record of the file.
X = A 0:99, 2]

; Set the 24th point of record 16 to 12
A[23, 16] = 12

;lncrement points 10 to 199 of record 12. Points 0 to 9 of the

;record remai n unchanged.
A[10, 12] = A[10:*, 12]+1

Using Associated File Variables Building IDL Applications

Chapter 12:

Program Control

The following topics are covered in this chapter:

OVEIVIEW .\t o e 314
Compound Statements 315
Conditional Statements 318

Building IDL Applications

Loop Statements
Jump Statements

313

314 Chapter 12: Program Control

Overview

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and looping mechanisms. These constructs include:

Compound Statements

e BEGIN...END
Conditional Statements

e |FR.THEN...ELSE

« CASE

e SWITCH
L oop Statements

¢ FOR..DO

* REPEAT..UNTIL
e WHILE..DO

Jump Statements

* BREAK
« CONTINUE
« GOTO

Overview Building IDL Applications

Chapter 12: Program Control 315

Compound Statements

Many of the language constructs that we will discuss in this chapter evaluate an
expression, then perform an action based on whether the expression is true or false,
such as with the |F statement:

| F expression THEN st at enent
For example, we would say “If X equals 1, then set Y equal to 2" asfollows:
IF (XEQ1) THENY =2

But what if we want to do more than one thing if X equals 1? For example, “If X
equals 1, set Y equal to 2 and print the value of Y.” If wewrote it asfollows, then the
PRINT statement would always be executed, not just when X equals 1:

IF(XEQ1) THENY = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container iscalled a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create a block of statements, which issimply
agroup of statements that are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEG N
Y =2
PRI NT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statements is composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:
IF (X EQ 1) THEN BEG N
Y =2
PRI NT, Y
ENDI F

Building IDL Applications Compound Statements

316 Chapter 12: Program Control

Thisisto ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN is used. The
following table lists the correct END identifiers to use with each type of statement.

Statement IdeEnl\tliE‘)ier Example

ELSE BEGIN ENDELSE I'F (0) THEN A=1 ELSE BEG N
ENDé[éE

FOR variable=init, limit DO ENDFOR FOR i=1,5 DO BEG N

BEGIN PRINT, array[i]
ENDFOR

IF expression THEN BEGIN ENDIF I'F (0) THEN BEG N
ENDlAl_:l

REPEAT BEGIN ENDREP REPiAT iE? g

ENDREP UNTIL A GT B

WHILE expression DO BEGIN | ENDWHILE | WHILE ~ EO~(1) DO BEG N
READF, 1, A B, C
ENDVWHI LE

LABEL: BEGIN END LABEL1: BEG N
PRI NT, A
END

case_expression: BEGIN END CASE name OF
' Moe' : BEG N
PRI NT, ' St ooge'
END
ENDCASE

switch_expression: BEGIN END SW TCH nane OF
'Moe': BEG N
PRI NT, ' St ooge'
END
ENDSW TCH

Table 12-1: Types of END Identifiers

Note
CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Compound Statements Building IDL Applications

Chapter 12: Program Control 317

The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spaces to the right of
the previous level to make the program structure easier to read. (See “.RUN” in the

IDL Reference Guide manual for details on producing program listings with the IDL
compiler.)

Building IDL Applications Compound Statements

318 Chapter 12: Program Control

Conditional Statements

Most useful applications have the ability to perform different actions in response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the IF statement is as follows:

| F expression THEN statement [ELSE statenent]
or

| F expression THEN BEG N
statements

ENDI F [ELSE BEG N
statements

ENDELSE]

The expression after the“IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN?" is executed. (See “ Definition of True and False” on page 335 for details on
how the “truth” of an expression is determined.)

For example:

A=2
IF AEQ2 THEN PRINT, '"Ais two'

Here, IDL prints“A is two”.

If the expression evaluates to afalse val ue, the statement following the “EL SE”
clause is executed:

A =3
IF AEQ2 THEN PRINT, '"Ais two' ELSE PRINT, "Ais not two'

Here, IDL prints“A i s not two”.

Control passesimmediately to the next statement if the condition is false and the
EL SE clause is not present.

Conditional Statements Building IDL Applications

Chapter 12: Program Control 319

Note
Another way to write an IF...THEN...EL SE statement is with a conditional
expression using the ?: operator. For more information, see “ Conditional
Expression” on page 36.

Using Statement Blocks with the IF Statement

The THEN and EL SE clauses can be in the form of ablock (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 315). To ensure
proper nesting of blocks, you can use ENDIF and ENDEL SE to terminate the block,
instead of using the generic END. Below is an example of the use of blocks within an
|F statement.

IF (I NE 0.0) THEN BEG N
ENDI #.ELSE BEG N
ENDEL SE

Nesting IF Statements

| F statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

IF PN THEN SN ELSE SX

If condition P1 istrue, only statement S1 is executed; if condition P2 istrue, only
statement S2 is executed, etc. I none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
is similar to the CASE statement except that the conditions are not necessarily
related.

CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CASE
statement is as follows:

CASE expression OF
expressi on: statenent

expressi on: statenent
[ELSE: statenent]

Building IDL Applications Conditional Statements

320 Chapter 12: Program Control

ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CA SE expression with each selector expression in the order written. If amatch is
found, the statement is executed and control resumes directly below the CASE
Statement.

The EL SE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the CASE statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an ELSE clauseis not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example

An example of the CASE statement follows:

CASE nane OF
"Larry': PRINT, 'Stooge 1'
' Moe' : PRI NT, ' Stooge 2'

"Curly': PRINT, 'Stooge 3'
ELSE: PRI NT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. One is equivalent to true and is matched against each of the
conditionals.

