=i DL

Image
Processing
IN IDL

RE SEARCH IDL Version 5.6
October, 2002 Edition
SYST EMS Copyright © Research Systems
L A Kodak Company

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerica Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ jsatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library

Copyright © 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and A pplied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisysunder U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424,

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

Introduction to Image Processing in IDLcooovviiiiiiiiiiiiiiieiiie e, 11
Overview Of IMage PrOCESSINGccoiceerrirriieeeieeereereee st see et sesse e seeeseeeabeeeesaeesseesaeeenes 12
Digital Images and ImMage ProCESSINGc.ccoieeeierieereeriee i esee e s eeeseesseee s 12
Understanding Image DefinitionS iN IDLccoouieiiniiieinie et 15
Representing Image Dat@in IDLccui oot s 16
ACCESSING IMAGES ...eeeie ettt ettt st ettt bt she et et e st e sbeenbeanneaeeearena 18
QUENYING IMAGES ... ettt ettt st sttt e s ea e et e st e e seee sneeneeneas 18
Importing Formatted IMage FileS ...t 22
Exporting Formatted IMage FileS ... e 23
Importing Unformatted IMage FileS ..o 24
Exporting Unformatted Image FileS ... 25
REFEIEINCES ... ettt st ettt b et et et e sbee sheenbeenbeeeeeaeenas 26

Chapter 2:
Creating Image DiSPlaysSccoveiiiiieeeee e 27

Overview of Creating Image DiSPlayscccoceveriir it s 28

Image Processing in IDL 3

Differentiating Between GraphiCS SYSIEMScocoieiiiieieeiree e e 30

DiITeCt GraPNICS ...t e e e 30
OBJECE GraPNICS ...t e e e e e 30
Understanding Windows and Related Device Coordinatescccovevereeeeeesennee 31
Creating Direct Graphics Image DiSplayscoeveirieineeierece et 33
Displaying Binary Images with Direct GraphiCsccccverereienine e 33
Displaying Grayscale Images with Direct GraphiCsccoceveieeineneneeiniene s 35
Displaying Indexed Images with Direct GraphicCscoceovereieeininenecineesece 38
Displaying RGB Images with Direct GraphicCscccvierereinine e 42
Creating Object Graphics Image DiSPlayscccoeirieireeiereee e 46
Displaying Binary Images with Object GraphiCscccuvererreieeineneneerese s 46
Displaying Grayscale Images with Object Graphicscccoovveeinenencinieseecne 49
Displaying Indexed Images with Object Graphicscooeeeveieiine e 52
Displaying RGB images with Object GraphiCscccceeererreenine e 57
Displaying Multiple Imagesin @ WINAOWccoeieeieienenieneee e s 62
Displaying Multiple Imagesin Direct GraphiCsccccveverieeneiesensnse e 62
Displaying Multiple Imagesin Object GraphiCscccoveereeneneeie e 66
ZOOMING 1N ON 3N TMAGEveveieeeeie ettt sttt et e sr e se e ene s nrenes 73
Zooming in on aDirect Graphics IMage DiSplaycccvcveeienenienieereee e 73
Zooming in on an Object Graphics Image Displaycccvveerenerieeieee e 76
Panning Within @n IMagEcociiieieiee e e e 80
Panning in DireCt GraphiCscoiiieeiieiiiiesee et s 80
Panning in OBbject GraphiCscoeieeieie e s 82
Chapter 3:
WOTKING WIth COlOT e 87
Overview of WOorking With COlOrcccuiieiiireineeeee e e s 88
COlOr SYSLEIMS ...ttt sttt sttt e b e e s e b e 88
Display Device Color SCREMESc.ooeiriiiirire e e 89
Image Data Organi Zationcoeeeieeuereeseseeie e s ese e e es e e e s re e 91
ChapLEr OVEIVIBIW ...ttt et er et e e e es e e nn e nnene s 92
Understanding Colors within IDL GraphiC SyStEMScccoceeereeienneneeneiee e 9%
DiITECt GraPNICS ...ttt et et e 94
OBJECE GraPNICS ...ttt e e e e e 97
Loading Pre-defined Color TableS ..o e 100

Contents Image Processing in IDL

Modifying and Converting Color TADIEScccciriiireieire e 103
UsSing the XLOADCT ULHITY oot e 103
Using the XPALETTE ULHIY .ooooouiieiiieeee e e 113
Using the MODIFY CT ROULINEc.civiiieiieeeiieieeere s e 119
Converting to Other Color SYSIEMScoiiicirire et e 120

Converting Between IMage TYPES ...coveverererririeiire et sr e e e ens 121
Converting Indexed Imagesto RGB IMagESccccoeererieneeinienesece e 121
Converting RGB Images to Grayscale IMagesccoeverereeirenereeesese e 124
Converting RGB Images to Indexed IMagEScccoeerereneeiniene e 129

Highlighting Features with a Color Tablecccvieiiiiinen e 134
Highlighting Features with Color in Direct Graphicsccceovveieneinenc e 134
Highlighting Features with Color in Object GraphiCscccevereiieneeinene e 139

Showing Variations in Uniform ATEESccoereireeeieeiesre st s 145
Showing Variations with Direct Graphicscccecevererieeieie e 146

Applying Color ANNOtationS t0 IMAJESccererreirireeie et s 153
Applying Color Annotations to Indexed Imagesin Direct Graphicsccccc..... 153
Applying Color Annotations to Indexed Imagesin Object Graphicscccceueee 158
Applying Color Annotations to RGB Images in Direct Graphicsccceeeeunene 163
Applying Color Annotations to RGB Images in Object Graphics.............ccoceeeeunene 168

Chapter 4:

Transforming Image GEOMELIYoooovviiiieiiiiiiiiiee e 175

Overview of Geometric TranSfOrMatioNsocceereeriereeerere e e 176

INterpolation MENOAScuiiiirciec e e e 178

CropPiNg IMAJEScovieeeirieriese ettt sttt er e st b s e e b e e ens 180

Padding IMAJES ...ttt e et st se s 184

RESIZING IMBOES ...ttt sttt ne e e et b e e e se e nenenne s 188

SIftING IMAJES ...t e e e 191

REVEISING IMAJGES ...c.eeieieieiree ettt ettt be e et e s 194

TranNSPOSING IMBOESveeereieeiiee ettt er et sr e et eb e en e e ene e 197

ROLALING IMBJES ...ttt ettt ne e et sa e et e nene e 200
Rotating an Image by 90 Degree INCremMeNtscocoevererreeeeneie e e 200
Using the ROT Function for Arbitrary ROtaLONSc.ccoerrieeincieneeinese e 203

Planar Slicing Of VOIUMELNIC DALacccovverierereeeiree et e 206
Displaying aSeries of Planar SIICESccccveieieririecee s 206
Extracting a Slice of VOIUMELNIC DaLaAcoceeruerieiiiiereieeeee e 209

Image Processing in IDL Contents

Interactive Planar Slicing of VOIUMELIiC Datacceveeireenieneeenene e 211
Displaying Volumetric DataUsing SLICERS3cccooeiiieneenee e 212
Manipulating Volumetric Data Using SLICERSccccoiiiiiienine e 212
Displaying Volumes Using XVOLUMEcooiiiiiice e 216
Manipulating Volumetric Data Using XVOLUMEocooiiiiiiinieceesens 217
Chapter 5:
Mapping an Image oNto GEOMELIYccuuiiiiiiiiiiiiiiiee e 221
Overview of Mapping Images onto GEOMELNC SUIfACEScoovvererreriercieeeerece e 222
Mapping an Image onto Elevation Dataccccoeeerereneeiniene e 224
Opening Image and GEOMELTY FilEScooiiiieireie e s 224
Initializing the IDL Display ODJECLScooueieiiriiie e e s 225
Displaying the Image and Geometric Surface ODJeCtScoveereiirinecincieneens 227
Mapping an Image Onto @ SPNETE ..o e 233
Mapping an Image onto a Sphere Using Direct Graphicscccccovevvneeincnieneeenns 233
Mapping an Image onto a Sphere Using Object GraphicCscccoverereeireneneeanns 237
Chapter 6:
Working with Masks and Image StatiStiCSooovciiiiiiiiiiiiiiieeen. 243
Overview of Masks and Image StatiStiCSccererrerireirreeire e e 244
MESKING TMBOES ...veueiieeetire et ettt er e er e en e 246
ClPPING IMAJESeeeieeeieee ettt et e er e e en e e s 251
Locating Pixel VAUES N an IMEGEcceeuiriiiieiirise e 256
Calculating IMage SEBLISHICSc.veveruerrereeieeeie e er e e 262
Chapter 7:
Warping IMAGEScooiieciiee e 269
Overview of Warping IMaGESoceereieririreinieise et sr e ss e 270
Tipsfor Selecting CoNtrol POINESoooeiirieirerireeee e e 271
Creating Transparent Image OVENTaYScccoerireerenireeiee e 272
Displaying Image Transparencies Using Direct GraphiCsccccooeveneeireneneennns 272
Displaying Image Transparencies Using Object Graphicsccccooevveeeircneneennns 272
Warping Images Using DireCt GraphiCscoevreeireieneeiriese e 274
Warping Images Using Object GraphiCsc.coocoeiiiiirieeinee e e 285
Chapter 8:
Working with Regions of Interest (ROIS)ccoooviiiiiiiiiiiiiiiiiiieee 299
Overview of WOorking With ROIS ..ot 300

Contents Image Processing in IDL

Contrasting an ROI’s Geometric Areaand Mask Areaccccoveeeeeneeneneeieneeneenns 302
Defining RegiONS Of INTEIESEoiviiieee et e e 303
Displaying ROI Objectsin aDirect GraphicsS WinAOWcccoeirereneeiniene e 306
Programmatically Defining ROIs and Computing Geometry and Pixel Statistics 311
GrOWING A REGION ...ttt et e e b e e e e e e ens 317
Creating and Displaying an ROI Maskc.coeurieiriienne e e 324
Testing an ROI for Point CoNtaiNMENTcccvriiireeiereee e e 330
Creating a Surface Mesh Of an ROI GIOUPccc.vreeereiieninie e e 334
Chapter 9:

Transforming Between DOMaINSooooeiiiiiiiiiiiiiiiiiieeeeeeeeee e 339
Overview of Transforming Between Image DOMAaINSccocevreeireieneeenene e 340
Transforming to and from the Frequency Domain with FFT ..o 343

Transforming to the Frequency DOMaINcccceveeieineneeneire e 343

Displaying Imagesin the Frequency DOMaiNcccceverenrieeincieneeineese e 349

Transforming from the Frequency DOMAINcccovrereeneirieneneeeeee e 354

Removing Noise With the FFT ... e 358
Transforming to and from the Time-Frequency Domain with Wavelets 365

Transforming to the Time-Frequency DOMaINcccoeveieinienineceece s 365

Displaying Imagesin the Time-Frequency DOMaINccccooeeererieneeenene s 370

Transforming from the Time-Frequency DOMaINccccevreeeneieneciniese e 374

Removing Noise with the Wavelet Transform ... 378
Transforming to and from the Hough and Radon Domainscccccceeviniic e 383

Transforming to the Hough and Radon Domains (Projecting)ccccceeeverieereenens 383

Transforming from the Hough and Radon Domains (Backprojecting)c........ 389

Finding Straight Lines with the Hough Transform ..o, 394

Color Density Contrasting with the Radon Transformcccccocveeeeienniecieens 402
Chapter 10:

Contrasting and Filtering ... 409
Overview of Contrasting and Filteringc.ccoerieeereeierne e 410
BYLE-SCAIING ..ottt e e et et e en e 413
WOrking With HiStOGIamSc.coeieieiieie et e 417

Equalizing With HiStOGramSccceireriinieineciire e e 418

Adaptive Equalizing With HiStOGramscccoveirneeeneenenne e 422
FIltering @N IMEO0E ..ottt et et e 428

LOW PaSS FIlLENING ..o.veviieeiieiee ettt s e e 429

Image Processing in IDL Contents

High Pass Filteringcccoeiiiiiiiie et e e 433
DireCtional FilTErING ...ccovverieeirieeieec et et 438
Laplacian Filteringcoocoeieeieeiee et e e 442
SMOONING 8N TMBJE ...ttt e 448
Smoothing With AVErage ValUESccciiiieiiieine et e s 448
Smoothing with Median VAUES ..o 453
Sharpening an IMagE ..o e e 459
DELECHING EAJESevieieieetireeieseeie sttt et e eb e 464
Enhancing Edges with the RODerts Operatorcooeeveneneceneneneneeinee e 464
Enhancing Edges with the Sobel Operatorocoeoeriiencinne e 467
REMOVING NOISE ...ttt et et e 470
Windowing t0 REMOVE NOISEcccoiviiriiieieeieiire et 470
Lee Filtering to REMOVE NOISEccccuviieiieeie ettt 475
Chapter 11:
Extracting and Analyzing Shapescccccciiiis 479
Overview of Extracting and Analyzing Image Shapesccccoevevrenencniecineceee 480
Applying aMorphological Structuring Element to anImageccccoeceveicnnene. 480
Guidelines for Determining Structuring Element Shapesand Sizescccccoveienee. 484
Determining Intensity Values When Thresholding and Stretching Images 486
Thresholding 8N TMAJEcceeiiiieice e e 487
SEretChing 8N TMAJEc.ooviii e e e s 488
Eroding and Dilating Image ODJECEScccuririereeieiine e e 489
CharacteristicS Of ErOSIONcccvviiueieiieiirie ettt et e s 489
CharacteristicS Of DIlHONccuviriereiieiire e e s 489
Applying Erosion and Dilation ... 490
Smoothing With MORPH_OPENc.cciiiiiiieire e e 496
Smoothing With MORPH_CLOSE ..o e 500
Detecting Peaks of Brightnessoooiiiieiieie e s 504
Creating Image ObjeCt BOUNCANESccevirieiriieie et 508
Selecting Specific IMage ODJECESccvieririeie et e e 514
Detecting Edges of Image ODJECLSccvieeeeieiirire et e 520
Creating DisStanCe IMaScc.eoieiieiieerieie sttt et st e sr e snens 523
Thinning IMage ODJECESc..oiiiireeee e e e e 527
Combining Morphological OPErationsScoceevereririeereeie st 534

Contents Image Processing in IDL

Analyzing Image Shapes

... 540
Using LABEL_REGION to Extract Image Object Informationcccccveeeenene 540
Using CONTOUR to Extract Image Object Informationcccceeeinencieenennenn 546

IO EX it e e e e e e e 551

Image Processing in IDL Contents

Chapter 1.

Introduction to Image
Processing in IDL

This chapter describes the following topics:

Overview of Image Processing 12 Accessinglmages.................... 18
Understanding Image DefinitionsinIDL .. 15 References 26
Representing Image DatainIDL 16

Image Processing in IDL 11

12 Chapter 1: Introduction to Image Processing in IDL

Overview of Image Processing

Today, the medical industry, astronomy, physics, chemistry, forensics, remote
sensing, manufacturing, and defense are just some of the many fields that rely upon
images to store, display, and provide information about the world around us. The
challenge to scientists, engineers and business peopleisto quickly extract valuable
information from raw image data. Thisis the primary purpose of image processing —
converting images to information.

This book explains how to processimages using IDL (Interactive Data L anguage).
IDL isahigh-level programming language that contains an extensive library of image
processing and analysis routines. With IDL, you can quickly accessimage data and
begin investigating the best way to extract useful information.

Each chapter introduces image processing topics and includes information regarding
when one method may be preferred over another to enhance specific image features.
Numerous step-by-step examplesillustrate IDL’s image processing and analysis
routines, allowing you to quickly understand how to get the desired results when
working with your own image data. This book is not intended to be acomplete source
for image processing knowledge, an advanced image processing manual or an image
processing reference guide. This book is designed to teach people how to use IDL to
perform basic image processing, and does not assume that they are aready expertsin
the field of image processing.

Digital Images and Image Processing

A digital image is composed of agrid of pixels and stored as an array. A single pixel
represents a value of either light intensity or color. Images are processed to obtain
information beyond what is apparent given the image’s initial pixel values. Image
processing tasks can include any combination of the following:

Accessing Image Data — Image datamust be displayed to initially determine what
features are to be extracted or what problem needs to be solved. After processing, the
image should be displayed to verify the results. Chapter 2, “ Creating Image
Displays’ details how to create Direct and Object Graphic displays containing binary,
indexed and RGB images.

Enhancing Images Using Color — Color can be apowerful tool for extracting
previously unseen information from images. Chapter 3, “Working with Color”
describes how to display images with inherent color information and alter the colors
to highlight specific features. Color can also be used to display additional
information, such as a legend describing the meaning of color values.

Overview of Image Processing Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 13

Modifying the Image View — Transforming, translating, rotating and resizing
images are common tasks used to focus the viewer’s attention on a specific area of the
image. Chapter 4, “ Transforming Image Geometry” provides information on how to
precisely position images using IDL.

Adding Dimensionality to Image Data — Some images provide more information
when they are placed on a polygon, surface, or geometric shape such as a sphere.
Chapter 5, “Mapping an Image onto Geometry” shows how to display images over
surfaces and geometric shapes.

Working with Masks and Calculating Statistics — Image processing uses some
fundamental mathematical methods to alter image arrays. These include masking,
clipping, locating, and statistics. Chapter 6, “Working with Masks and Image
Statistics” introduces these operations and provides examples of masking and
calculating image statistics.

Warping Images — Some data acquisition methods can introduce an unwanted
curvature into an image. Image warping using control points can realign an image
along aregular grid or align two images captured from different perspectives. See
Chapter 7, “Warping Images’ for more information.

Specifying Regions of Interest (ROIs) — When processing an image, you may
want to concentrate on a specific region of interest (ROI). ROIs can be determined,
displayed, and analyzed within IDL as described in Chapter 8, “Working with
Regions of Interest (ROIs)”.

Manipulating Images in Various Domains — One of the most useful toolsin
image processing is the ability to transform an image from one domain to another.
Additional information can be derived from images displayed in frequency, time-
frequency, Hough, and Radon domains. M oreover, some complex processing tasks
are simpler within these domains. See Chapter 9, “ Transforming Between Domains’
for details.

Enhancing Contrast and Filtering — Contrasting and filtering provide the ability
to smooth, sharpen, enhance edges and reduce noise within images. See Chapter 10,
“Contrasting and Filtering” for details on manipulating contrast and applying filters
to highlight and extract specific image features.

Extracting and Analyzing Shapes — Morphological operations provide a means
of determining underlying image structures. Used in combination, these routines
provide the ability to highlight, extract, and analyze features within an image. See
Chapter 11, “Extracting and Analyzing Shapes’ for details.

Image Processing in IDL Overview of Image Processing

14 Chapter 1: Introduction to Image Processing in IDL

Before processing images, it isimportant to understand how images are defined, how
image datais represented, and how images are accessed (imported and exported)
within IDL. These topics are described within the following sections of this chapter:

* “Understanding Image Definitionsin IDL” on page 15
* “Representing Image Datain IDL” on page 16
e “Accessing Images’ on page 18

Overview of Image Processing Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 15

Understanding Image Definitions in IDL

An understanding of basic image definitionsis necessary before proceeding with
image processing tasks. Some routines are specifically designed for certain types of
images. Binary, grayscale, and indexed images are two-dimensional arrays, while
RGB images are three-dimensional arrays. In which group an image belongsis
determined by its contents and how it relates to its color information.

Within IDL, an image can be categorized as follows:

Image Type Descriptions

Binary Images Binary images contain only two values (off or on). The off
valueis usually azero and the on value isusually aone. This
type of image is commonly used as a multiplier to mask
regions within another image.

Grayscale Images | Grayscale images represent intensities. Pixels range from least
intense (black) to most intense (white). Pixel values usually
range from 0 to 255 or are scaled to thisrange when displayed.

Indexed Images | Instead of intensities, a pixel value within an indexed image
relates to a color value within a color lookup table. Since
indexed images reference color tables composed of up to 256
colors, the data values of these images are usually scaled to
range between 0 and 255.

RGB Images Within the three-dimensional array of an RGB image, two of
the dimensions specify the location of a pixel within an image.
The other dimension specifies the color of each pixel The
color dimension always has asize of 3 and is composed of the
red, green, and blue color bands (channels) of the image.

Table 1-1: Image Definitions

Note
Grayscale and binary images can actually be treated as indexed images with an
associated grayscale color table.

Color information can aso be represented in other forms, which are described in
“Converting to Other Color Systems” in Chapter 3.

Image Processing in IDL Understanding Image Definitions in IDL

16 Chapter 1: Introduction to Image Processing in IDL

Representing Image Data in IDL

Pixel valuesin an image file can be stored in many different data types. IDL
maintains 15 different data types. The original data type of an imageisreflected in
IDL when importing the image, but the type can be converted once the image is
stored in an IDL variable. The following types are commonly used for images:

* Byte— An 8-bit unsigned integer ranging in value from O to 255. Pixelsin
images are commonly represented as byte data.

» Unsigned Integer — A 16-bit unsigned integer ranging from 0 to 65535.
» Signed Integer — A 16-bit signed integer ranging from -32,768 to +32,767.

* Unsigned Longword Integer — A 32-hit unsigned integer ranging in value
from O to approximately four billion.

* Longword Integer — A 32-bit signed integer ranging in value from
approximately minus two billion to plus two billion.

* Floating-point — A 32-bit, single-precision, floating-point number in the
range from -10% to 10%, with approximately 6 or 7 decimal places of
significance.

» Double-precision — A 64-bit, double-precision, floating-point number in the
range from -10°%8 to 103%8 with approximately 14 decimal places of
significance.

While pixel values are commonly stored in files as whole numbers, they are usually
converted to floating-point or double-precision data types prior to performing
numerical computations. See “Converting RGB Images to Grayscale Images’ in
Chapter 3 and “Calculating | mage Statistics” in Chapter 6 for more information.

IDL provides predefined routines to convert data from one type to another. These
routines are shown in the following table:

Function Description
BYTE Convert to byte
BYTSCL Scale datato range from 0 to 255 and then convert to byte
UINT Convert to 16-bit unsigned integer
FIX Convert to 16-bit integer, or optionally other type

Table 1-2: Some IDL Data Type Conversion Functions

Representing Image Data in IDL Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 17

Function Description
ULONG Convert to 32-bit unsigned integer
LONG Convert to 32-bit integer
FLOAT Convert to floating-point
DOUBLE Convert to double-precision floating-point

Table 1-2: Some IDL Data Type Conversion Functions (Continued)

Image Processing in IDL Representing Image Data in IDL

18 Chapter 1: Introduction to Image Processing in IDL

Accessing Images

How an image isimported into IDL depends upon whether it is stored in an
unformatted binary file or acommon image file format. IDL can query and import
image data contained in the following common image file formats:

.« BMP « MrSID . PPM
- DICOM « PICT « SRF
. JPEG - PNG . TIFF

Note
IDL can also import and export images stored in scientific data formats, such HDF
and netCDF. For more information on these formats, see the Scientific Data
Formats manual.

Accessing unformatted binary files requires you to provide information about the
data within the file such as dimension sizes, data arrangement, and data type. See
“Importing Unformatted Image Files’ on page 24 for more information.

Querying Images

Common image file formats contain standardized header information that can be
queried. IDL providesthe QUERY _IMAGE function to return valuable information
about images stored in supported image file formats.

For example, using the QUERY _IMAGE function, you can return information about
themi ner al . png fileintheexanpl es/ dat a directory. First, the path to thefilecan
be determined with the FILEPATH function:

file = FILEPATH(' mi neral .png', $
SUBDI RECTCRY = [' exanples', 'data'])

Now, you can use the QUERY _IMAGE function to return information about the file:
query = QUERY_I MAGE(file, info)

To determine the results of the QUERY _IMAGE function, you can print the value of
the query variable:

PRI NT, 'query ="', query

Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 19

If query is zero, the file cannot be accessed with IDL. If query is one, the file can be
accessed. | DL displays the following text in the Output Log:

query = 1

Because the query was successful, the info variable isnow an IDL structure
containing important image parameters. The tags associated with this structure
variable are standard across image files. You can view the tags of this structure by
setting the STRUCTURE keyword to the HEL P command with the info variable as
its argument:

HELP, info, /STRUCTURE
IDL displays the following text in the Output Log:
** Structure <1407e70>, 7 tags, |ength=36, refs=1:

CHANNELS LONG 1
DI MENSI ONS LONG Array[2]
HAS PALETTE | NT 1
| MAGE_| NDEX LONG 0
NUM | MAGES LONG 1
Pl XEL_TYPE | NT 1
TYPE STRI NG ' PNG

The structure tags provide the following information:

Tag Description

CHANNELS Provides the number of dimensions within the image array:
» 1-two-dimensional array
* 3—three-dimensional array

Print the number of dimensions using:

PRI NT, ' Nunmber of Channels: ', info.channels
For the mi ner al . png file, IDL displays the following text in
the Output Log:

Nunber of Channels: 1

DI MENSI ONS Contains image array information including the width and
height. Print the image dimensions using:

PRI NT, 'Size: ', info.dinmensions

For the mi ner al . png file, IDL displays the following text in
the Output Log:

Si ze: 288 216

Table 1-3: Image Structure Tag Information

Image Processing in IDL Accessing Images

20 Chapter 1: Introduction to Image Processing in IDL

Tag Description

HAS PALETTE Describes the presence or absence of a color palette:
* 1 (True) —the image has an associated pal ette
» 0 (Fase) —the image does not have an associated palette

Print whether a palette is present or not using:

PRINT, 'Is Palette Available?: ', info.has_palette
For the mi ner al . png file, IDL displays the following text in
the Output Log:

Is Pal ette Avail abl e?: 1

| MAGE_| NDEX Gives the zero-based index number of the current image. Print
the index of the image using:

PRI NT, 'Image Index: ', info.inage_index

For the mi ner al . png file, IDL displays the following text in
the Output Log:

| mage | ndex: 0

NUM | MAGES Provides the number of images in the file. Print the number of
imagesin the file using:
PRI NT, ' Nunber of Images: ', info.num.inmges

For the mi ner al . png file, IDL displays the following text in
the Output Log:

Nurmber of | nmages: 1

Table 1-3: Image Structure Tag Information (Continued)

Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 21

Tag

Description

Pl XEL_TYPE

Provides the IDL type code for the image data type. IDL type
codes represent the following data types:

* 0—Undefined
e 1-Byte
* 2—Integer
» 3—Longword integer
* 4 —Floating point
* 5—Double-precision floating
* 6— Complex floating
e 7—String (does not apply for images)
» 8- Structure (does not apply for images)
* 9—Double-precision complex
» 10— Pointer (does not apply for images)
» 11 — Object reference (does not apply for images)
» 12—-Unsigned Integer
* 13- Unsigned Longword Integer
* 14— 64-bit Integer
» 15-Unsigned 64-hit Integer
Print the data type of the pixels in the image using:

PRI NT, 'Data Type: ', info.pixel_type
For the mi ner al . png file, IDL displays the following text in
the Output Log:

Data Type: 1

TYPE

Identifies the image file format. Print the format of the file
containing the image using:

PRINT, 'File Type: ' + info.type

For the mi ner al . png file, IDL displays the following text in
the Output Log:

File Type: PNG

Table 1-3: Image Structure Tag Information (Continued)

Image Processing in IDL

Accessing Images

22

Chapter 1: Introduction to Image Processing in IDL

From the contents of theinfo variable, it can be determined that the single image
withinthe mi ner al . png fileisan indexed image because it has only one channel (is
atwo-dimensiona array) and it has a color palette. The image also has byte pixel
values.

In addition to the generic QUERY _IMAGE routine, IDL provides query functionsfor
each of the following individual image file types:

« QUERY_BMP « QUERY_MrSID « QUERY_PPM
« QUERY DICOM « QUERY_PICT « QUERY_SRF
« QUERY_JPEG « QUERY_PNG « QUERY_TIFF

These functions have the same syntax and usage as the QUERY _IMAGE function.

Importing Formatted Image Files

Images stored in common image file formats (shown in the introduction to this
section, “Accessing Images’ on page 18) can be imported into IDL with the
READ_IMAGE function. This function provides output arguments for red, green,
and blue color table components, if available.

Note
You can use the QUERY _IMAGE function to determine the parameters of an image

as described in “Querying Images’ on page 18.

For example, ther ose. j pg fileisa JPEG imagefile that contains an RGB image.
You can import thisimage using the READ_IMAGE function. First, you must
determine the path to thisfile:

file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Now you can use the READ_IMAGE function to import the image:
i mge = READ_| MVAGE(fil e)

Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 23

IDL aso providesindividual READ_* routines for the following image file types:

« READ_BMP « READ_MrSID « READ_PPM
« READ_DICOM « READ_PICT « READ_SRF
« READ_INTERFILE + READ_PNG « READ_TIFF
« READ_JPEG

These routines are similar to the READ_IMAGE function, but provide more details
for importing a specific image file if required.

Note
IDL can also import images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Exporting Formatted Image Files

Images can be exported to common image file formats using the WRITE_IMAGE
procedure. The WRITE_IMAGE procedure requires three inputs: the exported file's
name, the image file type, and the image itself. You can also provide the red, green,
and blue color components to an associated color table if these components exist.

For example, you can import the image from the wor | del v. dat binary file:

file = FILEPATH(' worl elv.dat', $
SUNDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [360, 360]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

You can export thisimage to an image file (a JPEG file) with the WRITE_IMAGE
procedure:

WRI TE_| MAGE, 'worldelv.dat', 'JPEG, inage

IDL aso providesindividual WRITE_* routines for the following image file types:

* WRITE_BMP * WRITE_JPEG * WRITE_PPM
* WRITE_DICOM * WRITE_PICT * WRITE_SRF
* WRITE_INTERFILE + WRITE_PNG * WRITE_TIFF

Image Processing in IDL Accessing Images

24

Chapter 1: Introduction to Image Processing in IDL

These routines are similar to the WRITE_IMAGE procedure, but provide more
flexibility when exporting a specific image file type.

Note
IDL can also export images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual .

Importing Unformatted Image Files

Images in unformatted binary files can be imported with the READ_BINARY
function using the DATA_DIMS and DATA_TY PE keywords as follows:

* You must specify the size of the image within the file using the DATA_DIMS
keyword. Thisis required because the READ_BINARY function assumes the
data values are arranged in a single vector (a one-dimensional array). The
DATA_DIMS keyword is used to specify the size of the two- or three-
dimensional image array.

* You can set the DATA_TY PE keyword to the image's data type using the
associated IDL type code shown in the PIXEL_TY PE description in the
previous table. Most imagesin binary files are of the byte data type, whichiis
the default setting for the DATA_TY PE keyword.

No standard exists by which image parameters are provided in an unformatted binary
file. Often, these parameters are not provided at all. In this case, the owner of thefile
should aready be familiar with the size and type parameters of any images they need
to access within binary files.

For example, thewor | del v. dat fileisabinary file that contains an image. You can
only import thisimage by supplying the information that the data values of the image
are byte and that the image has dimensions of 360 pixels by 360 pixels. Before using
the READ_BINARY function to access thisimage, you must first determine the path
to thefile:

file = FILEPATH('worlelv.dat', $
SUNDI RECTCRY = [' exanples', 'data'])

You can define the size parameters of the image with a vector:
i mageSi ze = [360, 360]

An image type parameter is not required because we know that the data val ues of
image are byte, which is the default type for the READ_BINARY function.

Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 25

The READ_BINARY function can now be used to import the image contained in the
wor | del v. dat file:

i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)
Exporting Unformatted Image Files

Images in unformatted binary files can be exported with the WRITEU procedure.
Before using the WRITEU procedure, you must open afile to which the datawill be
written using the OPENW procedure. Any file you open must be specifically closed
using either the FREE_L UN or CLOSE procedure when you are done exporting the
image.

For example, you can import theimage from ther ose. j pg imagefile:

file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])
i mge = READ_| MAGE(fil e)

You can export thisimage to a binary file by first opening a new file:
OPENW wunit, 'rose.dat', /GET_LUN

Then, use the WRITEU procedure to write the image to the open file:
WRI TEU, unit, inmage

You must remember to close the file once the data has been written to it:
FREE_LUN, unit

Image Processing in IDL Accessing Images

26

Chapter 1: Introduction to Image Processing in IDL

References

References

The following image processing sources were used in writing this book:

Baxes, Gregory A. Digital Image Processing: Principles and Applications. John
Wiley & Sons. 1994. ISBN 0-471-00949-0

Lee, Jong-Sen. “ Speckle Suppression and Analysis for Synthetic Aperture Radar
Images’, Optical Engineering. vol. 25, no. 5, pp. 636 - 643. May 1986.

Russ, John C. The Image Processing Handbook, Third Edition. CRC PressLLC.
1999. ISBN 0-8493-2532-3

Weeks, Jr., Arthur R. Fundamentals of Electronic | mage Processing. The Society of
Photo-Optical Instrumentation Engineers. 1996. ISBN 0-8194-2149-9

Image Processing in IDL

Chapter 2:

Creating Image
Displays

This chapter describes the following topics:

Overview of Creating Image Displays 28 Displaying Multiple Imagesin aWindow . 62
Differentiating Between Graphics Systems. 30 Zoominginonanlmage 73
Creating Direct Graphics Image Displays .. 33 Panning Withinanlmage 80

Creating Object Graphics Image Displays . 46

Image Processing in IDL 27

28 Chapter 2: Creating Image Displays

Overview of Creating Image Displays

To understand how to display an image, you must understand IDL’s graphics systems,
window coordinate systems, and the types of images you can display. IDL has two
graphics systems, Direct Graphics and Object Graphics. Direct Graphics draws
directly to acurrent device. Object Graphics renders graphical elements objects with
instances of window objects. For more information, see “ Differentiating Between
Graphics Systems” on page 30.

IDL can display four types of images: binary, grayscale, indexed, and RGB. How an
image is displayed depends upon its type. Binary images have only two values, zero
and one. Grayscale images represent intensities and use a normal grayscale color
table. Indexed images use an associated color table. RGB images contain their own
color information in layers known as bands or channels. Any of these images can be
displayed with Direct Graphics (see “Creating Direct Graphics Image Displays’ on
page 33) or with Object Graphics (see* Creating Object GraphicsImage Displays’ on
page 46).

For information on how to display multiple images in the same window, see
“Displaying Multiple Images in a Window” on page 62.

You can magnify (zoom in on) a specific area of an image by changing the display to
show just that region. See “Zooming in on an Image” on page 73 for more
information.

When you zoom in on afeature within an image, you may want to move along the
feature at that magnification. The movement is known as panning. For more
information on panning, see “Panning Within an Image” on page 80.

The following list introduces image display tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s)/Object(s) Description
“Creating Direct TV Display binary, grayscale,
Graphics Image TVSCL indexed, and RGB imagesusing
Displays” on the Direct Graphics system.
page 33.

Table 2-1: Image Display Tasks and Related Image Display Routines.

Overview of Creating Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 29
Task Routine(s)/Object(s) Description
“Creating Object | IDLgrImage Display binary, grayscale,
Graphics Image IDL grPalette indexed, and RGB imagesusing
Displays” on the Object Graphics system.
page 46
“Displaying TV Display multipleimagesin a
MultipleImagesin | Ty scL single Direct Graphics and
aWindow” on Object Graphics window.
page 62. IDLgrimage
“Zoominginonan | ZOOM Magnify specific areas of an
Image” on ZOOM 24 image using Direct and Object
e73. - Graphics.
P IDLgrimage P
IDLgrView
“Panning Within SLIDE_IMAGE Zoom in on specific areas of an
an Image” on IDLgrimage image and then moveto another
page 80. _ areawithin the image using
IDLgrView

Direct and Object Graphics.

Table 2-1: Image Display Tasks and Related Image Display Routines.

Note

This chapter uses data filesfromthe | DL exanpl es/ dat a directory. Two files,
dat a. t xt andi ndex. t xt, contain descriptions of the files, including array sizes.

Image Processing in IDL

Overview of Creating Image Displays

30

Chapter 2: Creating Image Displays

Differentiating Between Graphics Systems

IDL supports two distinct graphics modes: Direct Graphics and Object Graphics.
Direct Graphicsrelies on the concept of a current graphics device; IDL commands
like TV or PLOT create displays directly on the current graphics device. Object
Graphics uses an abject-oriented programming interface to create graphic objects,
which must then be explicitly drawn to a destination of the programmer’s choosing.

Direct Graphics

The important aspects of Direct Graphics are:

Direct Graphics uses a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

Commandslike TV, PLOT, XYOUTS, MAP_SET, etc. al draw their output
directly on the current graphics device.

Once adirect-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to recreate the graphic on a
different device, you must reissue the IDL commands to create the graphic.

When you add a new item to an existing direct-mode graphic (using aroutine
like OPLOT or XYOUTYS), the new item isdrawn in front of the existing items.

Object Graphics

The important aspects of Object Graphics are:

Object Graphicsis deviceindependent. Thereis no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

Object Graphicsis abject-oriented. Graphics objects are meant to be created
and reused; you may create a set of graphic objects, modify their attributes,
draw them to awindow on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing al of the IDL commands
used to create the objects. Graphics objects also encapsul ate functionality; this
means that individual objectsinclude method routines that provide
functionality specific to the individual object.

Differentiating Between Graphics Systems Image Processing in IDL

Chapter 2: Creating Image Displays 31

Object Graphics displays are rendered in three dimensions. 3D Rendering
implies many operations not needed when drawing Direct Graphics displays,
including calculation of normal vectors for lines and surfaces, lighting
considerations, and general object overhead. As aresult, the time needed to
render a given object—a surface, say—will often be longer than the time taken
to draw the analogous image in Direct Graphics.

Object Graphics uses a programmer’sinterface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphicsis designed to be used in programs that are compiled and run. While
itistill possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

Because objects persist in memory, there is a greater need for the programmer
to be cognizant of memory issues and memory leakage. Efficient design—
remembering to destroy unused object references and cleaning up—will avert
most problems, but even the best designs can be memory-intensive if large
numbers of graphic objects (or large datasets) are involved.

Understanding Windows and Related Device
Coordinates

Images are displayed within awindow (Direct Graphics) or within an instance of a
window object (Object Graphics). In Direct Graphics, the WINDOW procedureis
used to initialize the coordinates system for the image display. In Object Graphics,
the IDLgrWindow, IDLgrView, and IDLgrModel objects are used to initialize the
coordinate system for the image display.

A coordinate system determines how and where the image appears within the
window. You can specify coordinatesto IDL using one of the following coordinate
systems:

Data Coordinates — This system usually spans the window with arange
identical to the range of the data. The system can have two or three dimensions
and can be linear, logarithmic, or semi-logarithmic.

Device Coordinates — This coordinate system is the physical coordinate
system of the selected device. Device coordinates are integers, ranging from
(0, 0) at the bottom-left corner to (V —1, V) —1) at the upper-right corner of the
display. Vy and Vi, are the number of columns and rows of the device (a display
window for example).

Image Processing in IDL Differentiating Between Graphics Systems

32 Chapter 2: Creating Image Displays

Note
For images, the data coordinates are the same as the device coordinates. The device
coordinates of an image are directly related to the pixel locations within an image.
Unless otherwise specified, IDL draws each image pixel per each device pixel.

* Normal Coordinates— The normalized coordinate system ranges from zero to
one over columns and rows of the device.

Differentiating Between Graphics Systems Image Processing in IDL

Chapter 2: Creating Image Displays 33

Creating Direct Graphics Image Displays

The procedure used to display an imagein Direct Graphics depends upon the type of
image to be displayed. Binary, grayscale, and indexed images are displayed with the
TV or TVSCL proceduresin Direct Graphics. The TV procedure displays the image
initsorigina form. The TV SCL procedure displays the image scaled to range from 0
up to 255 depending on the colors availableto IDL. RGB images are displayed with
the TV procedure.

Examples of creating such displays are shown in the following sections:
» “Displaying Binary Images with Direct Graphics’.
* “Displaying Graysca e Images with Direct Graphics’ on page 35.
« “Displaying Indexed Images with Direct Graphics’ on page 38.
* “Displaying RGB Images with Direct Graphics’ on page 42.

Displaying Binary Images with Direct Graphics

Binary images are composed of pixels having one of two values, usually zero or one.
With most color tables, pixels having values of zero or one are displayed with almost
the same color, such as with athe default grayscale color table. Thus, a binary image
isusually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the

conti nent _mask. dat binary file. In thisimage, the oceans are zeros (black) and
the continents are ones (white). This type of image can be used to mask out data over
the oceans. The image contains byte data values and is 360 pixels by 360 pixels.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Binary Images with Direct Graphics’ on page 35 or complete the
following steps for adetailed description of the process.

1. Determine the path to thecont i nent _mask. dat file:

file = FILEPATH(' conti nent_nask.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:
i mageSi ze = [360, 360]
3. Use READ_BINARY to import the image from the file:
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

Image Processing in IDL Creating Direct Graphics Image Displays

34

Chapter 2: Creating Image Displays

If you are running IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. This command implies a
color table will be used. See “Foreground Color” in Chapter 3 for more
information.

DEVI CE, DECOMPCSED = 0
Load agrayscale color table:
LOADCT, 0
Create awindow and display the original image with the TV procedure:

W NDOW 0, XSIZE = imageSize[0], YSIZE = inngeSi ze[1], $
TITLE = ' A Binary I nage, Not Scal ed'
TV, inage

The resulting window should be all black (blank). The binary image contains
zeros and ones, which are almost the same color (black). Binary images should
be displayed with the TV SCL procedure in order to scale the ones to white.

Create another window and display the scaled binary image:

W NDOW 1, XSIZE = imageSi ze[0], YSIZE = innageSi ze[1], $
TITLE = ' A Binary | nage, Scaled'
TVSCL, inage

The following figure shows the results of scaling this display.

Figure 2-1: Binary Image in Direct Graphics

Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 35

Example Code: Displaying Binary Images with Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayBi naryl mrage_Di r ect . pr o, compile and run the program to reproduce
the previous example.

PRO Di spl ayBi naryl mage_Di r ect

Deternmine the path to the file:
file = FILEPATH(' conti nent_nmask.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize the inage size paraneter.
i mageSi ze = [360, 360]

Inport in the image fromthe file.
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

Initialize the display,
DEVI CE, DECOMPOSED = 0
LOADCT, 0

Create a wi ndow and di splay the original inage.
W NDOW 0, XSl ZE = inmageSize[0], YSIZE = inmageSize[l], $
TITLE = ' A Binary I nage, Not Scal ed'
TV, inage

Create another wi ndow and display the i mage scal ed
to range fromO up to 255.
W NDOW 1, XSIZE = i mageSize[0], YSIZE = inmngeSi ze[1], $
TITLE = ' A Binary | nage, Scaled'
TVSCL, inage

END
Displaying Grayscale Images with Direct Graphics

Features within grayscale images are created by pixels that have varying intensities.
Pixel values range from least intense (black) to the most instance (white). Since a
grayscaeimage is composed of pixels of varying intensities, it is best displayed with
acolor table that progresses linearly from black to white. Although IDL has severa
such predefined color tables, the grayscale color table (B-W LINEAR), is the most
fitting choice when displaying grayscale images. IDL's B-W LINEAR color tableis
represented by an index value of 0. See “L oading Pre-defined Color Tables’ in
Chapter 3 for more information on IDL’s predefined color tables.

Image Processing in IDL Creating Direct Graphics Image Displays

36 Chapter 2: Creating Image Displays

The following example imports agrayscale image from theconvec. dat binary file.
Thisgrayscaleimage shows the convection of the Earth’smantle. The image contains
byte data values and is 248 pixels by 248 pixels. Since the data type is byte, this
image does not need to be scaled before display. If the data was of any type other than
byte and the data val ues were not within the range from 0 to 255, the image would
need to be scaled prior to being displayed. See the TV SCL description in the IDL
Reference Guide for more information.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Grayscale Images with Direct Graphics” on page 37 or complete the
following steps for adetailed description of the process.

1. Determine the path to theconvec. dat file:

file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:
i mageSi ze = [248, 248]
3. Using READ_BINARY, import theimage from thefile:
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVI CE, DECOMPCSED = 0
5. Load agrayscale color table:
LOADCT, 0
6. Create awindow and display the origina image with the TV procedure:

W NDOW 0, XSIZE = imageSize[0], YSIZE = inmngeSi ze[1], $
TITLE = ' A Grayscal e | mage’
TV, inage

Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 37

The following figure shows the resulting grayscale image display.

Figure 2-2: Grayscale Image in Direct Graphics

Example Code: Displaying Grayscale Images with Direct
Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayGrayscal el mage_Di r ect . pr o, compile and run the program to
reproduce the previous example.

PRO Di spl ayGrayscal el mage_Di r ect

; Determine the path to the file.
file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize the inmge size paraneter.
i mageSi ze = [248, 248]

; Import in the inage fromthe file.
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

; Create a window and display the imge.

W NDOW 0, XSIZE = imageSize[0], YSIZE = inmageSi ze[1], $
TITLE = ' A Grayscal e | mage’

TV, image

END

Image Processing in IDL Creating Direct Graphics Image Displays

38 Chapter 2: Creating Image Displays

Displaying Indexed Images with Direct Graphics

An indexed image contains up to 256 colors, typically defined by a color table
associated with the image. The value of each pixel relates to a color within the
associated color table. Combinations of the primary colors (red, green, and blue)
make up the colors within the col or table. Most indexed images are stored as byte and
therefore do not require scaling prior to display.

The following example imports an indexed image from the avhr r . png imagefile.
Thisindexed image is a satellite photograph of the world.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Indexed Images with Direct Graphics’ on page 41 or complete the
following steps for adetailed description of the process.

1. Determinethe path to theavhrr. png file

file = FILEPATH(' avhrr.png', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_I MAGE(fil e, imagel nfo)
3. Output the results of the file query:

PRI NT, 'Query Status ="', queryStatus
HELP, i nmagel nfo, / STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <141d0b0>, 7 tags, |ength=36, refs=1:
CHANNEL S LONG 1
DI MENSI ONS LONG Array|[2]
HAS _PALETTE I NT 1
| MAGE_I NDEX LONG 0
NUM_| MAGES LONG 1
Pl XEL_TYPE I NT 1
TYPE STRI NG ' PNG

4. Set theimage size parameter from the query information:
i mgeSi ze = i magel nf o. di mensi ons
The HAS PALETTE tag hasavalue of 1. Thus, the image has a palette (color
table), which is aso contained within the file. The color table is made up of its

three primary components (the red component, the green component, and the
blue component).

Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 39

5. Use READ_IMAGE to import the image and its associated color table from
thefile:

i mmge = READ_| MAGE(file, red, green, blue)

6. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVI CE, DECOMPCOSED = 0

7. Load thered, green, and blue components of the image's associated color
table:

TVLCT, red, green, blue
8. Create awindow and display the original image with the TV procedure:

W NDOW 0, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' An I ndexed | mage'
TV, inage

9. Usethe XLOADCT utility to display the associated color table:
XLOADCT
Click on the Done button of XLOADCT to exit out of the utility.

The following figure shows the resulting indexed image and its color table.

Figure 2-3: Indexed Image and Associated Color Table in Direct Graphics

Image Processing in IDL Creating Direct Graphics Image Displays

40 Chapter 2: Creating Image Displays

The data values within the image are indexed to specific colors within the
table. You can change the color table associated with thisimage to show how
an indexed image is dependent upon its related color table.
10. Change the current color table to the EOS B pre-defined color table:
LOADCT, 27

11. Redisplay the image to show the color table change:

TV, inage
Note

This step is hot always necessary to redisplay the image. On PseudoColor (8-bit) or

DirectColor systems, the display will update automatically when the current color
table is changed.

12. Usethe XLOADCT utility to display the current color table:
XLOADCT

Click on the Done button of XLOADCT to exit out of the utility.
The following figure shows the indexed image with the EOS B color table.

{
&) XLoadct E=i B3

Dore | Help
% Tahles " Options - Function
0

« 2l
Shieteh Bottom

100
Ll Al
Shietch Top

1.00000
A |

Gamma Correction

B-w LINEAR

ELUEAWHITE
GRN-RED-BLU-WHT

RED TEMPERATURE
BLUE/GREEN/RED/VELLDW
STD GaMMA-

PRISM
RED-FURPLE b

Figure 2-4: Indexed Image and EOS B Color Table in Direct Graphics

Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 41

Example Code: Displaying Indexed Images with Direct
Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayl ndexedl mage_Di r ect . pr o, compile and run the program to reproduce
the previous example. The BLOCK keyword is set when using the XLOADCT utility
to force the example routine to wait until the Done button is pressed to continue.

PRO Di spl ayl ndexedl mage_Di r ect

; Determine the path to the file.
file = FI LEPATH(' avhrr.png', $
SUBDI RECTCRY = [' exanples', 'data'])

; Query the file to determ ne i mage paraneters.
queryStatus = QUERY_I MAGE(fil e, imagelnfo)

; Qutput the results of the file query.
PRI NT, 'Query Status ="', queryStatus
HELP, i nmagel nfo, / STRUCTURE

; Set inmge size paraneter.
i mgeSi ze = i magel nf o. di mensi ons

; Import in the inage and its associated color table
; fromthe file.
i mpage = READ | MAGE(file, red, green, blue)

; Initialize the display.
DEVI CE, DECOMPOSED = 0
TVLCT, red, green, blue

; Create a window and display the imge.

W NDOW 0, XSl ZE = imageSize[0], YSIZE = inmgeSize[l], $
TITLE = ' An I ndexed | mage'

TV, image

; Use the XLOADCT utility to display the color table.
XLOADCT, /BLOCK

; Change the color table to the ECS B pre-defined col or
; table.
LQOADCT, 27

; Redisplay the inage with the EOS B color table.
TV, inage

; Use the XLOADCT utility to display the current col or

Image Processing in IDL Creating Direct Graphics Image Displays

42 Chapter 2: Creating Image Displays

; table.
XLOADCT, /BLOCK

END
Displaying RGB Images with Direct Graphics

RGB images are three-dimensional arrays made up of width, height, and three
channels of color information. In Direct Graphics, these images are displayed with
the TV procedure. The TRUE keyword to TV is set according to the interleaving of
the RGB image. With RGB images, the interleaving, or arrangement of the channels
within the image file, dictates the setting of the TRUE keyword. If theimage is:

o pixel interleaved (3, w, h), TRUE isset to 1.
* lineinterleaved (w, 3, h), TRUE isset to 2.
e planar interleaved (w, h, 3), TRUE isset to 3.

You can determine if an image file contains an RGB image by querying thefile. The
CHANNEL S tag of the resulting query structure will equal 3 if the file’'simageis
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

If you are using a PseudoColor display, your RGB images must be converted to
indexed images to be displayed within IDL. See*Foreground Color” in Chapter 3 for
more information on RGB images and PseudoColor displays.

The following example queries and imports a pixel-interleaved RGB image from the
rose. j pg imagefile. Thispixel interleaved RGB image is a close-up photograph of
ared rose.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying RGB Images with Direct Graphics’ on page 44 or complete the following
steps for a detailed description of the process.

1. Determinethe pathtother ose. j pg file:

file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_I MAGE(fil e, inmagel nfo)

Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 43

3. Output the results of the file query:

PRI NT, 'Query Status ="', queryStatus
HELP, i nmagel nfo, / STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, |ength=36, refs=1:
CHANNELS LONG 3
DI MENSI ONS LONG Array|[2]
HAS_PALETTE I NT 0
| MAGE_I NDEX LONG 0
NUM_| MAGES LONG 1
Pl XEL_TYPE I NT 1
TYPE STRI NG " JPEG

The CHANNEL S tag has a value of 3. Thus, the image is an RGB image.
4. Set theimage size parameter from the query information:
i mgeSi ze = i magel nf o. di mensi ons

The type of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.

5. Use READ_IMAGE to import the image from thefile:
i mge = READ_| VAGE(fil e)

6. Determine the size of each dimension within the image:
i mgeDi ns = S| ZE(i mage, /DI MENSI ONS)

7. Determine thetype of interleaving by comparing the dimension sizes to the
image size parameter from the file query:

interleaving = WHERE((i mageDi ns NE i mageSi ze[0]) AND $
(i mageDins NE i mageSize[1])) + 1

8. Output the results of the interleaving computation:
PRI NT, 'Type of Interleaving ="', interleaving
The following text appears in the Output Log:
Type of Interleaving = 1

Theimageis pixel interleaved. If the resulting value was 2, the image would
have been line interleaved. If the resulting value was 3, the image would have
been planar interleaved.

Image Processing in IDL Creating Direct Graphics Image Displays

44 Chapter 2: Creating Image Displays

9. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to one before your first RGB image is
displayed within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information:

DEVI CE, DECOMPCSED = 1
10. Create awindow and display the image with the TV procedure:

WNDOW 0, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TI TLE = ' An RGB | nage’
TV, image, TRUE = interl eaving[0]

The following figure shows the resulting RGB image display.

Figure 2-5: RGB Image in Direct Graphics

Example Code: Displaying RGB Images with Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayRGBI mage_Di r ect . pr o, compile and run the program to reproduce the
previous example.

PRO Di spl ayRGBI nage_Di r ect

Determne the path to the file.
file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Query the file to determ ne i mage paraneters.
queryStatus = QUERY_I MAGE(fil e, imagel nfo)

Qutput the results of the file query.
PRI NT, 'Query Status ="', queryStatus
HELP, i nmagel nfo, / STRUCTURE

Set the image size parameter fromthe query

i nfornation.
i mgeSi ze = i magel nf o. di mensi ons

Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 45

; Import the image.
i mge = READ_| VAGE(fil e)

; Determine the size of each dinmension within the imge.
i mageDi ns = S| ZE(i nage, /DI MENSI ONS)

; Determine the type of interleaving by conparing the

; dimension sizes with the i mage size paraneter fromthe

; file query.

interleaving = WHERE((i mageDi ns NE i mageSi ze[0]) AND $
(imageDins NE i mageSize[1])) + 1

; Qutput the results of the interleaving conputation.
PRI NT, 'Type of Interleaving ="', interleaving

; Initialize display.
DEVI CE, DECOMPCSED = 1

; Create a window and display the image with the TV

; procedure and its TRUE keyword.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmageSize[l], $
TITLE = ' An RGB | nage’

TV, image, TRUE = interl eaving[O]

END

Image Processing in IDL Creating Direct Graphics Image Displays

46 Chapter 2: Creating Image Displays

Creating Object Graphics Image Displays

In Object Graphics, binary, grayscale, indexed, and RGB images are contained in
image objects. For display, the image object is contained within an object hierarchy,
which includes amodel object and aview object. The view object is then drawn to a
window object. Some types of images must be scaled with the BY TSCL function

prior to display.
This section includes the following examples:
» “Displaying Binary Images with Object Graphics”.
* “Displaying Graysca e Images with Object Graphics’ on page 49.
* “Displaying Indexed Images with Object Graphics’ on page 52.
* “Displaying RGB images with Object Graphics’ on page 57.

Displaying Binary Images with Object Graphics

Binary images are composed of pixels having one of two values, usually zero or one.
With most color tables, pixels having values of zero and one are displayed with
almost the same col or, such as with the default grayscale color table. Thus, abinary
image is usually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the

conti nent _mask. dat binary file. In thisimage, the oceans are zeros (black) and
the continents are ones (white). Thistype of image can be used to mask out (omit)
data over the oceans. The image contains byte data values and is 360 pixels by 360
pixels.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Binary Images with Object Graphics” on page 48 or complete the
following steps for adetailed description of the process.

1. Determine the path to thecont i nent _mask. dat file:

file = FILEPATH(' conti nent_nmask.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:
i mageSi ze = [360, 360]

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays a7

3. Use READ_BINARY to import the image from the file:
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)
4. Initialize the display objects:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Binary | nage, Not Scal ed')

oView = OBJ_NEW' I DLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])

oMbdel = OBJ_NEW' | DLgr Model ')

5. Initiaize the image object:
ol mage = OBJ_NEW' | DLgr | nage', inage)

6. Add theimage object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

The resulting window should be all black (blank). The binary image contains
zeros and ones, which are almost the same color (black). A binary image
should be scaled prior to displaying in order to show the ones as white.

7. Initialize another window:

oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Binary | mage, Scal ed')

8. Update theimage object with a scaled version of the image:
ol mage -> SetProperty, DATA = BYTSCL(i nage)
9. Display the view in the window:

oW ndow -> Draw, oView

Image Processing in IDL Creating Object Graphics Image Displays

48 Chapter 2: Creating Image Displays

The following figure shows the results of scaling this display.

Figure 2-6: Binary Image in Object Graphics

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oVi ew

Example Code: Displaying Binary Images with Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayBi naryl mage_Qbj ect . pr o, compile and run the program to reproduce
the previous example.

PRO Di spl ayBi nar yl mage_Obj ect

Deternmine the path to the file.

file = FILEPATH(' conti nent_nmask.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize the inage size paraneter.
i mageSi ze = [360, 360]

| nport the imge.

i mmge = READ_BI NARY(file, DATA_DI M5 = inageSi ze)

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 49

; Initialize display objects.

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Binary | nage, Not Scal ed')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])

oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize image object.
ol mage = OBJ_NEW' | DLgr | nage', inmage)

; Add the inmage to the nodel, which is added to the
; view, and then display the view in the w ndow
oMbdel -> Add, ol nage

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; Initialize another w ndow.

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Binary | mage, Scal ed')

; Update the image object with a scaled version of the
;i mage.
ol mage -> SetProperty, DATA = BYTSCL(i nage)

; Display the view in the wi ndow.
oW ndow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oVi ew

END
Displaying Grayscale Images with Object Graphics

Since grayscale images are composed of pixels of varying intensities, they are best
displayed with color tables that progress linearly from black to white. IDL provides
several such pre-defined color tables, but the default grayscale color tableisgenerally
suitable.

The following example imports a grayscale image from the convec. dat binary file.
Thisgrayscaleimage shows the convection of the Earth’smantle. The image contains
byte data values and is 248 pixels by 248 pixels. Since the data type is byte, this
image does not need to be scaled before display. If the data was of any type other than
byte and the data values were not within the range of 0 up to 255, the display would
need to scale the image in order to show itsintensities.

Image Processing in IDL Creating Object Graphics Image Displays

50 Chapter 2: Creating Image Displays

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Grayscale Images with Object Graphics” on page 51 or complete the
following steps for adetailed description of the process.

1. Determine the path to theconvec. dat file:

file = FILEPATH(' convec.dat', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Initialize the image size parameter:

i mgeSi ze = [248, 248]
3. Using READ_BINARY, import theimage from thefile:

i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)
4. Initialize the display objects:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Grayscal e | mage')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])

oMbdel = OBJ_NEW' | DLgr Model ')

5. [Initiaize the image object:
ol mage = OBJ_NEW' | DLgr | nage', inage, / GREYSCALE)

6. Add theimage object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 51

The following figure shows the resulting grayscal e image display

Figure 2-7: Grayscale Image in Object Graphics

7. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oVi ew

Example Code: Displaying Grayscale Images with Object
Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as

Di spl ayGrayscal el mage_0Obj ect . pr o, compile and run the program to
reproduce the previous example.

PRO Di spl ayGrayscal el mage_Obj ect

Determine the path to the file.
file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize the inage size paraneters.
i mageSi ze = [248, 248]

| nport the image.
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

Initialize display objects.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Grayscal e | mage')

Image Processing in IDL Creating Object Graphics Image Displays

52 Chapter 2: Creating Image Displays

oView = OBJ_NEW ' I DLgrView , $
VI EWPLANE_RECT = [0., 0., inmgeSize])
oModel = OBJ_NEW' | DLgr Model ')

Initialize i nage object.
ol mage = OBJ_NEW' I DLgrl nage', inmge, $
| GREYSCALE)

; Add the inmage object to the nodel, which is added to
; the view, then display the view in the w ndow

oMbdel -> Add, ol nage

oVi ew - > Add, olbdel

oW ndow -> Draw, oView

Cl ean up object references.
OBJ_DESTROY, oVi ew

END

Displaying Indexed Images with Object Graphics

An indexed image contains up to 256 colors, typically defined by a color table
associated with the image. The value of each pixel relates to a color within the
associated color table. Combinations of the primary colors (red, green, and blue)
make up the colors within the col or table. Most indexed images are stored as byte and
therefore do not require scaling prior to display.

The following example imports an indexed image from the avhr r . png imagefile.
Thisindexed image is a satellite photograph of the world.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Indexed Images with Object Graphics’ on page 56 or complete the
following steps for a detailed description of the process.

1. Determinethe path to theavhrr. png file

file = FILEPATH(' avhrr.png', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_I MAGE(fil e, imagel nfo)

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 53

3. Output the results of the file query:

PRI NT, 'Query Status ="', queryStatus
HELP, i nmagel nfo, / STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <141d0b0>, 7 tags, |ength=36, refs=1:
CHANNELS LONG 1
DI MENSI ONS LONG Array|[2]
HAS_PALETTE I NT 1
| MAGE_I NDEX LONG 0
NUM_| MAGES LONG 1
Pl XEL_TYPE I NT 1
TYPE STRI NG ' PNG

Set the image size parameter from the query information:
i mgeSi ze = i magel nf o. di mensi ons

The HAS PALETTE tag hasavalue of 1. Thus, the image has a palette (color
table), which is aso contained within the file. The color table is made up of its
three primary components (the red component, the green component, and the
blue component).

Use READ_IMAGE to import the image and its associated color table from
thefile:

i mmge = READ_| MAGE(file, red, green, blue)
Initialize the display objects:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $

DI MENSI ONS = i mageSi ze, TITLE = ' An |Indexed | mage')
oView = OBJ_NEW' I DLgrView, $

VI EWPLANE_RECT = [0., 0., inngeSize])
oMbdel = OBJ_NEW' | DLgr Model ')

Initialize the image's pal ette object:
oPalette = OBJ_NEW' I DLgrPalette', red, green, blue)
Initialize the image object with the resulting palette object:

ol mage = OBJ_NEW' | DLgrl nage', inmge, $
PALETTE = oPal ette)

Image Processing in IDL Creating Object Graphics Image Displays

54 Chapter 2: Creating Image Displays

9. Add the image object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

10. Usethe colorbar object to display the associated color tablein another
window:

oCbW ndow = OBJ_NEW ' | DLgr W ndow , RETAIN = 2, $
DI MENSI ONS = [256, 48], $
TITLE = "Oiginal Color Table')

oCbView = OBJ_NEW' I DLgrView, $
VI EWPLANE_RECT = [0., 0., 256., 48.])

oCbModel = OBJ_NEW ' | DLgr Mbdel ')

oCol orbar = OBJ_NEW' I DLgr Col orbar', PALETTE = oPalette, $
DI MENSI ONS = [256, 16], SHOWAX S = 1)

oCbModel -> Add, oCol orbar

oCbVi ew -> Add, oCbMbdel

oCbW ndow -> Draw, oCbVi ew

The following figure shows the resulting indexed image and its color table.

) 50 100 150 200 25

Figure 2-8: Indexed Image and Associated Color Table in Object Graphics

The data values within the image are indexed to specific colors within the
table. You can change the color table associated with thisimage to show how
an indexed image is dependent upon its related color tables.

11. Change the palette (color table) to the EOS B pre-defined color table:
oPal ette -> LoadCT, 27

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 55

12. Redisplay the image in another window to show the palette change:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = ' An I ndexed | mage')
oW ndow -> Draw, oView

13. Redisplay the colorbar in another window to show the palette change:

oCbW ndow = OBJ_NEW' I DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [256, 48], $
TITLE = ' ECS B Col or Table')

oCbW ndow -> Draw, oCbhVi ew

The following figure shows the indexed image with the EOS B color table.

Figure 2-9: Indexed Image and EOS B Color Table in Object Graphics

14. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, [oView, oCbVeiw, oPalette]

Image Processing in IDL Creating Object Graphics Image Displays

56 Chapter 2: Creating Image Displays

Example Code: Displaying Indexed Images with Object
Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayl ndexedl mage_Qbj ect . pr o, compile and run the program to reproduce
the previous example.

PRO Di spl ayl ndexedl mage_Obj ect

; Determine the path to the file.
file = FILEPATH(' avhrr.png', $
SUBDI RECTCRY = [' exanples', 'data'])

; Query the file to determ ne i mage paraneters.
queryStatus = QUERY_I MAGE(fil e, imagelnfo)

; Qutput the results of the query.
PRI NT, 'Query Status ="', queryStatus
HELP, i nmagel nfo, / STRUCTURE

; Set the inmage size paraneter.
i mgeSi ze = i magel nf o. di mensi ons

; Import in the innge.
i mpage = READ | MAGE(file, red, green, blue)

; Initialize the display objects.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = ' An I ndexed | mage')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the image's palette object.
oPalette = OBJ_NEW ' I DLgrPal ette', red, green, blue)

; Initialize the image object with the resulting
; palette object.
ol mage = OBJ_NEW' I DLgrl nmage', image, $

PALETTE = oPal ette)

; Add the inmage object to the nodel, which is added to
; the view, then display the view in the w ndow

oMbdel -> Add, ol nage

oVi ew - > Add, olbdel

oW ndow -> Draw, oView

; Use the colorbar object to display the associated

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 57

; color table in another w ndow.

oCbW ndow = OBJ_NEW ' | DLgr W ndow , RETAIN = 2, $
DI MENSI ONS = [256, 48], $
TITLE = "Oiginal Color Table')

oCbView = OBJ_NEW' I DLgrView, $
VI EWPLANE_RECT = [0., 0., 256., 48.])

oCbModel = OBJ_NEW' | DLgr Model ')

oCol orbar = OBJ_NEW' I DLgr Col orbar', PALETTE = oPalette, $
DI MENSI ONS = [256, 16], SHOWAX S = 1)

oCbMbdel -> Add, oCol orbar

oCbVi ew - > Add, oCbModel

0CbW ndow -> Draw, oCbVi ew

; Change the palette (color table) to the ECS B
; pre-defined color table.
oPal ette -> LoadCT, 27

; Redisplay the inage with the other color table in
; another w ndow.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = ' An | ndexed | mage')
oW ndow -> Draw, oView

; Redisplay the colorbar with the other color table
;i n anot her w ndow.
oCbW ndow = OBJ_NEW ' | DLgr W ndow , RETAIN = 2, $
DI MENSI ONS = [256, 48], $
TITLE = ' ECS B Col or Table')
oCbW ndow -> Draw, oCbView

; Clean up object references.
OBJ_DESTROY, [oView, oChView, oPalette]

END
Displaying RGB images with Object Graphics

RGB images are three-dimensional arrays made up of width, height, and three
channelsof color information. In Object Graphics, an RGB imageis contained within
an image object. The interleaving, or arrangement of the channels within the image
file, dictates the setting of the INTERLEAVE property of the image object. If the
imageis:

» pixel interleaved (3, w, h), INTERLEAVE isset to 0.

* lineinterleaved (w, 3, h), INTERLEAVE is set to 1.

e planar interleaved (w, h, 3), INTERLEAVE isset to 2.

Image Processing in IDL Creating Object Graphics Image Displays

58

Chapter 2: Creating Image Displays

You can determine if an image file contains an RGB image by querying thefile. The
CHANNEL S tag of the resulting query structure will equal 3 if the file’'simageis
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

The following example queries and imports a pixel -interleaved RGB image from the
rose. j pg imagefile. This RGB image is a close-up photograph of ared rose. It is
pixel interleaved.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying RGB Imageswith Object Graphics’ on page 60 or complete the following
steps for a detailed description of the process.

1. Determinethe path tother ose. j pg file:

file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_I MAGE(fil e, imagelnfo)
3. Output the results of the file query:

PRI NT, 'Query Status = ', queryStatus
HELP, i nmagel nfo, / STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, |ength=36, refs=1:
CHANNEL S LONG 3
DI MENSI ONS LONG Array|[2]
HAS _PALETTE I NT 0
| MAGE_I NDEX LONG 0
NUM_| MAGES LONG 1
Pl XEL_TYPE I NT 1
TYPE STRI NG " JPEG

The CHANNEL S tag has a value of 3. Thus, the image is an RGB image.
4. Set theimage size parameter from the query information:
i mageSi ze = i magel nf 0. di nensi ons

The type of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 59

5.

10.

11.

Use READ_IMAGE to import the image from the file:
i mge = READ_| VAGE(fil e)

Determine the size of each dimension within the image:
i mgeDi ns = S| ZE(i mage, /Dl MENSI ONS)

Determine the type of interleaving by comparing the dimension sizes to the
image size parameter from the file query:

interleaving = WHERE((i mageDi ns NE i mageSi ze[0]) AND $
(i mageDi ns NE i mageSi ze[1]))

Output the results of the interleaving computation:

PRI NT, 'Type of Interleaving ="', interleaving
The following text appears in the Output Log:

Type of Interleaving =0

Theimage is pixel interleaved. If the resulting value was 1, the image would
have been line interleaved. If the resulting value was 2, the image would have
been planar interleaved.
Initialize the display objects:
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = 'An RGB | nage')
oView = OBJ_NEW' I DLgrView, $

VI EWPLANE_RECT = [0., 0., inngeSize])
oMbdel = OBJ_NEW' | DLgr Model ')

Initialize the image object:
ol mage = OBJ_NEW' I DLgrl nmage', image, $
| NTERLEAVE = interl eaving[O0])

Add the image object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

Image Processing in IDL Creating Object Graphics Image Displays

60 Chapter 2: Creating Image Displays

The following figure shows the resulting RGB image display.

Figure 2-10: RGB Image in Object Graphics

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oVi ew
Example Code: Displaying RGB Images with Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayRGBI mage_Cbj ect . pr o, compile and run the program to reproduce the
previous example.

PRO Di spl ayRGBI nage_(hj ect

Determne the path to the file.
file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Query the file to determ ne i mage paraneters.
queryStatus = QUERY_I MAGE(fil e, imagel nfo)

Qut put the results of the query.

PRI NT, 'Query Status ="', queryStatus

HELP, i nmagel nfo, / STRUCTURE
Set the image size parameter fromthe query
i nformation.

i mgeSi ze = i magel nf o. di mensi ons

Import in the innge.
i mge = READ_| VAGE(fil e)

Det ermine the size of each dinmension within the imge.

Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 61

i mgeDi ns = S| ZE(i mage, /DI MENSI ONS)

; Determine the type of interleaving by conparing

; dimension size and the size of the inmmge.

interleaving = WHERE((i mageDi ns NE i mageSi ze[0]) AND $
(i mageDi ns NE i mageSi ze[1]))

; Qutput the results of the interleaving conputation.
PRI NT, 'Type of Interleaving ="', interleaving

; Initialize the display objects.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = ' An RGB | nage')
oView = OBJ_NEW' I DLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the inage object.
ol mage = OBJ_NEW' I DLgrl nage', inmge, $
| NTERLEAVE = interl eaving[O0])

; Add the inmage object to the nodel, which is added to
; the view, then display the view in the w ndow

oMbdel -> Add, ol nage

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oVi ew

END

Image Processing in IDL Creating Object Graphics Image Displays

62 Chapter 2: Creating Image Displays
Displaying Multiple Images in a Window

How multiple images are displayed in a single window depends upon which graphics
system is being used to display the images. Direct Graphics uses location input
arguments for the TV procedure to position images in a window. See “Displaying
Multiple Imagesin Direct Graphics’ for more information. Object Graphics uses the
LOCATION keyword to the Init method of the image object to position imagesin a
window. See “Displaying Multiple Images in Object Graphics’ on page 66 for more
information.

Displaying Multiple Images in Direct Graphics

The following example imports an RGB image from ther ose. j pg imagefile. This
RGB image is a close-up photograph of ared rose and is pixel interleaved. This
example extracts the three color channels of thisimage, and displays them as
grayscale images in various locations within the same window.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Multiple Imagesin Direct Graphics’ on page 65 or complete the
following steps for adetailed description of the process.

1. Determinethe pathtother ose. j pg file:

file = FILEPATH('rose.jpg', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_I MAGE(fil e, imagelnfo)

3. Set the image size parameter from the query information:
i mageSi ze = i magel nf 0. di nensi ons

4. Use READ_IMAGE to import the image from the file:
i mge = READ_| VAGE(fil e)

5. Extract the channels (as images) from the pixel interleaved RGB image:

redChannel = REFORM image[0, *, *])
greenChannel = REFORM i mage[1l, *, *])
bl ueChannel = REFORM i mage[2, *, *])

Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 63

6.

If you are running IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVI CE, DECOMPCSED = 0
Since the channels are grayscale images, load a grayscale color table:
LOADCT, 0

The TV procedure can be used to display the channels (grayscale images). The
TV procedure has two different location input arguments. One argument is
position. This argument arranges the image in a calculated | ocation based on
the size of the display and the dimension sizes of the image. See TV inthe IDL
Reference Guide for more information.

Create awindow and horizontally display the three channels with the position
argument:

W NDOW 0, XSIZE = 3*imageSi ze[0], YSIZE = inmgeSi ze[1], $
TI TLE = ' The Channels of an RGB | nage'

TV, redChannel, 0

TV, greenChannel, 1

TV, blueChannel, 2

The following figure shows the resulting grayscal e images.

Figure 2-11: Horizontal Display of RGB Channels in Direct Graphics

The TV procedure can aso be used with its x and y input arguments. These
arguments define the location of the lower left corner of the image. The values
of these arguments are in device coordinates by default. However, you can
provide data or normalized coordinates when the DATA or NORMAL
keyword is set. See TV in the IDL Reference Guide for more information.

Image Processing in IDL Displaying Multiple Images in a Window

64 Chapter 2: Creating Image Displays

9. Create awindow and vertically display the three channels with the x and y
arguments:

WNDOW 0, XSIZE = inmgeSize[0], YSIZE = 3*i nageSi ze[1], $
TI TLE = ' The Channels of an RGB | nage'

TV, redChannel, 0, O

TV, greenChannel, 0, inageSize[l1]

TV, blueChannel, 0, 2*inageSi ze[1]

The following figure shows the resulting grayscal e images.

Figure 2-12: Vertical Display of RGB Channels in Direct Graphics

The x and y arguments can also be used to create a display of overlapping
images. When overlapping images in Direct Graphics, you must remember the
last image placed in the window will bein front of the previousimages. So if
you want to bring a display from the back of the window to the front, you must
redisplay it after al the other displays.

10. Create another window:

W NDOW 2, XSIZE = 2*i nageSi ze[0], YSIZE = 2*i mageSi ze[1], $
TI TLE = ' The Channels of an RGB | nage'

Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 65

11. Make awhite background to distinguish the edges of the images:
ERASE, !P.COLOR
12. Diagonally display the three channels with the x and y arguments:

TV, redChannel, 0, O
TV, greenChannel, inmnageSize[0]/2, imgeSize[1l]/2
TV, blueChannel, imageSize[0], imageSize[1]

The following figure shows the resulting grayscal e images.

Figure 2-13: Diagonal Display of RGB Channels in Direct Graphics

Example Code: Displaying Multiple Images in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Di spl ayMul ti pl es_Direct. pro, compile and run the program to reproduce the
previous example.

PRO Di spl ayMul ti pl es_Di r ect
Determne the path to the file.

file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Query the file to determ ne i mage paraneters.
queryStatus = QUERY_I MAGE(fil e, imagel nfo)

Set the image size parameter fromthe query

i nfornation.
i mgeSi ze = i magel nf o. di mensi ons

Image Processing in IDL Displaying Multiple Images in a Window

66 Chapter 2: Creating Image Displays

; Inmport the image.
i mge = READ_| VAGE(fil e)

; Extract the channels (as imges) fromthe RGB image.
redChannel = REFORM i mage[0, *, *])

greenChannel = REFORMimage[1l, *, *])

bl ueChannel = REFORM i nage[2, *, *])

; Initialize displays.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create a window and horizontally display the channels.

W NDOW 0, XSl ZE = 3*i mageSi ze[0], YSIZE = inmageSize[1l], $
TI TLE = ' The Channels of an RGB | nage'

TV, redChannel, 0

TV, greenChannel, 1

TV, blueChannel, 2

; Create another window and vertically display the

; channel s.

W NDOW 1, XSIZE = i mageSi ze[0], YSIZE = 3*i mageSi ze[1], $
TI TLE = ' The Channels of an RGB | nage'

TV, redChannel, 0, O

TV, greenChannel, 0, imageSize[1]

TV, blueChannel, 0, 2*inageSi ze[1]

; Create another w ndow.
W NDOW 2, XSIZE = 2*inmgeSize[0], YSIZE = 2*i mageSi ze[1], $
TI TLE = ' The Channels of an RGB | nage'

; Make a white background.
ERASE, !'P. COLOR

; Diagonally display the channels.

TV, redChannel, 0, O

TV, greenChannel, inageSize[0]/2, inageSize[l]/2
TV, blueChannel, imageSize[0], imugeSize[1]

END
Displaying Multiple Images in Object Graphics

The following example imports an RGB image from ther ose. j pg imagefile. This
RGB image is a close-up photograph of ared rose and is pixel interleaved. This
example extracts the three color channels of thisimage, and displays them as
grayscale images in various locations within the same window.

Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 67

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Multiple Images in Object Graphics’ on page 70 or complete the
following steps for adetailed description of the process.

1. Determinethe pathtother ose. j pg file:

file = FILEPATH('rose.jpg', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:
queryStatus = QUERY_I MAGE(fil e, imagel nfo)
3. Set the image size parameter from the query information:
i mgeSi ze = i magel nf o. di mensi ons
4. Use READ_IMAGE to import the image from thefile:
i mge = READ_| VAGE(fil e)
5. Extract the channels (asimages) from the pixel interleaved RGB image:
redChannel = REFORM i mage[0, *, *])
greenChannel = REFORMimage[1l, *, *])
bl ueChannel = REFORM i nage[2, *, *])
The LOCATION keyword to the Init method of the image object can be used
to position an image within awindow. The LOCATION keyword uses data
coordinates, which are the same as device coordinates for images. Before
initializing the image objects, you should initialize the display objects. The

following steps display multiple images horizontally, vertically, and
diagonally.

6. Initializethe display objects:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $

DI MENSI ONS = i mageSi ze*[3, 1], $

TI TLE = ' The Channels of an RGB | nmage')
oView = OBJ_NEW' I DLgrView, $

VI EWPLANE_RECT = [0., 0., immgeSize]*[0, 0, 3, 1])
oMbdel = OBJ_NEW' | DLgr Model ')

7. Now initialize the image objects and arrange them with the LOCATION
keyword, see IDLgrlmage for more information:

oRedChannel = OBJ_NEW' I DLgrl nage', redChannel)

oG eenChannel = OBJ_NEW'IDLgrl nmage', greenChannel, $
LOCATI ON = [i mageSi ze[0], 0])

oBl ueChannel = OBJ_NEW' IDLgrlmage', blueChannel, $
LOCATI ON = [2*i nrageSi ze[0], 0])

Image Processing in IDL Displaying Multiple Images in a Window

68 Chapter 2: Creating Image Displays

8. Add the image objects to the model, which is added to the view, then display
the view in the window:

oMbdel -> Add, oRedChannel
oMbdel -> Add, oG eenChannel
oMobdel -> Add, oBl ueChannel
oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

The following figure shows the resulting grayscal e images.