CASE 1 OF
(X Gr 0) AND (X LE50): Y =12 * X+ 5
(X GI 50) AND (X LE 100): Y =13 * X + 4
(X LE 200): BEG N
Y=14 * X - 5
Z=X+Y
END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause isthefirst one
whose value is equal to the value of the case selector expression.

Conditional Statements Building IDL Applications

Chapter 12: Program Control 321

Tip
Each clause istested in order, so it ismost efficient to order the most frequently
selected clauses first.

SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SW TCH Expression OF
Expressi on: Statenent

Expression: Statenent
[ELSE: Statement]
ENDSW TCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If amatch
isfound, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statementsin the SWITCH block. Once a
match is found in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.

The EL SE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usualy
written as the last clause in the switch statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an ELSE clauseis not
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

CASE Versus SWITCH

The CASE and SWITCH statements are similar in function, but differ in the
following ways:

Building IDL Applications Conditional Statements

322 Chapter 12: Program Control

« Execution exits the CASE statement at the end of the matching statement. By
contrast, execution within a SWITCH statement falls through to the next
statement. The following table illustrates this difference:

CASE SWITCH
x=2 x=2
CASE x OF SWTCH x OF
1: PRI NT, 'one' 1: PRINT, 'one
2: PRINT, '"two' 2: PRINT, '"two'
3: PRINT, 'three' 3: PRINT, 'three
4: PRI NT, 'four' 4: PRI NT, 'four
ENDCASE ENDSW TCH
IDL Prints: IDL Prints;
t wo t wo
three
four

Table 12-2: CASE versus SWITCH

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 332.) For example, we
can add aBREAK statement to the SWITCH examplein the above table to
make the SWITCH example behave the same as the CASE example:
x=2
SWTCH x OF
1: PRI NT, 'one
2: BEGN
PRI NT, 'two'
BREAK
END
3: PRINT, 'three
4: PRINT, 'four'
ENDSW TCH

IDL Prints:

t wo

¢ |f there are no matches within a CASE statement and there is no EL SE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

Conditional Statements Building IDL Applications

Chapter 12: Program Control 323

The decision on whether to use CASE or SWITCH comes down deciding which of

these behaviors fits your code logic better. For example, our first example of the
CASE statement looked like this:

CASE nane OF
"Larry': PRINT, 'Stooge 1'
' Moe' : PRI NT, ' Stooge 2'

"Curly': PRINT, 'Stooge 3'
ELSE: PRI NT, 'Not a Stooge'
ENDCASE

We could write this example using SWITCH:

SW TCH nane OF
"Larry': BEG N
PRI NT, ' Stooge 1'
BREAK
END
' Moe' : BEA N
PRI NT, ' Stooge 2'
BREAK
END
"Curly': BEGAN
PRI NT, ' Stooge 3'
BREAK
END
ELSE: PRI NT, 'Not a Stooge'
ENDSW TCH

Clearly, this code can be more succinctly expressed using a CA SE statement.

There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS_OF_XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmasto start on. It starts on the specified day,
and prints the presents for al previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fits this problem nicely. Thefirst day of Christmas requires special
handling, so we use a BREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1:

PRO DAYS OF XMAS, day

| F (N_ELEMENTS(day) EQ 0) THEN DAY = 12

IF ((day LT 1) OR (day GT 12)) THEN day = 12

day_nanme = ['First', 'Second', 'Third, 'Fourth', 'Fifth', $
"Sixth', 'Seventh', 'Eighth', "Ninth', 'Tenth',$
"Eleventh', 'Twelfth']

Building IDL Applications Conditional Statements

324

Chapter 12: Program Control

PRINT, 'On The ', day_nane[day - 1], $
Day OF Christmas My True Love Gave To Me:'

SW TCH day of

12: PRINT, ' Twel ve Drummers Drumm ng'
11: PRINT, ' El even Pipers Piping'
10: PRINT, ' Ten Lords A-Leaping'
9: PRINT, ' Ni ne Ladi es Danci ng'
8: PRINT, ' Ei ght Mai ds A-M | ki ng'
7: PRINT, ' Seven Swans A- Swi nmi ng'
6: PRINT, ' Si x Ceese A-Laying'
5. PRINT, ' Five Gold Rings'
4: PRI NT, ' Four Calling Birds'
3: PRINT, ' Three French Hens'
2: BEGN
PRI NT, ' Two Turtl edoves'
PRI NT, ' And a Partridge in a Pear Tree!'
BREAK
END
1: PRINT, A Partridge in a Pear Tree!'
ENDSW TCH

END

If we passthe value 3 to the DAYS _OF XMAS procedure, we get the following
output:
On The Third Day O Christmas My True Love Gave To Me:
Three French Hens

Two Turtl edoves
And a Partridge in a Pear Tree!

Achieving this behavior with CASE would be difficult.

Conditional Statements Building IDL Applications

Chapter 12: Program Control 325

Loop Statements

One of the most common programming tasksis to perform the same set of statements
multiple times. Rather than repeat a set of statements again and again, aloop can be
used to perform the same set of statements repeatedly.

Note

IDL’'s array capabilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same cal culation on
each element of an array, you could write aloop to iterate over each array element:

array = | NDGEN(10)

FORi = 0,9 DO BEG N
array[i] = array[i] * 2
ENDFOR

Thisis much less efficient than using IDL’s built-in array capabilities:

array = | NDGEN(10)
array = array * 2
FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until aconditionismet.
It isanalogous to the DO statement in FORTRAN.

In DL, there are two types of FOR statements: one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed.

FOR Statement with an Increment of One

The FOR statement with an implicit increment of one iswritten as follows:
FOR Vari abl e = Expression, Expression DO Statenent

The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variableis
incremented by 1 until the index variable is larger than the second expression. This

Building IDL Applications Loop Statements

326 Chapter 12: Program Control

second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.

Warning
The data type of the index variable is determined by the type of theinitial value
expression. Keep this fact in mind to avoid the following:

FOR1 = 0, 50000 DO ...

Thisloop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields —15,536 because of truncation. The loop is not
executed. Theindex variable'sinitia valueislarger than the limit variable. Theloop
should be written asfollows:

FOR | = OL, 50000 DO ...

Note also that changing the data type of an index variable within aloop is not
allowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial datatype (and sois
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:

FOR i = 0B, 240, 16 DO PRI NT, i

The problem occurs because the variablei isinitialized to a byte type with OB. After
the index reaches the limit value 240B, i isincremented by 16, causing the value to

go to 256B, which isinterpreted by IDL as 0B, because of the truncation effect. As
aresult, the FOR loop “wraps around” and the index can never be exceeded.

Examples
A simple FOR statement:
FOR I =1, 4 DO PRINT, I, 172
This statement produces the following output:
1 1

Loop Statements Building IDL Applications

Chapter 12: Program Control 327

2 4
3 9
4 16

Theindex variable | isfirst set to an integer variable with avalue of one. The call to
the PRINT procedure is executed, then the index isincremented by one. Thisis
repeated until the value of | is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of ablock structure (instead of a single statement)
as the subject of the FOR statement. The example is a common process used for
computing a count-density histogram. (Note that a HISTOGRAM functionis
provided by IDL.)

FORK =0, N- 1 DOBEGN

C = A[K]
HI ST(C) = HIST(C) +1
ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to afloating-point variable and steps through the values
(1.5, 25, ..., 10.5):

FOR X = 1.5, 10.5 DOS = S + SQRT(X)

Theindexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of theindex variable is determined by the type of the first
expression after the “=" character.

Warning
Dueto the inexact nature of 1EEE floating-point numbers, using floating-point
indexing can cause “infinite loops’ and other problems. This problem is also
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRI NT, 0.1, 0.01, 1.6, 1.7, FORVAT='(f20.10)"

IDL prints the following approximations to the numbers we requested:
0. 1000000015

0. 0099999998

1. 6000000238
1. 7000000477

Building IDL Applications Loop Statements

328 Chapter 12: Program Control

See “Accuracy & Floating-Point Operations” in Chapter 22 of the Using IDL
manual for more information about floating-point numbers.

FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:
FOR Vari abl e = Expression;, Expression,, Increnent DO Statenent
This form is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Examples

The following examples demonstrate the second type of FOR statement.

;Decrenent, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO...

;lncrement by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO...

;Divide range frombottomto top by 4.
FOR mid = bottom top, (top - bottom/4.0 DO ...

Warning
If the value of the increment expression is zero, an infinite loop occurs. A common
mistake resulting in an infinite loop is a statement similar to the following:

FORX =0, 1, .1 DO

The variable X isfirst defined as an integer variable because theinitial value
expression is an integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer type is 0. The correct form of the statement is:

FORX=0., 1, .1 DO....

which defines X as a floating-point variable.

Sequence of the FOR Statement

The FOR statement performs the following steps:

Loop Statements Building IDL Applications

Chapter 12: Program Control 329

1

5.
6.
7.

The value of the first expression is evaluated and stored in the specified
variable, which iscalled theindex variable. Theindex variableis set to the type
of this expression.

The value of the second expression is evaluated, converted to the type of the
index variable, and saved in atemporary location. Thisvalueis called the limit
value.

The value of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, avalue of 1 is assumed.

If theindex variable is greater than the limit value (in the case of a positive step
value) the FOR statement isfinished and control resumes at the next statement.
Similarly, in the case of a negative step value, if the index variable isless than
the limit value, control resumes after the FOR statement.

The statement or block following the DO is executed.
The step value is added to the index variable.
Steps 4, 5, and 6 are repeated until the test of Step 4 fails.

REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition istrue. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once. (See “Definition of
True and False” on page 335 for details on how the “truth” of an expressionis
determined.)

The syntax of the REPEAT statement is as follows:
REPEAT st atenent UNTIL expression

or

REPEAT BEG N

statenents

ENDREP UNTIL expression

Examples

The following example finds the smallest power of 2 that is greater than B:

A
B

1
10

REPEAT A = A* 2 UNTIL AGI B

The subject statement can also be in the form of a block:

Building IDL Applications Loop Statements

330 Chapter 12: Program Control

A=1

B = 10

REPEAT BEG N
A=A*2

ENDREP UNTIL A GT B

The next example sorts the elements of ARR using the inefficient bubble sort method.
(A more efficient way to sort elementsisto use IDL’'s SORT function.)

;Sort array.
REPEAT BEG N
;Set flag to true.

NOSWAP = 1
FOR1 =0, N- 2 DOIF arr[I] GT arr[I + 1] THEN BEG N
; Swapped el ements, clear flag.
NOSWAP = 0
T=arr[l] &arr[I] =arr[l +1] &arr[l + 1] =T
ENDI F

; Keep going until nothing is noved.
ENDREP UNTI L NOSWAP

WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remainstrue. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.
(See “Definition of True and False” on page 335 for details on how the “truth” of an
expression is determined.)

The syntax of the WHILE...DO statement is as follows:
WHI LE expressi on DO stat enent

or

WHI LE expressi on DO BEG N
statenments
ENDWHI LE

When the WHILE statement is executed, the conditional expression istested, and if it
istrue, the statement following the DO is executed. Control then returnsto the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition isinitially
false.