Figure 2-14: Horizontal Display of RGB Channels in Object Graphics

These images can be displayed vertically in another window by first
initializing another window and then updating the view and images with
different location information.

9. Initialize another window object:

oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze*[1, 3], $
TI TLE = ' The Channels of an RGB | mage')

10. Change the view from horizontal to vertical:

oView -> Set Property, $
VI EWPLANE_RECT = [0., 0., inmgeSize]*[0, 0, 1, 3]

11. Change the locations of the channels:

oG eenChannel -> SetProperty, LOCATION = [0, inmageSize[1]]
oBl ueChannel -> SetProperty, LOCATION = [0, 2*inageSize[1]]

12. Display the updated view within the new window:

oW ndow -> Draw, oView

Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 69

The following figure shows the resulting grayscal e images.

Figure 2-15: Vertical Display of RGB Channels in Object Graphics

These images can also be displayed diagonally in another window by first
initializing the other window and then updating the view and images with
different location information.The LOCATION can a so be used to create a
display overlapping images. When overlapping images in Object Graphics,
you must remember the last image added to the model will be in front of the
previous images.

13. Initialize another window object:

oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze*[2, 2], $
TI TLE = ' The Channels of an RGB | mage')

14. Change the view to prepare for a diagonal display:

oView -> Set Property, $
VI EWPLANE_RECT = [0., 0., inmgeSize]*[0, 0, 2, 2]

Image Processing in IDL Displaying Multiple Images in a Window

70 Chapter 2: Creating Image Displays

15. Change the locations of the channels:

oG eenChannel -> SetProperty, $

LOCATI ON = [i mageSi ze[0]/ 2, imageSize[1]/2]
oBl ueChannel -> SetProperty, $
LOCATI ON = [i mageSi ze[0], i mageSize[1]]

16. Display the updated view within the new window:

oW ndow -> Draw, oView

The following figure shows the resulting grayscal e images.

Figure 2-16: Diagonal Display of RGB Channels in Object Graphics

17. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oVi ew

Example Code: Displaying Multiple Images in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as

Di spl ayMul ti pl es_Ohbj ect . pr o, compile and run the program to reproduce the
previous example.

Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 71

PRO Di spl ayMul ti pl es_Cbj ect

; Determine the path to the file.
file = FILEPATH('rose.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

; Query the file to determ ne i mage paraneters.
queryStatus = QUERY_I MAGE(fil e, imagelnfo)

; Set the image size paranmeter fromthe query
; information.
i mgeSi ze = i magel nf o. di mensi ons

; Import the image.
i mge = READ_| VAGE(fil e)

; Extract the channels (as imges) fromthe RGB inmage.
redChannel = REFORM i mage[0, *, *])

greenChannel = REFORMimage[1l, *, *])

bl ueChannel = REFORM i nmage[2, *, *])

; Horizontally display the channels.

; Initialize the display objects.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze*[3, 1], $
TI TLE = ' The Channels of an RGB | mage')
oView = OBJ_NEW'IDLgrView, $
VI EAWPLANE_RECT = [0., 0., immgeSize]*[0, 0, 3, 1])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the i mage objects.

oRedChannel = OBJ_NEW' I DLgrl nage', redChannel)

oG eenChannel = OBJ_NEW'IDLgrl nage', greenChannel, $
LOCATI ON = [i mageSi ze[0], 0])

oBl ueChannel = OBJ_NEW'IDLgrlmage', blueChannel, $
LOCATI ON = [2*i nrageSi ze[0], O0])

; Add the inmage objects to the nodel, which is added to
; the view, then display the view in the w ndow

oMbdel -> Add, oRedChannel

oMbdel -> Add, oG eenChannel

oMobdel -> Add, oBl ueChannel

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; Vertically display the channels.

; Initialize another w ndow object.

Image Processing in IDL Displaying Multiple Images in a Window

72 Chapter 2: Creating Image Displays

oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze*[1, 3], $
TI TLE = ' The Channels of an RGB | mage')

; Change the view fromhorizontal to vertical.
oView -> Set Property, $
VI EWPLANE_RECT = [0., 0., inmgeSize]*[0, 0, 1, 3]

; Change the |l ocations of the channels.

oG eenChannel -> SetProperty, $
LOCATION = [0, imageSize[1]]

oBl ueChannel -> SetProperty, $
LOCATION = [0, 2*inmageSi ze[1]]

; Display the updated view in the new w ndow.
oW ndow -> Draw, oView

; Diagonally display the channels.

; Initialize another w ndow object.

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze*[2, 2], $
TI TLE = ' The Channels of an RGB | mage')

; Change the view fromvertical to diagonal.
oView -> Set Property, $
VI EWPLANE_RECT = [0., 0., imgeSize]*[0, 0, 2, 2]

; Change the |l ocations of the channels.
oG eenChannel -> SetProperty, $

LOCATION = [i nmageSi ze[0]/ 2, imageSize[1]/2]
oBl ueChannel -> SetProperty, $

LOCATI ON = [i mageSi ze[0], i mageSize[1]]

; Display the updated view in the new w ndow.
oW ndow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oVi ew

END

Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 73

Zooming in on an Image

Enlarging a specific section of an image is known as zooming. How zooming is
performed within IDL depends on the graphics system. In Direct Graphics, you can
use the ZOOM procedure to zoom in on a specific section of animage. See “ Zooming
in on aDirect Graphics Image Display” for more information. If you are working
with RGB images, you can use the ZOOM _24 procedure.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. Using this method, the entireimageis still contained within the image object,
while the view is changed to only show specific areas of the image object. See
“Zooming in on an Object Graphics Image Display” on page 76 for more
information.

Zooming in on a Direct Graphics Image Display

The following example imports agrayscale image from theconvec. dat binary file.
Thisgrayscaleimage shows the convection of the Earth’smantle. The image contains
byte data values and is 248 pixels by 248 pixels. The ZOOM procedure, which isa
Direct Graphicsroutine, is used to zoom in on the lower left corner of the image.

For code that you can copy and paste into an Editor window, see “ Example Code:
Zooming in Direct Graphics’ on page 75 or complete the following steps for a
detailed description of the process.

1. Determine the path to theconvec. dat file:

file = FILEPATH(' convec.dat', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Initialize the image size parameter:
i mageSi ze = [248, 248]
3. Import the image from thefile:
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVI CE, DECOMPCOSED = 0

Image Processing in IDL Zooming in on an Image

74 Chapter 2: Creating Image Displays

5. Load agrayscale color table:
LOADCT, 0
6. Create awindow and display the original image with the TV procedure:

W NDOW 1, XSIZE = i nmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' A Grayscal e | mage’
TV, inage

The following figure shows the resulting grayscale image display.

Figure 2-17: A Grayscale Image in Direct Graphics

7. Usethe ZOOM to enlarge the lower left quarter of theimage:

ZOOM / NEWWNDOW FACT = 2, $
XSI ZE = i mageSi ze[0], YSIZE = imageSi ze[1]

Click in the lower left corner of the original image window.

Zooming in on an Image Image Processing in IDL

Chapter 2: Creating Image Displays 75

The following figure shows the resulting zoomed image.

Figure 2-18: Enlarged Image Area in Direct Graphics

8. Right-click in the original image window to quit out of the ZOOM procedure.
Example Code: Zooming in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Zoomi ng_Di rect . pr o, compile and run the program to reproduce the previous
example.

PRO Zoomi ng_Direct

; Determine the path to the file.
file = FILEPATH(' convec.dat', $
SUBDI RECTCORY = [' exanples', 'data'])

; Initialize the inmge size paraneter.
i mageSi ze = [248, 248]

; Import in the inage fromthe file.
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

; Create a window and display the imge.

WNDOW 1, XSIZE = inmgeSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' A Grayscal e | mage’

TV, inage

; Zoominto the lower left quarter of the imge.

Image Processing in IDL Zooming in on an Image

76 Chapter 2: Creating Image Displays

ZOOM / NEWWNDOW FACT = 2, $
XSI ZE = i mageSi ze[0], YSIZE = imageSi ze[1]

END
Zooming in on an Object Graphics Image Display

The following example imports agrayscale image from theconvec. dat binary file.
Thisgrayscaleimage shows the convection of the Earth’smantle. The image contains
byte data values and is 248 pixels by 248 pixels. The VIEWPLANE_RECT keyword
to the view abject is updated to zoom in on the lower left corner of the image.

For code that you can copy and paste into an Editor window, see “Example Code:
Zooming in Object Graphics’ on page 78 or complete the following steps for a
detailed description of the process.

1. Determine the path to theconvec. dat file:

file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:

i mageSi ze = [248, 248]
3. Import the image from thefile:

i mmge = READ_BI NARY(file, DATA_DI M5 = inageSi ze)
4. Initialize the display objects:

oW ndow = OBJ_NEW ' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Grayscal e | mage')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])

oMbdel = OBJ_NEW' | DLgr Model ')

5. Initidize the image object:
ol mage = OBJ_NEW' | DLgr | nage', inage, / GREYSCALE)

6. Add theimage object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

Zooming in on an Image Image Processing in IDL

Chapter 2: Creating Image Displays 77

The following figure shows the resulting grayscale image display.

Figure 2-19: A Grayscale Image in Object Graphics

7. Initialize another window:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = ' Zooned | nage')

8. Change the view to enlarge the lower |eft quarter of theimage:

oView -> Set Property, $
VI EWPLANE_RECT = [0., 0., inmgeSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) isreduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

9. Display the updated view in the new window:

oW ndow -> Draw, oView

Image Processing in IDL Zooming in on an Image

78 Chapter 2: Creating Image Displays

The following figure shows the resulting zoomed image.

Figure 2-20: Enlarged Image Area in Object Graphics

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oVi ew
Example Code: Zooming in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as

Zoomi ng_Qbj ect . pr o, compile and run the program to reproduce the previous
example.

PRO Zoom ng_bj ect

Deternmine the path to the file.
file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize the inage size paraneter.
i mageSi ze = [248, 248]

Inport in the image fromthe file.

i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

Initialize display objects.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nmgeSi ze, $
TITLE = ' A Grayscal e | mage')
oView = OBJ_NEW'IDLgrView, $

Zooming in on an Image Image Processing in IDL

Chapter 2: Creating Image Displays 79

VI EWPLANE_RECT = [0., 0., inmgeSize])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize image object.
ol mage = OBJ_NEW' | DLgrl nage', inage, / GREYSCALE)

; Add the inmage object to the nodel, which is added to
; the view, then display the view in the w ndow

oMbdel -> Add, ol nage

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; Initialize another w ndow.
oW ndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = 'Enl arged Area')

; Change view to zoominto the |lower |left quarter of
; the inage.
oView -> Set Property, $

VI EWPLANE_RECT = [0., 0., inmgeSize/2]

; Display updated view in new wi ndow.
oW ndow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oVi ew

END

Image Processing in IDL Zooming in on an Image

80 Chapter 2: Creating Image Displays

Panning Within an Image

Panning involves moving an area of focus from one section of an image to other
sections. How panning is performed within IDL depends on the graphics system. In
Direct Graphics, you can use the SLIDE_IMAGE procedure to pan with slidersin an
application that contains the image. See “ Panning in Direct Graphics’ for more
information.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. The entireimage is still contained within the image object, but the view is
changed to pan over specific areas of the image object. See “Panning in Object
Graphics’ on page 82 for more information.

Panning in Direct Graphics

The following example imports a grayscale image from the nyny. dat binary file.
Thisgrayscaleimageis an aeria view of New York City. The image contains byte
datavalues and is 768 pixels by 512 pixels. You can use the SLIDE_IMAGE
procedure to zoom in on the image and pan over it.

For code that you can copy and paste into an Editor window, see “Example Code:
Panning in Direct Graphics’ on page 81 or complete the following steps for a detailed
description of the process.

1. Determine the path to the nyny. dat file:

file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:
i mageSi ze = [768, 512]
3. Import the image from thefile:
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVI CE, DECOMPCSED = 0
5. Load agrayscae color table:
LOADCT, 0

Panning Within an Image Image Processing in IDL

Chapter 2: Creating Image Displays 81

6. Display theimage with the SLIDE_IMAGE procedure:
SLI DE_I MAGE, i mage
Use the dlidersin the display on the right side to pan over the image.

The following figure shows a possible display within the SLIDE_IMAGE
application.

&l Slide Image M=l 3

ull Image: Full Resolution

Figure 2-21: The SLIDE_IMAGE Application Displaying an Image of New York

Example Code: Panning in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Panni ng_Di r ect . pr o, compile and run the program to reproduce the previous
example.

PRO Panni ng_Di rect
; Determine the path to the file.
file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize the i mage size paraneter.
i mageSi ze = [768, 512]

; Inmport in the image fromthe file.
i mmge = READ_BI NARY(file, DATA DI M5 = inmageSize)

; Initialize the display.
DEVI CE, DECOMPCSED = 0

Image Processing in IDL Panning Within an Image

82 Chapter 2: Creating Image Displays

LOADCT, O

Di splay the image with the SLIDE_| MAGE procedure.
SLI DE_I MAGE, i nmage

END
Panning in Object Graphics

The following example imports a grayscale image from the nyny. dat binary file.
Thisgrayscaleimageis an aeria view of New York City. The image contains byte
datavalues and is 768 pixels by 512 pixels. The VIEWPLANE_RECT keyword to
the view object is updated to zoom in on the lower left corner of the image. Then the
VIEWPLANE_RECT keyword is used to pan over the bottom edge of the image.

For code that you can copy and paste into an Editor window, see “ Example Code:
Panning in Object Graphics’ on page 85 or complete the following steps for a
detailed description of the process.

1. Determine the path to the nyny. dat file:

file = FILEPATH(' nyny.dat', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Initialize the image size parameter:

i mageSi ze = [768, 512]
3. Import the image from thefile:

i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)
4. Resizethislargeimageto entirely display it on the screen:

i mageSi ze = [256, 256]
i mage = CONGRI D(i mage, imageSize[0], imgeSi ze[1])

5. Initidlizethe display objects:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Grayscal e | mage')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])

oMbdel = OBJ_NEW' | DLgr Model ')

6. Initiaize theimage object:
ol mage = OBJ_NEW' | DLgr | nage', inage, / GREYSCALE)

Panning Within an Image Image Processing in IDL

Chapter 2: Creating Image Displays 83

7. Add the image object to the model, which is added to the view, then display the
view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, olbdel
oW ndow -> Draw, oView

The following figure shows the resulting grayscale image display.

Figure 2-22: A Grayscale Image Of New York in Object Graphics

8. Initialize another window:

oW ndow = OBJ_NEW' I DLgrWndow , RETAIN = 2, $
DI MENSI ONS = i mageSi ze, TITLE = ' Panni ng Enl arged | nage')

9. Change the view to zoom into the lower left quarter of the image:

vi ewplane = [0., 0., inageSize/?2]
oView -> Set Property, $
VI EWPLANE_RECT = [0., 0., inmageSize/?2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) isreduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

10. Display the updated view in the new window:

oW ndow -> Draw, oView

Image Processing in IDL Panning Within an Image

84 Chapter 2: Creating Image Displays

The following figure shows the resulting enlarged image area.

Figure 2-23: Enlarged Image Area of New York in Object Graphics

11. Panthe view from the left side of the image to the right side of theimage:

FORi =0, ((inmgeSize[0]/2) - 1) DOBEGN & $
vi ewpl ane = viewl ane + [1., 0., 0., 0.] &$%
oView -> SetProperty, VIEWLANE RECT = vi ewpl ane & $
oW ndow -> Draw, oView & $

ENDFOR

Note
The & after BEGIN and the $ alow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in

placed in an IDL program as shown in “Example Code: Panning in Object
Graphics’ on page 85.

Panning Within an Image Image Processing in IDL

Chapter 2: Creating Image Displays 85

The following figure shows the resulting enlarged image area panned to the
right side.

Figure 2-24: Enlarged New York Image Area Panned to the Right in Object
Graphics

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oVi ew
Example Code: Panning in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as

Panni ng_Qbj ect . pr o, compile and run the program to reproduce the previous
example.

PRO Panni ng_Qbj ect

Determne the path to the file.
file = FI LEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize the image size paraneter.
i mageSi ze = [768, 512]

Import in the inage fromthe file.
i mmge = READ_BI NARY(file, DATA DI M5 = inmageSize)

Resi ze the i mage.
i mageSi ze = [256, 256]

Image Processing in IDL Panning Within an Image

86 Chapter 2: Creating Image Displays

i mage = CONGRI D(i mage, imageSize[0], imageSize[1])

; Initialize display objects.

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TITLE = ' A Grayscal e | mage')

oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inngeSize])

oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize image object.
ol mage = OBJ_NEW' | DLgr | nage', inage, / GREYSCALE)

; Add the inmage object to the nodel, which is added to
; the view, then display the view in the w ndow

oMbdel -> Add, ol nage

oVi ew - > Add, oMbdel

oW ndow -> Draw, oView

; Initialize another w ndow.

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = i nageSi ze, $
TI TLE = ' Panning Enl arged | mage')

; Change view to zoominto the lower |left quarter of
; the inmage.

viewplane = [0., 0., inmgeSize/?2]

oView -> Set Property, VIEWLANE_RECT = vi ewpl ane

; Display updated view in new wi ndow.
oW ndow -> Draw, oView

; Pan the view fromthe left side of the image to the
; right side of the image.
FORi =0, ((inageSize[0]/2) - 1) DO BEG N
vi ewpl ane = viewplane + [1., 0., 0., 0.]
oView -> SetProperty, VIEWLANE_RECT = vi ewpl ane
oW ndow -> Draw, oView
ENDFOR

; Clean up object references.
OBJ_DESTROY, oVi ew

END

Panning Within an Image Image Processing in IDL

Chapter 3:

Working with Color

This chapter describes the following topics:

Overview of Working with Color 88
Understanding Colors within IDL Graphic

Systems A
Loading Pre-defined Color Tables. 100

Modifying and Converting Color Tables . . 103

Image Processing in IDL

Converting Between Image Types 121
Highlighting Features with a Color Table 134
Showing Variations in Uniform Areas ... 145
Applying Color Annotations to Images .. 153

87

88

Chapter 3: Working with Color

Overview of Working with Color

Color can play acritical role in the display and perception of digital imagery. This
section provides abasic overview of color systems, display devices, image types, and
the interaction of these elementswithin IDL. The remainder of the chapter builds
upon these fundamental concepts by describing how to load and modify color tables,
convert between image types, utilize color tablesto highlight features, and apply
color annotations to images.

Color Systems

Color can be encoded using a number of different schemes. Many of these schemes
utilize a color triple to represent alocation within a three-dimensional color space.
Examples of these systemsinclude RGB (red, green, and blue), HSV (hue, saturation,
and value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and
yellow).

Computer display devicestypicaly rely on the RGB color system. In IDL, the RGB
color spaceis represented as a three-dimensional coordinate system, with the axes
corresponding to the red, green, and blue contributions, respectively. Each axis
ranges in value from O (no contribution) to 255 (full contribution). By design, this
range from 0 to 255 maps nicely to the full range of a byte data type.

Anindividual color is encoded as a coordinate within this RGB space. Thus, a color
consists of three elements: ared value, a green value, and a blue value.

The following figure shows that each displayable color corresponds to alocation
within athree-dimensiona color cube. The origin, (0, 0, 0), where each color
coordinate is 0, is black. The point at (255, 255, 255) iswhite, representing an
additive mixture of the full intensity of each of the three colors. Points along the main
diagonal - where intensities of each of the three primary colors are equal - are shades

Overview of Working with Color Image Processing in IDL

Chapter 3: Working with Color 89

of gray. The color yellow is represented by the coordinate (255, 255, 0), or a mixture
of 100% red, plus 100% green, and no blue.

Blue (0,0,255) Cyan (0,255,255)
N White (255,255,255)
¥
BN :
Magenita (255,0,2.55)
" Gireen (0,254,0)
___________________ e
Black (0,0,0) 7 N
A R
Red (255,0.0) Tellow (255,255,0)

Figure 3-1: RGB Color Cube (Note: grays are on the main diagonal.)

Display Device Color Schemes

M ost modern computer monitors use one of two basic schemesfor displaying color at
each pixel:

» Indexed - A color is specified using an index into a hardware color lookup
table (or palette). Each entry of the color lookup table corresponds to an
individua color, and consists of ared value, agreen value, and ablue value.
The size of the lookup table depends upon the hardware.

* RGB - A colorisspecified using an RGB triple: [red, green, blue]. The number
of bits used to represent each of thered, green, and blue components depends
upon the hardware.

The description of how color isto beinterpreted on a given display deviceisreferred
to asavisual. Each visual typically has a name that indicates how color isto be
represented. Two very common visua names are PseudoColor (which uses an
indexed color scheme) and TrueColor (which uses an RGB color scheme).

A visual also has a depth associated with it that describes how many bits are used to
represent a given color. Common bit depths include 8-bit (for PseudoColor visuals)
and 16- or 24-bit (for TrueColor visuals). An n-bit visual is capable of displaying 2n
total colors. Thus, an 8-hit PseudoColor visual can display 28 or 256 colors. A 24-bit
TrueColor visual can display 224 or 16,777,216 colors.

Image Processing in IDL Overview of Working with Color

90 Chapter 3: Working with Color

PseudoColor visuals rely heavily upon the display device's hardware color table for
image display. If the color table is modified, all images being displayed using that
color table will automatically update to reflect the change.

TrueColor visuals do not typically use a color table. The red, green, and blue
components are provided directly.

Setting a Visual on Unix Platforms

On Unix platforms, an application (such as IDL) may choose from among the set of
X visuals that are supported for the current display. Each visual is either grayscale or
color. Its corresponding color table may be either fixed (read-only), or it may be
changeable from within IDL (read-write). The color interpretation scheme is either
indexed or RGB. The following table shows the supported visualsfor agiven display,
which may include any combination:

Visual Description

StaticGray grayscal e, read-only, indexed

GrayScale grayscale, read-write, indexed

StaticColor color, read-only, indexed

PseudoColor | color, read-write, indexed
TrueColor color, read-only, RGB
DirectColor color, read-write, RGB

Table 3-1: Visuals Supported in IDL on Unix Platforms

The most common of these is PseudoColor and TrueColor.

Refer to the section “Understanding Colors within IDL Graphic Systems’ on page 94
to learn more about how IDL selects avisual for image display.

To get the list of supported X visual classes on a given system, type the following
command at the Unix command line:

xdpyi nf o
Setting a Visual on Windows Platforms

On Windows platforms, the visual is selected via the system Control Panel. To open
the Control Panel, select the Settings — Control Pand item from the Start menu.
Click on the Display control to open the Display Properties window. Within this

Overview of Working with Color Image Processing in IDL

Chapter 3: Working with Color 91

window, select the Settings tab. The Colors menu lists the supported visuals. The
following table shows that three visuals are supported (for the particular display
configuration used in this example):

Visual Equivalence to Unix Visuals

256 Colors 8-bit PseudoColor
High Color (16 bit) | 16-bit TrueColor
True Color (32 bit) | 32-bit TrueColor

Table 3-2: Visuals Supported in IDL on Windows Platforms

You can use this dialog to change between visuals before starting an IDL session.
Image Data Organization

Numerous standards have been devel oped over the years to describe how an image
can be stored within afile. However, once the image is loaded into memory, it
typically takes one of two forms: indexed or RGB. An indexed image is atwo-
dimensional array, and is usually stored as byte data. A two-dimensional array of a
different data type can be made into an indexed image by scaling it to the range from
0 to 255 using the BY TSCL function. See the BY TSCL description in the IDL
Reference Guide for more information.

An indexed image does not explicitly contain any color information. Its pixel values
represent indices into a color Look-Up Table (LUT). Colors are applied by using
these indicesto look up the corresponding RGB triplet in the LUT. In some cases, the
pixel values of an indexed image reflect the relative intensity of each pixel. In other
cases, each pixel value is smply an index, in which case the imageis usually
intended to be associated with aspecific LUT. In this case, the LUT istypically
stored with the image when it is saved to afile.

An RGB (red, green, blue) image is a three-dimensional byte array that explicitly
stores a color value for each pixel. Scanned photographs are commonly stored as
RGB images. The color information is stored in three sections of athird dimension of
the image. These sections are known as color channels, color bands, or color layers.
One channel represents the amount of red in the image (the red channel), one channel
represents the amount of green in the image (the green channel), and one channel
represents the amount of blue in the image (the blue channel).

Image Processing in IDL Overview of Working with Color

92

Chapter 3: Working with Color

Color interleaving is aterm used to describe which of the dimensions of an RGB
image contain the three color channel values. Three types of color interleaving are

supported by IDL:

* Pixel interleaving — the color information is contained in the first dimension,

(3, n, m).

* Lineinterleaving — the color information is contained in the second
dimension, (n, 3, m).

* Planar interleaving — the color information is contained in the third
dimension, (n, m, 3).

Chapter Overview

The following list describes the color image display tasks and associated IDL image
color display routines covered in this chapter.

Tasks Routine(s)/Object(s) Description
“Understanding | DEVICE Learn the differences of
Colorswithin working with color in Direct
IDL Graphic and Object Graphics on
Systems” on platforms supported in IDL.
page 94
“Loading Pre- LOADCT Load and view one of IDL’s
defined Color XLOADCT pre-defined color tables.
Tables’ on
page 100.

“Modifyingand | XLOADCT Use the XLOADCT and
Converting XPALETTE XPALETTE utilitiesto modify
Color Tables” acolor table and apply it to an
on page 103. TVLCT image. Save this new color
MODIFYCT table asoneof IDL’s pre-
HLS defined tables.
HSV

COLOR_CONVERT

Table 3-3: Color Image Display Tasks and Related Color Display Routines

Overview of Working with Color

Image Processing in IDL

93

Chapter 3: Working with Color
Tasks Routine(s)/Object(s) Description
“Converting TVLCT Change an indexed image with
Between Image | coLOR QUAN an associated color table to an
Types’ on - RGB image, and vice versa.
page 121.
“Highlighting TVLCT Create an entire color table to
Featureswith a IDLgrPalette highlight features within an
Color Table” on image.
page 134. IDLgrlmage
“Showing H EQ CT Modify acolor tablewith
Variationsin H_EQ INT histogram equalization to
Uniform Areas’ - display minor variationsin
on page 145. TVLCT nearly uniform areas of an
image.
“Applying TVLCT Apply specific colorsto
Color IDLgrPalette annotations on indexed or
Annotationsto RGB images to highlight
Images’ on certain features within these
page 153. images.

Table 3-3: Color Image Display Tasks and Related Color Display Routines

Note

This chapter uses data files from the IDL exanpl es/ dat a directory. Two files,
dat a. t xt andi ndex. t xt, contain descriptions of these files, including array

Slzes.

Image Processing in IDL

Overview of Working with Color

94

Chapter 3: Working with Color

Understanding Colors within IDL Graphic

Systems

IDL supports two graphics systems: Direct Graphics and Object Graphics. This
section provides detailed descriptions of how color is represented and interpreted for
each system.

Direct Graphics

Visuals on Unix Platforms

Understanding Colors within IDL Graphic Systems

When IDL createsitsfirst Direct Graphics window, it must select a visual to be
associated with that window. By default, IDL selects an X Visua Class by requesting
(in order) from the following table until a supported visual is found, but a specific
visual can be explicitly requested at the beginning of an IDL session by setting the
appropriate keyword to the DEVICE procedure:

Order Visual Depth Related Keyword
First DirectColor 24-bit DIRECT_COLOR
Second | TrueColor 24-bit (16-bit on Linux) | TRUE_COLOR
Third PseudoColor | 8-hit, then 4-bit PSEUDO_COLOR
Fourth | StaticColor 8-hit, then 4-bit STATIC_COLOR
Fifth GrayScae any depth GRAY_SCALE
Sixth StaticGray any depth STATIC_GRAY

Table 3-4: Order of Visuals and their Related DEVICE Keywords

To request an 8-bit PseudoColor visua, the syntax would be:
DEVI CE, PSEUDO_COLOR=8

Another approach to setting the visual informationistoincludethei dl . gr _vi sual
andidl . gr_dept h resourcesinyour . Xdef aul t sfile.

A visud is selected once per IDL session (when thefirst graphic window is created).
Once selected, the same visua will be used for al Direct Graphics windows in that
IDL session.

Image Processing in IDL

Chapter 3: Working with Color 95

Private versus Shared Colormaps

On Unix platforms, when awindow manager is started, it creates a default colormap
that can be shared among applications using the display. Thisis called the shared
colormap.

A given application may request to use its own colormap that is not shared with other
applications. Thisis called a private colormap.

IDL attempts, whenever possible, to get color table entriesin the shared colormap. If
enough colors are not available in the shared colormap, a private colormap is used. If
an X Visual class and depth are specified and they do not match the default visual of
the screen (see xdpyi nf o), aprivate colormap is used.

If aprivate colormap is used, then colormap flashing may occur when an IDL
window is made current (in which case, the colors of other applications on the
desktop may no longer appear asyou would expect), or when an application using the
shared colormap is made current (in which case, the colors within the IDL graphics
window may no longer appear as you would expect). This flashing behavior isto be
expected. By design, the IDL graphics window has been assigned a dedicated color
table so that the full range of requested colors can be utilized for image display.

Visuals on Windows Platforms

On Windows platforms, the visual that IDL uses is dependent upon the system
setting. For more information, “ Setting a Visual on Windows Platforms” on page 90.

IDL Color Table

IDL maintains a single current color table for Direct Graphics. Refer to the sections
“Loading Pre-defined Color Tables” on page 100 and “Modifying and Converting
Color Tables’ on page 103. IDL provides 41 pre-defined color tables.

Foreground Color

In IDL Direct Graphics, colors used for drawing graphic primitives (such as lines,
text annotations, etc.) are represented in one of two ways:
» Indexed - each color is an index into the current IDL color table

* RGB - each color isalong integer that contains the red value in the first eight
bits, the green value in the next eight bits, and the blue value in the next eight
bits. In other words, a color can be represented using the following equation:

color = red + 256*green + (25672)*bl ue
The RGB form is only supported on TrueColor display devices.

Image Processing in IDL Understanding Colors within IDL Graphic Systems

96

Chapter 3: Working with Color

The DECOMPOSED keyword to the DEVICE procedureis used to notify IDL
whether color isto be interpreted as an index or asacomposite RGB value. IDL then
maps any requested color to an encoding that is appropriate for the current display
device.

The foreground color (used for drawing) can be set by assigning a color value to the
IPCOLOR system variablefield (or by setting the COLOR keyword on theindividual
graphic routine).

If acolor value isto be interpreted as an index, then inform IDL by setting the
DECOMPOSED keyword of the DEVICE routine to 0:
DEVI CE, DECOMPCSED = 0

The foreground color can then be specified by setting 'PCOLOR to an index into the
IDL color table. For example, if the foreground color is to be set to the RGB value
stored at entry 25 in the IDL color table, then use the following IDL command:

I'P. COLOR = 25

If acolor value isto be interpreted as a composite RGB vaue, then inform IDL by
setting the DECOMPOSED keyword of the DEVICE routine to 1:

DEVI CE, DECOVWPCSED = 1

The foreground color can then be specified by setting 'PCOLOR to a composite
RGB value. For example, if the foreground color isto be set to the color yellow,
[255,255,0], then use the following IDL command:

I P. COLOR = 255 + (256*255)

Image Colors

Color for image datais handled in afashion similar to other graphic primitives,
except that some special cases apply based upon the organization of the image data
and the visua of the current display device.

If theimage is organized as &
* two-dimensiona array -

» If thedisplay device is PseudoColor, then each pixel isinterpreted as an
index into the IDL color table

» If the display deviceis TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 0, then each pixel vaueisinterpreted as
an index into the IDL color table (thereby emulating a PseudoCol or
display device).

Understanding Colors within IDL Graphic Systems Image Processing in IDL

Chapter 3: Working with Color 97

» |If thedisplay deviceis TrueColor and if the DECOMPOSED keyword for
the DEVICE procedureis set to 1, then each pixel valueisinterpreted as
the value to be copied to each of the red, green, and blue components of
the RGB color.

* RGB array - (Supported only for TrueColor display devices)

» Each pixel isinterpreted as an RGB color composed of the three elements
in the extra color dimension of the array.

To display an RGB image on a PseudoColor device, use the COLOR_QUAN routine
to convert it to an indexed form. Refer to the section “Converting Between Image
Types’ on page 121.

The TV command can be used to display theimage in IDL. For RGB images, the
TRUE keyword can be used to indicate which form of interleaving is used.

Object Graphics

In Object Graphics, an underlying understanding of display device visuals and
corresponding color interpretation is not required. The color model has been
simplified (relative to Direct Graphics) to make the process of color display more
straightforward.

Palettes

The IDLgrPal ette object class is used to represent color lookup tables. Any number of
pal ette objects may be instantiated at a given time. The following section will
describe how and when these pal ettes are utilized.

Color Models

Object Graphics supports two color models for its destination objects (such as an
IDLgrWindow): the Indexed Color Model, and the RGB Color Model.

If the Indexed Color Modél is used, a color value (or individual image pixel) is
expected to be an index into the pal ette associated with the destination object. To load
aparticular color table, create a palette object, then set it as a property of the
destination object in which the graphics are to be drawn (using the PALETTE
keyword in the SetProperty method of the destination object). If a palette is not
explicitly provided for agiven destination object, agray scale ramp isloaded by
default.

For the Indexed Color Model, acolor may also be specified asan RGB triple
(although thisis much less common). In this case, the nearest match within the
destination object’s palette will be sought and used to represent that color.

Image Processing in IDL Understanding Colors within IDL Graphic Systems

98

Chapter 3: Working with Color

If the RGB Color model is used, acolor (or individual image pixel) is expected to be
either anindex into apalette or an explicit RGB triple. When a color is specified asan
index, theindex is used to look up a color in the nearest palette (if the graphic
includes a palette, that isused first; if the destination has a pal ette, that will be used
next; if no paette is available, agrayscale palette is assumed). If the RGB color
model is used, the palette associated with a destination object does not necessarily
have a one-to-one mapping to the hardware color lookup table for the device. For
instance, the destination object may have a grayscale ramp loaded as a pal ette, but the
hardware color lookup table for the device may be loaded with an even sampling of
colors from the RGB color cube. When a user requests that a graphical object be
rendered in a particular color, that object will appear in the nearest approximation to
that color that the device can supply.

The color model can be explicitly specified using the COLOR_MODEL keyword of
the Init method of a destination object. For example, to create a window using the
Indexed Color Model:

oW ndow = OBJ_NEW' | DLgr W ndow , COLOR_MODEL = 1)
The RGB color model isthe default.

Atomic Graphic Object Colors

In IDL Object Graphics, colors used for drawing atomic graphic objects (such asan
IDLgrText object) are typically represented in one of two ways:

» Indexed - acolor isanindex into apalette
* RGB - acolor isathree-element vector, [red, green, blug].

Color is set using the COLOR keyword of the Init or SetProperty method of the
graphic object. For example:

oPolyline -> SetProperty, COLOR = 128
or
oText -> SetProperty, COLOR = [255, 0, 255]

The interpretation of this color depends upon the color model associated with the
destination object. See the description of color models (above) for details.

Understanding Colors within IDL Graphic Systems Image Processing in IDL

Chapter 3: Working with Color 99

Image Colors

The IDLgrImage object is used to represent images in Object Graphics. This object
stores image data using the byte data type, and can take any of the following forms:

* Anarray with dimensions [n, m]. Each pixel is interpreted as an index into a
palette, or as an explicit gray scale value (if the GREY SCALE keyword is set).

* Anarray withdimensions[2, n, m] or [n, 2, m] or [n, m, 2]. Each pixel consists
of agray scalevalue and an associated a pha channel value (aphais used for
transparency effects).

* Anarray withdimensions[3, n, m] or [n, 3, m] or [n, m, 3]. Each pixel consists
of an RGB triple.

* Anarray withdimensions[4, n, m] or [n, 4, m] or [n, m, 4]. Each pixel consists
of an RGB triple and an associated alpha channel value.

Theindex or RGB triple for each pixel isinterpreted according to the color model set
for the destination object in which it isto be drawn.

Image Processing in IDL Understanding Colors within IDL Graphic Systems

100

Loading Pre-defined Color Tables

Chapter 3: Working with Color

Although you can define your own color tables, IDL provides 41 pre-defined color
tables. You can access these tables through the LOADCT routine. Each color table
contained within thisroutine is specified through an index value ranging from O to 40.

Tip

If you are running IDL on a TrueColor display, set DEVI CE, DECOVPOSED = 0
before your first color table related routine is used within an IDL session or
program. See “Foreground Color” on page 95 for more information.

1. View alist of IDL'stables and their related indices by calling LOADCT

without an argument:
LQADCT

The following list is displayed in the Output Log:

% Conpi | ed nodul e: LOADCT.
% Conpi | ed nmodul e: FI LEPATH.

0- B- W LI MEAR

1- BLUE/ VHI TE

2- GRN- RED- BLU- WHT

3- RED TEMPERATURE
Pepper m nt

4- BLU GRN RED/ YEL
5-STD GAWVMA- | |

6- PRI SM

7- RED- PURPLE

8- GREEN/ VHI TE LI NEAR
9- GRN/ WHT EXPOVENTI AL
10- GREEN- PI NK

11- BLUE_RED

Rai nbow+whi t e

12-16 LEVEL

Rai nbow+bl ack

13- RAI NBOW

14- STEPS

15- STERN SPECI AL

16- Haze

17- Bl ue- Past el - Red

18- Pastel s

19-Hue Sat Lightness 1
20-Hue Sat Lightness 2
21-Hue Sat Value 1
22-Hue Sat Val ue 2

23- Pur pl e- Red+St ri pes

24-Beach
25-Mac Style

26-Eos A

27-Eos B

28- Har dcandy
29- Nat ur e
30- Ocean

31-

32-Pl asma

33- Bl ue- Red
34- Rai nbow
35-Bl ue Waves
36- Vol cano
37-Waves

38- Rai nbow18
39-

40-

When running LOADCT without an argument, it will prompt you to enter the
number of one of the above color tables at the IDL command line.

Loading Pre-defined Color Tables

Image Processing in IDL

Chapter 3: Working with Color 101

2. Enter inthenumber 5 at the Ent er tabl e nunber: prompt:
Enter table nunber: 5
The following text is displayed in the Output Log:
% LOADCT: Loading tabl e STD GAMVA- | |

If you already know the number of the pre-defined color table you want, you

can load a color table by providing that number as the first input argument to
LOADCT.

3. Load in color table number 13 (RAINBOW):
LOADCT, 13
The following text is displayed in the Output Log:
% LOADCT: Loadi ng tabl e RAI NBOW
You can view the current color table with the XLOADCT utility.
4. View color table with XLOADCT utility:
XLOADCT

The following figure shows the resulting XLOADCT display.

&l XLoadct Hi=] E3

Daone | Help
@ Tables ¢ Options Function

0
i 2|
Stretch Botom
100

4 I » I

Stretch Top
1.00000

7] I o]
Gamma Caorrection

B LINEAR -

BLUEAWHITE

GRMN-RED-BLU-WHT

RED TEMPERATURE

BLUE/GREEN/RED/VELLOW

STD GAMMA

PRISH

RED-PURPLE ud

Figure 3-2: The XLOADCT Utility

This utility is designed to individually display each pre-defined color table.
When the Done button is pressed, the selected color table automatically

Image Processing in IDL Loading Pre-defined Color Tables

102 Chapter 3: Working with Color

becomes IDL’s current color table. IDL maintains acolor table on
PseudoColor displays or when the DECOMPOSED keyword to the DEVICE
command is set to zero (DEVI CE, DECOMPOSED = 0) on TrueColor displays.
XLOADCT also allows you to make adjustments to the current color table.
Among other options, you can stretch the bottom, stretch the top, or apply a
gamma correction factor. See the next section, “Modifying and Converting
Color Tables” on page 103, for more information.

Loading Pre-defined Color Tables Image Processing in IDL

Chapter 3: Working with Color 103

Modifying and Converting Color Tables

IDL contains two graphical user interface (GUI) utilities for modifying a color table,
XLOADCT and XPALETTE. “Using the XLOADCT Utility” (below) and “Using
the XPALETTE Utility” on page 113 describe how to use these utilities to modify
color tables. See “Highlighting Features with a Color Table” on page 134 for more
information on how to programmatically modify and design a color table. Then the
“Using the MODIFY CT Routine” on page 119 section shows how to add the changed
color table from XLOADCT and XPALETTE to IDL’slist of pre-defined color
tables.

The following examples are based on the default RGB (red, green, and blue) color
system. IDL also contains routines that allow you to use other color systems
including hue, saturation, and value (HSV) and hue, lightness, and saturation (HLS).
These routines and color systems are explained in “ Converting to Other Color
Systems’ on page 120.

Using the XLOADCT Utility

The XLOADCT utility allows you to load one of IDL’s 41 pre-defined color tables
and change that color table if necessary. The following example shows how to use
XLOADCT to load acolor table and then change that table to highlight specific
features of an image. The indexed image used in this exampleis a computed
tomography (CT) scan of a human thoracic cavity and is contained (without a default
color table) withinthe ct scan. dat filein IDL's exanpl es/ dat a directory.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Using the XLOADCT Utility” on page 111 or complete the following steps for
a detailed description of the process.

1. Determine the path to thect scan. dat binary file:

ctscanFile = FILEPATH(' ctscan.dat', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Initialize the image size parameter:
ctscanSi ze = [256, 256]
3. Import the image from thefile:

ctscanl rage = READ_BI NARY(ctscanFile, $
DATA_DI M5 = ctscanSi ze)

Image Processing in IDL Modifying and Converting Color Tables

104 Chapter 3: Working with Color

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword of the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVI CE, DECOWPOSED = 0

Since the imported image does hot have an associated color table, you need to
apply a pre-defined color table to display the image.

5. Initialize the display by applying the B-W LINEAR color table (index number
0):

LQOADCT, 0
WNDOW 0, TITLE = 'ctscan.dat', $
XSI ZE = ctscanSi ze[0], YSIZE = ctscanSi ze[1]

6. Display theimage using this color table:
TV, ctscanl mage

As the following figure shows, the B-W LINEAR color table does not
highlight al of the aspects of thisimage. The XLOADCT utility can be used to
change the color table to highlight more features.

Figure 3-3: CT Scan Image with Grayscale Color Table

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 105

7. Open the XLOADCT utility:
XLOADCT
Select Rainbow + white and click Done to apply the color table.
The following figure shows the resulting XLOADCT display

&l XLoadct M=l E3
[one | Help |

@ Tables ¢ Options ¢ Function

a
< i
Stretch Bottom

100
Kl L]
Stretch Top

1.00000
Kl L i

Gamma Comection

Rlainbiow + black
Magenta and ‘white Spine hd

Figure 3-4: Selecting Rainbow + white Color Table in XLOADCT Utility

After applying the new color table, you can now see the spine, liver, and
kidney within the image, as shown in the following figure. However, the

separations between the skin, the organs, and the cartilage and bone within the
spine are hard to distinguish.

Image Processing in IDL Modifying and Converting Color Tables

106 Chapter 3: Working with Color

8. Now re-display the image to show it on the Rainbow + white color table:

TV, ctscanl mage

Note
You do not have to perform the previous step on a PseudoColor display. Changesto
the current color table automatically show in the current image window within a
PseudoColor display.

The following figure shows the CT scan image with the Ranbow+white color
table.

spine

kidney

Figure 3-5: CT Scan Image with the Rainbow + white Color Table

9. Redisplay the color table with the XLOADCT utility:
XLOADCT

Comparing the image to the color table, you can see that most image pixelsare
not within the black to purplerange. Therefore the black to purple pixelsin the
image can be replaced by black. The black range can be stretched to move the
purple range to help highlight more features.

The Stretch Bottom dider in the XLOADCT utility increases the range of the
lowest color index. For example, if black was the color of the lowest index and
you increased the bottom stretch by 50 percent, the lower half of the color
table would become all black. The remaining part of the color table will
contain a scaled version of al the previous color ranges.

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 107

10. Within XLOADCT, stretch the bottom part of the color table by 20 percent by
moving the slider as shown in the following figure:

TV, ctscanl mage
Tip
Remember to click on the Done button after changing the Stretch Bottom dider,

then use TV to re-display the image to include the last changing madein the
XLOADCT utility.

In the following figure, you can now see the difference between skin and
organs. You can aso see where cartilage and bone is located within the spine,
but now organs are hard to see. Most of the valuesin the top (the yellow to red
to white ranges) of the color table show just the bones. You can use less of
these ranges to show bones by stretching the top of the color table.

&l XLoadct

bones
& Tables: ¢ Options ¢ Function
20
A I o
Stretch Bottom
100
2 12|
Stretch Top
1.00000
2 = 2
Gamma Correction
B-wf LINEAR -
ELUE AHITE
GRM-RED-BLUAWHT
RED TEMPERATURE
ELUE/GREEM/RED YELLOW
STD GakMadl
PRISM
RED-PURPLE ¥

Figure 3-6: CT Scan Image with Bottom Stretched by 20%
The Stretch Top dlider inthe XLOADCT utility allows you increase the range

of the highest color index. For example, if white was the color of the highest
index and you increased the top stretch by 50 percent, the higher half of the

Image Processing in IDL Modifying and Converting Color Tables

108 Chapter 3: Working with Color

color table would become all white. The remaining part of the color table will
contain a scaled version of al the previous color ranges.

11. Open XLOADCT:
XLOADCT

Stretch the bottom part of the color table by 20 percent and stretch the top part
of the color table by 20 percent (changing it from 100 to 80 percent).

Click Done and redisplay the image:

TV, ctscanl mage

The following figure shows that the organs are more distinctive, but now the
liver and kidneys are not clearly distinguished. These features occur in the blue

range. You can shift the green range more toward the values of these organs
with a gamma correction.

&l XLoadct

[ione 1 Help !
¢ Tables ¢ Options ¢ Function
20
o oo i
Stretch Bottom
80
A I o
Stretch Top
1.00000
2 = 2

Gamma Comection

B-w LINEAR a
BLUEAWHITE
GRM-RED-BLU-WHT

RED TEMPERATURE
BLUE/GREEN/RED/YELLOW
STD GAMMAAI

PRISM

RED-PURPLE ¥

Figure 3-7: CT Scan Image with Bottom and Top Stretched by 20%

With the Gamma Correction slider in the XLOADCT utility you can change
the contrast within the color table. A value of 1.0 indicates alinear ramp (no

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 109

gamma correction). Values other than 1.0 indicate alogarithmic ramp. Higher
values of gamma give more contrast. Values less than 1.0 yield lower contrast.

12. Within XLOADCT, stretch the bottom part of the color table by 20 percent,
stretch the top part of the color table by 20 percent (change it from 100 percent
to 80 percent), and decrease the Gamma Correction factor to 0.631:

XLOADCT
Redisplay the image:
TV, ctscanl mage

All the features are now highlighted within the image as shown in the
following figure:

&l XLoadct

_Dene | Hep | liver spine kidney
& Tables © Options € Function

20
A = i
Stretch Bottom

80
A E o
Stretch Top

0.631

2 i I
Gamma Comection
B-wf LINEAR -
ELUE AHITE
GRM-RED-BLUAWHT
RED TEMPERATURE
ELUE/GREEM/RED YELLOW
STD GakMadl
PRISM
RED-PURPLE ¥

Figure 3-8: CT Scan Image with Bottom and Top Stretched by 20% and Gamma
Correction at 0.631

The previous steps showed how to use the Tables section of the XLOADCT
utility. XLOADCT aso contains two other sections: Options and Function.
The Options section alows you to change what the sliders represent and how
they are used. When the Gang option is sel ected, the sliders become dependent

Image Processing in IDL Modifying and Converting Color Tables

110

13.

Chapter 3: Working with Color

upon each other. When either the Stretch Bottom or Stretch Top sliders are
moved, the other ones reset to their default values (O or 100, respectively).
With the Chop option, you can chop off the top of the color table (the range of
the Stretch Top isnow black instead of the color at the original highest index).
With the I ntensity option, you can change the dider to control the intensity
instead of the index location. The Stretch Bottom slider will darken the color
table and the Stretch Top slider will brighten the color table.

The Function section alows you to place control points which you can use to
change the color table with respect to the other colorsin that table. The color
table function is shown as a straight line increasing from the lowest index (0)
to the highest index (255). The x-axis ranges from 0 to 255 and the y-axis
ranges from 0 to 255. Moving a control point in the x-direction has the same
effects as the previous sliders. Moving a control point in the y-direction
changes the color of that index to another color within the color table. For
example, if acontrol pointisred at an index of 128 and the color table is green
at an index of 92, when the control point is moved in the y-direction to an
index of 92, the color at that x-location will become green. To understand how
the Function section work, you can useit to highlight just the bones with the
CT scan image.

Open XLOADCT:
XLOADCT
Select the Rainbow + white color table.
Switch to the Function section by selecting that option.

Select the Add Control Point button, and drag this new center control point
one half of the way to the right and one quarter of the way down as shown in
the following figure.

Click Done and redisplay the image:

TV, ctscanl mage

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 111

The bonesin the image are now highlighted.

[one I Help] bones

" Tables € Options -~ Function

Reset Transfer Function

Add Control Point

Remave Contral Point

Figure 3-9: CT Scan Image with Central Control Point Moved One Half to the
Right and One Quarter Down

Example Code: Using the XLOADCT Utility

Copy and paste the following text into the IDL Editor window. After saving thefile as
Usi ngXLOADCT. pr o, compile and run the program to reproduce the previous
example. The BLOCK keyword is set when using XLOADCT to force the example
routine to wait until the Done button is pressed to continue. If the BLOCK keyword
was not set, the exampl e routine would produce all of the displays at once and then
end.

PRO Usi ngXLOADCT
Deternmine the path to the file.
ctscanFile = FILEPATH(' ctscan.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize i mage size paraneter.
ctscanSi ze = [256, 256]

Image Processing in IDL Modifying and Converting Color Tables

112

Chapter 3: Working with Color

; Import the image fromthe file.
ctscanl nrage = READ _BI NARY(ctscanFile, $
DATA_DI M5 = ctscanSi ze)

; Initialize display.
DEVI CE, DECOMPCSED = 0
LQOADCT, 0
WNDOW 0, TITLE = 'ctscan.dat', $
XSI ZE = ctscanSi ze[0], YSIZE = ctscanSi ze[1]

; Display imge.
TV, ctscanl mage

; Sel ect and display the "Rai nbow + white" col or
; table

XLOADCT, /BLOCK

TV, ctscanl mage

; Increase "Stretch Bottonmt by 20%
XLOADCT, /BLOCK
TV, ctscanl nage

; Increase "Stretch Bottom' by 20% and decrease
; "Stretch Top" by 20% (to 80%.

XLOADCT, /BLOCK

TV, ctscanl mage

; Increase "Stretch Bottom' by 20% decrease "Stretch

; Top" by 20% (to 80%, and decrease "Gamma Correction”
; to 0.631.

XLOADCT, /BLOCK

TV, ctscanl mage

; Switch to "Function" section, select "Add Control

; Point" and drag this center control point one quarter
; of the way up and one quarter of the way left.
XLOADCT, /BLOCK

TV, ctscanl nage

END

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 113

Using the XPALETTE Utility

Another utility, XPALETTE, can be used to change a specific color table entry or
range of entries. This example uses asingle color (orange) to highlight pixels within
the spine of the CT scan image. Then, starting with the entry that was changed to
orange, arange of entries s selected and replaced with aramp from orange to white
to highlight the bones within thisimage.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Using the XPALETTE Utility” on page 117 or complete the following steps
for adetailed description of the process.

1. Determine the path to thect scan. dat binary file:

ctscanFile = FILEPATH(' ctscan.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:
ctscanSi ze = [256, 256]
3. Import the image from thefile:

ctscanl rage = READ_BI NARY(ctscanFile, $
DATA_DI M5 = ctscanSi ze)

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVI CE, DECOMPOSED = 0

5. Display theimage from thect scan. dat file with the B-W LINEAR color
table:

LQOADCT, 0
WNDOW 0, TITLE = 'ctscan.dat’', $

XSI ZE = ctscanSi ze[0], YSIZE = ctscanSi ze[1]
TV, ctscanl mage

Image Processing in IDL Modifying and Converting Color Tables

114 Chapter 3: Working with Color

As shown in the following figure, the B-W LINEAR color table does not

distinguish all of the aspects of thisimage. The XPALETTE utility can be used
to change the color table.

Figure 3-10: CT Scan Image with Grayscale Color Table
6. Openthe XPALETTE utility:
XPALETTE

Select the Predefined button in the XPALETTE utility to change the color
table to Rainbow + white.

Click on the Done button after you select the Rainbow + white color table in
XLOADCT and then click on the Done buttonin XPALETTE.

The following figure shows the resulting XPALETTE and XLOADCT
displays.

&l %Paleite

[_[O[x]
U XLoadct Nurber Of Colors. 16777216
Cunert Indes: 0
« ,
Done | Help
k Calor: -
@ Tables C Oplions © Function ﬂ
ol J
. L . 0 50100150200250300
Siretch Botiom Green Done Fectaw | Copy Cunert
Y
100 —
“ 5 i | Predefined | SetMark Interpolate
Shetch Top
s Hel | Suwtchbark
2l 0
Color System: [RGB (Red/GreervBlue) -
0
K| i
fied
0
FIE] |
Biean
0 -
ECE] i =
Blue
ol |
0 50100150200250300

Figure 3-11: Selecting Rainbow + white Color Table in XPALETTE Ultility

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 115

7. Now redisplay the image to show it with the Rainbow + white color table:
TV, ctscanl mage

Your display should be similar to the following figure.

bones

Figure 3-12: CT Scan Image with the Rainbow + white Color Table

You can use XPALETTE to change a single color within the current color
table. For example, you can change the color at index number 115 to orange.

Image Processing in IDL Modifying and Converting Color Tables

116

Chapter 3: Working with Color

8. Open XPALETTE and click on the 115th index (in column 3 and row 7):
XPALETTE

Change its color to orange by moving the RGB (red, green, and blue) diders
(Orange is made up of 255 red, 128 green, and 0 blue)

Click on the Done button after changing the Red, Green, and Blue sliders.

Use TV to redisplay the image to include the last changes made in the
XPALETTE utility:

TV,

ct scanl mage

The orange values now highlight some areas of the spine, kidney, and bones as
shown in the following figure.

\
olf k
0 50100150200250300

Nl

 Colors: 16777216

Done. Fediaw | Copy Cunent
Predefined SetMark Interpolate
Help. Swiitch Mark
Collor System: |AGE [Red/Green/Blugl fhd
255
4 g
Red
128

15

[_[o]x]

orange pixels

Figure 3-13: CT Scan Image with Orange Added to the Color Table

You can highlight the bones even further by interpolating a new rangein

between the orange and white indices.

Modifying and Converting Color Tables

Image Processing in IDL

Chapter 3: Working with Color 117

9. Open XPALETTE:
Click on the 115th index and select the Set M ark button.

Click on the highest index (which is usually 255 but it could be less) and then
select the I nter polate button.

To seetheresult of thisinterpolation within XPALETTE, click on the Redraw
button.

Click Done and redisplay the image:
TV, ctscanl mage

The following figure displays the image using the modified color table.

El|%Palette [=] B3
Number Of Colars: 16777216

e A - bones

ol
0 50100150200250300

Green Done Pedian | ~Copy Cunent
w‘" ~

25

25

25

ol/ V
0 50100150200250300

Figure 3-14: CT Scan Image with Orange to White Range Added

Example Code: Using the XPALETTE Utility

Copy and paste the following text into the IDL Editor window. After saving thefile as
Usi ngXPALETTE. pr o, compile and run the program to reproduce the previous
example. The BLOCK keyword is set when using XPALETTE to force the example
routine to wait until the Done button is pressed to continue. If the BLOCK keyword
was not set, the exampl e routine would produce all of the displays at once and then
end.

Image Processing in IDL Modifying and Converting Color Tables

118

Chapter 3: Working with Color

PRO Usi ngXPALETTE

; Determine the path to the file.
ctscanFile = FILEPATH(' ctscan.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize image size parameter.
ctscanSi ze = [256, 256]

; Import the image fromthe file.
ctscanl mrage = READ _BI NARY(ctscanFile, $
DATA_DI M5 = ctscanSi ze)

; Initialize display.
DEVI CE, DECOMPCSED = 0
LQOADCT, 0
WNDOW 0, TITLE = 'ctscan.dat', $
XSI ZE = ctscanSi ze[0], YSIZE = ctscanSi ze[1]

; Display imge.
TV, ctscanl mage

; Click on the "Predefined" button and sel ect the
; "Rainbow + white" color table.

XPALETTE, /BLOCK

TV, ctscanl mage

; Click on the 115th index, which is in colum 3 and row
; 7, and then change its color to orange with the RGB

; (red, green, and blue) sliders. Oange is nade up of

; 255 red, 128 green, and 0 bl ue.

XPALETTE, /BLOCK

TV, ctscanl nage

; Click on the 115th index, click on the "Set Mark"

; button, click on the 255th index, and click on the
; "Interpolate" button. The colors within the 115 to
; 255 range are now changed to go between orange and
; white. To see this change wi thin the XPALETTE

; utility, click on the "Redraw' button.

XPALETTE, /BLOCK

TV, ctscanl mage

; Obtain the red, green, and blue vectors of this
; current color table.
TVLCT, red, green, blue, /GET

; Add this nodified color table to IDL's list of
; pre-defined color tables and display results.

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 119

MODI FYCT, 41, 'Orange to Wiite Bones', $
red, green, blue

XLOADCT, /BLOCK

TV, ctscanl mage

END

Using the MODIFYCT Routine

The previously derived color table created in “Using the XPALETTE Utility” on
page 113 can be added to IDL’s list of pre-defined color tableswith the TVLCT and
MODIFY CT routines. For code that you can copy and paste into atext editor (for
example the IDL Editor), see “Example Code: Using the XPALETTE Utility” on
page 117.

By default, TVLCT alowsyou to load in red, green, and blue vectors (either derived
by you or imported from an image file) to load a different current color table. TVLCT
also hasa GET keyword. When the GET keyword is set, TVLCT returns the red,
green, and blue vectors of the current color table back to you. Using thisyou can
obtain the red, green, and blue vectors of the previously derived color table.

1. Obtain the red, green, and blue vectors of the current color table after
performing the stepsin “Using the XPALETTE Utility” on page 113:

TVLCT, red, green, blue, /GET

The MODIFY CT routine uses these vectors as arguments. Now you can use
MODIFYCT to add this new color table to IDL’s list of pre-defined color
tables.

2. Add this modified color table to IDL’s list of pre-defined color tables and
display results:

MODI FYCT, 41, 'Orange to Wiite Bones', $
red, green, blue

3. Display the resultswith XLOADCT:
XLOADCT

Image Processing in IDL Modifying and Converting Color Tables

120 Chapter 3: Working with Color

The modified color table has been added to IDL’s list of pre-defined color
tables as shown in the following figure.

&l XLoadct |- [Of =]
Done | Help |
i Tables (" Optione ¢ Function
1]
! i
Stretch Bottorn
100
il L]
Stretch Top
1.00000
Kl o i
Gamma Carrection
Orange to White Bones

Figure 3-15: XLOADCT Showing Results of MODIFYCT

The MODIFYCT routine can also be used to save changes to one of the existing pre-

defined color tables. See MODIFY CT in the IDL Reference Guide for more
information.

Converting to Other Color Systems

IDL defaultsto the RGB color system, but if you are more accustomed to other color
systems, IDL is not restricted to working with only the RGB color system. You can
also use either the HSV (hue, saturation, and value) system or the HL S (hue,
lightness, and saturation) system. The HSV or HL S system can be specified by

setting the appropriate keyword (for example/HSV or /HLS) when using IDL color
routines.

IDL aso contains routines to create color tables based on these color systems. The
HSV routine creates a col or table based on the Hue, Saturation, and Value (HSV)
color system. The HL S routine creates a color table based on the Hue, Lightness,
Saturation (HLS) color system. You can aso convert values of a color from any of
these systems to another with the COLOR_CONVERT routine. See
COLOR_CONVERT in the IDL Reference Guide for more information.

Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 121

Converting Between Image Types

Sometimes an image type must be converted from indexed to RGB, RGB to
grayscale, or RGB to indexed. For example, an image may be imported into IDL as
an indexed image (from a PNG file for example) but it may need to be exported as an
RGB image (to a JPEG file for example). The opposite may also need to be done. See
“Foreground Color” on page 95 for more information on grayscal e, indexed, and
RGB images.

Converting Indexed Images to RGB Images

Theconvec. dat fileisabinary file that contains an indexed image (a two-
dimensional image and its associated color table) of the convection of the earth’s
mantle. This file does not contain arelated color table. The following example
applies a color table to thisimage and then converts the image and table to an RGB
image (which contains its own color information).

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Converting Indexed Images to RGB Images’ on page 123 or complete the
following steps for adetailed description of the process.

1. Determine the path to theconvec. dat binary file:

convecFil e = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:
convecSi ze = [248, 248]
3. Import the image from thefile:

convecl nrage = READ_BI NARY(convecFile, $
DATA_DI M5 = convecSi ze)

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVI CE, DECOMPCSED = 0
The EOS B color table is applied to highlight the features of this image.

Image Processing in IDL Converting Between Image Types

122

Chapter 3: Working with Color

Load the EOS B color table (index number 27) to highlight theimage's
features and initialize the display:

LQADCT, 27
WNDOW 0, TITLE = 'convec.dat', $
XSI ZE = convecSi ze[0], YSIZE = convecSi ze[1]

Now display the image with this color table:
TV, convecl mage

The following figure shows the origina image with an applied color table.

Figure 3-16: Example of an Indexed Image With Associated Color Table

Note

A color tableisformed from three vectors (the red vector, the green vector, and
the blue vector). The same element of each vector together form an RGB
triplet to create a color. For example, the i-th element of the red vector may be
255, the ith element of the green vector may be 255, and the ith element of the
blue vector maybe 0. The RGB triplet of the ith element would then be (255,
255, 0), which isthe color yellow. Since a color table contains 256 indices, its
three vectors have 256 elements each. You can access these vectors with the
TVLCT routine using the GET keyword.

On some PseudoColor displays, fewer than 256 entries will be available.

Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 123

7. Accessthe valuesof the color table by setting the GET keyword tothe TVLCT
routine.

TVLCT, red, green, blue, /GET

This color table (color information) can be stored within the image by
converting it to an RGB image. For this example, the RGB image will be pixel
interleaved in order to be exported to a JPEG file.

Tip
If the original indexed image contains values of a data type other than byte, you
should byte-scale the image (with the BY TSCL routine) before using the following

method.

Before converting the indexed image into an RGB image, the resulting three-
dimensional array must be initialized.

8. Initialize the data type and the dimensions of the resulting RGB image:
i mrageRGB = BYTARR(3, convecSi ze[0], convecSi ze[1])

Each channel of the resulting RGB image can be derived from the red, green,
and blue vectors of the color table and the original indexed image.

9. Usethered, green, and blue vectors of the color table and the original indexed
image to form a single image composed of these channels:
red[convecl nage]

green[convecl nage]
bl ue[convecl nage]

i mgeRGB[0, *, *]
i mmgeRGB[1, *, *]
i mmgeRGB[2, *, *]

10. Export the resulting RGB image to a JPEG file:

WRI TE_JPEG 'convecl mage.jpg', imgeRGB, TRUE = 1, $
QUALI TY = 100.

The TRUE keyword is set to 1 because the resulting RGB imageis pixel
interleaved. See WRITE_JPEG for more information.

Example Code: Converting Indexed Images to RGB Images

Copy and paste the following text into the IDL Editor window. After saving thefile as
I ndexedToRGB. pr o, compile and run the program to reproduce the previous
example.

PRO | ndexedToRGB
Deternmine the path to the file.

convecFil e = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Image Processing in IDL Converting Between Image Types

124 Chapter 3: Working with Color

; Initialize the inmge size paraneter.
convecSi ze = [248, 248]

; Import the image fromthe file.
convecl mrage = READ_BI NARY(convecFile, $
DATA_DI M5 = convecSi ze)

; Initialize display.
DEVI CE, DECOMPCSED = 0
LQADCT, 27
WNDOW 0, TITLE = 'convec.dat', $
XSI ZE = convecSi ze[0], YSIZE = convecSi ze[1]

; Display imge.
TV, convecl mage

; Obtain the red, green, and blue vectors that formthe
; current color table.
TVLCT, red, green, blue, /GET

; Initialize the resulting RGB i mage.
i mrmgeRGB = BYTARR(3, convecSi ze[0], convecSi ze[1])

; Derive each color image fromthe vectors of the
; current color table.

i mageRGB[0, *, *] red[convecl nage]

i mmgeRGB[1, *, *] green[convecl nage]

i mmgeRGB[2, *, *] bl ue[convecl nage]

; Wite the resulting RGB image out to a JPEG file.
WRI TE_JPEG, 'convec.jpg', inmgeRGB, TRUE = 1, $
QUALI TY = 100.

END
Converting RGB Images to Grayscale Images

The following example extracts the three channels of an RGB image contained in the
gl owi ng_gas. j pg file, which isin the exanpl es/ dat a directory. Thisfileis
provided by the Hubble Heritage Team, which is made of AURA, STScl, and NASA.

The channels are extracted as grayscale (intensity) images. These images are
converted to floating-point data and then added together to form a single image,
which is agrayscale version of the original RGB image.

Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 125

For code that you can copy and paste into an Editor window, see “ Example Code:
Converting RGB Images into Grayscale Images’ on page 128 or complete the
following steps for adetailed description of the process.

1. Determine the path to thefile:

file = FILEPATH(' gl owi ng_gas.jpg', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Query thefile to determine the image parameters:
queryStatus = QUERY_JPEQ fil e, inmagelnfo)

3. Set the image size parameter from the query information:
i mgeSi ze = i magel nf o. di mensi ons

4. Import the image from the file:
READ JPEG, file, inage

5. If you are running IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to one before your first RGB imageis
displayed within an IDL session or program. See “Foreground Color” on
page 95 for more information:

DEVI CE, DECOMPCSED = 1
6. Create awindow and display the image:

W NDOW 0, XSIZE = imageSize[0], YSIZE = inngeSi ze[1], $
TITLE = 'd owi ng Gas RGB | nage’
TV, image, TRUE = 1

Image Processing in IDL Converting Between Image Types

126 Chapter 3: Working with Color

The following figure shows the original RGB image.

Figure 3-17: The Glowing Gas RGB Image

7. Extract the channels (as images) from the RGB image:

redChannel = REFORM image[0, *, *])
greenChannel = REFORM i mage[1l, *, *])
bl ueChannel = REFORM i mage[2, *, *])

8. Initialize the grayscale display:
DEVI CE, DECOMPCSED = 0
LOADCT, 0
9. Create another window and display each channel of the RGB image:

W NDOW 1, XSIZE = 3*i nageSi ze[0], YSIZE = i nmgeSi ze[1], $
TITLE = 'Red (left), Geen (niddle), ' + $
"and Blue (right) Channels of the RGB | nage'

TV, redChannel, 0

TV, greenChannel, 1

TV, blueChannel, 2

Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 127

The following figure shows the RGB channels. The red channel is on the | eft,
the green channel is in the middle, and the blue channel is on the right.

Figure 3-18: The Channels of the Glowing Gas RGB Image

10. Convert the channelsinto a single grayscale image.

grayscal el nrage = BYTE(0. 299*FLOAT(redChannel) + $
0. 587* FLOAT(r edChannel) + 0. 114* FLQAT(bl ueChannel))

The pixel values of the channels are converted from byte values to floating-
point values because byte values cannot exceed 255. The adjustment factors
(0.299, 0.587, and 0.114) are used to enhance visual perception and to scale
the results to arange from 0 to 255. The BY TE function is used to restore the
pixel values back to their original datatype.

11. Create another window and display the grayscale image:

W NDOW 2, XSIZE = 2*i nageSi ze[0], YSIZE = inmgeSi ze[1], $
TITLE = 'Resulting Grayscale Image' + $
TV, grayscal el mage

Image Processing in IDL Converting Between Image Types

128

Chapter 3: Working with Color

The following figure shows the result of creating a grayscale image from the
individual channels of an RGB image.

Figure 3-19: Resulting Grayscale Image

Example Code: Converting RGB Images into Grayscale Images

Copy and paste the following text into the IDL Editor window. After saving thefile as
RGBToGr ayscal e. pr o, compile and run the program to reproduce the previous

example.

PRO RGBToGr ayscal e

; Determine the path to the file.
file = FILEPATH(' gl owi ng_gas.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

; Query the file to determ ne i mage paraneters.
queryStatus = QUERY_JPEQ fil e, inmagelnfo)

; Set the image size parameter fromthe query
; information.
i mgeSi ze = i magel nf o. di mensi ons

; Inmport the inage fromthe file.
READ_JPEG, file, image

; Initialize the REB display.

Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 129

DEVI CE, DECOVWPCSED = 1

; Create a window and display the imge.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmgeSize[l], $
TITLE = 'd owi ng Gas RGB | nage’

TV, image, TRUE =1

; Extract the channels (as imges) fromthe RGB inmage.
redChannel = REFORM i mage[0, *, *])

greenChannel = REFORM i mage[1, *, *])

bl ueChannel = REFORM i nage[2, *, *])

; Initialize the grayscale display.
DEVI CE, DECOMPCSED = 0
LQOADCT, 0

; Create another wi ndow and display each channel of the

; RGB i nage.

W NDOW 1, XSIZE = 3*inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = 'Red (left), Geen (niddle), ' + $
"and Blue (right) Channels of the RGB | nage'

TV, redChannel, 0

TV, greenChannel, 1

TV, blueChannel, 2

; Convert the channels into a grayscal e i mage.
grayscal el rage = BYTE(0. 299*FLOAT(redChannel) + $
0. 587* FLOAT(r edChannel) + 0. 114* FLQAT(bl ueChannel))

; Create another wi ndow and display the resulting

; grayscal e i mage.

W NDOW 2, XSIZE = i mageSi ze[0], YSIZE = inmngeSi ze[1], $
TITLE = 'Resulting G ayscal e | nage'

TV, grayscal el mage

END
Converting RGB Images to Indexed Images

Although it is arelatively simple process to convert an RGB image to a grayscale
image, the process needed to convert an RGB image to an indexed image is more
complex. This process is more complex because the millions of possible colors
provided by an RGB image must be decomposed into the 256 colors used by an
indexed image. IDL’s COLOR_QUAN function may be used to perform this process.

The following example shows how to use the COLOR_QUAN function to convert an
RGB image to anindexed image. Theel ev_t . j pg file contains a pixel interleaved

Image Processing in IDL Converting Between Image Types

130

Chapter 3: Working with Color

RGB image, which hasits own color information. This example converts the image
to an indexed image with an associated color table.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Converting RGB Images to Indexed Images’ on page 132 or complete the
following steps for adetailed description of the process.

1. Determinethepathtotheel ev_t.j pg file

elev_ tFile = FILEPATH('elev_t.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Import theimage from theel ev_t . j pg fileinto IDL:
READ_JPEG, elev_tFile, elev_tlnage
Determine the size of the imported image:
el ev_tSize = SIZE(el ev_t | mage, /DI MENSI ONS)

If you are running IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to one before your first RGB imageis
displayed within an IDL session or program. See “Foreground Color” on
page 95 for more information:

DEVI CE, DECOMPCSED = 1
Initialize the display:

WNDOW 0, TITLE = 'elev_t.jpg , $
XSIZE = elev_tSize[1l], YSIZE = elev_tSize[2]

Display the imported image:
TV, elev_tlmge, TRUE = 1

Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 131

The following figure shows the original RGB image.

Figure 3-20: Example of an RGB Image

Note
If you are running IDL on a PseudoColor display, the RGB image will not be
displayed correctly. A PseudoColor display only alowsthe display of indexed
images. You can change the RGB image to an indexed image with the
COLOR_QUAN routine. An example of this method is shown in this section.

The RGB image is converted to an indexed image with the COLOR_QUAN
routine, but the DECOMPOSED keyword to the DEVICE command must be
set to zero (for TrueColor displays) before using COLOR_QUAN becauseitis
acolor table related routine. See COLOR_QUAN in the IDL Reference Guide
for more information.

Image Processing in IDL Converting Between Image Types

132

Chapter 3: Working with Color

Note
COLOR_QUAN may result in someloss of color information since it quantizes the
image to afixed number of colors (stored in the color table).

7. If you are running IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVI CE, DECOMPCSED = 0
8. Convert the RGB image to an indexed image with an associated color table:

i magel ndexed = COLOR_QUAN(el ev_tlnage, 1, red, green, $
bl ue)

9. Export the resulting indexed image and its associated color table to a PNG file:
WRI TE_PNG 'elev_t.png', inagelndexed, red, green, blue

Example Code: Converting RGB Images to Indexed Images

Copy and paste the following text into the IDL Editor window. After saving thefile as
RGBTol ndexed. pr o, compile and run the program to reproduce the previous
example.

PRO RG@GBTol ndexed

; Determine path to the "elev_t.jpg" file.
elev_tFile = FILEPATH('elev_t.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

; Import inmage fromfile into |DL.
READ_JPEG, elev_tFile, elev_tlnage

; Determine the size of the inported inmage.
el ev_t Size = SIZE(el ev_t | mage, /DI MENSI ONS)

; Initialize display.
DEVI CE, DECOMPCSED = 1
WNDOW O, TITLE = 'elev_t.jpg', $
XSIZE = elev_tSize[1l], YSIZE = elev_tSize[2]

; Display imge.
TV, elev_tlmge, TRUE = 1

; Convert RGB inmmage to indexed inmage with associ ated
; color table.
DEVI CE, DECOMPOSED = 0

Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 133

i magel ndexed = COLOR_QUAN(el ev_tInage, 1, red, green, $
bl ue)

; Wite resulting image and its color table to a PNG
; file.
WRI TE_PNG, 'elev_t.png', inagelndexed, red, green, blue

END

Image Processing in IDL Converting Between Image Types

134 Chapter 3: Working with Color

Highlighting Features with a Color Table

For indexed images, custom color tables can be derived to highlight specific features.
Color tables are usually designed to vary within certain ranges to show dramatic
changes within an image. Some color tables are designed to highlight features with
drastic color changein adjacent ranges (for example setting 0 through 20 to black and
setting 21 through 40 to white).

Note
Color tables are associated with indexed images. RGB images already contain their
own color information. If you want to derive a color table for an RGB image, you
should convert it to an indexed image with the COLOR_QUAN routine. You should
also set COLOR_QUAN’s CUBE keyword to 6 to insure the resulting indexed
image is an intensity representation of the original RGB image. See COLOR_QUAN
in the IDL Reference Guide for more information

Highlighting Features with Color in Direct Graphics

Thedatain themi ner al . png filein the exanpl es/ dat a directory comes with its
own color table. The following example will apply thisrelated color table, then a pre-
defined color table, and finally derive anew color table to highlight specific features.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Highlighting Features with Color in Direct Graphics’ on page 137 or complete
the following steps for a detailed description of the process.

1. Determinethe path to themni neral . png file:

m neral File = FI LEPATH(' mineral .png', $
SUBDI RECTCRY = [‘exanples', ‘data'])

2. Import the image from the mi neral . png fileinto IDL:
m neral | mage = READ PNG nineral File, red, green, blue)

The image's associated color table is contained within the resulting red, green,
and blue vectors.

3. Determine the size of the imported image:
m neral Si ze = Sl ZE(mi neral | mage, /DI MENSI ONS)

Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 135

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVI CE, DECOMPCSED = 0
5. Load theimage's associated color table with the TVLCT routine:
TVLCT, red, green, blue
6. Initializethe display:
W NDOW 0, XSIZE = mineral Size[0], YSIZE = mineral Size[l], $
TI TLE = ' mi neral . png'
7. Display the imported image:
TV, mnerall nage
This scanning electron microscope image shows mineral depositsin a sample

of polished granite and gneiss. The associated color table isareverse
grayscae.

Thefollowing figure showsthat the associated color table highlightsthe gneiss
very well, but the other features are not very clear. The other features can be
defined with IDL’s pre-defined color table, RAINBOW.

Figure 3-21: Mineral Image and Default Color Table (Direct Graphics)

8. Load the RAINBOW color table and redisplay the image in another window:

LOADCT, 13

WNDOW 1, XSIZE = mineral Size[0], YSIZE = mineral Size[l], $
TI TLE = ‘ RAI NBOW Col or'

TV, mnerall nage

Image Processing in IDL Highlighting Features with a Color Table

136 Chapter 3: Working with Color

The following figure shows that the yellow, cyan, and red sections are now
apparent, but the cracks are no longer visible. Details within the yellow areas
and the green background are also difficult to distinguish. These features can
be highlighted by designing your own color table.

Figure 3-22: Mineral Image and RAINBOW Color Table (Direct Graphics)

The features within the image are at specific ranges in between 0 and 255.
Instead of a progressive color table, specific colors can be defined to be
constant over these ranges. Any contrasting colors can be used, but it is easiest
to derive the additive and subtractive primary colors used in the previous
section.

9. Definethe colorsfor anew color table:

colorLevel =[[0, O, 0], $; black
[255, 0, 0], $; red
[255, 255, 0], $; vyellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, O, 255], $; bDblue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

10. Create a new color table that contains eight levels, including the highest end
boundary by first deriving levels for each color in the new color table:

nunber Of Level s = CEI L(!D. TABLE_SI ZE/ 8.)
| evel = I NDGEN(! D. TABLE_SI ZE) / nunber Of Level s

11. Place each color level into its appropriate range.

newRed = col orLevel [0, |evel]
newG een = col orLevel [1, level]
newBl ue = col orLevel [2, |evel]

Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 137

12. Include thelast color in the last level:

newRed[! D. TABLE_SI ZE - 1] = 255
newd een[! D. TABLE_SI ZE - 1] = 255
newBl ue[! D. TABLE_SI ZE - 1] = 255

13. Make the new color table current:
TVLCT, newRed, new& een, newBl ue
14. Display the image with this new color table in another window:

W NDOW 2, XSIZE = mineral Size[0], $
YSI ZE = m neral Si ze[1], TITLE = 'Cube Corner Colors'
TV, mnerall nage

The following figure shows that each feature is now highlighted including the
cracks. The color table also highlights at least three different types of cracks.