Loop Statements Building IDL Applications

Chapter 12: Program Control 331

Examples

The following example reads data until the end-of-file is encountered:
WHI LE ~ EOF(1) DO READF, 1, A B, C
The subject statement can also be in the form of a block:

WHI LE ~ EOF(1) DO BEG N
READF, 1, A B, C
ENDVHI LE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:
array = [2, 3, 5, 6, 10]
i =0 ;lnitialize index
n = N_ELEMENTS(array)

;Increment i until a point larger than 5 is found or the end of the
;array is reached:

VWHI LE (array[i] LT 5) AND (i LT n) DOi =i + 1

PRINT, 'The first element >= 5 is elenment ', i

IDL Prints:

The first element >= 5 is el ement 2
Tip
Another way to accomplish the same thing is with the WHERE command, whichis
used to find the subscripts of the points where ARR][1] is greater than or equal to X.
P = WHERE(arr CE X)
; Save first subscript:
I = P(0)

Building IDL Applications Loop Statements

332 Chapter 12: Program Control

Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit aloop, start the next iteration of aloop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well asthe ON_ERROR and
ON_IOERROR procedures. The label field is ssimply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 aphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after the first character. Some examples of labels are as follows:

LABEL1:
LOOP_BACK: A = 12
I$QUIT: RETURN ; Conments are all owed.

BREAK

The BREAK statement provides a convenient way to immediately exit from aloop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This example illustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from 0 to 9999, ordered randomly. Then we use aloop to find where in the array the
value 5 islocated. If the value is found, we BREAK out of the loop because thereis
no need to check the rest of the array:

Note
This example could be written more efficiently using the WHERE function. This

example isintended only to illustrate how BREAK might be used.

; Create a randonly-ordered array of integers
; fromO to 9999:

array = SORT(RANDOMJ(seed, 10000))
n = N_ELEMENTS(array)

Find where in array the value 5 in | ocated:

Jump Statements Building IDL Applications

Chapter 12: Program Control 333

FORi = 0,n-1 DO BEG N

IF (array[i] EQ5) THEN BREAK
ENDFOR
PRI NT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we're looking for (or resort to
using a GOTO statement):

FORi =0, n-1 DO BEG N
IF (array[i] EQ 5) THEN found=i
ENDFOR

PRI NT, found

CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from aloop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note
Do not confuse the CONTINUE statement described here with the . CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not alowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does allow this.

Example
This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:
FOR 1 =1, 10 DO BEG N
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration
PRI NT, |
ENDFOR

Building IDL Applications Jump Statements

334 Chapter 12: Program Control

GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that leads to unwieldy programs. Its use should be avoided.
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of aloop resultsin an error.

The syntax of the GOTO statement is as follows:

GOTQ, Label
Warning
You must be careful in programming with GOTO statements. It isnot difficult to get
into aloop that will never terminate, especialy if there is not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMPL is executed after the GOTO
statement, skipping any intermediate statements:

Goro, Juweri

PRINT, 'Skip this' ; This statenment is skipped
PRINT, 'Skip this' ; This statement is al so skipped
JUWP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refersto the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of |F statements, as in the following statement:

IF A NE G THEN GOTO M STAKE

Jump Statements Building IDL Applications

Chapter 12: Program Control 335

Definition of True and False

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates predicate
expressions in the following contexts:

e | F...THEN. .. ELSE statements
e ? : inline conditional expressions
e VHI LE. .. DOstatements
* REPEAT. .. UNTI L statements
The definition of true and false for the different datatypesis asfollows:
e By default:
* Byte, integer, and long: odd integers are true, even integers are false.

* Floating-point, and complex: non-zero values are true, zero values are
false. The imaginary part of a complex number isignored.

e String: any string with anonzero length istrue, null strings are false.

e Heap variables (pointers and object references): non-null values are true,
null values are false.

e If the LOGICAL_PREDICATE compile option is set:
¢ Numerical values: non-zero values are true, zero isfalse.
e String and heap variables: non-null values are true, null values are false

See “COMPILE_OPT” in the IDL Reference Guide manual for additional details on
the LOGICAL_PREDICATE compilation option.

In the following example, the logical statement for the condition is a conjunction of
two conditions:

I'F (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than —40 and less than or equal to —20) are true,
the statement following the THEN is executed.

Building IDL Applications Definition of True and False

336 Chapter 12: Program Control

Definition of True and False Building IDL Applications

Chapter 13:

Writing Efficient IDL

Programs

The following topics are covered in this chapter:

Overviewcoviiiiinnannnn. 338
Expression EvaluationOrder 339
Avoid IF Statements 340
Use Vector and Array Operations 341

Use System Functions and Procedures . . .

Building IDL Applications

Use Constants of the Correct Type....... 344
Eliminate Invariant Expressions.. 345
Virtual Memory 346
IDL Implementation 351
TheIDL CodeProfiler 352

337

338

Chapter 13: Writing Efficient IDL Programs

Overview

Overview

This chapter presentsideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improvethe efficiency of IDL programs. In IDL, complicated computations
can be specified at ahigh level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programsin IDL are identical to thosein other
computer languages with the addition of the following simple guidelines:

e Usearray operations rather than loops wherever possible. Try to avoid loops
with high repetition counts.

¢ UselDL system functions and procedures wherever possible.
e Access array datain machine address order.

Attention also must be given to algorithm complexity and efficiency, asthisisusually
the greatest determinant of resources used.

Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 339

Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A isan array:

;Scale AfromO to 16.
B=A* 16. / MX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operations required is
twice the number of elementsin A. A much faster way of computing the same result
isused in the following statement:

;Scale AfromO to 16 using only one array operation.
B=A%* (16./NAX(A))

or

; Operators of equal priority are evaluated fromleft toright. Only
;one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
Statements:

A = RANDOMJ seed, 512, 512)
t1l = SYSTIME(1l) & B = A*16./MAX(A) & t2 = SYSTI ME(1)

PRINT, 'Tine for inefficient calculation: ', t2-t1l
t3 = SYSTIME(1) & B = 16./ MAX(A)*A & t4 = SYSTI ME(1)
PRINT, 'Tine for efficient calculation: ', t4-t3

Building IDL Applications Expression Evaluation Order

340 Chapter 13: Writing Efficient IDL Programs

Avoid IF Statements

Programs with array expressions run faster than programs with scalars, loops, and | F
statements. Some examples of slow and fast ways to achieve the same results follow.