Figure 3-23: Mineral Image and Derived Color Table (Direct Graphics)

Example Code: Highlighting Features with Color in Direct
Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Hi ghl i ght Feat ures_Di r ect . pr o, compile and run the program to reproduce the
previous example.

PRO Hi ghl i ght Features_Di rect
; Deternmine path to "mineral.png" file.

m neral File = FI LEPATH(' mineral .png', $
SUBDI RECTCRY = [' exanples', 'data'])

; Import inmage fromfile into |DL.

m neral | mage = READ PNG (mineral File, $
red, green, blue)

Image Processing in IDL Highlighting Features with a Color Table

138

Highlighting Features with a Color Table

Chapter 3: Working with Color

; Determine size of inported inmge.
m neral Si ze = Sl ZE(mi neral | mage, /DI MENSI ONS)

; Apply inported color vectors to current color table.
DEVI CE, DECOMPOSED = 0
TVLCT, red, green, blue

; Initialize display.
W NDOW 0, XSIZE = mineral Size[0], YSIZE = m neral Si ze[1],
TI TLE = ' mi neral . png'

; Display imge.
TV, mneral |l nage

; Load "RAINBOW color table and display imge in

; anot her w ndow.

LQADCT, 13

W NDOW 1, XSIZE = mneral Size[0], YSIZE = m neral Si ze[1],
TI TLE = ' RAI NBOW Col or'

TV, mneral |l nage

; Define colors for a new col or table.
colorLevel = [[0, O, 0], $; black

[255, 0, 0], $; red

[255, 255, 0], $; vyellow

[0, 255, 0], $; green

[0, 255, 255], $; cyan

[0, O, 255], $; Dblue

[255, 0, 255], $; magenta

[255, 255, 255]] ; white

; Derive levels for each color in the new col or table.
; NOTE: some displays nay have |less than 256 col ors.
nunmber Of Level s = CEI L(! D. TABLE_SI ZE/ 8.)

I evel = I NDGEN(! D. TABLE_SI ZE) / nunber Of Level s

; Place each color level into its appropriate range.
newRed = col orLevel [0, |evel]

newG een = col orLevel [1, level]

newBl ue = col orLevel [2, |evel]

; Include the last color in the |ast |evel.
newRed[! D. TABLE_SI ZE - 1] = 255

newG een[! D. TABLE_SI ZE - 1] = 255

newBl ue[! D. TABLE_SI ZE - 1] = 255

: Make the new color table current.
TVLCT, newRed, new& een, newBl ue

$

$

Image Processing in IDL

Chapter 3: Working with Color 139

Di spl ay i mage in another w ndow.
W NDOW 2, XSIZE = mineral Size[0], $
YSI ZE = m neral Si ze[1], TITLE = 'Cube Corner Colors'
TV, mnerall nage

END
Highlighting Features with Color in Object Graphics

The previous example could have been done with Object Graphics. The color tableis
derived in the same matter. This example shows how to create a color table to
highlight image features using Object Graphics.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Highlighting Features with Color in Object Graphics’ on page 142 or complete
the following steps for a detailed description of the process.

1. Determinethe path to theni neral . png file:

m neral File = FI LEPATH(' mineral .png', $
SUBDI RECTCRY = [‘exanples', ‘data'])

2. Import the image and its associated color table into IDL:

m neral | mpage = READ PNGE nineral File, red, green, blue)
3. Determine the size of the imported image:

m neral Si ze = Sl ZE(mi ner al | mage, /DI MENSI ONS)
4. |Initialize objects necessary for a graphics display:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSIONS = [mineral Size[0], mneral Size[1]], $
TITLE = 'mineral.png')

oView = OBJ_NEW' I DLgrView , VIEWLANE RECT = [0., 0., $
m neral Si ze[0], mneral Size[1]])

oMbdel = OBJ_NEW' | DLgr Model ')

5. Initialize a palette object containing the image’s associated color table and
apply the palette to the image objects:

oPalette = OBJ_NEW ' I DLgrPal ette', red, green, blue)
ol mage = OBJ_NEW' I DLgrl nage', minerall nage, $
PALETTE = oPal ette)

The objects are then added to the view, which is displayed in the window.

Image Processing in IDL Highlighting Features with a Color Table

140 Chapter 3: Working with Color

6. Add the image to the model, then add the model to the view:

oMbdel -> Add, ol nage
oVi ew - > Add, oMbdel

Draw the view in the window:
oW ndow -> Draw, oVi ew

This scanning electron microscope image shows mineral depositsin a sample
of polished granite and gneiss. The associated color table isareverse
grayscae.

Thefollowing figure showsthat the associated color table highlightsthe gneiss
very well, but the other features are not very clear. The other features can be
defined with IDL’s pre-defined color table, RAINBOW.

Figure 3-24: Mineral Image and Default Color Table (Object Graphics)

The palette can easily be modified to show the RAINBOW pre-defined color
table in another instance of the window object.

7. Update palette with RAINBOW color table and then display the image with
this color table in another instance window of the window object:

oPal ette -> LoadCT, 13

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSIONS = [mineral Size[0], mneral Size[1]], $
TI TLE = ' RAI NBOW Col or")

oW ndow -> Draw, oView

The following figure shows that the yellow, cyan, and red sections are now
apparent, but the cracks are no longer visible. Details within the yellow areas

Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 141

and the green background are also difficult to distinguish. These features can
be highlighted by designing your own color table.

Figure 3-25: Mineral Image and RAINBOW Color Table (Object Graphics)

The features within the image are at specific ranges in between 0 and 255.
Instead of a progressive color table, specific colors can be defined to be
constant over these ranges. Any contrasting colors can be used, but the easiest
to derive are the additive and subtractive primary colors used in the previous
section.

8. Definecolors for anew color table:

colorLevel =[[0, O, 0], $; black
[255, O, 0], $; red
[255, 255, 0], $; vyellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, O, 255], $; bDlue
[255, 0O, 255], $; magenta
[255, 255, 255]] ; white

9. Create anew color table that contains eight levels, including the highest end
boundary by first deriving levels for each color in the new color table:

nunber Of Level s = CEI L(!D. TABLE_SI ZE/ 8.)
Il evel = | NDGEN(! D. TABLE_SI ZE) / nunber Of Level s

10. Place each color level into its appropriate range.

newRed = col orLevel [0, |evel]
newG een = col orLevel [1, |evel]
newBl ue = col orLevel [2, |evel]

Image Processing in IDL Highlighting Features with a Color Table

142 Chapter 3: Working with Color

11. Includethelast color in thelast level:

newRed[! D. TABLE_SI ZE - 1] = 255
newd een[! D. TABLE_SI ZE - 1] = 255
newBl ue[! D. TABLE_SI ZE - 1] = 255

Apply the new color table to the pal ette object:

12. Display the image with this color table in another window:

oPal ette -> SetProperty, RED VALUES = newRed, $
GREEN_VALUES = newGreen, BLUE_VALUES = newBl ue

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSIONS = [mineral Size[0], mneral Size[1]], $
TI TLE = ' Cube Corner Colors')

oW ndow -> Draw, oView

The following figure shows that each image feature is readily distinguishable.

Figure 3-26: Mineral Image and Derived Color Table (Object Graphics)

13. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view and the palette
object:

OBJ_DESTROY, [oView, oPalette]

Example Code: Highlighting Features with Color in Object
Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as

Hi ghl i ght Feat ur es_(Qbj ect . pr o, compile and run the program to reproduce the
previous example.

Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 143

PRO Hi ghl i ght Feat ur es_0Obj ect

; Deternmine path to "mineral.png" file.
m neral File = FILEPATH(' mineral .png', $
SUBDI RECTCRY = [' exanples', 'data'])

; Import image fromfile into |DL.
m neral | mage = READ PNG(mineral File, $
red, green, blue)

; Determine size of inported inmge.
m neral Si ze = Sl ZE(mi ner al | mage, /DI MENSI ONS)

; Initialize objects.

; Initialize display.

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [mineral Size[0], mneral Size[1]], $
TITLE = 'mineral.png')

oView = OBJ_NEW' I DLgrView , VIEWLANE RECT = [0., 0., $
m neral Si ze[0], mneral Size[1]])

oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize palette and image.

oPalette = OBJ_NEW ' IDLgrPal ette', red, green, blue)

ol mage = OBJ_NEW' | DLgr| mage', m nerallnmage, $
PALETTE = oPal ette)

; Add inage to nodel, then nbdel to view, and draw final
;view in w ndow.

oMbdel -> Add, ol nage

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; Update palette with RAINBON col or table and then
; display image in another instance of the w ndow object.
oPal ette -> LoadCT, 13
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSIONS = [mineral Size[0], mneral Size[1]], $
TI TLE = ' RAI NBOW Col or")
oW ndow -> Draw, oView

; Define colors for a new col or table.
colorLevel = [[0, O, 0], $; black

[255, O, 0], $; red

[255, 255, 0], $; vyellow

[0, 255, 0], $; green

[0, 255, 255], $; cyan

[0, O, 255], & ; Dblue

[255, 0O, 255], $; magenta

[255, 255, 255]] ; white

Image Processing in IDL Highlighting Features with a Color Table

144

Chapter 3: Working with Color

; Derive levels for each color in the new col or table.
; NOTE: some displays nay have |less than 256 col ors.
number Of Level s = CEI L(! D. TABLE_SI ZE/ 8.)

| evel = I NDGEN(! D. TABLE_SI ZE) / nunber Of Level s

; Place each color level into its appropriate range.
newRed = col orLevel [0, |evel]

newG een = col orLevel [1, |evel]

newBl ue = col orLevel [2, |evel]

: Include the last color in the |ast |evel.
newRed[! D. TABLE_SI ZE - 1] = 255

newG een[! D. TABLE_SI ZE - 1] = 255

newBl ue[! D. TABLE_SI ZE - 1] = 255

; Update palette with new col or table and then
; display image in another instance of the w ndow object.
oPal ette -> SetProperty, RED VALUES = newRed, $
GREEN_VALUES = newGreen, BLUE_VALUES = newBl ue
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSIONS = [mineral Size[0], mneral Size[1]], $
TI TLE = ' Cube Corner Colors')
oW ndow -> Draw, oView

; Clean-up object references.
OBJ_DESTROY, [oView, oPalette]

END

Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 145

Showing Variations in Uniform Areas

Histogram equalization is used to change either an image or its associated color table
to display minor variations within nearly uniform areas of the image. The histogram
of theimage is used to determine where the image or color table should be equalized
to highlight these minor variations. Since this chapter pertains to color and color
tables, this section only discusses histogram equalization of color tables. See
“Working with Histograms” on page 417 for more information on how histogram
equalization effects images.

The histogram of an image shows the number of pixels for each color value within
the range of the image. If the minimum value of the image is 0 and the maximum
value of the image is 255, the histogram of the image shows the number of pixels for
each value ranging between and including 0 and 255. Peaks in the histogram
represent more common values within the image which usually consist of nearly
uniform regions. Valeysin the histogram represent less common values. Empty
regions within the histogram indicate that no pixels within the image contain those
values.

The following figure shows an example of a histogram and itsrelated image. The
most common value in this image is 180, which appears to be the background of the
image. Although the background appears nearly uniform, it contains many subtle
variations (cracks).

WAV

0 50 100 150 200 250
Histagram of Image

Figure 3-27: Example of a Histogram (left) and Its Related Image (right)

During histogram equalization, the color table values associated with the empty
regions of the histogram are redistributed equally among the peaks and valleys. This
process creates intensity gradients within the peaks and valleys (replacing nearly
uniform values), thus highlighting minor variations.

Image Processing in IDL Showing Variations in Uniform Areas

146

Chapter 3: Working with Color

The following section provides a histogram equalization examplein Direct Graphics,
which uses routines that directly work with the current color table. Since the concept
of acurrent color table does not apply to Object Graphics, you must use histogram
equalization routines that directly effect the image. See “Working with Histograms’
on page 417 for more information on histogram equalization with Object Graphics.

Showing Variations with Direct Graphics
The following example will apply histogram equalization to a color table associated

with an image of mineral depositsto reveal previoudy indistinguishable features.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Showing Variations with Direct Graphics” on page 150 or complete the
following steps for adetailed description of the process.

1. Determinethe path to theni neral . png file:

file = FILEPATH(* mi neral .png', $
SUBDI RECTCRY = [‘exanples', ‘data'])

Import the image from the mi ner al . png fileinto IDL:
i mmge = READ_PNG(file)

Determine the size of the imported image:
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

If you are running IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program:

DEVI CE, DECOMPCSED = 0
Initialize the image display:
LOADCT, O

W NDOW 0, XSIZE = 2*i mageSi ze[0], YSIZE = i mageSi ze[1], $
TI TLE = ' H st ograni | nage'

Compute and display the histogram of the image. This step is not required to
perform histogram equalization on a color table within IDL. It is done here to
show how the histogram equalization affects the color table:

bri ght nessHi st ogram = BYTSCL(H STOGRAM i nage))

PLOT, brightnessH stogram XSTYLE = 9, YSTYLE =5, $
POSI TION = [0.05, 0.2, 0.45, 0.9], $
XTI TLE = ' Hi stogram of | mage'

Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 147

7. Display the image within the same window.
TV, image, 1
The following figure shows the resulting histogram and its related image.

AN

0 S0 100G 150 260 250
Histagram of Imags

Figure 3-28: Histogram (left) of the Mineral Image (right) in Direct Graphics

8. UsetheH_EQ_CT procedureto perform histogram equalization on the current
color table:

H EQ CT, inmge
9. Display the original image in another window with the updated color table:

W NDOW 1, XSIZE = imageSi ze[0], YSIZE = innageSi ze[1], $
TI TLE = ' Hi st ogram Equal i zed Col or Tabl €'
TV, inage

Display the updated color table with the XLOADCT utility:
XLOADCT
Click on the Done button close the XLOADCT utility.

The following figure contains the results of the equalization on the image and
its color table. After introducing intensity gradients within previously uniform
regions of theimage, the cracks are now more visible. However, some of the

Image Processing in IDL Showing Variations in Uniform Areas

148 Chapter 3: Working with Color

original features are not as clear. These regions can be clarified by interactively
applying the amount of equalization to the color table.

& XLoadct E=l

[rone 1 Help 1

* Tables ¢ Options ¢ Function

o
A 2
Stretch Bottom
100

A i }i
Stretch Top

1.00000
A o 2
Gamma Conection
B-wf LINEAR -
ELUE AHITE
GRM-RED-BLUAWHT
RED TEMPERATURE
ELUE/GREEM/RED YELLOW
STD GakMadl
PRISM
RED-PURPLE *

Figure 3-29: Resulting Image (left) and Color Table (right) of the Histogram
Equalization in Direct Graphics

The histogram equalizing process can also be interactively applied to a color
table with the H_EQ_INT procedure. The H_EQ _INT procedure provides an
interactive display, allowing you to use the cursor to control the amount of
equalization. The equalization applied to the color tableis scaled by afraction,
which is controlled by the movement of the cursor in the x-direction. If the
cursor isal the way to the left side of the interactive display, the fraction
equalized is close to zero, and the equalization has little effect on the color
table. If the cursor is all the way to the right side of the interactive display, the
fraction equalized is close to one, and the equalization is fully applied to the
color table (which issimilar to the resultsfrom theH_EQ_CT procedure). You

can click on the right mouse button to set the amount of equalization and exit
out of the interactive display.

Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 149

10. Usethe H_EQ_INT procedure to interactively perform histogram equalization
on the current color table:

H EQ I NT, image

Place the cursor at about 130 in the x-direction, which is about 0.5 equalized
(about 50% of the equalization applied by the H_EQ_CT procedure). You do
not have to be exact for this example. The y-direction location is arbitrary.

Click on the right mouse button.

The interactive display is similar to the following figure.

0.576 equalized
300 T

2801 b
z00f]
180]
100 b

O b

[a]

a 50 100 180 200 250 I0¢

Figure 3-30: Interactive Display for Histogram Equalization

11. Display the image using the updated color table in another window:
W NDOW 2, XSIZE = i mageSi ze[0], YSIZE = inmngeSi ze[1], $

TITLE = '"Interactively Equalized Col or Tabl €'
TV, inage
Display the updated color table with the XLOADCT utility:
XLOADCT

Click on the Done button close the XLOADCT utility.

Image Processing in IDL Showing Variations in Uniform Areas

150 Chapter 3: Working with Color

The following figure contains the results of the equalization on the image and
its color table. The original details have returned and the cracks are still
visible.

. ¥Loadct

Figure 3-31: Resulting Image (left) and Color Table (right) of the Interactive
Histogram Equalization in Direct Graphics

Example Code: Showing Variations with Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Hi st ogr anEqual i zi ng_Di r ect . pr o, compile and run the program to reproduce
the previous example. The BLOCK keyword is set when using XLOADCT to force
the example routine to wait until the Done button is pressed to continue. If the
BLOCK keyword was not set, the exampl e routine would produce al of the displays
at once and then end.

PRO Hi st ogranEqual i zi ng_Di r ect
; Determine path to file.

file = FILEPATH(' mi neral .png', $
SUBDI RECTCRY = [' exanples', 'data'])

Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 151

; Import inmage fromfile into |DL.
i mmge = READ_PNG(file)

; Determine size of inported inage.
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

;Initialize DL on a TrueCol or display to use
; color-related routines.
DEVI CE, DECOMPOSED = 0

; Initialize the image display.

LOADCT, 0

W NDOW 0, XSl ZE = 2*i mageSi ze[0], YSIZE = inmageSize[1l], $
TI TLE = ' H st ograni | nage'

; Conpute and scal e hi st ogram of i nmage.
bri ght nessHi st ogram = BYTSCL(H STOGRAM i nage))

; Display histogram plot.

PLOT, brightnessH stogram XSTYLE = 9, YSTYLE =5, $
POSI TION = [0.05, 0.2, 0.45, 0.9], $
XTI TLE = ' Hi stogram of | nage'

; Display image.
TV, image, 1

; Histogram equalize the color table.
H EQ CT, inmge

; Display inmge and updated col or table in another

;Wi ndow.

W NDOW 1, XSIZE = i mageSize[0], YSIZE = inmngeSi ze[1], $
TITLE = ' Hi st ogram Equal i zed Col or Tabl €'

TV, image

; Display the updated color table with the XLOADCT
;outility.
XLOADCT, /BLOCK

; Interactively histogramequalize the color table. The
; H.LEQ INT routine provides an interactive display to

; allow you to select the ambunt of equalization. Place
; the cursor at about 130 in the x-direction, which is
; about 0.5 equalized. The y-direction is arbitrary.

; Click on the right nouse button.

NOTE: you do not have to be exact for this exanple.

H EQ I NT, image

; Display inmage and updated col or table in another

Image Processing in IDL Showing Variations in Uniform Areas

152 Chapter 3: Working with Color

;Wi ndow.

W NDOW 2, XSIZE = i mageSi ze[0], YSIZE = inmngeSi ze[1], $
TITLE = '"Interactively Equalized Col or Tabl €'

TV, image

; Display the updated color table with the XLOADCT
;outility.
XLOADCT, /BLOCK

END

Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 153

Applying Color Annotations to Images

Many images are annotated to explain certain features or highlight specific details.
Color annotations are more noticeable than plain black or white annotations. In
Direct Graphics, how color annotations are applied depends on the type of image
(indexed or RGB) displayed. With indexed images, annotation colors are derived
from the image’s associated color table. With RGB images, annotation colors are
independent of the RGB image in Direct Graphics. Annotation colors and images are
separated within Object Graphics regardless of the image type.

Applying Color Annotations to Indexed Images in
Direct Graphics

Indexed images are usually associated with color tables. With Direct Graphics, these
related color tables are used for al the colors shown within a display. Color tables are
made up of up to 256 color triplets (red, green, and blue values of each color within
the table). If you want to apply a specific color to data or to an annotation, you must
change the red, green, and blue values at a specific index within the color table.

Color annotations are usually applied to label each color level within theimage or to
allow color comparisons. This section shows how to label each color level on an
indexed image in Direct Graphics. As an example, an image of average world
temperature isimported from the wor | dt np. png file. Thisfile does not contain a
color table associated with thisimage, so a pre-defined color table will be applied.
This table provides the colors for the polygons and text used to make a colorbar for
thisimage. Each polygon uses the color of each level in the table. The text represents
the average temperature (in Celsius) of each level.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Applying Color Annotationsto Indexed Imagesin Direct Graphics’ on
page 156 or complete the following steps for a detailed description of the process.

1. Determine the path to thewor | dt mp. png file:

wor | dt mpFil e = FI LEPATH(' wor |l dt mp. png', $
SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])

2. Import the image from the wor | dt np. png fileinto IDL:
wor | dt mpl mage = READ_PNG(wor | dt npFi | e)

3. Determine the size of the imported image:
wor | dt mpSi ze = S| ZE(wor | dt npl nage, /DI MENSI ONS)

Image Processing in IDL Applying Color Annotations to Images

154

4,

Chapter 3: Working with Color

If you are running IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to zero before your first color table related
routineis used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVI CE, DECOWPOSED = 0

Since the imported image does not have an associated color table, the
Rainbow18 color table (index number 38) is applied to the display.

Initialize display:

LOADCT, 38
W NDOW 0, XSIZE = worldtnpSize[0], YSIZE = worl dt npSi ze[1],
$

TITLE = ' Average Wrld Tenperature (in Celsius)'

Now display the image with this color table:
TV, worl dt npl nage
The following figure is displayed.

Figure 3-32: Temperature Image and Rainbow18 Color Table (Direct Graphics)

Before applying the color polygons and text of each level, you must first
initialize their color values and their locations. The Rainbow18 color table has
only 18 different color levels, but still has 256 elements. You can use the
INDGEN routine to make an array of 18 elementsranging from0to 17 in
value, where each element contains the index of that element. Then you can

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 155

use the BY TSCL routine to scale these values to range from 0 to 255. The
resulting array contains theinitial color value (from 0 to 255) of the associated
range (from 0 to 17, equalling 18 elements).

7. Initidizethe color level parameter:
fillCol or = BYTSCL(| NDGEN(18))

8. Initialize the average temperature of each level, which directly depends on the
initial color value of each range. Temperature islinearly scaled to range from
-60 to 40 Celsius. You can convert the resulting temperature value to a string
variable to be used as text:

tenperature = STRTRIMFI X(((20.*fillColor)/51.) - 60), 2)

Note
When thefillColor variable in the previous statement is multiplied by the floating-
point value of 20 (denoted by the decimal after the number), the elements of the
array are converted from byte values to floating-point values. These elements are
then converted to integer values with the FIX routine so the decimal part will not be
displayed. The STRTRIM routine converts the integer valuesto string values to be
displayed astext. The second argument to STRTRIM is set to 2 to note the leading
and trailing blank characters should be trimmed away when the integer values are
converted to string values.

With the polygon color and text now defined, you can determine their
locations. You can use the POLYFILL routine to draw each polygon and the
XY OUTS routine to display each element of text. The processis repetitive
from level to level, so a FOR/DO loop is used to display the entire colorbar.
Since each polygon and text is drawn individually within the loop, you only
need to determine the location of asingle polygon and an array of offsets for
each step in the loop. The following two steps describe this process.

9. Initializethe polygon and the text location parameters. Each polygon is 35
pixelsin width and 18 pixelsin height. The offset will move the y-location 18
pixels every time a new polygon is displayed:

x = [5., 40., 40., 5.,

5.]
y [5., 5., 23., 23., 5.]
of fset = 18.*FI NDGEN(19) +

+ 5.
5.

Image Processing in IDL Applying Color Annotations to Images

156 Chapter 3: Working with Color

10. Apply the polygons and text:

FORi = 0, (N_ELEMENTS(fillColor) - 1) DOBEGN & $
POLYFILL, x, y + offset[i], COLOR = fillColor[i], $
/DEVICE & $
XYQUTS, x[0] + 5., y[0] + offset[i] + 5., $
tenperature[i], COLOR = 255*(fillColor[i] LT 255), $
/DEVICE & $

ENDFOR

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Applying Color
Annotations to Indexed Imagesin Direct Graphics’ on page 156.

The following figure displays the colorbar annotation applied to theimage.

Figure 3-33: Temperature Image and Colorbar (Direct Graphics)

Example Code: Applying Color Annotations to Indexed Images
in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Appl yCol or bar _I ndexed_Di r ect . pr o, compile and run the program to
reproduce the previous example.

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 157

PRO Appl yCol or bar _I ndexed_Di r ect

; Deternmine path to "worldtnp.png" file.
wor | dt npFil e = FI LEPATH(' worl dtnp.png', $
SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])

; Import image fromfile into |DL.
wor | dt mpl mage = READ_PNG(wor | dt npFi | e)

; Determine size of inported inmage.
wor | dt mpSi ze = S| ZE(wor | dt npl nage, / DI MENSI ONS)

; Initialize display.
DEVI CE, DECOMPOSED = 0
LOADCT, 38
W NDOW 0, XSIZE = worl dtnpSi ze[0], $
YSI ZE = wor |l dt npSi ze[1], $
TITLE = ' Average Wrld Tenperature (in Celsius)'

; Display imge.
TV, worl dt npl nage

; Initialize color level paraneter.
fillColor = BYTSCL(| NDGEN(18))

: Initialize text variable.
tenperature = STRTRIM FI X(((20.*fillColor)/51.) - 60), 2)

; Initialize polygon and text |ocation paraneters.
x = [5., 40., 40., 5., 5.]

y =[5, 5, 23., 23., 5.] + 5.

of fset = 18. *FI NDGEN(19) + 5.

; Apply polygons and text.

FORi = 0, (N_ELEMENTS(fill Color) - 1) DO BEG N
POLYFILL, x, y + offset[i], COLOR = fillColor[i], $
/ DEVI CE
XYQUTS, x[0] + 5., y[0] + offset[i] + 5., $
tenperature[i], COLOR = 255*(fillColor[i] LT 255), $
/ DEVI CE

ENDFOR

END

Image Processing in IDL Applying Color Annotations to Images

158 Chapter 3: Working with Color

Applying Color Annotations to Indexed Images in
Object Graphics

When using Object Graphics, the original color table does not need to be modified.
The color table (pa ette) pertains only to the image object not the window, view,
model, polygon, or text objects. Color annotations are usually applied to label each
color level within the image or to allow color comparisons. This section shows how
to label each color level on an indexed image in Object Graphics. As an example, an
image of average world temperature isimported from the wor | dt np. png file. This
file does not contain a color table associated with thisimage, so a pre-defined color
table will be applied. This table provides the colors for the polygons and text used to
make acolorbar for thisimage. Each polygon usesthe color of each level inthe table.
The text represents the average temperature (in Celsius) of each level.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Applying Color Annotationsto Indexed I mages in Object Graphics’ on
page 162 or complete the following steps for a detailed description of the process.

1. Determine the path to thewor | dt mp. png file:

wor | dt mpFi | e = FI LEPATH(' wor |l dt mp. png', $
SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])

2. Import the image from the wor | dt np. png fileinto IDL:
wor | dt mpl mage = READ_PNG(wor | dt npFi | e)
3. Determine the size of the imported image:
wor | dt mpSi ze = SI ZE(wor | dt npl nage, / DI MENSI ONS)
4. Initialize the display objects necessary for an Object Graphics display:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [wor | dt npSi ze[0], worldtnpSize[1]], $
TI TLE = ' Average World Tenperature (in Celsius)')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0, 0, worl dtnpSize[0], $
wor | dt mpSi ze[1]])
oMbdel = OBJ_NEW' | DLgr Model ')

5. Initidize the palette object, load the Rainbow18 color table into the palette,
and then apply the palette to an image object:

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LoadCT, 38

ol mage = OBJ_NEW' | DLgr | nage', worl dt npl mage, $
PALETTE = oPal ette)

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 159

6. Add the image to the model, then add the model to the view, and finally draw
the view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

The following figure is displayed.

Figure 3-34: Temperature Image and Rainbow18 Color Table (Object Graphics)

Before applying the color polygons and text of each level, you must first
initialize their color values and their locations. The Rainbow18 color table has
only 18 different color levels, but still has 256 elements. You can use the
INDGEN routine to make an array of 18 elementsranging from0to 17 in
value, where each element contains the index of that element. Then you can
use the BY TSCL routine to scale these values to range from 0 to 255. The
resulting array contains theinitial color value (from 0 to 255) of the associated
range (from 0 to 17, equalling 18 elements).

7. Initialize the color level parameter:
fillCol or = BYTSCL(| NDGEN(18))

Image Processing in IDL Applying Color Annotations to Images

160 Chapter 3: Working with Color

8. Initialize the average temperature of each level, which directly depends on the
initial color value of each range. Temperature islinearly scaled to range from
-60 to 40 Celsius. You can convert the resulting temperature value to a string
variable to be used as text:

tenperature = STRTRIMFI X(((20.*fillColor)/51.) - 60), 2)

Note
When thefillColor variable in the previous statement is multiplied by the floating-
point value of 20 (denoted by the decimal after the number), the elements of the
array are converted from byte values to floating-point values. These elements are
then converted to integer values with the FIX routine so the decimal part will not be
displayed. The STRTRIM routine converts the integer valuesto string values to be
displayed astext. The second argument to STRTRIM is set to 2 to note the leading
and trailing black values should be trimmed away when the integer values are
converted to string values.

With the polygon color and text now defined, you can determine their
locations. You can use a polygon object to draw each polygon and text objects
to display each element of text. The processis repetitive from level to level, so
aFOR/DO loop isused to display the entire colorbar. Since each polygon and
text is drawn individually within the loop, you only need to determine the
location of asingle polygon and an array of offsets for each step in the loop.
The following two steps describe this process.

9. Initiaizethe polygon and the text location parameters. Each polygon is 35
pixelsin width and 18 pixelsin height. The offset will move the y-location 18
pixels every time a new polygon is displayed:

x = [5., 40., 40., 5., 5.]
y = [5., 5., 23., 23., 5.] + 5.
of fset = 18. *FI NDGEN(19) + 5.

10. Initialize the polygon and text objects:

oPol ygon = OBJARR(18)

oText = OBJARR(18)

FOR i = 0, (N_ELEMENTS(oPol ygon) - 1) DO BEG N & $
oPol ygon[i] = OBJ_NEW' I DLgr Polygon', x, $
y + offset[i], COLOR = fillColor[i], $
PALETTE = oPal ette) & $
oText[i] = OBJ_NEW'IDLgrText', tenperature[i], $
LOCATIONS = [x[0] + 3., y[0] + offset[i] + 3.], $
COLOR = 255*(fillColor[i] LT 255), $
PALETTE = oPal ette) & $

ENDFOR

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 161

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Applying Color
Annotations to Indexed Imagesin Object Graphics’ on page 162.

11. Add the polygons and text to the model, then add the model to the view, and
finally redraw the view in the window:

oMddel -> Add, oPol ygon
oMbdel -> Add, oText
oW ndow -> Draw, oView

The following figure displays the colorbar annotation applied to the image.

Figure 3-35: Temperature Image and Colorbar (Object Graphics

12. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view and the palette
objects:

OBJ_DESTROY, [oView, oPalette]

Image Processing in IDL Applying Color Annotations to Images

162 Chapter 3: Working with Color

Example Code: Applying Color Annotations to Indexed Images
in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Appl yCol or bar _I ndexed_Cbj ect . pr o, compile and run the program to
reproduce the previous example.

PRO Appl yCol or bar _I ndexed_Obj ect

; Deternmine path to "worldtnp.png" file.
wor | dt mpFi | e = FI LEPATH(' wor |l dt mp. png', $
SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])

; Import inmage fromfile into |DL.
wor | dt mpl mage = READ_PNG(wor | dt npFi | e)

; Determine size of inported inage.
wor | dt mpSi ze = SI ZE(wor | dt npl nage, / DI MENSI ONS)

; Initialize objects.
; Initialize display.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [wor | dt npSi ze[0], worldtnpSize[1]], $
TI TLE = ' Average World Tenperature (in Celsius)')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0, 0, worldtnpSize[0], $
wor | dt mpSi ze[1]])
oMbdel = OBJ_NEW' | DLgr Model ')
; Initialize palette and image.
oPalette = OBJ_NEW' I DLgrPal ette')
oPal ette -> LoadCT, 38
ol mage = OBJ_NEW' I DLgr | nage', worl dt npl mage, $
PALETTE = oPal ette)

; Add inmage to nodel, which is added to view, and then
; display view in w ndow.

oMbdel -> Add, ol mage

oVi ew -> Add, oMbodel

oW ndow -> Draw, oView

; Initialize color level paraneter.
fillColor = BYTSCL(| NDGEN(18))

: Initialize text variable.
tenperature = STRTRIMFI X(((20.*fillColor)/51.) - 60), 2)

; Initialize polygon and text |ocation paraneters.
x = [5., 40., 40., 5., 5.]

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 163

y =[5, 5., 23., 23., 5. 5.
)

] +
of fset = 18. *FI NDGEN(19) + 5.
Initialize polygon and text objects.
oPol ygon = OBJARR(18)
oText = OBJARR(18)
FOR i = 0, (N_ELEMENTS(oPol ygon) - 1) DO BEG N
oPol ygon[i] = OBJ_NEW'IDLgr Pol ygon', x, $
y + offset[i], COLOR = fillColor[i], $
PALETTE = oPal ette)
oText[i] = OBJ_NEW'IDLgrText', tenperature[i], $
LOCATIONS = [x[0] + 3., y[0O] + offset[i] + 3.], $
COLOR = 255*(fillColor[i] LT 255), $
PALETTE = oPal ette)
ENDFOR

; Add pol ygons and text to nodel and then re-display
view in w ndow.

oMbdel -> Add, oPol ygon

oMbdel -> Add, oText

oW ndow -> Draw, oView

Cl ean up object references.
OBJ_DESTROY, [oView, oPalette]

END

Applying Color Annotations to RGB Images in Direct
Graphics

RGB images contain their own color information. Color tables do not apply to RGB
images. With Direct Graphics the color of the annotations on an RGB image do not
depend on a color table.

Tip
If you are running IDL on a PseudoColor display, use the COLOR_QUAN routine
to convert the RGB image to an indexed image with an associated color table to
display the image and see the previous section, “Applying Color Annotations to
Indexed Images in Direct Graphics’ on page 153.

Image Processing in IDL Applying Color Annotations to Images

164 Chapter 3: Working with Color

If you want to apply a specific color to data or an annotation, you must provide the
TrueColor index for that color. The TrueColor index ranges from 0 to 16,777,216.
You can derive a TrueColor index from itsred, green, and blue values:

red = 255
green = 128
blue = 0

trueCol orl ndex = red + (256L*green) + ((256L"2)*bl ue)
PRI NT, trueCol orl ndex
33023

where red, green, and blue are either scalars or vectors of values ranging from 0 to
255 and representing the amount of red, green, and blue in the resulting color. The L
after the numbers defines that number as alongword integer data type. The above red,
green, and blue combination creates the color of orange, which has a TrueColor index
of 33,023.

In this example, a color spectrum of additive and subtractive primary colorswill be
drawn on an RGB image for comparison with the colorsin an image. The

gl owi ng_gas. j pg file (which is provided by the Hubble Heritage Team, made of
AURA, STScl, and NASA.) contains an RGB image of an expanding shell of
glowing gas surrounding a hot, massive star in our Milky Way Galaxy. Thisimage
contains all the colors of this spectrum.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Applying Color Annotationsto Indexed Imagesin Direct Graphics’ on
page 156 or complete the following steps for a detailed description of the process.

1. Determine the path to the gl owi ng_gas. j pg file

cosm cFile = FILEPATH(' gl owi ng_gas.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Import the image from the gl owi ng_gas. j pg fileinto IDL:
READ_JPEG, cosnicFile, cosm clnage

3. Determine the size of theimported image. The image contained within thisfile
is pixel-interleaved (the color information is contained within the first
dimension). You can use the Sl ZE routine to determine the other dimensi ons of
thisimage:

cosm cSi ze = Sl ZE(cosni cl mage, /DI MENSI ONS)

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 165

4. If youarerunning IDL on a TrueColor display, set the DECOM POSED
keyword to the DEVICE command to one before your first RGB imageis
displayed within an IDL session or program. See “Foreground Color” on
page 95 for more information:

DEVI CE, DECOMPCSED = 1
5. Usethe dimensions determined in the previous step to initialize the display:

W NDOW 0, XSIZE = cosm cSize[1l], YSIZE = cosnicSize[2], $
TITLE = ‘ gl owi ng_gas.j pg'
6. Now display the image with the TRUE keyword set to 1 since theimageis
pixel interleaved:

TV, cosm clmage, TRUE = 1

The following figure shows that the image contains all of the colors of the
additive and subtractive primary spectrum. In the following steps, a colorbar
annotation will be added to allow you to compare the colors of that spectrum
and the colors within the image.

Figure 3-36: Cosmic RGB Image (Direct Graphics)

You can use the following to determine the color and location parameters for
each polygon.

Image Processing in IDL Applying Color Annotations to Images

166 Chapter 3: Working with Color

7. Initidize the color parameters:

red = BYTARR(8) & green BYTARR(8) & blue = BYTARR(8)

red[0] = 0 & green[0] = 0 & blue[0] = 0 ; black
red[1] = 255 & green[1] =0 & blue[l] =0 red
red[2] = 255 & green[2] = 255 & blue[2] = 0 ; yellow
red[3] = 0 & green[3] = 255 & blue[3] =0 green
red[4] = 0 & green[4] = 255 & blue[4] = 255 ; cyan
red[5] = 0 & green[5] = 0 & blue[5] = 255 ; blue
red[6] = 255 & green[6] = 0 & blue[6] = 255 ; nmmgenta
red[7] = 255 & green[7] = 255 & blue[7] = 255 ; white

fillColor = red + (256L*green) + ((256L"2)*blue)

8. After defining the polygon colors, you can determine their locations. Initiaize
polygon location parameters:

x = [5., 25., 25., 5., 5.]
[5., 5., 25., 25., 5.] + 5.

y
of fset = 20.*FI NDGEN(9) + 5.

The x and y variables pertain to the x and y locations (in pixel units) of each
box of color. The offset maintains the spacing (in pixel units) of each box.
Since the image is made up of mostly ablack background, the x border of the
colorbar is also determined to draw a white border around the polygons.

9. Initializelocation of colorbar border:

x_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

They border is already defined by they variable.

These parameters are used with POLY FILL and PLOTS to draw the boxes of
the color spectrum and the col orbar border. Each polygon is 20 pixels wide and
20 pixels high. The offset will move the y-location 20 pixels every time anew
polygon is displayed.

10. Apply the polygons and border. You can use the POLY FILL routine to draw
each polygon. The process is repetitive from level to level, so a FOR/DO loop
is used to display the entire colorbar. Since each polygon isdrawn individually
within the loop, you only need to determine the location of a single polygon
and an array of offsets for each step in the loop:

FORi = 0, (N_ELEMENTS(fillColor) - 1) DO POLYFILL, $
x + offset[i], y, COLOR = fill Color[i], /DEVICE
PLOTS, x_border, y, COLOR = fillColor[7], /DEVICE

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 167

The POLYFILL and PLOTS routines result in the following display.

Figure 3-37: Specified Colors on an RGB Image (Direct Graphics)

Example Code: Applying Color Annotations to RGB Images in
Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Appl yCol or bar _RGB_Di r ect . pr o, compile and run the program to reproduce the
previous example.

PRO Appl yi ngCol or bar _RGB_Di r ect

Determine path to "glowi ng_gas.jpg" file.
cosmi cFile = FILEPATH(' gl owing_gas.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Import image fromfile into I DL.
READ_JPEG, cosnicFile, cosm clnage

Det er mi ne si ze of inmmge.
cosni cSize = Sl ZE(cosm cl mage, /DI MENSI ONS)

Initialize display.
DEVI CE, DECOMPCSED = 1
WNDOW 0, TITLE = 'glowi ng_gas.jpg', $
XSI ZE = cosnicSize[1], YSIZE = cosm cSi ze[2]

Image Processing in IDL Applying Color Annotations to Images

168 Chapter 3: Working with Color

Di pl ay i mage.
TV, cosmiclmage, TRUE = 1

Initialize col or paraneters.
red = BYTARR(8) & green BYTARR(8) & blue = BYTARR(8)

red[0] = 0 & green[0] = 0 & blue[0] = 0 ; black
red[1] = 255 & green[1] =0 & blue[l] =0 red
red[2] = 255 & green[2] = 255 & blue[2] = 0 ; yellow
red[3] = 0 & green[3] = 255 & blue[3] =0 green
red[4] = 0 & green[4] = 255 & blue[4] = 255 ; cyan
red[5] = 0 & green[5] = 0 & blue[5] = 255 ; blue
red[6] = 255 & green[6] = 0 & blue[6] = 255 ; nmmgenta
red[7] = 255 & green[7] = 255 & blue[7] = 255 ; white

fillColor = red + (256L*green) + ((256L"2)*blue)

Initialize polygon |ocation paraneters.
x =[5., 25., 25., 5., 5.]
y =[5, 5., 25., 25., 5.] + 5.
of fset = 20.*FI NDGEN(9) + 5.

Initialize | ocation of colorbar border.
x_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

; Apply polygons and border.

FORi = 0, (N_ELEMENTS(fillColor) - 1) DO POLYFILL, $
x + offset[i], y, COLOR = fill Color[i], /DEVICE

PLOTS, x_border, y, /DEVICE, COLOR = fill Col or[7]

END

Applying Color Annotations to RGB Images in Object
Graphics

When using Object Graphics, colors can be defined just by the values of their red,
green, and blue components. The TrueColor index conversion eguation is not
required for Object Graphics. In this example, a color spectrum of additive and
subtractive primary colors will be drawn on an RGB image for comparison with the
colorsin that image. The gl owi ng_gas. j pg file (whichis provided by the Hubble
Heritage Team, made up of AURA, STScl, and NASA) contains an RGB image of an
expanding shell of glowing gas surrounding a hot, massive star in our Milky Way
Galaxy. Thisimage contains all the colors of this spectrum.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Applying Color Annotations to RGB Images in Object Graphics’ on page 172
or complete the following steps for a detailed description of the process.

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 169

1. Determine the path to the gl owi ng_gas. j pg file:

cosm cFile = FILEPATH(' gl owi ng_gas.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Import the image from the gl owi ng_gas. j pg fileinto IDL:
READ_JPEG, cosnicFile, cosm clnage

3. Determine the size of theimported image. The image contained within thisfile
is pixel-interleaved (the color information is contained within the first
dimension). You can use the Sl ZE routine to determine the other dimensi ons of
thisimage:

cosm cSi ze = Sl ZE(cosni cl mage, /DI MENSI ONS)
4. Initialize the display objects required for an Object Graphics display:

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [cosmi cSize[1], cosm cSize[2]], $
TI TLE = ' gl owi ng_gas. j peg')

oView = OBJ_NEW' I DLgrView, $
VI EWPLANE_RECT = [0., 0., cosmicSize[l], $
cosm cSize[2]])

oMbdel = OBJ_NEW' | DLgr Model ')

5. Initializetheimage object. The INTERLEAVE keyword is set to O because the
RGB image is pixel-interleaved:

ol mage = OBJ_NEW' I DLgrl nage', cosmclmage, $
| NTERLEAVE = 0, DIMENSIONS = [cosmicSize[l], $
cosm cSize[2]])

6. Add the image to the model, then add the model to the view, and finally draw
the view in the window:

oMbdel -> Add, ol mage
oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

The following image contains all of the colors of the additive and subtractive
primary spectrum. A colorbar annotation can be added to compare the colors

Image Processing in IDL Applying Color Annotations to Images

170 Chapter 3: Working with Color

of that spectrum and the colors within the image. The color of each box is
defined in the following array.

Figure 3-38: Cosmic RGB Image (Object Graphics)

You can use the following to determine the color and location parameters for
each polygon.

7. Initidize the color parameters:

fillColor = [[0, O, O], $; black
[255, 0, 0], $; red
[255, 255, 0], $; vyellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, O, 255], $; bDblue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

8. After defining the polygon colors, you can determine their locations. Initiaize
polygon location parameters:

=[5, 25., 25., 5., 5.]
=[5, 5., 25., 25., 5.] + 5.
ffset = 20. *FI NDGEN(9) + 5.

The x and y variables pertain to the x and y locations (in pixel units) of each
box of color. The offset maintains the spacing (in pixel units) of each box.

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 171

Since the image is made up of mostly ablack background, the x border of the
colorbar is also determined to draw a white border around the polygons.

9. Initializelocation of colorbar border:

x_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

They border is already defined by they variable.

These parameters are used when initializing the polygon and polyline objects
These objects will be used draw the boxes of the color spectrum and the
colorbar border. Each polygon is 20 pixels wide and 20 pixels high. The offset
will move the y-location 20 pixels every time anew polygon is displayed.

10. Initialize the polygon objects. The processisrepetitive from level to level, so a
FOR/DO loop will be used to display the entire colorbar. Since each polygonis
drawn individually within the loop, you only need to determine the |ocation of
asingle polygon and an array of offsets for each step in the loop:

oPol ygon = OBJARR(8)

FOR i = 0, (N_ELEMENTS(oPol ygon) - 1) DO oPolygon[i] =%
OBJ_NEW' | DLgr Pol ygon', x + offset[i], vy, $
COLOR = fillColor[*, i])

11. The colorbar border is produced with a polyline object. This polyline object
requires az variable to define it slightly above the polygons and image. The z
variable isrequired to place the polylinein front of the polygons. Initialize the
polyline (border) object:

z = [0.001, 0.001, 0.001, 0.001, 0.001]

oPolyline = OBJ_NEW' I DLgrPolyline' , x_border, vy, z, $
COLOR = [255, 255, 255])

12. The polygon and polyline objects can now be added to the model and then
displayed (re-drawn) in the window. Add the polygons and polyline to the
model, then add the model to the view, and finally redraw the view in the
window:

oMbdel -> Add, oPol ygon
oModel -> Add, oPolyline
oW ndow -> Draw, oView

Image Processing in IDL Applying Color Annotations to Images

172 Chapter 3: Working with Color

The following figure shows the colorbar annotation applied to the image.

Figure 3-39: Specified Colors on an RGB Image (Object Graphics)

13. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ DESTROY routine. Since the
view contains al the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object:

OBJ_DESTROY, oVi ew

Example Code: Applying Color Annotations to RGB Images in
Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Appl yCol or bar _RGB_Qbj ect . pr o, compile and run the program to reproduce the
previous example.

PRO Appl yCol or bar _RGB_bj ect
Deternmine path to "glowi ng_gas.jpg" file.
cosmi cFile = FILEPATH(' gl owing_gas.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Import image fromfile into I DL.
READ_JPEG, cosnicFile, cosm clnage

Det er mi ne si ze of inmmge.

Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 173

cosm cSi ze = Sl ZE(cosni cl mage, /DI MENSI ONS)

; Initialize objects.

; Initialize display.

oW ndow = OBJ_NEW ' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [cosmi cSize[1], cosm cSize[2]], $
TITLE = ' gl owi ng_gas. jpg')

oView = OBJ_NEW' I DLgrView, $
VI EWPLANE_RECT = [0., 0., cosmicSize[l], $
cosm cSize[2]])

oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize imge.

ol mage = OBJ_NEW' I DLgrl nage', cosmclmage, $
| NTERLEAVE = 0, DI MENSIONS = [cosmicSize[1], $
cosm cSize[2]])

; Add inmage to nodel, which is added to view, and then
; display view in w ndow.

oMbdel -> Add, ol mage

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; Initialize color paraneter.
fillColor =[[0, O, 0], $; black
[255, O, 0], $; red
[255, 255, 0], $; vyellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, O, 255], $; bDblue
[255, 0O, 255], $; magenta
[255, 255, 255]] ; white

; Initialize polygon |ocation paraneters.
x =[5., 25., 25., 5., 5.]

y =[5, 5, 25., 25., 5.] + 5.

of fset = 20.*FI NDGEN(9) + 5.

: Initialize location of colorbar border.
x_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

; Initialize polygon objects.

oPol ygon = OBJARR(8)

FOR i = 0, (N_ELEMENTS(oPol ygon) - 1) DO oPolygon[i] =%
OBJ_NEW' I DLgrPol ygon', x + offset[i], vy, $
COLOR = fillColor[*, i])

; Initialize polyline (border) object.
z = [0.001, 0.001, 0.001, 0.001, 0.001]

Image Processing in IDL Applying Color Annotations to Images

174

oPol yline = OBJ_NEW' | DLgrPol yline',
COLOR = [255, 255, 255])

; Add pol gons and polyline to nodel
; view in wi ndow.

oMddel -> Add, oPol ygon

oMbdel -> Add, oPolyline

oW ndow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oVi ew

END

Applying Color Annotations to Images

Chapter 3: Working with Color

x_border, vy, z, $

and then re-display

Image Processing in IDL

Chapter 4.

Transforming Image

Geometry

This chapter describes the following topics:

Overview of Geometric Transformations . 176

Interpolation Methods 178
Croppinglmages 180
PaddingImages 184
Resizinglmages..................... 188

Image Processing in IDL

Shiftinglmages 191
Reversinglmages 194
Transposinglmages 197
RotatingIlmages 200
Planar Slicing of VolumetricData 206

175

176 Chapter 4: Transforming Image Geometry

Overview of Geometric Transformations

Geometric image transformation functions use mathematical transformationsto crop,
pad, scale, rotate, transpose or otherwise alter an image array to produce a modified
view of animage. The transformations described in this chapter are linear
transformations. For a description of non-linear geometric transformations, see
Chapter 7, *Warping Images’.

When an image undergoes a geometric transformation, some or all of the pixels
within the source image are relocated from their original spatial coordinatesto a new
position in the output image. When arelocated pixel does not map directly onto the
center of a pixel location, but falls somewhere in between the centers of pixel
locations, the pixel’s value is computed by sampling the values of the neighboring
pixels. Thisresampling, also known as interpolation, affects the quality of the output
image. See “Interpolation Methods” on page 178 for more information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description
“Cropping SIZE Focuses attention on important image
Images’ on CURSOR features by creating arectangular region
page 180. of interest.
“Padding SIZE Creates a border around the perimeter of
Images’ on an image for presentation or advanced
page 184. filtering purposes.
“Resizing CONGRID Enlarges or shrinks an image.
Imag%” on REBIN
page 188.
“Shifting SHIFT Shiftsimage pixel values along any
Images’ on image dimension.
page 191.

Table 4-1: Image Processing Tasks and Related Image Processing Routines

Overview of Geometric Transformations Image Processing in IDL

Chapter 4: Transforming Image Geometry

177

Task Routine(s) Description
“Reversing REVERSE Reverses array elementsto flip an image
Images’ on horizontally or vertically.
page 194.
“Transposing TRANSPOSE Interchanges array dimensions, reflecting
Images’ on the image about a 45 degreeline.
page 197.
“Rotating ROTATE Rotates an image to any orientation,
Images’ on ROT using 90 degree or arbitrary increments.
page 200.
“Planar Slicing | EXTRACT_SLICE | Displays asingle slice or a series of
of Volumetric SLICER3 planar slicesin a single window or
Data’ on ME interactively extracts planar slices of
page 206. XVOLU volumetric data.

Table 4-1: Image Processing Tasks and Related Image Processing Routines

Note

This chapter uses data filesfromthe | DL exanpl es/ dat a directory. Two files,
dat a. t xt andi ndex. t xt, contain descriptions of the files, including array sizes.

Image Processing in IDL

Overview of Geometric Transformations

178 Chapter 4: Transforming Image Geometry

Interpolation Methods

When an image undergoes a geometric transformation, the location of each
transformed pixel may not map directly to a center of apixel location in the output
image as shown in the following figure.

+ |+ |+
+|+ |+ [+ |+ +[7+
+|+ [+ [+]+ + kT
+ |+ |+ _|_++_,_+
+
+ H =
+ i N
g ;
|||+ |+ H L
¥
+ - N
+ H S
+ 1_++
+ + Nk +
+ +
+ + 1
+ + H

Figure 4-1: Original Pixel Center Locations (Left) and Rotated Pixel Center
Locations (Right)

When the transformed pixel center does not directly coincide with a pixel in the
output image, the pixel value must be determined using some form of interpolation.
The appearance and quality of the output image is determined by the amount of error
created by the chosen interpolation method. Note the differencesin the line edges
between the following two interpol ated images.

Original Image Nearest Neighbor Bilinear Interpolation

Figure 4-2: Simple Examples of Image Interpolation

Interpolation Methods Image Processing in IDL

Chapter 4: Transforming Image Geometry 179

There are avariety of possible interpolation methods avail able when using geometric
transforms in IDL. Interpolation methods include:

Note

Nearest-neighbor inter polation — Assigns the value of the nearest pixel to
the pixel in the output image. Thisis the fastest interpolation method but the
resulting image may contain jagged edges.

Linear interpolation — Surveys the 2 closest pixels, drawing aline between
them and designating a value along that line as the output pixel value.

Bilinear inter polation — Surveys the 4 closest pixels, creates a weighted
average based on the nearness and brightness of the surveyed pixels and
assigns that value to the pixel in the output image.

Use cubic convolution if ahigher degree of accuracy is needed. However, with
still images, the difference between images interpol ated with bilinear and
cubic convolution methods is usually undetectable.

Trilinear interpolation — Surveysthe 8 nearest pixels occurring along the
X, ¥, and z dimensions, creates a weighted average based on the nearness and
brightness of the surveyed pixels and assigns that value to the pixel in the
output image.

Cubic Convolution inter polation — Approximates a sinc interpolation by
using cubic polynomial waveforms instead of linear waveforms when
resampling a pixel. With a one-dimension source, this method surveys 4
neighboring pixels. With a two-dimension source, the method surveys 16
pixels. Interpolation of three-dimension sources is not supported. This
interpolation method results in the least amount of error, thus preserving the
highest amount of fine detail in the output image. However, cubic interpolation
requires more processing time.

See the IDL Reference Guide for complete details about the interpolation options
available with each geometric image transformation function.

Image Processing in IDL Interpolation Methods

180 Chapter 4: Transforming Image Geometry
Cropping Images

Cropping an image extracts a rectangular region of interest from the original image.
This focuses the viewer’s attention on a specific portion of the image and discards
areas of the image that contain less useful information. Using image cropping in
conjunction with image magnification allows you to zoom in on a specific portion of
the image. This section describes how to exactly define the portion of the image you
wish to extract to create a cropped image. For information on how to magnify a
cropped image, see “Resizing Images’ on page 188.

Image cropping requires apair of (X, y) coordinates that define the corners of the new,
cropped image. The following example extracts the African continent from an image
of the world. For code that you can copy and paste into an IDL Editor window, see
“Example Code: Cropping an Image” on page 182.

1. Opentheworld imagefile, using the R, G, B arguments to obtain the image's
color information:

world = READ_PNG (FI LEPATH (' avhrr.png', $
SUBDI RECTCORY = ['exanples', 'data']), R G B)

2. Preparethe display device and |oad the color table with the red, green and blue
values retrieved from the image file in the previous step:

DEVI CE, RETAIN = 2, DECOWPOSED = 0
TVLCT, R G B

3. Getthesize of theimage and prepare the window display using the dimensions
returned by the SIZE command:

wor | dSi ze = S| ZE(wor | d, /DI MENSI ONS)
W NDOW 0, XSIZE = worl dSize[0], YSIZE = worldSi ze[1]

4. Display theimage:
TV, world

Cropping Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 181

In this example, we will crop the image to display only the African continent as
shown in the following figure. Two sets of coordinates, (LeftLowX, LeftLowY) and
(RightTopX, RightTopY), will be used to create the new, cropped image array.

(RightTopX, RightTopY)

/

(LeftLowX, LeftLowY)
Figure 4-3: Defining the Boundaries of the Cropped Image Array

In the following step, use the CURSOR function to define the boundaries of the
cropped image. The values returned by the CURSOR function will be defined as the
variables shown in the previous image.

Note
To crop an image without interactively defining the cursor position, you can use the
actual coordinates of the cropped image array in place of the coordinate variables,
(LeftLowX, LeftLowY) and (RightTopX, RightTopY). See “Example Code: Cropping
an Image” on page 182 for an example.

5. Usethe cursor function to define the lower-left corner of the cropped image by
entering the following line:

CURSOR, LeftLowX, LeftLowY, /DEVICE

The cursor changes to a cross hair symbol when it is positioned over the
graphicswindow. Click in the areato the | eft and below the African continent.

Image Processing in IDL Cropping Images

182 Chapter 4: Transforming Image Geometry

Note
Thevaluesfor Left LowX and Left LowY appear inthe IDLDE Variable Watch
window. Alternately, use PRI NT, LeftLowX, LeftLowy to display these values.

6. Definethe upper-right corner of the cropped image. Enter the following line
and then click above and to the right of the African continent.

CURSOR, Ri ght TopX, Ri ghtTopY, /DEVICE

7. Name the cropped image and define its array using the lower-left and upper-
right x andy variables:

africa = world[LeftLowX: R ght TopX, LeftLowY: Ri ght TopY]
8. Prepare awindow based on the size of the new array:

W NDOW 2, XSIZE = (R ghtTopX - LeftLowX + 1), $
YSI ZE = (R ght TopY - LeftLowY + 1)

9. Display the cropped image:
TV, africa

Your image should appear similar to the following figure.

Figure 4-4: Result of the Cropped Image Example

Example Code: Cropping an Image

The following program creates the same cropped image as the previous example but
uses numeric coordinates instead of named variable coordinates defined using the
interactive CURSOR function. Copy the following text into an IDL Editor window.

Cropping Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 183

After saving the file as Cr opWor | d. pr o, compile and run the program to reproduce
the cropped image example.

PRO CropWorl d

; Read in the image file.
wor | d = READ_PNG(FI LEPATH(' avhrr.png', $
SUBDI RECTCORY = ['exanples', 'data']), R G B)

; Prepare the display device and | oad the col or table.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
TVLCT, R G B

; Get the size of the imnge array.
wor | dSi ze = S| ZE(wor | d, /Dl MENSI ONS)

; Use the returned dinmensions to create a display w ndow
; and display the original imge.

W NDOW 0, XSIZE = worl dSize[0], YSIZE = worldSi ze[1]

TV, world

; Note: the followi ng section uses nuneric coordinates to
crop

; the array instead of defining coordinates using the CURSOR
; function. Conpared to the step-by-step exanple, this line
has

; the follow ng structure:

; africa = world[LeftLowX: Ri ght TopX, LeftLowY: R ghtTopY]
africa = world [312: 475, 103: 264]

; Define the wi ndow size based on the size of the cropped
array

; using XSIZE = (Right TopX - LeftLowX + 1),

; YSI ZE = (Right TopY - LeftLowy + 1)

W NDOW 2, XSIZE =(475-312 + 1), YSIZE =(264-103 + 1)

; Display the cropped inmage.
TV, africa

END

Image Processing in IDL Cropping Images

184 Chapter 4: Transforming Image Geometry

Padding Images

Image padding introduces new pixels around the edges of an image. The border
provides space for annotations or acts as a boundary when using advanced filtering
techniques.

This exercise adds a 10-pixel border to left, right and bottom of the image and a 30-
pixel border at the top alowing space for annotation. The diagonal linesin the
following image represent the area that will be added to the original image. For an
example of padding an image, complete the following steps. If you prefer to cut and
paste the entire example into an IDL Editor window, see “ Example Code: Padding an
Image” on page 186.

30 pixel pad

10 pixel pads

Figure 4-5: Diagonal Lines Indicate Padding

To add a border around the earth image, complete the following steps:

1. Opentheworld imagefile:

earth = READ_PNG FI LEPATH(' avhrr.png', $
SUBDI RECTCORY = ['exanples', 'data']), R G B)

2. Preparethe display device:
DEVI CE, DECOMPCSED = 0, RETAIN = 2

Padding Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 185

3. Load the color table with the red, green and blue va ues retrieved from the
image in step 1 and modify the color table so that the final index value of each
color band is the maximum color vaue (white):

TVLCT, R G B
maxCol or = ! D. TABLE_SI ZE - 1
TVLCT, 255, 255, 255, maxCol or

4. Get the size of the image by entering the following line:
earthSi ze = Sl ZE(earth, /DI MENSI ONS)

5. Definethe amount of padding you want to add to the image. This example
adds 10 pixels to the right and left sides of the image equalling a total of 20
pixels aong the x-axis. We also add 30 pixels to the top and 10 pixelsto the
bottom of the image for atotal of 40 pixels along the y-axis.

Using the REPLICATE syntax, Result = REPLICATE(Value, D1 [, ..., D8]),
create an array of the specified dimensions, and set Value egual to the byte
value of the final color index to make the white border:

paddedEarth = REPLI CATE(BYTE(maxCol or), earthSize[0] + 20, $
eart hSi ze[1] + 40)

Note
The argument BYTE(maxCol or) in the previous line produces a white background
only when white is designated as the final index value for the red, green and blue
bands of the color table you are using. Asshown in step 3, this can be accomplished
by setting each color component (of the color table entry indexed by maxColor) to
255.

See Chapter 3, “Working with Color” for detailed information about modifying
color tables.

6. Copy theoriginal image, earth, into the appropriate portion of the padded
array. The following line places the lower-left corner of the original image
array at the coordinates (10, 10) of the padded array:

paddedEarth [10,10] = earth

7. Prepareawindow to display theimage using the size of the original image plus
the amount of padding added along the x and y axes:

W NDOW 0, XSIZE = earthSize[0] + 20, $
YSI ZE = earthSi ze[1] + 40

Image Processing in IDL Padding Images

186 Chapter 4: Transforming Image Geometry

8. Display the padded image.
TV, paddedEarth
9. Placeatitleat the top of the image using the XY OUTS procedure.

X (earthSi ze[0]/2) + 10

y earthSize[1] + 15

XYOUTS, x, y, 'World Map', ALIGNMENT = 0.5, COLOR =10, $
/ DEVI CE

The resulting image should appear similar to the following figure.

Werld Mop

Figure 4-6: Resulting Padded Image

Example Code: Padding an Image

Copy the following code into the IDL Editor window and saveit as
Padded! mage. pr o. Compile and run the program to duplicate the image padding
example.

PRO Padded| nage
Sel ect and read the inage file.
earth = READ_PNG (FI LEPATH (' avhrr.png', $
SUBDI RECTCORY = ['exanples', 'data']), R G B)
Load the color table and designate white to occupy the
final position in the red, green and bl ue bands.

Padding Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 187

TVLCT, R G B
maxCol or = ! D. TABLE_SI ZE - 1
TVLCT, 255, 255, 255, maxCol or

; Prepare the display device.
DEVI CE, DECOMPOSED = 0, RETAIN = 2

; Get the size of the original image array.
earthSi ze = Sl ZE(earth, /DI MENSI ONS)

; Return an array with the given di mensions.
paddedEart h = REPLI CATE(BYTE(maxCol or), earthSize[0] + 20, $
eart hSi ze[1] + 40)

; Copy the original image into the appropriate portion
; of the new array.
paddedEarth [10,10] = earth

; Prepare a wi ndow and display the new i nage.
W NDOW 0, XSIZE = earthSize[0] + 20, $

YSI ZE = earthSi ze[1] + 40
TV, paddedEarth

; Place a title at the top of the inmage using the

; XYOUTS procedure.

x = (earthSize[0]/2) + 10

y = earthSize[1] + 15

XYOUTS, x, y, 'World Map', ALIGNMENT = 0.5, COLOR =0, $
/ DEVI CE

END

Image Processing in IDL Padding Images

188 Chapter 4: Transforming Image Geometry
Resizing Images

Image resizing, or scaling, supports further image analysis by either shrinking or
expanding an image. Both the CONGRID and the REBIN functions resize one-, two-
or three-dimensional arrays. The CONGRID function resizes an image array by any
arbitrary amount. The REBIN function requires that the output dimensions of the new
array be an integer multiple of the original image’'s dimensions.

When magnifying an image, new values are interpolated from the source image to
produce additional pixels in the output image.When shrinking an image, pixelsare
resampled to produce a lower number of pixelsin the output image. The default
interpolation method varies according to whether you are magnifying or shrinking
the image.
When magnifying an image:

* CONGRID defaults to nearest-neighbor sampling with 1D or 2D arrays and

automatically uses bilinear interpolation with 3D arrays.

* REBIN defaults to bilinear interpolation.
When shrinking an image:

* CONGRID uses nearest-neighbor interpolation to resample the image.

* REBIN averages neighboring pixel values in the source image that contribute
to asingle pixel value in the output image.

The following example uses CONGRID since it offers more flexibility. However, if
you wish to resize an array proportionally, REBIN returns results more quickly. For
an example of magnifying an image using the CONGRID function, complete the
following steps. For code that you can copy and paste into an IDL Editor window, see
“Example: Resizing an Image Using CONGRID” on page 189.

1. Select thefileand read in the data, specifying known data dimensions:

file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mage = READ_BI NARY(file, DATA DI M5 = [248, 248])

2. Load acolor table and prepare the display device:

LOADCT, 28
DEVI CE, DECOVWPCSED = 0, RETAIN = 2

Resizing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 189

3. Prepare the window and display the original image:

W NDOW 0, XSIZE = 248, YSIZE = 248
TV, inage

4. Usethe CONGRID function to increase the image array size to 600 by 600
pixels and force bilinear interpolation:

magni fi edl ng = CONGRI D(i nage, 600, 600, /| NTERP)
5. Display the magnified image in a new window:

WNDOW 1, XSl ZE = 600, YSIZE = 600
TV, magni fiedl ng

The following figure displays the origina image (left) and the magnified view of the
image (right).

Figure 4-7: Original Image and Magnified Image

Example: Resizing an Image Using CONGRID

Copy and paste the following text into the Editor window. After saving the file as
Magni f yl mage. pr o, compile and run the program to reproduce the CONGRID
function example.

PRO Magni fyl mage
Select the file, and read in the data using known di nensions.

file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Image Processing in IDL Resizing Images

190

Resizing Images

Chapter 4: Transforming Image Geometry

i mage = READ BINARY(file, DATA DINMS = [248, 248])

; Load a color table and prepare to display the inmage.
LOADCT, 28

DEVI CE, DECOMPOSED = 0, RETAIN = 2

W NDOW 0, XSIZE = 248, YSIZE = 248

; Display the original inage.

TV, inage

; Magnify the inmage and display it in a new w ndow.
magni fi edl ng = CONGRI D(i nage, 600, 600, /| NTERP)

W NDOW 1, XSIZE = 600, YSIZE = 600

TV, magnifiedl ng

END

Image Processing in IDL

Chapter 4: Transforming Image Geometry 191
Shifting Images

The SHIFT function moves elements of avector or array along any dimension by any
number of elements. All shifts are circular. Elements shifted off one end are wrapped
around, appearing at the opposite end of the vector or array.

Occasionaly, image files are saved with array elements offset. The SHIFT function
allows you to easily correct such images assuming you know the amounts of the
vertical and horizontal offsets. In the following example, the x-axis of original image
is offset by a quarter of the image width, and the y-axisis offset by athird of the
height.

Figure 4-8: Example of Misaligned Image Array Elements

Using the SHIFT syntax, Result = SHI FT(Array, S;, ..., S,),wewill enter
negative values for the S (dimension) amounts in order to correct the image offset.
For code that can be pasted into the Editor window, see “Example Code: Using Shift
to Correct an Image” on page 192.

1. Select theimagefile and read it into memory:

file = FILEPATH(' shi fted_endocell.png', $
SUBDI RECTCORY = [' exanples','data'])
i mmge = READ_PNG(file, R G B)

2. Prepare the display device and load the image's associated color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
TVLCT, R G B

Image Processing in IDL Shifting Images

192 Chapter 4: Transforming Image Geometry

3. Get the size of the image, prepare awindow based upon the values returned by
the SIZE function, and display the image to be corrected:
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)
W NDOW 0, XSIZE = imageSize[0], YSIZE = inmageSi ze[1], $
TITLE = ' Oiginal |nage'
TV, image

4. Use SHIFT to correct the original image. Move the elements aong the x-axis
to the left, using a quarter of the array width as the x-dimension values. Move
the y-axis elements, using one third of the array height as the number of
elements to be shifted. By entering negative values for the amount the image
dimensions are to be shifted, the array elements move toward the x and y axes.

i mpage = SHI FT(i mage, -(inmageSize[0]/4), -(imageSize[1l]/3))
5. Display the corrected image in a second window:

W NDOW 1, XSIZE = i nmmgeSize[0], YSIZE = i mageSi ze[1], $
TI TLE=' Shifted | mage'
TV, inage

The following figure displays the corrected image.

Figure 4-9: Resulting Shifted Array

Example Code: Using Shift to Correct an Image

Copy and pagte the following text into the IDLDE Editor window. After saving the
fileas sShiftlmageO f set. pro, compileand run the program to reproduce the
previous example.

PRO Shi ftl nageO f set

Sel ect and read in the image file.
file = FILEPATH(' shifted_endocell.png', $

Shifting Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 193

SUBDI RECTCORY = [' exanples','data'])
i mmge = READ_PNG(file, R G B)

; Prepare the display device and |oad the
; color translation tables.

DEVI CE, DECOMPCSED = 0, RETAIN = 2

TVLCT, R G B

HELP, i nage

; Get the inmage size.
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

; Prepare the display w ndow
W NDOW 0, XSIZE = imageSize[0], YSIZE = inngeSize[1], $
TITLE = ' Oiginal |nage'

; Display the original inmage.
TV, inage

; Shift the original inage to correct for the m salignment.

i mage = SHI FT(i mage, -inmageSi ze[0]/4, -inageSize[1]/3)

; Display the shifted inage.

W NDOW 1, XSIZE = i mageSize[0], YSIZE = inmngeSi ze[1], $
TITLE = ' Shifted | mage’

TV, image

END

Image Processing in IDL Shifting Images

194 Chapter 4: Transforming Image Geometry

Reversing Images

The REV ERSE function allows you to reverse any dimension of an array. Thisallows
you to quickly change the viewing orientation of animage (flipping it horizontally or
verticaly).
Note that in the REVERSE syntax,

Result = REVERSE(Array [, Subscript_Index][,/OVER\RI TE])

Subscri pt _I ndex specifies the dimension number beginning with 1, not O as with
some other functions.

The following example demonstrates reversing the x-axis values (dimension 1) and
the y-axis values (dimension 2) of an image of aknee. For code that can be copied
into and IDL Editor window, see “Example Code: Reversing Images’ on page 195.

1. Select the DICOM image of the knee and get the image’s dimensions:

i mmge = READ_DI COM (FI LEPATH(' nT _knee.dcm, $
SUBDI RECTCORY = [' exanples', 'data']))
i mgSi ze = S| ZE (i mage, / DI MENSI ONS)

2. Prepare the display device and load the gray scale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

3. Usethe REVERSE function to reverse the x-axis values (f | i pHor zI ng) and
y-axisvalues (f I i pVert | ng):

flipHorzlng
flipVertlng

REVERSE(i mage, 1)
REVERSE(i mage, 2)

4. Create an output window that is 2 times the size of the x-dimension of the
image and 2 times the size of the y-dimension of the image:

W NDOW 0, XSIZE = 2*ingSi ze[0], YSIZE = 2*ingSize[1l], $
TITLE = "Original (Top) & Flipped I mages (Bottom'

5. Display theimages, controlling their placement in the graphics window by
using the Pasition argument to the TV command:

TV, image, O
TV, flipHorzlinmg, 2
TV, flipVerting, 3

Reversing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 195

Your output should appear similar to the following figure.

Figure 4-10: Original Image (Top); Reversed Dimension 1 (Bottom Left); and
Reversed Dimension 2 (Bottom Right)

Example Code: Reversing Images

Copy and paste the following text into the IDL Editor window. After saving thefile as
Rever sel mage. pr o, compile and run it to reproduce the REV ERSE function
example.

PRO Rever sel nage

; Select the file and get the inage di mensions.

i mage = READ_DI COM (FI LEPATH(' nv _knee. dcmi, $
SUBDI RECTCORY = [' exanples', 'data']))

i mgSi ze = S| ZE (i mage, / DI MENSI ONS)

; Prepare the display device and | oad a color table.
DEVI CE, DECOVMPCSED = 0, RETAIN = 2
LQOADCT, 0

; Reverse dimension 1 to flip the image horizontally.
flipHorzlmy = REVERSE(i mage, 1)

; Reverse dinmesion 2 to flip the inmage vertically.
flipVertlmy = REVERSE(i mage, 2)

Image Processing in IDL Reversing Images

196 Chapter 4: Transforming Image Geometry

; Prepare the wi ndow and di splay the original inage.

W NDOW 0, XSIZE = 2*ingSi ze[0], YSIZE = 2*ingSize[1l], $
TITLE = "Original (Top) & Flipped I mages (Bottom'

TV, image, O

; Display the reversed inmmges.
TV, flipHorzlmg, 2
TV, flipVertlimg, 3

END

Reversing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 197

Transposing Images

Transposing an image array interchanges array dimensions, reflecting an image about
adiagonal (for example, reflecting a square image about a45 degreeline). By default,
the TRANSPOSE function reverses the order of the dimensions. However, you can
control how the dimensions are altered by specifying the optional vector, P, in the
following statement:

Result = TRANSPOSE(Array[, P])

The valuesfor P start at zero and correspond to the dimensions of the array. The
following example transposes a photomicrograph of smooth muscle cells. For code
that can be copied into the IDL Editor window, see “Example Code: Transposing an
Image” on page 198.

1. Open thefile and prepare to display it with a color table:

READ_JPEG, FILEPATH(' nuscle.jpg', $

SUBDI RECTORY=[' exanpl es', 'data']), image
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Display the original image:
W NDOW 0, XSl ZE = 652, YSIZE = 444, TITLE = ' Original |mage'
TV, inage

3. Reducetheimage size for display purposes:
smal | I mg = CONGRI D(i mage, 183, 111)

4. Using the TRANSPOSE function, reverse the array dimensions. This
essentially flips the image across its main diagonal axis, moving the upper | eft
corner of the image to the lower right corner.

transposel ngl = TRANSPOSE(snal | | ng)

W NDOW 1, XSIZE = 600, YSIZE = 183, TITLE = ' Transposed
| mages'

TV, transposelngl, O

5. Specifying the reversal of the array dimensions |eads to the same result since
thisisthe default behavior of the TRANSPOSE function.

transposel ng2 = TRANSPOSE(snal | Img, [1,0])
TV, transposel ng2, 2

Image Processing in IDL Transposing Images

198 Chapter 4: Transforming Image Geometry

6. However, specifying the original arrangement of the array dimensions results
in no image transposition.

transposel ng3 = TRANSPOSE(snal |l Img, [0, 1])
TV, transposel ng3, 2

The following figure displays the original image (top) and the results of the various
TRANSPOSE statements (bottom).

Figure 4-11: Original (Top) and Transposed Images (Bottom) from Left to Right,
transposelmgl, transposelmg?2, and transposelmg3

Example Code: Transposing an Image

Copy and paste the following text into the Editor window. After saving the file as
Tr ansposel nage. pr o, compile and run the program to reproduce the
TRANSPOSE function example.

PRO Transposel nage
Open the file and prepare to display it with a color table.

READ JPEG, FILEPATH(' nuscle.jpg', $
SUBDI RECTORY=[' exanpl es', 'data']), imge

Transposing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 199

DEVI CE, DECOWMPOSED = 0
LOADCT, 0

; Display the original inage
W NDOW 0, XSIZE = 652, YSIZE = 444, TITLE = 'Oiginal |nage'
TV, inage

; Reduce the image size for display purposes.
smal | I mg = CONGRI D(i mage, 183, 111)

; Flip the image across its mmin diagonal axis,
; placing the upper left corner in the lower right corner.
transposel ngl = TRANSPOSE(snal | | ng)

; Specifying the reversal of array di nensions |eads
; to the same result.
transposel ng2 = TRANSPOSE(snal |l Img, [1,0])

; Specifying the original array arrangenent results in
; no transposition.
transposel ng3 = TRANSPOSE(snual | Img, [0, 1])

; Display the transposed inmages.

W NDOW 1, XSIZE= 600, YSIZE=183, TITLE=' Transposed | nmages'
TV, transposelngl, O

TV, transposelng2, 2

TV, transposel ng3, 2

END

Image Processing in IDL Transposing Images

200 Chapter 4: Transforming Image Geometry

Rotating Images

To change the orientation of animage in IDL, use either the ROTATE or the ROT
function. The ROTATE function changes the orientation of an image by 90 degree
increments and/or transposes the array. The ROT function rotates an image by any
amount and offers additional resizing options. For more information, see “Using the
ROT Function for Arbitrary Rotations’ on page 203.

Rotating an Image by 90 Degree Increments

The following example changes the orientation of an image by rotating it 270°. For
code that you can copy and paste into the Editor window, see “Example Code: Using
ROTATE” on page 202.

1. Select thefileand read in the data, specifying known data dimensions:

file = FILEPATH(' gal axy.dat', $
SUBDI RECTORY=[' exanpl es', 'data'])
i mage = READ _BINARY(file, DATA DIMS = [256, 256])
2. Preparethe display device, load a color table, create awindow, and display the
image:
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 4

W NDOW 0, XSIZE = 256, YSIZE = 256
TVSCL, inage

3. Using the ROTATE syntax, Result = ROTATE (Array, Direction), rotate the
galaxy image 270° counterclockwise by setting the Direction argument equal
to 3. See “ROTATE Direction Argument Options” on page 201 for more
information.

rotatel my = ROTATE(i mage, 3)
4. Display the rotated image.

W ndow, 1, XSIZE = 256, YSIZE = 256,
TVSCL, rotatelng

Rotating Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 201

The following figure displays the original (Ieft) and the rotated image (right).

Figure 4-12: Using ROTATE to Alter Image Orientation
ROTATE Direction Argument Options

The following table describes the Direction options available with the ROTATE
function syntax, Result = ROTATE (Array, Direction).

Direction Transpose? Rotation Sample
Counterclockwise Image
0 No None I
1 No 90°
2 No 180°
3 No 270°

Table 4-2: Direction Options Available with ROTATE

Image Processing in IDL Rotating Images

202

Rotating Images

Chapter 4: Transforming Image Geometry

Direction Transpose? Rotation Sample
Counterclockwise Image
4 Yes None
5 Yes 90°
6 Yes 180°
7 Yes 270°

Table 4-2: Direction Options Available with ROTATE

Example Code: Using ROTATE

Copy and paste the following text into the IDL Editor window. After saving thefile as
Rot at el mage. pr o, compile and run the program to reproduce the previous
example.