Example—Summing Elements

Thefirst example adds all positive elements of array B to array A.

;Using a loop will be slow
FORI =0, (NN1) DOIF B[I] GI 0 THEN A[I] = AllI] + B[]

; Fast way: Mask out negative el ements using array operations.
A=A+ (BGro * B

; Faster way: Add B > O.

A=A+ (B>0)
When an |F statement appears in the middle of aloop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and WHERE

In the exampl e below, each element of C is set to the square-root of A if A[l] is
positive; otherwise, C[1] is set to minus the square-root of the absolute value of A[l].

;Using an |F statenent is slow
FOR 1=0,(N-1) DOIF AllI] LE O THEN $
C1]=-SQRT(-A[I]) ELSE ([I]=SQRT(AlI])

;Using an array expression is nuch faster.

C=((AGI0) * 2-1) * SQRT(ABS(A))
The expression (A GT 0) hasthe value 1 if A[l] is positive and has the value O if
A[llisnot. (A GT 0)* 2- lisequal to+1if A[l] ispositive or -1 if A[l] is negative,
accomplishing the desired result without resorting to loops or |F statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

; Get subscripts of negative el enents.

negs = WHERE(A LT 0)

; Take root of absol ute val ue.

C = SQRT(ABS(A))

; Negate elenents in C corresponding to negative elenents in A
d negs] = - negs]

Avoid IF Statements Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 341

Use Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array
operationsinstead of scalar operations in aloop. For example, consider the problem

of inverting a512 x 512 image. This problem arises because approximately half the

available image display devices consider the origin to be the lower-left corner of the
screen, while the other half recognize it as the upper-left corner.

The following exampleisfor demonstration only. The IDL system variable | ORDER
should be used to control the origin of image devices. The ORDER keyword to the
TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FORI =0, 511 DO FOR J = 0, 255 DO BEG N
; Temporarily save pixel image.
temp = image[l, J]
; Exchange pi xel in same columm from corresponding row at bottom
i mge[l, J] = imge[l, 511 - J]
i mge[l, 511-J] = tenp

ENDFOR
A more efficient approach to this problem capitalizes on I DL’ s ability to process arrays as
asingle entity:

FOR J = 0, 255 DO BEG N

; Temporarily save current row.
temp = image[*, J]

; Exchange row with correspondi ng row at bottom
i mge[*, J] = imge[*, 511-7J]
i mge[*, 511-J] = tenp

ENDFOR

At the cost of using twice as much memory, processing can be ssimplified even further
by using the following statements:

;Get a second array to hold inverted copy.
i mmge2 = BYTARR(512, 512)

Building IDL Applications Use Vector and Array Operations

342 Chapter 13: Writing Efficient IDL Programs

; Copy the rows fromthe bottom up.
FORJ = 0, 511 DO image2[*, J] = image[*, 511-J]

Even more efficient isthe single line:
image2 = image[*, 511 - I NDGEN(512)]

that reverses the array using subscript ranges and array-val ued subscripts.

Finally, using the built-in ROTATE function is quickest of al:
i mge = ROTATE(i nmage, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.

Use Vector and Array Operations Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 343

Use System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
almost always much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation isto find the sum of the elementsin an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at |east 10 times faster
than directly coding the sum.

;Slow way: Initialize SUM and sum each el ement.
sum=0. & FOR|l =J, KDO sum= sum+ array[l]

;Efficient, sinple way.
sum = TOTAL(array[J: K])

Similar savings result when finding the minimum and maximum elementsin an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.

Building IDL Applications Use System Functions and Procedures

344 Chapter 13: Writing Efficient IDL Programs

Use Constants of the Correct Type

Asexplained in Chapter 3, “Constants and Variables’, the syntax of a constant
determinesitstype. Efficiency is adversely affected when the type of a constant must
be converted during expression evaluation. Consider the following expression:

A+ 5

If thevariable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

Thetype of aconstant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A isabyte array, the result of the expression A + 5B isabyte
array, while A + 5 yields a 16-bit integer array.

Use Constants of the Correct Type Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 345

Eliminate Invariant Expressions

Expressions whose values do not change inside a loop should be moved outside the
loop. For example, in the loop:

FORI =0, N- 1 DOarr[l, 2¢J-1] = ...,

the expression (2* J-1) isinvariant and should be evaluated only once before the loop
is entered:

tenp = 2*J-1
FOR1 =0, N1 DO arr[l, temp] =

Building IDL Applications Eliminate Invariant Expressions

346 Chapter 13: Writing Efficient IDL Programs
Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systemsto avoid penalty. Virtua memory allows the computer to
execute programs that reguire more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this processis transparent to the user, it greatly affects the efficiency of the
program.

Note
In relatively modern computers, plentiful physical memory (hundreds of megabytes
for a single-use machine) is not uncommon. Remember, however, that IDL is
generally not the only consumer of memory on a system. Other applications, the
operating system itself, and other users on multi-user systems may consume large
amounts of physical and virtual memory. If your IDL program appears to be
inefficient or slow, inspect the system memory situation to determine whether
virtual memory is being used, and if so, whether there is enough of it.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only a small portion of that data actually residesin
physical memory at any given moment; the remainder is stored on disk. The portion
of data and program code in real physical memory is commonly called the working
Set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then allows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A page fault is
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very large in relation to the physical memory accesstime,
page faults become an important consideration.

When using IDL with large arrays, it isimportant to have access to sufficient physical
and virtual memory. Given a suitable amount of physical memory, the parametersthat
regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See “ Virtual Memory System Parameters’ on

page 349. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manager.