PRO Rot at el mage

; Select the file and read in the data using known di mensions.
file = FILEPATH(' gal axy.dat', $

SUBDI RECTCRY = [' exanples', 'data'])
i mage = READ_BI NARY(file, DATA DIMS = [256, 256])

; Prepare the display device and |oad a color table.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 4

; Create a window and di splay the original inmage.
W NDOW 0, XSIZE = 256, YSIZE = 256
TVSCL, inage

; Rotate the gal axy 270 degrees countercl ockw se.
rotatel my = ROTATE(i mage, 3)

; Display the rotated image in a new w ndow.
W NDOW 1, XSIZE = 256, YSIZE = 256

Image Processing in IDL

Chapter 4: Transforming Image Geometry 203

TVSCL, rotatelng

END
Using the ROT Function for Arbitrary Rotations

The ROT function supports clockwise rotation of an image by any specified amount

(not limited to 90 degree increments). Keywords al so provide a means of optionally

magnifying the image, selecting the pivot point around which the image rotates, and
using either bilinear or cubic interpolation. If you wish to rotate an image only by 90
degree increments, ROTATE produces faster results.

The following example opens aimage of a whirlpool galaxy, rotatesit 33° clockwise
and shrinksit to 50% of its original size. To copy and paste this exampleinto an IDL
Editor window, see “Example Code: Image Rotation Using the ROT Function” on

page 204.
1. Select thefileand read in the data, specifying known data dimensions:
file = FI LEPATH(' nbl.dat', SUBDI RECTORY = ['exanpl es',
"data'])

i mage = READ_BINARY(file, DATA DI MS = [340, 440])
2. Prepare the display device and load a black and white color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

3. Create awindow and display the original image:

W NDOW 0, XSIZE = 340, YSIZE = 440
TVSCL, inmage

4. Usingthe ROT function syntax,

Resul t =ROT(A, Angle, [Mag, X, Yol [./1NTERP]
[,CuBl C=val ue{-1 to 0}] [, M SSING=value] [,/PIVQOr])

enter the following line to rotate the image 33°, shrink it to 50% of its original
size, and fill the image display with a neutral gray color where there are no
origina pixel values:

arbitrarylng = ROT(i nage, 33, .5, /INTERP, M SSING = 127)

5. Display the rotated image in a new window by entering the following two
lines:

W NDOW 1, XSIZE = 340, YSIZE = 440
TVSCL, arbitrarylng

Image Processing in IDL Rotating Images

204 Chapter 4: Transforming Image Geometry

Your output should appear similar to the following figure.

Figure 4-13: The Original Image (Left) and Modified Image (Right)

The M SSI NG keyword maintains the original image’s boundaries, keeping the
interpolation from extending beyond the original image size. Replacing M SSI NG =
127 with M SSI NG = 0 in the previous example creates a black background by
using the default pixel color value of 0. Removing the M SSI NG keyword from the
same statement allows the image interpolation to extend beyond the image’s original
boundaries.

Example Code: Image Rotation Using the ROT Function

Copy and paste the following text into the IDL Editor window. After saving thefile as

Ar bi traryRot ati on. pro, compile and run the program to reproduce the previous
example.

PRO ArbitraryRotation

Select the file and read in the data using known

di mensi ons.
file = FILEPATH(' nb1.dat', SUBDI RECTORY = ['exanples', 'data'])
i mage = READ BI NARY(file, DATA DI M5 = [340, 440])

Prepare the display device and load a black and white

Rotating Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 205

; color table.
DEVI CE, DECOVPOSED = 0, RETAIN = 2
LOADCT, O

; COreate a wi ndow and display the original image.
W NDOW 0, XSIZE = 340, YSIZE = 440
TVSCL, inage

; Rotate the new i nage 33 degrees cl ockw se and shrink

; it by 50 % and keep the interpolation from extending

; beyond the array boundari es.

arbitrarylng = ROT(i nage, 33, .5, /INTERP, M SSING = 127)

; Display the rotated inage.
W NDOW 1, XSIZE = 340, YSIZE = 440
TVSCL, arbitrarylng

END

Image Processing in IDL Rotating Images

206 Chapter 4: Transforming Image Geometry

Planar Slicing of Volumetric Data

Volumetric displays are composed of a series of 2D slices of data which are layered
to produce the volume. I DL provides routinesthat allow you to display a series of the
2D dicesin asingleimage window, display single orthogonal or non-orthogonal
slices of volumetric data, or interactively extract slices from a 3D volume. For more
information, see the following sections:

» “Displaying a Series of Planar Slices” in the following section
e “Extracting a Slice of Volumetric Data” on page 209

* “Interactive Planar Slicing of Volumetric Data” on page 211
Displaying a Series of Planar Slices

The following example displays 57 Magnetic Resonance Imaging (MRI) slices of a
human head within asingle window aswell asasingle slice which isperpendicular to
the MRI data. For code that you can copy and paste into an IDL Editor window, see
“Example Code: Displaying a Series of Planar Slices’ on page 208.

1. Select thefileand read in the data, specifying known data dimensions:

file = FILEPATH(' head. dat', SUBDI RECTORY = ['exanples',
"data'])
i mage = READ_BI NARY(file, DATA DIMS = [80, 100, 57])

2. Load acolor table to more easily distinguish between data values and prepare
the display device:
LOADCT, 5
DEVI CE, DECOMPCSED = 0, RETAIN = 2

3. Create the display window. When displaying all 57 slices of the array in a
single window, the image size (80 by 100) and the number of dices (57)
determine the window size. In this case, 10 columnsand 6 rowswill contain all
57 dlices of the volumetric data.

W NDOW 0, XSIZE = 800, YSIZE = 600

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 207

4. Usethevariablei inthefollowing FOR statement to incrementally display
each imagein the array. Thei also functions to control the positioning which,
by default, uses the upper left corner asthe starting point. Use 255b - arr ay
to display the images using the inverse of the selected color table and the
ORDER keyword to draw each image from the top down instead of the bottom

up.
FORi = 0, 56,1 DO TVSCL, 255b - image [*,*,i], /ORDER, i

5. To extract acentra slice from they, z plane, which is perpendicular to the x, y
plane of the MRI scans, specify 40 for the x-dimension value. Use REFORM
to decrease the number of array dimensions so that TV can display the image:

slicelmy = REFORM i mage[40, *, *])
Thisresultsin a 100 by 57 array.
6. Use CONGRID to compensate for the sampling rate of the scan slices:
slicelmy = CONGRI D(slicelng, 100, 100)
7. Display the dicein the 47th window position:
TVSCL, 255b - slicelng, 47

Since the image size isnow 100 x 100 pixels, the 47th position in the 800 by
600 window isthe final position.

Image Processing in IDL Planar Slicing of Volumetric Data

208 Chapter 4: Transforming Image Geometry

Your output should be similar to the following figure.

Figure 4-14: Planar Slices of a MRI Scan of a Human Head

Note

Thismethod of extracting slices of datais limited to orthogona slices only. You can
extract single orthogonal and non-orthogonal slices of volumetric data using
EXTRACT_SLICE, described in the following section. See “ Extracting a Slice of
Volumetric Data” on page 209 for more information.

Example Code: Displaying a Series of Planar Slices

Copy and paste the following text into the Editor window. Save the file as
Di spl aySl i ces. pro, compileit and run it to reproduce the previous example.
PRO Di spl aySli ces

Select the file, create an array and read in the data.
file = FILEPATH(' head. dat', SUBDI RECTORY = ['exanples', 'data'])
i mage = READ_BI NARY(file, DATA DIMS = [80, 100, 57])

Load a col or table and prepare the display w ndow.
LQADCT, 5

DEVI CE, DECOVWPCSED = 0, RETAIN = 2

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 209

W NDOW 0, XSIZE = 800, YSIZE = 600

; Initialize the FOR statenent. Use i as the | oop el ement
; for the slice and the position. Use "255b -" to display
; the inages with the inverse of the selected color table
; and use /ORDER to draw the image fromthe top down.

FORi =0, 56, 1 DO TVSCL, 255b - image [*,*,i], /ORDER i

; Now extract a single perpendicular slice of data.
slicelmy = REFORM i mage[40, *, *])

; Conpensate for the sanpling rate of the scan slices
; and display the inmage.

slicelmy = CONGRI D(slicelng, 100, 100)

TVSCL, 255b - slicelng, 47

END
Extracting a Slice of Volumetric Data

The EXTRACT_SLICE function extracts a single two-dimensional planar slice of
data from athree-dimensional volume. By setting arguments that specify the
orientation of the slice and a point in its center using the following syntax, you can
precisely control the orientation of the slicing plane.
Result = EXTRACT_SLI CE(Vol, Xsize, Ysize, Xcenter, Ycenter,
Zcenter, Xrot, Yrot, Zrot [, AN SOTROPY=[xspacing, yspacing,

zspacing]] [, OUT_VAL=value] [, /RAD ANS] [, / SAMPLE]
[, VERTICES=variable])

The following example demonstrates how to use EXTRACT_SLICE to extract the
same singular slice as that shown in the previous example. Compl ete the following
steps or see “Example Code: Extracting a Slice of Volumetric Data’ on page 211 for
an example you can copy and paste into the Editor window.

1. Select thefile and read in the data, specifying known data dimensions:

file = FI LEPATH(' head. dat', SUBDI RECTORY = ['exanples',
"data'])
vol ume = READ BI NARY(file, DATA DIMS =[80, 100, 57])

2. Prepare the display device and |oad the grayscale color table.

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

3. Enter thefollowing line to extract a sagittal planar slice from the MRI volume
of the head.

slicelmy = EXTRACT_SLI CE $

Image Processing in IDL Planar Slicing of Volumetric Data

210 Chapter 4: Transforming Image Geometry

(vol ume, 110, 110, 40, 50, 28, 90.0, 90.0, 0.0, OUT_VAL =
0)

Note
The code within the previous parentheses specifies: the volume (Dat a), asize
greater than the Xsize and Ysize of the volume (110, 110), the Xcenter, Ycenter and
Zcenter (40, 50, 28) denoting thex, y, and zindex points through which the slice
will pass, the degree of X, y, and zrotation of the dicing plane (90. 0, 90. 0, 0.0)
and the OUT_VAL = 0 indicating that elements of the output array which fall
outside the original values will be given the value of 0 or black.

4. Use CONGRID to resize the output array to an easily viewable size. Thisis
also used to compensate for the sampling rate of the scan images.

biglmy = CONGRID (slicelng, 400, 650, /I|NTERP)
5. Prepare adisplay window based on the resized array and display the image.

W NDOW 0, XSIZE = 400, YSIZE = 650
TVSCL, biglng

The image created by this example should appear similar to the following figure.

Figure 4-15: Example of Extracting a Slice of Data From a Volume

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 211

Example Code: Extracting a Slice of Volumetric Data

Copy and paste the following text into an IDL Editor window. After saving thefile as
Extract Sl i ce. pro, compile and run the program to reproduce the previous
example.

PRO Extract Slice

Select the file and define the image array.
file = FILEPATH(' head. dat', SUBDI RECTORY = ['exanples', 'data'])
vol ume = READ BI NARY(file, DATA DIMS =[80, 100, 57])

Prepare the di splay device and |l oad a color table.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

Extract a slice fromthe vol une.
slicelmy = EXTRACT_SLI CE(vol une, 110, 110, 40, 50, 28, $
90.0, 90.0, 0.0, QUT_VAL = 0)

Enl arge the array.
bi glmg = CONGRI D(slicelng, 400, 650, /| NTERP)

Di spl ay the inmage.
W NDOW 0, XSIZE = 400, YSIZE = 650
TVSCL, biglng

END
Interactive Planar Slicing of Volumetric Data

The series of two-dimensional images created by the magnetic resonance imaging
scan, shown in the section, “Displaying a Series of Planar Slices’ on page 206, can
also be visualized as a three-dimensional volume using either of IDL’sinteractive
volume visualization tools, SLICER3 or XVOLUME.

SLICER3 quickly creates visualizations of 3D data using IDL Direct Graphics. The
XVOLUME procedure employs IDL Object Graphics to create highly interactive
visualizations that take advantage of OpenGL hardware acceleration and multiple
processors for volume rendering. Since Object Graphics are rendered in memory and
not simply drawn, both the time and amount of virtual memory required to create a
XVOLUME visualization exceed those needed to create aDirect Graphics, SLICER3
visualization. For more information about XVVOLUME, see “Displaying Volumes
Using XVOLUME" on page 216.

Image Processing in IDL Planar Slicing of Volumetric Data

212 Chapter 4: Transforming Image Geometry

Displaying Volumetric Data Using SLICERS3

The Direct Graphics SLICER3 widget-based application allows you to view single or
multiple slices of avolume or to create an isosurface of the three-dimensional data.
Complete the following steps to load the head. dat volumeinto the SLICER3
application or see “Example Code: Displaying Volumetric Data Using SLICER3" on
page 215 for an example you can copy and paste into an IDL Editor window.

1. Select the datafile and read in the data using known dimensions:

file = FILEPATH(' head. dat', SUBDI RECTORY=[' exanpl es',
"data'])
vol une = READ BI NARY(file, DATA DIMS = [80, 100, 57])

2. Todisplay all slices of the head. dat fileasavolumein SLICERS3, create a
pointer called hdat a which passesthe dat a array information to the
SLICERS3 application.

pData = PTR_NEW vol une)

Note
You can load multiple arrays into the SLICER3 application by creating a pointer for
each array. Each array must have the same dimensions.

3. Load the datainto the SLICERS3 application. The DATA_NAMES designates
the data set in the application’s Data list. Thisfield will be greyed out if only
one volumetric array has been loaded.

SLI CER3, pData, DATA NAMES =' head'

At first it is not apparent that your data has been passed to the SLICERS3 application.
See the following section, “Manipulating Volumetric Data Using SLICER3” for
details on how to use thisinterface.

Manipulating Volumetric Data Using SLICERS3

Once you have loaded a three-dimensional array into the SLICERS3 application, the
interface offers numerous ways to visualize the data. The following steps cover
creating an isosurface, viewing a slice of data within the volume and rotating the
display.
1. Inthe SLICERS application, select Surface from the Mode: ligt. Left-click in
the Surface Threshold window containing the logarithmic histogram plot of
the data and drag the green line to change the threshold value of the display. A

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 213

valuein the low to mid 40's works well for thisimage. Click Display to view
the isosurface of the data.

File Tools About

@ Low High

Display

Figure 4-16: An Isosurface of Volumetric Data

Note
To undo an action resulting in an unwanted image in the SLICER3 window, you can
either choose Tools — Delete and select the last item on the list to undo the last
action or choose Tools — Erase to erase the entire image.

2. Select Slice from the M ode list. Select the Expose, Orthogonal, and X
options. Left-click in the image window and drag the mouse halfway along the

Image Processing in IDL Planar Slicing of Volumetric Data

214 Chapter 4: Transforming Image Geometry

X axis and then rel ease the mouse button. The planar slice of volumetric data
appears at the point where you release the mouse button.

File Tools About

Mode: | Slice =

" Draw (% Expose

@ Oithogonal
" Oblique

v Oy CZ

Figure 4-17: Visualizing a Slice of Volumetric Data

3. Change the colors used to display the slice by selecting Tools —» Colors -
Slice/Block. In the color table widget, select STD Gamma-11 from thelist and
click Done to load the new color table.

4. Change the view of the display by selecting View from the M ode list. Here
you can change the rotation and zoom factors of the displayed image. Use the
slider bars to rotate the orientation cube. A preview of the cube's orientation
appears in the small window above the controls. To create the orientation
shown in thefollowing figure, move the dider to arotation of -18 for Z and -80
for X. Click Display to change the orientation of the image in the window.

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 215

The following figure displays the final image.

Figure 4-18: A Slice Overlaying an Isosurface

To save theimage currently in the display window, select File » Save - Save TIFF
Image. For more information about using the SLICERS interface to manipulate
volumetric data, see “ SLICER3” in the I DL Reference Guide.

Note
Enter the following line after closing the SLICERS3 application to rel ease memory
used by the pointer: PTR_FREE, pDat a

Example Code: Displaying Volumetric Data Using SLICER3

The following code can be copied and pasted into the IDL Editor window to quickly
pass the volumetric data contained in the head. dat fileto the SLICERS3 application.
Paste the following text into an IDL Editor window and save the program as

Di spl aySLI CER3. pr o before compiling and running the program.

PRO Di spl aySLI CER3
Sel ect the file and define the array.

file = FILEPATH(' head. dat', SUBDI RECTORY=['exanples', 'data'])
vol une = READ BI NARY(file, DATA DIMS = [80, 100, 57])

Image Processing in IDL Planar Slicing of Volumetric Data

216 Chapter 4: Transforming Image Geometry

Create a pointer to the i mage data passed to SLI CER3.
pData = PTR_NEW vol une)

Load the data into the SLICER3 application.
SLI CER3, pData, DATA NAMES = 'head', /MODAL

Rel ease nmenory used by the pointer.
PTR_FREE, pData

END

Note
After running this program to load the data into the SLICERS application, see
“Manipulating Volumetric Data Using SLICER3" on page 212 for tips on using the
interface.

Displaying Volumes Using XVOLUME

Unlike SLICER3, the IDL Object Graphics procedure, XVOLUME, allows you to
interactively manipulate 3D volumes and isosurfaces. While the following example
requires more processing time to display the same data (head. dat) as that
previously displayed with SLICERS, remember that the output is not the same. The
XVOLUME example is rendering an opaque volume of the data set whereas the
previous SLICER3 example simply displayed an isosurface. Although Object
Graphics display methods can require more processing time, they also offer
significant advantages including greater interactivity, true volume rendering with the
ability to specify opacities, and finer control over image and volumetric data.

Complete the following steps to load the head. dat volume into the XVOLUME
application or see “Example Code: Displaying Volumetric Data Using XV OLUME”"
on page 219 for an example you can copy and paste into an DL Editor window.

1. Select thefile and read in the data, specifying known data dimensions:

file = FILEPATH(' head. dat', SUBDI RECTORY = ['exanples',
"data'])
vol ume = READ BI NARY(file, DATA DIMS = [80, 100, 57])

2. Reduce the size of the original array to speed up processing:
smal | Vol = CONGRI D(vol ume, 40, 50, 27)

3. Using the INTERPOLATE keyword to smooth the data, display the volume
using the XVOLUME procedure:

XVOLUME, snal | Vol, /1 NTERPOLATE

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 217

After the datais passed to the XV OLUME application, an image similar to the
following figure appears.

Figure 4-19: Visualizing a Volume with XVOLUME

Manipulating Volumetric Data Using XVOLUME

Once data has been loaded into the XVOLUME application, you can create color
coded contoured dices of data. Compl ete the following stepsto create x-, y- and
z-dimensional contours of the head. dat volume.

1. Rotate the image of the head so that the nose is facing toward the right. Click
in the display window and, with your mouse button depressed, drag the mouse
cursor to reposition the image display.

2. Selectthe X, Y, and Z “Contours’ options, located on the upper-left portion of
the XVOLUME interface.

Note
Turning off the XVOLUME “ Auto-Render” feature produces faster responses to

processing requests.

3. Movethe X Plane slider to avalue of 22. A contour line appearsin the display
window, running down the center of the image of the head. When you click in
the display window, the planar sliceisvisible.

4. MovetheY Plane dslider to avalue of 27. A contour line appears along the
middle of the y-dimension.

Image Processing in IDL Planar Slicing of Volumetric Data

218 Chapter 4: Transforming Image Geometry

5. Movethe Z Plane dider to avalue of 12. Another contour line appears near
the middle of the z-dimension.

The XVOLUME interface should appear similar to the following figure.

&l Xvolume:

[_[o]x]
Fie Edit View
[#] _[=[*]a] \

Image Flanes: Conlous:
¥ |<0ft> v Fx
0
z[<of> x| Wz

2

B
=

B
ol

Ed
| |

12

2

=
ol

Nx
b

“olume:
Color and Opacity.

IV AutoRiender Fiernde

lsoSuface:
Colar,

& Isosuface Off

Figure 4-20: Creating Dimensional Contours Using XVOLUME

Click in the image display window to show the contour lines.

&l Xvolume:

=] 3
Fie Edi View
[_[a[*[a] \
Image Flanes. Conlous
w:[<0ft> =] P

¥ [<0ft> | Py
z:|<ofb> x| Fz

Volume:
Color and Opacity..

¥ AutoRender Fende

IsoSuface:

Col,

& Isosurface Dff
C Opaque
 Semitrar

Figure 4-21: Displaying Contours of Planar Slices Using XVOLUME

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 219

Tip
After avolumetric array has been loaded into the XVOLUME application, it can be
animated using the XVOLUME_ROTATE procedure. To rotate the image above,
run the example program for “XVOLUME_ROTATE” in the IDL Reference Guide.

Example Code: Displaying Volumetric Data Using XVOLUME

The following code can be copied and pasted into the IDL Editor window to quickly
pass the volumetric data contained in the head. dat file to the XVOLUME
application. After saving the fileas Di spl ayXVOLUME. pr o, compile and run the
program to reproduce the previous example.

PRO Di spl ay XVOLUME

; Select the file and read in the data using known di mensi ons.
file = FILEPATH(' head. dat', SUBDI RECTORY = ['exanples', 'data'])
vol ume = READ Bl NARY(file, DATA DIMS = [80, 100, 57])

Decrease the size of the array to speed up processing.
smal | Vol = CONGRI D(vol ume, 40, 50, 27)

Di spl ay the data usi ng XVOLUME.
XVOLUME, snmall Vol, /1 NTERPOLATE

END

Tip
For information about manipulating data in the XVOLUME interface, see
“Manipulating Volumetric Data Using XVOLUME” on page 217.

Image Processing in IDL Planar Slicing of Volumetric Data

220 Chapter 4: Transforming Image Geometry

Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 5:
Mapping an Image onto
Geometry

This chapter describes the following topics:

Overview of Mapping Images onto Geometric Mapping an Image onto Elevation Data . . 224
Surfaces ... 222 M apping an Image onto a Sphere 233

Image Processing in IDL 221

222 Chapter 5: Mapping an Image onto Geometry

Overview of Mapping Images onto Geometric
Surfaces

M apping an image onto geometry, also known as texture mapping, involves
overlaying an image or function onto a geometric surface. Images may be realistic,
such as satellite images, or representational, such as color-coded functions of
temperature or elevation. Unlike volume visualizations, which render each voxel
(volume element) of a three-dimensional scene, mapping an image onto geometry
efficiently creates the appearance of complexity by simply layering an image onto a
surface. The resulting realism of the display also provides information that is not as
readily apparent aswith asimple display of either the image or the geometric surface.

M apping an image onto a geometric surface is atwo step process. First, theimage is
mapped onto the geometric surface in object space. Second, the surface undergoes
view transformations (relating to the viewpoint of the observer) and is then displayed
in 2D screen space. You can use IDL Direct Graphics or Object Graphics to display
images mapped onto geometric surfaces.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description
“Mapping an SHADE_SURF Display the elevation data.
I mage_onto » IDLgrWindow::Init Initialize the objects necessary
Elevation Data . . . L
on page 224 IDLgrView::Init for an Object Graphics display.
Pag ' IDLgrModel::Init
IDLgrSurface:Init Initialize a surface object
containing the elevation data.
IDLgrimage::Init Initialize an image object
containing the satellite image.
XOBJIVIEW Display the object in an

interactive IDL utility allowing
rotation and resizing.

Table 5-1: Tasks and Routines Associated with Mapping an Image onto
Geometry

Overview of Mapping Images onto Geometric Surfaces Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 223
Task Routine(s)/Object(s) Description
“Mapping an MESH_OBJ Create a sphere.
Image onto a REPLICATE
Sphere Usmg , | SCALE3 Specify system variables
Direct Graphics required for 3D viewin
on page 233. € 9
SET_SHADING Control the light source used by
POLY SHADE.
TVSCL Map the image onto the sphere
POLY SHADE using POLY SHADE and
display the example with
TVSCL.
“Mapping an MESH_OBJ Create a sphere.
Image onto a REPLICATE
sphereUsing % e v odel - it Initialize modd!, palette and
Object Graphics o .)
on page 237. IDLgrPalette::Init image objects.
IDLgrImage::Init
FINDGEN Create normalized coordinates
REPLICATE in order to map the image onto

the sphere.

IDLgrPolygon::Init

Assign the sphereto a polygon
object and apply the image
object.

XOBJVIEW

Display the object in an
interactive IDL utility allowing
rotation and resizing.

Table 5-1: Tasks and Routines Associated with Mapping an Image onto
Geometry (Continued)

Image Processing in IDL

Overview of Mapping Images onto Geometric Surfaces

224 Chapter 5: Mapping an Image onto Geometry

Mapping an Image onto Elevation Data

The following Object Graphics example maps a satellite image from the Los
Angeles, Californiavicinity onto a DEM (Digital Elevation Model) containing the
area' stopographical features. The realism resulting from mapping the image onto the
corresponding elevation data provides a more informative view of the area’s
topography. The processis segmented into the following three sections:

* “Opening Image and Geometry Files’, in the following section
« “Initializing the IDL Display Objects’ on page 225
* “Displaying the Image and Geometric Surface Objects’ on page 227

Note
Data can be either regularly gridded (defined by a2D array) or irregularly gridded
(defined by irregular x, y, z points). Both the image and elevation data used in this
example are regularly gridded. If you are dealing with irregularly gridded data, use
GRIDDATA to map the datato aregular grid.

See “Example Code: Mapping an Image onto a DEM” on page 230 for an example
that you can copy and paste into an Editor window or complete the following steps
for adetailed description of the process.

Opening Image and Geometry Files

The following stepsread in the satellite image and DEM files and display the
elevation data.

1. Select the satellite image:

imageFile = FILEPATH('elev_t.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Import the JPEG file:
READ JPEG i mageFile, imge
3. Select the DEM file:

denFile = FI LEPATH(' el evbin.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 225

4. Definean array for the elevation data, open thefile, read in the data and close
thefile:

dem = READ_BI NARY(denFil e, DATA DIMS = [64, 64])
5. Enlarge the size of the elevation array for display purposes:
dem = CONGRI D(dem 128, 128, /| NTERP)

6. To quickly visualize the elevation data before continuing on to the Object
Graphics section, initialize the display, create awindow and display the
elevation data using the SHADE_SURF command:

DEVI CE, DECOMPCSED = 0
WNDOW O, TITLE = 'El evation Data'
SHADE_SURF, dem

Figure 5-1: Visual Display of the Elevation Data

After reading in the satellite image and DEM data, continue with the next section to
create the objects necessary to map the satellite image onto the elevation surface.

Initializing the IDL Display Objects

After reading in theimage and surface data in the previous steps, you will need to
create objects containing the data. When creating an IDL Object Graphics display, it
is necessary to create awindow object (oWindow), aview object (oView) and amodel
object (oModel). These display objects, shown in the conceptual representation in the
following figure, will contain a geometric surface object (the DEM data) and an
image object (the satellite image). These user-defined objects are instances of

Image Processing in IDL Mapping an Image onto Elevation Data

226

Chapter 5: Mapping an Image onto Geometry

existing IDL object classes and provide access to the properties and methods
associated with each object class.

L g—OWindow - an IDLgrWindow object

oView - an IDLgrView object

oModel - an IDLgrModel object

\ oSurface - the geometric el evation object

olmage - the satellite image object

Note

Figure 5-2: Conceptualization of Object Graphics Display Example

The XOBJVIEW utility (described in “Mapping an Image onto a Sphere Using
Object Graphics” on page 237) automatically creates window and view objects.

Complete the following steps to initialize the necessary IDL objects.

1.

2.

Mapping an Image onto Elevation Data

Initialize the window, view and model display objects. For detailed syntax,
arguments and keywords available with each object initialization, see
IDLgrWindow::Init, IDLgrView::Init and IDLgrModel::Init. The following
three lines use the basic syntax oNewChj ect = OBJ_NEW' Cl ass_Nane')
to create these objects:

oW ndow = OBJ_NEW' | DLgr W ndow , RETAIN = 2, COLOR_MODEL = 0)

oView = OBJ_NEW ' | DLgr Vi ew)

oMbdel = OBJ_NEW' | DLgr Model ')
Assign the elevation surface data, dem, to an IDLgrSurface object. The
IDLgrSurface::Init keyword, STYLE = 2, draws the elevation data using a
filled line style:

oSurface = OBJ_NEW ' I DLgr Surface', dem STYLE = 2)

Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 227

3. Assign the satellite image to a user-defined IDLgrlmage object using
IDLgrImage::Init:

olmage = OBJ_NEW' I DLgrl nage', inmage, |NTERLEAVE = 0, $
/ 1 NTERPCLATE)

| NTERLEAVE = 0 indicates that the satellite image is organized using pixel
interleaving, and therefore has the dimensions (3, m, n). The | NTERPOLATE
keyword forces bilinear interpolation instead of using the default nearest-
neighbor interpolation method.

Displaying the Image and Geometric Surface Objects

This section displays the objects created in the previous steps. The image and surface
objectswill first be displayed in an IDL Object Graphics window and then with the
interactive XOBJVIEW utility.

1. Center the elevation surface object in the display window. The default object
graphics coordinate system is[-1,—1], [1,1]. To center the object in the
window, position the lower left corner of the surface data at [-0.5,-0.5, —0.5]
for the x, y and zdimensions:

oSurface -> CGETPROPERTY, XRANGE = xr, YRANCGE = yr, ZRANGE =
zr

xs = NORM_COORD(xr)

xs[0] = xs[0] - 0.5

ys = NORM_COORD(yr)

ys[0] = ys[0] - 0.5

zs = NORM_COORD(zr)

zs[0] = zs[0] - 0.5

oSurface -> SETPROPERTY, XCOCRD _CONV = xs, YCOORD_CONV = ys,
$

ZCOORD = zs

Image Processing in IDL Mapping an Image onto Elevation Data

228

Mapping an Image onto Elevation Data

Note

Chapter 5: Mapping an Image onto Geometry

2. Map the satellite image onto the geometric el evation surface using the
IDLgrSurface::Init TEXTURE_MAP keyword:

oSurface -> SetProperty, TEXTURE_MAP = ol mage, $
COLOR = [255, 255, 255]

For clearest display of the texture map, set COLOR = [255, 255, 255]. If the
image does not have dimensions that are exact powers of 2, IDL resamples the
image into a larger size that has dimensions which are the next powers of two
greater than the original dimensions. This resampling may cause unwanted
sampling artifacts. In this example, the image does have dimensions that are
exact powers of two, so no resampling occurs.

If your texture does not have dimensions that are exact powers of 2 and you do not
want to introduce resampling artifacts, you can pad the texture with unused datato a
power of two and tell IDL to map only a subset of the texture onto the surface.

For example, if your image is 40 by 40, create a 64 by 64 image and fill part of it
with the image data:

texturel mage = BYTARR(64, 64)
texturel mage[0: 39, 0:39] = inmage ; inmage is 40 by 40
ol mage = OBJ_NEW ' I DLgrl mage', texturel mage)

Then, construct texture coordinates that map the active part of the textureto a
surface (oSurface):

textureCoords = [[], [], [1. [1]
oSurface -> SetProperty, TEXTURE _COORD = textureCoords

The surface object in IDL 5.6 is has been enhanced to automatically perform the
above calculation. In the above example, just use the image data (the 40 by 40
array) to create the image texture and do not supply texture coordinates. IDL
computes the appropriate texture coordinates to correctly use the 40 by 40 image.

Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 229

Note

Some graphic devices have alimit for the maximum texture size. If your textureis
larger than the maximum size, IDL scalesit down into dimensions that work on the
device. Thisrescaling may introduce resampling artifacts and |oss of detail in the
texture. To avoid this, use the TEXTURE_HIGHRES keyword to tell IDL to draw
the surface in smaller pieces that can be texture mapped without loss of detail.

Add the surface object, covered by the satellite image, to the model object.
Then add the model to the view object:

oMobdel -> Add, oSurface
oVi ew -> Add, oMbdel

Rotate the model for better display in the object window. Without rotating the
model, the surface is displayed at a 90° elevation angle, containing no depth
information. The following lines rotate the model 90° away from the viewer
along the x-axis and 30° clockwise along the y-axis and the x-axis:

olMbdel -> ROTATE, [1, 0, 0], -90
olMbdel -> ROTATE, [0, 1, 0], 30
olMbdel -> ROTATE, [1, 0, 0], 30

Display the result in the Object Graphics window:

oW ndow -> Draw, oView

Figure 5-3: Image Mapped onto a Surface in an Object Graphics Window

Image Processing in IDL Mapping an Image onto Elevation Data

230 Chapter 5: Mapping an Image onto Geometry

6. Display the resultsusing XOBJVIEW, setting the SCALE = 1 (instead of the
default value of 1/SQRT3) to increase the size of the initial display:

XOBJVI EW oModel , /BLOCK, SCALE = 1
Thisresultsin the following display.

£l Xobiview = i

File Edit “iew

[w] o] [#[#] |

Figure 5-4: Displaying the Image Mapped onto the Surface in XOBJVIEW

After displaying the model, you can rotate it by clicking in the application
window and dragging your mouse. Select the magnify button, then click near
the middle of the image. Drag your mouse away from the center of the display
to magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display.

7. Degtroy unneeded object references after closing the display windows:
OBJ_DESTROY, [oView, ol mge]

The oModel and oSurface objects are automatically destroyed when oView is
destroyed.

For an example of mapping an image onto aregular surface using both Direct and
Object Graphics displays, see “Mapping an Image onto a Sphere” on page 233.

Example Code: Mapping an Image onto a DEM

Copy and paste the following text into the IDL Editor window. After saving thefile as

El evati on_QObj ect . pr o, compile and run the program to reproduce the previous
example.

Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 231

PRO El evati on_0Obj ect

; Obtaining path to image file.
i mgeFile = FILEPATH(' elev_t.jpg , $
SUBDI RECTCRY = [' exanples', 'data'])

; Importing image file.
READ JPEG i mageFile, imge

; Obtaining path to DEM data file.
denFile = FILEPATH(' el evbin.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; I mporting data.
dem = READ BI NARY(denFile, DATA DIMS = [64, 64])
dem = CONGRI D(dem 128, 128, /| NTERP)

; Initialize the display.
DEVI CE, DECOMPOSED = 0, RETAIN = 2

; Displaying original DEM el evation data.
WNDOW O, TITLE = 'Elevation Data'
SHADE_SURF, dem

; Initialize the display objects.

oMbdel = OBJ_NEW' | DLgr Model ')

oView = OBJ_NEW ' | DLgr Vi ew)

oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
COLOR_MODEL = 0)

oSurface = OBJ_NEW' I DLgr Surface', dem STYLE = 2)

ol mage = OBJ_NEW' I DLgrl nmage', imge, $
| NTERLEAVE = 0, /| NTERPOLATE)

; Calculating normalized conversion factors and
; shifting -.5 in every direction to center object
; in the w ndow.
; Keep in mind that your view default coordinnate
; systemis [-1,-1], [1, 1]
oSurface -> GetProperty, XRANGE = xr, $
YRANGE = yr, ZRANGE = zr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM COORD(yr)
ys[0] = ys[0] - 0.5
zs = NORM_COORD(zr)
zs[0] = zs[0] - 0.5
oSurface -> SetProperty, XCOORD CONV = xs, $
YCOORD_CONV = ys, ZCOORD = zs

Image Processing in IDL Mapping an Image onto Elevation Data

232 Chapter 5: Mapping an Image onto Geometry

; Applying image to surface (texture mapping).
oSurface -> SetProperty, TEXTURE_MAP = ol mage, $
COLOR = [255, 255, 255]

; Addi ng objects to nodel,then addi ng nodel to view
oMbdel -> Add, oSurface
oVi ew -> Add, oMbodel

; Rotating nodel for better display of surface
; in the object w ndow.

oMbdel -> ROTATE, [1, 0, 0], -90

oMbdel -> ROTATE, [0, 1, 0], 30

oMbdel -> ROTATE, [1, 0, 0], 30

; Drawi ng the view of the surface (D splaying the
; results).
oW ndow -> Draw, oView

; Displaying results in XOBJVIEWuUtility to allow
; rotation

XOBJVI EW oModel, /BLOCK, SCALE = 1

; Destroying object references, which are no | onger
; needed.

OBJ_DESTROY, [oView, ol mge]

END

Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 233

Mapping an Image onto a Sphere

The following example maps an image containing a color representation of world
elevation onto a sphere using both Direct and Object Graphics displays. The example
is broken down into two sections:

* “Mapping an Image onto a Sphere Using Direct Graphics’
* “Mapping an Image onto a Sphere Using Object Graphics’ on page 237

Mapping an Image onto a Sphere Using Direct
Graphics

See “Example Code: Mapping an Image onto a Sphere Using Direct Graphics’ on
page 236 for an example that you can copy and paste into an Editor window or
complete the following steps for a detailed description of the process.

1. Select the file containing the world elevation image. Define the array, read in
the data and close the file:

file = FILEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DIMS = [360, 360])

2. Prepare the display device to display a PseudoColor image:
DEVI CE, DECOMPCSED = 0

3. Load acolor tableand using TVLCT, set thefinal index value of the red, green
and blue bandsto 255 (white). Setting these index valuesto white provides for
the creation of awhite window background in alater step.

LOADCT, 33
TVLCT, 255, 255,255, !D. TABLE. SIZE - 1

(For comparison, TVLCT, 0, O, 0, !D. TABLE_SI ZE+1 would designate
ablack window background.)

4. Create awindow and display the image containing the world elevation data:

W NDOW 0, XSIZE = 360, YSIZE = 360
TVSCL, inmage

Image Processing in IDL Mapping an Image onto a Sphere

234 Chapter 5: Mapping an Image onto Geometry

Thisimage, shown in the following figure, will be mapped onto the sphere.

Figure 5-5: World Elevation Image

5. Use MESH_OBJto create a sphere onto which the image will be mapped. The
following line specifies a value of 4, indicating a spherical surface type:

MESH OBJ, 4, vertices, polygons, REPLICATE(O.25, 360, 360), $
/ CLOSED

The vertices and polygons variables are the lists that contain the mesh vertices
and mesh indices of the sphere. REPLICATE generates a 360 by 360 array,
each element of which will contain the value 0.25. Using REPLICATE in the
Arrayl argument of MESH_OBJ specifies that the vertices variable is to
consist of 360 by 360 vertices, each positioned at a constant radius of 0.25
from the center of the sphere.

6. Create awindow and define the 3D view. Use SCALE3 to designate
transformation and scaling parameters for 3D viewing. The AX and AZ
keywords specify the rotation, in degrees about the x and z axes:

WNDOW 1, XSIZE = 512, YSIZE = 512
SCALE3, XRANGE = [-0.25,0.25], YRANGE = [-0.25,0.25], $
ZRANGE = [-0.25,0.25], AX = 0, AZ = -90

Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 235

7. Set thelight source to control the shading used by the POLY SHA DE function.
Use SET_SHADING to modify the light source, moving it from the default
position of [0,0,1] with rays parallel to the z-axis to alight source position of
[-0.5,0.5, 2.0]:

SET_SHADING, LIGHT = [-0.5, 0.5, 2.0]

8. Set the system background color to the default color index, defining a white
window background:
! P. BACKGROUND = ! P. COLOR

9. UseTVSCL todisplay the world elevation image mapped onto the sphere.
POLY SHADE references the sphere created with the MESH_OBJ routine, sets
SHADES = i mage to map the image onto the sphere and uses the image
transformation defined by the T3D transformation matrix:

TVSCL, POLYSHADE(vertices, polygons, SHADES = i mage, / T3D)

The specified view of the image mapped onto the sphere is displayed in a Direct
Graphics window as shown in the following figure.

Figure 5-6: Direct Graphics Display of an Image Mapped onto a Sphere

10. After displaying the image, restore the system’s default background color:
I P. BACKGROUND = 0

To create a Object Graphics display featuring a sphere that can be interactively
rotated and resized, complete the steps contained in the section, “Mapping an Image
onto a Sphere Using Object Graphics’ on page 237.

Image Processing in IDL Mapping an Image onto a Sphere

236 Chapter 5: Mapping an Image onto Geometry

Example Code: Mapping an Image onto a Sphere
Using Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as
MapOnSpher e_Di r ect . pr o, compile and run the program to reproduce the
previous example.

PRO MapOnSphere_Direct

; Importing image into |DL.
file = FILEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI Ms = [360, 360])

; Initializing color table and setting the final
; index values to white.

DEVI CE, DECOMPCSED = 0

LQOADCT, 33

TVLCT, 255, 255, 255, !D.TABLE SIZE - 1

; Displaying the original inmage.
W NDOW 0, XSIZE = 360, YSIZE = 360
TVSCL, inage

; Creating a 360x360 sphere with a constant radi us of

; 0.25 to use as the data.

MESH OBJ, 4, vertices, polygons, REPLICATE(O.25, 360, 360), $
/ CLOSED

; Creating the window defining the view

W NDOW 2, XSIZE = 512, YSIZE = 512

SCALE3, XRANGE = [-0.25,0.25], YRANCGE = [-0.25,0.25], $
ZRANGE = [-0.25,0.25], AX =0, AZ = -90

; Displaying data with inage as texture nap.

SET_SHADING LIGHT = [-0.5, 0.5, 2.0]

I P. BACKGROUND = ! P. COLOR

TVSCL, POLYSHADE(vertices, polygons, SHADES = i mage, /T3D)
1 P. BACKGROUND = 0

END

Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 237

Mapping an Image onto a Sphere Using Object
Graphics

This example maps an image containing world el evation data onto the surface of a
sphere and displaysthe result using the XOBJVIEW utility. This utility automatically
creates the window object and the view abject, previously shown in the section,
“Initializing the IDL Display Objects’ on page 225. Therefore, this example creates
an object based on IDLgrModel that contains the sphere, the image and the image
pal ette, as shown in the conceptual representation in the following figure.

< oModel - an IDLgrMode object
containing the sphere, image, and
palette

oPolygon - an object defining the sphere,
containing the image and palette

olmage - an object containing the image
oPdlette - an object defining the color table

Figure 5-7: Conceptualization of XOBJVIEW Object Graphics Example

See “Example Code: Mapping an Image onto a Sphere Using Object Graphics’ on
page 240 for an example that you can copy and paste into an Editor window or
complete the following steps for a detailed description of the process.

Note
If you are continuing the exercise from the previous section, “Mapping an Image
onto a Sphere Using Direct Graphics”, skip steps 1, and 2. Proceed with step 3 to
create the necessary aobjects.

1. Select the world elevation image. Define the array, read in the data and close
thefile.

file = FILEPATH(' worl delv.dat', $
SUBDI RECTCORY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = [360, 360])

Image Processing in IDL Mapping an Image onto a Sphere

238

Chapter 5: Mapping an Image onto Geometry

2. Usethe MESH_OBJprocedureto create a sphere onto which theimage will be

mapped. The following invocation of MESH_OBJ uses avalue of 4, which
represents a spherical mesh:

MESH OBJ, 4, vertices, polygons, REPLICATE(O0.25, 101, 101)

When the MESH_OBJ procedure compl etes, the vertices and polygons
variables contain the mesh vertices and polygona mesh connectivity
information, respectively. Although our image is 360 by 360, we can texture
map the image to a mesh that has fewer vertices. IDL interpolates the image
data across the mesh, retaining all the image detail between polygon vertices.
The number of mesh vertices determines how close to perfectly round the
sphere will be. Fewer vertices produce a sphere with larger facets, while more
vertices make a sphere with smaller facets and more closely approximates a
perfect sphere. A large number of mesh verticeswill increase the time required
to draw the sphere. In this example, MESH_OBJ produces a 101 by 101 array
of vertices that are located in a sphere shape with aradius of 0.25.

Initialize the display objects. In this example, it is necessary to define a model
object that will contain the sphere, the image and the color table palette. Using
the syntax, oNewObj ect = OBJ_NEW ' Cl ass_Nane'), create the model,
pal ette and image objects:

ohvbdel = OBJ_NEW'' I DLgr Model ')

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LOADCT, 33

oPal ette -> SetRGB, 255, 255, 255, 255
ol mage = OBJ_NEW ' I DLgr | nage', inmage, PALETTE = oPal ette)

The previous lines initialize the oPal ette object with the color table and then
set thefinal index value of the red, green and blue bandsto 255 (white) in order
to use white (instead of black) to designate the highest areas of elevation. The
pal ette object is created before the image object so that the palette can be
applied when initializing the image object. For more information, see
IDLgrModel::Init, IDLgrPalette::Init and IDLgrimage::Init.

Create texture coordinates that define how the texture map is applied to the
mesh. A texture coordinate is associated with each vertex in the mesh. The
value of the texture coordinate at avertex determines what part of the texture
will be mapped to the mesh at that vertex. Texture coordinates run from 0.0 to
1.0 across a texture, so atexture coordinate of [0.5, 0.5] at a vertex specifies
that the image pixel at the exact center of the image is mapped to the mesh at
that vertex. In this example, we want to do a simple linear mapping of the
texture around the sphere, so we create a convenience vector that describes the

Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 239

mapping in each of the texture’s x- and y-directions, and then create these
texture coordinates:

vector = FI NDGEN(101)/100.

texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates[0, *, *] = vector # REPLICATE(1l., 101)
texure_coordinates[1, *, *] = REPLICATE(1l., 101) # vector

The code above copies the convenience vector through the array in each
direction.

5. Enter the following line to initialize apolygon object with the image and
geometry data using the | DLgrPolygon::Init function. Set SHADI NG = 1 for
gouraud (smoother) shading. Set the DATA keyword equal to the sphere
defined with the MESH_OBJfunction. Set COLORto draw a white sphere onto
which the image will be mapped. Set TEXTURE_COORD equal to the texture
coordinates created in the previous steps. Assign the image object to the
polygon object using the TEXTURE_MAP keyword and force bilinear
interpolation:

oPol ygons = OBJ_NEW' | DLgr Pol ygon', SHADING = 1, $
DATA = vertices, POLYGONS = pol ygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = ol mage, / TEXTURE_I NTERP)
Note

When mapping an image onto an IDLgrPolygon object, you must specify both
TEXTURE_MAP and TEXTURE_COORD keywords.

6. Add the polygon containing the image and the palette to the model object:
oMbdel -> ADD, oPol ygons
7. Rotate the model -90° along the x-axis and y-axis:

olMbdel -> ROTATE, [1, 0, 0], -90
oMbdel -> ROTATE, [0, 1, 0], -90

8. Display the results using XOBJVIEW, an interactive utility allowing you to
rotate and resize objects:

XOBJVI EW oModel , /BLOCK

Image Processing in IDL Mapping an Image onto a Sphere

240 Chapter 5: Mapping an Image onto Geometry

After displaying the object, you can rotate the sphere by clicking in the display
window and dragging your mouse. Select the magnify button and click near the
middle of the sphere. Drag your mouse away from the center of the display to
magnify the image or toward the center of the display to shrink the image. Select the
left-most button on the XOBJVIEW toolbar to reset the display. The following figure
shows a rotated and magnified view of the world elevation object.

&l Xobjview [_ (O] %]
File Edit iew

(] o] J#[A]

Figure 5-8: Magnified View of World Elevation Object

9. After closing the XOBJVIEW display, remove unneeded object references:
OBJ_DESTROY, [oModel, ol nage, oPalette]

Example Code: Mapping an Image onto a Sphere
Using Object Graphics

Copy and paste the following text into the IDL Editor window. After saving thefile as

MapOnSpher e_QObj ect . pr o, compile and run the program to reproduce the
previous example.

Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 241

PRO MapOnSpher e_(hj ect

; Importing image into |IDL.
file = FILEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI Ms = [360, 360])

; Creating a 51x51 sphere with a constant radius of
; 0.25 to use as the data.
MESH OBJ, 4, vertices, polygons, $

REPLI CATE(0. 25, 101, 101)

; Creating a nodel object to contain the display.
oMbdel = OBJ_NEW' | DLgr Model ')

; Creating image and palette objects to contain the
; inmported i mage and col or table.
oPalette = OBJ_NEW' I DLgrPal ette')
oPal ette -> LoadCT, 33
oPalette -> Set RGB, 255, 255, 255, 255
ol mage = OBJ_NEW' I DLgrl nage', image, $
PALETTE = oPal ette)

; Deriving texture map coordi nates.

vector = FI NDGEN(101)/100.

texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates[0, *, *] = vector # REPLICATE(1l., 101)
texure_coordinates[1, *, *] = REPLICATE(1., 101) # vector

; Creating the polygon object containing the data.
oPol ygons = OBJ_NEW' | DLgr Pol ygon', SHADING = 1, $
DATA = vertices, POLYGONS = pol ygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = ol nage, / TEXTURE_I NTERP)

; Addi ng pol ygon to nodel container. NOTE: the polygon
; object already contains the texture map inmage and its
; related palette.

oMbdel -> ADD, oPol ygons

; Rotating nmodel to display zero degrees latitude and
; zero degrees longitude as front.
oMbdel -> ROTATE, [1, 0, 0], -90
oMbdel -> ROTATE, [0, 1, 0], -90

; Displaying results.
XOBJVI EW oMbdel , /BLOCK

Image Processing in IDL Mapping an Image onto a Sphere

242 Chapter 5: Mapping an Image onto Geometry

; Cleaning up object references.
OBJ_DESTROY, [oModel, ol nage, oPalette]

END

Mapping an Image onto a Sphere Image Processing in IDL

Chapter 6:

Working with Masks
and Image Statistics

This chapter describes the following topics:

Overview of Masks and Image Statistics . 244 Locating Pixel Valuesinanimage 256
Maskinglmages..................... 246 Cdculating Image Statistics 262
Clippinglmages 251

Image Processing in IDL 243

244 Chapter 6: Working with Masks and Image Statistics

Overview of Masks and Image Statistics

M athematical operations used with imagesincludelogic (conditional) operations and
statistics. Logic operations are used to make masks to apply threshold levelsto clip
the pixel values of an image, and to locate pixel values. These operations help to
segment featuresin an image, after which statistics can be derived to provide ameans
of comparison.

Masks are used to isolate specific features. A mask is a binary image, made by using
relational operators. A binary mask is multiplied by the original image to omit
specific areas. For more information, see “Masking Images’ on page 246.

Threshold levels can be applied to an image to clip the pixel valuesto afloor or a
ceiling. Clipping enhances specific features, and is applied through minimum and
maximum operators. After the resulting images are byte-scaled, the specific features
remain while the other areas become part of the background. For more information,
see “ Clipping Images’ on page 251.

Locating pixel values is another way to segment specific features. Mathematical
expressions are used to determine the location of pixels with particular values within
the two-dimensional array representing the image. For more information, see
“Locating Pixel Valuesin an Image” on page 256.

When specific features have been segmented, image statistics (such astotal, mean,
standard deviation, and variance) can be derived to quantify and compare them. For
more information, see “ Calculating Image Statistics” on page 262.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces image math operations and associated IDL math
operators and routines covered in this chapter.

Task Operator(s) and Routine(s) Description
“Masking Relationa Operators Make masks and
Images” on M athematical Operators apply them to
page 246. images.

Table 6-1: Image Math Tasks and Related Image Math Operators and
Routines

Overview of Masks and Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 245

Task Operator(s) and Routine(s) Description

“Clipping Minimum and Maximum Operators | Clip the pixel values

Images’ on M athematical Operators of an image to

page 251. highlight specific

features.

“Locating Pixel | WHERE L ocate specific

Valuesin an Mathematical Operators pixel values within

Image” on an image.

page 256.

“Calculating Mathematical Operators Calculate the sum,

Image IMAGE_STATISTICS mean, standard

Statistics” on deviation, and

page 262 variance of the pixel

values within an
image.

Table 6-1: Image Math Tasks and Related Image Math Operators and

Note

Routines (Continued)

This chapter uses data files from the | DL exanpl es/ dat a and
exanpl es/ deno/ denodat a directories. Two files, dat a. t xt andi ndex. t xt,
contain descriptions of the files, including array sizes.

Image Processing in IDL

Overview of Masks and Image Statistics

246 Chapter 6: Working with Masks and Image Statistics

Masking Images

Masking (also known as thresholding) is used to isolate features within an image
above, below, or equal to a specified pixel value. The value (known as the threshold
level) determines how masking occurs. In IDL, masking is performed with the
relational operators. IDL'srelational operators are shown in the following table.

Operator Description
EQ Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Lessthan

Table 6-2: IDL's Relational Operators

For example, if you have an image variable and you want to mask it to include only
the pixel values equaling 125, the resulting mask variable is created with the
following IDL statement.

mask = i mage EQ 125
The mask level is applied to every element in the image array, which resultsin a
binary image.

Note
You can also provide both upper and lower bounds to masks by using the Boolean
operators; AND, NOT, OR, and XOR. See Boolean Operatorsin the Building IDL
Applications for more information on these operators.

The following example uses masks derived from the image contained in the

wor | del v. dat file, whichisin the exanpl es/ dat a directory. Masks are derived
to extract the oceans and land. These masks are applied back to the image to show
only on the oceans or the land. Masks are applied by multiplying them with the
origina image.

Masking Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 247

For code that you can copy and paste into an Editor window, see “ Example Code:
Masking Images’ on page 249 or compl ete the following steps for a detailed
description of the process.

1. Determine the path to the file:

file = FI LEPATH(' worl delv.dat', $
SUBDI RECTCORY = [' exanples', 'data'])

2. Initialize the image size parameter:
i mageSi ze = [360, 360]
3. Import the image from thefile:
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)
4. |Initialize the display:
DEVI CE, DECOMPCSED = 0
LOADCT, 38
5. Create awindow and display the image:

W NDOW 0, XSIZE = inmgeSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Wrl d El evation'
TV, inage
The following figure shows the original image, which represents the elevation
levels of the world.

Figure 6-1: World Elevation Image

Image Processing in IDL Masking Images

248 Chapter 6: Working with Masks and Image Statistics

6. Make amask of the oceans:
oceanMask = inmge LT 125
7. Multiply the ocean mask by the original image:

maskedl mage = i mage* oceanMask
8. Create another window and display the mask and the results of the
multiplication:

W NDOW 1, XSIZE = 2*inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Cceans Mask (left) and Resulting Inage (right)’

TVSCL, oceanMask, O

TV, maskedl mage, 1

The following figure shows the mask of the world’'s oceans and the results of
applying it to the original image.

Figure 6-2: Oceans Mask (left) and the Resulting Image (right)

9. Make amask of the land:
| andMask = i mage GE 125
10. Multiply the land mask by the original image:

maskedl rage = i nage*| andMask

Masking Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 249

11. Create another window and display the mask and the results of the
multiplication:
W NDOW 2, XSIZE = 2*inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Land Mask (left) and Resulting I mage (right)’

TVSCL, | andwvask, O
TV, maskedl mage, 1

The following figure shows the mask of the land masses of the world and the
results of applying it to the original image.

Figure 6-3: Land Mask (left) and the Resulting Image (right)

Example Code: Masking Images

Copy and paste the following text into the IDL Editor window. After saving thefileas
Maski ngl mages. pr o, compile and run the program to reproduce the previous
example.

PRO Maski ngl mages
; Determine the path to the file.
file = FI LEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize the inmge size paraneters.
i mageSi ze = [360, 360]

; Inmport the image fromthe file.
i mage = READ BI NARY(file, DATA DI M5 = inageSize)

Image Processing in IDL Masking Images

250 Chapter 6: Working with Masks and Image Statistics

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 38

; Create a window and di splay the imge.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmageSize[l], $
TITLE = "Wrld El evation'

TV, image

; Make a mask of the oceans.
oceanMask = inmmge LT 125

; Multiply the ocean mask by the original image.
maskedl mage = i mage* oceanMask

; Create another wi ndow and display the mask and the

; results of the nultiplication.

W NDOW 1, XSIZE = 2*inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Cceans Mask (left) and Resulting Inage (right)’

TVSCL, oceanMask, O

TV, maskedl mage, 1

; Make a nask of the |and.
| andMask = image GE 125

; Miultiply the land mask by the original inmage.
maskedl rage = i nage*| andMask

; Create another wi ndow and display the mask and the

; results of the nultiplication.

W NDOW 2, XSIZE = 2*i nageSi ze[0], YSIZE = i mageSi ze[1], $
TITLE = 'Land Mask (left) and Resulting Image (right)’

TVSCL, |andMvask, O

TV, maskedl mage, 1

END

Masking Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 251
Clipping Images

Clipping is used to enhance features within an image. You provide a threshold level
to determine how the clipping occurs. The values above (or below) the threshold level
remain the same while the other values are set equal to the level.

InIDL, clipping is performed with the minimum and maximum operators. IDL's
minimum and maximum operators are shown in the following table.

Operator Description

< Lessthan or equal to

> Greater than or equal to

Table 6-3: IDL's Minimum and Maximum Operators

The operators are used in an expression that contains an image array, the operator,
and then the threshold level. For example, if you have an image variable and you
want to scale it to include only the values greater than or equal to 125, the resulting
clippedimage variable is created with the following IDL statement.

clippedl mage = i mage > 125

The threshold level is applied to every element in the image array. If the element
valueislessthan 125, it isset equal to 125. If thevalueis greater than or equal to 125,
itisleft unchanged.

Note
When clipping is combined with byte-scaling, this is equivalent to performing a
stretch on an image. See “ Determining Intensity Values When Thresholding and
Stretching Images” in Chapter 11 for more information.

The following exampl e shows how to threshold an image of Hurricane Gilbert, which
isinthehurri c. dat fileintheexanpl es/ dat a directory. Two clipped images are
created. One contains al data values greater than 125 and the other contains all
values less than 125. Since these clipped images are grayscal e images and do not use
the entire 0 to 255 range, they are displayed with the TV procedure and then scaled
with the TV SCL procedure, which scales the range of the image from 0 to 255.

For code that you can copy and paste into an Editor window, see “ Example Code:
Thresholding Images” on page 254 or complete the following steps for a detailed
description of the process.

Image Processing in IDL Clipping Images

252 Chapter 6: Working with Masks and Image Statistics

1. Determine the path to the wor | dt np. png file:

file = FILEPATH(' hurric.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Definethe image size parameter:

i mageSi ze = [440, 340]
3. Import the image from thefile:

i mmge = READ_BINARY(file, DATA DI M5 = inmageSize)
4. |Initiadlizethe display:

DEVI CE, DECOWMPOSED = 0
LOADCT, 0

5. Create awindow and display the image:

WNDOW 0, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = 'Hurricane G| bert'
TV, inage

The following figure shows the origina image of Hurricane Gilbert.

Figure 6-4: Image of Hurricane Gilbert

6. Clip the image to determine which pixel values are greater than 125:
topd i ppedl mrage = i mage > 125

Clipping Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 253

7. Create another window and display the clipped image with the TV (left) and
the TVSCL (right) procedures:

W NDOW 1, XSIZE = 2*i nageSi ze[0], YSIZE = i nmgeSi ze[1], $
TITLE = 'Image Greater Than 125, TV (left) ' + $
"and TVSCL (right)’

TV, topd i ppedl mage, 0O

TVSCL, topdippedl mage, 1

The following figure shows the resulting image of pixel values greater than
125 with the TV and TV SCL procedures.

Figure 6-5: Pixel Values Greater Than 125, TV (left) and TVSCL (right)

8. Clip the image to determine which pixel values are less than a 125:
bot t onCl i ppedl mage = i mrage < 125

9. Create another window and display the clipped image with the TV and the
TVSCL procedures:

W NDOW 1, XSIZE = 2*i nageSi ze[0], YSIZE = i nmgeSi ze[1], $
TITLE = 'Image Less Than 125, TV (left) ' + $
"and TVSCL (right)’

TV, bottonC ippedl mage, 0

TVSCL, bottonClippedl mage, 1

Image Processing in IDL Clipping Images

254

Chapter 6: Working with Masks and Image Statistics

The following figure shows the resulting image of pixel values less than 125
with the TV (left) and TV SCL (right) procedures.

Figure 6-6: Pixel Values Less Than 125, TV (left) and TVSCL (right)

Example Code: Thresholding Images

Copy and paste the following text into the IDL Editor window. After saving thefile as
Cl i ppi ngl mages. pr o, compile and run the program to reproduce the previous

example.

Clipping Images

PRO Cli ppi ngl mages

; Determine the path to the file.
file = FILEPATH(' hurric.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Define the inage size paraneter.
i mageSi ze = [440, 340]

; lnmport image fromthe file.
i mmge = READ_BI NARY(file, DATA DI M5 = inmageSize)

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

; Create a window and display the imge.

W NDOW 0, XSIZE = imageSize[0], YSIZE = inmageSi ze[1], $
TITLE = 'Hurricane G |bert'

TV, inage

Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 255

; Threshold the inage by determ ning which pixel val ues
; are greater than 125.
topThreshold = i mage > 125

; Create another wi ndow and display the threshold imge

; with the TV (left) and the TVSCL (right) procedures.

W NDOW 1, XSIZE = 2*inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = 'Image Greater Than 125, TV (left) ' + $
"and TVSCL (right)’

TV, topThreshold, O

TVSCL, topThreshold, 1

; Threshold the inage by determ ning which pixel val ues
; are |less than 125.
bot t onThreshol d = i mage < 125

; Create another wi ndow and display the threshold imge

; with the TV (left) and the TVSCL (right) procedures.

W NDOW 2, XSIZE = 2*i nageSi ze[0], YSIZE = i mageSi ze[1], $
TITLE = ' I mage Less Than 125, TV (left) ' + $
"and TVSCL (right)’

TV, bottoniThreshol d, 0

TVSCL, bottonThreshold, 1

END

Image Processing in IDL Clipping Images

256 Chapter 6: Working with Masks and Image Statistics

Locating Pixel Values in an Image

Locating pixel values within an image helps to segment features. You can use IDL’s
WHERE function to determine where features characterized by specific values
appear within the image. The WHERE function returns a vector of one-dimensional
indices, locating where the specified values occur within the image. The values are
specified with an expression input argument to the WHERE function. The expression
is defined with the relationa operators, similar to how masking is performed. See
“Masking Images’ on page 246 for more information on relational operators.

Since the WHERE function only returns the one-dimensional indices, you must
derive the column and row locations with the following statements.

colum = i ndex MOD i nageSi ze[0]
row = i ndex/imageSi ze[0]

whereindex is the result from the WHERE function and imageSize[0] isthe width of
the image.

The WHERE function returns one-dimensional indicesto allow you to easily use
these results as subscripts within the original image array or another array. This
ability allows you to combine values from one image with another image. The
following example combines specific values from the image within the

wor | del v. dat file with the image within the wor | dt np. png file. The

wor | del v. dat fileisintheexanpl es/ dat a directory andthewor | dt np. png file
isintheexanpl es/ deno/ denodat a directory. First, the temperature datais shown
in the oceans and the elevation data is shown on the land. Then, the elevation datais
shown in the oceans and the temperature datais shown on the land.

For code that you can copy and paste into an Editor window, see “ Example Code:
Locating Pixel Valuesin an Images’ on page 259 or complete the following steps for
a detailed description of the process.

1. Determine the path to thefile:

file = FILEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initialize the image size parameter:
i mageSi ze = [360, 360]
3. Import the elevation image from the file:
el vimage = READ BI NARY(file, DATA_DIMsS = inageSi ze)

Locating Pixel Values in an Image Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 257

4. |Initiadlize the display:

DEVI CE, DECOMPCOSED = 0
LOADCT, 38

5. Create awindow and display the elevation image:

W NDOW 0, XSIZE = 2*imageSi ze[0], YSIZE = inmgeSi ze[1], $
TITLE = "Wirld Elevation (left) and Tenperature (right)’
TV, elvimage, O

6. Determine the path to the other file:

file = FI LEPATH(' wor |l dtnp. png', $
SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])

7. Import the temperature image:
t npl mage = READ_PNG(fil e)
8. Display the temperature image:
TV, tnplnmage, 1

The following figure shows the origina world elevation and temperature
images.

Figure 6-7: World Elevation (left) and Temperature (right)

9. Determine where the oceans are located within the elevation image:
ocean = WHERE(el vl nage LT 125)

Image Processing in IDL Locating Pixel Values in an Image

258

10.

11.

12.

13.

14.

15.

16.

Chapter 6: Working with Masks and Image Statistics

Set the temperature image as the background:
i mage = tnpl mage

Replace values from the temperature image with the values from the elevation
image only where the ocean pixels are located:

i mage[ocean] = el vl mage[ocean]
Create another window and display the resulting temperature over land image:

W NDOW 1, XSIZE = 2*inmageSize[0], YSIZE = i mageSi ze[1], $
TI TLE = ' Tenperature Over Land (left) ' +
"and Over COceans (right)’

TV, image, O

Determine where the land is located within the elevation image:
| and = WHERE(el vl mage GE 125)

Set the temperature image as the background:
i mage = tnpl nage

Replace values from the temperature image with the values from the elevation
image only where the land pixels are located:

i mge[l and] = el vl mage[l and]
Display the resulting temperature over oceans image:
TV, image, 1

Locating Pixel Values in an Image Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 259

The following figure shows two possible image combinations using the world
elevation and temperature images.

Figure 6-8: Temperature Over Land (left) and Over Oceans (right)

Tip
You could also construct the same image using masks and adding them together.
For example, to create the second image (temperature over oceans), you could have
done the following:

mask = el vl mage GE 125
i mage = (tnplnmage*(1 - nask)) + (el vlimage*mask)

For large images, using masks may be faster than using the WHERE routine.

Example Code: Locating Pixel Values in an Images

Copy and paste the following text into the IDL Editor window. After saving thefile as
Conmbi ni ngl mages. pr o, compile and run the program to reproduce the previous
example.

PRO Combi ni ngl nages
Determ ne the path to the file.

file = FI LEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Image Processing in IDL Locating Pixel Values in an Image

260 Chapter 6: Working with Masks and Image Statistics

; Initialize image size parameter.
i mageSi ze = [360, 360]

; Import the elevation inage fromthe file.
el vimage = READ BI NARY(file, DATA_DIMsS = inageSi ze)

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 38

; Create a window and di splay the elevation inmage.

W NDOW 0, XSl ZE = 2*i mageSi ze[0], YSIZE = inageSize[1l], $
TITLE = "World Elevation (left) and Tenperature (right)’

TV, elvinmage, O

; Determine the path to the other file.
file = FI LEPATH(' worl dtnmp. png', $
SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])

; Import the tenperature inage fromthe other file.
t npl mage = READ_PNG(fil e)

; Display the tenperature i mge.
TV, tnplnmage, 1

; Determ ne where the oceans are located within the
; elevation inmage.
ocean = WHERE(el vl nage LT 125)

; Set the tenperature inmage as the background.
i mage = tnpl nage

; Replace values fromthe tenperature image with val ues
; fromthe elevation i nage only where the ocean pixels
; are | ocated.

i mage[ocean] = el vl mage[ocean]

; Create another wi ndow and display the resulting

; tenperature over |and image.

W NDOW 1, XSIZE = 2*inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Tenperature Over Land (left) ' + $
"and Over COceans (right)'

TV, image, O

: Determne where the land is |ocated within the

; elevation image.
| and = WHERE(el vl mage GE 125)

Locating Pixel Values in an Image Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 261

; Set the tenperature inmage as the background.

i mage = tnpl mage

; Replace values fromthe tenperature image with val ues
; fromthe elevation image only where the |and pixels

; are | ocated.

i mage[l and] = el vl nage[| and]

; Display the resulting tenperature over oceans inage.
TV, image, 1

END

Image Processing in IDL Locating Pixel Values in an Image

262 Chapter 6: Working with Masks and Image Statistics

Calculating Image Statistics

The statistical properties of an image provide useful information, such as the total,
mean, standard deviation, and variance of the pixel values. IDL's
IMAGE_STATISTICS procedure can be used to calculate these statistical properties.
The MOMENT, N_ELEMENTS, TOTAL, MAX, MEAN, MIN, STDDEV, and
VARIANCE routines can also be used to calculate individual statistics, but most of
these values are aready provided by the IMAGE_STATISTICS procedure.

The following example shows how to use the IMAGE_STATISTICS procedure to
calculate the statistical properties of animage. First, amask is used to subtract the
convection of the earth’s core from the convection image contained in the

convec. dat file, whichisintheexanpl es/ dat a directory. Theresulting
difference represents the convection of just the earth’s mantle. The
IMAGE_STATISTICS procedure is applied to this difference image, and the
resulting values are displayed in the Output Log. Then, amask is derived for the non-
zero values of the difference image, and the IMAGE_STATISTICS procedureis used
again, this time with the mask applied through the MASK keyword. The resulting
statistics can than be compared. The color table associated with this example iswhite
for zero values and dark red for 255 values.

For code that you can copy and paste into an Editor window, see step 9, “Determine
the statistics of the difference image:” on page 264 or compl ete the following steps
for adetailed description of the process.

1. Determine the path to thefile:

file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

2. Initidize the image size parameter.

i mageSi ze = [248, 248]
3. Import the image from thefile:

i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)
4. |Initiadlizethe display:

DEVI CE, DECOWMPOSED = 0
LOADCT, 27

Calculating Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 263

5. Create awindow and display the image:

W NDOW 0, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = 'Earth Mantle Convecti on'
TV, inage

The following figure shows the original convection image.

Figure 6-9: Earth Mantle Convection

6. Make amask of the core and scale it to range from 0 to 255:
core = BYTSCL(i mage EQ 255)
7. Subtract the scaled mask from the origina image:

difference = i mage - core
8. Create another window and display the difference of the original image and the
scaled mask:

W NDOW 2, XSIZE = i nmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = 'Difference of Original & Core'
TV, difference

Image Processing in IDL Calculating Image Statistics

264 Chapter 6: Working with Masks and Image Statistics

The following figure shows the convection of just the earth’s mantle.

Figure 6-10: The Difference of the Original Image and the Core

9. Determine the statistics of the difference image:

| MAGE_STATI STICS, difference, COUNT = pixel Number, $
DATA_SUM = pi xel Total , MAXI MUM = pi xel Max, $
MEAN = pi xel Mean, M NIMJUM = pi xelMn, $
STDDEV = pi xel Devi ation, $
SUM _OF _SQUARES = pi xel SquareSum $
VARI ANCE = pi xel Vari ance

10. Print out the resulting statistics:

PRI NT,

PRI NT, ' MAGE STATI STICS:'

PRI NT, 'Total Nunber of Pixels ="', pixel Number

PRI NT, 'Total of Pixel Values ="', pixel Total

PRI NT, ' Maxi mum Pi xel Value ="', pixel Max

PRI NT, ' Mean of Pixel Values ="', pixel Mean

PRI NT, 'M ni mum Pi xel Value ="', pixelMn

PRI NT, 'Standard Deviation of Pixel Values ="', $
pi xel Devi ati on

PRI NT, 'Total of Squared Pixel Values ="', $
pi xel Squar eSum

PRI NT, 'Variance of Pixel Values ="', pixelVariance

Calculating Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics

IDL prints:

| MAGE STATI STI CS:

Tot al Nunber of Pixels = 61504
Total of Pixel Values = 2.6169
Maxi mum Pi xel Value = 253. 000
Mean of Pixel Values = 42.5486
M ni mum Pi xel Value = 0. 000000
St andard Devi ati on of Pixel Va
Total of Squared Pixel Values
Variance of Pixel Values = 238

265

1le+006

| ues 48. 7946
2.57779e+008
0.91

11. Derive amask of the non-zero values of the image:

nonzer oMask difference NE O

12. Determine the statistics of the image with the mask applied:

| MAGE_STATI STI CS, difference,
DATA_SUM = pi xel Tot al ,
MAXI MUM = pi xel Max, MEAN =
M Nl MUM = pi xel M n, STDDEV
SUM_OF_SQUARES = pi xel Squar
VARI ANCE = pi xel Vari ance

13. Print out the resulting statistics:

PRI
PRI
PRI
PRI
PRI
PRI
PRI
PRI

"Total Nunmber of Pixels
'Total of Pixel Values
Maxi mum Pi xel Val ue
Mean of Pi xel Val ues
M ni mum Pi xel Val ue
, 'Standard Devi ation of
pi xel Devi ati on

NT, 'Total of Squared Pixel
pi xel Squar eSum

NT, 'Variance of Pixel

253555555

PRI

PRI Val u

IDL prints:

MASKED | MAGE STATI STI CS:

Tot al Nunber of Pixels = 36325
Tot al of Pixel Values 2.6169
Maxi mum Pi xel Val ue 253. 000
Mean of Pixel Values 72.0416
M ni mum Pi xel Val ue 1. 00000

MASK = nonzer oMask,

COUNT = pi xel Nunber, $
$
pi xel Mean, $

= pixel Devi ati on,

eSum $

$

' MASKED | MVAGE STATI STICS:*

pi xel Nunber

pi xel Tot al

pi xel Max
pi xel Mean

', pixelMn

Pi xel Val ues

$

Val ues $

es

pi xel Vari ance

1le+006

Standard Devi ation of Pixel Values = 43.6638
Total of Squared Pixel Values = 2.57779e+008
Variance of Pixel Values = 1906.53

Image Processing in IDL

Calculating Image Statistics

266 Chapter 6: Working with Masks and Image Statistics

The difference in the resulting statistics are because of the zero values, which
are apart of the calculations for the image before the mask is applied.

Example Code: Calculating Image Statistics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Cal cul atingStatistics. pro,compileand run the program to reproduce the
previous example.

PRO Cal cul atingStatistics

; Determine the path to the file.
file = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize the inmge size paraneter.
i mageSi ze = [248, 248]

; Import the image fromthe file.
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LQADCT, 27

; Create a window and di splay the imge.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmgeSize[l], $
TITLE = 'Earth Mantle Convecti on'

TV, inage

; Make a mask of the core and scale it to range fromO
; to 255.
core = BYTSCL(i mage EQ 255)

; Subtract the scaled mask fromthe original inage.
difference = i mage - core

; Create another wi ndow and display the difference of

; the original inage and the scal ed mask.

W NDOW 1, XSIZE = i mageSize[0], YSIZE = inmngeSi ze[1], $
TITLE = 'Difference of Original & Core'

TV, difference

; Deternmine the statistics of the image.

| MAGE_STATI STI CS, difference, COUNT = pixel Nunber, $
DATA_SUM = pi xel Total , MAXI MUM = pi xel Max, $
MEAN = pi xel Mean, M NIMUM = pi xelMn, $
STDDEV = pi xel Devi ation, $

Calculating Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 267

SUM OF _SQUARES = pi xel SquareSum $
VARI ANCE = pi xel Vari ance

; Print out the resulting statistics.

PRI NT, ''

PRI NT, ' MAGE STATI STICS:'

PRI NT, 'Total Nunber of Pixels ="', pixel Number

PRI NT, 'Total of Pixel Values ="', pixel Total

PRI NT, ' Maxi mum Pi xel Value ="', pixel Max

PRI NT, ' Mean of Pixel Values ="', pixel Mean

PRI NT, 'M ni mum Pi xel Value ="', pixelMn

PRI NT, 'Standard Deviation of Pixel Values ="', $
pi xel Devi ati on

PRI NT, 'Total of Squared Pixel Values ="', $
pi xel Squar eSum

PRI NT, 'Variance of Pixel Values ="', pixelVariance

; Derive a mask of the non-zero val ues of the inage.
nonzerohask = difference NE O

; Determine the statistics of the image with the

; mask appli ed.

| MAGE_STATI STI CS, difference, COUNT = pixel Nunber, $
DATA_SUM = pi xel Total, MASK = nonzeroMask, $
MAXI MUM = pi xel Max, MEAN = pi xel Mean, $
M Nl MUM = pi xel M n, STDDEV = pi xel Devi ati on, $
SUM _OF _SQUARES = pi xel SquareSum $
VARI ANCE = pi xel Vari ance

; Print out the resulting statistics.

PRI NT, ''

PRI NT, ' MASKED | MAGE STATI STICS: '

PRI NT, 'Total Nunber of Pixels ="', pixel Number

PRI NT, 'Total of Pixel Values ="', pixel Total

PRI NT, ' Maxi mum Pi xel Value ="', pixel Max

PRI NT, 'Mean of Pixel Values ="', pixel Mean

PRI NT, 'M ni mum Pi xel Value ="', pixelMn

PRI NT, 'Standard Deviation of Pixel Values ="', $
pi xel Devi ati on

PRI NT, 'Total of Squared Pixel Values ="', $
pi xel Squar eSum

PRI NT, 'Variance of Pixel Values ="', pixelVariance

END

Image Processing in IDL Calculating Image Statistics

268 Chapter 6: Working with Masks and Image Statistics

Calculating Image Statistics Image Processing in IDL

Chapter 7:
Warping Images

This chapter describes the following topics:

Overview of Warping Images 270 Warping Images Using Direct Graphics.. 274
Creating Transparent Image Overlays 272 Warping Images Using Object Graphics . 285

Image Processing in IDL 269

270 Chapter 7: Warping Images

Overview of Warping Images

In image processing, image warping is used primarily to correct optical distortions
introduced by cameralenses, or to register images acquired from either different
perspectives or different sensors. When correcting optical distortions, the original
image may be registered to aregular grid rather than to another image. In image
warping, corresponding control points (selected in the input and reference images)
control the geometry of the warping transformation. The arrays of control points
from the original input image, Xi and ¥i, are stretched to conform to the control point
arrays Xo and Yo, designated in the reference image. Because these transformations
are freguently nonlinear, image warping is often known as rubber sheeting. For
general tips regarding control point selection see “Tips for Selecting Control Points”
on page 271.

Image warping in IDL is athree-step process. First, control points are selected
between two displayed images or between an image and a grid. Second, the resulting
arrays of control points, Xi, Yi, Xo, and Yo, are then input into one of IDL’s warping
routines. Third, the warped image resulting from the translation of the Xi, Yi pointsto
the Xo, Yo points, is displayed. It is often useful to display the warped image as a
transparency, overlaying the reference image. For more information on creating
transparencies with Direct and Object Graphics, see “ Creating Transparent Image
Overlays’ on page 272.

The following table introduces the tasks and routines covered in this chapter.

Task Routine Description
Creating aDirect | WSET Set the window focus and select control
Graphics Display | cURSOR point coordinates.
of Image Warping . .
See “Warping WARP_TRI Warp the Images using WARP_TRI S
. triangulation and interpolation.
Images Using
Direct Graphics” | POLY WARP Create arrays of polynomial coefficients
on page 274. from the control point arrays before
using POLY _2D.
POLY_2D Warp the images using the polynomial

warping functions of POLY_2D.