Virtual Memory Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 347

Access Large Arrays by Memory Order

When an array islarger than or close to the working set size (i.e., the amount of
physical memory available for the process), it is preferable to accessit in memory
address order.

Consider the process of transposing alarge array. Assume the array isa 512 x 512
byte image with a 100 kilobyte working set. The array requires 512 x 512, or
approximately 250 kilobytes. L ess than half of the image can be in memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. Thefirst row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses ailmost equal to the size of the entireimage. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written almost 512 times. The amount of time required to
transpose the array using the method described above is relatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 x 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:
FOR X = 0, 511 DOFOR Y = 0, 511 DOARR[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FORY =0, 511 DOFOR X = 0, 511 DOARR[X, Y] = ...
This approach cuts computing time by a factor of at least 50.

Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especially if you have asmall system), you may encounter the error

message

% Unabl e to all ocate nenory.

Building IDL Applications Virtual Memory

348 Chapter 13: Writing Efficient IDL Programs

This error message means that IDL was unable to obtain enough virtual memory to
hold all your data. Whenever you define an array, image, or vector, IDL asksthe
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

Thefirst time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to a scalar value.

If you need to exit IDL, you first should use the SAVE procedure to save your
variablesin an IDL savefile. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELP/MEMORY command tells you how much virtual memory you have
allocated. For example, a512 x 512 complex floating array requires 85122 bytes or
about 2 megabytes of memory because each complex element requires 8 bytes.
Deleting avariable containing a512 x 512 complex array will increase the amount of
memory available by this amount.

Minimizing Virtual Memory

If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
statement

A=(B+0Q * (E+F

IDL first evaluatesthe expression B + C and creates atemporary array if either B or C
are arrays. In the same manner, another temporary array is created if either E or F are
arrays. Finally, the result is computed, the previous contents of A are deleted, and the
temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays worth of data
isrequired in addition to normal variable storage.

Itisagood ideato delete the allocation of a variable that contains an image and that
appears on the left side of an assignment statement, as shown in the following
program.

;Loop to process an inage.
FOR1 = ... DO BEGN

; Processing steps.

Virtual Memory Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 349

:Delete old allocation for A
A=0

; Conput e i mage expression and store.

A = | mage_Expression
; End of | oop.
ENDFOR

The purpose of the statement A=0 isto free the old memory allocation for the
variable A before computing the image expression in the next statement. Because the

old value of A isgoing to be replaced in the next statement, it makes senseto free A’s
alocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arraysis
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as atemporary variable and makes the argument undefined. In this way, you avoid

making anew copy of temporary results. For example, assume that A isalarge array.
To add 1 to each element in A, you could enter:

A = A+l

However, this statement creates a new array for the result of the addition and assigns
the result to A before freeing the old allocation of A. Hence, the total storage required
for the operation istwice the size of A. The statement:

A = TEMPORARY(A) + 1
requires no additional space.

Virtual Memory System Parameters

Thefirst step isto determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 x 512 images, each
complex image requires 2 megabytes. Suppose that during atypical session you need
to have twenty images stored in variables and reguire enough memory for ten images
to hold temporary results, resulting in atotal of thirty images or 60 megabytes.

Rounding up to 80 megabytes gives a reasonabl e value for the amount of physical and
virtual memory that should be available to IDL.

Building IDL Applications Virtual Memory

350

Chapter 13: Writing Efficient IDL Programs

UNIX Virtual Memory

For UNIX, The size of the swapping area(s) determines how much virtual memory
your processis alowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is atime-consuming task that should be
planned carefully. It usualy requires saving the contents of the disk, reformatting the
disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to aregular file. Thisis a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.

Windows Virtual Memory

For Microsoft Windows, creation and management of virtual memory files (called
“paging files") are handled more or less automatically. You can, however, adjust the
initial and maximum size of the paging file for a given disk. Consult your system
documentation for details and instructions on how to perform these operations.

Virtual Memory Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 351

IDL Implementation

IDL programs are compiled into alow-level abstract machine code whichis
interpretively executed. The dynamic nature of variablesin IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of thetimerequired for array operationsissimilar to that of vector
computers and array processors. Thereisan initial set-up time, followed by rapid
evaluation of the operation for each element. The time required per element is shorter
in longer arrays because the cost of thisinitial set-up period is spread over more
elements. The speed of IDL is comparable to that of optimized FORTRAN for array
operations. When data are treated as scalars, IDL efficiency degrades by a factor of
30 or more.

Building IDL Applications IDL Implementation

352 Chapter 13: Writing Efficient IDL Programs

The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within afile.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of the
IDLDE or by entering PROFILER at the Command Input Line. For more information
about the PROFILER procedure, see “PROFILER” in the IDL Reference Guide
manual .

Note
Calling the Profiler from the Command Input Line does not start the Profiler dialog.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

X
— Uzer Module — Syztem Module:
[WIDIST
[wIFILEPATH [wlAC0S5
[wIPATH_SEP (wlaL0G
[IPROF_TEST [wlALOG10
[wIARG_PRESENT
[wiARRAT_EQUAL
[wlaSIN
[wiaS50C
(wlaTaN
(w15 LI

[Al User Modules

Profie 4l | Clear Al |

Figure 13-1: Profile Dialog

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for

The IDL Code Profiler Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 353

profiling. To select amodule, click on the checkbox next to it. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.

All User Modules
Select this checkbox to select all the user modules for profiling.
System Modules

Thisfield includes al IDL system procedures and functions.
All System Modules
Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for al the available modules—System
and User. Click “Reset” to clear the report shown in the “Profile Report” dialog. The
“Profile Report” dialog is dismissed, asit no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismiss the Profile dialog. Click “Help” to display Help
on thisdialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDLDE. The Profile
Report dialog appears.

Fields in the Profiler Report Dialog

Thefields in the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the values in each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted alphabetically.

Note
Whether you enter a program at the command line or run a program contained in a
file, the PROFILER procedure reports the status of all the modules compiled and
executed either since profiling wasfirst set or since the PROFILER was reset.

Modules

The name of the library, user, or system procedure or function.

Building IDL Applications The IDL Code Profiler

354 Chapter 13: Writing Efficient IDL Programs

Typ

Thetype of module. System procedures or functions are associated withan“S’. User
or library functions or procedures are associated with a“U”.

Count
The number of times the procedure or function has been called.
Only(sec)

Thetimerequired, in seconds, for IDL to execute the given function or procedure, not
including any calls to other functions or procedures (children).

Only Avg
Average of the Only(sec) field above.
+Children(sec)

The time required, in seconds, for IDL to execute the given function or procedure
including any calls to other functions or procedures.

+Child Avg
Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDLDE. Click “Save” to save the report as atext file. The
Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile Report
dialog. The contents remain available after cancelling. Click “Help” to display Help
on thisdialog.

Using the IDL Code Profiler

Open anew editor file by selecting “New” from the File menu.

Enter the following lines in the editor:

PRO prof _test
OPENR, 1, FILEPATH(' nyny.dat’', SUBDIR=['exanples’, 'data'])
a=ASSOC(1, BYTARR(768,512))
b=a[0]
CLCSE, 1
TV, b
END

The IDL Code Profiler Building IDL Applications

Chapter 13: Writing Efficient IDL Programs 355

Save thefile as prof_test.pro by selecting “Save” from the File menu. The Save As
dialog appears.

To use the IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compileall
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile al the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Avg
AS50C 5 1 0.000116 0.000116 0.000116 0.000116
EvYTARR 5 1 0.001603 0.001603 0.001603 0.001603
CLOSE 5 1 0.000093 0.000093 0.000093 0.000093
KETWORD_SET S g 0.000018 0.000003 0.000018 0.000003
M_ELEMENTS 5 3 0.000011 0.000004 0.000011 0.000004
OM_ERROR 5 1 0.000028 0.000028 0.000028 0.000028
OPEMR 5 1 0.000293 0.000293 0.000293 0.000293
STRLEN 5 1 0.000006 0.000006 0.000006 0.000006
STRMID 5 1 0.000011 0.000011 0.000011 0.000011
™ 5 1 0.087759 0.087759 0.087759 0.087759
WwHERE 5 1 0.000017 0.000017 0.000017 0.000017
Print | Save... | ok I

Figure 13-2: Profile Report Dialog

For moreinformation about the capabilities of either dialog, see “ The Profile Dialog”
on page 352 and “ The Profile Report Dialog” on page 353.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for all system files, plus the user module, prof_test, and the
library function, FILEPATH. If you have altered the above results, reset the report and
run prof_test again.

Enter the following lines at the Command Input Line:

;Create a dataset using the library function DI ST. Note that DI ST
;is imredi ately conpil ed.

Building IDL Applications The IDL Code Profiler

356 Chapter 13: Writing Efficient IDL Programs

A= DI ST(500)

; Display the image.

TV, A
Return to the Profile dialog. You will note that the DIST function has been appended
to the User Modulefield, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog's results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previously selected for profiling.

Profile Report x|
Modules |T_l,lp| Count | Only[sec) | Only Avg +Children[zec) | +Children Av:l
FINDGEM 5 1 0.000034 0.000034 0.000034 0.0000
FLTARR 5 1 0.000040 0.000040 0.000040 0.0000
KETWORD_SET S g 0.000040 0.000007 0.000040 0.0000
M_ELEMENTS 5 4 0.000015 0.000004 0.000015 0.0000
OM_ERROR 5 2 0.000042 0.000021 0.000042 0.0000
OPEMR 5 1 0.000168 0.000168 0.000168 0.0001
SQRT S 281 0.004357 0.000018 0.004397 0.0000
STRLEN 5 1 0.000009 0.000009 0.000009 0.0000
STRMID 5 1 0.000054 0.000054 0.000054 0.0000
™ 5 2 0.235904 0117952 0.235904 01179
WwHERE 5 1 0.000038 0.000038 0.000038 0.0000 7+ |
« | 2
Print | Save... | 55 |

Figure 13-3: Refreshing the Profile Report

If you select DIST in the User Modulesfield in the Profile dialog and then re-enter
only the statement calling TV at the Command Input Line, you will notice that only
the count for TV increases in the profiler report. You must re-enter the statement
calling DIST at the Command Input Line; the already-compiled library function is
executed again, making it available for profiling.

The IDL Code Profiler Building IDL Applications

Chapter 14:

Multithreading in IDL

This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.

ThelDL ThreadPool 358 Routinesthat Usethe Thread Pool
Controlling the IDL Thread Pool 361

Building IDL Applications

357

358 Chapter 14: Multithreading in IDL

The IDL Thread Pool

On computer systems that have more than one central processing unit, multi-
threading can be used to increase the speed of numeric calculations by using multiple
system processors to simultaneously carry out different parts of the computation. In a
multithreaded environment, each thread handles a portion of the overall task; if
several threads can run in parallel, the computation can often be completed more
quickly than if the different portions of the task ran in series.

IDL’sthread pool —a pool of computation threads that are used as helpersto

accel erate numerical computations— allows for multithreading when multiple CPUs
are present. IDL automatically evaluates all computations performed by routines that
may benefit from multithreading to determine whether or not to use the thread pool in
the current computation. This decision is based on attributes such as the number of
data elementsinvolved, the availability of multiple CPUs, and the availability of a
multithreaded implementation of the algorithm in use. You can alter the parameters
used by IDL to make this decision, either on aglobal basisfor the duration of asingle
IDL session, or for an individual computation.