XPALETTE Use XPALETTE to view acolor table.

Table 7-1: Image Warping Tasks and Routines

Overview of Warping Images Image Processing in IDL

Chapter 7: Warping Images 271

Task Routine Description
Creating an IDLgrPalette::Init Create a palette object.
Object Graphics ;)
Display of Image XROI Sfllgft control points using the XROI
Warping Uty
See “Warping WARP_TRI Warp the input image to the reference
Images Using image using the triangulation and
Object Graphics’ interpolation functions of WARP_TRI.
on page 285. SIZE Change the warped image into a RGB
BYTARR image containing an alpha channel to
enable transparency.
IDLgrImage::Init Initialize transparent image and base
image objects.

IDLgrwindow::Init | Initialize the objects necessary for an
IDLgrView::Init Object Graphics display.

IDLgrModel::Init

Table 7-1: Image Warping Tasks and Routines (Continued)
Tips for Selecting Control Points

Both examplesin this chapter use control points to define the image warping
transformation. To produce accurate results, use the following guidelines when
selecting corresponding control points:

» Select numerous control points. A warping transformation based on many
control points produces a more accurate result than one based on only afew
control points.

» Select control points near the edges of the image in addition to control points
near the center of the image.

» Select ahigher density of control pointsin irregular or highly varying areas of
the image.

» Select pointsin which you are confident. Including points with poor accuracy
may generate worse results then awarp model with fewer points.

Image Processing in IDL Overview of Warping Images

272 Chapter 7: Warping Images

Creating Transparent Image Overlays

It is possible to create and display atransparent image using either IDL Direct
Graphicsor IDL Object Graphics. Creating a transparent image is useful in the
warping process when you want to overlay a transparency of the warped image onto
the reference image (the image in which Xo, Yo control points were selected). The
method used to create and display the transparent image depends on whether the
resulting image is being displayed with Direct Graphics or Object Graphics.

Displaying Image Transparencies Using Direct
Graphics

Creating atransparent overlay in Direct Graphics requires devising amask to alter the
array of theimage that isto be displayed as atransparency. The mask retains only the
pixel values that will appear in the transparent overlay. The base image and the
transparent warped image can then be displayed as a blended image in a Direct
Graphics window.

With Direct Graphics displays, only asingle color table can be applied to the blended
image in adisplay window. For an example of creating a blended image, combining a
warped image and a base image, see “Warping Images Using Direct Graphics’ on
page 274.

Note

For precise control over the color tables associated with the reference image and the
warped image transparency, consider using Object Graphics.

Displaying Image Transparencies Using Object
Graphics

In Object Graphics, atransparent image is created by adding an alpha channel to the
image array. The aphachannel is used to define the level of transparency in animage
object. The Object Graphics examplein this chapter uses the IDLgrlmage object to
create an image object and employs the BLEND_FUNCTION keyword to specify
how the transparency of the alpha channel is applied. Other methods of applying a
transparent object include using the TEXTURE_MAP keyword in conjunction with
either an IDLgrPolygon or IDL grSurface abject.

Creating Transparent Image Overlays Image Processing in IDL

Chapter 7: Warping Images 273

Object Graphics allows precise control over the color palettes used to display image
objects. By initializing a palette object, both the reference image object and the
transparent, warped image object can be displayed using individual color palettes.
For an example, see “Warping Images Using Object Graphics’ on page 285.

Image Processing in IDL Creating Transparent Image Overlays

274

Chapter 7: Warping Images

Warping Images Using Direct Graphics

Image warping requires selection of corresponding control pointsin an input image
and either areference image or aregular grid. The input image is warped so that the
input image control points match the control points specified in the reference image.

Using Direct Graphics, the following example warps the input image, a Magnetic
Resonance Image (MRI) proton density scan of a human thoracic cavity, to the
reference image, a Computed Tomography (CT) bone scan of the same region. For
code that you can copy and paste into an IDL Editor window, see “ Example Code:
Direct Graphics Display of Image Warping” on page 282 or complete the following
steps for a detailed description of the process.

1. Select the MRI proton density imagefile:

nri Fil e= FI LEPATH(' pdt horax124.jpg', $
Subdirectory = ['exanples', 'data'])

Use READ_JPEG to read in the input image, which will be warped to the CT
bone scan image. Then prepare the display device, load agraysca e color table,
create awindow and display the image:

READ_JPEG, nriFile, nrilng

DEVI CE, DECOMPOSED = 0

LOADCT, 0

W NDOW 0, XSIZE = 256, YSIZE = 256, $

TITLE = ' MRl Proton Density |nput |nage'
TV, mrilng

Select the CT bone scan imagefile:

ctboneFile = FILEPATH(' ctbonel57.jpg' , $
Subdirectory = ['exanples', 'data'])

Use READ_JPEG to read in the reference image and create a window:

READ_JPEG, ctboneFile, ctbonelng
W NDOW 2, XSIZE = 483, YSIZE = 410, $
TI TLE = ' CT Bone Scan Reference | nmmge'

Load the “Hue Sat Lightness 2" color table, making theimage's features easier
to distinguish. After displaying the image, return to the gray scale color table.

LOADCT, 20
TV, ctbonel ng
LOADCT, 0

Proceed with the following section to begin selecting control points.

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 275

Direct Graphics Example: Selecting Control Points

This section describes selecting corresponding control points in the two displayed
images. The array of control points (Xi, Yi) in the input image will be mapped to the
array of points (Xo, Yo) selected in the reference image. The following image shows
the points to be selected in the input image.

CP4
(xi4, yid)
ces § cPs.
(xi3, yi3) Suh: (xi5, yi5)
v X
s
CP2 = CP6
(xi2, yi2) —— (xi6, yi6)
CP1
xil, yil CP7
(yiL) (xi7, yi7)

CP9 CP 8
(xi9, yi9) (xi8, yi8)

Figure 7-1: Control Points (CP) Selection in the Input Image

1. Setfocuson thefirst image window:
WBET, 0

2. Select thefirst control point using the CURSOR function. After entering the
following line, the cursor changes to a cross hair when positioned over the
image window. Position the cross hair so that it is on the first control point,
“CP 1", depicted by awhite circlein the lower-left corned of the previous
figure, and click the left mouse button. The X, y coordinate values of the first
control point will be saved in the variables xi1, yil:

CURSOR xi1, yil, /DEVICE

Image Processing in IDL Warping Images Using Direct Graphics

276 Chapter 7: Warping Images

Note
The vauesfor xil and yil are displayed in the IDLDE Variable Watch window. If
you are not running the IDLDE, you cantype PRI NT, xi 1, yil toseethe
values.

Tip
After entering the first line and selecting the first control point in the display
window, place your cursor in the IDL command line and press the Up Arrow key.
Thelast line entered is displayed and can be easily modified.

3. Continue selecting control points. After you enter each of the following lines,
select the appropriate control point in the input image as shown in the previous
figure:

CURSOR, xi 2, yi2, /DEVICE
CURSOR, xi 3, yi3, /DEVICE
CURSOR, xi 4, yi4, /DEVICE
CURSOR, xi 5, yi5, /DEVICE
CURSOR, xi 6, yi6, /DEVICE
CURSOR, xi 7, yi7, /DEVICE
CURSOR, xi 8, yi8, /DEVICE
CURSOR, xi 9, yi9, /DEVICE

4. Set the focus on the window containing the reference image to prepare to
select corresponding control points:

WSET, 2
Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control pointsin the reference image as
you selected in the input image. The control points must also be selected in the
same order since the point Xi1, Yil will be warped to Xo1, Yol.

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images

277

The following figure displays the control pointsto be selected in the next step.

CP4
(xo4,
®
CP3
(x03, yo3) °
CP2 ®
(x02, yo2) > ® 0
CP1
(x0l,y01) — o
CP9
(x09, yo9)

yo4)
CP5
® < (x05, yob)
) CP 6
4 e<«— (x06, yob)
CP7
e «—— (xo7,yo7)
CP8
(x08, yo8)

Figure 7-2: Control Point (CP) Selection in the Reference Image

5. Select the control pointsin the reference image. These are the corresponding
points to which the input image control points will be warped. After entering
each line, select the appropriate control point as shown in the previous figure:

CURSOR,
CURSOR,
CURSOR,
CURSOR,
CURSOR,
CURSOR,
CURSOR,
CURSOR,
CURSOR,

Image Processing in IDL

xol,
X02,
X03,
X04,
X05,
X086,
X07,
X08,
X009,

yol,
yo2,
yo3,
yo4,
y05,
y06,
yo7,
yo8,
yo09,

/ DEVI CE
/ DEVI CE
/ DEVI CE
/ DEVI CE
/ DEVI CE
/ DEVI CE
/ DEVI CE
/ DEVI CE
/ DEVI CE

Warping Images Using Direct Graphics

278 Chapter 7: Warping Images

6. Placethe control pointsinto vectors (one-dimensional arrays) required by IDL
warping routines. WARP_TRI and POLY WARP use the variables Xi, Yi and
Xo, Yo as containers for the control points selected in the original input and
reference images. Geometric transformations control the warping of the input
image (Xi, Yi) values to the reference image (Xo, Yo) values. Enter the
following lines to load the control point valuesinto the one-dimensional

arrays:
Xi = [xil, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9]
Yi = [yil, yi2, yi3, yid4, yib5, yi6, yi7, yi8, yi9]
Xo = [xo0l, xo02, x03, xo04, xo05, x06, x07, x08, x09]
Yo = [yol, yo2, yo3, yo4, yo5, yo6, yo7, yo8, yo9]

Example Code: Warping and Displaying a Transparent Image
Using Direct Graphics

This section uses the control points defined in the previous section to warp the
origina MRI scan to the CT scan, using both of 1DL’s warping routines, WARP_TRI
and POLY_2D. After outputting the warped image, it will be altered for display asa
transparency in Direct Graphics.

1. Warp the input image, mrilmg, onto the reference image using WARP_TRI.
Thisfunction usestheirregular grid of the reference image, defined by Xo, Yo,
as abasis for triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI (Xo, Yo, Xi, Yi, |mage, OUTPUT_SI ZE=vect or]
[, /QUNTIC] [, /EXTRAPCLATE])

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of the selected control points:

war pTrilng = WARP_TRI (Xo, Yo, Xi, Yi, nrilmy, $
QUTPUT_SI ZE=[483, 410], /EXTRAPOLATE)

Note
I mages requiring more aggressive warp models may not have good results outside
of the extent of the control points when WARP_TRI is used with the
/EXTRAPOLATE keyword.

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 279

2. Create anew window and display the warped image:
W NDOW 3, XSIZE = 483, YSIZE = 410, TITLE = 'WARP_TR i nmage'
TV, warpTrilng

You can see the how precisely the control points were selected by the amount
of distortion in the resulting warped image. The following figure shows little
distortion.

1 WARP_TRI image
—

Figure 7-3: Warped Image Produced with WARP_TRI

3. Use POLYWARP in conjunction with POLY _2D to create another warped
image for comparison with the WARP_TRI image. First use the POLY WARP
procedure to create arrays (p, g) containing the polynomial coefficients
required by the POLY _2D function:

POLYWARP, Xi, Yi, Xo, Yo, 1, p, q

4. Usingthe p, q array values generated by POLY WARP, warp the original
image, mrilmg, onto the CT bone scan using the POLY _2D function syntax,

Result = POLY_2D(Array, P, Q[, Interp [, Dinx, Diny]]
[, cuBIC={-1to 0}] [, M SSING=val ue])

Specify avaueof 1 for thel nt er p argument to use bilinear interpolation and
set Di nX, Di mY equal to the reference image dimensions:

war pPol yl ng = POLY_2D(nrilng, p, g, 1, 483, 410)

Image Processing in IDL Warping Images Using Direct Graphics

280 Chapter 7: Warping Images

5. Create anew window and display the image created using POLY_2D:

W NDOW 4, XSIZE = 483, YSIZE = 410, TITLE = 'Poly_2D i mage'
TV, war pPol yl ng
The following image shows little difference from the WARP_TRI image other
than more accurate placement in the display window.

1 Poly_2D image

Figure 7-4: Warped Image Produced with POLY_2D

Direct Graphics displaysin IDL alow you to display a combination of imagesin the
same Direct Graphics window. The following steps display various intensities of the
warped image and the reference image in a Direct Graphics window.

6. Usethe XPALETTE tool to view the color table applied to the bone scan
image by first entering:

XPALETTE

Inthe XPALETTE utility, display a color table by selecting the Predefined
button. In the resulting XLOADCT dialog, scroll down and select Hue
Saturation Lightness2. Click Done. Inthe XPALETTE utility, click Redraw.
Compare the bone scan image, displayed in window 2, to the displayed color
table. To mask out the less important background information, select a color
close to that of the body color in the image.

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 281

The following figure displays a portion of the XPALETTE utility with such a
selection.

55
: | I
By Index
Flow
7
: | I
Tolurn

Figure 7-5: Using XPALETTE to Identify Mask Values

7. Using the knowledge that the body color’sindex number is 55, mask out the
less important background information of the bone scan image by creating an
array containing only pixel values greater than 55. Multiply the mask by the
image to retain the color information and use BY TSCL to scale the resulting
array from O to 255:

ctboneMask = BYTSCL((ctbonelng GI 55) * ctbonel ng)

8. Display ablended image using the full intensity of the bone scan image and a
75% intensity of the warped image. The following statement displays the
pixelsin the bone scan with the full range of colorsin the color table while
using the lower 75% of the color table values for the warped image. After
adding the arrays, scale the results for display purposes:

bl endl ng = BYTSCL(ct boneMask + 0.75 * war pPol yl ng)
9. Create awindow and display the result:

W NDOW 5, XSIZE = 483, YSIZE = 410, TITLE = ' Bl ended | nmage'
TV, bl endl ng

Image Processing in IDL Warping Images Using Direct Graphics

282 Chapter 7: Warping Images

The clavicles and rib bones of the reference image are clearly displayed in the
following figure.

Figure 7-6: Direct Graphics Display of a Transparent Blended Image

While Direct Graphics supports displaying indexed images as transparent blended
images, you could also apply alpha blending to RGB images that are output to a
TrueColor display. However, creating image transparencies which retain their color
information is more easily accomplished using Object Graphics. For an example of
using Object Graphicsto display awarped image transparency over another image
see “Warping Images Using Object Graphics’ on page 285.

Example Code: Direct Graphics Display of Image Warping

Copy and paste the following text into an IDL Editor window. After saving thefile as

MRI Var pi ng_di rect . pr o, compile and run the program to reproduce the previous
example.

PRO MRI War pi ng_Di r ect
Sel ect the MR proton density scan file.
nriFile = FI LEPATH(' pdthorax124.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

Read in the MRl file, prepare the display,
| oad the gray scale color table and display the imge.

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 283

READ JPEG nriFile, milng

DEVI CE, DECOMPOSED = 0, RETAIN = 2

LOADCT, O

W NDOW 0, XSIZE = 256, YSIZE = 256, $
TITLE = ' MRl Proton Density Input |nmage'

TV, mrilng

; Select the CT bone scan file.
ctboneFile = FILEPATH(' ctbonel57.jpg' , $
SUBDI RECTCRY = [' exanples', 'data'])

; Read in the file and create another w ndow.
READ_JPEG, ctboneFile, ctbonelng
W NDOW 2, XSIZE = 483, YSIZE = 410, $

TI TLE = ' CT Bone Scan Reference | nmmge'

; Display the image with a color table to highlight
; features.

LOADCT, 20

TV, ctbonelng

; Return to the gray scale palette
LOADCT, O

; Designate the control points in the input inmage

; (nrilng) in window 0). In the exanple steps, these
; points were selected with the CURSOR function.

Xi = [21, 65, 104, 129, 161, 198, 235, 170, 107]

Yi = [25, 131, 207, 229, 211, 121, 16, 134, 140]

; Designate the corresponding control points in the
; reference image (ctbonelng in window 2). In the

; exanple steps, these points were selected with the
; CURSOR function.

Xo [34, 121, 183, 243, 303, 377, 454, 319, 198]
Yo [10, 207, 357, 400, 363, 206, 12, 222, 233]

; Using the control points, warp the input inmage
; (nrilng) onto the reference inage (ctbonelng).
war pTrilng = WARP_TRI (Xo, Yo, Xi, Yi, mrilmy, $
QUTPUT_SI ZE = [483, 410], /EXTRAPOLATE)
; Di spl ay new i mage.
W NDOW 3, XSIZE = 483, YSIZE = 410, $
TITLE = ' WARP_TRI i mage'
TV, warpTrilng

; Use POLYWARP to create the variables (p,q) needed by

. POLY_2D.
POLYWARP, Xi, Yi, Xo, Yo, 1, p, q

Image Processing in IDL Warping Images Using Direct Graphics

284 Chapter 7: Warping Images

; Using the values generated by POLYWARP, warp the

; original image. Specify 1 for bilinear interpolation
; and set the output size equal to the ctbonel ny i mage
; di nensions.

war pPol ylmg = POLY_2D(nrilng, p, q, 1, 483, 410)

; Create a window and display the imge.

W NDOW 4, XSIZE = 483, YSIZE = 410, $
TITLE = ' Poly_2D i mage'

TV, war pPol yl ng

; Mask out the | ower pixel values in the ctbonelng
; i mage.
ctboneMask = BYTSCL((ctbonelng GI 55) * ctbonel ng)

; Display an image using the full intensity of the bone
; scan inmage and a 75%intensity of the warped inage.
bl endl g = BYTSCL(ct boneMask + 0.75 * war pPol yl ng)

; Display the bl ended inage.

W NDOW 5, XSIZE = 483, YSIZE = 410, $
TI TLE = ' Bl ended | nage’

TV, bl endl ng

END

Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 285
Warping Images Using Object Graphics

The following example warps an African land-cover characteristicsimage to a
political map of the continent. After displaying the images and selecting control
points in each image using the XROI utility, the resulting warped image is altered to
include an alpha channel, enabling transparency. Image objects are then created and
displayed in an IDL Object Graphics display. For code that you can copy and paste
into an IDL Editor window, see “Example Code: Object Graphics Display of Image
Warping” on page 295 or complete the following steps for a detailed description of
the process.

1. Select the political map image. Thisisthe reference image to which the land
cover image will be warped:
mapFi | e= FI LEPATH(' afrpolitsmpng', $
Subdirectory = ['exanples', 'data'])

2. Use READ_PNG routine to read in the file. Specify mapR, mapG, mapB to
read in the image's associated color table:

mapl g = READ_PNG napFil e, mapR, napG mapB)
3. Using IDLgrPalette::Init, assign the image's color table to a pal ette object,
which will be applied to an image object in alater step:
mapPal ette = OBJ_NEW' I DLgrPal ette', nmapR, mapG mapB)
4. Select and open the land cover input image, which will be warped to the map:

| andFil e = FILEPATH(' africavlc.png' , $
Subdirectory = ['exanples', 'data'])
| andl ng = READ_PNG (landFile, |andR, |andG |andB)

Object Graphics Example: Selecting Control Points

This section describes using the XROI utility to select corresponding control points
in the two images. The arrays of control pointsin the input image, (Xi, Yi), will be
mapped to the array of points selected in the reference image, (Xo, Yo).

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control pointsin the reference image as
you select in the input image. The control points must also be selected in the same
order since the point Xil, Yi1 will be warped to Xo1, Yol.

Image Processing in IDL Warping Images Using Object Graphics

286 Chapter 7: Warping Images

The following figure shows the points to be selected in the input image.

CP7 CP 8 CP9 CP 10
(xi7, yi7) (xi8, yi8) (x9i, yi9) (xil10, yi10)

CpP11
(xil1, yi11)

CP 6 ,
(xi6, yi6) . .) cP12
N : Lo /(xuz, yi12)
CP 13
8(|i355yi5) (xi13, yi13)
CP 4
(xi4, yid)
cR3 CP 14
(xi3, yi3) \(xi14, yil4)
CP2
(xi2, yi2)
CP .. CP 16 CP 15
(xi1, yil) (xi16, yi16) (xi15, yi15)

Figure 7-7: Selecting Control Points in the Input Image

Reasonably precise warping of the land classification image to the political map
requires selecting numerous control points because of the irregularity of the
continent’s border. Select the control pointsin the land classification image as
described in the following steps.

1. Load theimage and its associated color table into the XROI utility, specifying
the REGIONS_OUT keyword to save the region defined by the control points
in the landROIl out object:

XROl, landlng, |landR, |andG |andB, $
REG ONS_OUT = | andRO out, /BLOCK

Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 287

Select the Draw Polygon button from the XROI utility toolbar shown in the
following figure. Position the crosshairs symbol over CP1, shown in the
previous figure, and click the left mouse button. Repeat this action for each
successive control point. After selecting the sixteenth control point, position
the crosshairs over the first point selected and click the right mouse button to
close theregion. Your display should appear similar to the following figure.

Draw Polygon

&l Rl [_ O]]
File Edit

CIRE M

w 479w 406 z 0 [Dutside)

Figure 7-8: Selecting Control Points Using XROI

Note
It is of no concern that portions of the continent lie outside the polygonal boundary.
The EXTRAPOLATE keyword to WARP_TRI enables warping of theimage areas
lying outside of the boundary of control points. However, images requiring more
aggressive warp models may not have good results outside of the extent of the
control pointswhen WARP_TRI is used with the /[EXTRAPOLATE keyword.

Image Processing in IDL Warping Images Using Object Graphics

288 Chapter 7: Warping Images

2. Closethe XROI window and assign the landROI out object datato the Xi and ¥i
control point vectors:
| andRO out -> GetProperty, DATA = | andRO data

Xi I andRA dat a[0, *]
Yi I andRO dat a[1, *]

The following figure displays the corresponding control pointsto be selected in the
reference image of the political map. These control points will make up the Xo and
Yo arrays required by the IDL warping routines.

CP7 CP 8 CP9 CP 10
(xo7, yo7) (x08, yo8) (x09, yo9) (x010, yol0)

CP11
(xo011, yol1l)

CP6
(x06, yob)

\ * xouakehont
Y apre g

Bamake 2= fu

CP 12
(x012, yo12)

(x05, yo5) CP 13
oo ner AR 2 (x013, yo13)
CP 4 trrezaville e Ioh },,P t\ mnm(,...4.....='
(X04, y04) '*lu”“ b uﬂE -.. TAMEANLA e
CP 3 oo T uh]
(x03, yo3) o (N { b € e
--‘- CP 14
CP 2) ..I?__‘\'ll“hnck BOTSWANA "c. (X014, y014)
P B TR
(x02, yo2) " e

eabung]
R‘}Uﬂl !M.uz.u’ AR

AFRIC.

CP1 / \CP 16 CP 15

(xo1, yol) (x016, yol6) (x015, yo15)

Figure 7-9: Control Points to be Selected in the Reference Image

Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 289

3. Load the image of the political map and its associated color table into the
XROI utility, specifying the REGIONS_OUT keyword to save the selected
region in the mapROIout object:

XRO, maplng, mapR, mapG napB, $
REG ONS_OUT=rmapROl out , / BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol over CP1, shown in the previous figure, and click the left
mouse button. Repeat this action for each successive control point. After
selecting the sixteenth control point, position the crosshairs over the first point
selected and click the right mouse button to close the region. Your display
should appear similar to the following figure.

Figure 7-10: Selecting Control Points Using XROI

4. Close the XROI window and assign the mapROI out object data to the Xo and
Yo control point vectors:

mapROl out -> Get Property, DATA=nmapRO data
Xo = mapRA dat a[0, *]
Yo = mapRO dat a[1, *]

Image Processing in IDL Warping Images Using Object Graphics

290 Chapter 7: Warping Images

Object Graphics Example: Warping and Displaying a
Transparent Image

The following section describes warping the land cover image to the political map
and creating image objects. The resulting warped image will then be madeinto a
transparency by creating an alpha channel for the image. Finally, the transparent
object will be displayed as an overlay to the original political map.

1. Warp the input image, landimg, onto the reference image using WARP_TRI.
Thisfunction usestheirregular grid of the reference image, defined by Xo, Yo,
as abasis for triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, I|Inage
[, OQUTPUT_SI ZE=vector][, /QUINTIC] [, /EXTRAPOLATE]
)

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of selected control points:

war pl ng = WARP_TRI (Xo, Yo, Xi, Yi, landling, $
QUTPUT_SI ZE=[600, 600], /EXTRAPOLATE)

2. Whilenot required, you can quickly check the precision of the warp in a Direct
Graphics display before proceeding with creating a transparency by entering
the following lines:

DEVI CE, DECOMPOSED = 0

TVLCT, l|andR, |andG | andB

W NDOW 3, XSIZE = 600, YSIZE = 600, $
TITLE = ' I mage Warped with WARP_TRI'

TV, war pl ng

Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 291

Precise control point selection resultsin accurate warping. If thereis little
distortion, as in the following figure, control points were successfully selected
in nearly corresponding positionsin both images.

Figure 7-11: Resulting Warped Image

3. A transparent image object must be a grayscale or an RGB (24-hit) image
containing an apha channel. The apha channel controls the transparency of
the pixels. See IDLgrImage::Init for more information.

The following lines convert the warped image and its associated color table
into a RGB image containing four channels (red, green, blue, and alpha). First,
get the dimensions of the warped image and then use BY TARR to create
alphawar p, a 4-channel by xdim by ydim array, where (xdim, ydim) are the
dimensions of the warped image:

war pl ngDi s = S| ZE(war pl ng, / Di nensi ons)

al phavarp = BYTARR(4, warpl ngDi ns[0], warplngDi ns[1])

4. Loadthered, green and blue channels of the warped land characteristicsimage

into the first three channel s of the alphaWarp array:

al phavarp[0, *, *]

al phavarp[1, *, *]
al phavarp[2, *, *]

I andR[war pl ng]
I andd war pl ng]
| andB[war pl ng]

Image Processing in IDL Warping Images Using Object Graphics

292 Chapter 7: Warping Images

5. Definethe transparency of the alpha channel. First, create an array, masking
out the black background of the warped image (where pixel values equal 0) by
retaining only pixels with values greater than 0O:

mask = (warplng GI 0)

Apply the resulting mask to the alpha channel, the fourth channel of the array.
This channel creates a 50% transparency of the pixels of the first three
channels (red, green, blue) of the alphaWarp by multiplying the mask by 128B
(byte). Alpha channel values range from 0 (compl etely transparent) to 255
(completely opaque):

al phavarp [3, *, *] = mask*128B
Note
You can set the transparency of an entireimage. To set the transparency of all pixels
at 50% in this example, your could replace the two previous steps with the
following two lines:
mask = BYTARR(s[O0], s[1]) + 128
al phavarp [3, *, *] = mask

6. Initialize the transparent image object using IDLgrlmage::Init. Specify the
BLEND_FUNCTION property of the image object to control how the alpha
channel isinterpreted. Setting the BLEND_FUNCTION to [3, 4] alowsyou to
see through the foreground image to the background. The foreground opacity
is defined by the alpha channel value, specified in the previous step:

oAl phaWarp = OBJ_NEW ' | DLgr | mage', al phavarp, $
DI MENSI ONS = [600, 600], BLEND_FUNCTION = [3, 4])

7. Initidize the reference image object, applying the pal ette created earlier:

oMapl ng = OBJ_NEW ' I DLgrlmage', maplng, $
DI MENSI ONS = [600, 600], PALETTE = nmapPal ette)

8. Using IDLgrWindow::Init, initialize awindow object in which to display the
images:

oW ndow = OBJ_NEW' | DLgr Wndow , DI MENSIONS = [600, 600], $
RETAIN = 2, TITLE = ' Overlay of Land Cover Transparency')

Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 293

9. Create aview object using IDLgrView::Init. The VIEWPLANE_RECT
keyword controls the image display in the Object Graphics window. First
create an array, viewRect, which specifies the x-placement, y-placement, width,
and height of the view surface. The values0, 0 place the (0, 0) coordinate of
viewing surface in the lower-left corner of the Object Graphics window:

viewRect = [0, 0, 600, 600]
oView = OBJ_NEW ' | DLgrView , VIEWPLANE_RECT = vi ewRect)

10. Using IDLgrModel::Init, initialize amodel object to which the images will be
applied. Add the base image and the transparent al pha image to the model:
oModel = OBJ_NEW' | DLgr Model ')

oMbdel -> Add, oMapl ng
oMbdel -> Add, oAl phaWarp

Note
I mage objects appear in the Object Graphics window in the order in which they are
added to the model. If atransparent object is added to the model before an opague
object, it will not be visible.

11. Add the model, containing the images, to the view and draw the view in the
window:

oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

Image Processing in IDL Warping Images Using Object Graphics

294 Chapter 7: Warping Images

The following figure shows the warped image transparency overlaid onto the
origina reference image, the political map.

Figure 7-12: Object Graphics Display of the Political Map with a Transparent
Land Cover Overlay

12. Use OBJ_DESTROY to clean up unneeded object references including the
region objects:

OBJ_DESTROY, [oView, oMaplng, oAl phaVWarp, $
nmapPal ette, | andRO out, mapRA out]

Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 295

Example Code: Object Graphics Display of Image Warping

Copy and paste the following text into an IDL Editor window. After saving thefile as
Tr anspar ent War pi ng_obj ect . pr o, compile and run the program to reproduce
the previous example.

PRO Transpar ent War pi ng_0Obj ect

; Open the political map, the base image to which the
; land cover image will be warped.
mapFi | e= FI LEPATH(' afrpolitsmpng', $
SUBDI RECTCRY = [' exanples', 'data'])
mapl ng = READ_PNG napFil e, mapR, napG mapB)

; Assign the maplng's color table to a palette object.
mapPal ette = OBJ_NEW' I DLgrPalette', nmapR, mapG mapB)

; Open the | and cover characteristics imge
; that will be warped to the political map.
| andFil e = FILEPATH(' africavlc.png', $
SUBDI RECTCRY = [' exanples', 'data'])
| andl ng = READ_PNG (landFile, |andR, |andG |andB)

; Select the control point using the polygon tool in
;o XRO .
XRO, landlng, |landR, |andG |andB, $
REG ONS_OUT = | andRO out, /BLOCK
PRI NT, 'Select control points using Draw Pol ygon tool'
; Assign the RO data to the Xi and Yi control point
; vectors.
| andRO out -> GetProperty, DATA = | andRO data
Xi = landRO dat a[0, *]
Yi = landRO data[1, *]

; Select the control point in the reference inmage
; using the polygon tool in XRO.
XRO, maplng, mapR, mapG mapB, $
REA ONS_OUT = mapRO out, /BLOCK
PRI NT, 'Select control points using Draw Pol ygon tool'
; Assign the RO data to the Xo and Yo control point
; vectors.
mapROl out -> Get Property, DATA = napRO data
Xo = mapRO dat a[0, *]
Yo = mapRO dat a[1, *]

; Using the control point vectors, warp the |and

; classification inmage to the political nap.

war pl ng = WARP_TRI (Xo, Yo, Xi, Yi, landlnmg, $
QUTPUT_SI ZE = [600, 600], /EXTRAPOLATE)

Image Processing in IDL Warping Images Using Object Graphics

296

Chapter 7: Warping Images

; Quickly display the warped image in a Direct Graphics
; window to check the precision of the warp. Load the
; image's associated color table and display it.
DEVI CE, DECOMPOSED = 0
TVLCT, landR, |landG | andB
W NDOW 3, XSIZE = 600, YSIZE = 600, $
TITLE = ' I mage Warped with WARP_TRI'
TV, warplng

; Make the warped land classification inage into a

; 24-bit RGB image in order to use al pha bl ending.
war pl ngDi n8 = S| ZE(war pl ng, /D nensions)

al phavarp = BYTARR(4, warpl ngD ns[0], warplngDi ns[1])

; Get the red, green and bl ue val ues used by the inmage
; and assign themto the first three channels of the

; al pha imge array.

al phavarp[0, *, *]
al phavarp[1, *, *]
al phavarp[2, *, *]

I andR[war pl ng]
| andd war pl ng]
| andB[war pl ng]

; Create a transparency nmask, the sanme size as the

; warplng array. Mask out the black pixels with a

; values of 0. Set the al pha channel by multiplying

; the mask by 128, resulting in a 50% transparency.
mask = (warplng GI 0)

al phavarp [3, *, *] = mask*128B

; To alter the transparency, change the value 128. This
; value can range fromO (conpletely transparent) to

; 255 (conpl etely opaque).

; Create the objects necessary for the bject G aphics
; display. Create the transparent overlay inmage object.
oAl phaWarp = OBJ_NEW' | DLgr I mage', al phavarp, $

DI MENSI ONS = [600, 600], BLEND_FUNCTION = [3,4])

; Create the background, nmaplng object and apply its
; palette.
oMapl ng = OBJ_NEW ' I DLgrlmage', maplng, $

DI MENSI ONS = [600, 600], PALETTE = mmpPal ette)

; Create a window in which to display the objects.
oW ndow = OBJ_NEW ' | DLgr Wndow , $

DI MENSI ONS = [600, 600], RETAIN =2, $

TITLE = ' Overlay of Land Cover Transparency')

; Create a view.
viewRect = [0, 0, 600, 600]

Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 297

oView = OBJ_NEW ' | DLgrView , VIEWPLANE_RECT = vi ewRect)

; Create a nodel object.
oModel = OBJ_NEW' | DLgr Model ')

; Add the transparent image after the adding the base
;i mage.

oMbdel -> Add, oMaplng

oMbdel -> Add, oAl phaWarp

; Add the nodel containing the inmages to the view
oVi ew - > Add, olbdel

; Draw the view in the w ndow.
oW ndow -> Draw, oView

; Clean up objects.
OBJ_DESTROY, [oView, oMaplng, oAl phaVWarp, $
mapPal ette, | andRO out, nmapRO out]

END

Image Processing in IDL Warping Images Using Object Graphics

298 Chapter 7: Warping Images

Warping Images Using Object Graphics Image Processing in IDL

Chapter 8:

Working with Regions
of Interest (ROIs)

This chapter describes creating and analyzing regions of interest (ROl s) and includesthe following

topics:

Overview of WorkingwithROIs. 300 GrowingaRegion 317
Defining Regions of Interest 303 Creating and Displaying an ROl Mask .. 324
Displaying ROI Objectsin a Direct Graphics Testing an ROI for Point Containment . .. 330
Window 306 Creating a Surface Mesh of an ROl Group 334

Programmatically Defining ROIs and
Computing Geometry and Pixel Statistics . 311

Image Processing in IDL

299

300 Chapter 8: Working with Regions of Interest (ROISs)

Overview of Working with ROIs

A region of interest (ROI) is an area of an image defined for further analysis or
processing. There are several ways to define ROIs. The XROI utility enables the
interactive definition of single or multiple regions from an image using the mouse.
Routines such as CONTOUR or REGION_GROW enable the programmatic
definition of ROIS. CONTOUR traces the outlines of thresholded ROIs while the
REGION_GROW routine expands an initial region to include all connected,
neighboring pixels that meet given conditions. Once an ROI is defined, it can be
displayed or undergo further analysis.

An ROI can be displayed using either Direct Graphics or Object Graphics. In Direct
Graphics, the DRAW_ROI routine quickly displays single or multiple ROI objects or
an ROI group. In Object Graphics, the XROI utility displays defined ROIs and can
output ROI datato specified ROI objects. Any ROI object, whether defined
programmatically or interactively, can undergo further processing as an analysis-
oriented IDLanROI object, or can be used for display as an IDLgrROI object. See
IDLanROI and IDLgrROI in the IDL Reference Guide for more information.

Note
When computing ROI geometry, there is a difference between aregion’s areawhen
itisdisplayed on a screen versus the region’s computed, geometric area. See
“Contrasting an ROI's Geometric Areaand Mask Area” on page 302 for details.

Multiple ROIs can also be defined from a multi-image data set and added to an
IDLanROIGroup object for triangulation into a 3D mesh. Alternatively, multiple
ROIs can be defined in a single image and added to a group object. ROl groups can
be displayed in a Direct Graphics window with DRAW_ROI or with the Object
Graphics XOBJVIEW utility.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description
“Defining Regions | XROI Create an ROI
of Interest” on interactively, prior to
page 303. analysisor display.

Table 8-1: Tasks and Routines Associated with Regions of Interest

Overview of Working with ROIs Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 301
Task Routine(s)/Object(s) Description
“Displaying ROI DRAW_ROI Display ROI objectsin a
Objectsin aDirect Direct Graphics window.
Graphics Window”
on page 306.
“Programmatically | CONTOUR Define ROIs using

Defining ROIsand | DRAW_ROI CONTOUR and display
Computing IDLanROI::ComputeMask them using DRAW_ROI.
Geometry and Pixel | IMAGE_STATISTICS Return various statistics
Statistics” on IDLanROI::ComputeGeometry for each ROI.
page 311.

“Growing a REGION_GROW Expand an original region
Region” on to include all connected,
page 317. neighboring pixels which

meet specified
congtraints.
“Creating and IDLanROI::ComputeMask Create a 2D mask of an

Displaying an ROI ROI, compute the area of
Mask” on the mask and display a
page 324. magnified view of the

image region.

“Testing an ROI for
Point Containment”
on page 330.

IDLanROI::ContainsPoints

Determine whether a
point lies within the
boundary of aregion.

“Creating a Surface
Mesh of an ROI
Group” on

page 334.

IDLanROIGroup::Add
IDLanROIGroup::ComputeMesh
XOBIVIEW

Add ROIsto an ROI
group object, triangulate
a surface mesh and
display the group aobject
using XOBJVIEW.

Table 8-1: Tasks and Routines Associated with Regions of Interest (Continued)

Image Processing in IDL

Overview of Working with ROls

302 Chapter 8: Working with Regions of Interest (ROISs)

Contrasting an ROI's Geometric Area and Mask Area

When working with ROI's, many users note a discrepancy between the computation
of an ROI’'s geometric area and the computation of the mask area (the number of
pixelsan ROI contains when displayed). Intuition might lead one to believe that the
results should be the same. However, as the following figure shows, the computed
geometric area (the result of a pure mathematical calculation) differs from the
displayed (masked) area, which is subject to the artifacts of digital sampling.

When displaying aregion (or computing the area of its mask), each vertex of the
region is mapped to a corresponding discrete pixel location. No matter where the
vertex falls within the pixel, the entire pixel location is set since the region is being
displayed. For example, for any vertex coordinate (x, y) where:

l1.5<sx <2 5and 1.5<y <25

the vertex coordinate is assigned avalue of (2, 2). Therefore, the area of the displayed
(masked) region istypicaly larger than the computed geometric area. While the
geometric area of a 2 by 2 region equals 4 as expected, the mask area of the identical
region equals 9 due to the centering of the pixels when the region is displayed.

(2,4) (4,4) (.2.4) (:.4)
4%
A
A/ . .
2,2) (4,2) 2,2) (4,2)

Geometric Area

2 x 2 region = 4 Screen Display of Same Region
[] . N

(0,0) (0,0) 3 x 3 filled region = 9

Figure 8-1: A Region’s Undisplayed Area (left) vs. Displayed Area (right)

The ROI Information dialog of the XROI utility reportsthe region’s “ Area’
(geometric area) and “# Pixels’ (mask ared). To programmatically compute an ROI’'s
geometric area, use | DLanROI::ComputeGeometry. To programmatically compute
the area of adisplayed region, use IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS. See “Programmatically Defining ROIs and Computing
Geometry and Pixel Statistics” on page 311 for examples of these computations.

Overview of Working with ROIs Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 303

Defining Regions of Interest

The XROI utility allows you to quickly load an image file, define single or multiple
ROIs, and obtain geometry and statistical data about the ROIs. While regions can be
defined programmatically (see “ Programmatically Defining ROIs and Computing
Geometry and Pixel Statistics” on page 311 and “ Growing a Region” on page 317),
the XROI utility enables the interactive creation and selection of an ROI using the
mouse.

For aquick introduction to creating ROIs using XROI, complete the following steps:

1. Open XROI by typing the following at the command line:
XRA

2. Load animage using the image file selection dialog. Select ear t h. j pg from
theexanpl es/ deno/ denpdat a directory. Click Open.The image appearsin
the XROI utility.

The XROI toolbar contains the following buttons:

E Save: Opens afile selection dialog for saving ROIsto a. sav file.
Info: Opensthe ROI Information window for the currently
defined ROI.
Copy: Copies the contents of the display areato the clipboard.
11 Flip: Flips theimage verticaly. Any defined ROIs do not move.

Depending on the value of the TOOL S keyword, the XROI toolbar may also contain
the following buttons:

* Click this button to translate or scale ROIs. Mouse down
inside the bounding box selects a region, mouse motion
Translate/ translates (repositions) the region. Mouse down on ascale
Scale: handle of the bounding box enables scaling (stretching,
enlarging and shrinking) of the region according to mouse
motion. Mouse up finishes the translation or scaling.

Image Processing in IDL Defining Regions of Interest

304 Chapter 8: Working with Regions of Interest (ROISs)

Click this button to draw rectangular ROIs. Mouse down
O ")
Draw positions one corner of the rectangle, mouse motions creates
Rectangle: therectangle, positioning the rectangle’s opposite corner,
mouse up finishes the rectangular region.

= Click this button to draw elliptical ROIs. Mouse down
Draw positions the center of the ellipse, mouse motion positions
Ellipse: the corner of the ellipse’s bounding box, mouse up finishes

theelliptical region.

i Draw Draw freehand ROIs. M ouse down begins an ROI, mouse
Freehand: motion defines the ROI vertices (following the path of the
mouse), mouse up closes the ROI.

oz Draw Draw polygon ROIs. Mouse down begins an ROI,
Polygon: subsequent mouse clicks add vertices, double-click closes
the ROI.
i3 Select: Select an ROI. Clicking the image draws a cross hairs

symbol at the nearest vertex of the selected ROI.

Flip theimage vertically to display it right-side-up by clicking the Flip button.

4. Select the Draw Freehand button and use the mouse to interactively define an
ROI encompassing the African continent. Your image should be similar to the
following figure.

&1 ROI o [=] 3
File Edit

‘Elﬂ B0 x|o|o| 4] | & &)/ROI Information oI

Fiegions of Interest:

Arear 2819.5000
Perimeter: 238.21336
Pirels: 2967
Minimum: — MNAA
Marimum: A&
Mean: WA
Std. Dev.: MNAA

B Mame:|Fegion 1 Delete ROI
Cloze | Histogranm |

Figure 8-2: Defining an ROI of Africa and Showing the ROI Information Dialog

Defining Regions of Interest Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 305

5. After releasing the mouse button, the ROI Information dialog appears,
displaying ROI statistics. You can now define another ROI, save the defined
ROl asa. sav fileor exit the XROI utility.

Using XROI syntax allows you to programmatically load an image and specify a
variable for REGIONS_OUT that will contain the ROI data. The region data can then
undergo further analysis and processing. The following code lines open the
previously opened image for ROI creation and selection and specify to save the
region data as oROI Africa.

; Select the file, read the data and | oad the image’s col or table.
ingFile = FILEPATH(' earth.jpg', $
SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])
i mmge = READ_| MAGE(ingFile, R, G B)
TVLCT, R G B

; Display the i mage using XRO . Specify a variable for REG ONS_OUT

; to save the RO information.

XROl, image, R, G B, REG ONS_OUT = oRO Africa
The ROI information, oROI Africa, can then be analyzed using IDLanROI methods or
the REGION_GROW procedure. The ROI data can also be displayed using
DRAW_ROI or asan IDLgrROI object. Such tasks are covered in the following
sections.

Image Processing in IDL Defining Regions of Interest

306 Chapter 8: Working with Regions of Interest (ROISs)

Displaying ROI Objects in a Direct Graphics
Window

The DRAW_ROI procedure displays single or multiple IDLanROI objectsin a Direct
Graphics window. The procedure allows you to layer the ROIs over the original
image and specify the line style and color with which each regionis drawn. The
DRAW_ROI procedure also provides ameans of easily displaying interior regions or
“holes” within adefined ROI.

The following example uses the XROI utility to define two regions, afemur and tibia
from aDICOM image of a knee, and draws them in a Direct Graphics window. For
code that you can copy and paste into an Editor window, see “Example Code:
Displaying ROIs in a Direct Graphics Window” on page 309 or complete the
following steps for adetailed description of the process.

1. Preparethe display device and load a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

2. Select and open the image file using the READ_DICOM function and get its
size:

kneel ng = READ_DI COM FI LEPATH(' nT _knee.dcni, $
SUBDI RECTCRY = [' exanples','data']))
dims = Sl ZE(kneel ng, / DI MENSI ONS)

3. Rotate the image 180 degrees so that the femur will be at the top of the display:
kneel ng = ROTATE(BYTSCL(kneel ng), 2)

4. Openthefileinthe XROI utility to create an ROI containing the femur. The
following lineincludes the ROI_GEOMETRY and STATISTICS keywords so
that specific ROl information can be retained for printing in a later step:

XROl, kneelng, REGI ONS_OUT = femurRO out, $
ROl _GEOMETRY = fenur Geom $
STATI STICS = femurStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar, shown in the
following figure. Position the crosshairs anywhere along the border of the
femur and click the left mouse button to begin defining the ROI. Move your
mouse to another point along the border and left-click again. Repeat the
process until you have defined the outline for the ROI. To close the region,
double-click the left mouse button. Your display should appear similar to the
following figure.

Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 307

Close the XROI utility to store the ROI information in the variable,
femur ROl out.

EREBERREEER T Draw Polygon
™ |

Figure 8-3: Defining the Femur ROI

5. Create an ROI containing the tibia, using the following XROI statement:

XROl, kneelng, REGI ONS_OUT = tibiaRO out, $
ROl _GEOMVETRY = ti bi aGeom $
STATI STICS = tibiaStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol anywhere along the border of the tibia and draw the region
shown in the following figure, repeating the same steps as those used to define
the femur ROI. Close the XROI utility to store the ROI information in the
specified variables.

Figure 8-4: Defining the Tibia ROI

Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

308 Chapter 8: Working with Regions of Interest (ROISs)

6. Create aDirect Graphics display containing the origina image:

WNDOW 0, XSIZE = dins[0], YSIZE = dins[1]
TVSCL, kneel ng

7. Load the 16-level color tableto display the regions using different colors. Use
DRAW_ROI statements to specify how each ROI isdrawn:

LOADCT, 12
DRAW RO, fenmurRO out, /LINE_FILL, COLOR = 80, SPACING = 0.1,

$
ORI ENTATI ON = 315, /DEVICE
DRAW RO, tibiaRO out, /LINE_FILL, COLOR = 42, SPACING = 0.1,

$
ORI ENTATION = 30, /DEVICE
In the previous statements, the ORIENTATION keyword specifies the degree
of rotation of the lines used to fill the drawn regions. The DEVICE keyword
indicates that the vertices of the regions are defined in terms of the device
coordinate system where the origin (0,0) isin the lower-left corner of the
display.
Your results should appear similar to the following figure, with the ROI objects
layered over the original image.

Figure 8-5: Defined Region Objects Overlaid onto Original Image

Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 309

8. Print the statistics for the femur and tibia ROIls. This information has been
stored in the femur Geom, femur Stat, tibiaGeom and tibiaSat variable
structures, defined in the previous XROI statements. Use the following linesto
print geometrical and statistical datafor each ROI:

PRI NT, ' FEMJR Regi on Ceonetry and Statistics'

PRI NT, "area =', fenurCGeom area, $
"perineter ="', fenmurGeom perineter, $
"popul ation =, fenurStats. count

PRI NT,

PRI NT, 'TIBlI A Regi on Ceonetry and Statistics'

PRI NT, "area =', tibiaGeomarea, $
"perineter ="', tibiaGeom perineter, $
"popul ation =, tibiaStats.count

Note
Notice the difference between the “area” value, indicating the region’s geometric
area, and the “ population” vaue, indicating the number of pixels covered by the
region when it is displayed. This difference is expected and is explained in the
section, “Contrasting an ROI's Geometric Areaand Mask Area’ on page 302.

9. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [fenurRO out, tibiaRO out]
Example Code: Displaying ROIs in a Direct Graphics Window

Copy and paste the following text into the IDL Editor window. After saving thefile as
Dr awRO ex. pr o, compile and run the program to reproduce the previous example.

PRO Dr awROl ex

; Prepare the display device.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open the inage file and get its size.

kneel ng = READ_DI COM FI LEPATH(' nT _knee. dcni , $
SUBDI RECTCRY = [' exanples','data']))

dims = Sl ZE(kneel ng, / DI MENSI ONS)

; Flip the image vertically.
kneel ng = ROTATE(BYTSCL(kneel ng), 2)

; Open the file in the XRO utility to select the fermur region.

XROl, kneelng, REGI ONS_OUT = femurRO out, $
ROl _GEOMVETRY = fenur Geom $

Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

310 Chapter 8: Working with Regions of Interest (ROISs)

STATI STICS = fenurStats, /BLOCK

; Open the file in XRO to select tibia region.
XRO, kneelng, REGI ONS_OUT = tibiaRO out, $
ROl _GEOMETRY = ti bi aGeom $
STATISTICS = tibiaStats, /BLOCK

; Create a window and di splay the original inmage.
WNDOW 0, XSIZE = dins[0], YSIZE = dins[1]
TVSCL, kneel ng

; Load the 16-1evel colortable to display regions in color
; and draw themin a Direct G aphics w ndow.
LOADCT, 12

DRAW RO, fenurRO out, /LINE_FILL, COLOR = 80, SPACING = 0.1, $
ORI ENTATI ON = 315, /DEVICE
DRAW RO, tibiaRO out, /LINE_FILL, COLOR = 42, SPACING = 0.1, $

ORI ENTATI ON = 30, /DEVICE

; Print selected stats for the femur and tibia.
PRI NT, ' FEMJR Regi on Ceonetry and Statistics'

PRI NT, "area =', fenurGeom area, $
' perimeter ="', fenurGeom perineter, $
popul ation ="', fenurStats. count
PRI NT, ' '
PRI NT, 'TIBlI A Regi on Ceonetry and Statistics'
PRI NT, "area =', tibiaGeomarea, $
' perimeter = ', tibiaGeom perineter, $
popul ation =", tibiaStats.count

; Destroy object references.
OBJ_DESTROY, [fenurRO out, tibiaRd out]

END

Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 311

Programmatically Defining ROIs and
Computing Geometry and Pixel Statistics

While most examplesin this chapter use interactive methods to define ROIs, aregion
can also be defined programmatically. The following example uses thresholding and
the CONTOUR function to programmatically trace region outlines. After the path
information of the regions has been input into ROI objects, the DRAW_ROI
procedure displays each region. The example then computes and returns the
geometric area and perimeter of each region as well as the number of pixels making
up each region when it is displayed.

For code that you can copy and paste into an Editor window, see “ Example Code:
Defining an ROI and Computing ROI Statistics” on page 314 or complete the
following steps for adetailed description of the process.

1. Prepare the display device and load a color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

2. Select and open the image file and get its dimensions:

i ng = READ PNG(FI LEPATH(' mi neral .png', $
SUBDI RECTCORY = [' exanples', 'data']))
dinms = S| ZE(i ng, /DI MENSI ONS)

3. Create awindow and display the original image:

W NDOW 0, XSl ZE = di ms[0], YSIZE = di ms[1]
TVSCL, ing

The following figure displays the initial image.

Figure 8-6: Initial Image

Image Processing in IDLProgrammatically Defining ROIs and Computing Geometry and Pixel Sta-

312 Chapter 8: Working with Regions of Interest (ROIs)

4. Create amask that identifies the darkest pixels, whose values are less than 50:

threshlmg = (ing LT 50)

Note

See “Determining Intensity Values When Thresholding and Stretching Images’ on
page 486 for a useful strategy to use when determining threshold values.

5. Create and apply a 3x3 square structuring element, using the erosion and
dilation operators to close gaps in the thresholded image:

strucEl em = REPLI CATE(1, 3, 3)
t hreshl ng = ERCDE(DI LATE(TEMPCRARY(t hreshling), $
strucEl em), strucEl em

6. Usethe CONTOUR procedure to extract the boundaries of the thresholded
regions. Store the path information and coordinates of the contours in the
variables pathlnfo and pathXY as follows:

CONTOUR, threshlng, LEVEL =1, $
XMARG N = [0, 0], YMARAN = [0, 0], $
/ NOERASE, PATH I NFO = pathinfo, PATH XY = pat hXY, $
XSTYLE = 5, YSTYLE = 5, /PATH_DATA_COORDS

The PATH_INFO variable contains the path information for the contours.
When used in conjunction with the PATH_XY variable, containing the
coordinates of the contours, the CONTOUR procedure records the outline of
closed regions. See CONTOUR in the IDL Reference Guide for full details.

7. Display the original image in a second window and load a discrete color table:

W NDOW 2, XSl ZE = dims[0], YSIXE = di ms[1]
TVSCL, ing
LQOADCT, 12

8. Input the data of each of the contour pathsinto IDLanROI objects:
FOR | = 0, (N_ELEMENTS(Pathinfo) - 1) DO BEG N & $

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Defining an ROl and
Computing ROI Statistics’ on page 314.

Programmatically Defining ROIs and Computing Geometry and Pixel Statistics /mage Processing

Chapter 8: Working with Regions of Interest (ROIs) 313

9. Initialize oROI with the contour information of the current region:

line = [LINDGEN(Pathlnfo(l).N), 0] & $

oRO = OBJ_NEW'IDLanRO', $
(pat hXY(*, pathinfo(l).OFFSET + line))[0, *], $
(pathXY(*, pathlinfo(l).OFFSET + line))[1, *]) & $

10. Draw the ROI object in a Direct Graphics window using DRAW_ROI:
DRAW RO, oRO, COLOR =80 & $

11. Usethe IDLanROI::ComputeM ask function in conjunction with
IMAGE_STATISTICS to obtain maskArea, the number of pixels covered by
theregion when it is displayed. The variable, maskResult, isinput as the value
of MASK in the second statement in order to return the maskArea:

maskResult = oRO -> ConputeMask($
DIMENSIONS = [dinms[0], dins[1]]) & $

| MAGE_STATI STICS, inmgy, MASK = naskResult, $
COUNT = naskArea & $

12. Use the IDLanROI::ComputeGeometry function to return the geometric area
and perimeter of each region. In the following example, SPATIAL_SCALE
defines that each pixel represents 1.2 by 1.2 millimeters:

RO Stats = oRO -> ConputeGeonetry($
AREA = geomArea, PERI METER = perineter, $
SPATIAL_SCALE = [1.2, 1.2, 1.0]) & $
Note
Thevauefor SPATIAL _SCALE in the previous statement is used only as an
example. The actua spatial scale valueistypically known based upon equipment
used to gather the data.

13. Print the statistics for each ROl when it is displayed and wait 3 seconds before
proceeding to the display and analysis of the next region:

PRINT, ' ' & $

PRINT, 'Region''s mask area = ', $
FI X(maskArea), ' pixels' & $

PRINT, 'Region''s geonetric area = ', $
FI X(geomArea), ' mm & $

PRINT, 'Region''s perinmeter = ", $
FI X(perineter)," mi & $

VAIT, 3

14. Remove each unneeded object reference after displaying the region:
OBJ_DESTROY, oRO & $

Image Processing in IDLProgrammatically Defining ROIs and Computing Geometry and Pixel Sta-

314

Chapter 8: Working with Regions of Interest (ROISs)

15. End the FOR loop:
ENDFOR

The outlines of the ROIs recorded by the CONTOUR function have been
translated into ROI objects and displayed using DRAW_ROI. Each region’s
“mask area,” (computed using IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS) shows the number of pixels covered by theregion
when it is displayed on the screen.

Each region’s geometric area and perimeter, (computed using
IDLanROI::ComputeGeometry’s SPATIAL_SCALE keyword) resultsin the
following geometric area and perimeter measurements in millimeters.

Region's magk area = 2600 pixelz Region's magk area = 1669 pixelz

Region's geametric area = 3520 mm Region's geametric area = 2262 mm

Region's perimeter = 416 mm Region's perimeter = 285 mm
Region's mask area = 4193 pixelz
Region's geometric area = 5754 mm
Region's perimeter = BEE mm
Region's mask area = 26 pixels
Region's geometric area = 23 mm
Region's perimeter = 23 mm

Figure 8-7: Display of Programmatically Defined Regions

Example Code: Defining an ROl and Computing ROI Statistics

Copy and paste the following text into the IDL Editor window. After saving thefile as
Progr anDef i neRO . pr o, compile and run the program to reproduce the previous
example.

PRO Pr ogr anDef i neRO

Prepare the di splay device.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

Sel ect and open the inage file and get its size.
i ng = READ _PNG(FI LEPATH(' mi neral .png', $
SUBDI RECTCORY = ['exanples', 'data']))
dims = S| ZE(i ng, /DI MENSI ONS)

Programmatically Defining ROIs and Computing Geometry and Pixel Statistics /mage Processing

Chapter 8: Working with Regions of Interest (ROIs) 315

; Create a window and di splay the original inmage.
W NDOW 0, XSIZE = dins[0], YSIZE = dinms[1]
TVSCL, ing, O

; Create a mask that identifies the darkest pixels,
; whose values are | ess than 50.
threshlng = (inmg LT 50)

; Get rid of gaps, applying a 3x3 elenent to the inmage

; using the erosion and dilation norphol ogical

; operators.

strucEl em = REPLI CATE(1, 3, 3)

threshl ng = ERODE(DI LATE(TEMPORARY(t hreshing), $
strucEl em), strucEl em

; Extract the contours of the threshol ded i mage.
CONTOUR, threshlng, LEVEL =1, $
XMARG N = [0, 0], YMARG N = [0, 0], $
/ NCERASE, PATH_ I NFO = pathlnfo, PATH XY = pathXY, $
XSTYLE = 5, YSTYLE = 5, /PATH_DATA_COORDS

; Display the original inage in a second w ndow and
; load a discrete color table.

WNDOW 2, XSIZE = dins[0], YSIZE = dins[1]

TVSCL, ing

LOADCT, 12

; For each region, feed the contours into an | DLgrRO
; object for display with DRAW RO .
FOR | =0, (N_ELEMENTS(pathlinfo) - 1) DO BEG N

; Initialize the IDLgrRO object with the contour
; information of the current region with the FOR
; 1 oop.
line = [LINDGEN(pathl nfo(l).N), 0]
ORO = OBJ_NEW'IDLanRO ', $
(pat hXY(*, pathlnfo(l).OFFSET + line))[0, *], $
(pat hXY(*, pathinfo(l).OFFSET + line))[1, *])

; Draw each RO defined by thresholding and
; contouring.
DRAW RO, oRO, COLOR = 80

; Use ConputeMask in conjunction with

; | MAGE_STATI STICS to obtain the nunber of pixels

; covered by the regi ons when di spl ayed.

maskResult = oRO -> Conput eMask(DI MENSI ONS = $
[dims[0], dins[1]])

Image Processing in IDLProgrammatically Defining ROIs and Computing Geometry and Pixel Sta-

316 Chapter 8: Working with Regions of Interest (ROISs)

| MAGE_STATI STICS, ing, MASK = maskResult, $
COUNT = maskAr ea

; Use ConputeGeonetry to obtain the geonetric area
; and perinmeter of each region where 1 pixel =
1.2 x 1.2 mm
RO Stats = oRO -> ConputeGeonetry($

AREA = geonArea, PERI METER = perineter, $

SPATI AL_SCALE = [1.2, 1.2, 1.0])

; Print the statistics of each RO when it is
; displayed and wait 3 seconds before proceeding to
; next region.

PRI NT,

PRINT, 'Region''s mask area =, $
FI X(maskArea), ' pixels'

PRINT, 'Region''s geonetric area =', $
FI X(geomArea), ' mm

PRINT, 'Region''s perinmeter ="', $
FI X(perineter), ' mm

VAIT, 3

; Renpve each unneeded object reference after
; displaying it.
OBJ_DESTROY, oRO

; End the FOR | oop.
ENDFOR

END

Programmatically Defining ROIs and Computing Geometry and Pixel Statistics /mage Processing

Chapter 8: Working with Regions of Interest (ROIs) 317
Growing a Region

The REGION_GROW function is an analysis routine that allows you to identify a
complicated region without having to manually draw intricate boundaries. This
function expands a given region based upon the constraints imposed by either a
threshold range (minimum and maximum pixel values) or by a multiplier of the
standard deviation of the origina region. REGION_GROW expands an original
region toinclude all connected neighboring pixelsthat fall within the specified limits.

Thefollowing exampleinteractively definesan initial region within across-section of
ahuman skull. Theinitial region is then expanded using both methods of region
expansion, thresholding and standard deviation multiplication.

For code that you can copy and paste into an Editor window, see “ Example Code:
Growing an ROI” on page 322 or complete the following steps for a detailed
description of the process.

1. Preparethe display device and load a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

2. Select thefile, read in the data and get the image dimensions:

file = FI LEPATH(' nd1107g8a.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

READ_JPEG, file, ing, /GRAYSCALE

dinms = S| ZE(i ng, /DI MENSI ONS)

3. Doublethe size of theimage for display purposes and compute the new
dimensions:

i Mg = REBIN(BYTSCL(ing), dins[0]*2, dins[1]*2)
dims = 2*di ns

4. Create awindow and display the original image:

WNDOW 0, XSIZE = dins[0], YSIZE = dinms[1], $
TITLE = "dick on Inage to Sel ect Point of RO’
TVSCL, ing

Image Processing in IDL Growing a Region

318 Chapter 8: Working with Regions of Interest (ROISs)

The following figure shows theinitial image.

Figure 8-8: Original Image Showing Region to be Selected

5. Definethe original region pixels. Using the CURSOR function, select the
original region by positioning your cursor over the image and clicking on the
region indicated in the previous figure by the “+” symbol. Then create a 10 by
10 sguare ROI, named roipixels, at the selected X, y, coordinates:

CURSOR, xi, yi, /DEVICE
X = LI NDGEN(10*10) MOD 10 + xi
y = LINDGEN(10*10) / 10 + yi
roi Pixels = x +y * dins[0]
Note
A region can also be defined and grown using the XROI utility. See the XROI
procedure in the IDL Reference Guide for more information.

6. Delete the window after selecting the point:
WDELETE, 0
7. Set the topmost color table entry to red:

topdr = !D TABLE SIZE - 1
TVLCT, 255, 0, 0, topCr

Growing a Region Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 319

8. Display theinitial region using the previously defined color:

regi onPts = BYTSCL(ing, TOP = (topClr - 1))

regi onPts[roi Pixels] = topClr

WNDOW 0, XSIZE = dins[0], YSIZE = dinms[1], $
TITLE = ' Original Region'

TV, regionPts

The following figure shows theinitial ROI that will be input and expanded with the
REGION_GROW function.

Original
Region

Figure 8-9: Square ROI at Selected Coordinates

9. Using the REGION_GROW function syntax,

Result = REGI ON_GRON Array, RO Pixels [, /ALL_NElI GHBORS]
[, STDDEV_MULTIPLI ER=val ue | THRESHOLD=[mi n, max]])

input the original region, roipixels, and expand the region to include all
connected pixels which fall within the specified THRESHOLD range:

newRO Pi xel s
THRESHOLD

REGI ON_GROWi ng, roi Pixels, $
[215, 255])

Note
If neither the THRESHOLD nor the STDDEV_MULTIPLIER keywords are
specified, REGION_GROW automatically applies THRESHOLD, using the
minimum and maximum pixels values occurring within the origina region.

Image Processing in IDL Growing a Region

320

Chapter 8: Working with Regions of Interest (ROISs)

10. Show the results of growing the original region using threshold values:

Note

regionlng = BYTSCL(img, TOP = (topClir-1))

regi onl ng[newRA Pi xel s] = topdr

WNDOW 2, XSIZE = dims[0], YSIZE = dins[1], $
TI TLE = ' THRESHOLD G own Regi on'

TV, regionlng

An error message suchas“ Attenpt to subscript REG ONIMG with
NEWRO PI XELS i s out of range” indicatesthat the pixel valueswithin the
defined region fall outside of the minimum and maximum THRESHOLD values.
Either define aregion containing pixel values that occur within the threshold range
or alter the minimum and maximum values.

The left-hand image in the following figure shows that the region has been expanded
to clearly identify the optic nerves. Now expand the original region by specifying a
standard deviation multiplier value as described in the following step.

11. Expand the original region using avalue of 7 for STDDEV_MULTIPLIER:

st ddevPi xel s = REG ON_GROWNi ng, roi Pixels, $
STDDEV_MULTI PLI ER = 7)

12. Create a new window and show the resulting ROI:

Growing a Region

WNDOW 3, XSIZE = dims[0], YSIZE = dins[1], $
TI TLE = "STDDEV_MULTI PLI ER Grown Regi on"

regionlng2 = BYTSCL(ing, TOP = (topdr - 1))

regi onl ng2[st ddevPi xel s] = topClr

TV, regionlng2

Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 321

The following figure displays the results of growing the original region using
thresholding (left) and standard deviation multiplication (right).

Figure 8-10: Regions Expanded Using REGION_GROW

Note
Your results for the right-hand image may differ. Results of growing aregion using
a standard deviation multiplier will vary according to the exact mean and deviation
of the pixel values within the original region.

Image Processing in IDL Growing a Region

322 Chapter 8: Working with Regions of Interest (ROIs)

Example Code: Growing an ROI

Copy and paste the following text into the IDL Editor window. After saving thefile as
Regi onGr owEx. pr o, compile and run the program to reproduce the previous
example.

PRO Regi onG owEx

; Prepare the display device and |oad a grayscal e col or
; table.

DEVI CE, DECOMPOSED = 0, RETAIN = 2

LOADCT, 0

; Load an inmage and get the inmage di mensions.
file = FILEPATH(' nd1107g8a.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])
READ JPEG file, ing, /GRAYSCALE
dinms = Sl ZE(i ng, /Dl MENSI ONS)

; Doubl e the size of the inage for display purposes and
; get the new di nensions.

i ng = REBI N(BYTSCL(ing), dins[0]*2, dins[1]*2)

dims = 2*dinms

; Create a window and di splay the imge.

WNDOW 0, XSIZE = dins[0], YSIZE = dinms[1], $
TITLE = "dick on Inage to Sel ect Point of RO’

TVSCL, ing

; Define the original region pixels. Use the CURSOR

; function to select the region, naking a 10x10 square
; at the selected x,y, coordi nates.

CURSOR, xi, yi, /DEVICE

x = LI NDGEN(10*10) MOD 10 + Xi

y = LINDGEN(10*10) / 10 + yi

roi Pixels = x +y * dins[0]

; Delete the wi ndow after selecting the point.
WDELETE, O

; Set the topnost color table entry to red.

topdr = !D TABLE SIZE - 1

TVLCT, 255, 0, 0O, topCr

; Scale the array, setting the maxi mum array val ue
; equal to one less than the value of topdr.
regionPts = BYTSCL(inmg, TOP = (topClr - 1))

; Show the results of the original region selection.

Growing a Region Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 323

regi onPts[roi Pixels] = topClr

WNDOW 0, XSIZE = dins[0], YSIZE = dinms[1], $
TITLE = ' Original Region'

TV, regionPts

; Grow the region. The THRESHOLD val ues are determ ned

; enmpirically.

newROl Pi xel s = REGI ON_GROWNi ng, roi Pixels, $
THRESHOLD = [215, 255])

; Show the result of the region grown using

; threshol di ng.

regionlmg = BYTSCL(img, TOP = (topClr - 1))

regi onl ng[newRO Pi xel s] = topdr

WNDOW 2, XSIZE = dims[0], YSIZE = dins[1], $
TI TLE = ' THRESHOLD G own Regi on'

TV, regionlng

Show the results of grow ng the region using
; STDDEV_MULTI PLIER in a new w ndow.

stddevPi xel s = REGI ON_GRONi ng, roi Pixels, $
STDDEV_MULTI PLI ER = 7)

WNDOW 3, XSIZE = dims[0], YSIZE = dins[1], $
TI TLE = "STDDEV_MULTI PLI ER Grown Regi on"

regionlng2 = BYTSCL(ing, TOP = (topdr - 1))

regi onl ng2[st ddevPi xel s] = topClr

TV, regionlng2

END

Image Processing in IDL Growing a Region

324 Chapter 8: Working with Regions of Interest (ROIs)

Creating and Displaying an ROI Mask

The IDLanROI::ComputeMask function method defines a 2D mask of aregion
object, returning an array in which all pixelsthat lie outside of the region have avalue
of 0. The mask can then be used to extract the portion of the original image that lies
within the ROI. The following example defines an ROI, computes amask, appliesthe
mask to retain only the portion of the image defined by the ROI, and produces a
magnified view of the ROI. For code that you can copy and paste into an Editor
window, see “Example Code: Defining an ROl Mask” on page 327 or complete the
following steps for adetailed description of the process.

1. Select thefile, read in the data and get the image dimensions:

file = FI LEPATH(' md5290fcl.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

READ JPEG file, ing, /GRAYSCALE

dims = S| ZE(ing, /DI MENSI ONS)

2. Passtheimage to XROI and use the Draw Polygon tool to define the region
shown in the following figure:

XRO, ing, REG ONS_OUT = RO out, /BLOCK
Close the XROI window to save the region object datain the variable, ROlout.

L] 3] B[n] x|9| o] 4| {H— Draw Polygon

-

Figure 8-11: ROI Definition in XROI

Creating and Displaying an ROl Mask Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 325

3. Assignthe ROI datato the arrays, x and y:

RO out -> GetProperty, DATA = RO data
RO dat a[0, *]
RO dat a[1, *]

X =
y =
4. Set the properties of the ROI:

RO out -> SetProperty, COLOR = [255,255,255], THICK = 2
5. Initialize an IDLgrlmage object containing the origina image data:

olmg = OBJ_NEW'IDLgrlmage', ing, $
DI MENSI ONS = di ns)

6. Create awindow in which to display the image and the ROI:

oW ndow = OBJ_NEW ' | DLgr Wndow , DI MENSIONS = dims, $
RETAIN = 2, TITLE = ' Selected RO ")

7. Create the view plane and initialize the view:

viewRect = [0, 0, dins[0], dins[1]]
oView = OBJ_NEW ' | DLgrView , VIEWLANE_RECT = vi ewRect)

8. Initialize amodel object and add the image and ROI to the model. Add the
model to the view and draw the view in the window to display the ROI overlaid
onto the original image:

oMbdel = OBJ_NEW' | DLgr Model ')
oMbdel -> Add, olng
oMbdel -> Add, RO out

oVi ew -> Add, oMbdel
oW ndow -> Draw, oView

9. UsethelDLanROI::ComputeMask function to create a2D mask of the region.
Pixels that fall outside of the ROI will be assigned avalue of 0:

maskResul t = RO out -> Conput eMask(DI MENSI ONS = di nrs)

10. Usethe IMAGE_STATISTICS procedure to compute the area of the mask,
inputting maskResult as the MASK value. Print count to view the number of
pixels occurring within the masked region:

| MAGE_STATI STICS, ing, MASK = MaskResult, COUNT = count
PRI NT, "area of mask = ', count,' pixels'

Note
The COUNT keyword to IMAGE_STATISTICS returns the number of pixels
covered by the ROI when it is displayed, the same value as that shown in the
“# Pixels’ field of XROI's ROI Information dialog.

Image Processing in IDL Creating and Displaying an ROI Mask

326

11.

12.

13.

14.

15.

Chapter 8: Working with Regions of Interest (ROISs)

From the ROI mask, create a binary mask, consisting of only zeros and ones.
Multiply the binary mask times the original image to retain only the portion of
the image that was defined in the original ROI:

mask = (maskResult GT 0)
masklng = inmg * nmask

Using the minimum and maximum values of the ROI array, create a cropped
array, croplmg, and get its dimensions:

croplng = masklng[m n(x):max(x), mn(y): max(y)]

cropbDi ns8 = S| ZE(cropl ng, /DI MENSI ONS)
Initialize an image object with the cropped region data:

oMasklng = OBJ_NEW' I DLgrl mage', croplng, $
DI MENSI ONS = di ns)
Using the cropped region dimensions, create an offset window. Multiply the x
and y dimensions times the value by which you wish to magnify the ROI:
oMaskW ndow = OBJ_NEW' | DLgr W ndow , $

DI MENSIONS = 2 * cropDi ns, RETAIN
TITLE = ' Magnified RO', LOCATI ON

2, $
di ns)

Create the display objects and display the cropped and magnified ROI:

oMaskVi ew = OBJ_NEW ' | DLgrView , VI EWPLANE_RECT = vi ewRect)
oMaskMbdel = OBJ_NEW' | DLgr Model ")

oMaskMbdel -> Add, oMaskl ng

oMaskVi ew -> Add, oMaskMbdel

OVaskW ndow -> Draw, oMaskVi ew

Creating and Displaying an ROl Mask Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 327

The original and the magnified view of the ROI are shown in the following figure.

Figure 8-12: Original and Magnified View of the ROI

16. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [oView, oMaskView, RO out]
Example Code: Defining an ROl Mask

Copy and paste the following text into the IDL Editor window. After saving thefile as
Scal eMask_obj ect . pr o, compile and run the program to reproduce the previous
example.

PRO Scal eMask_Ohj ect

Sel ect the image file and get the inage di nensions.
file= FILEPATH(' nd5290fcl.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])
READ JPEG file, ing, /GRAYSCALE
dims = S| ZE(i ng, /DI MENSI ONS)

Pass the image to XRO and define the region.
XRO, inmg, REGI ONS_OUT = RO out, /BLOCK

; Assign the RO data to the arrays, x and y.
RO out -> GetProperty, DATA = RO data

RO dat a[0, *]

RO dat a[1, *]

X
y

Image Processing in IDL Creating and Displaying an ROl Mask

328

Creating and Displaying an ROl Mask

Chapter 8: Working with Regions of Interest (ROISs)

; Set the properties of the RO.
RO out -> SetProperty, COLOR = [255,255,255], THICK = 2

; Create the image object.
olmg = OBJ_NEW'IDLgrlmage', ing, $
DI MENSI ONS = di ns)

; Create a window in which to display the selected RO .
oW ndow = OBJ_NEW ' | DLgr Wndow , DI MENSIONS = dinms, $
RETAIN = 2, TITLE = ' Selected RO ")

; Create the display objects and display the region.
viewRect = [0, 0, dins[0], dins[1]]
oView = OBJ_NEW ' | DLgrView , VIEWPLANE_RECT = vi ewRect)

oMbdel = OBJ_NEW' | DLgr Model ')
oMbdel -> Add, olng

oMbdel -> Add, RO out

oVi ew -> Add, oMbdel

oW ndow -> Draw, oView

; Create a mask and print area of the mask.
maskResult = RO out -> Comput eMask($
DI MENSI ONS = di ns)
| MAGE_STATI STICS, ing, MASK = MaskResult, COUNT = count
PRI NT, "area of mask = ', count,' pixels'

; Mask out all portions of the inmage except for the RO.
mask = (maskResult GT 0)
maskl ng = i mg* mask

; Create a image containing only the cropped RO .
croplng = masklng[m n(x):max(x), mn(y): max(y)]
cropbDi ns = SI ZE(cropl ng, /DI MENSI ONS)
oMasklng = OBJ_NEW' I DLgrl mage', croplng, $

DI MENSI ONS = di ns)

; Create a window in which to display the cropped RO .

; Multiply the dinmensions times the value you wish to

; magnify the RO .

oMaskW ndow = OBJ_NEW' | DLgr W ndow , $
DI MENSIONS = 2 * cropDins, RETAIN =
TITLE = 'Magnified RO', LOCATION =

2, $
di ns)

; Create the display objects and display the cropped
; RA .
oMaskView = OBJ_NEW' I DLgrView, $

VI EWPLANE_RECT = vi ewRect)

Image Processing in IDL

Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs)

oMaskMbdel = OBJ_NEW' | DLgr Model ")
oMaskMbdel -> Add, oMaskl ng
oMaskVi ew -> Add, oMaskModel
OvaskW ndow -> Draw, oMaskVi ew

; Clean up objects.
OBJ_DESTROY, [oView, oMskView, RO out]

END

329

Creating and Displaying an ROl Mask

330 Chapter 8: Working with Regions of Interest (ROISs)

Testing an ROI for Point Containment

The IDLanROI::ContainsPoints function method determines whether a point having
given coordinates lies inside, outside, on the boundary of, or on the vertex of a
designated ROI. The following example allows the creation of an ROI within an
image of the world using XROI. After exiting XROI, apoint is selected and tested to
determine its relationship to the ROI. The example then creates textual and graphical
displays of the results.

For code that you can copy and paste into an Editor window, see “Example Code:
Testing an ROI Object for Point Containment” on page 332 or complete the
following steps for adetailed description of the process.

1. Preparethe display device:
DEVI CE, DECOMPCSED = 0, RETAIN = 2
2. Select and open the image file and get its dimensions:

i ng = READ PNG(FI LEPATH(' avhrr.png', $
SUBDI RECTCORY = ['exanples', 'data']), R G B)
dinms = S| ZE(i ng, /DI MENSI ONS)

3. Openthefilein the XROI utility to create an ROI:

XRO, inmg, REGIONS OUT = ROout, R G B, /BLOCK, $
TITLE = 'Create RO and C ose W ndow

After creating any region using the tool of your choice, close the XROI utility
to save the ROI object datain the variable, ROlout.

4. Load theimage color table and display the image in a new window:

TVLCT, R G B

WNDOW 0, XSIZE = dins[0], YSIZE = dinms[1], $
TITLE = 'Left-Click Anywhere in |Inmage'

TV, ing

5. The CURSOR function alows you to select and define the coordinates of a
point. After entering the following line, position your cursor anywhere in the
image window and click the left mouse button to select a point:

CURSOR, xi, yi, /DEVICE
6. Delete the window after selecting the point:
WDELETE, 0

Testing an ROI for Point Containment Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs)

331

7. Using the coordinates returned by the CURSOR function, determine the
placement of the point in relation to the ROI object using

IDLanROI::ContainsPoints:

pt Test = RO out -> ContainsPoints(xi,yi)

8. Thevaue of ptTest, returned by the previous statement, ranges from 0 to 3.
Create the following vector of string data where the index value of the string
element relates to val ue of ptTest. Print the actual and textual value of ptTest:

containResults = [$

"Point lies outside RO,
"Point lies inside RO"',

$
$

"Point lies on the edge of the RO', $
"Point lies on vertex of the RO']

PRI NT, 'Result =',6 ptTest,"':

cont ai nResul t s[pt Test]

9. Complete the following steps to create a visual display of the ROI and the
point that you have defined. First, create a 7 by 7 ROI indicating the point:

X

y
point = x +y * dins[0]

LINDGEN(7%7) MOD 7 + i
LINDGEN(7*7) [7 + yi

10. Definethe color with which the ROI and point are drawn:

maxCl r = ! D. TABLE_SI ZE -
TVLCT, 255, 255, 255, maxCr

11. Draw the point within the original image and display it:

regionPt = ing

regi onPt[point] = maxClr
W NDOW 0, XSIZE = dins[0],

YSI ZE = dins[1], $

TI TLE=' Cont ai nment Test Results'

TV, regionPt

12. Draw the ROI over the image using DRAW_ROI:

DRAW RO, ROlout, COLOR = maxClr, /LINE_FILL, $
THI CK = 2, LINESTYLE = 0, ORI ENTATION = 315, /DEVICE

13. Clean up object references that are not destroyed by the window manager:

OBJ_DESTROY, RO out

Image Processing in IDL

Testing an ROI for Point Containment

332

Chapter 8: Working with Regions of Interest (ROISs)

The following figure displays aregion covering South America and a point
within the African continent. Your results will depend upon the ROI and point
you have defined when running this program.