Note
Multithreading does not offer the possibility of increased execution speed for al
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 367.

Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in a calculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL encounters a computation
that can use the thread pool and which would benefit from parallel execution, it
divides the task into sub-parts for each thread, enables the thread pool to do the
computation, waits until the thread pool completes, and then continues. Other than
the improved performance, the end result is virtually indistinguishable when
compared to the same computation performed in the standard single-threaded
manner.

The IDL Thread Pool Building IDL Applications

Chapter 14: Multithreading in IDL 359

Possible Drawbacks to the Use of the
IDL Thread Pool

There are instances when allowing IDL to useits default thread pool settings can lead
to undesired results. In some instances, a multithreaded implementation using the
thread pool may actually take longer to complete a given job than a single-threaded
implementation. If acomputation uses the thread pool in an inappropriate situation,
there may be other undesirable effects. The following are some situationsin which
the default thread pool settings may provide less than optimal results.

Computation of a Relatively Small Number of Data Elements

Use of the IDL thread pool requires a small fixed overhead when compared to a non-
threaded version of the same computation. Normally, computational speed increases
when multiple CPUs work in parallel, and the speed-up is much larger than the loss
due to thread pool overhead. However, if the computation does not include alarge
enough number of data elements (each element being a data value of a particular data
type), the loss due to thread pool overhead can exceed the benefit and the overall
computation speed can be slower.

To prevent the use of the thread pool for computations that involve too few data
elements, IDL supports a minimum threshold value for thread pool computations.
The minimum threshold value is contained in the TPOOL_MIN_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Large Computation that Requires Virtual Memory Use

If acomputation istoo large to fit into physical memory, the threads in the thread pool
may cause page faults that will activate the virtual memory system. If more than one
thread encounters this situation simultaneously, the threads will compete with each
other for access to memory and performance will fall below that of a single-threaded
approach to the computation.

To prevent the use of the thread pool for computations that involve too many data
elements, IDL supports a maximum threshold value for thread pool computations.
The maximum threshold value is contained in the TPOOL_MAX_ELTSfield of the
ICPU system variable. See the following sections for details on modifying this value.

Multiple Users Competing for CPU Resources

On alarge multi-user system, an IDL application that uses the thread pool may
consume all available CPUs, thus affecting other users of the system by reducing
overall performance.

Building IDL Applications The IDL Thread Pool

360 Chapter 14: Multithreading in IDL

To prevent the use of all system processors by routines that use the thread pool, IDL
allows you to specify explicitly the number of CPUs that should be used in
calculations that involve the thread pool. The number of processors to be used for
thread pool operationsis contained in the TPOOL_NTHREADS field of the !CPU
system variable. See the following sections for details on modifying this value.

Sensitivity to Numerical Precision

Algorithms that are sensitive to the order of operations may produce different results
when performed by the thread pool. Such results are due to the use of finite precision
floating point types, and are equally correct within the precision of the data type.

The IDL Thread Pool Building IDL Applications

Chapter 14: Multithreading in IDL 361

Controlling the IDL Thread Pool

IDL alows you to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

¢ Viewing the Current Thread Pool Settings

e Using the Default Thread Pool Settings

e Changing Global Thread Pool Settings

e Changing Thread Pool Settings for a Specific Computation
» Disabling the Thread Pool

Note
Multithreading does not offer the possibility of increased execution speed for all
IDL routines. For alist of the routines that have been implemented to use
multithreading when possible, see “Routines that Use the Thread Pool” on
page 367.

Viewing the Current Thread Pool Settings

The current values of the parameters that control IDL’s use of the thread pool for
computations are always available in the read-only ' CPU system variable. |CPU is
initialized by IDL at startup with default values for the number of CPUs (threads) to
use, as well as the minimum and maximum number of data e ements. To view the
settings, use the following command:

HELP, /STRUCTURE, ! CPU

The values of thefieldsin the |CPU system variable are explained in “!CPU” in the
IDL Reference Guide manual.

Using the Default Thread Pool Settings

If you have more than one processor on your system, if the routine you are using is
able to use the thread pool, and if the number of data elementsin your computation
fallsinto the allowed range (neither too few nor too many), then IDL will employ the
thread pool in that calculation.

If the above requirements are met, IDL will automatically use the thread pool for the
computation. You do not need to do anything special to enable IDL’s multithreading
capabilities.

Building IDL Applications Controlling the IDL Thread Pool

362 Chapter 14: Multithreading in IDL

Changing Global Thread Pool Settings

Unlessthey are overridden by thread pool keywords supplied at the time of execution,
the values contained in the ! CPU system variable control IDL’s use of the thread pool.
ICPU isa*“read-only” system variable, which meansthat you cannot assign valuesto
its structure fields directly, either at the command line or within a program. You can,
however, change the values of the | CPU system variable for the duration of the
current IDL session by using the CPU procedure.

The CPU procedure accepts the following keywords:
TPOOL_MAX_ELTS

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation exceeds the number you specify, IDL will not use the thread pool for the
computation. Setting this value to 0 removes any limit on maximum number of
elements, and any computation with at least TPOOL_MIN_ELTS will use the thread
pool.

This keyword changes the value returned by |CPU.TPOOL_MAX_ELTS.
TPOOL_MIN_ELTS

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation is less than the number you specify, IDL will not use the thread pool for
the computation. Use this keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword changes the value returned by 'CPU.TPOOL_MIN_ELTS.
TPOOL_NTHREADS

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
ICPU.HW_NCPU threads, so that each thread will have the potential to runin
parallel with the others. Set this keyword equal to 0 (zero) to ensure that
ICPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

This keyword changes the value returned by | CPU.TPOOL.NTHREADS.

Note
For numerical computation, there is no