Figure 8-13: Detail of Point Containment Test

Example Code: Testing an ROI Object for Point Containment

Copy and paste the following text into the IDL Editor window. After saving thefile as
Cont ai nnent Test . pr o, compile and run the program to reproduce the previous
example.

PRO Cont ai nment Test

; Prepare the display device.
DEVI CE, DECOMPOSED = 0, RETAIN = 2

; Select and open the image file and get its size.
i ng = READ_PNG(FI LEPATH(' avhrr.png', $

SUBDI RECTCORY = ['exanples', 'data']), R G B)
dinms = Sl ZE(i ng, /Dl MENSI ONS)

; Open the file in the XRO utility to select a RO.
XRO, inmg, REGIONS OUT = ROout, R G B, /BLOCK, $
TITLE = ' Create RO and d ose W ndow

; Load the inmage col or table and display the image.

TVLCT, R G B

WNDOW 0, XSIZE = dins[0], YSIZE = dins[1], $
TITLE = 'Left-Click Anywhere in |Inmage'

TV, ing

Testing an ROI for Point Containment Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 333

; Sel ect and define the coordinates of a point and
; del ete wi ndow.

PRI NT, 'Left-click anywhere in the inmge.'

CURSOR, xi, yi, /DEVICE

WDELETE, O

; Test for point containment within the RO
; and print result of the containnent test.
pt Test = RO out -> ContainsPoints(xi,yi)
containResults = [$

"Point lies outside RO', $

"Point lies inside RO', $

"Point lies on the edge of the RO', $

"Point lies on vertex of the RO']

PRINT, 'Result =", ptTest, ':', $
cont ai nResul t s[pt Test]

; Create a 7x7 square indicating original point.
X = LINDGEN(7*7) MOD 7 + xi

y = LINDGEN(7*7) /| 7 + vyi

point = x + vy * dins[0]

; Define the color to use for the RO and point.
maxCr = ! D. TABLE_SI ZE - 1
TVLCT, 255, 255, 255, maxdr

; ldentify the point within the original inmage.
regionPt = ing
regi onPt[point] = maxClr

; Create a window and display the point and RO .
WNDOW 0, XSIZE = dins[0], YSIZE = dinms[1], $
TI TLE=' Cont ai nment Test Results'
TV, regionPt
DRAW RO, RO out, COLOR = maxCr, /LINE_FILL, $
THI CK = 2, LI NESTYLE 0, ORI ENTATION = 315, /DEVICE

; Destroy object references.
OBJ_DESTROY, RO out

END

Image Processing in IDL Testing an ROI for Point Containment

334 Chapter 8: Working with Regions of Interest (ROISs)

Creating a Surface Mesh of an ROI Group

An IDLanROIGroup contains multiple ROIs. The ROI group consists of either
several ROIs defined in asingle image, or a stack of ROIs, each of which has been
defined from a separate dice of amulti-image data set. An ROI group can be
translated into a surface mesh, amask, or tested for point containment. The following
example defines ROIs from a data set containing 57 MRI images of a human head.
After all ROIs have been defined with the utility and each region has been added to
the group, | DLanROI::ComputeM esh triangul ates a surface mesh. The resulting
vertices and connectivity array are used to create a polygon object that is displayed
using XOBJVIEW.

For code that you can copy and paste into an Editor window, see “ Example Code:
Creating an ROl Mesh from an ROI Group” on page 337 or complete the following
steps for a detailed description of the process.

1. Prepare the display device and load a color table to more easily distinguish
image features:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 5
TVLCT, R, G B, /CET

2. Select and open thefile:

file = FILEPATH(' head. dat', SUBDI RECTORY =
["exanples','data'])
ing = READ BINARY(file, DATA DI M5 = [80, 100, 57])

3. Resizethe array for display purposes and to compensate for the sampling rate
of the scan dlices:

inmg = CONGRI D(ing, 200, 225, 57)
4. |Initialize an IDLanROIGroup object to which individual ROIs will be added:
oRO Group = OBJ_NEW' I DLgr RO Group')

5. UseaFOR loop to define an ROI within every fifth dice of data. Add each ROI
to the group:

FOR i=0, 54, 5 DOBEGN & $

XRO, ing[*, *,i], R, G B, REAONS QUT = oRO, $
/ BLOCK, ROl _SELECT_COLOR = [255, 255, 255] & $

oRO -> GetProperty, DATA = roiData & $
roiData[2, *] = 2.2*i & $
OoRoi -> ReplaceData, roiData & $
ORoi G oup -> Add, oRoi & $

ENDFOR

Creating a Surface Mesh of an ROl Group Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 335

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Defining an ROl and
Computing ROI Statistics’ on page 314.

The following image shows samples of the ROIs to be defined.

Figure 8-14: ROIs to be Defined

To limit the time needed complete this exercise, the previous FOR statement
arrangesto display every fifth slice of datafor ROI selection. To obtain higher
quality results, consider selecting an ROI in every other dice of data.

6. Compute the mesh for the ROI group using | DLanROI Group::ComputeM esh:
result = oRO Group -> ConputeMesh(verts, conn)

Image Processing in IDL Creating a Surface Mesh of an ROI Group

336 Chapter 8: Working with Regions of Interest (ROISs)

Note
The ComputeM esh function will fail if the ROIs contain interior regions (holes), are
self-intersecting or are of a TY PE other than the default, closed polygon.

7. Prepareto display the mesh, scaling and translating the array for display in
XOBJIVIEW:

ning = 57
xymax = 200.0

zmax = float (nlng)

oMbdel = OBJ_NEW' | DLgr Model ')

oMbdel -> Scale, 1./xymax,1./xymax, 1.0/zmax
oModel -> Translate, -0.5, -0.5, -0.5

oMbdel -> Rotate, [1,0,0], -90

oModel -> Rotate, [0, 1, 0], 30

oMbdel -> Rotate, [1,0,0], 30

8. Create an IDLgrPolygon object using the results of ComputeM esh:

oPoly = OBJ_NEW' | DLgr Pol ygon', verts, POLYGON = conn, $
COLOR = [128, 128, 128], SHADI NG = 1)

9. Add the polygon to the model and display the polygon object in XOBJVIEW:

oMddel -> Add, oPoly
XOBJVI EW oMbdel , /BLOCK

10. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [oRA, oRA G oup, oPoly, oMdel]

Creating a Surface Mesh of an ROl Group Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 337

The following figure displays the mesh created by defining an ROI in every
other slice of datainstead of from every fifth slice as described in this example.
Therefore, your resultswill likely vary.

Figure 8-15: Result of Creating a Mesh from a Group of ROls

Example Code: Creating an ROl Mesh from an ROI Group

Copy and paste the following text into the IDL Editor window. After saving thefile as
G oupRO Mesh. pr o, compile and run the program to reproduce the previous
example.

Pro GroupRO Mesh

; Prepare the display device and load a color table
; to nmore easily distinguish imge features.

DEVI CE, DECOVMPCSED = 0, RETAIN = 2

LOADCT, 5

TVLCT, R, G B, /GET

; Sel ect and open the file.
file = FILEPATH(' head. dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i ng = READ BINARY(file, DATA DI M5 = [80, 100, 57])

; Resize the array for display purposes and to
; conpensate for the sanpling rate of the scan slices.
img = CONGRI D(inmg, 200, 225, 57)

; Initialize a RO group object to which individual

; ROs will be added.
oRO Group = OBJ_NEW' I DLgr RO Group')

Image Processing in IDL Creating a Surface Mesh of an ROI Group

338 Chapter 8: Working with Regions of Interest (ROISs)

; Use a FOR loop to define ROs with which to create
; the mesh. Add each RO to the group.
FOR i=0, 54, 5 DO BEG N
XRO, img[*, *,i], R G B, REAONS_OUT = oRO, $
/ BLOCK, RO _SELECT_COLOR = [255, 255, 255]
ORO -> GetProperty, DATA = roiData
roi Data[2, *] = 2.2%i
OoRoi -> ReplaceData, roiData
ORoi Group -> Add, oRoi
ENDFOR

; Conmpute the mesh for the group.
result = oRO Group -> ConputeMesh(verts, conn)

; Prepare to display the mesh, scaling and translating
; the array for display in XOBJVI EW

ning = 57

xymax = 200.0

zmax = float (nlng)

oMbdel = OBJ_NEW' | DLgr Model ')

oMbdel -> Scale, 1./xymax,1./xymax, 1.0/zmax
oMbdel -> Translate, -0.5, -0.5, -0.5

oModel -> Rotate, [1, 0, 0], -90

oModel -> Rotate, [0, 1, 0], 30

oModel -> Rotate, [1, 0, 0], 30

; Create a polygon object using the results of

; Conput eMesh.

oPoly = OBJ_NEW' | DLgr Pol ygon', verts, POLYGON = conn, $
COLOR = [128, 128, 128], SHADING = 1)

; Add the polygon to the nodel and di splay the pol ygon
; object in XOBIVI EW

oMbdel -> Add, oPoly

XOBJVI EW oMbdel , /BLOCK

; Clean up object references.
OBJ_DESTROY, [oRA, oRA G oup, oPoly, oMdel]

END

Creating a Surface Mesh of an ROl Group Image Processing in IDL

Chapter 9:

Transforming Between
Domains

This chapter describes the following topics:

Overview of Transforming Between Image Transforming to and from the Time-Frequency
Domains........................... 340 DomainwithWavelets 365
Transforming to and from the Frequency Transforming to and from the Hough and

DomanwithFFT 343 RadonDomans 383

Image Processing in IDL 339

340 Chapter 9: Transforming Between Domains

Overview of Transforming Between Image
Domains

Some processes performed on an image in the spatial domain may be very
computationally expensive. These same processes may be significantly easier to
perform after transforming an image to a different domain. These transformations are
the basis for many image filters, applied to remove noise, to sharpen, or extract
features. Domain transformations also provide additional information about an image
and can offer compression benefits.

The most common representation of a pixel’s value and location is spatial, where it
appears in three dimensions (X, y, and 2). Pixel value and location in this spaceis

usually referred to by column (x), row (y), and value (2), and is known as the spatial
domain. However, a pixel’s value and location can be represented in other domains.

In the frequency or Fourier domain, the value and |ocation are represented by
sinusoidal relationships that depend upon the frequency of a pixel occurring within
an image. In thisdomain, pixel location is represented by its x- and y-frequencies and
itsvalue is represented by an amplitude. Images can be transformed into the
frequency domain to determine which pixels contain more important information and
whether repesting patterns occur. See “Transforming to and from the Frequency
Domain with FFT” on page 343 for more information on the frequency domain.

In the time-frequency or wavelet domain, the value and location are represented by
sinusoidal relationships that only partialy transform the image into the frequency
domain. Like the transformation to the full frequency domain, the transformation to
the time-frequency domain helps to determine the important information in an image.
See “Transforming to and from the Time-Frequency Domain with Wavelets’” on
page 365 for more information on the time-frequency domain.

In the Hough domain, pixels are presented by sinusoidal lines. Since straight lines
within an image are transformed into the Hough domain as intersecting sinusoidal
lines, these intersections can be used to determine if and where straight lines occur
within an image. See “ Transforming to and from the Hough and Radon Domains”’ on
page 383 for more information on the Hough domain.

Overview of Transforming Between Image Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 341

In the Radon domain, aline of pixels occurring in an imageisrepresented by asingle
point. This transformation is useful for detecting specific features and image
compression. Since transforming images to and from the Hough and Radon domains
use similar methods, the Radon image representation is described in the same section
as the Hough representation. See “ Transforming to and from the Hough and Radon
Domains’ on page 383 for more information on the Radon domain.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image domain transformations and associated | DL
image transformation routines covered in this chapter.

Task Routine(s) Description
“Transformingtoand | FFT Transform images into
from the Frequency the frequency domain
Domain with FFT” on and back into the spatial
page 343 domain with the Fast

Fourier Transform. Then
show how to use this
process to remove noise
from an image.

“Transformingtoand | WTN Transform imagesinto
from the Time- the time-frequency
Frequency Domain domain and back into the
with Wavelets’” on spatial domain with the
page 365 Wavelet transform. Then

show how to use this
process to remove noise
from an image.

Table 9-1: Image Transformation Tasks and Related Routines

Image Processing in IDL Overview of Transforming Between Image Domains

342

Chapter 9: Transforming Between Domains

Task Routine(s) Description
“Transformingtoand | HOUGH Transform imagesinto
from the Hough and RADON the Hough and the Radon

Radon Domains’ on
page 383

domains and back into
the spatial domain with
the Hough and Radon
transforms. Then show
how to use these
processes to detect
straight lines and
improve contrast within
an image.

Table 9-1: Image Transformation Tasks and Related Routines (Continued)

Note

This chapter uses data filesfromthe | DL exanpl es/ dat a directory. Two files,
dat a. t xt andi ndex. t xt, contain descriptions of thefiles, including array sizes.

Overview of Transforming Between Image Domains

Image Processing in IDL

Chapter 9: Transforming Between Domains 343

Transforming to and from the Frequency
Domain with FFT

The Fast Fourier Transform (FFT) is used in numerical anaysis to transform an
image between spatial and frequency domains. The FFT decomposes an image into
sines and cosines of varying amplitudes and phases. The values of the resulting
transform represent the amplitudes of particular horizontal and vertical frequencies.
Thisimage information in the frequency domain shows how often patterns are
repeated within an image. Low frequencies represent gradual variations in an image,
while high frequencies correspond to abrupt variationsin the image.

Low freguencies tend to contain the most information because they determine the
overal shape or pattern in the image. High frequencies provide detail in the image,
but they are often contaminated by the spurious effects of noise. Masks can be easily
applied to the image within the frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and Fast
Fourier Transforms (FFTs):

e “Transforming to the Frequency Domain”

* “Displaying Images in the Frequency Domain” on page 349

* “Transforming from the Frequency Domain” on page 354
The FFT processisthe basis for many filters used in image processing. One of the
easiest FFT filters to understand is the one used for background noise removal. This

filter issimply amask applied to the image in the frequency domain. See* Removing
Noise with the FFT” on page 358 for an example of how to use this type of filter.

Transforming to the Frequency Domain

When an image is transformed with FFT from the spatial domain to the frequency
domain, the transformation processis referred to as aforward FFT. The forward FFT
process can be performed with IDL's FFT function.

In the frequency domain, the lowest frequencies usually contain most of the
information, which is shown by the large peak in the center of the data. If the
transform is shown as a surface, the peak of low frequencies appears as a spike. If the
transform is shown as an image, the peak of low frequenciesis composed of the
brightest pixels.

If the image does not contain any background noise, the rest of the data frequencies
are very close to zero. However, the results of the FFT function have a very wide

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

344

Chapter 9: Transforming Between Domains

range. Aninitial display may not show any variations from zero, but a smaller range
will show that the image does actually contain background noise. Since scaling a
range can sometimes be quite arbitrary, different methods are used. See “Displaying
Images in the Frequency Domain” on page 349 for more information on displaying
the results of aforward FFT.

The following example shows how to use IDL’s FFT function to compute a forward
FFT. This example uses the first image within the abnor m dat filein the

exanpl es/ dat a directory. Theresults of the FFT function are shifted to move the
origin (0, 0) of the x- and y-frequencies to the center of the data. Frequency
magnitude then increases with distance from the origin. If the results are not centered,
then the negative frequencies appear after the positive frequencies because of the
storage scheme of the FFT process. See the FFT description in the IDL Reference
Guide for more information on this storage scheme.

For code that you can copy and paste into an Editor window, see “ Example Code:
Transforming to the Frequency Domain” on page 347 or compl etethe following steps
for adetailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Defineadisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i mageSi ze
3. Initialize the display:

DEVI CE, DECOWPCSED = 0
LOADCT, O

4. Create awindow and display the image:

W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original | nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 345

The following figure shows the origina image.

Figure 9-1: Original Gated Blood Pool Image

5. With the FFT function, transform the image into the frequency domain:
ffTransform = FFT(i nmage)
6. Shift the zero frequency location from (0, 0) to the center of the display:

center = inmageSize/2 + 1
fftShifted = SH FT(ffTransform center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the display axes.

interval = 1.
hFrequency = | NDGEN(i mageSi ze[0])
hFrequency[center[0]] = center[0] - inmageSize[0] + $

FI NDGEN(center[0] - 2)
hFrequency = hFrequency/ (i mageSi ze[0] /i nterval)
hFreqShi fted = SH FT(hFrequency, -center[0])
vFrequency = | NDGEN(i mageSi ze[1])
vFrequency[center[1]] = center[1l] - inmgeSize[l] + $
FI NDGEN(center[1] - 2)
vFrequency = vFrequency/ (i mageSi ze[1] /i nterval)
vFreqshi fted = SH FT(vFrequency, -center[1])

Note
The previous two steps were performed because of the storage scheme of the FFT
process. See the FFT description in the IDL Reference Guide for more information
on this storage scheme.

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

346 Chapter 9: Transforming Between Domains

8. Create another window and display the frequency transform:

WNDOW 1, TITLE = 'FFT: Transforn

SHADE_SURF, fftShifted, hFreqShifted, vFreqShifted, $
/| XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = ' Transform of Inage', $

XTI TLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Real Part of Transform, CHARSIZE = 1.5

The following figure shows the results of applying the FFT to the image. The
data at the high frequencies seem to be close to zero, but the peak (spike) along
the z-axisis so large that a closer 100k is needed.

farm oF s
=fa

Tran

Teh Porl of Trawafiorm,

Figure 9-2: FFT of the Gated Blood Pool Image

Note
The data type of the array returned by the FFT function is complex, which contains
real and imaginary parts. The amplitude is the absolute value of the FFT, while the
phase is the angle of the complex number, computed using the arctangent. In the
above surface, we are only displaying the real part. In most cases, the imaginary
part will look the same as therea part.

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 347

9. Create another window and display the frequency transform with a data (2)
range of 0to 5:

WNDOW 2, TITLE = 'FFT: Transform (Cl oser Look)'
SHADE_SURF, f ft Shifted, hFreqShifted, vFreqShifted, $
/| XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = ' Transform of Inage', $

XTI TLE = 'Horizontal Frequency', $

YTITLE = 'Vertical Frequency', $

ZTITLE = 'Real Part of Transform, CHARSIZE = 1.5, $
ZRANGE = [0., 5.]

The following figure shows the resulting transform after scaling the z-axis
range from 0 to 5. You can now see that the central peak is surrounded by
smaller peaks containing both high frequency information and noise.

Teah Port of Tranforn

Figure 9-3: FFT of the Gated Blood Pool Image Scaled Between 0 and 5

Example Code: Transforming to the Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving thefile as
For war dFFT. pr o, compile and run the program to reproduce the previous example.

PRO For war dFFT
; Inmport the inage fromthe file.

i mageSi ze = [64, 64]
file = FILEPATH(' abnormdat', $

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

348

Chapter 9: Transforming Between Domains

SUBDI RECTCORY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA_DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the
; i mage when displaying it.
di spl aySi ze = 2*i nageSi ze

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create a window and di splay the imge.
W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original | nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

; Transformthe inage into the frequency domain.
ffTransform = FFT(i nmage)

; Shift the zero frequency location from (0, 0) to
; the center of the display.

center = imageSize/2 + 1

fftShifted = SH FT(ffTransform center)

; Calculate the horizontal and vertical frequency
; values, which will be used as the values for the
; axes of the display.

interval = 1.
hFrequency = | NDGEN(i mageSi ze[0])
hFrequency[center[0]] = center[0] - inmageSize[0] + $

FI NDGEN(center[0] - 2)
hFrequency = hFrequency/ (i mageSi ze[0] /i nterval)
hFreqsShifted = SH FT(hFrequency, -center[0])
vFrequency = | NDGEN(i mageSi ze[1])
vFrequency[center[1]] = center[1l] - inmgeSize[l] + $
FI NDGEN(center[1] - 2)
vFrequency = vFrequency/ (i mageSi ze[1] /i nterval)
vFreqShi fted = SH FT(vFrequency, -center[1])

; Create another wi ndow and display the frequency

; transform

WNDOW 1, TITLE = 'FFT: Transform

SHADE_SURF, fftsShifted, hFreqShifted, vFreqShifted, $
/| XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = ' Transform of Inage', $

XTI TLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = ' Anplitude', CHARSIZE = 1.5

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 349

Create another wi ndow and display the frequency
transformwi thin the data (z) range of 0 to 5
W NDOW 2, TITLE = 'FFT: Transform (Cl oser Look)
SHADE_SURF, fftShifted, hFreqShifted, vFreqShifted, $
/| XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = ' Transform of Inage', $

XTI TLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Anplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 5.]

END

Displaying Images in the Frequency Domain

Within the frequency domain, the range of valuesfrom the peak to the high frequency
noiseis extreme. You can use a logarithmic scale to retain the shape of the surface,
but reduce itsrange. Since the logarithmic scale only applies to positive values, you
should first compute the power spectrum, which is the absolute value squared of the
transform.

The following example shows how to display the results of IDL’s FFT function. This
example also uses the first image within the abnor m dat fileinthe

exanpl es/ dat a directory. The results of the transform are shifted to move the
origin (0, 0) of the horizontal and vertica frequenciesto the center of the display. If
the results are not centered then the negative frequencies appear after the positive
frequencies because of the storage scheme of the FFT process. See FFT for more
information on its storage scheme.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Imagesin the Frequency Domain” on page 352 or complete the following
steps for a detailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FI LEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA_ DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i mageSi ze
3. Initialize the display:

DEVI CE, DECOWMPCOSED = 0
LOADCT, O

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

350 Chapter 9: Transforming Between Domains

4. Create awindow and display the image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Oiginal |nage'

TVSCL, CONGRI D(i mage, displaySize[0], $
di spl aySi ze[1])

The following figure shows the origina image.

Figure 9-4: Original Gated Blood Pool Image

5. Transform the image into the frequency domain:
ffTransform = FFT(i nmage)
6. Shift the zero frequency location from (0, 0) to the center of the display:

center = inmageSize/2 + 1
power Shifted = SH FT(ffTransform center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the display axes.

interval = 1.
hFrequency = | NDGEN(i mageSi ze[0])
hFrequency[center[0]] = center[0] - inageSize[0] + $

FI NDGEN(center[0] - 2)
hFrequency = hFrequency/ (i mageSi ze[0] /i nterval)
hFreqShi fted = SH FT(hFrequency, -center[0])
vFrequency = | NDGEN(i mageSi ze[1])
vFrequency[center[1]] = center[1l] - inmgeSize[l] + $
FI NDGEN(center[1] - 2)
vFrequency = vFrequency/ (i mageSi ze[1] /i nterval)
vFreqshi fted = SH FT(vFrequency, -center[1])

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 351

Note
The previous two steps were performed because of the storage scheme of the FFT
process. See the FFT description in the IDL Reference Guide for more information
on this storage scheme.

8. Compute the power spectrum of the transform:
power Spectrum = ABS(fft Shifted)”"2
9. Apply alogarithmic scal e to values of the power spectrum:
scal edPower Spect = ALOGLO(power Spectrum)
10. Create another window and display the power spectrum as a surface:

WNDOW 1, TITLE = 'FFT Power Spectrum '+ $
"Logarithmc Scale (surface)'

SHADE_SURF, scal edPower Spect, hFreqShifted, vFreqShifted, $
/| XSTYLE, /YSTYLE, /ZSTYLE, $
TI TLE = ' Log-scal ed Power Spectrum, $

XTI TLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTI TLE = 'Log(Squared Anplitude)', CHARSIZE = 1.5

The following figure shows the log-scaled power spectrum as a surface. Both
low and high frequency information are visible in this display.

otrurm
o pawe’ spe
—~scdl®

Lod

Figure 9-5: Log-scaled FFT Power Spectrum of Image (as a surface)

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

352 Chapter 9: Transforming Between Domains

Note
The data type of the array returned by the FFT function is complex, which contains
real and imaginary parts. The amplitude is the absolute value of the FFT, while the
phase is the angle of the complex number, computed using the arctangent. In the
above surface, we are only displaying the real part. In most cases, the imaginary
part will look the same as therea part.

11. Create another window and display the log-scaled transform as an image:

W NDOW 2, XSIZE = displ aySize[0], YSIZE = displaySize[l], $
TI TLE = ' FFT Power Spectrum Logarithmc Scale (inage)'
TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1])
The following figure shows the log-scaled power spectrum as an image. The
brighter pixels near the center of the display represent the low frequency peak
of information-containing data. The noise appears as random darker pixels
within the image.

Figure 9-6: Log-scaled FFT Power Spectrum of Image (as an image)

Example Code: Displaying Images in the Frequency Domain
Copy and paste the following text into an IDL Editor window. After saving thefile as
Di spl ayFFT. pr o, compile and run the program to reproduce the previous example.
PRO Di spl ayFFT

Inmport the inmage fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Image Processing in IDL

Chapter 9: Transforming Between Domains

i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the
; i mage when displaying it.
di spl aySi ze = 2*i mageSi ze

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the imge.

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySi ze[1],
TITLE = ' Oiginal |nage'

TVSCL, CONGRI D(i mage, displaySize[0], $
di spl aySi ze[1])

; Transformthe inage into the frequency domain.
ffTransform = FFT(i mage)

; Shift the zero frequency location from (0, 0) to
; the center of the display.

center = inmageSize/2 + 1

fftShifted = SH FT(ffTransform center)

; Calculate the horizontal and vertical frequency
; values, which will be used as the values for the
; axes of the display.

interval = 1.
hFrequency = | NDGEN(i mageSi ze[0])
hFrequency[center[0]] = center[0] - inmageSize[0] + $

FI NDGEN(center[0] - 2)
hFrequency = hFrequency/ (i mageSi ze[0] /i nterval)
hFreqsShifted = SH FT(hFrequency, -center[0])
vFrequency = | NDGEN(i mageSi ze[1])
vFrequency[center[1]] = center[1l] - inmgeSize[l] + $
FI NDGEN(center[1] - 2)
vFrequency = vFrequency/ (i mageSi ze[1] /i nterval)
vFreqShi fted = SH FT(vFrequency, -center[1])

; Conpute the power spectrum of the transform
power Spect rum = ABS(fft Shifted)”2

; Apply a logarithnmic scale to the power spectrum
scal edPower Spect = ALOGLO(power Spectrum

; Create another wi ndow and display the |og-scal ed

; power spectrum as a surface.

WNDOW 1, TITLE = ' FFT Power Spectrum ' + $
'Logarithmc Scale (surface)'

$

353

Transforming to and from the Frequency Domain with FFT

354 Chapter 9: Transforming Between Domains

SHADE_SURF, scal edPower Spect, hFreqShifted, vFreqShifted, $
/| XSTYLE, /YSTYLE, /ZSTYLE, $
TI TLE = ' Log-scal ed Power Spectrum, $

XTI TLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = ' Log(Abs(Anplitude~2))', CHARSIZE = 1.5

Create another wi ndow and display the |og-scaled
power spectrum as an inage.
W NDOW 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TI TLE = ' FFT Power Spectrum Logarithmc Scale (inage)'
TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1])

END
Transforming from the Frequency Domain

After manipulating an image within the frequency domain, you will need to
transform the image back to the spatial domain. This transformation processis
referred to as an inverse FFT. The inverse FFT process can be performed with IDL's
FFT function by setting the INVERSE keyword.

The following example shows how to use IDL’s FFT function to compute an inverse
FFT. This example uses the first image within the abnor m dat filein the

exanpl es/ dat a directory. Theimage is not manipulated in this example whileit is
in the frequency domain to show that no information islost when using the FFT.
However, manipulating spurious high frequency data within the frequency domain is
a useful way to remove background noise from an image, as shown in “Removing
Noise with the FFT” on page 358.

For code that you can copy and paste into an Editor window, see “ Example Code:
Transforming from the Frequency Domain” on page 356 or complete the following
steps for a detailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:

di spl aySi ze = 2*i mageSi ze

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 355

3. Initialize the display:
DEVI CE, DECOMPCSED = 0
LOADCT, 0

4. With the FFT function, transform the image into the frequency domain:
ffTransform = FFT(i nmage)

5. Shift the zero frequency location from (0, 0) to the center of the display:

center = inmageSize/2 + 1
power Shifted = SH FT(ffTransform center)

Note
This step was performed because of the storage scheme of the FFT process. See the
FFT description in the IDL Reference Guide for more information on this storage
scheme.

6. Compute the power spectrum of the transform:
power Spectrum = ABS(fft Shifted)"2

7. Apply alogarithmic scal e to values of the power spectrum:
scal edPower Spect = ALOGLO(power Spectrum)

8. Create awindow and display the power spectrum as an image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TI TLE = ' Power Spectrum | nage'

TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1])

The following figure shows the log-scaled power spectrum.

Figure 9-7: Log-scaled FFT Power Spectrum of the Gated Blood Pool Image

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

356 Chapter 9: Transforming Between Domains

9. Withthe FFT function, transform the frequency domain data back to the
original image (obtain the inverse transform):

fftinverse = REAL_PART(FFT(ffTransform /|NVERSE))

Note
The data type of the array returned by the FFT function is complex, which contains

real and imaginary parts. The amplitude is the absolute value of the FFT, while the
phase is the angle of the complex number, computed using the arctangent. In the
above surface, we are only displaying the real part. In most cases, the imaginary
part will look the same as therea part.

10. Create another window and display the inverse transform as an image:
W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[1l], $
TITLE = ' FFT: Inverse Transform
TVSCL, CONGRID(fftlnverse, displaySize[0], $
di spl aySi ze[1])
The inverse transform is the same as the original image as shown in the
following figure. Unlike some domain transformations, al image information
is retained when transforming data to and from the frequency domain.

Figure 9-8: Inverse FFT of the Gated Blood Pool Image

Example Code: Transforming from the Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving thefile as
I nver seFFT. pr o, compile and run the program to reproduce the previous example.

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Image Processing in IDL

Chapter 9: Transforming Between Domains

PRO | nver seFFT

; Import the image fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the
; i mage when displaying it.
di spl aySi ze = 2*i mageSi ze

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Transformthe inage into the frequency domain.
ffTransform = FFT(i mage)

; Shift the zero frequency location from (0, 0) to
; the center of the display.

center = inmageSize/2 + 1

fftShifted = SH FT(ffTransform center)

; Conpute the power spectrum of the transform
power Spect rum = ABS(fft Shifted)”2

; Apply a logarithnmic scale to the power spectrum
scal edPower Spect = ALOGLO(power Spectrum

; Create a window and di splay the power spectrum

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySi ze[1],
TI TLE = ' Power Spectrum | mage'

TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1])

; Conpute the inverse
fftinverse = REAL_PART(FFT(ffTransform /1NVERSE))

; Create another wi ndow and display the inverse

; transform as an inage

W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[1],
TITLE = ' FFT: Inverse Transform

TVSCL, CONGRID(fftlnverse, displaySize[0], $
di spl aySi ze[1])

END

$

$

357

Transforming to and from the Frequency Domain with FFT

358 Chapter 9: Transforming Between Domains

Removing Noise with the FFT

This example uses IDL’s FFT function to remove noise from an image. The image
comes from the abnor m dat filefound in the exanpl es/ dat a directory. The first
display containsthe original image and itstransform. The noise is very evident in the
transform. A surface representation of the power spectrum helps to determine the
threshold necessary to remove the noise from the image. In the surface
representation, the noise appears random and below aridge containing the spike. The
ridge and spike represent coherent information within the image. A mask is applied
to the transform to remove the noise and the inverse transform is applied, resulting in
aclearer image.

For code that you can copy and paste into an Editor window, see “ Example Code:
Removing Noise with the FFT” on page 362 or complete the following steps for a
detailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FILEPATH(' abnormdat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i nageSi ze
3. Initialize the display:

DEVI CE, DECOWMPCSED = 0
LOADCT, 0

4. Create awindow and display the original image

W NDOW 0, XSl ZE = 2*displaySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = 'Original |1 mage and Power Spectrum
TVSCL, CONGRI D(i mage, displaySize[0], displaySize[1l]), O

5. Transform the image into the frequency domain:
ffTransform = FFT(i mage)
6. Shift the zero frequency location from (0, 0) to the center of the display:

center = inmageSize/2 + 1
power Shifted = SH FT(ffTransform center)

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 359

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the axes of the display.

interval = 1.
hFrequency = | NDGEN(i mageSi ze[0])
hFrequency[center[0]] = center[0] - inmageSize[0] + $

FI NDGEN(center[0] - 2)
hFrequency = hFrequency/ (i mageSi ze[0] /i nterval)
hFreqsShi fted = SH FT(hFrequency, -center[0])
vFrequency = | NDGEN(i mageSi ze[1])
vFrequency[center[1]] = center[1l] - inmgeSize[l] + $
FI NDGEN(center[1] - 2)
vFrequency = vFrequency/ (i mageSi ze[1] /i nterval)
vFreqShi fted = SH FT(vFrequency, -center[1])

Note
The previous two steps were performed because of the storage scheme of the FFT
process. See the FFT description in the IDL Reference Guide for more information

on this storage scheme.

8. Compute the power spectrum of the transform:
power Spectrum = ABS(fft Shifted)”"2

9. Apply alogarithmic scal e to values of the power spectrum:
scal edPower Spect = ALOGLO(power Spectrum

10. Display the log-scaled power spectrum:

TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1]), 1

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

360 Chapter 9: Transforming Between Domains

The following figure shows the original image and its |og-scaled power
spectrum. The black pixels (which appear random) in the power spectrum
represent noise.

Figure 9-9: Original Image and Its FFT Power Spectrum

11. Scale the power spectrum to make its maximum value equal to zero:
scal edPSO = scal edPower Spect - MAX(scal edPower Spect)
12. Create another window and display the scaled transform as a surface:

WNDOW 1, $
TI TLE = ' Power Spectrum Scal ed to a Zero Maxi mum
SHADE_SURF, scal edPower Spect, hFreqShifted, vFreqShifted, $
/| XSTYLE, /YSTYLE, /ZSTYLE, $
TI TLE = ' Zero Maxi mum Power Spectrum , $

XTI TLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTI TLE = ' Max- Scal ed(Log(Power Spectrum)', $

CHARSI ZE = 1.5

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 361

The following figure shows the resulting log-scaled power spectrum as a
surface.

WSl oo Pawes Sprcram)

Figure 9-10: FFT Power Spectrum of the Image Scaled to a Zero Maximum

Note
The data type of the array returned by the FFT function is complex, which contains

rea and imaginary parts. Thereal part is the amplitude, and theimaginary part is
the phase. In image processing, we are more concerned with the amplitude, which
isthe only part represented in the surface and displays of the results of the
transformation. However, the imaginary part is retained for the inverse transform
back into the spatial domain.

13. Threshold the image at avalue of -5.25, which isjust below the peak of the
power spectrum, to remove the noise:

mask = REAL_PART(scal edPS0) GT -5.25
14. Apply the mask to the transform to exclude the noise:

maskedTransform = fft Shi fted*nmask

Image Processing in IDL Transforming to and from the Frequency Domain with FFT

362

15.

16.

17.

18.

Chapter 9: Transforming Between Domains

Create another window and display the power spectrum of the masked
transform:

W NDOW 2, XSIZE = 2*displ aySi ze[0], $

YSI ZE = displ aySi ze[1], $

TI TLE = ' Power Spectrum of Masked Transform and Results'
TVSCL, CONGRI D(ALOGLO(ABS(maskedTransform'2)), $

di spl aySi ze[0], displaySize[1]), 0, /NAN

Shift the masked transform to the position of the original transform:
maskedShi ftedTrans = SH FT(maskedTransform -center)
Apply the inverse transformation to the masked transform:

i nver seTransform = REAL_PART(FFT(naskedShi ftedTrans, $
/| NVERSE))

Display the results of the inverse transformation:

TVSCL, CONGRI D(inverseTransform displaySize[0], $
di spl aySi ze[1]), 1

The following figure shows the power spectrum of the masked transform and
itsinverse, which contains less noise than the original image.

Figure 9-11: Masked FFT Power Spectrum and Resulting Inverse Transform

Example Code: Removing Noise with the FFT

Copy and paste the following text into an IDL Editor window. After saving thefile as
Rerovi ngNoi seW t hFFT. pr o, compile and run the program to reproduce the
previous example.

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 363

PRO Renovi ngNoi seW t hFFT

; Import the image fromthe file.

i mgeSi ze

file =

[64, 64]
FI LEPATH(' abnorm dat', $

SUBDI RECTCRY = [' exanples', 'data'])

i mage =

READ_BI NARY(file, DATA DIMS = i nageSize)

; Initialize a display size paraneter to resize the
; i mage when displaying it
di spl aySi ze = 2*i mageSi ze

; Initialize the display.
DEVI CE, DECOMPOSED = 0

LOADCT, 0

; Create a window and di splay the original imge

W NDOW 0, XSIZE = 2*displaySize[0], YSIZE = displaySize[l], $
TITLE = "Original | nage and Power Spectruni

TVSCL, CONGRI D(i mage, displaySize[0], displaySize[l]), O

; Transformthe inage into the frequency domain.
ffTransform = FFT(i nmage)

; Shift the zero frequency location from (0, 0) to
; the center of the display.

center

fftShifted

i mgeSi ze/2 + 1
SH FT(ffTransform center)

; Calculate the horizontal and vertical frequency

; val ues,

which will be used as the values for the

; axes of the display.

i nterval
hFr equency

| NDGEN(i mageSi ze[0])

hFrequency[center[0]] = center[0] - inageSize[0] + $
FI NDGEN(center[0] - 2)

hFr equency
hFreqShifted
vFrequency

hFr equency/ (i mageSi ze[0] /i nterval)
SH FT(hFrequency, -center[0])
| NDGEN(i mageSi ze[1])

vFrequency[center[1]] = center[1l] - inmgeSize[l] + $
FI NDGEN(center[1] - 2)

vFr equency
vFreqshifted

vFrequency/ (i mageSi ze[1] /i nterval)
SH FT(vFrequency, -center[1])

; Conpute the power spectrum of the transform
power Spect rum = ABS(fft Shifted)”2

; Apply a logarithmic scale to the power spectrum

scal edPower Spect

Image Processing in IDL

= ALOGLO(power Spect rum

Transforming to and from the Frequency Domain with FFT

364 Chapter 9: Transforming Between Domains

; Display the | og-scal ed power spectrum
TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1]), 1

; Scale the power spectrumto a zero naxi num
scal edPSO = scal edPower Spect - MAX(scal edPower Spect)

; Create another wi ndow and display the scal ed transform
; as a surface.
WNDOW 1, $

TI TLE = ' Power Spectrum Scal ed to a Zero Maxi mum
SHADE_SURF, scal edPSO, hFreqShifted, vFreqShifted, $

/| XSTYLE, /YSTYLE, /ZSTYLE, $

TI TLE = ' Zero Maxi mum Power Spectrum , $

XTI TLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTI TLE = ' Max- Scal ed(Log(Power Spectrum)', $

CHARSI ZE = 1.5

; Threshol d the image using -5.25, which is just bel ow
; the peak of the transform to renove the noi se.
mask = REAL_PART(scal edPS0) GT -5.25

: Mask the transformto exclude the noise.
maskedTransform = fft Shi fted*nmask

; Create another wi ndow and display the power spectrum
; of the masked transform
W NDOW 2, XSIZE = 2*displ aySi ze[0], YSIZE = displaySize[1], $
TI TLE = ' Power Spectrum of Masked Transform and Results'
TVSCL, CONGRI D(ALOGLO(ABS(maskedTransform'2)), $
di spl aySi ze[0], displaySize[1]), 0, /NAN

; Shift the masked transformto the position of the
; original transform
maskedShi ftedTrans = SH FT(maskedTransform -center)

; Apply the inverse transformation to masked transform
i nver seTransform = REAL_PART(FFT(naskedShi ft edTrans, $
/| NVERSE))
; Display results of inverse transformation.
TVSCL, CONGRI D(inverseTransform displaySize[0], $
di spl aySi ze[1]), 1

END

Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 365

Transforming to and from the Time-
Frequency Domain with Wavelets

Images do not have to be completely transformed into the frequency domain. Some
transformations only partially convert an image into the frequency domain. One of
the most common types of these transformationsis into the time-frequency or
wavelet domain.

The Discrete Wavelet Transform (DWT) isused in numerical analysisto transform an
image from the spatial domain to the time-frequency domain and back again. This
transform is different from the FFT. The FFT decomposes an image with sines and
cosines over the entireimage. In contrast, the wavel et functions are applied multiple
times over portions.

The image information within the time-frequency domain shows the frequency of
patterns within an image, and how these patterns vary over the image. The low
frequencies typically contain most of the information, which is commonly seen asa
peak (spike) of data within the time-frequency domain. The information at the high
frequenciesis usually noise. The image can easily be altered within the time-
frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and
Discrete Wavelet Transforms (DWTS):

e “Transforming to the Time-Frequency Domain”
* “Displaying Images in the Time-Frequency Domain” on page 370
e “Transforming from the Time-Frequency Domain” on page 374

The wavel et transformation process is the basis for many image compression
algorithms. See “Removing Noise with the Wavelet Transform” on page 378 for an
example of how wavelets can be used to compress data and remove noise.

Transforming to the Time-Frequency Domain

When an image is transformed with a DWT from the spatial domain to the time-
frequency domain, the transformation processis referred to as aforward DWT. The
forward DWT process can be performed with IDL’s WTN function.

The low frequencies usually contain most of the useful information within the image,
which is shown by the peak (spike) of data around the origin within the time-
frequency domain. If the image does not contain any background noise, the rest of the
data frequency values are very close to zero. However, the results of the WTN

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

366 Chapter 9: Transforming Between Domains

function have avery wide range. Aninitial display may not show any variations from
zero, but a smaller surface range will show that the image does actually contain
background noise. Since scaling arange can sometimes be quite arbitrary, different
methods are used. See “Displaying Images in the Time-Frequency Domain” on

page 370 for more information on displaying the results of aforward DWT.

The following example shows how to use IDL’s WTN function to compute a forward
DWT. This example uses the first image within the abnor m dat file, whichisin the
exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Transforming to the Time-Frequency Domain” on page 369 or complete the
following steps for adetailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA_DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i mageSi ze

3. Initialize the display:
DEVI CE, DECOMPCSED = 0
LOADCT, 0

4. Create awindow and display the image:

W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original | nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 367

The following figure shows the origina image.

Figure 9-12: Original Gated Blood Pool Image

5. With the WTN function, transform the image into the wavelet domain:
wavel et Transform = WIN(i nage, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Create another window and display the wavelet transform:

WNDOW 1, TITLE = 'Wavelet: Transform
SHADE_SURF, wavel et Transform /XSTYLE, /YSTYLE, $
/| ZSTYLE, TITLE = 'Transform of Inmage', $

XTI TLE = 'Horizontal Nunber', $
YTI TLE = 'Vertical Nunber', $
ZTITLE = 'Anplitude', CHARSIZE = 1.5

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

368 Chapter 9: Transforming Between Domains

The following figure shows the wavel et transform. The data at the high
frequencies seemsto be close to zero, but the peak (spike) inthe zrangeis so
large that acloser look is needed.

—_—- irmags

Trc:l"‘sfor

s000 F

po00

Figure 9-13: Wavelet Transform of Gated Blood Pool Image

7. Create another window and display the wavel et transform, scaling the data (2)
range from O to 200:

W NDOW 2, TITLE = 'Wavelet: Transform (Cl oser Look)'
SHADE_SURF, wavel et Transform /XSTYLE, /YSTYLE, $
/| ZSTYLE, TITLE = 'Transform of Inmage', $

XTI TLE = 'Horizontal Nunber', $

YTITLE = 'Vertical Nunber',

ZTITLE = 'Anplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 200.]

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 369

Thefollowing figure shows the wavel et transform with the z-axis ranging from
0 to 200. A closer looks shows that the image does contain background noise.

Figure 9-14: Wavelet Transform of Image Scaled Between 0 and 200

Example Code: Transforming to the Time-Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving thefile as
For war dWavel et . pr o, compile and run the program to reproduce the previous
example.

PRO For war d\Wavel et

; Inmport the inage fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCORY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the
; image when displaying it.

di spl aySi ze = 2*i nageSi ze

; Initialize the display.

DEVI CE, DECOMPCSED = 0

LQOADCT, 0

; Create a window and display the image.

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

370 Chapter 9: Transforming Between Domains

W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original | nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

; Transformthe inmage into the wavel et domain.
wavel et Transform = WIN(i nage, 20)

; Create another wi ndow and display the frequency
; transform
WNDOW 1, TITLE = 'Wavelet: Transform
SHADE_SURF, wavel et Transform /XSTYLE, /YSTYLE, $
/| ZSTYLE, TITLE = 'Transform of Inmage', $
XTI TLE = 'Horizontal Nunber', $
YTITLE = 'Vertical Nunber', $
ZTI TLE "Anplitude', CHARSIZE = 1.5

; Create another wi ndow and display the frequency
; transformw thin the data (z) range of 0 to 200.
W NDOW 2, TITLE = 'Wavel et: Transform (Closer Look)'
SHADE_SURF, wavel et Transform /XSTYLE, /YSTYLE, $
/| ZSTYLE, TITLE = 'Transform of Inmage', $

XTI TLE = 'Horizontal Nunber', $
YTI TLE = 'Vertical Nunber', $
ZTITLE = 'Anplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 200.]
END

Displaying Images in the Time-Frequency Domain

Within the time-frequency domain, the range of values from the peak to the spurious
high frequency datais extreme. The logarithmic scale is applied to retain the shape of
the surface, but reduce its range. Since the logarithmic scale only appliesto positive
values, you should first compute the power spectrum, which is the absolute value
squared of the transform.

The following example shows how to display the results of IDL’s WTN function.
This example also uses the first image within the abnor m dat file, whichisin the
exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Displaying Imagesin the Time-Frequency Domain” on page 373 or complete the
following steps for adetailed description of the process.

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 371

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FI LEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i nageSi ze
3. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the image:

W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original | nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

The following figure shows the original image.

Figure 9-15: Original Gated Blood Pool Image

5. Transform the image into the time-frequency domain.
wavel et Transform = WIN(i nage, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter
coefficients can be used with larger images to decrease computation time.

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

372

Chapter 9: Transforming Between Domains

Compute the power spectrum.
power Spect rum = ABS(wavel et Tr ansf orn) ~2
Apply alogarithmic scale to the power spectrum:
scal edPower Spect = ALOGLO(power Spectrum

Create another window and display the log-scaled power spectrum as a
surface:

WNDOW 1, TITLE = 'Wavel et Power Spectrum ' + $
"Logarithmc Scale (surface)'

SHADE_SURF, scal edPower Spect, /XSTYLE, /YSTYLE, /ZSTYLE, $
TI TLE = ' Log-scal ed Power Spectrum of |Image', $

XTI TLE = 'Horizontal Number', $
YTITLE = 'Vertical Nunber', $
ZTI TLE = 'Log(Squared Anplitude)', CHARSIZE = 1.5

The following figure shows the log-scaled power spectrum of the wavelet
transform as a surface.

Figure 9-16: Log-scaled Wavelet Power Spectrum of Image (as a surface)

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains

373
9. Create another window and display the log-scaled power spectrum as an
image:
W NDOW 2, XSIZE = displ aySize[0], YSIZE = displaySize[1], $
TI TLE = ' Wavel et Power Spectrum Logarithmic Scal e
(i mage)’

TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1])

The following figure shows the |og-scaled power spectrum as an image. M ost
of the signal islocated near the origin (the lower left of the power spectrum

image). Thisdatais shown as bright pixels at the origin. The noise appearsin
therest of theimage.

Figure 9-17: Log-scaled Wavelet Power Spectrum of Image (as am image)

Example Code: Displaying Images in the Time-Frequency
Domain

Copy and paste the following text into an IDL Editor window. After saving thefile as

Di spl ayWavel et . pr o, compile and run the program to reproduce the previous
example.

PRO Di spl ayWavel et

Import the image fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnormdat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inmageSize)

Initialize a display size paraneter to resize the
i mmge when displaying it.

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

374 Chapter 9: Transforming Between Domains

di spl aySi ze = 2*i mageSi ze

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the imge.
W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original |nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

; Transformthe inage into the tine-frequency donain.
wavel et Transform = WIN(i nage, 20)

; Conpute the power spectrum
power Spect rum = ABS(wavel et Transf orm *2

; Apply a logarithnmic scale to the power spectrum
scal edPower Spect = ALOGLO(power Spectrum

; Create another wi ndow and display the | og-scal ed

; power spectrum as a surface.

WNDOW 1, TITLE = 'Wavel et Power Spectrum ' + $
"Logarithmic Scale (surface)’

SHADE_SURF, scal edPower Spect, /XSTYLE, /YSTYLE, /ZSTYLE, $
TI TLE = ' Log-scal ed Power Spectrum of |Image', $

XTI TLE = 'Horizontal Nunber', $
YTI TLE = 'Vertical Nunber', $
ZTI TLE = ' Log(Abs(Anplitude”r2))', CHARSIZE = 1.5

; Create another wi ndow and display the | og-scal ed
; power spectrum as an image.
W NDOW 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TI TLE = ' Wavel et Power Secptrum Logarithm c Scale (inage)'
TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1])

END
Transforming from the Time-Frequency Domain

After manipulating an image within the time-frequency domain, you will need to
transform it back to the spatial domain. This transformation process is referred to as
an inverse DWT. Theinverse DWT process can be performed with IDL'sWTN
function by setting the INVERSE keyword.

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 375

Thefollowing example shows how to use IDL’s WTN function to compute an inverse
DWT. This example uses the first image within the abnor m dat file, whichisin the
exanpl es/ dat a directory. Theimage is not manipulated whileit isin the time-
frequency domain to show that no datais lost when using the DWT. However,

mani pulating data within the time-frequency domain is auseful way to compress data
and remove background noise from an image, as shown in “ Removing Noise with the
Wavelet Transform” on page 378.

For code that you can copy and paste into an Editor window, see “ Example Code:
Transforming from the Time-Frequency Domain” on page 377 or complete the
following steps for adetailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FI LEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i mageSi ze
3. Initialize the display:

DEVI CE, DECOMPCOSED = 0
LOADCT, O

4. Withthe WTN function, transform the image into the wavelet domain:
wavel et Transform = WIN(i nage, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavel et estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

5. Compute the power spectrum:
power Spectrum = ABS(wavel et Transform *2
6. Apply alogarithmic scal e to the power spectrum:
scal edPower Spect = ALOGLO(power Spectrum
7. Create awindow and display the log-scaled power spectrum as an image:

Create a wi ndow and display the transform
W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1l], $
TI TLE = ' Power Spectrum | mage'
TVSCL, CONGRI D(scal edPower Spect, displaySize[0], $
di spl aySi ze[1])

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

376 Chapter 9: Transforming Between Domains

The following figure shows the log-scaled power spectrum of the image.

Figure 9-18: Log-scaled Wavelet Power Spectrum of Image

8. Withthe WTN function, transform the wavel et domain data back to the
original image (obtain the inverse transform):

wavel et I nverse = WIN(wavel et Transform 20, /| NVERSE)
9. Create another window and display the inverse transform as an image:

W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[1l], $
TITLE = ' Wavel et: I nverse Transform

TVSCL, CONGRI D(wavel et | nverse, displaySize[0], $
di spl aySi ze[1])

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 377

The inverse transform is the same as the original image as shown in the
following figure. No image dataiis lost when transforming an image to and
from the time-frequency domain.

Figure 9-19: Inverse of the Wavelet Transform of the Gated Blood Pool Image

Example Code: Transforming from the Time-Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving thefile as
I nver seWavel et . pr o, compile and run the program to reproduce the previous
example.

PRO | nver seWavel et

; Inmport the image fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCORY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the
; i mage when displaying it.
di spl aySi ze = 2*i nageSi ze

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

; Transformthe inage into the frequency domain.
wavel et Transform = WIN(i nage, 20)

; Conpute the power spectrum
power Spect rum = ABS(wavel et Tr ansf orm 2

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

378 Chapter 9: Transforming Between Domains

; Apply a logarithnmic scale to the power spectrum
scal edPower Spect rum = ALOGLO(power Spect run)

; Create a window and display the transform
W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1l], $
TI TLE = ' Power Spectrum | mage'
TVSCL, CONGRI D(scal edPower Spectrum displ aySize[0], $
di spl aySi ze[1])

; Conpute the inverse
wavel et I nverse = WIN(wavel et Transform 20, /| NVERSE)

; Create another wi ndow and display the inverse

; transform as an inage

W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Wavel et: I nverse Transform

TVSCL, CONGRI D(wavel et | nverse, displaySize[0], $
di spl aySi ze[1])

END
Removing Noise with the Wavelet Transform

Thisexample uses IDL's WTN function to remove noise from an image. The image
comes from the abnor m dat filefound in the exanpl es/ dat a directory. Thefirst
display contains the original image and its wavel et transform. The noise isvery
evident in the image. A surface of the transform helps to determine beyond which
point the noise occurs. Only the important data is kept and noiseis replaced by zero
values. The inverse transform is then applied, resulting in a cleaner image.

For code that you can copy and paste into an Editor window, see “ Example Code:
Removing Noise with the Wavelet Transform” on page 381 or complete the
following steps for adetailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:

di spl aySi ze = 2*i mageSi ze

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 379

3. Initialize the display:
DEVI CE, DECOMPCSED = 0
LOADCT, 0

4. Create awindow and display the image:

W NDOW 0, XSIZE = 2*displ aySize[0], $

YSI ZE = displ aySi ze[1], $

TITLE = 'Original |1 mage and Power Spectrum
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1]), O

5. Determine the wavelet transform of the image:
wavel et Transform = WIN(i nage, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Display the power spectrum of the transform:

TVSCL, CONGRI D(ALOGLO(ABS(wavel et Transfornmt2)), $
di spl aySi ze[0], displaySize[1]), 1

The following figure shows the origina image and its power spectrum within
the time-frequency domain.

Figure 9-20: Gated Blood Pool Image and Its Wavelet Power Spectrum

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

380

7.

0.

10.

Chapter 9: Transforming Between Domains

Crop the transform to only include the quadrant of data closest to the spike of
low frequency in the lower-left corner:
croppedTransform = FLTARR(i mageSi ze[0], i mageSize[1])
croppedTransforn{0, 0] =
wavel et Transforn{ O: (i mageSi ze[0]/2), $
0: (i mageSi ze[1]/ 2)]
Create another window and display the power spectrum of the cropped
transform as an image:
W NDOW 1, XSIZE = 2*displ aySize[0], $
YSI ZE = displ aySi ze[1], $
TI TLE = ' Power Spectrum of Cropped Transform and Results'

TVSCL, CONGRI D(ALOGLO(ABS(croppededTransform2)), $
di spl aySi ze[0], displaySize[1]), 0, /NAN

Apply the inverse transformation to the masked power spectrum:
i nver seTransform = WIN(maskedTr ansform 20, /| NVERSE)
Display results of the inverse transform:

TVSCL, CONGRI D(inverseTransform displaySize[0], $
di spl aySi ze[1]), 1

The following figure shows the power spectrum of the cropped transform and
its resulting inverse transform. The cropping process shows that only one
quarter of the data was needed to reconstruct the image. Theimage is
compressed by a4:1 ratio.

Figure 9-21: Masked Wavelet Power Spectrum and Its Resulting Inverse

Transform

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 381

Example Code: Removing Noise with the Wavelet Transform

Copy and paste the following text into an IDL Editor window. After saving thefile as
Rerovi ngNoi seW t hWavel et . pr o, compile and run the program to reproduce the
previous example.

PRO Renpvi ngNoi seW t hWavel et

; Import the image fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the
; i mage when displaying it.
di spl aySi ze = 2*i mageSi ze

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create a window and di splay the original inmage.

W NDOW 0, XSIZE = 2*displaySize[0], YSIZE = displaySize[l], $
TITLE = "Original |1 mage and Power Spectrum

TVSCL, CONGRI D(i mage, displaySize[0], displaySize[1l]), O

; Determine the transformof the inmage.
wavel et Transform = WIN(i nage, 20)

; Display the power spectrum
TVSCL, CONGRI D(ALOGLO(ABS(wavel et Transformt2)), $
di spl aySi ze[0], displaySize[1]), 1

; Crop the transformto only include data close to

; the spike in the lower-left corner.

croppedTransform = FLTARR(i mageSi ze[0], i mageSize[1])

croppedTransforn{ 0, 0] = wavel et TransforniO: (i nageSi ze[0]/2), $
0: (i mageSi ze[1]/ 2)]

; Create another wi ndow and display the power spectrum
; of the cropped transformas an i mage.
W NDOW 1, XSIZE = 2*displaySize[0], YSIZE = displaySize[1], $
TI TLE = ' Power Spectrum of Cropped Transform and Results'
TVSCL, CONGRI D(ALOGLO(ABS(croppedTransfornmt2)), $
di spl aySi ze[0], displaySize[1]), 0, /NAN

; Apply the inverse transformation to cropped transform
i nver seTransform = WIN(croppedTransform 20, /| NVERSE)

Image Processing in IDL ~ Transforming to and from the Time-Frequency Domain with Wavelets

382 Chapter 9: Transforming Between Domains

; Display results of inverse transformation.
TVSCL, CONGRI D(inverseTransform displaySize[0], $
di spl aySi ze[1]), 1

END

Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 383

Transforming to and from the Hough and
Radon Domains

The Hough transform is used to transform from the spatial domain to the Hough
domain and back again. The image information within the Hough domain shows the
pixelsof the original (spatial) image as sinusoidal curves. If the points of the original
image form a straight line, their related sinusoidal curves in the Hough domain will
intersect. Many intersections produce a peak. Masks can be easily applied to the
image within the Hough domain to determine if and where straight lines occur.

The Radon transform is used to transform from the spatial domain to the Radon
domain and back again. The image information within the Radon domain shows a
line through the original image as a point. Specific features (geometries) in the
origina image produce peaks or collections of points. Masks can be easily applied to
the image within the Radon domain to determine if and where these specific features
occur.

Unlike transformations to and from the frequency and time-frequency domains, the
Hough and Radon transforms do |ose some data during the transformation process.
These transformations are usually applied to the original image as a mask instead of
producing an image from the results of the transform itself. See the HOUGH and
RADON descriptionsin the IDL Reference Guide for more information on Hough
and Radon transform theory.

The following sections introduce the concepts needed to work with images and these
transforms:

* “Transforming to the Hough and Radon Domains (Projecting)” on page 383

e “Transforming from the Hough and Radon Domains (Backprojecting)” on
page 389

The Hough transformation process is used to find straight lines within an image. See

“Finding Straight Lines with the Hough Transform” on page 394 for an example. The

Radon transformation processis used to enhance contrast within an image. See

“Color Density Contrasting with the Radon Transform” on page 402 for an example.
Transforming to the Hough and Radon Domains
(Projecting)

When an image is transformed from the spatial domain to either the Hough or Radon
domain, the transformation process is referred to as a Hough or Radon projection.

Image Processing in IDL Transforming to and from the Hough and Radon Domains

384 Chapter 9: Transforming Between Domains

The projection process can be performed with either IDL’s HOUGH function or
IDL's RADON function, depending on which transform you want to use.

The following example shows how to use IDL's HOUGH and RADON functions to
compute and display the Hough and Radon projections. This example uses the first
image within the abnor m dat file, whichisintheexanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Hough and Radon Projections’ on page 387 or complete the following steps for a
detailed description of the process.

1. Import the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA_DI M5 = inageSi ze)

2. Definethe display size and offset parameters to resize and position the images
when displaying them:

di spl aySi ze = 2*i mageSi ze
of fset = displaySize/3

3. Initialize the display:

DEVI CE, DECOWMPCOSED = 0
LOADCT, O

4. Create awindow and display the image:

W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original |nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 385

The following figure shows the origina image.

Figure 9-22: Original Gated Blood Pool Image

5. With the HOUGH function, transform the image into the Hough domain:

houghTr ansf orm = HOUGH(i mage, RHO = houghRadii, $
THETA = houghAngl es, / GRAY)

6. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WNDOW 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displ aySi ze[1] + 1.5*offset[1], $
TI TLE = ' Hough Transform

TVSCL, CONGRI D(houghTransform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, houghAngl es, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = ' Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

Image Processing in IDL Transforming to and from the Hough and Radon Domains

386 Chapter 9: Transforming Between Domains

The following figure shows the resulting Hough transform.

Hough Transform

0.0 0% 1.0 1.5 20 25 30
Theta

Figure 9-23: Hough Transform of the Gated Blood Pool Image

7. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTr ansform = RADON(i mage, RHO = radonRadii, $
THETA = radonAngl es, / GRAY)

8. Create another window and display the Radon transform:

W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Radon Transform

TVSCL, CONGRI D(radonTransform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = ' Radon Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 387

The following figure shows the resulting Radon transform.

Fadon Transform

40

20

—Z0

—40

0.0 0% 1.0 1.9 2.0 25 30
Theta

Figure 9-24: Radon Transform of the Gated Blood Pool Image

Example Code: Hough and Radon Projections

Copy and paste the following text into an IDL Editor window. After saving thefile as
For war dHoughAndRadon. pr o, compile and run the program to reproduce the
previous example.

PRO Proj ect HoughAndRadon

; Import the image fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Define the display size and offset paraneters to

; resize and position the i mages when displaying them
di spl aySi ze = 4*i nageSi ze

of fset = displaySi ze/3

; Initialize the displays.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

; Create a window and display the imge.

Image Processing in IDL Transforming to and from the Hough and Radon Domains

388 Chapter 9: Transforming Between Domains

W NDOW 0, XSIZE = displaySize[0], $

YSI ZE = displaySi ze[1], TITLE = 'Original | nage'
TVSCL, CONGRI D(i mage, displaySize[0], $

di spl aySi ze[1])

; Wth the HOUGH function, transformthe inmage into the

; Hough domai n.

houghTr ansf orm = HOUGH(i mage, RHO = houghRadii, $
THETA = houghAngl es, / GRAY)

; Create another wi ndow and display the Hough transform

; with axes.

W NDOW 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Hough Transform

TVSCL, CONGRI D(houghTransform displ aySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, houghAngl es, houghRadii, /XSTYLE, /YSTYLE, $
TI TLE = ' Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

; Wth the RADON function, transformthe inmage into the

; Radon donain.

radonTr ansform = RADON(i mage, RHO = radonRadii, $
THETA = radonAngl es, / GRAY)

; Create another wi ndow and display the Radon transform

; with axes.

W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Radon Transform

TVSCL, CONGRI D(radonTransform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = ' Radon Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

END

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 389

Transforming from the Hough and Radon Domains
(Backprojecting)

After manipulating an image within either the Hough or Radon domain, you may
need to transform the image from that domain back to the spatial domain. This
transformation processis referred to as a Hough or Radon backprojection. The
backprojection process can be performed with either IDL's HOUGH function or
IDL’s RADON function, depending on which domain your imageisin. You can
perform the backprojection process with these functions by setting the
BACKPROJECT keyword.

The following example shows how to use IDL's HOUGH and RADON functions to
compute the backprojection from these domains. This example uses the first image
within the abnor m dat file, which isin the exanpl es/ dat a directory. Although
the image is not manipulated while it is in the Hough or Radon domain, information
islost when using these transforms.

For code that you can copy and paste into an Editor window, see “ Example Code:
Hough and Radon Backprojections” on page 392 or complete the following steps for
a detailed description of the process.

1. Import in the first image from the abnor m dat file:

i mageSi ze = [64, 64]
file = FI LEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Definethe display size and offset parameters to resize and position the images
when displaying them:

di spl aySi ze = 2*i mageSi ze
of fset = displaySi ze/3

3. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, 0

4. With the HOUGH function, transform the image into the Hough domain:

houghTr ansf orm = HOUGH(i mage, RHO = houghRadii, $
THETA = houghAngl es, / GRAY)

Image Processing in IDL Transforming to and from the Hough and Radon Domains

390 Chapter 9: Transforming Between Domains

5. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

W NDOW 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Hough Transform

TVSCL, CONGRI D(houghTransform di spl aySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, houghAngl es, houghRadii, /XSTYLE, /YSTYLE, $
TI TLE = ' Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

6. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTr ansform = RADON(i mage, RHO = radonRadii, $
THETA = radonAngl es, / GRAY)

7. Create another window and display the Radon transform:

W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Radon Transform

TVSCL, CONGRI D(radonTransform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = ' Radon Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 391

The following figure shows the Hough and Radon transforms.

Radon Transform

Hough Transform

40

20

Rho
2

—20

—40

0.0 0.5 1.0 1.5 2.0 25 3.0
Theta

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Theta

Figure 9-25: Hough (left) and Radon (right) Transforms of Image

8. Backproject the Hough and Radon transforms:

backpr oj ect Hough = HOUGH(houghTr ansform /BACKPRQIECT, $
RHO = houghRadi i, THETA = houghAngles, $
NX = i mageSi ze[0], NY = imageSi ze[1])
backproj ect Radon = RADON(radonTransform /BACKPRQIECT, $
RHO = radonRadi i, THETA = radonAngles, $

NX = inmageSi ze[0], NY = innageSize[1])
9. Create another window and display the original image with the Hough and
Radon backprojections:
W NDOW 2, XSIZE = (3*di spl aySi ze[0]), $

YSI ZE = displ aySi ze[1], $
TI TLE = ' Hough and Radon Backproj ections'

TVSCL, CONGRI D(i mage, displaySize[0], $
di spl aySi ze[1]), O

TVSCL, CONGRI D(backproj ect Hough, displ aySize[0], $
di spl aySi ze[1]), 1
TVSCL, CONGRI D(backproj ect Radon, displaySize[0], $

di spl aySi ze[1]), 2

Image Processing in IDL Transforming to and from the Hough and Radon Domains

392 Chapter 9: Transforming Between Domains

The following figure shows the origina image and its Hough and Radon
transforms. These resulting images shows information is blurred when using
the Hough and Radon transformations.

Figure 9-26: Original Gated Blood Pool Image (left), Hough Backprojection
(center), and Radon Backprojection (right)

Example Code: Hough and Radon Backprojections

Copy and paste the following text into an IDL Editor window. After saving thefile as
Backpr oj ect HoughAndRadon. pr o, compile and run the program to reproduce the
previous example.

PRO Backpr oj ect HoughAndRadon

; Inmport the inage fromthe file.
i mageSi ze = [64, 64]
file = FILEPATH(' abnormdat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_BI NARY(file, DATA DI M5 = inmageSize)

; Define the display size and offset paraneters to

; resize and position the i mages when di splaying them
di spl aySi ze = 4*i nageSi ze

of fset = displaySi ze/3

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

; Wth the HOUGH function, transformthe inmage into the

; Hough donai n.
houghTr ansf orm = HOUGH(i mage, RHO = houghRadii, $

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Image Processing in IDL

Chapter 9: Transforming Between Domains

THETA = houghAngl es, / GRAY)

; Create another wi ndow and display the Hough transform

; with axes.

W NDOW 0, XSl ZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Hough Transform

TVSCL, CONGRI D(houghTransform di spl aySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, houghAngl es, houghRadii, /XSTYLE, /YSTYLE, $
TI TLE = ' Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

; Wth the RADON function, transformthe inmage into the

; Radon donain.

radonTr ansform = RADON(i mage, RHO = radonRadii, $
THETA = radonAngl es, / GRAY)

; Create another wi ndow and display the Radon transform

; with axes.

W NDOW 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Radon Transform

TVSCL, CONGRI D(radonTransform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = ' Radon Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

; Backproj ect the Hough and Radon transforns.

backproj ect Hough = HOUGH(houghTransform /BACKPRQIECT, $
RHO = houghRadi i, THETA = houghAngles, $
NX = i mageSi ze[0], NY = imageSi ze[1])

backproj ect Radon = RADON(radonTransform /BACKPRQIECT, $
RHO = radonRadi i, THETA = radonAngles, $
NX = i mageSi ze[0], NY = imageSize[1])

; Create another wi ndow and display the original inmage
; with the Hough and Radon backjecti ons.
W NDOW 2, XSIZE = (3*di spl aySi ze[0]), $
YSI ZE = displ aySi ze[1], $
TI TLE = ' Hough and Radon Backproj ections'
TVSCL, CONGRI D(i mage, displaySize[0], $

393

Transforming to and from the Hough and Radon Domains

394 Chapter 9: Transforming Between Domains

di spl aySi ze[1]), O

TVSCL, CONGRI D(backproj ect Hough, displaySize[0], $
di splaySi ze[1]), 1

TVSCL, CONGRI D(backproj ect Radon, displaySize[0], $
di spl aySi ze[1]), 2

END

Finding Straight Lines with the Hough Transform

This example uses the Hough transform to find straight lines within an image. The
image comes from ther ockl and. png file found in the exanpl es/ dat a directory.
The image is a saturation composite of a 24 hour period in Rockland, Maine. A
saturation composite is normally used to highlight intensities, but the Hough
transform is used in this example to extract the power lines, which are straight lines.
The Hough transform is applied to the green band of the image. The results of the
transform are scaled to only include lineslonger than 85 pixels. The scaled resultsare
then backprojected by the Hough transform to produce an image of only the straight
power lines.

For code that you can copy and paste into an Editor window, see “ Example Code:
Finding Straight Lines with the Hough Transform” on page 399 or complete the
following steps for adetailed description of the process.

1. Import theimage from ther ockl and. png file:

file = FILEPATH(' rockl and. png', $
SUBDI RECTCORY = [' exanples', 'data'])
i mmge = READ_PNG(file)

2. Determine the size of the image:

i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)
3. Initializea TrueColor display:

DEVI CE, DECOMPCSED = 1
4. Create awindow and display the original image:

W NDOW 0, XSIZE = imageSize[1l], YSIZE = inngeSize[2], $
TI TLE = ' Rockl and, Mai ne'
TV, image, TRUE = 1

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 395

The following figure shows the origina image.

Figure 9-27: Image of Rockland, Maine

5. Usetheimage from green channel to provide an outline of shapes:
intensity = REFORM i nage[1, *, *])

6. Determine the size of the intensity image derived from the green channel:
intensitySize = Sl ZE(intensity, /DI MENSI ONS)

7. Threshold the intensity image to highlight the power lines:

mask = intensity GT 240

Note

The intensity image values range from O to 255. The threshold was derived by
iteratively viewing the intensity image at several different values.

8. [Initialize the remaining displays:

DEVI CE, DECOMPOSED = 0
LOADCT, 0

Image Processing in IDL Transforming to and from the Hough and Radon Domains

396 Chapter 9: Transforming Between Domains

9. Create another window and display the masked image:

WNDOW 1, XSIZE = intensitySize[0], $
YSIZE = intensitySize[1l], $
TITLE = ' Mask to Locate Power Lines'
TVSCL, mask

The following figure shows the mask of the origina image.

Figure 9-28: Mask of Rockland Image

10. Transform the mask with the HOUGH function:
transform = HOUGH(mask, RHO = rho, THETA = theta)
11. Definethe size and offset parameters for the transform displays:

di spl aySi ze = [256, 256]
of fset = displaySi ze/3

12. Reverse the color table to clarify the lines:

TVLCT, red, green, blue, /GET
TVLCT, 255 - red, 255 - green, 255 - blue

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 397

13. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Hough Transform

TVSCL, CONGRID(transform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TI TLE = ' Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = ! P. BACKGROUND

14. Scale the transform to abtain just the power lines, retaining only those lines
longer than 85 pixels:

transform = (TEMPORARY(transforn) - 85) >0

The value of 85 comes from an estimate of the length of the power lineswithin
the original and intensity images.

15. Create another window and display the scaled Hough transform with axes
provided by the PLOT procedure:

W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Scal ed Hough Transform

TVSCL, CONGRID(transform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = ' Scal ed Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = ! P. BACKGROUND

The top image in the following figure shows the Hough transform of the
intensity image. This transform is masked to only include straight lines of

Image Processing in IDL Transforming to and from the Hough and Radon Domains

398

Chapter 9: Transforming Between Domains

more than 85 pixels. The bottom image in the following figure shows the
results of this mask. Only the far left and right intersections are retained.

200

100

o

Rho

=100

—200F

200

=100

—Z00

Hough Transform

T

Scaled Hough

Theta

0.0 05 1.0 1.5 2.0 2.5 30

Transfarm

Remaining
I ntersections

Theta

0.0 05 1.0 1.5 2.0 2.5 30

Figure 9-29: The Hough Transform (top) and the Scaled Transform (bottom) of

the Masked Intensity Image

Transforming to and from the Hough and Radon Domains

Image Processing in IDL

Chapter 9: Transforming Between Domains 399

16. Backproject to compare with the origina image:

backprojecti on = HOUGH(transform /BACKPRQIECT, $
RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySize[1l])

17. Create another window and display the resulting backprojection:
W NDOW 4, XSIZE = intensitySize[0], $
YSIZE = intensitySize[1l], $

TITLE = ' Resulting Power Lines'
TVSCL, backprojection

The following figure shows the resulting backprojection, which contains only
the power lines.

Figure 9-30: The Resulting Backprojection of the Scaled Hough Transform

Example Code: Finding Straight Lines with the Hough
Transform

Copy and paste the following text into an IDL Editor window. After saving thefile as
Fi ndi ngLi nesW t hHough. pr o, compile and run the program to reproduce the
previous example.

Image Processing in IDL Transforming to and from the Hough and Radon Domains

400 Chapter 9: Transforming Between Domains

PRO Fi ndi ngLi nesW t hHough

; Import the image fromfile.
file = FILEPATH(' rockl and. png', $

SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_PNG(file)

; Deternmine size of immge.
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

; Initialize the TrueCol or display.
DEVI CE, DECOMPCSED = 1

; Create a window and di splay the original inmage.

W NDOW 0, XSIZE = imageSize[1l], YSIZE = inmageSize[2], $
TI TLE = ' Rockl and, Mai ne'

TV, image, TRUE =1

; Use the image from green channel to provide outlines
; of shapes.
intensity = REFORMimage[1l, *, *])

; Determine size of intensity inage.
intensitySize = Sl ZE(intensity, /D MENSI ONS)

; Mask intensity image to highlight power Iines.
mask = intensity GT 240

; Initialize the remaining displays.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create another window and display the nmasked i nage.
WNDOW 1, XSIZE = intensitySize[0], $

YSIZE = intensitySize[1l], $

TITLE = ' Mask to Locate Power Lines'
TVSCL, mask

; Transform mask.
transform = HOUGH(mask, RHO = rho, THETA = theta)

; Define the size and of fset paraneters for the
; transformdisplays.

di spl aySi ze = [256, 256]

of fset = displaySi ze/3

; Reverse color table to clarify lines.

TVLCT, red, green, blue, /GET
TVLCT, 255 - red, 255 - green, 255 - blue

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 401

; Create another wi ndow and display the Hough transform
; with axes.
W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Hough Transform
TVSCL, CONGRID(transform displaySize[0], $
di splaySi ze[1]), offset[0], offset[1]
PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TI TLE = ' Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = ! P. BACKGROUND

; Scale transformto obtain just the power I|ines.
transform = (TEMPORARY(transforn) - 85) >0

; Create another wi ndow and display the scal ed transform
W NDOW 3, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Scal ed Hough Transform
TVSCL, CONGRID(transform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]
PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = ' Scal ed Hough Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = ! P. BACKGROUND

; Backproject to conpare with original inage.
backprojecti on = HOUGH(t ransform /BACKPRQIECT, $
RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySize[1])

; Create another wi ndow and display the results.
W NDOW 4, XSIZE = intensitySize[0], $

YSIZE = intensitySize[1l], $

TITLE = ' Resul ting Power Lines'
TVSCL, backprojection

END

Image Processing in IDL Transforming to and from the Hough and Radon Domains

402 Chapter 9: Transforming Between Domains

Color Density Contrasting with the Radon Transform

This example uses the Radon transform to provide more contrast within an image
based on its color density. The image comes from the endocel | . j pg filefound in
the exanpl es/ dat a directory. The image is a photomicrograph of cultured
endothelia cells. The edges (outlines) within the image are defined by the Roberts
filter. The Radon transform is then applied to the filtered image. The transform is
scaled to only include the values above the mean of the transform. The scaled results
are backprojected by the Radon transform. The resulting backprojection isused as a
mask on the original image. The final resulting image shows more color contrast
along the edges of the cell nuclei within the image.

For code that you can copy and paste into an Editor window, see “ Example Code:
Color Density Contrasting with the Radon Transform” on page 406 or complete the
following steps for adetailed description of the process.

1. Import inthe image from theendocel I . j pg file:

file = FILEPATH(' endocel | .jpg', $
SUBDI RECTCORY = [' exanples', 'data'])
READ_JPEG file, endocelllmge

2. Determine theimage's size, but divide it by 4 to reduce theimage:
i mgeSi ze = Sl ZE(endocel | 1 mage, /DI MENSIONS)/ 4
3. Resize theimage to aquarter of its original length and width:

endocel | mage = CONGRI D(endocel | | mrage, $
i mgeSi ze[0], inageSi ze[1])

4. |Initiadlizethe display:

DEVI CE, DECOWMPCSED = 0
LOADCT, 0

5. Create awindow and display the original image:

W NDOW 0, XSIZE = 2*imageSi ze[0], YSIZE = i mageSi ze[1], $
TITLE = "Oiginal (left) and Filtered (right)’
TV, endocelllnage, O

6. Filter the origina image to clarify the edges of the cells:
i mage = ROBERTS(endocel | | nage)

7. Display thefiltered image:
TVSCL, inmmge, 1

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 403

The following figure shows the original image and the results of the edge
detection filter.

Figure 9-31: Endothelial Cells Image (left) and the Resulting Edge-Filtered
Image (right)

8. Transform the filtered image:
transform = RADON(i mage, RHO = rho, THETA = theta)
9. Definethe size and offset parameters for the transform displays:

di spl aySi ze = [256, 256]
of fset = displaySize/3

10. Create another window and display the Radon transform with axes provided by
the PLOT procedure:

WNDOW 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Radon Transform

TVSCL, CONGRID(transform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = ' Radon Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

Image Processing in IDL Transforming to and from the Hough and Radon Domains

404 Chapter 9: Transforming Between Domains

11. Scale the transform to include only the density values above the mean of the
transform:

scal edTransform = transform > MEAN(tr ansform

12. Create another window and display the scaled Radon transform with axes
provided by the PLOT procedure:

W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Scal ed Radon Transform
TVSCL, CONGRI D(scal edTransform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]
PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = ' Scal ed Radon Transform , XTITLE = 'Theta', $
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

The following figure shows the original Radon transform of the edge-filtered
image and the resulting scaled transform. The high intensity values within the
diamond shape of the center of the transform represent high color density

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 405

within the filtered and original image. The transform is scaled to highlight this
segment of intersecting lines.

Fadon Transform

]
A=
Wl
0.0 0.5 1.0 1.5 2.0 2.5 30
Theta
Scaled Radaon Transform
]
A=
Wl

00 05 1.0 1.5 2.0 2.5 3.0
Theta

Figure 9-32: Radon Transform (top) and Scaled Transform (bottom)
of the Edge-Filtered Image

Image Processing in IDL Transforming to and from the Hough and Radon Domains

406 Chapter 9: Transforming Between Domains

13. Backproject the scaled transform:

backproj ecti on = RADON(scal edTransform /BACKPRQIECT, $
RHO = rho, THETA=theta, NX = i mageSi ze[0], $
NY = inmageSi ze[1])

14. Create another window and display the backprojection:

WNDOW 3, XSl ZE = 2*i nageSi ze[0], YSIZE = inmageSi ze[1], $
TI TLE = ' Backproject (left) and Final Result (right)’
TVSCL, backprojection, 0

15. Use the backprojection as a mask to provide a color density contrast of the
origina image:

constrastingl mage = endocel | | mage*backproj ecti on
16. Display the resulting contrast image:
TVSCL, constrasti ngl mage, 1

The following figure shows the Radon backprojection and a combined image
of the original and the backprojection. The cell nuclei now have more contrast
than the rest of the image.

Figure 9-33: The Backprojection of the Radon Transform and the Resulting
Contrast Image

Example Code: Color Density Contrasting with the Radon
Transform

Copy and paste the following text into an IDL Editor window. After saving thefile as
ContrastingCel | sWthRadon. pr o, compile and run the program to reproduce
the previous example.

Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 407

PRO ContrastingCel | sWthRadon

; Import the image fromthe file.
file = FILEPATH(' endocel | .jpg', $

SUBDI RECTCRY = [' exanples', 'data'])
READ_JPEG file, endocelllmge

; Determine image's size, but divide it by 4 to reduce
; the inmage.
i mgeSi ze = Sl ZE(endocel | 1 mage, /DI MENSIONS)/ 4

; Resize inmage to a quarter its original length and
; width.
endocel | mage = CONGRI D(endocel | | rage, $

i mgeSi ze[0], inageSi ze[1])

; Initialize the displays.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create a window and di splay the original inmage.

W NDOW 0, XSl ZE = 2*imageSi ze[0], YSIZE = inmageSize[1l], $
TITLE = "Oiginal (left) and Filtered (right)’

TV, endocelllnage, O

; Filter original image to clarify the edges of the
; cells.
i mage = ROBERTS(endocel | | nage)

; Display the filtered i mge.
TVSCL, inmge, 1

; Transformthe filtered image.
transform = RADON(i mage, RHO = rho, THETA = theta)

; Define the size and of fset paraneters for the
; transform di spl ays.

di spl aySi ze = [256, 256]

of fset = displaySi ze/3

; Create another wi ndow and display the Radon transform
; with axes.
W NDOW 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Radon Transform
TVSCL, CONGRID(transform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]
PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = ' Radon Transform , XTITLE = 'Theta', $

Image Processing in IDL Transforming to and from the Hough and Radon Domains

408

Transforming to and from the Hough and Radon Domains

Chapter 9: Transforming Between Domains

YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $

di spl aySi ze[0] + offset[0], $

di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

; Scale the transformto include only the density
; val ues above the nean of the transform
scal edTransform = transform > MEAN(transform

; Create another wi ndow and display the scal ed Radon
; transformw th axes.
W NDOW 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSI ZE = displaySi ze[1] + 1.5*offset[1], $
TI TLE = ' Scal ed Radon Transform
TVSCL, CONGRI D(scal edTransform displaySize[0], $
di spl aySi ze[1]), offset[0], offset[1]
PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TI TLE = ' Scal ed Radon Transform, XTITLE = 'Theta',
YTI TLE = ' Rho', / NODATA, /NOERASE, /DEVICE, $
POSI TION = [offset[0], offset[1], $
di spl aySi ze[0] + offset[0], $
di spl aySi ze[1] + offset[1]], CHARSIZE = 1.5

; Backproject the scaled transform

backprojecti on = RADON(scal edTransform /BACKPROJECT, $

RHO = rho, THETA=theta, NX = i nmageSi ze[0], $
NY = inmageSi ze[1])

; Create another wi ndow and display the backprojection.

$

W NDOW 3, XSIZE = 2*i mageSi ze[0], YSIZE = i mageSi ze[1],
TI TLE = ' Backproject (left) and Final Result (right)’

TVSCL, backprojection, 0

; Use the backprojection as a nmask to provide

; a color density contrast of the original image.
constrastingl nage = endocel | | mage*backproj ecti on

; Display resulting contrast inmage.
TVSCL, constrastingl mage, 1

END

Image Processing in IDL

Chapter 10:

Contrasting and

Filtering

This chapter describes the following topics:

Overview of Contrasting and Filtering ... 410

Byte-Scaling 413
Working with Histograms 417
Filteringanimage 428

Image Processing in IDL

Smoothinganimage................. 448
Sharpeninganimage 459
DetectingEdges 464
RemovingNoise 470

409

410 Chapter 10: Contrasting and Filtering

Overview of Contrasting and Filtering

Contrast within an image is based on the brightness or darkness of a pixel in relation
to other pixels. Modifying the contrast among neighboring pixels can enhance the
ability to extract information from the image. Operations such as noise removal and
smoothing decrease contrast and make neighboring pixel values more similar. Other
operations such as scaling pixel values, edge detection and sharpening increase
contrast to highlight specific image features.

A simpleway to modify contrast isto scale the pixel values within an image. Within
IDL, the pixel values of displayed images typically range from 0 to 255. Byte-scaling
changes the range of values within an image to a linear progression from aminimum
of 0to amaximum of 255. For images with pixel values exceeding 255, byte-scaling
produces amore linear display with the minimum value as the darkest pixel and the
maximum value as the brightest pixel. For images with a smaller range in pixel
values, byte-scaling increases the contrast and brightens dark areas. See “Byte-
Scaling” on page 413 for more information on byte-scaling.

Contrast can aso be increased to show more variations within uniform areas of the
image using histogram equalization operations. These operations modify the
distribution of pixel valueswithin an image. See “Working with Histograms” on
page 417 for more information on using histograms to modify contrast.

Filters provide another means of changing contrast within an image. A filter is
represented by akernel, which is an array that is multiplied and added to each pixel
(and its surrounding values) within an image. Examples of such filtersinclude low
pass, high pass, directional, and Laplacian filters. See “Filtering an Image” on

page 428 for more information on these filters. The following list introduces some of
the specific operations covered in this section:

» Low passfiltering - alow pass filter provides the basis for smoothing
operations. If an image contains too many variations to be able to determine
specific features, smoothing can decrease the contrast so that some areas
(especidly the background) will not distract from viewing other areas of the
image. See “Smoothing an Image” on page 448 for more information on
smoothing.

» High passfiltering - ahigh passfilter provides the basis for sharpening
operations. Some variations within areas of an image are too slight, causing
some features to be indistinguishable from other features (usualy the
background). Sharpening increases the contrast in these areas, allowing these
features to be clearly displayed. See “ Sharpening an Image” on page 459 for
more information on sharpening.

Overview of Contrasting and Filtering Image Processing in IDL

Chapter 10: Contrasting and Filtering 411

» Directional and Laplacian filters - these filters are the basis for edge detection
operations. Shapes within an image are distinguished by their edges, which
typically involve a sharp gradient. Edge detection increases the contrast
between the boundary of the shape and the adjoining areas. See “Detecting
Edges’ on page 464 for more information on edge detection.

* Windowing and adaptive filters - more advanced filters are used to remove
noise from an image. The variation in values between the noise and the image
dataistypically extreme, which detractsfrom theimage clarity. Decreasing the
contrast reduces the visible noise and allows the image to be properly viewed.
See “Removing Noise” on page 470 for more information on removing noise
within animage.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image contrasting and filtering tasks and associated
IDL image routines covered in this chapter.

gz e C_:ontrasts Routines Description
or Filters
“Byte-Scaling” on BYTSCL Byte-scale the data
page 413 values of animage to
produce amore
continuous display or to
increase its contrast.
“Working with HIST_EQUAL Use histogram
Histograms®’ on ADAPT_HIST EQUAL equalization to show
page 417 - - minor variationsin
uniform areas.
“Filtering an Image” CONVOL Enhance contrast by
on page 428 applying some basic
filters (low pass, high
pass, directional, and
Laplacian) to images.

Table 10-1: Image Contrasting and Filtering Tasks and Related Routines

Image Processing in IDL Overview of Contrasting and Filtering

412

Chapter 10: Contrasting and Filtering

Type of Contrasts

or Eilters Routines Description

“Smoothing an Image” | SMOOTH Smooath high variations

“Sharpening an CONVOL Sharpen an image by

Image” on page 459 decreasing too bright
pixels and increasing too
dark pixels.

“Detecting Edges’ on | ROBERTS Use the contrast within

page 464 SOBEL an image to detect the
possible edges of shapes.

“Removing Noise” on | HANNING Remove noise from an
windowing or using an
adaptive filter.

Table 10-1: Image Contrasting and Filtering Tasks and Related Routines

Note

This chapter uses data filesfromthe | DL exanpl es/ dat a directory. Two files,
dat a. t xt andi ndex. t xt , contain descriptions of the files, including array sizes.

Overview of Contrasting and Filtering

Image Processing in IDL

Chapter 10: Contrasting and Filtering 413
Byte-Scaling

The data values of some images may be greater than 255. When displayed with the
TV routine or the IDLgrImage object, the data val ues above 255 are wrapped around
the range of 0 to 255. Thistype of display may produce discontinuitiesin the
resulting image.

The display can be changed to not wrap around and appear more linear by byte-
scaling the image. The scaling processis linear with the minimum data value scaled
to 0 and the maximum data value scal ed to 255. You can use the BY TSCL function to
perform this scaling process.

If the range of the pixel values within an image isless than 0 to 255, you can use the
BY TSCL function to increase the range from 0 to 255. This change will increase the
contrast within the image by increasing the brightness of darker regions. Keywords to
the BY TSCL function also allow you to decrease contrast by setting the highest value
of the image to less than 255.

Note
The BYTSCL function usually results in a different data type (byte) and range (0 to
255) from the original input data. When converting data with BY TSCL for display
purposes, you may want to keep your original data as a separate variable for
statistical and numerical analysis.

The following example shows how to use the BY TSCL function to scale data with
values greater than 255, producing a more uniform display. This example uses a

M agnetic Resonance Image (MRI) of a human brain within the nr _br ai n. demfile
in the exanpl es/ dat a directory. The values of this data are unsigned integer and
range from O to about 800.

For code that you can copy and paste into an Editor window, see “ Example Code:
Byte-Scaling” on page 415 or complete the following steps for a detailed description
of the process.

1. Import theimage from the nv _br ai n. demfile:

file = FI LEPATH(' nr_brain.dcm, $

SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_DI COMfil e)
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

2. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, 5

Image Processing in IDL Byte-Scaling

414 Chapter 10: Contrasting and Filtering

3. Create awindow and display the original image:

W NDOW 0, XSIZE = imageSize[0], YSIZE = inmngeSize[1], $
TITLE = ' Oiginal |nage'
TV, inage

The following figure shows the original image.

Figure 10-1: Magnetic Resonance Image (MRI) of a Human Brain

4. Byte-scaetheimage:
scal edl mage = BYTSCL(i mage)
5. Create another window and display the byte-scaled image:

W NDOW 1, XSIZE = inmageSize[0], YSIZE = inageSi ze[1], $
TI TLE = ' Byte-Scal ed | mage'
TV, scal edl mage

Byte-Scaling Image Processing in IDL

Chapter 10: Contrasting and Filtering 415

The following figure shows the result of byte-scaling. Unlike the original
image, the byte-scaled image accurately represents the maximum and
minimum pixel values by linearly adjusting the range for display.

Figure 10-2: Byte-Scaled MRI

Example Code: Byte-Scaling

Copy and paste the following text into an IDL Editor window. After saving thefile as
Byt eScal i ng. pr o, compile and run the program to reproduce the previous
example.

PRO Byt eScal i ng

; Import the image fromthe file.
file = FILEPATH(' nr_brain.dcm, $

SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_DI COMfil e)
i mageSi ze = S| ZE(i nage, /DI MENSI ONS)

; Initialize the displays.
DEVI CE, DECOMPOSED = 0
LOADCT, 5

; Create a window and di splay the original inmage.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmgeSize[l], $
TITLE = ' Oiginal |nage'

TV, image

; Byte-scale the inmge.
scal edl mage = BYTSCL(i mage)

Create another wi ndow and display the byte-scal ed

Image Processing in IDL Byte-Scaling

416 Chapter 10: Contrasting and Filtering

;i mage.

W NDOW 1, XSIZE = inmageSi ze[0], YSIZE = innageSi ze[1], $
TI TLE = ' Byte-Scal ed | mage'

TV, scal edl mage

END

Byte-Scaling Image Processing in IDL

Chapter 10: Contrasting and Filtering 417

Working with Histograms

The histogram of an image shows the number of pixelsfor each pixel value within the
range of the image. Peaks in the histogram represent more common values within the
image that usually consist of nearly uniform regions. Valleysin the histogram
represent less common values. Empty regions within the histogram indicate that no
pixels within the image contain those values.

The following figure shows an example of a histogram and its related image. The
most common value in this image is 180, composing the background of the image.
Although the background appears nearly uniform, it contains many small variations.

WAV

0 50 100 150 200 250
Histagram of Image

Figure 10-3: Example of a Histogram (left) and Its Related Image (right)

The contrast of these variations can be increased by equalizing the image's
histogram. Either the image's color table or the image itself can be equalized based
on the information within the image’s histogram. This section shows how to enhance
the contrast within an image by modifying the image itself. See “ Showing Variations
in Uniform Areas’ in Chapter 3 for more information on enhancing contrast by
modifying the color table of an image using the image's histogram information.

During histogram equalization, the values occurring in the empty regions of the
histogram are redistributed equally among the peaks and valleys. This process creates
intensity gradients within these regions (replacing nearly uniform values), thus
highlighting minor variations.

IDL contains the ability to perform histogram equalization and adaptive histogram
equalization. The following sections show how to use these forms of histogram
equalization to modify images within IDL:

e “Equalizing with Histograms’
* “Adaptive Equalizing with Histograms” on page 422

Image Processing in IDL Working with Histograms

418 Chapter 10: Contrasting and Filtering

Equalizing with Histograms

You can use the HIST_EQUAL function to perform basic histogram equalization
within IDL. Unlike histogram equalization methods performed on color tables, the
HIST_EQUAL function results in amodified image, which has a different histogram
than the original image. The resulting image shows more variations (increased
contrast) within uniform areas than the original image.

The following example applies histogram equalization to an image of mineral
depositsto revea previously indistinguishable features. This example uses the
m ner al . png fileinthe exanpl es/ dat a directory.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Equalizing with Histograms” on page 421 or complete the following steps for
a detailed description of the process.

1. Import the image and color table from the mi ner al . png file:

file = FILEPATH(' mineral .png', $

SUBDI RECTCRY = [' exanples', 'data'])
i mpage = READ PNG(file, red, green, blue)
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

2. Initialize the display:

DEVI CE, DECOMPCSED = 0
TVLCT, red, green, blue

3. Create awindow and display the original image with its color table:

WNDOW 0, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Oiginal |nage'
TV, inage

The following figure shows the original image.

Figure 10-4: The Mineral Image and Its Related Color Table

Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 419

4. Create another window and display the histogram of the original image:

W NDOW 1, TITLE = 'Hi stogram of I|nage'
PLOT, HI STOGRAM i mage), /XSTYLE, /YSTYLE, $
TITLE = ' M neral Image Histogram , $

XTITLE = 'Intensity Value', $
YTI TLE "Nurmber of Pixels of That Val ue'

The following figure shows the original image's histogram.

Mineral Imoge Histogrom
T T

2000

1500

1000

Mumber of Pivels of That value

500 -

SN

0 50 100 180 200 250
Intensity Yalue

Figure 10-5: Histogram of the Original Image

5. Histogram equalize the image:
equal i zedl mage = HI ST_EQUAL(i nage)
6. Create another window and display the equalized image:

W NDOW 2, XSIZE = inmageSize[0], YSIZE = innageSi ze[1], $
TITLE = ' Equal i zed | mage'
TV, equalizedl mage

Image Processing in IDL Working with Histograms

420 Chapter 10: Contrasting and Filtering

The following figure shows the results of the histogram egualization. Small
variations within the uniform regions are now much more noticeable.

Figure 10-6: Equalized Mineral Image

7. Create another window and display the histogram of the equalized image:

W NDOW 3, TITLE = 'Hi stogram of Equalized | nage'
PLOT, HI STOGRAM equal i zedl mage), /XSTYLE, /YSTYLE, $
TI TLE = ' Equal i zed I mage Histogram , $
XTITLE = "Intensity Value', $
YTI TLE = ' Number of Pixels of That Val ue'

Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 421

The following figure shows the modified image's histogram. The resulting
histogram is now more uniform than the original histogram.

Equalized Image Histogram

2000 -
1500 -

1060 —

Mumber of Pivels of That value

I
100 180 200
Intensity Yalue

Figure 10-7: Histogram of the Equalized Image

Example Code: Equalizing with Histograms

Copy and paste the following text into an IDL Editor window. After saving thefile as
Equal i zi ng. pr o, compile and run the program to reproduce the previous example.

PRO Equal i zi ng

; Import the image fromthe file.
file = FILEPATH(' mineral .png', $

SUBDI RECTCRY = [' exanples', 'data'])
i mpmge = READ PNG(file, red, green, blue)
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

; Initialize the display.
DEVI CE, DECOMPOSED = 0
TVLCT, red, green, blue

; Create a window and di splay the original image.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmgeSize[l], $
TITLE = ' Oiginal |nage'

TV, image

; Create another wi ndow and display the histogramof the

Image Processing in IDL Working with Histograms

422

Chapter 10: Contrasting and Filtering

the original image.

W NDOW 1, TITLE = 'Hi stogram of |nage'
PLOT, HI STOGRAM i mage), /XSTYLE, /YSTYLE, $
TITLE = ' M neral Image Histogram , $

XTITLE = 'Intensity Value', $
YTI TLE = ' Number of Pixels of That Val ue'

Hi st ogram equal i ze the innge.
equal i zedl mage = HI ST_EQUAL(i nage)

Create another wi ndow and display the equalized inmage.
W NDOW 2, XSIZE = i mageSi ze[0], YSIZE = inmngeSi ze[1], $
TITLE = ' Equal i zed | mage'
TV, equalizedl mage

Create another wi ndow and display the histogram of the
equal i zi ed i nage.
WNDOW 3, TITLE = 'Hi stogram of Equalized | mage'
PLOT, HI STOGRAM equal i zedl mage), /XSTYLE, /YSTYLE, $
TI TLE = ' Equal i zed I mage Histogram , $

XTITLE = '"Intensity Value', $
YTI TLE = ' Nunmber of Pixels of That Val ue'
END

Adaptive Equalizing with Histograms

Adaptive histogram equalization involves applying equalization based on the local
region surrounding each pixel. Each pixel ismapped to an intensity proportional toits
rank within the surrounding neighborhood. This type of equalization also tendsto
reduce the disparity between peaks and valleys within the image’s histogram.

You can use the ADAPT_HIST_EQUAL function to perform the adaptive histogram
equalization process within IDL. Like the HIST_EQUAL function, the
ADAPT_HIST_EQUAL function results in a modified image, which has a different
histogram than the original image.

The following example applies adaptive histogram equalization to an image of
mineral depositsto reveal previously indistinguishable features. This example uses a
them neral . png filein the exanpl es/ dat a directory.

For code that you can copy and paste into an IDL Editor window, see “ Example
Code: Adaptive Equalizing with Histograms” on page 426 or complete the following
steps for a detailed description of the process.

Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 423

1. Import the image and color table from the mi ner al . png file:

file = FI LEPATH(' mineral .png', $

SUBDI RECTCRY = [' exanples', 'data'])
i mage = READ PNG(file, red, green, blue)
i mgeSi ze = S| ZE(i mage, /Dl MENSI ONS)

2. Initialize the display:

DEVI CE, DECOMPCOSED = 0
TVLCT, red, green, blue

3. Create awindow and display the original image with its color table:

W NDOW 0, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Oiginal |nage'
TV, inage

The following figure shows the origina image.

Figure 10-8: The Mineral Image and Its Related Color Table

4. Create another window and display the histogram of the original image:

WNDOW 1, TITLE = 'H stogram of |mage'
PLOT, HI STOGRAM i mage), /XSTYLE, /YSTYLE, $
TITLE = ' M neral Image Histogram ,h $

XTITLE = 'Intensity Value', $
YTI TLE = ' Number of Pixels of That Val ue'

Image Processing in IDL Working with Histograms

424 Chapter 10: Contrasting and Filtering

The following figure shows the resulting display.

Mineral Imoge Histogrom
T T

2000 —
1500 - _

1000 -

Mumber of Pivels of That value

500 —

SN

0 50 100 180 200 250
Intensity Yalue

Figure 10-9: Histogram of the Original Image

5. Apply adaptive histogram equalization to the image:
equal i zedl mage = ADAPT_HI ST_EQUAL(i nage)
6. Create another window and display the equalized image:

W NDOW 2, XSIZE = imageSi ze[0], YSIZE = inageSi ze[1], $
TI TLE = ' Adapti ve Equalized |nage'
TV, equalizedl mage

Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 425

The following figure shows the results of adaptive histogram equalization. All
the variations within the image are now noticeable.

Figure 10-10: Adaptive Equalized Mineral Image

7. Create another window and display the histogram of the equalized image:

W NDOW 3, TITLE = 'Hi stogram of Adaptive Equalized |Imge'
PLOT, HI STOGRAM equal i zedl mage), /XSTYLE, /YSTYLE, $

TI TLE = ' Adaptive Equalized Image Histogram , $

XTITLE = '"Intensity Value', $

YTI TLE = ' Number of Pixels of That Val ue'

Image Processing in IDL Working with Histograms

426

Chapter 10: Contrasting and Filtering

The following figure shows the modified image's histogram. The resulting
histogram contains no empty regions and fewer extreme peaks and valleysthan
the original image.

Adoptive Equolized Imoge Histogram

3o 1

250 1

Mumber of Pivels of That vaolue

200

180

0 50 100 180 200 250
Intensity Yalue

Figure 10-11: Histogram of the Adaptive Equalized Image

Example Code: Adaptive Equalizing with Histograms

Copy and paste the following text into an IDL Editor window. After saving thefile as
Adapt i veEqual i zi ng. pr o, compile and run the program to reproduce the
previous example.

PRO Adapti veEqual i zi ng

; Import the image fromthe file.
file = FILEPATH(' mineral .png', $

SUBDI RECTCRY = [' exanples', 'data'])
i mpage = READ PNG(file, red, green, blue)
i mgeSi ze = S| ZE(i mage, /Dl MENSI ONS)

; Initialize the display.
DEVI CE, DECOMPOSED = 0
TVLCT, red, green, blue

; Create a window and di splay the original inmage.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmageSize[l], $
TITLE = ' Oiginal |nage'

TV, inage

Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 427

; Create another wi ndow and display the histogramof the
; the original imge.
WNDOW 1, TITLE = 'Hi stogram of |nage'
PLOT, HI STOGRAM i mage), /XSTYLE, /YSTYLE, $
TITLE = ' M neral Image Histogram ,k $
XTITLE = 'Intensity Value', $
YTI TLE = ' Number of Pixels of That Val ue'
; Histogram equalize the inage.
equal i zedl mage = ADAPT_HI ST_EQUAL(i nage)

; Create another wi ndow and display the equalized i mge.

W NDOW 2, XSIZE = i mageSi ze[0], YSIZE = inmngeSi ze[1], $
TI TLE = ' Adapti ve Equalized |nage'

TV, equalizedl mage

; Create another wi ndow and display the histogramof the
; equalizied imge.
W NDOW 3, TITLE = 'Hi stogram of Adaptive Equalized | mage'
PLOT, HI STOGRAM equal i zedl mage), /XSTYLE, /YSTYLE, $
TI TLE = ' Adapti ve Equalized Inage H stogram , $

XTITLE = '"Intensity Value', $
YTI TLE = ' Nunmber of Pixels of That Val ue'
END

Image Processing in IDL Working with Histograms

428 Chapter 10: Contrasting and Filtering

Filtering an Image

Image filtering is useful for many applications, including smoothing, sharpening,
removing noise, and edge detection. A filter is defined by akernel, which isasmall
array applied to each pixel and its neighbors within an image. In most applications,
the center of the kernel is aigned with the current pixel, and is a square with an odd
number (3, 5, 7, etc.) of elementsin each dimension. The process used to apply filters
to an image is known as convolution, and may be applied in either the spatial or
frequency domain. See Chapter 9, “Overview of Transforming Between Image
Domains” for more information on image domains.

Within the spatial domain, the first part of the convolution process multiplies the
elements of the kernel by the matching pixel values when the kernel is centered over
apixel. The elements of the resulting array (which isthe same size asthe kernel) are
averaged, and the origina pixel vaue is replaced with this result. The CONVOL
function performs this convol ution process for an entire image.

Within the frequency domain, convolution can be performed by multiplying the FFT
(Fast Fourier Transform) of the image by the FFT of the kernel, and then
transforming back into the spatial domain. The kernel is padded with zero values to
enlarge it to the same size as the image before the forward FFT is applied. These
types of filters are usually specified within the frequency domain and do not need to
be transformed. IDL's DIST and HANNING functions are examples of filtersalready
transformed into the frequency domain. See “Windowing to Remove Noise” on
page 470 for more information on these types of filters.

The following examples in this section will focus on some of the basic filters applied
within the spatial domain using the CONVOL function:

e “Low PassFiltering” on page 429
* “High Pass Filtering” on page 433
» “Directional Filtering” on page 438
» “Laplacian Filtering” on page 442

Since filters are the building blocks of many image processing methods, these
examples merely show how to apply filters, as opposed to showing how a specific
filter may be used to enhance a specific image or extract a specific shape. This basic
introduction provides the information necessary to accomplish more advanced
image-specific processing.

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 429

Note
The following filters mentioned are not the only filters used in image processing.
M ost image processing textbooks contain more varieties of filters.

Low Pass Filtering

A low passfilter is the basis for most smoothing methods. An image is smoothed by
decreasing the disparity between pixel values by averaging nearby pixels (see
“Smoothing an Image” on page 448 for more information).

Using alow pass filter tends to retain the low frequency information within an image

while reducing the high frequency information. An example is an array of ones
divided by the number of elements within the kernel, such as the following 3 by 3

kerndl:
1/91/91/9
1/91/91/9
1/91/91/9
Note

The above array is an example of one possible kernel for alow pass filter. Other
filters may include more weighting for the center point, or have different smoothing
in each dimension.

The following example shows how to use IDL's CONVOL function to smooth an
aeria view of New York City within the nyny. dat fileinthe exanpl es/ dat a
directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Low Pass Filtering” on page 432 or complete the following steps for adetailed
description of the process.

1. Import theimage from the nyny. dat file:

file = FI LEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

Image Processing in IDL Filtering an Image

430 Chapter 10: Contrasting and Filtering

2. Crop the image to focus in on the bridges:

croppedSi ze = [96, 96]
croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

3. Initialize the display:

DEVI CE, DECOMPCSED = 0
LOADCT, 0
di spl aySi ze = [256, 256]

4. Create awindow and display the cropped image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Cropped New York | nmage'

TVSCL, CONGRI D(croppedl nage, displaySize[0], $
di spl aySi ze[1])

The following figure shows the cropped section of the original image.

Figure 10-12: Cropped New York Image

5. Create akernel for alow passfilter:

kernel Size = [3, 3]
kernel = REPLI CATE((1./(kernel Size[O0]*kernel Size[1])), $
kernel Size[0], kernel Size[1])

6. Apply thefilter to theimage:

filteredl nage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, / EDGE_TRUNCATE)

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 431

7. Create another window and display the resulting filtered image:

W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[l], $
TITLE = ' Low Pass Filtered New York | nmage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

The following figure shows the resulting display. The high frequency pixel
values have been blurred as aresult of the low passfilter.

Figure 10-13: Low Pass Filtered New York Image

8. Add theoriginal and the filtered image together to show how the filter effects
the image.
W NDOW 2, XSIZE = displ aySize[0], YSIZE = displaySize[1], $
TI TLE = ' Low Pass Conbi ned New York | nmage'

TVSCL, CONGRI D(croppedl mage + filteredl mage, $
di spl aySi ze[0], displ aySi ze[1])

Image Processing in IDL Filtering an Image

432

Chapter 10: Contrasting and Filtering

The following figure shows the resulting display. In the resulting combined
image, the structures within the city are not as pixelated as in the original
image. The image is smoothed (blurred) to appear more continuous.

Figure 10-14: Low Pass Combined New York Image

Example Code: Low Pass Filtering

Copy and paste the following text into an IDL Editor window. After saving thefile as
LowPassFi | t eri ng. pr o, compile and run the program to reproduce the previous
example.

PRO LowPassFil tering

; Inmport the inage fromthe file.
file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Crop the image to focus in on the bridges.

croppedSi ze = [96, 96]

croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

di spl aySi ze = [256, 256]

; Create a window and display the cropped inmage.
W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Cropped New York | nmage'

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 433

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

Create a | ow pass filter.
kernel Size = [3, 3]
kernel = REPLI CATE((1./(kernel Size[O0]*kernel Size[1])), $
kernel Size[0], kernel Size[1])

; Apply the filter to the inmage.
filteredl nage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, /EDGE_TRUNCATE)

Create another wi ndow and display the resulting
filtered i mage.
W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TI TLE = ' Low Pass Filtered New York | nmage'
TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

Create another wi ndow and display the conbined i mage.
W NDOW 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TI TLE = ' Low Pass Conbi ned New York | nmage'
TVSCL, CONGRI D(croppedl mage + filteredl mage, $
di spl aySi ze[0], displaySize[l])

END
High Pass Filtering

A high passfilter is the basis for most sharpening methods. An image is sharpened
when contrast is enhanced between adjoining areas with little variation in brightness
or darkness (see “ Sharpening an Image” on page 459 for more detailed information).

A high passfilter tends to retain the high frequency information within an image
while reducing the low frequency information. The kernel of the high pass filter is
designed to increase the brightness of the center pixel relative to neighboring pixels.
The kernel array usually contains asingle positive value at its center, which is
completely surrounded by negative values. The following array is an example of a3
by 3 kernel for ahigh passfilter:

-1/9 -1/9 -1/9
-1/9 8/9 -1/9
-1/9 -1/9 -1/9

Image Processing in IDL Filtering an Image

434

Chapter 10: Contrasting and Filtering

Note

The above array is an example of one possible kernel for a high pass filter. Other
filters may include more weighting for the center point.

The following example shows how to use IDL's CONVOL function with a3 by 3
high pass filter to sharpen an aerial view of New York City withinthenyny. dat file
in the exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:

High Pass Filtering” on page 437 or complete the following steps for a detailed
description of the process.

1. Import theimage from the nyny. dat file:

file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Crop the image to focus in on the bridges:

croppedSi ze = [96, 96]
croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

3. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, 0
di spl aySi ze = [256, 256]

4. Create awindow and display the cropped image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = ' Cropped New York | nmage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 435

The following figure shows the cropped section of the original image.

Figure 10-15: Cropped New York Image

5. Create akernel for ahigh pass filter:

kernel Size = [3, 3]
kernel = REPLI CATE(-1., kernel Size[0], kernel Size[1])
kernel[1, 1] = 8.

6. Apply thefilter to theimage:

filteredl mage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, / EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[1l], $
TITLE = 'H gh Pass Filtered New York | mage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

Image Processing in IDL Filtering an Image

436 Chapter 10: Contrasting and Filtering

The following figure shows the results of applying the high passfilter. The
high frequency information is retained.

Figure 10-16: High Pass Filtered New York Image

8. Add theoriginal and the filtered image together to show how the filter effects
the image.

W NDOW 2, XSIZE = displ aySize[0], YSIZE = displaySize[1l], $
TITLE = ' H gh Pass Conbi ned New York | mage'

TVSCL, CONGRI D(croppedl mage + filteredl mage, $
di spl aySi ze[0], displaySize[1])

The following figure shows the resulting display. In the resulting combined
image, the structures within the city are more pixelated than in the origina

image. The pixels are highlighted and appear more discontinuous, exposing
the three-dimensional nature of the structures within the image.

Figure 10-17: High Pass Combined New York Image

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 437

Example Code: High Pass Filtering

Copy and paste the following text into an IDL Editor window. After saving thefile as
Hi ghPassFi | t eri ng. pr o, compile and run the program to reproduce the previous
example.

PRO Hi ghPassFiltering

; Import the image fromthe file.
file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Crop the image to focus in on the bridges.

croppedSi ze = [96, 96]

croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

di spl aySi ze = [256, 256]

; Create a window and di splay the cropped i mage.

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = ' Cropped New York | mage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

; Create a high pass filter.

kernel Size = [3, 3]

kernel = REPLI CATE(-1./9., kernel Size[0], kernel Size[1])
kernel[1, 1] = 8./09.

; Apply the filter to the image.
filteredl nage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, /EDGE_TRUNCATE)

; Create another wi ndow and display the resulting

; filtered i mage.

W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = 'H gh Pass Filtered New York | mage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

; Create another wi ndow and display the conbined inmages.

W NDOW 2, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' H gh Pass Conbi ned New York | mage'

Image Processing in IDL Filtering an Image

438 Chapter 10: Contrasting and Filtering

TVSCL, CONGRI D(croppedl mage + filteredl mage, $
di spl aySi ze[0], displ aySize[1])

END
Directional Filtering

A directional filter forms the basis for some edge detection methods. An edge within
an image is visible when alarge change (a steep gradient) occurs between adjacent
pixel values. This changein valuesis measured by the first derivatives (often referred
to as slopes) of an image. Directiona filters can be used to compute the first
derivatives of an image (see “Detecting Edges’ on page 464 for more information on
edge detection).

Directiona filters can be designed for any direction within agiven space. For images,
x- and y-directional filters are commonly used to compute derivativesin their
respective directions. The following array is an example of a3 by 3 kernel for an x-
directional filter (the kernel for the y-direction is the transpose of this kernel):

-101
-101
-101

Note
The above array is an example of one possible kernel for a x-directional filter. Other
filters may include more weighting in the center of the nonzero columns.

The following example shows how to use IDL’s CONVOL function to determine the
first derivatives of an image in the x-direction. The resulting derivatives are then
scaled to just show negative, zero, and positive slopes. This example uses the aerial
view of New York City within the nyny. dat fileinthe exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Directiona Filtering” on page 441 or complete the following steps for a detailed
description of the process.

1. Import theimage from the nyny. dat file:

file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 439

2. Crop the image to focus in on the bridges:

croppedSi ze = [96, 96]
croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

3. Initialize the display:

DEVI CE, DECOMPCSED = 0
LOADCT, 0
di spl aySi ze = [256, 256]

4. Create awindow and display the cropped image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Cropped New York | nmage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

The following figure shows the cropped section of the original image.

Figure 10-18: Cropped New York Image

5. Create akernel for an x-directional filter:

kernel Size = [3, 3]
kernel = FLTARR(kernel Size[0], kernel Size[1])
kernel [0, *] = -1.
kernel[2, *] = 1.

6. Apply thefilter to theimage:

filteredl mage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, / EDGE_TRUNCATE)

Image Processing in IDL Filtering an Image

440 Chapter 10: Contrasting and Filtering

7. Create another window and display the resulting filtered image:

W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[1l], $
TITLE = 'Direction Filtered New York | nage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

The resulting image shows some edge information. The most noticeable edge
isseen as a“shadow” for each bridge. Thisinformation represents the slopes

in the x-direction of the image. Thefiltered image can then be scaled to
highlight these dopes.

Figure 10-19: Direction Filtered New York Image

8. Create another window and display negative dopes as black, zero slopes as
gray, and positive dopes as white:
W NDOW 2, XSIZE = displ aySize[0], YSIZE = displaySize[1l], $
TITLE = ' Sl opes of Direction Filtered New York | mage'
TVSCL, CONGRID(-1 > FI X(filteredl nage/50) < 1,
di spl aySi ze[0], $
di spl aySi ze[1])

Thefollowing figure shows the negative s opes (black areas), zero slopes (gray
areas), and positive slopes (white areas) produced by the x-directiona filter.

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 441

The adjacent black and white areas show edgesin the x-direction, such as
along the bridge closest to the right side of the image.

Figure 10-20: Slopes of Direction Filtered New York Image

Example Code: Directional Filtering

Copy and paste the following text into an IDL Editor window. After saving thefile as
Di rectionFiltering. pro,compileand run the program to reproduce the
previous example.

PRO DirectionFiltering

; lnmport the inage fromthe file.
file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Crop the image to focus in on the bridges.

croppedSi ze = [96, 96]

croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

di spl aySi ze = [256, 256]

; Create a window and display the cropped inmage.

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Cropped New York | nmage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

Image Processing in IDL Filtering an Image

442

Filtering an Image

Chapter 10: Contrasting and Filtering

; Create a directional filter.

kernel Size = [3, 3]

kernel = FLTARR(kernel Size[0], kernel Size[1])
kernel [0, *] = -1.

kernel[2, *] = 1.

; Apply the filter to the image.
filteredl nmage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, /EDGE_TRUNCATE)

; Create another window and display the resulting

; filtered i mage.

W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[1],
TITLE = "Direction Filtered New York | nage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

; Create another wi ndow and di splay negative slopes as

; black, zero slopes as gray, and positive slopes as

; white.

W NDOW 2, XSIZE = displaySize[0], YSIZE = displaySize[1],
TITLE = ' Sl opes of Direction Filtered New York | mage'

$

$

TVSCL, CONGRID(-1 > FIX(filteredl mage/50) < 1, displaySize[0], $

di spl aySi ze[1])

END

Laplacian Filtering

0-10
-1 4 -1
0-10

A Laplacian filter forms another basis for edge detection methods. A Laplacian filter
can be used to compute the second derivatives of an image, which measure the rate at
which the first derivatives change. This helpsto determine if a change in adjacent
pixel valuesis an edge or a continuous progression (see “ Detecting Edges’ on

page 464 for more information on edge detection).

Kernelsof Laplacian filters usually contain negative valuesin a cross pattern (similar
to aplussign), which is centered within the array. The corners are either zero or
positive values. The center value can be either negative or positive. The following
array is an example of a3 by 3 kernel for a Laplacian filter:

Image Processing in IDL

Chapter 10: Contrasting and Filtering 443

Note
The above array is an example of one possible kernel for aLaplacian filter. Other
filters may include positive, nonzero values in the corners and more weighting in
the centered cross pattern.

The following example shows how to use IDL's CONVOL function with a3 by 3
Laplacian filter to determine the second derivatives of an image. Thistype of
information is used within edge detection processesto find ridges. This example uses
an aeria view of New York City within thenyny. dat fileintheexanpl es/ dat a
directory.

For code that you can copy and paste into an Editor window, see “ Example Code:

Laplacian Filtering” on page 446 or compl ete the following steps for a detailed
description of the process.

1. Import theimage from the nyny. dat file:

file = FI LEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Crop the image to focus in on the bridges:

croppedSi ze = [96, 96]
croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

3. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, 0
di spl aySi ze = [256, 256]

4. Create awindow and display the cropped image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1l], $
TITLE = ' Cropped New York | mage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

Image Processing in IDL Filtering an Image

444 Chapter 10: Contrasting and Filtering

The following figure shows the cropped section of the original image.

Figure 10-21: Cropped New York Image

5. Create akernel of aLaplacian filter:

kernel Size = [3, 3]
kernel = FLTARR(kernel Size[0], kernel Size[1])

kernel[1, *] = -1.
kernel[*, 1] = -1.
kernel[1, 1] = 4.

6. Apply thefilter to theimage:

filteredl nage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, / EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[l], $
TITLE = ' Lapl ace Filtered New York | mage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 445

The following figure contains positive and negative second derivative
information. The positive values represent depressions (valleys) and the
negative values represent ridges.

Figure 10-22: Laplacian Filtered New York Image

8. Create another window and display only the negative values (ridges) withinthe
image:
W NDOW 2, XSIZE = displ aySize[0], YSIZE = displaySize[l], $
TITLE = ' Negative Val ues of Laplace Filtered New York
| mage'
TVSCL, CONGRID(filteredl mage < 0, $
di spl aySi ze[0], displaySize[1])

Image Processing in IDL Filtering an Image

446 Chapter 10: Contrasting and Filtering

The following figure shows the negative val ues produced by the Laplacian
filter. The most noticeable ridgesin this result are the medians within the wide
boulevards of the city.

i

Figure 10-23: Negative Values of Laplacian Filtered New York Image

Example Code: Laplacian Filtering

Copy and paste the following text into an IDL Editor window. After saving thefile as
Lapl aceFi | teri ng. pr o, compile and run the program to reproduce the previous
example.

PRO Lapl aceFil tering

; Import the image fromthe file.
file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Crop the image to focus in on the bridges.

croppedSi ze = [96, 96]

croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

di spl aySi ze = [256, 256]

; Create a window and di splay the cropped i mage.

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1l], $
TITLE = ' Cropped New York | nmage'

Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 447

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

; Create a Laplacian filter.
kernel Size = [3, 3]
kernel = FLTARR(kernel Size[0], kernel Size[1])

kernel[1, *] = -1.
kernel[*, 1] = -1.
kernel[1, 1] = 4.

; Apply the filter to the inmage.
filteredl nmage = CONVOL(FLOAT(cr oppedl mage), kernel, $
/ CENTER, / EDGE_TRUNCATE)

; Create another wi ndow and display the resulting

; filtered i mage.

W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Lapl ace Filtered New York | mage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

PRINT, MN(filteredl mage), MAX(filteredl mage)

; Create another wi ndow and display only the negative
; val ues of the image.
W NDOW 2, XSIZE = displaySize[0], YSIZE = displaySize[1l], $
TI TLE = ' Negative Val ues of Laplace Filtered New York | nmage'
TVSCL, CONGRID(filteredlmage < 0, $
di spl aySi ze[0], displaySize[1])

END

Image Processing in IDL Filtering an Image

448 Chapter 10: Contrasting and Filtering

Smoothing an Image

Smoothing is often used to reduce noise within an image or to produce aless
pixelated image. M ost smoothing methods are based on low passfilters. See “Low
Pass Filtering” on page 429 for more information.

Smoothing isaso usually based on a single value representing the image, such asthe
average value of the image or the middle (median) value. The following examples
show how to smooth using average and middle values:

* “Smoothing with Average Values’
* “Smoothing with Median Values’ on page 453

Smoothing with Average Values

The following example shows how to use the SMOOTH function to smooth an image
with amoving average. Surfaces of the original and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the

rbcel | s.j pg fileinthe exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Smoothing with Average Values’ on page 452 or compl ete the following steps for a
detailed description of the process.

1. Import theimage fromther bcel | s. j pg file:

file = FILEPATH('rbcel ls.jpg', $

SUBDI RECTCRY = [' exanples', 'data'])
READ_JPEG, file, image
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

2. Initialize the display:

DEVI CE, DECOWPOSED = 0
LOADCT, 0

3. Create awindow and display the original image:

W NDOW 0, XSIZE = imageSize[0], YSIZE = inangeSize[1], $
TITLE = ' Oiginal |nage'
TV, inage

Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 449

The following figure shows the original image. Thisimage contains many
varying pixel values within the background.

Figure 10-24: Original Red Blood Cells Image

4. Create another window and display the original image as a surface:

WNDOW 1, TITLE = "Oiginal Image as a Surface'
SHADE_SURF, inmmage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = ' Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TITLE = ' Red Bl ood Cell |mage'

Image Processing in IDL Smoothing an Image

450 Chapter 10: Contrasting and Filtering

The following figure shows the surface of the original image. Thisimage
contains many discontinuous va ues shown as sharp peaks (spikes) in the
middle range of values.

00

url'J'

M u‘|

2591

el

150 Rt

Infenaly Vaues

100 F I

Figure 10-25: Surface of Original Red Blood Cells Image

5. Smooth the image with the SMOOTH function, which uses the average value
of each group of pixels affected by the 5 by 5 kernel applied to the image:

snoot hedl mage = SMOOTH(i nage, 5, /EDGE_TRUNCATE)

The width argument of 5 is used to specify that a5 by 5 smoothing kernel isto
be used.

6. Create another window and display the smoothed image as a surface:

W NDOW 2, TITLE = ' Smoothed I nage as a Surface
SHADE_SURF, snoot hedl mage, / XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = ' Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TI TLE = ' Smoot hed Cel | | nage'

Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 451

The following figure shows the surface of the smoothed image. The sharp
peaksin the origina image have been decreased.

Infenaly Vaues

Figure 10-26: Surface of Average-Smoothed Red Blood Cells Image

7. Create another window and display the smoothed image:

WNDOW 3, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TI TLE = ' Snoot hed | nage'
TV, snoot hedl nage

Image Processing in IDL Smoothing an Image

452 Chapter 10: Contrasting and Filtering

The following figure shows the smoothed image. L ess variations between pixel
values occur within the background of the resulting image.

Figure 10-27: Average-Smoothed Red Blood Cells Image

Example Code: Smoothing with Average Values

Copy and paste the following text into an IDL Editor window. After saving thefile as
Snoot hi ngW t hSMOOTH. pr o, compile and run the program to reproduce the
previous example.

PRO Srnoot hi ngW t hSMOOTH

Inmport the inmage fromthe file.
file = FILEPATH('rbcelIs.jpg , $

SUBDI RECTCRY = [' exanples', 'data'])
READ_JPEG, file, image
i mgeSi ze = Sl ZE(i mage, /DI MENSI ONS)

Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

Create a wi ndow and di splay the original inage.
W NDOW 0, XSIZE = imageSize[0], YSIZE = inmageSi ze[1], $
TITLE = ' Original | nage'
TV, image

Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 453

; Create another wi ndow and di splay the original inmge
; as a surface.

WNDOW 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, inmmage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = 'Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TITLE = ' Red Bl ood Cell 1mage'

; Smooth the image with the SMOOTH function, which uses
; the averages of inmage val ues.
snoot hedl mage = SMOOTH(i mage, 5, /EDGE_TRUNCATE)

; Create another w ndow and di splay the snpothed i nmage

; as a surface.

W NDOW 2, TITLE = ' Snoothed | mage as a Surface'

SHADE_SURF, snoot hedl nage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = ' Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TI TLE = ' Smoot hed Cel | | nage'

; Create another wi ndow and display the snoothed inmage.

W NDOW 3, XSIZE = inmageSize[0], YSIZE = inmgeSize[l], $
TI TLE = ' Snoot hed | nage'

TV, snoot hedl nage

END
Smoothing with Median Values

The following example shows how to use IDL's MEDIAN function to smooth an
image by median values. Surfaces of the origina and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the

rbcel | s. j pg fileinthe exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Smoothing with Median Values’ on page 457 or complete the following steps for a
detailed description of the process.

1. Import theimage fromther bcel | s. j pg file:

file = FILEPATH('rbcel ls.jpg', $

SUBDI RECTCRY = [' exanples', 'data'])
READ_JPEG, file, image
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

Image Processing in IDL Smoothing an Image

454 Chapter 10: Contrasting and Filtering

2. Initialize the display:

DEVI CE, DECOMPCSED = 0
LOADCT, 0
3. Create awindow and display the original image:

W NDOW 0, XSIZE = inmgeSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Original | nage'
TV, inage
The following figure shows the original image. Thisimage contains many
varying pixel values within the background.

Figure 10-28: Original Red Blood Cells Image

4. Create another window and display the original image as a surface:

WNDOW 1, TITLE = "Oiginal Image as a Surface'
SHADE_SURF, inmage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = ' Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TI TLE = ' Red Bl ood Cell |mage'

Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 455

The following figure shows the surface of the original display. Thisimage
contains many discontinuous va ues shown as sharp peaks (spikes) in the
middle range of values.

Infenaly Vaues

Figure 10-29: Surface of Original Red Blood Cells Image

5. Smooth theimage with the MEDIAN function, which uses the middle value of
each group of pixels affected by the 5 by 5 kernel applied to the image:

snoot hedl mage = MEDI AN(i nage, 5)
6. Create another window and display the smoothed image as a surface:

W NDOW 2, TITLE = ' Smoothed I nage as a Surface'
SHADE_SURF, snoot hedl mage, / XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = 'Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TI TLE = ' Smoot hed Cel | | nage'

Image Processing in IDL Smoothing an Image

456 Chapter 10: Contrasting and Filtering

The following figure shows the smoothed surface. The sharp peaksin the
origina image are decreased by the MEDIAN function.

Infenaly Vaues

Figure 10-30: Surface of Middle-Smoothed Red Blood Cells Image

7. Create another window and display the smoothed image:

WNDOW 3, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TI TLE = ' Snoot hed | nage'
TV, snoot hedl nage

Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 457

The following figure shows the results of applying the median filter. Less
variations occur within the background of the resulting image, yet feature
edges remain clearly defined.

Figure 10-31: Middle-Smoothed Red Blood Cells Image

Example Code: Smoothing with Median Values

Copy and paste the following text into an IDL Editor window. After saving thefile as
Snmoot hi ngW t hMEDI AN. pr o, compile and run the program to reproduce the
previous example.

PRO Sroot hi ngW t hMEDI AN

Inmport the inmage fromthe file.
file = FILEPATH('rbcelIs.jpg, $

SUBDI RECTCRY = [' exanples', 'data'])
READ_JPEG, file, image
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

Create a wi ndow and di splay the original inage.
W NDOW 0, XSIZE = imageSize[0], YSIZE = imageSi ze[1], $
TITLE = ' Original | nage'
TV, image

Image Processing in IDL Smoothing an Image

458 Chapter 10: Contrasting and Filtering

; Create another wi ndow and di splay the original inmage
; as a surface.

WNDOW 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, inmage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = 'Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TITLE = ' Red Bl ood Cell 1mage'

; Smooth the image with the MEDI AN function, which uses
; the middle val ues of image.
snoot hedl mage = MEDI AN(i nage, 5)

; Create another w ndow and di splay the snpothed i nmage

; as a surface.

W NDOW 2, TITLE = ' Snoothed | mage as a Surface'

SHADE_SURF, snoot hedl nage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = "Wdth Pixels', $
YTI TLE = ' Hei ght Pixels', $
ZTITLE = 'Intensity Values', $

TI TLE = ' Smoot hed Cel | | nage'
; Create another wi ndow and display the snoothed inmage.
W NDOW 3, XSIZE = imageSize[0], YSIZE = inageSize[1], $
TI TLE = ' Snoot hed | nage'
TV, snoot hedl nage

END

Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 459

Sharpening an Image

Sharpening an image increases the contrast between bright and dark regions to bring
out features.

The sharpening process is basically the application of a high passfilter to an image.
The following array is a kernel for acommon high pass filter used to sharpen an

image:
-1/9-1/9 -1/9
-1/9 1 -1/9
-1/9 -1/9 -1/9
Note

The above array is an example of one possible kernel for a sharpening filter. Other
filters may include more weighting for the center point.

As mentioned in the filtering section of this chapter, filters can be applied to images
in IDL with the CONVOL function. See “High Pass Filtering” on page 433 for more
information on high pass filters.

The following example shows how to use IDL's CONVOL function and the above
high passfilter kernel to sharpen an image. This example uses the Magnetic
Resonance Image (MRI) of a human knee contained within the nr _knee. decmfilein
the exanpl es/ dat a directory. Within the original knee MRI, some information is
nearly as dark asthe background. Thisimage is sharpened to display these dark areas
with improved contrast.

For code that you can copy and paste into an Editor window, see “ Example Code:
Sharpening an Image” on page 462 or complete the following steps for a detailed
description of the process.

1. Import theimage from the nv _knee. demfile:

file = FI LEPATH(' nt _knee.dcm, $

SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_DI COMfil e)
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

2. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, 0

Image Processing in IDL Sharpening an Image

460 Chapter 10: Contrasting and Filtering

3. Create awindow and display the original image:

WNDOW 0, XSIZE = inmageSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Original Knee MR
TVSCL, inage

The following figure shows the original image.

Figure 10-32: Original Knee MRI

4. Create akernel for asharpening (high pass) filter:

kernel Size = [3, 3]
kernel = REPLI CATE(-1./9., kernel Size[0], kernel Size[1])
kernel[1, 1] = 1.

5. Apply thefilter to theimage:

filteredl nage = CONVOL(FLOAT(i mage), kernel, $
/ CENTER, / EDGE_TRUNCATE)

Sharpening an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 461

6. Create another window and display the resulting filtered image:

W NDOW 1, XSIZE = i nmmgeSize[0], YSIZE = i mageSi ze[1], $
TITLE = ' Sharpen Filtered Knee MR’
TVSCL, filteredl nage

The following figure shows the results of applying the sharpening (high pass)
filter. Pixelsthat differ dramatically in contrast with surrounding pixels are
brightened.

Figure 10-33: Sharpen Flltered Knee MRI

7. Create another window and display the combined images:

W NDOW 2, XSIZE = i nmageSize[0], YSIZE = i mageSi ze[1], $
TI TLE = ' Shar pened Knee MRI'
TVSCL, image + filteredl mage

Image Processing in IDL Sharpening an Image

462 Chapter 10: Contrasting and Filtering

The following figure shows the combination of the sharpened and original
images. Thisimage is sharper, containing more information within several
regions, especially the tips of the bones.

Figure 10-34: Sharpened Knee MRI

Example Code: Sharpening an Image

Copy and paste the following text into an IDL Editor window. After saving thefile as
Shar peni ng. pr o, compile and run the program to reproduce the previous example.

PRO Shar peni ng

Inmport the inmage fromthe file.
file = FILEPATH(' nt _knee.dcnm, $

SUBDI RECTCRY = [' exanples', 'data'])
i mmge = READ_DI COMfil e)
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

Initialize the display.

DEVI CE, DECOMPOSED = 0
LOADCT, O

Sharpening an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 463

; Create a window and di splay the original inmage.

W NDOW 0, XSIZE = inmageSize[0], YSIZE = inmageSize[l], $
TITLE = ' Original Knee MR

TVSCL, inage

; Create a sharpening (high pass) filter.

kernel Size = [3, 3]

kernel = REPLI CATE(-1./9., kernel Size[0], kernel Size[1])
kernel[1, 1] = 1.

; Apply the filter to the image.
filteredl nage = CONVOL(FLOAT(i mage), kernel, $
/ CENTER, / EDGE_TRUNCATE)

; Create another window and display the resulting

; filtered i mage.

W NDOW 1, XSIZE = i mageSize[0], YSIZE = inmngeSi ze[1], $
TITLE = ' Sharpen Filtered Knee MR

TVSCL, filteredl nage

; Create another wi ndow and display the conbined inmages.

W NDOW 2, XSIZE = i mageSi ze[0], YSIZE = inmmgeSi ze[1], $
TI TLE = ' Shar pened Knee MRl

TVSCL, inmge + filteredl mage

END

Image Processing in IDL Sharpening an Image

464 Chapter 10: Contrasting and Filtering

Detecting Edges

Detecting edges is another way to help extract features. Many edge detection
methods use either directional or Laplacian filters. See “Directional Filtering” on
page 438 and “Laplacian Filtering” on page 442 for more information on directional
and Laplacian filters.

IDL contains two basic edge detection routines, the ROBERTS and SOBEL
functions. See the ROBERTS and SOBEL descriptionsin the IDL Reference Guide
for more information on these operators. M orphological operators are used for more
complex edge detection. See “Detecting Edges of Image Objects” in Chapter 11 for
more information on these operators.

The following examples show how to use these routines to detect edges of shapes
within an image:

» “Enhancing Edges with the Roberts Operator”

» “Enhancing Edges with the Sobel Operator” on page 467

The results of these edge detection routines can be added or subtracted from the
original image to enhance the contrast of the edges within that image. Edge detection
results are also used to calculate masks. See “Masking Images’ in Chapter 6 for more
information on masks.

Enhancing Edges with the Roberts Operator

The following example shows how to use the ROBERTS function to detect edges
within an image. This example uses the aerial view of New York City within the
nyny. dat fileinthe exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Enhancing edges with the Roberts Operator” on page 466 or complete the following
steps for a detailed description of the process.

1. Import theimage from the nyny. dat file:

file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Crop the image to focus in on the bridges:

croppedSi ze = [96, 96]
croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

Detecting Edges Image Processing in IDL

Chapter 10: Contrasting and Filtering 465

3. Initialize the display:

DEVI CE, DECOMPCSED = 0
LOADCT, 0
di spl aySi ze = [256, 256]

4. Create awindow and display the cropped image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = ' Cropped New York | nmage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

The following figure shows the cropped section of the original image.

Figure 10-35: Cropped New York Image

5. Apply the Robertsfilter to the image:
filteredl mage = ROBERTS(croppedl mage)
6. Create another window and display the resulting filtered image:

W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[l], $
TITLE = "Filtered New York | nmage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

Image Processing in IDL Detecting Edges

466 Chapter 10: Contrasting and Filtering

The following figure shows the results of applying the Robertsfilter. Edges
have been highlighted around all elements separated by significant differences
in pixel values.

Figure 10-36: Roberts Filter Applied to the New York Image

Example Code: Enhancing edges with the Roberts Operator

Copy and paste the following text into an IDL Editor window. After saving thefile as
Det ect i ngEdgesW t hROBERTS. pr o, compile and run the program to reproduce
the previous example.

PRO Det ect i ngEdgesW t hROBERTS

I nport the image fromthe file.
file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

Crop the inmage to focus in on the bridges.
croppedSi ze = [96, 96]
croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0
di spl aySi ze = [256, 256]

Create a wi ndow and di splay the cropped inmage.

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1l], $
TITLE = ' Cropped New York | nmage'

Detecting Edges Image Processing in IDL

Chapter 10: Contrasting and Filtering 467

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

; Apply the filter to the image with the ROBERTS function.
filteredl nage = ROBERTS(croppedl mage)

Create another wi ndow and display the resulting
; filtered i mage.

W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = "Filtered New York | nmage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

END

Enhancing Edges with the Sobel Operator

The following example shows how to use the SOBEL function to detect edges within
an image. Thisexample usesthe aeria view of New York City within the nyny. dat
filein the exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Enhancing edges with the Sobel Operator” on page 469 or complete the following
steps for a detailed description of the process.

1. Import theimage from the nyny. dat file:

file = FI LEPATH(' nyny. dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Crop the image to focus in on the bridges:

croppedSi ze = [96, 96]
croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]
3. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, 0
di spl aySi ze = [256, 256]

4. Create awindow and display the cropped image:

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1l], $
TITLE = ' Cropped New York | nmage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

Image Processing in IDL Detecting Edges

468 Chapter 10: Contrasting and Filtering

The following figure shows the cropped section of the original image.

Figure 10-37: Cropped New York Image

5. Apply the Sobel filter to the image:
filteredl nage = SOBEL(croppedl mage)
6. Create another window and display the resulting filtered image:

W NDOW 1, XSIZE = displ aySize[0], YSIZE = displaySize[1l], $
TITLE = "Filtered New York | nmage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

The following figure shows the edge enhancement results of applying the
Sobel operator.

Figure 10-38: Sobel Filter Applied to the New York Image

Detecting Edges Image Processing in IDL

Chapter 10: Contrasting and Filtering 469

Example Code: Enhancing edges with the Sobel Operator

Copy and paste the following text into an IDL Editor window. After saving thefile as
Det ect i ngEdgesW t hSOBEL. pr o, compile and run the program to reproduce the
previous example.

PRO Det ect i ngEdgesW t hSOBEL

; Import the image fromthe file.
file = FILEPATH(' nyny.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [768, 512]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Crop the image to focus in on the bridges.

croppedSi ze = [96, 96]

croppedl mage = i nage[200: (croppedSi ze[0] - 1) + 200, $
180: (croppedSi ze[1] - 1) + 180]

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

di spl aySi ze = [256, 256]

; Create a window and di splay the cropped i mage.

W NDOW 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = ' Cropped New York | mage'

TVSCL, CONGRI D(croppedl mage, displaySize[0], $
di spl aySi ze[1])

; Apply the filter to the image with the SOBEL function.
filteredl nage = SOBEL(croppedl mage)

; Create another wi ndow and display the resulting

; filtered i mage.

W NDOW 1, XSIZE = displaySize[0], YSIZE = displaySize[l], $
TITLE = '"Filtered New York | nmage'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

END

Image Processing in IDL Detecting Edges

470 Chapter 10: Contrasting and Filtering

Removing Noise

When a device (such as a cameraor scanner) captures an image, the device
sometimes adds extraneous hoise to the image. This noise must be removed from the
image for other image processing operations to return valuable results. Some noise
can simply be removed by smoothing an image or masking it within the frequency
domain, but most noise requires more involved filtering, such as windowing or
adaptive filters. The following example shows how to use windowing and adaptive
filters to remove noise from an image within IDL:

e “Windowing to Remove Noise’

* “LeeFiltering to Remove Noise” on page 475
Windowing to Remove Noise

Within the frequency domain, afilter is applied to an image by multiplying the FFT
of that image by the FFT of the filter. When the FFT of aimage is multiplied by the
FFT of afilter to perform convolution, this process is known as windowing.

The DIST and HANNING functions are examples of windowing filters already
transformed into the frequency domain. Windowing with the DIST function has the
same effect as applying a high pass filter. The high frequency information isretained,
while the effect of the low frequency information is decreased. In contrast, the
HANNING function retains the low frequency information. The results of the
HANNING function are similar to a mask used to remove noisein an image. The
HANNING function can be used to create either a Hanning or Hamming window.
Although the DIST and the HANNING functions perform different filtering tasks,
thesefilters are applied the same way, so only one example is provided in this section.

Windowing isdifferent than simply using amask within the frequency domain. Using
amask omits information within the image, while windowing retains the information,
but decreasesiits effect on theimage. See Chapter 9, “Removing Noise with the FFT”
for more information on using a mask to remove noise from an image.

The following example shows how to use the HANNING function when windowing
an image to remove background noise. This example uses the first image within the
abnor m dat fileinthe exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code:
Windowing to Remove Noise” on page 474 or complete the following steps for a
detailed description of the process.

Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 471

1. Import the image from the abnor m dat file:

file = FI LEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [64, 64]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i nageSi ze
3. Initialize the display:

DEVI CE, DECOMPOSED = 0
LOADCT, O

4. Create awindow and display the original image:

W NDOW 0, XSIZE = displaySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = ' Oiginal |nage'
TVSCL, CONGRI D(i nage, displaySize[0], displaySize[1l])

The following figure shows the original image.

Figure 10-39: Original Gated Blood Pool Image

5. Determine the forward Fourier transformation of the image:

transform = SHI FT(FFT(i mage), (imageSize[0]/2), $
(i mageSi ze[1]/ 2))

Image Processing in IDL Removing Noise

472 Chapter 10: Contrasting and Filtering

6. Create another window and display the power spectrum:

WNDOW 1, TITLE = ' Surface of Forward FFT'

SHADE_SURF, (2.*ALOGLO(ABS(transforn))), /XSTYLE, /YSTYLE, $
[/ ZSTYLE, TITLE = 'Power Spectrum, $
XTI TLE 'Mode', YTITLE = 'Mode', $
ZTI TLE "Anplitude', CHARSIZE = 1.5

The following figure shows the power spectrum of the original image. Noise
within the image is shown as small peaks.

szc{rurﬂ

el

Figure 10-40: Power Spectrum of the Gated Blood Pool Image

7. Use aHanning mask to filter out the noise:

mask = HANNI NG(i mageSi ze[0], inngeSize[1])
maskedTr ansf orm = transf or ntmask

8. Create another window and display the masked power spectrum:

WNDOW 2, TITLE = 'Surface of Filtered FFT
SHADE_SURF, (2.*ALOGLO(ABS(maskedTransform)), $

/| XSTYLE, /YSTYLE, /ZSTYLE, TITLE = ' Masked Power
Spectrum, $

XTI TLE

ZTI TLE

' Mbde', YTITLE = 'Mode', $
"Anplitude', CHARSIZE = 1.5

Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 473

The following figure shows the results of applying the Hanning window. The
Hanning window gradually smooths the high frequency peaks within the
image.

Figure 10-41: Masked Power Spectrum of the Gated Blood Pool Image

9. Apply the inverse transformation to the masked frequency domain image:

i nverseTransform = FFT(SH FT(naskedTransform $
(i mageSi ze[0]/2), (imageSize[1]/2)), /1NVERSE)

10. Create another window and display the results of the inverse transformation:

W NDOW 3, XSIZE = displ aySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = 'Hanning Filtered | mage'

TVSCL, CONGRI D(REAL_PART(inverseTransform, $
di spl aySi ze[0], displaySize[1])

Image Processing in IDL Removing Noise

474 Chapter 10: Contrasting and Filtering

The following figure shows the resulting display. Visible noise within the
image has been reduced, while the valuable image data has been retained.

Figure 10-42: Resulting Hanning Filtered Image

Example Code: Windowing to Remove Noise

Copy and paste the following text into an IDL Editor window. After saving thefile as
Rerovi ngNoi seW t hHANNI NG. pr o, compile and run the program to reproduce the
previous example.

PRO Renpvi ngNoi seW t hHANNI NG

; Import the image fromthe file.
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [64, 64]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the
; i mage when displaying it.
di spl aySi ze = 2*i nageSi ze

; Initialize the display.
DEVI CE, DECOMPCSED = 0
LOADCT, 0

; Create a window and di splay the original inmage.
W NDOW 0, XSIZE = displ aySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = ' Oiginal |nage'
TVSCL, CONGRI D(i nage, displaySize[0], displaySize[1l])
Determ ne the forward Fourier transformation of the

Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 475

;i mage.
transform = SHI FT(FFT(i mage), (imageSize[0]/2), $
(i mageSi ze[1]/ 2))

; Create another wi ndow and display the power spectrum
WNDOW 1, TITLE = 'Surface of Forward FFT'
SHADE_SURF, (2.*ALOGLO(ABS(transform)), $
/| XSTYLE, /YSTYLE, /ZSTYLE, TITLE = 'Power Spectrum, $
XTI TLE 'Mode', YTITLE = 'Mode', $
ZTI TLE "Anplitude', CHARSIZE = 1.5

; Use a Hanning mask to filter out the noise.
mask = HANNI NG(i mageSi ze[0], inngeSize[1])
maskedTr ansf orm = transf or nf mask

; Create another wi ndow and display the masked power
; spectrum
WNDOW 2, TITLE = 'Surface of Filtered FFT
SHADE_SURF, (2.*ALOGLO(ABS(maskedTransform)), $

/| XSTYLE, /YSTYLE, /ZSTYLE, $

TI TLE = ' Masked Power Spectrum , $

XTI TLE 'Mode', YTITLE = 'Mode', $

ZTI TLE "Anplitude', CHARSIZE = 1.5

; Apply the inverse transformation to masked frequency
; domai n i mage.
i nverseTransform = FFT(SH FT(naskedTransform $

(i mageSi ze[0]/2), (imageSize[1l]/2)), /1NVERSE)

; Create another window and display the results of
; inverse transformtion.
W NDOW 3, XSIZE = displ aySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = 'Hanning Filtered | mage'
TVSCL, CONGRI D(REAL_PART(inverseTransform, $
di spl aySi ze[0], displaySize[1])

END
Lee Filtering to Remove Noise

Unlike the Hanning window, the Lee filter is convolved within the spatial domain.
The Leefilter is an adaptive filter, which changes according to the local statistics of
the current pixel. The LEEFILT routine applies the Leefilter to an image to remove
background noise.

Image Processing in IDL Removing Noise

476 Chapter 10: Contrasting and Filtering

The following example shows how to use the LEEFILT function to remove
background noise from an image. This example uses the first image within the
abnor m dat fileinthe exanpl es/ dat a directory.

For code that you can copy and paste into an Editor window, see “ Example Code: Lee
Filtering to Remove Noise” on page 477 or complete the following steps for a
detailed description of the process.

1. Import the image from the abnor m dat file:

file = FILEPATH(' abnormdat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [64, 64]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

2. Initidize adisplay size parameter to resize the image when displaying it:
di spl aySi ze = 2*i nageSi ze
3. Initialize the display:

DEVI CE, DECOWMPCSED = 0
LOADCT, 0

4. Create awindow and display the original image:

W NDOW 0, XSIZE = displ aySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = ' Oiginal |nage'
TVSCL, CONGRI D(i nage, displaySize[0], displaySize[1l])

The following figure shows the origina image.

Figure 10-43: Original Gated Blood Pool Image

Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 477

5. Apply the Leefilter to theimage:
filteredl nage = LEEFILT(image, 1)
6. Create another window and display the Lee filtered image:

WNDOW 1, XS|ZE = displaySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = 'Lee Filtered | mge'

TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

The following figure shows the results of applying the Lee filter, which
adaptively smooths areas that contains noise.

Figure 10-44: Lee Filtered Gated Blood Pool Image

Example Code: Lee Filtering to Remove Noise

Copy and paste the following text into an IDL Editor window. After saving thefile as
Rerovi ngNoi seW t hLEEFI LT. pr o, compile and run the program to reproduce the
previous example.

PRO Renopvi ngNoi seW t hLEEFI LT

; Import the image fromthe file.
file = FILEPATH(' abnorm dat', $
SUBDI RECTCRY = [' exanples', 'data'])
i mageSi ze = [64, 64]
i mmge = READ_BI NARY(file, DATA DI M5 = inageSi ze)

; Initialize a display size paraneter to resize the

; i mage when displaying it.
di spl aySi ze = 2*i mageSi ze

Image Processing in IDL Removing Noise

478 Chapter 10: Contrasting and Filtering

; Initialize the display.
DEVI CE, DECOMPOSED = 0
LOADCT, 0

; Create a window and di splay the original image.
W NDOW 0, XSIZE = displaySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = ' Oiginal |nage'
TVSCL, CONGRI D(i nage, displaySize[0], displaySize[1l])

; Apply the Lee filter to the inage.
filteredlmage = LEEFILT(image, 1)

; Create another wi ndow and display the Lee filtered
; 1 mage
W NDOW 1, XSIZE = displaySize[0], $
YSI ZE = displ aySi ze[1], $
TITLE = 'Lee Filtered | mge'
TVSCL, CONGRID(filteredl mage, displaySize[0], $
di spl aySi ze[1])

END

Removing Noise Image Processing in IDL

Chapter 11:

Extracting and
Analyzing Shapes

This chapter describes using morphological operationsin conjunction with image analysisroutines
to extract and analyze image elements. This chapter includes the following topics:

Overview of Extracting and Analyzing Image

Shapes ... 480
Guidelines for Determining Structuring
Element Shapesand Sizes 484
Determining Intensity Values When
Thresholding and Stretching Images 486
Eroding and Dilating Image Objects 489
Smoothing with MORPH_OPEN 496
Smoothing with MORPH_CLOSE 500

Image Processing in IDL

Detecting Peaks of Brightness 504
Creating Image Object Boundaries 508
Selecting Specific Image Objects 514
Detecting Edges of Image Objects 520
Creating DistanceMaps 523
Thinning ImageObjects 527

Combining Morphologica Operations. .. 534
AnalyzingImage Shapes 540

479

480 Chapter 11: Extracting and Analyzing Shapes

Overview of Extracting and Analyzing Image
Shapes

Morphological image processing operations reveal the underlying structures and
shapes within binary and grayscale images, clarifying basic image features. While
individual morphological operations perform simple functions, they can be combined
to extract specific information from an image. Morphological operations often
precede more advanced pattern recognition and image analysis operations such as
segmentation. Shape recognition routines commonly include image thresholding or
stretching to separate foreground and background image features. See “ Determining
Intensity Values When Thresholding and Stretching Images’ on page 486 for tips on
how to produce the desired results.

This chapter also provides examples of more advanced image analysis routines that
return information about specific image elements. One exampl e identifies unique
regions within an image and the other finds the area of a specific image feature. See
“Analyzing Image Shapes’ on page 540 for more information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

Applying a Morphological Structuring Element to an
Image

Morphological operations apply a structuring element or morphological mask to an
image. A structuring element that is applied to an image must be 2 dimensional,
having the same number of dimensions as the array to which it is applied. A
morphological operation passes the structuring element, of an empirically determined
size and shape, over an image. The operation compares the structuring element to the
underlying image and generates an output pixel based upon the function of the
morphological operation. The size and shape of the structuring element determines
what is extracted or deleted from an image. In general, smaller structuring elements
preserve finer details within an image than larger elements. For more information on
selecting and creating a structuring element, see “ Guidelines for Determining
Structuring Element Shapes and Sizes” on page 484.

Overview of Extracting and Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes

481

M orphological operations can be applied to either binary or grayscal e images. When
applied to abinary image, the operation returns pixels that are either black, having a
logical value of 0, or white, having alogical value of 1. Each image pixel and its
neighboring pixels are compared against the structuring element to determine the
pixel’svalue in the output image. With grayscale images, pixel values are determined
by taking a neighborhood minimum or neighborhood maximum value (asrequired by
the morphological process). The structuring element provides the definition of the
shape of the neighborhood.

The following table introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description
“Eroding and ERODE Reduce the size of
Dilating Image objectsin relation to
Objects’ on their background.
page 489. DILATE Expand the size of
objectsin relation to
their background.
“Smoothing with | MORPH_OPEN Apply an erosion

MORPH_OPEN"
on page 496.

operation followed by
adilation operation to
abinary or grayscale
image.

“Smoothing with
MORPH_CLOSE”

MORPH_CLOSE

Apply adilation
operation followed by

on page 500. an erosion operation to
abinary or grayscale
image.

“Detecting Peaks | MORPH_TOPHAT Retain only the

of Brightness’ on brightest pixels within

page 504. agrayscaeimage.

“Creating Image WATERSHED Detect boundaries

Object Boundaries’ between similar

on page 508. regionsin agrayscale

image.

Table 11-1: Shape Extraction and Analysis Tasks and Routines

Image Processing in IDL

Overview of Extracting and Analyzing Image Shapes

482

Chapter 11: Extracting and Analyzing Shapes

Task

Routine(s)

Description

“Selecting Specific
Image Objects’ on

MORPH_HITORMISS

Use“hit” and “miss’
structures to identify

page 514. image elements that
meet the specified
conditions.

“Detecting Edges | MORPH_GRADIENT Subtract an eroded

of Image Objects’
on page 520.

version of agrayscale
image from adilated
version of the image,
highlighting edges.

“Creating Distance

MORPH_DISTANCE

Estimate for each

Maps’ on binary foreground

page 523. pixel the distance to
the nearest background
pixel, using agiven
norm.

“Thinning Image | MORPH_THIN Subtract hit-or-miss

Objects’ on results from a binary

page 527. image. Repeated

thinning resultsin
pixel-wide linear
representations of
image objects.

“Anayzing Image
Shapes’ on
page 540.

LABEL_REGION

Identify and assign
index numbers to
discrete regions within
abinary image.

CONTOUR

Create a contour plot
and extract information
about specific
contours.

Table 11-1: Shape Extraction and Analysis Tasks and Routines (Continued)

Overview of Extracting and Analyzing Image Shapes

Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 483

Note
For an example that uses a combination of morphological operations to remove
bridges from the waterways of New York, see “Combining Morphological
Operations’ on page 534.

Image Processing in IDL Overview of Extracting and Analyzing Image Shapes

484 Chapter 11: Extracting and Analyzing Shapes

Guidelines for Determining Structuring
Element Shapes and Sizes

Determining the size and shape of a structuring element is largely an empirical
process. However, the overall selection of a structuring element depends upon the
geometric shapes you are attempting to extract from the image data. For example, if
you are dealing with biological or medical images, which contain few straight lines or
sharp angles, acircular structuring element is an appropriate choice. When extracting
shapes from geographic aerial images of a city, a square or rectangular element will
allow you to extract angular features from the image.

While most examples in this chapter use simple structuring elements, you may need
to create severd different elements or different rotations of asingular element in
order to extract the desired shapes from your image. For example, if you wish to
extract the rectangular roads from an aerial image, the initial rectangular element will
need to be rotated a number of ways to account for multiple orientations of the roads
within the image.

The size of the structuring element depends upon what features you wish to extract
from the image. Larger structuring elements preserve larger features while smaller
elements preserve the finer details of image features.

Thefollowing table shows how to easily create simple disk-shaped, square, rectangle,
diagonal and custom structuring elements using IDL. The visual representations of
the structures, shown in the right-hand column, indicate that the shape of each binary
structuring element is defined by foreground pixels having a value of one.

IDL Code For Structuring Element Shapes Examples

Disk-Shaped Structuring Element
Use SHIFT in conjunction with DIST to create the disk shape.

radius = 3

strucEl em = SHI FT(DI ST(2*radi us+1), radius, $
radi us) LE radius

Change radius to alter the size of the structuring element.

coo—ooo
= =]
=~
= =1
= =1
coo—ooo

Table 11-2: Creating Various Structuring Elements Shapes with IDL

Guidelines for Determining Structuring Element Shapes and Sizes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 485

IDL Code For Structuring Element Shapes Examples

Square Structuring Element

Use DIST to define the square array. g
side = 3 |
strucEl em = Dl ST(side) LE side

Change side to alter the size of the structuring element.

Vertical Rectangular Structuring Element

Use BY TARR to define the initial array. 1
strucEl em = BYTARR(3, 3) 1
strucElem[0,*] =1

Createa?2 x 3 structure by addingstrucEl en{ 1, *] = 1.

L
L

Horizontal Rectangular Structuring Element

Use BY TARR to define the initial array.
strucEl em = BYTARR(3, 3) onon
strucElem[*,0] =1

Create a3 x 2 structure by adding, st rucEl en{ *, 1] = 1.

—
—
—_

Diagonal Structuring Element
Use IDENTITY to create theinitial array.

strucEl em = BYTE(I DENTI TY(3)) o 1]
Note - BY TE isused to create a byte array, consistent with the o 0
other structuring elements.

—_
=
N

Irregular Structuring Elements

Define custom arraysto create irregular structuring elements
or a series of rotations of a single structuring element.

PN L
cosoobaao
comabiaoo
coom——oo
cobhsaaoo
chacooao
Al cooonn

struceElem=[[1,0,0,0,0,0,1], $
[1,1,0,0,0,1,1], $
[0,1,1,1,1,1,0], $
[0,0,1,1,1,0,0], $
[0,0,1,1,1,0,0], $
[0,1,1,0,1,1,0], $
[1,1,0,0,0,1,1], $
[1,0,0,0,0,0,1]]

Note - Creating a series of rotations of a single structuring
element is covered in “ Thinning Image Objects’ on page 527.

Table 11-2: Creating Various Structuring Elements Shapes with IDL

Image Processing in IDL Guidelines for Determining Structuring Element Shapes and Sizes

486 Chapter 11: Extracting and Analyzing Shapes

Determining Intensity Values When
Thresholding and Stretching Images

Thresholding and stretching images separate foreground pixels from background
pixels and can be performed before or after applying amorphological operation to an
image. While a threshold operation produces a binary image and a stretch operation
produces a scaled, grayscaleimage, both operations rely upon the definition of an
intensity value. Thisintensity valueis compared to each pixel value within the image
and an output pixel is generated based upon the conditions stated within the threshold
or stretch statement.

Intensity histograms provide a means of determining useful intensity values as well
as determining whether or not an image is a good candidate for thresholding or
stretching. A histogram containing definitive peaks of intensities indicates that an
image's foreground and background features can be successfully separated. A
histogram containing connected, graduated ranges of intensities indicates the image
islikely a poor candidate for thresholding or stretching.

a 50 100 180 200 250 I0¢ 0 a0 100 180 200 250 I0¢

Good Candidate Poor Candidate

Figure 11-1: Determining Appropriateness of Images for Thresholding or
Stretching Using Intensity Histograms

Note
To quickly view the intensity histogram of an image, create awindow and use
PLOT in conjunction with HISTOGRAM, entering PLOT, HI STOGRAM i mage)
where image denotes the image for which you wish to view a histogram.

Determining Intensity Values When Thresholding and Stretching Images Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 487

Thresholding an Image

Thresholding outputs a binary image as determined by a threshold intensity and one
of therelational operators: EQ, NE, GE, GT, LE, or LT. In a statement containing a
relational operator, thresholding compares each pixel in the original image to a
threshold intensity. The output pixels (comprising the binary image) are assigned a
value of 1 (white) when the relational statement is true and O (black) when the
statement is false.

The following figure shows an intensity histogram of an image containing mineral
crystals. The histogram indicates that the image can be successfully thresholded since
there are definitive peaks of intensities. Also shown in the following figure, a
statement such asi ng LE 50 produces an image where all pixelsless than the
threshold intensity value of 50 are assigned aforeground pixel value of 1 (white). The
statement, i g GE 50 produces a contrasting image where all original pixels values
greater than 50 are assigned a foreground pixel value (white).

Intensity Histogram of Original Image

3000
2000

10001

0 &0 100 150 200 260

ALY
Original Image

img GE 50

Figure 11-2: Image Thresholding

Image Processing in IDL Determining Intensity Values When Thresholding and Stretching Images

488

Chapter 11: Extracting and Analyzing Shapes

Stretching an Image

Stretching an image (al so know as scaling) creates a grayscale image, scaling arange
of selected pixel values across al possible intensities. When using TV SCL or
BYTSCL in conjunction with the > and < operators, a range of pixels defined by the
intensity value and operator are scaled across the entire intensity range, (0 to 255).

The following figure shows the results of displaying each image stretching statement
using TVSCL, i nage:

imge = img < 50 — All pixel vaues greater than 50 are assigned avalue
of 50, now the maximum pixel value (white). Applying TVSCL or BY TSCL
stretches the remaining pixel values across all possible intensities (0 to 255).

imge = inmg < 190 — All pixel values greater than 190 are assigned a
value of 190, now the maximum pixel value (white). Applying TVSCL or
BYTSCL stretches the remaining pixel values across all possible intensities
(Oto 255).

image = inmg > 150 < 190 — Using two intensity values, extract asingle
peak of values shown in the histogram, all values lessthan 150 are assigned a
minimum pixel value (black) and all values greater than 190 are assigned a
maximum pixel value (white). Applying TV SCL or BY TSCL stretches the
remaining pixel values across al possibleintensities (0 to 255).

Original Image and Intensity Histogram

3000 F
2000 F

&7 A 1000 F

%

img > 150 < 190

[u] 50 100 180 200 250
Figure 11-3: Image Stretching

Determining Intensity Values When Thresholding and Stretching Images Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 489

Eroding and Dilating Image Objects

The basic morphological operations, erosion and dilation, produce contrasting results
when applied to either grayscale or binary images. Erosion shrinks image objects
while dilation expands them. The specific actions of each operation are coveredin the

following sections.

Characteristics of Erosion

» Erosion generally decreases the sizes of objects and removes small anomalies
by subtracting objects with a radius smaller than the structuring element.

» With grayscale images, erosion reduces the brightness (and therefore the size)
of bright objects on a dark background by taking the neighborhood minimum
when passing the structuring element over the image.

» With binary images, erosion completely removes objects smaller than the
structuring element and removes perimeter pixels from larger image objects.

Characteristics of Dilation

» Dilation generally increases the sizes of objects, filling in holes and broken
areas, and connecting areas that are separated by spaces smaller than the size
of the structuring element.

» With grayscale images, dilation increases the brightness of objects by taking
the neighborhood maximum when passing the structuring element over the
image.

» With binary images, dilation connects areas that are separated by spaces
smaller than the structuring element and adds pixels to the perimeter of each
image object.

Image Processing in IDL Eroding and Dilating Image Objects

490 Chapter 11: Extracting and Analyzing Shapes

Applying Erosion and Dilation

The following example applies erosion and dilation to grayscale and binary images.
When using erosion or dilation, avoid the generation of indeterminate values for
objects occurring along the edges of the image by padding the image, as shownin the
following example. For code that you can copy and paste into an Editor window, see
“Example Code: Eroding and Dilating Image Elements” on page 493 or complete the
following steps for adetailed description of the process.

Note
This example uses afile from the exanpl es/ deno/ denodat a directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to ingtall the demo data file needed for this example.

1. Preparethedisplay device:

DEVI CE, DECOMPOSED = 0, RETAIN = 2
2. Load agrayscae color table:

LOADCT, 0

3. Select and read in the image file. Use the GRAY SCALE keyword to
READ_JPEG to open the grayscal e image:
file = FILEPATH(' pollens.jpg', $

SUBDI RECTCORY = [' exanples', 'demp', 'denodata'])
READ JPEG, file, ing, /GRAYSCALE

4. Get the size of the image:
dims = Sl ZE(inyg, /DI MENSI ON)

5. Definethe structuring element. A radius of 2 resultsin a structuring element
near the size of the specks of background noise. This radius also affects only
the edges of the larger objects (whereas alarger radius would cause significant
distortion of all image features):

radius = 2
6. Create adisk-shaped structuring element that corresponds to the shapes
occurring within the image:

strucEl em = SH FT(Dl ST(2*radi us+1), radius, radius) LE radius
Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

Eroding and Dilating Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 491

7. Add aborder to the image to avoid generating indeterminate values when
passing the structuring element over objects along the edges of animage. If the
starting origin of the structuring element is not specified in the call to ERODE,
the origin defaults to one half the width of the structuring element. Therefore,
creating a border equa to one half of the structuring element width (equal to
the radius) is sufficient to avoid indeterminate values. Create padded images
for both the erode operation (using the maximum array value for the border),
and the dilate operation (using the minimum array value for the border) as
follows:

erodel ng = REPLI CATE(MAX(ing), dinms[0]+2, dins[1]+2)
erodelng [1,1] = ing

dil atel g = REPLI CATE(M N(i ng), dins[0]+2, dins[1]+2)
dilatelmy [1,1] = ing
Note
Padding is only necessary when accurate edge values are important. Adding a pad
equal to more that one half the width of the structuring element does not negatively
effect the morphological operation, but does minutely add to the processing time.
The padding can be removed from the image after applying the morphological
operation and before displaying the image if desired.

8. Get the size of either of the padded images, create a window and display the
origina image:
padDi ms = Sl ZE(er odel ng, /DI MENSI ONS)
W NDOW 0, XSl ZE = 3*padDins[0], YSIZE = padDins[1], $
TITLE = "Original, Eroded and Dl ated G ayscal e | nages”
TVSCL, ing, O

9. Apply the ERODE function to the grayscaleimage using the GRAY keyword
and display the image:

erodel ng = ERODE(erodel mg, strucElem /GRAY)
TVSCL, erodelnmg, 1

10. For comparison, apply DILATE to the same image and display it:

dilatelmg = DI LATE(dil atelng, strucEl em /GRAY)
TVSCL, dilatelng, 2

The following image displays the effects of erosion (middl€) and dilation (right).
Erosion removes pixels from perimeters of objects, decreases the overall brightness
of the grayscale image and removes objects smaller than the structuring element.

Image Processing in IDL Eroding and Dilating Image Objects

492 Chapter 11: Extracting and Analyzing Shapes

Dilation adds pixels to perimeters of objects, brightens the image, and fillsin holes
smaller than the structuring element as shown in the following figure.

Figure 11-4: Original (left), Eroded (center) and Dilated (right) Grayscale Images

11. Create awindow and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

W NDOW 1, XSIZE = 400, YSIZE = 300
PLOT, H STOGRAM i ng)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “ Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

12. To compare the effects of erosion and dilation on binary images, create a
binary image, retaining pixels with values greater than or equal to 120:

img = ing GE 120
13. Create padded binary images for the erode and dilation operations, using 1 as

the maximum array value for the erosion image and 0 as the minimum value
for the dilation image:

erodel ng = REPLI CATE(1B, dins[0]+2, dins[1]+2)
erodelng [1,1] = ing

dil atel my = REPLI CATE(OB, dins[0]+2, dinms[1]+2)
dilatelmy [1,1] = ing

Eroding and Dilating Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 493

14. Get the dimensions of either image, create a second window and display the
binary image:
di ns = S| ZE(er odel ng, /DI MENSI ONS)
W NDOW 2, XSIZE = 3*dins[0], YSIZE = dins[1], $
TITLE = "Original, Eroded and Dl ated Binary |nages"
TVSCL, ing, O

15. Using the structuring element defined previously, apply the erosion and
dilation operations to the binary images and display the results by entering the
following lines:

erodel ng = ERODE(erodel mg, strucEl en)
TVSCL, erodelng, 1

dilatelmg = DI LATE(dil atel g, strucEl em
TVSCL, dilatelng, 2

The results are shown in the following figure.

Figure 11-5: Original, Eroded and Dilated Binary Images

Example Code: Eroding and Dilating Image Elements

Copy and paste the following text into the IDL Editor window. After saving thefile as
Mor phEr odeDi | at e. pr o, compile and run the program to reproduce the previous
example.

PRO Mor phEr odeDi | at e

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

Load an immge.
file = FILEPATH(' pollens.jpg', $

SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])
READ JPEG file, ing, /GRAYSCALE

Get the imge size.

Image Processing in IDL Eroding and Dilating Image Objects

494

Chapter 11: Extracting and Analyzing Shapes

dims = SIZE(iny, /DI MENSI ONS)

; Create the structuring elenment, a disk with a radius
;. of 2.
radius = 2
strucEl em = SHI FT(DI ST(2*radi us+1), $
radi us, radius) LE radius

; Print the structuring element in order to visualize
; the previous statenment.
PRI NT, strucEl em

; To avoid indeterm nate edge val ues, add paddi ng equal
; to one half the size of the structuring el enent

; (equal to the radius). Pad inmage to be eroded with

; maxi mum array value, and image to be dilated with

; mninmumarray val ue.

erodel ng = REPLI CATE(MAX(ing), dinms[0]+2, dins[1]+2)
erodelng [1,1] = ing

dil atel g = REPLI CATE(M N(i ng), dins[0]+2, dins[1]+2)
dilatelmy [1,1] = ing

; Get the size of either of the padded inmges,

; create a wi ndow and display the original inmage.

padDi ms = Sl ZE(er odel ng, /DI MENSI ONS)

W NDOW 0, XSl ZE = 3*padDins[0], YSIZE = padDins[1], $
TITLE = "Original, Eroded and Dl ated Grayscal e | nages"

TVSCL, ing, O

; Use the erosion operator on the imge, applying the
; structuring elenent. Display the inmage.

erodel ng = ERODE(erodel ng, strucElem /GRAY)

TVSCL, erodelnmg, 1

; Apply the dilation operator to the inmage, and display
it

dilatelmg = DI LATE(dil atelng, strucEl em /GRAY)

TVSCL, dilatelng, 2

; Create a window and display a histogramto help
; determine the threshold intensity val ue.

W NDOW 1, XSIZE = 400, YSIZE = 300

PLOT, HI STOGRAM i ng)

; Create a binary inmage of the grayscal e i mage.
im = ing GE 120

; Create padded binary images for the erode
; and dil ate operations.

Eroding and Dilating Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 495

erodel ng = REPLI CATE(1B, dins[0]+2, dins[1]+2)
erodelng [1,1] = ing

dil atel my = REPLI CATE(OB, dins[0]+2, dinms[1]+2)
dilatelmy [1,1] = ing

; Get the dinensions, create a second w ndow
; and display the binary image.
di ns = S| ZE(er odel ng, /DI MENSI ONS)
W NDOW 2, XSIZE = 3*dims[0], YSIZE = dins[1], $
TITLE = "Original, Eroded and Dilated Binary |nages"
TVSCL, ing, O

; Apply the erosion and dilation operators to the
; binary images and display the results.

erodel ng = ERODE(erodel ng, strucElem

TVSCL, erodelng, 1

dilatelmg = DI LATE(dil atel g, strucEl em

TVSCL, dilatelng, 2

END

Image Processing in IDL Eroding and Dilating Image Objects

496 Chapter 11: Extracting and Analyzing Shapes

Smoothing with MORPH_OPEN

The MORPH_OPEN function applies the opening operation, which is erosion
followed by dilation, to abinary or grayscale image. The opening operation removes
noise from an image while maintaining the overall sizes of objectsin the foreground.
Opening isauseful process for smoothing contours, removing pixel noise,
eliminating narrow extensions, and breaking thin links between features. After using
an opening operation to darken small objects and remove noise, thresholding or other
morphological processes can be applied to the image to further refine the display of
the primary shapes within the image.

The following exampl e applies the opening operation to an image of microscopic
spherical organisms, Rhinosporidium seeberi protozoans. After applying the opening
operation and thresholding the image, only the largest elements of the image are
retained, the mature R.seeberi organisms.

For code that you can copy and paste into an Editor window, see “ Example Code:
Using MORPH_OPEN to Remove Noise” on page 498 or complete the following
steps for a detailed description of the process.

1. Preparethe display device and load grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r _seeberi.jpg', $
SUBDI RECTORY = ['exanples', 'data'])
READ JPEG file, inmage, /GRAYSCALE

3. Get theimage dimensions, prepare awindow and display the image:
di ns = S| ZE(i mage, / DI MENSI ONS)
W NDOW 0, XSIZE = 2*dims[0], YSIZE = 2*dins[1], $

TITLE = 'Defining Shapes with Opening Operation'
TVSCL, inmge, O

4. Definethe radius of the structuring element and create a disk-shaped element
to extract circular features:

radius = 7
strucEl em = SH FT(Dl ST(2*radi us+1), radius, radius) LE radius

Compared to the previous example, alarger element isused in order to retain
only the larger image elements, discarding all of the smaller background
features. Further increases in the size of the structuring element would extract
even larger image features.

Smoothing with MORPH_OPEN Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 497

Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

5. Apply the MORPH_OPEN function to the image, specifying the GRAY
keyword for the grayscaleimage:

nor phl g = MORPH_OPEN(i mage, strucElem /GRAY)
6. Display theimage:
TVSCL, norphlnmg, 1

The following figure shows the original image (left) and the application of the
opening operation to the original image (right). The opening operation has
enhanced and maintained the sizes of the large bright objects within the image
while blending the smaller background features.

Figure 11-6: Application of the Opening Operation to a Grayscale Image

The following steps apply the opening operator to a binary image.

7. Create awindow and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

WNDOW 1, XSIZE = 400, YSIZE = 300
PLOT, H STOGRAM i ng)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “ Determining Intensity Values When Thresholding and
Stretching Images’ on page 486.

Image Processing in IDL Smoothing with MORPH_OPEN

498 Chapter 11: Extracting and Analyzing Shapes

8. Using the histogram as aguide, create abinary image. To prepare to remove
background noise, retain only areas of the image where pixel values are equal
to or greater than 160:

threshlng = i mnage CGE 160
WSET, 0
TVSCL, threshlng, 2

9. Apply the opening operation to the binary image to remove noise and smooth
contours, and then display the image:

nmor phThresh = MORPH_OPEN(t hreshl ng, strucEl em
TVSCL, nor phThresh, 3

The combination of thresholding and applying the opening operation has successfully
extracted the primary foreground features as shown in the following figure.

Figure 11-7: Binary Image (left) and Application of the Opening Operator to the
Binary Image (right)

Example Code: Using MORPH_OPEN to Remove Noise

Copy and paste the following text into the IDL Editor window. After saving thefile as
Mor phOpenExanpl e. pr o, compile and run the program to reproduce the previous
example.

PRO Mor phOpenExanpl e

Prepare the di splay device and | oad grayscal e col or
t abl e.

DEVI CE, DECOMPOSED = 0, RETAIN = 2

LOADCT, 0

Sel ect and open the inage file.
file = FILEPATH(' r _seeberi.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])
READ JPEG file, image, /GRAYSCALE

Smoothing with MORPH_OPEN Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 499

; Get the image dinensions, prepare a w ndow and

; display the image.

di ns = S| ZE(i mage, / DI MENSI ONS)

WNDOW 0, XSIZE = 2*dins[0], YSIZE = 2*dins[1], $
TI TLE=' Defi ni ng Shapes with the Cpening Operator'

TVSCL, inmge, O

; Define the radius of the structuring el ement and
; create the disk.
radius = 7
strucEl em = SHI FT(DI ST(2*radi us+1), $
radi us, radius) LE radius

; Apply the opening operator to the image.
nor phl g = MORPH_OPEN(i mage, strucElem /GRAY)
TVSCL, morphlng, 1

; Create a window and display an intensity histogram
; to help determine the threshold intensity val ue.

W NDOW 1, XSIZE = 400, YSIZE = 300

PLOT, HI STOGRAM i mage)

; Threshold the image to prepare to renove background
;' noi se.

threshlmg = i mage CGE 160

; Display the threshol ded i mage.

WSET, O

TVSCL, threshlng, 2

; Apply the opening operator to the threshol ded inage.
nmor phThresh = MORPH_OPEN(t hreshl ng, strucEl em

; Display the inmage.
TVSCL, nor phThresh, 3

END

Image Processing in IDL Smoothing with MORPH_OPEN

500 Chapter 11: Extracting and Analyzing Shapes

Smoothing with MORPH_CLOSE

The morphological closing operation performs dilation followed by erosion, the
opposite of the opening operation. The MORPH_CL OSE function smooths contours,
links neighboring features, and fills small gaps or holes. The operation effectively
brightens small objects in binary and grayscale images. Like the opening operation,
primary objects retain their original shape.

The following example uses the closing operation and a square structuring element to
extract the shapes of minera crystals.

For code that you can copy and paste into an Editor window, see “ Example Code:
Using MORPH_CLOSE” on page 502 or compl ete the following steps for a detailed
description of the process.

1. Preparethe display device and load a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

2. Select thefile, read the data and get the image dimensions:

file = FILEPATH(' mi neral .png', $

SUBDI RECTCRY = [' exanples', 'data'])
i Mg = READ _PNG(fil e)
dinms = Sl ZE(i ng, /Dl MENSI ONS)

3. Using the dimensions of theimage add a border for display purposes:

padl mg = REPLI CATE(OB, dins[0]+10, di ns[1]+10)
padimg [5,5] = iny

4. Get the padded image size, create a window and display the original image:

dims = S| ZE(padl ng, /DI MENSI ONS)
W NDOW 0, XSI ZE=2*dims[0], YSIZE=2*dinms[1], $

TI TLE=' Defi ni ng Shapes with the O osing Operator'
TVSCL, padlinmg, O

5. Using DIST, define a small square structuring element in order to retain the
detail and angles of the image features:
side = 3
strucEl em = Dl ST(side) LE side
Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

Smoothing with MORPH_CLOSE Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 501

6. Apply MORPH_CL OSE to the image and display the resulting image:

cl oselng = MORPH_CLOSE(padl ng, strucElem /GRAY)
TVSCL, closelnmg, 1

Thefollowing figure shows the original image (left) and the results of applying
the closing operator (right). Notice that the closing operation has removed
much of the small, dark noise from the background of the image, while

mai ntaining the characteristics of the foreground features.

Figure 11-8: Original (left) and Closed Image (right)

7. Determine athreshold value, using an intensity histogram as a guide:
W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM cl osel ng)
Note
Using an intensity histogram as a guide for determining threshold values is

described in the section, “ Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

8. Threshold the original image and display the resulting binary image:

bi naryl ng = padlng LE 160
WSET, 0
TVSCL, binarylng, 2

9. Now display abinary version of the closed image:

bi naryCl ose = cl osel ng LE 160
TVSCL, binaryCl ose, 3

The results of thresholding the original and closed image using the same intensity
value clearly display the actions of the closing operator. The dark background noise

Image Processing in IDL Smoothing with MORPH_CLOSE

502 Chapter 11: Extracting and Analyzing Shapes

has been removed, much asif adilation operation had been applied, yet the sizes of
the foreground features have been maintained.

Figure 11-9: Threshold of Original Image (left) and Closed Image (right)

Example Code: Using MORPH_CLOSE

Copy and paste the following text into the IDL Editor window. After saving thefile as
Mor phCl oseExanpl e. pr o, compile and run the program to reproduce the previous
example.

PRO Mor phCl oseExanpl e

; Prepare the display device and | oad grayscal e col or
; table.

DEVI CE, DECOMPOSED = 0, RETAIN = 2

LOADCT, 0

; Select and open the image file.
file = FILEPATH(' mineral .png', $

SUBDI RECTORY=[' exanpl es', 'data'])
i ng = READ_PNG(fil e)

; Get the image dinensions, prepare a w ndow and
; display the inmage.
dinms = S| ZE(img, /DI MENSI ONS)

; Pad the imge and get the new di nensi ons.
padl ng = REPLI CATE(OB, dins[0]+10, di ns[1]+10)
padlnmg [5, 5] = ing

dims = S| ZE(padl ng, /DI MENSI ONS)

; Display the padded i nage.

WNDOW 0, XSIZE = 2*dims[0], YSIZE = 2*dinms[1], $
TITLE = ' Extracti ng Shapes with the d osing Operator'

TVSCL, padlnmg, O

Smoothing with MORPH_CLOSE Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 503

; Define the size of the structuring el enent
; and create the square.

side = 3

strucEl em = DI ST(side) LE side

PRI NT, strucEl em

; Apply the closing operator to the image and displ ay
;oI

cl oselng = MORPH_CLOSE(padl ng, strucElem /GRAY)
TVSCL, closelmg, 1

; Create a window and display an intensity histogram
; to help determine the threshold intensity val ue.

W NDOW 2, XSIZE = 400, YSIZE = 300

PLOT, HI STOGRAM cl osel ng)

; Display a binary version of the original inmage.
bi naryl ng = padlng LE 160

WSET, 0

TVSCL, binarylnmg, 2

; Display a binary version of the closed i mage for
; for conparison with the original.

bi naryCl ose = cl osel ng LE 160

TVSCL, binaryCl ose, 3

END

Image Processing in IDL Smoothing with MORPH_CLOSE

504 Chapter 11: Extracting and Analyzing Shapes

Detecting Peaks of Brightness

The morphological top-hat operation, MORPH_TOPHAT, is also known as a peak
detector. This operator extracts only the brightest pixels from the original grayscale
image by first applying an opening operation to the image and then subtracting the
result from the original image. The top-hat operation is especially useful when
identifying small image features with high levels of brightness.

The following exampl e applies the top-hat operation to an image of a mature
Rhinosporidium seeberi sporangium (spore case) with endospores. The circular
endospores will be extracted using a small disk-shaped structuring element. The top-
hat morphological operation effectively highlights the small bright endospores within
the image.

For code that you can copy and paste into an Editor window, see “ Example Code:
Detecting Bright Peaks with MORPH_TOPHAT” on page 506 or complete the
following steps for adetailed description of the process.

1. Preparethe display device and load a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LQADCT, 0

2. Select and open the image file as a grayscale image:

file = FILEPATH('r _seeberi_spore.jpg , $
SUBDI RECTORY = ['exanples', 'data'])
READ JPEG file, imy, /GRAYSCALE

3. Get theimage dimensions, and add a border for display purposes:

dims = SIZE(img, /DI MENSI ONS)
padl my = REPLI CATE(OB, dins[0]+10, di ns[1]+10)
padimg [5,5] = iny

4. Get the new dimensions, create a window and display the original image:

dims = S| ZE(padl ng, /DI MENSI ONS)

W NDOW 1, XSIZE = 2*dins[0], YSIZE = 2*dins[1], $
TITLE = 'Detecting Small Features with MORPH_TOPHAT

TVSCL, padlinmg, O

5. After examining the structures you want to extract from the image (the small
bright specks), define a circular structuring element with a small radius:

radius = 3
strucEl em = SH FT(Dl ST(2*radi us+1), radius, radius) LE radius

Detecting Peaks of Brightness Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 505

Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

6. Apply MORPH_TOPHAT to theimage and display the results:

tophat| ng = MORPH_TOPHAT(padl ng, strucEl en)
TVSCL, tophatling, 1

The following figure shows the original image (left) and the peaks of
brightness that were detected after the top-hat operation subtracted an opened
image from the original image (right).

Figure 11-10: Original (left) and Top-hat Image (right)

7. Determine an intensity value with which to stretch theimage using an intensity
histogram as a guide:
W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM padl ng)

Note
Using an intensity histogram as a guide for determining intensity valuesis
described in the section, “Determining Intensity Values When Threshol ding and
Stretching Images” on page 486.

Image Processing in IDL Detecting Peaks of Brightness

506 Chapter 11: Extracting and Analyzing Shapes

8. Highlight the brighter image features by displaying a stretched version of the
image:

stretchlmg = tophatlnmg < 70
WSET, 0
TVSCL, stretchlmg, 2

Pixels with values greater than 70 are assigned the maximum pixel value
(white) and the remaining pixels are scaled across the full range of intensities.

9. Create abinary mask of theimage to display only the brightest pixels:

threshlng = tophatlng GE 60
TVSCL, threshling, 3

The stretched top-hat image (left) and the image after applying a binary mask
(right) are shown in the following figure. The endospores within the image
have been successfully highlighted and extracted using the MORPH_TOPHAT
function.

Figure 11-11: Stretched Top-hat Image (left) and Binary Mask (right)

Example Code: Detecting Bright Peaks with MORPH_TOPHAT

Copy and paste the following text into the IDL Editor window. After saving thefile as
Mor phTophat Exanpl e. pr o, compile and run the program to reproduce the
previous example.

PRO Mor phTophat Exanpl e
Prepare the di splay device.

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LQOADCT, 0

Detecting Peaks of Brightness Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 507

; Select and open the image file.

file = FILEPATH('r _seeberi _spore.jpg' ,$
SUBDI RECTCRY = [' exanples', 'data'])

READ JPEG file, ing, /GRAYSCALE

; Get the image dinensions, create a w ndow and
; display image.
dims = S| ZE(i ng, /DI MENSI ONS)

; Pad the image.
padl ng = REPLI CATE(OB, dins[0]+10, di ns[1]+10)
padlmg [5,5] = ing

; Get the new di nensions, create a wi ndow and di spl ay
; the inmage.
dims = S| ZE(padl ng, /DI MENSI ONS)
WNDOW 0, XSIZE = 2*dins[0], YSIZE = 2*dins[1], $

TI TLE=' Detecting Small Features w th MORPH_TOPHAT'
TVSCL, padlinmg, O

; Define and create the structuring el enent.
radius = 3
strucEl em = SHI FT(DI ST(2*radi us+1), $

radi us, radius) LE radius

; Apply the top-hat operator to the inmage and displ ay
it

t ophatl ng = MORPH_TOPHAT(padl ng, strucEl en)

TVSCL, tophatling , 1

; Create a window and display an intensity histogram
; to help determine the threshold intensity val ue.

W NDOW 2, XSIZE = 400, YSIZE = 300

PLOT, HI STOGRAM padl ng)

; Stretch and redisplay the inmge.
WBET, 0

stretchlmg = tophatlnmg < 70
TVSCL, stretchlng, 2

; Threshol d and di splay the binary image.
threshlmg = tophatlng GE 60
TVSCL, threshlng, 3

END

Image Processing in IDL Detecting Peaks of Brightness

Chapter 11: Extracting and Analyzing Shapes

Creating Image Object Boundaries

The WATERSHED function applies the watershed operation to grayscal e images.
This operation creates boundaries in an image by detecting borders between poorly
distinguished image areas that contain similar pixel values.

To understand the watershed operation, imagine translating the brightness of the
image pixelsinto height. The brightest pixels becometall peaks and the darkest
pixels become basins or depressions. Now imagine flooding the image. The
watershed operation detects boundaries among areas with nearly the same value or
height by noting the points where single pixels separate two similar areas. The points
where these areas meet are then translated into boundaries.

Note
Images are usualy smoothed before applying the watershed operation. This
removes noise and small, unimportant fluctuations in the original image that can
produce oversegmentation and alack of meaningful boundaries.

The following example combines an image containing the boundaries defined by the
watershed operation and the original image, a 1982 Landsat satellite image of the
Barringer Meteor Crater in Arizona. For code that you can copy and paste into an
Editor window, see “ Example Code: Detecting Boundaries with WATERSHED” on
page 512 or complete the following steps for a detailed description of the process.

1. Prepare the display device and |oad the grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image of Barringer Meteor Crater, AZ:

file = FILEPATH(' neteor _crater.jpg' , $
SUBDI RECTORY = ['exanples', 'data'])
READ JPEG file, ing, /GRAYSCALE

3. Get theimage size and create awindow:

dims = SIZE(img, /D MENSI ONS)
WNDOW 0, XSIZE = 3*dins[0], YSIZE = 2*di ns[1]

4. Display the original image, annotating it using the XY OUTS procedure:

TVSCL, ing, O
XYOUTS, 50, 444, 'Original Image', Alignnent = .5 $
/ DEVI CE, COLOR = 255

Creating Image Object Boundaries Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 509

5. Using/EDGE_TRUNCATE to avoid spikes along the edges, smooth the image
to avoid oversegmentation and display the smoothed image:

snoot hl ng = snmoot h(7, /EDGE_TRUNCATE)

TVSCL, snoothlng, 1

XYOUTS, (60 + dinms[0]), 444, 'Snoothed Image', $
Alignment = .5, /DEVICE, COLOR = 255

The following figure shows that the smoothing operation retains the major
features within the image.

- Smoolhed Imoge

Figure 11-12: Smoothing the Original Image

6. Definethe radius of the structuring element and create the disk:

radius = 3
strucEl em = SH FT(Dl ST(2*radi us+1), radius, radius) LE radius

Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

7. Usethetop-hat operation before using watershed to highlight the bright areas
within the image.

tophatl ng = MORPH_TOPHAT(smoot hl ng, strucEl em
8. Display theimage:

TVSCL, tophatlng, 2
XYOUTS, (60 + 2*dinms[0]), 444, 'Top-hat |nage', $
Alignment = .5, /DEVICE, COLOR = 255

Image Processing in IDL Creating Image Object Boundaries

510 Chapter 11: Extracting and Analyzing Shapes

9. Determinean intensity value with which to stretch theimage using an intensity
histogram as a guide:

W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM snoot hl ng)

An intensity histogram of the smoothed image is used instead of the top-hat
image since it was empirically determined that the top-hat histogram did not
provide the required information.

Note
Using an intensity histogram as a guide for determining intensity valuesis
described in the section, “Determining Intensity Values When Threshol ding and
Stretching Images” on page 486.

10. Stretch theimageto set all pixelswith avalue greater than 70 to the maximum
pixel value (white) and display the results:

WSET, 0

tophatlmg = tophatlng < 70

TVSCL, tophatlng

XYOUTS, 75, 210, 'Stretched Top-hat |Image', $
Alignment = .5, /DEVICE, COLOR = 255

The original top-hat image (left) and the results of stretching the image (right)
are shown in the following figure.

Tap-hal Image Stretched Top—hat Imoge
¢

Figure 11-13: Original (left) and Stretched Top-hat Image (right)

Creating Image Object Boundaries Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 511

11. Apply the WATERSHED function to the stretched top-hat image. Specify
8-neighbor connectivity to survey the eight closest pixelsto the given pixel,
resulting in fewer enclosed regions, and display the results:

wat er shedl ng = WATERSHED(t ophat | ng, CONNECTI VI TY = 8)

TVSCL, watershedlng, 4

XYOUTS, (70 + dinms[0]), 210, 'Watershed Inmage', $
Alignment = .5, /DEVICE, COLOR = 255

12. Combine the watershed image with the original image and display the result:

i mg [WHERE (watershedlng EQ 0)]= 0

TVSCL, ing, 5

XYOUTS, (70 + 2*dins[0]), 210, 'Watershed Overlay', $
Alignment = .5, /DEVICE, COLOR = 255

The following display shows all images created in the previous example. The final
image, shown in the lower right-hand corner of the following figure, shows the
origina image with an overlay of the boundaries defined by the watershed operation.

+ .+ Smoolhed Imoge Tap-hatl Imoge

Stretched Top—hat Image

Figure 11-14: Boundaries Defined by the Watershed Operation

Image Processing in IDL Creating Image Object Boundaries

512 Chapter 11: Extracting and Analyzing Shapes

Example Code: Detecting Boundaries with WATERSHED

Copy and paste the following text into the IDL Editor window. After saving thefile as
Wat er shedExanpl e. pr o, compile and run the program to reproduce the previous
example.

PRO Wat er shedExanpl e

; Prepare the display device.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Sel ect and open inage of Barrington Meteor Crater,
i AZ.
file = FILEPATH(' meteor_crater.jpg , $
SUBDI RECTCRY = [' exanples', 'data'])
READ JPEG, file, ing, /GRAYSCALE

; Get the inmage size, create a w ndow and display the
;i mage.
dinms = Sl ZE(i ng, /Dl MENSI ONS)
W NDOW 0, XSIZE = 3*dins[0], YSIZE = 2*dins[1], $
TI TLE = ' Defini ng Boundari es with WATERSHED

; Display the original inage.

TVSCL, ing, O

XYOUTS, 50, 444, 'Oiginal Image', Alignnent = .5 $
/ DEVI CE, COLOR = 255

; Smooth the image and display it.

snoot hl ng = SMOOTH(i ng, 7, /EDGE_TRUNCATE)

TVSCL, snoothlng, 1

XYOUTS, (60 + dinms[0]), 444, 'Snoothed Image', $
ALI GNMENT = .5, /DEVICE, COLOR = 255

; Define the radius and create the structuring elenent.
radius = 3
strucEl em = SHI FT(DI ST(2*radi us+1), $

radi us, radius) LE radius

; Use the top-hat operator before using watershed to
; highlight bright areas within the image.
tophatl ng = MORPH_TOPHAT(smoot hl ng, strucEl em

; Display the image.

TVSCL, tophatlng, 2

XYOUTS, (60 + 2*dins[0]), 444, 'Top-hat Image', $
ALI GNVENT = .5, /DEVICE, COLOR = 255

Creating Image Object Boundaries Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 513

; Determine the intensity value using a histogramas a
; guide. Stretch the inage.

W NDOW 2, XSIZE = 400, YSIZE = 300

PLOT, HI STOGRAM snoot hl ng)

tophatlmg = tophatlng < 70

; Display the stretched inage.

WSET, O

TVSCL, tophatlng

XYOUTS, 75, 210, 'Stretched Top-hat |Image', $
ALI GNMENT = .5, /DEVICE, COLOR = 255

; Use the WATERSHED operator to create boundaries

; and display the results.

wat er shedl ng = WATERSHED(t ophat | ng, CONNECTI VI TY = 8)

TVSCL, watershedlng, 4

XYOUTS, (70 + dinms[0]), 210, 'Watershed Inmage', $
ALI GNMENT = .5, /DEVICE, COLOR = 255

; Overlay the boundaries defined by watershed onto

; the original imge.

i mg [WHERE (watershedlng EQ 0)] = 0

TVSCL, ing, 5

XYOUTS, (70 + 2*dins[0]), 210, 'Watershed Overlay', $
ALI GNVENT = .5, /DEVICE, COLOR = 255

END

Image Processing in IDL Creating Image Object Boundaries

514 Chapter 11: Extracting and Analyzing Shapes

Selecting Specific Image Objects

The hit-or-miss morphological operation is used primarily for identifying specific
shapes within binary images. The MORPH_HITORMISS function uses two
structuring elements; a“hit” structure and a“miss’ structure. The operation first
applies an erosion operation with the hit structure to the original image. The
operation then applies an erosion operator with the miss structure to an inverse of the
origina image. The matching image elements entirely contain the hit structure and
are entirely and solely contained by the miss structure.

Note
An image must be padded with a border equal to one half the size of the structuring
element if you want the hit-or-miss operation to be applied to image elements
occurring along the edges of the image.

The hit-or-miss operation is very sensitive to the shape, size and rotation of the two
structuring elements. Hit and miss structuring elements must be specifically designed
to extract the desired geometric shapes from each individual image. When dealing
with complicated images, extracting specific image regions may require multiple
applications of hit and miss structures, using a range of sizes or several rotations of
the structuring elements.

The following exampl e uses the image of the Rhinosporidium seeberi parasitic
protozoans, containing simple circular shapes. After specifying distinct hit and miss
structures, the elements of the image that meet the hit and miss conditions are
identified and overlaid on the original image.

For code that you can copy and paste into an Editor window, see “ Example Code:
I dentifying Objects with MORPH_HITORMISS” on page 518 or complete the
following steps for adetailed description of the process.

1. Preparethe display device and load a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH(' r _seeberi.jpg , $
SUBDI RECTORY = ['exanples','data'])
READ JPEG file, ing, /GRAYSCALE

Selecting Specific Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 515

3. Pad theimage so that objects at the edges of the image are not discounted:
dims = Sl ZE(ing, /DI MENSI ONS)
padl g = REPLI CATE(OB, dins[0]+10, di nms[1] +10)
padlmg [5,5] = ing
Failing to pad an image causes all objects occurring at the edges of the image
tofail the hit and miss conditions.

4. Get the image dimensions, create awindow and display the padded image:

dims = S| ZE(padl ng, /DI MENSI ONS)

W NDOW 0, XSIZE = 3*dins[0], YSIZE = 2*dins[1], $
TI TLE=' Di spl aying H t-or-M ss Matches'

TVSCL, padlinmg, O

5. Definethe radius of the structuring element and create a large, disk-shaped
element to extract the large, circular image objects:

radstr = 7
strucEl em = SH FT(Dl ST(2*radstr+1), radstr, radstr) LE radstr

Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

6. Apply MORPH_OPEN for asmoothing effect and display the image:

openl ng = MORPH_OPEN(padl ng, strucElem / GRAY)
TVSCL, openlng, 1

7. Since the hit-or-miss operation requires a binary image, display an intensity
histogram as a guide for determining a threshold value:

W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM openl ng)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Threshol ding and
Stretching Images” on page 486.

8. Create abinary image by retaining only those image elements with pixel
values greater than or equal to 150 (the bright foreground objects):

t hreshl ng = openlng GE 150
WSET, 0
TVSCL, threshlng, 2

Image Processing in IDL Selecting Specific Image Objects

516 Chapter 11: Extracting and Analyzing Shapes

The results of opening (left) and thresholding (right) are shown in the
following figure.

Figure 11-15: Results of Opening (left) and Thresholding (right)

9. Create the structuring elements for the hit-or-miss operation:
radhit =7
radm ss = 23
hit = SH FT(DI ST(2*radhi t+1), radhit, radhit) LE radhit
mss = SH FT(DI ST(2*radm ss+1), radnmiss, radm ss) CGE radm ss

While the shapes of the structuring elements are purposefully circular, the
sizes were chosen after empirically testing, seeking elements suitable for this
example.
Tip
Enter PRINT, hit or PRINT, miss toview the structures.

The following figures shows the hit and miss structuring elements and the binary
image. Knowing that the region must enclose the hit structure and be surrounded by a

background area at |east as large as the miss structure, can you predict which regions
will be “matches?’

Hit Structure

Miss Structure

Figure 11-16: Applying the Hit and Miss Structuring Elements to a Binary Image

Selecting Specific Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 517

10. Apply the MORPH_HITORMISS function to the binary image. Image regions
matching the hit and miss conditions are designated at matches:

mat ches = MORPH_H TORM SS(t hreshlng, hit, m ss)

11. Display the elements matching the hit and miss conditions, dilating the
elements to the radius of ahit:
dmat ches = DI LATE(nat ches, hit)
TVSCL, dmatches, 3
12. Display the original image overlaid with the matching elements:
padl g [WHERE (dmatches EQ 1)] =1
TVSCL, padlnmg, 4

The following figure shows the elements of the image which matched the hit and
miss conditions, having aradius of at least 7 (the hit structure), yet fitting entirely
inside a structure with a radius of 23 (the miss structure).

Figure 11-17: Image Elements Matching Hit and Miss Conditions

Initially, it may appear that more regions should have been “matches’ since they met
the hit condition of having aradius of 7 or more. However, as the following figure
shows, many such regions failed the miss condition since neighboring regions
impinged upon the miss structure. Such aregion appears on the left in the following
figure.

Match

Region is entirely
contained within

the “miss” structure.

No Match

Other regions prevent
a match for the miss
structuring element.

Figure 11-18: Example of Hit and Miss Relationship

Image Processing in IDL Selecting Specific Image Objects

518 Chapter 11: Extracting and Analyzing Shapes

Considering the simplicity of the previousimage, it is understandable that selecting
hit and miss structures for more complex images can require significant empirical
testing. It isto your advantage to keep in mind how sensitive the hit-or-miss operation
isto the shapes, sizes and rotations of the hit and miss structures.

Example Code: Identifying Objects with MORPH_HITORMISS

Copy and paste the following text into the IDL Editor window. After saving thefile as
Mor phHi t or M ssExanpl e. pr o, compile and run the program to reproduce the
previous example.

PRO Mor phHi t or M ssExanpl e

; Prepare the display device and |oad a grayscal e col or
; table.

DEVI CE, DECOMPOSED = 0, RETAIN = 2

LOADCT, 0

; Sel ect and open an image of the parasitic protozoa.
file = FILEPATH(' r _seeberi.jpg', $

SUBDI RECTCORY=[' exanpl es' , ' data'])
READ JPEG file, ing, /GRAYSCALE

; Pad the image to avoid discounting edge objects.
dinms = S| ZE(ing, /DI MENSI ONS)

padl ng = REPLI CATE(OB, dins[0]+10, di ns[1]+10)
padlnmg[5, 5] = ing

; Get the image di nensions.
di ns = S| ZE(padl ng, /DI MENSI ONS)

; Prepare a wi ndow and display the image.

W NDOW 0, XSI ZE=3*di ns[0], YSIZE=2*dinms[1], $
TI TLE=' Di splayi ng Hit-or-Mss Matches'

TVSCL, padlnmg, O

; Define and create a structuring element for the
; openi ng operator.
radstr =7
strucEl em = SHI FT(Dl ST(2*radstr+1), $
radstr, radstr) LE radstr

; Apply the opening operator for a snmoothing effect.
openl ng = MORPH_OPEN(padl mg, strucElem / GRAY)
TVSCL, openlng, 1

; Use an intensity histogramas a guide for
; threshol di ng.

Selecting Specific Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 519

W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM openl ng)

; Threshol d the i mage.
threshl mg = openlnmg GE 150
WSET, O

TVSCL, threshlng, 2

; Create the structuring elements for the hit-or-mss
; operator.
radhit =7
radm ss = 23
hit = SH FT(DI ST(2*radhi t+1), radhit, radhit) LE radhit
m ss = SHI FT(DI ST(2*radm ss+1), $
radm ss, radm ss) GE radmi ss

; Using structuring el ements, define matching regions.
mat ches = MORPH_HI TORM SS(t hreshl mg, hit, m ss)

; Display the regions matching hit and niss conditions.
; Dilate the matches to the radius of a 'hit'.

dmat ches = DI LATE(nat ches, hit)

TVSCL, dmatches, 3

; Display the original inage overlaid with the matching
; regions.

padl mng [WHERE (dmatches EQ 1)] =1

TVSCL, padlnmg, 4

END

Image Processing in IDL Selecting Specific Image Objects

520 Chapter 11: Extracting and Analyzing Shapes

Detecting Edges of Image Objects

The MORPH_GRADIENT function applies the gradient operation to a grayscale
image. This operation highlights object edges by subtracting an eroded version of the
original image from a dilated version. Repeatedly applying the gradient operator or
increasing the size of the structuring element resultsin wider edges.

The following example extracts image features by applying the morphological
gradient operation to an image of the Mars globe. For code that you can copy and
paste into an Editor window, see “Example Code: Displaying Edges with
MORPH_GRADIENT” on page 522 or complete the following steps for a detailed
description of the process.

1. Prepare the display device and |oad the grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 0

2. Select and read in thefile:

file = FILEPATH(' mar sgl obe.jpg', $
SUBDI RECTORY=[' exanpl es', 'data'])
READ JPEG file, image, /GRAYSCALE

3. Get theimage size, create awindow and display the smoothed image:

di ns = S| ZE(i mage, / DI MENSI ONS)
W NDOW 0, XSIZE =2*dins[0], YSIZE = 2*dins[1], $
TITLE = ' Original and MORPH_GRADI ENT | nages'

The original image is shown in the following figure.

Figure 11-19: Image of Mars Globe

Detecting Edges of Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 521

4. Preservethe greatest amount of detail within the image by defining a
structuring element with aradius of 1, avoiding excessively thick edge lines:
radius = 1
strucEl em = SH FT(Dl ST(2*radi us+1), radius, radius) LE radius
Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

5. Apply the MORPH_GRADIENT function to the image and display the result:

nmor phl ng = MORPH_GRADI ENT(i mage, strucElem
TVSCL, norphlng, 2

6. To more easily distinguish features within the dark image, prepare to stretch
the image by displaying an intensity histogram:

W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM 1-i mage)

The previous line returns a histogram of an inverse of the origina image since
thefinal display will also be an inverse display for showing the greatest detail .

7. Stretch theimage and display itsinverse:

WSET, O
TVSCL, 1-(norphlmg < 87), 3

The following figure displays the initial and stretched gradient images.

Figure 11-20: Initial and Stretched Results of the Gradient Operation

Image Processing in IDL Detecting Edges of Image Objects

522 Chapter 11: Extracting and Analyzing Shapes

Example Code: Displaying Edges with MORPH_GRADIENT

Copy and paste the following text into the IDL Editor window. After saving thefile as
Mor phGr adi ent Ex. pr o, compile and run the program to reproduce the previous
example.

PRO Mor phGr adi ent Ex

; Prepare the display device
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and read in the file.
file = FI LEPATH(' marsgl obe.jpg', $

SUBDI RECTCORY = [' exanples', 'data'])
READ JPEG file, inmge, /GRAYSCALE

; Get the inmage size, create a w ndow and display the

;i mage.

di ns = S| ZE(i mage, / DI MENSI ONS)

W NDOW 0, XSIZE =2*dims[0], YSIZE = 2*dins[1], $
TITLE = ' Original and MORPH_GRADI ENT | nages'

TVSCL, inmge, O

; Define the structuring element, apply the
; nmor phol ogi cal operator and di splay the inmage.
radius =1
strucEl em = SHI FT(DI ST(2*radi us+1), $

radi us, radius) LE radius
nmor phl ng = MORPH_GRADI ENT(i mage, strucElem
TVSCL, norphlnmg, 2

; Display an inverse intesity histogramto deternine
; stretch intensity val ue.

W NDOW 2, XSIZE = 400, YSIZE = 300

PLOT, HI STOGRAM 1 - inmge)

; Display inverse of stretched gradi ent image.
WSET, O
TVSCL, 1 - (nmorphling < 87), 3

END

Detecting Edges of Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 523

Creating Distance Maps

The MORPH_DISTANCE function computes a grayscale, N-dimensiona distance
map from a binary image. The map shows, for each foreground pixel, the distance to
the nearest background pixel using a given norm. The norm simply defines how
neighboring pixels are sampled. Seethe MORPH_DISTANCE descriptionin the IDL
Reference Guide for full details. The resulting valuesin the grayscale image denote
the distance from the surveyed pixel to the nearest background pixel. The brighter the
pixel, the farther it is from the background.

The following example applies the distance transformation to a grayscale image of a
cultured sample of Neocosmospora vasinfecta, a common fungal plant pathogen. For
code that you can copy and paste into an Editor window, see “Example Code:
Displaying Distances with MORPH_DISTANCE” on page 525 or complete the
following steps for adetailed description of the process.

1. Preparethe display device and load a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

2. Select and load an image:

file = FILEPATH(' n_vasinfecta.jpg', $
SUBDI RECTORY = ['exanples', 'data'])
READ JPEG, file, ing, /GRAYSCALE

3. Get the size of the image and create a border for display purposes:

dinms = S| ZE(i ng, /DI MENSI ONS)
padl mg = REPLI CATE(OB, dins[0]+10, di nms[1] +10)

padlmg[5,5] = ing
4. Get the dimensions of the padded image, create a window and display the
origina image:

dims = Sl ZE(padl ng, /DI MENSI ONS)
W NDOW 0, XSIZE = 2*dims[0], YSIZE = 2*dins[1], $
TI TLE=' Di stance Map and Overlay of Binary |Image'
TVSCL, padlinmg, O
5. Usean intensity histogram as a guide for creating a binary image:

W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM padl ng)

Image Processing in IDL Creating Distance Maps

524 Chapter 11: Extracting and Analyzing Shapes

Note
Using an intensity histogram as a guide for determining intensity valuesis
described in the section, “ Determining Intensity Values When Thresholding and
Stretching Images”’ on page 486.

6. Beforeusing the distance transform, the grayscale image must be translated
into a binary image. Create and display a binary image containing the dark
tubules. Threshold the image, masking out pixels with values greater than 120:

binarylng = stretchlnmg LT 120
WSET, 0
TVSCL, binarylng, 1

The original image (Ieft) and binary image (right) appear in the following
figure.

Figure 11-21: Original Image (left) and Binary Image (right)

7. Compute the distance map using MORPH_DISTANCE, specifying
“chessboard” neighbor sampling, which surveys each horizontal, vertical and
diagonal pixel touching the pixel being surveyed, and display the result:

di stancel ng = MORPH_DI STANCE(bi naryl ng, NEI GHBOR_SAMPLI NG =
1)
TVSCL, distancelng, 2
8. Display acombined image of the distance map and the binary image. Black
areas within the binary image (having avalue of 0) are assigned the maximum
pixel value occurring in the distance image:

di stancel g [WHERE (binarylng EQ 0)] = MAX(di stancel ng)
TVSCL, distancelny, 3

Creating Distance Maps Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 525

The distance map (left) and resulting blended image (right) show the distance
of each image element pixel from the background.

Figure 11-22: Distance Map (left) and Merged Map and Binary Image (right)

Example Code: Displaying Distances with MORPH_DISTANCE

Copy and paste the following text into the IDL Editor window. After saving thefile as
Mor phDi st anceExanpl e. pr o, compile and run the program to reproduce the
previous example.

PRO Mor phDi st anceExanpl e

Prepare the di splay device and | oad grayscal e col or
t abl e.

DEVI CE, DECOMPOSED = 0, RETAIN = 2

LOADCT, 0

Sel ect and | oad an i nage.
file = FILEPATH(' n_vasinfecta.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])
READ JPEG file, ing, /GRAYSCALE
dinms = Sl ZE(i ng, /Dl MENSI ONS)

Pad the inmage for display purposes.
padl ng = REPLI CATE(OB, dins[0] + 10, dins[1] + 10)
padlmg[5, 5] = ing

Get the size of the padded inmage.
dims = S| ZE(padl ng, /DI MENSI ONS)
WNDOW 0, XSIZE = 2*dins[0], YSIZE = 2*dins[1], $

TITLE = ' Di stance Map and Overlay of Threshol ded | mage'
TVSCL, padlinmg, O

Use an intensity histogramto hel p determ ne

Image Processing in IDL Creating Distance Maps

526

Chapter 11: Extracting and Analyzing Shapes

; threshold intensity val ue.
W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM padl ng)

; Create a binary inmage.
bi narylng = padlng LT 120
WSET, 0

TVSCL, binarylng, 1

; Conpute di stance map using "chessboard" nei ghbor
; sanpling.
di stancel ng = MORPH_DI STANCE(bi naryl ng, $
NEI GHBOR_SAMPLI NG = 1)
TVSCL, distancelng, 2

Overlay the distance map onto the binary imge. Bl ack

; areas within the binary i nage are assigned the maxi num
; pixel brightness within the distance inage.

di stancel ng[WHERE(bi naryl mg EQ 0)] = MAX(di st ancel ng)
TVSCL, distancelng, 3

END

Creating Distance Maps Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 527

Thinning Image Objects

The MORPH_THIN function performs a thinning operation on binary images. After
designating “hit” and “miss’ structures, the thinning operation applies the hit-or-miss
operator to the origina image and then subtracts the result from the original image.

The thinning operation is typically applied repeatedly, leaving only pixel-wide linear
representations of the image objects. The thinning operation halts when no more
pixels can be removed from the image. This occurs when the thinning operation
(applying the hit and miss structures and subtracting the result) produces no change
in the input image. At this point, the thinned image isidentical to the input image.

When repeatedly applying the thinning operation, each successive iteration uses hit
and miss structures that have had the individual elements of the structures rotated one
position clockwise. For example, the following 3-by-3 arrays show the initial
structure (left) and the structure after rotating the elements one position clockwise
around the central value (right).

ho = [[0,0,0], hi = [[0,0,0],
[0,1,0], [1,1,0],
[1,1,1]] [1,1,0]]

The following example uses eight rotations of each of the original hit and miss
structuring elements. The repeated application of the thinning operation resultsin an
image containing only pixel-wide lines indicating the original grains of pollen. This
example displays the results of each successive thinning operation.

Note
This example uses afile from the exanpl es/ deno/ denodat a directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to install the demo data file needed for this example.

For code that you can copy and paste into an Editor window, see “ Example Code:
Thinning Image Objects’ on page 531 or complete the following steps for a detailed
description of the process.

1. Preparethe display device and load a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH(' pollens.jpg' , $
SUBDI RECTORY = [' exanpl es','denp', ' denodata'])
READ JPEG, file, ing, /GRAYSCALE

Image Processing in IDL Thinning Image Objects

528 Chapter 11: Extracting and Analyzing Shapes

3. Get theimage dimensions, create awindow and display the original image:

dinms = Sl ZE(i ng, /Dl MENSI ONS)

WNDOW 0, XSIZE = 2*dins[0], YSIZE = 2*dins[1], $
TITLE=" Ori gi nal, Binary and Thi nned | mages'

TVSCL, ing, O

4. Thethinning operation requires a binary image. Create a binary image,
retaining pixels with values greater than or equal to 140, and display the
image:

binarylng = img GE 140
TVSCL, binarylng, 1
Note
The following lines were used to determine the threshold value:
W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM i ng)
See “Determining Intensity Values When Thresholding and Stretching Images’ on
page 486 for details about using a histogram to determine intensity values.

5. Prepare hit and miss structures for thinning. Rotate the outer elements of each
successive hit and miss structure one position clockwise:

Note
For aversion of these structures that is easy to copy and paste into an Editor
window, see “Example Code: Thinning Image Objects’ on page 531.

ho

[[Ob,0,0], $
[0,1,0], $
[1,1,1]]

[[1b,1,1], $
[0,0,0], $
[0,0,0]]

[[Ob,0,0], $
[1,1,0], $
[1,1,0]]

[[Ob,1,1], $
[0,0,1], $
[0,0,0]]

[[1b,0,0], $
[1,1,0], $
[1,0,0]]

[[Ob,0,1], $
[0,0,1], $
[0,0,1]]

[[1b,1,0], $
[1,1,0], $

3

hl

A

h2

=

h3

Thinning Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 529

[0,0,0]]
[[Ob,0,0], $
[0,0,1], $
[0,1,1]]
[[1b,1,1], $
[0,1,0], $
[0,0,0]]
[[Ob,0,0], $
[0,0,0], $
[1,1,1]]
[[Ob,1,1], $
[0,1,1], $
[0,0,0]]
[[Ob,0,0], $
[1,0,0], $
[1,1,0]]
[[Ob,0,1], $
[0,1,1], $
[0,0,1]]
[[1b,0,0], $
[1,0,0], $
[1,0,0]]
[[Ob,0,0], $
[0,1,1], $
[0,1,1]]
[[1b,1,0], $
[1,0,0], $
[0,0,0]]

ES

h4

2

h5

El

h6

3

h7

n

6. Definetheiteration variables for the WHILE loop and prepare to passin the
binary image:

bi naryl ng

Image Processing in IDL Thinning Image Objects

530

Chapter 11: Extracting and Analyzing Shapes

7. Enter the following WHILE loop statements into the Editor window. The loop
specifies that the image will continue to be thinned with MORPH_THIN until
the thinned image is equal to the image input into the loop. Since thinlmg
equals inputlmg, the loop is exited when a complete iteration produces no
changesin the image. In this case, the condition, bCont eq 1 failsand the

loop is exited.

VH LE bCont EQ 1b DO BEGIN & $

PRI NT,"' I teration:
i nput | ng

thinlng
thinlng
thinlng
thinlng
thinlng
thinlng
thinlng
thinlng
TVSCL,
VAIT,
bCont
ilter
ENDWAHI LE

[L

=thinlng & $

= MORPH_THI N(i nput | ng,
= MORPH_THI N(t hi nl ng,
= MORPH_THI N(t hi nl ng,
= MORPH_THI N(t hi nl ng,
= MORPH_THI N(t hi nl ng,
= MORPH_THI N(t hi nl ng,
= MORPH_THI N(t hi nl ng,
= MORPH_THI N(t hi nl ng,
thinlng, 2 & $

& $

ilter & $

ho, nD) & $
hi, m) & $
h2, m2) & $
h3, m8) & $
ha, m) & $
h5, mb) & $
h6, m6) & $
h7, n7) & $

MAX(inputlng - thinlng) & $

ilter +1 &9$

Note

The & after BEGIN and the $ alow you to use the WHILE/DO loop at the IDL
command line. These & and $ symbols are not required when the WHILE/DO loop
inplaced inan IDL program as shown in “Example Code: Thinning Image Objects”

on page 531.

8. Display aninverse of thefinal result:

TVSCL, 1 -

Thinning Image Objects

thinlmg, 3

Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 531

The following figure displays the results of the thinning operation, reducing the
origina objectsto asingle pixel widelines.

Figure 11-23: Original Image (top left), Binary Image (top right), Thinned Image
(bottom left) and Inverse Thinned Image (bottom right)

Each successive thinning iteration removed pixels marked by the results of the

hit-or-miss operation aslong as the removal of the pixelswould not destroy the
connectivity of theline.

Example Code: Thinning Image Objects

Copy and paste the following text into the IDL Editor window. After saving thefile as

Mor phThi nExanpl e. pr o, compile and run the program to reproduce the previous
example.

Note
The following code displays the eight pairs of hit and miss structuring elements on
individual lines so that the code can be easily copied into an Editor window.
Although it is less visible, the elements of each successive structure are rotated as
described in the beginning of this section, “ Thinning Image Objects’ on page 527.

Image Processing in IDL Thinning Image Objects

532 Chapter 11: Extracting and Analyzing Shapes

PRO Mor phThi nExanpl e

; Prepare the display device and | oad grayscal e col or
; table.

DEVI CE, DECOMPOSED = 0, RETAIN = 2

LOADCT, 0

; Load an image.
file = FILEPATH(' pollens.jpg', $

SUBDI RECTCRY = [' exanples', 'demp', 'denodata'])
READ JPEG file, ing, /GRAYSCALE

; Get the image size, prepare a display w ndow and

; display the image.

dinms = Sl ZE(i ng, /Dl MENSI ONS)

WNDOW 0, XSIZE = 2*dins[0], YSIZE = 2*dins[1], $
TITLE = "Oiginal, Binary and Thinned | mages'

TVSCL, ing, O

; Generate a binary imge by threshol di ng.
binarylng = inmg GE 140
TVSCL, binarylng, 1

Prepare hit and m ss structures for thinning.

X r

0 =[[0b, O, O], [0, 1, O], [1, 1, 1]]
m0 = [[1b, 1, 1], [0, O, 0], [0, 0O, 0]]
hi = [[Ob, O, O], [1, 1, O], [1, 1, 0O]]
ml = [[Ob, 1, 1], [0, O, 1], [0, 0, 0]]
h2 = [[1b, O, O], [1, 1, O], [1, O, 0]]
m2 = [[Ob, O, 1], [0, 0, 1], [0, 0, 1]]
h3 = [[1b, 1, O], [1, 1, O], [0, 0O, 0]]
m8 = [[Ob, O, 0], [0, O, 1], [0, 1, 1]]
ha = [[1b, 1, 1], [0, 1, O], [0, O, 0]]
mi = [[Ob, O, O], [0, O, O], [1, 1, 1]]
h5 = [[Ob, 1, 1], [0, 1, 1], [0, O, 0]]
mb = [[Ob, O, O], [1, O, 0], [1, 1, 0]]
hé = [[Ob, O, 1], [0, 1, 1], [0, O, 1]]
m6 = [[1b, O, O], [1, O, O], [1, O, 0]]
h7 = [[Ob, O, O], [0, 1, 1], [0, 1, 1]]
n7 = [[1b, 1, O], [1, O, 0], [0, 0O, 0]]

; lterate until the thinned inage is identical to
; the input image for a given iteration.
bCont = 1b
ilter =1
thinlmg = binarylng
VWH LE bCont EQ 1b DO BEG N
PRINT, ' Iteration: ', ilter

inputinmg = thinlng

Thinning Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes

; Performthe thinning using the first

; of structure el enents.

thinlng = MORPH_THI N(i nput | ng,

; Performthe thinning operation using the
; remmining structural
MORPH_THI N(t hi nl ng,
MORPH_THI N(t hi nl ng,
MORPH_THI N(t hi nl ng,
MORPH_THI N(t hi nl ng,
MORPH_THI N(t hi nl ng,
MORPH_THI N(t hi nl ng,
MORPH_THI N(t hi nl ng,

thinlng
thinlng
thinlng
thinlng
thinlng
thinlng
thinlng

; Display the results of thinning and wait
; di splay purposes.

TVSCL, thinlmg, 2
VAIT, 1

el enent

hOo, D)

pairs.
hi, ml)
h2, nR)
h3, nB)
h4, m)
h5, nb)
h6, o)
h7, nv)

533

a second for

; Test the condition and increnent the |oop.

bCont
ilter

ilter + 1

; End WHI LE | oop statenents.

ENDVHI LE

; Show inverse of final

TVSCL, 1 - thinlnyg,

END

Image Processing in IDL

3

resul t.

MAX(i nput I mg - thinlng)

Thinning Image Objects

534 Chapter 11: Extracting and Analyzing Shapes

Combining Morphological Operations

The following example uses a variety of morphological operationsto remove bridges
from a satellite image of New York waterways. For code that you can copy and paste
into an Editor window, see “Example Code: Combining Morphological Operationsin

Feature Extraction” on page 537 or complete the following steps for a detailed
description of the process.

1. Prepare the display device and load a color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, O

2. Specify the known dimensions and use READ_BINARY to load the image:

Xsi ze = 768

ysize = 512

i ng = READ_BI NARY(FI LEPATH(' nyny. dat', $
SUBDI RECTORY = ['exanples', 'data']), $

DATA DI Ms = [xsi ze, ysize])

3. Increase the image's contrast and display the image:

img = BYTSCL(i ng)
WNDOW 1, TITLE = 'Oiginal |nage
TVSCL, ing

Figure 11-24: Original Image

Combining Morphological Operations Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 535

4. Prepareto threshold the image, using an intensity histogram as a guide for
determining the intensity value:

W NDOW 4, XSIZE = 400, YS|IZE = 300
PLOT, H STOGRAM i ng)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Threshol ding and
Stretching Images” on page 486.

5. Create amask of the darker pixels that have values less than 70:
masklng = inmg LT 70

6. Defineand create asmall square structuring element, which has a shape
similar to the bridges which will be masked out:

side = 3
strucEl em = Dl ST(side) LE side

7. Remove detailsin the binary mask's shape by applying the opening operation:
maskl mg = MORPH_OPEN(maskl ng, strucEl em)

8. Fuse gaps in the mask's shape by applying the closing operation and display
the image:
maskl mg = MORPH_CLOSE(maskl ng, strucEl em

WNDOW 1, title=" Mask After Opening and d osing'
TVSCL, maskl ng

Thisresultsin the following figure:

Figure 11-25: Image Mask After Opening and Closing Operations

Image Processing in IDL Combining Morphological Operations

536 Chapter 11: Extracting and Analyzing Shapes

9. Preparetoremoveal but the largest region in the mask by |abeling the regions:
| abel I ng = LABEL_REG ON(maskl ng)

10. Discard the black background by keeping only the white areas of the previous
figure:

regi ons = | abel | ng[WHERE(| abel I ng NE 0)]

11. Define mainRegion as the area where the population of the labellmg region
matches the region with the largest population:

mai nRegi on = WHERE(HI STOGRAM | abel I mg) EQ $
MAX(Hl STOGRAM r egi ons)))
12. Define masklmg as the area of labellmg equal to the largest region of
mainRegion, having an index number of 0 and display theimage:

maskl ng = | abel Il ng EQ nmai nRegi on[0]
W ndow, 3, TITLE = 'Final Masked | nage'
TVSCL, maskl ng

Thisresultsin amask of the largest region, the waterways, as shown in the
following figure.

Figure 11-26: Final Image Mask

13. Remove noise and smooth contours in the origina image:
newl ng = MORPH_OPEN(i ng, strucElem /GRAY)

14. Replace the new image with the original image, where it's not masked:
newl ng[WHERE(maskl ng EQ 0)] = i ng[WHERE(maskl mg EQ 0)]

Combining Morphological Operations Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 537

15. View theresults using FLICK to aternate the display between the origina
image and the new image containing the masked areas:

W NDOW 0, XSIZE = xsize, YSIZE = ysize

FLI CK, img, new ng
Hit any key to stop the image from flickering. Details of the two images are
shown in the following figure.

Figure 11-27: Details of Original (left) and Resulting Image of New York (right)

Example Code: Combining Morphological Operations in
Feature Extraction

To reproduce the previous example, copy and paste the code into an Editor window.
After saving the file as RenoveBri dges. pr o, compile and run the program.

PRO RenpveBri dges

Prepare the di splay device.
DEVI CE, DECOMPOSED = 0, RETAIN = 2

LQOADCT, 0
Read an i mage of New York using known di mensions.
Xsize = 768
ysi ze = 512
i ng = READ BI NARY(FI LEPATH(' nyny.dat', $
SUBDI RECTORY = ['exanples', 'data']), $

DATA DI M5B = [xsize, ysize])

Image Processing in IDL Combining Morphological Operations

538 Chapter 11: Extracting and Analyzing Shapes

; Increase image's contrast and display it.
img = BYTSCL(i np)

W NDOW 0

TVSCL, ing

; Use a histogramto determ ne threshol d val ue.
W NDOW 4, XSIZE = 400, YSIZE = 300
PLOT, H STOGRAM i nmg)

; Create an image mask fromthreshol ded i mage.
masklng = inmg LT 70

; Make a square-shaped structuring el ement.
side = 3
strucEl em = DI ST(side) LE side

; Renpve details in the mask's shape.
maskl mg = MORPH_OPEN(maskl ng, strucEl em)

; Fuse gaps in the mask's shape and displ ay.
maskl mg = MORPH_CLOSE(maskl ng, strucEl em

WNDOW 1, title=" Mask After Opening and d osing'
TVSCL, maskl ng

; Label regions to prepare to renmpve all but
; the largest region in the mask.
| abel I ng = LABEL_REG ON(maskl ng)

; Renove background and all but the |argest region.
regi ons = | abel | ng[WHERE(| abel I ng NE 0)]
mei nRegi on = WHERE(HI STOGRAM | abel I mg) EQ $
MAX(HI STOGRAM r egi ons)))
maskl ng = | abel Il ng EQ mai nRegi on[0]

; Display the resulting nask.
W ndow, 3, TITLE = 'Final Masked | nage'
TVSCL, maskl ng

; Renpve noi se and snmooth contours in the original
; 1 mage.
newl ng = MORPH OPEN(ing, strucElem /GRAY)

; Replace new image with original imge, where not
; masked.
newl ng[WHERE(maskl ng EQ 0)] = i ng[WHERE(maskl mg EQ 0)]

; Viewresult, conparing the new inmage with the

; original.
PRINT, "Ht any key to end program'

Combining Morphological Operations Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 539

W NDOW 2, XSIZE = xsize, YSIZE = ysize, $
TITLE = "Hit Any Key to End Prograni

; Flicker between original and new i mage.
FLI CK, imy, new ng

END

Image Processing in IDL Combining Morphological Operations

540 Chapter 11: Extracting and Analyzing Shapes

Analyzing Image Shapes

After using a morphological operation to expose the basic elements within an image,
itisoften useful to then extract and analyze specific information about those image
elements. The following examples use the LABEL_REGION function and the
CONTOUR procedure to identify and extract information about specific image
objects.

The LABEL_REGION function labels al of the regions within a binary image,
giving each region a unique index number. Use this function in conjunction with the
HISTOGRAM function to view the population of each region. See “Using
LABEL_REGION to Extract Image Object Information” in the following section for
an example.

The CONTOUR procedure draws a contour plot from image data, and allows the
selection of image objects occurring at a specific contour level. Further processing
using PATH_* keywords returns the location and coordinates of polygons that define
a specific contour level. See “Using CONTOUR to Extract Image Object
Information” on page 546 for an example.

Using LABEL REGION to Extract Image Object
Information

The following example identifies unique regions within the image of the
Rhinosporidium seeberi parasitic protozoans and prints out region populations. For
code that you can copy and paste into an Editor window, see “Example Code:
Displaying Regionswith LABEL _REGION" on page 544 or complete the following
steps for a detailed description of the process.

1. Prepare the display device and |oad a grayscale color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r _seeberi.jpg', $
SUBDI RECTORY = ['exanples','data'])
READ JPEG file, inmage, /GRAYSCALE

3. Get theimage dimensions and add a border (for display purposes only):

di ns = S| ZE(i mage, / DI MENSI ONS)
padl ng = REPLI CATE(O0B, di ns[0]+20, dins[1]+20)
padl ng[10, 10] = i mage

Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 541

4. Get the dimensions of the padded image, create a window and display the
origina image:
di ms = S| ZE(padl my, /DI MENSI ONS)
W NDOW 0, XSIZE = 2*dins[0], YSIZE = 2*dinms[1], $
TITLE = ' Opened, Threshol ded and Label ed Regi on | mages'
TVSCL, padlinmg, O

5. Create alarge, circular structuring element to extract the large circular
foreground features. Define the radius of the structuring element and create the
disk:

radius = 5
strucEl em = SH FT(DI ST(2*r adi us+1), radius, radius) LE radius

Tip
Enter PRI NT, st rucEl emto view the structure created by the previous statement.

6. Apply the opening operation to the image to remove background noise and
display the image:

openl ng = MORPH_OPEN(padl mg, strucElem / GRAY)

TVSCL, openlng, 1
This original image (left) and opened image (right) appear in the following
figure.

Figure 11-28: Original Image (left) and Application of Opening Operator (right)

7. Display an intensity histogram to use as a guide when thresholding:

W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM openl ng)

Image Processing in IDL Analyzing Image Shapes

542 Chapter 11: Extracting and Analyzing Shapes

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “ Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

8. Retain only the brighter, foreground pixels by setting the threshold intensity at
170 and display the binary image:

threshlmg = openlnmg GE 170
WSET, 0
TVSCL, threshlng, 2

9. Identify unique regions using the LABEL_REGION function:
regi ons = LABEL_REG ON(t hreshl ng)
10. Use the HISTOGRAM function to calculate the number of elements in each
region:
hi st = H STOGRAM r egi ons)

11. Create a FOR loop that will return the population and percentage of each
foreground region based on the results returned by the HISTOGRAM

function:
FOR i =1, N_ELEMENTS (hist) - 1 DO PRINT, 'Region', i, $
Pi xel Popluation ="', hist(i), $
Percent = ', 100.*FLOAT(hist[i])/(dins[0]*dinms[1])

12. Load acolor table and display the regions. For this example, use the sixteen
level color table to more easily distinguish individual regions:

LOADCT, 12
TVSCL, regions, 3

Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 543

In the following figure, the image containing the labeled regions (right) shows
19 distinct foreground regions.

Figure 11-29: Binary Image (left) and Image of Unique Regions (right)

Tip
Display the color table by entering XLOADCT at the command line. By viewing

the color table, you can see that region index values start in the lower-left corner of
the image. Realizing this makes it easier to relate the region populations printed in

the Output L og with the regions shown in theimage.

13. Create a new window and display the individual region populations by
graphing the values of hist using the SURFA CE procedure:

WNDOW 1, $
TITLE = ' Surface Representation of Region Popul ations'

FORi = 1, N_ELEMENTS(hist)-1 DO $
regi ons| WHERE(regions EQi)] = hist[i]
SURFACE, regions

Image Processing in IDL Analyzing Image Shapes

544 Chapter 11: Extracting and Analyzing Shapes

The previous command results in the following display of the region
populations.

i

M / |

Figure 11-30: Surface Representation of Region Populations

Example Code: Displaying Regions with LABEL_REGION

Copy and paste the following text into the IDL Editor window. After saving thefile as
Label Regi onExanpl e. pr o, compile and run the program to reproduce the
previous example.

PRO Label Regi onExanpl e

Prepare the di splay device and | oad grayscal e col or
; table.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

Sel ect and open the inage file.
file = FILEPATH(' r _seeberi.jpg', $
SUBDI RECTCRY = [' exanples', 'data'])
READ JPEG file, image, /GRAYSCALE

Get the image di nensions and add a border to the
i mage.

dims = S| ZE(i mage, / DI MENSI ONS)

padl mg = REPLI CATE(OB, dins[0]+20, dinms[1]+20)

padl ng [10, 10] = i nage

Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 545

; Get the size of the padded image and display it.
dims = S| ZE(padl ng, /DI MENSI ONS)
WNDOW 0, XSIZE = 2*dins[0], YSIZE = 2*dins[1], $
TI TLE = ' Opened, Threshol ded and Label ed Regi on | nages'
TVSCL, padlinmg, O

; Define the radius of the structuring el ement and
; create the disk.
radius = 5
strucEl em = SHI FT(DI ST(2*radi us+1), $
radi us, radius) LE radius

; Apply the opening operator to the image.
openl ng = MORPH_OPEN(padl mg, strucElem / GRAY)
TVSCL, openlng, 1

; Determine threshol d value using histogramas a gui de.
W NDOW 2, XSIZE = 400, YSIZE = 300
PLOT, HI STOGRAM openl ng)

; Threshold the image to prepare to renove background
; noi se.
threshlmg = openlnmg GE 170

; Display the image.
WSET, O
TVSCL, threshlng, 2

; ldentify regions and print each region's pixel

; popul ati on and percent age.

regi ons = LABEL_REG ON(t hreshl ng)

hi st = H STOGRAM r egi ons)

FOR i =1, N_ELEMENTS (hist) - 1 DOPRINT, 'Region', i, $
', Pixel Popluation ="', hist(i), ' Percent ="', $
100. *FLOAT(hist[i])/(dims[0] *di nms[1])

; Load a color table and display the regions.
LQADCT, 12
TVSCL, regions, 3

; Display the pixel population of the regions.
WNDOW 1, $
TI TLE=' Surface Representation of Region Popul ations'
FOR i =1, N_ELEMENTS(hist)-1 DO $
regi ons[WHERE(regions EQi)] = hist [i]
SURFACE, regions

END

Image Processing in IDL Analyzing Image Shapes

546 Chapter 11: Extracting and Analyzing Shapes

Using CONTOUR to Extract Image Object Information

It is possible to extract information about an image feature using the CONTOUR
procedure. The following example illustrates how to select an image feature and
return the area of that feature, in this case, calculating the size of agas pocketinaCT
scan of the thoracic cavity.

Note
For moreinformation on computing statistics for defined image objects see Chapter
8, “Working with Regions of Interest (ROIS)”

For code that you can copy and paste into an Editor window, see “ Example Code:
Extracting the Area of a Contour” on page 548 or complete the following stepsfor a
detailed description of the process.

1. Prepare the display device and load a color table:

DEVI CE, DECOVWPCSED = 0, RETAIN = 2
LOADCT, 5

2. Determine the path to the file:

file = FILEPATH(' ctscan.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

3. Initidizethe size parameters:

dims = [256, 256]
4. Import the image from the file:

i mmge = READ_BI NARY(file, DATA D M5 = dims)
5. Create awindow and display the image:

W NDOW 0, XSIZE = dims[0], YSIZE = dins[1]
TVSCL, inage

6. Create another window and use CONTOUR to display afilled contour of the
image, specifying 255 contour levels which correspond to the number of
values occurring in byte data:

W NDOW 2

CONTOUR, inmmge, /XSTYLE, /YSTYLE, NLEVELS = 255, $
/FILL
Note
Replace NLEVELS = 255 with NLEVELS = MAX(i mage) if your display usesless
than 256 colors.

Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 547

7. Usethe PATH_* keywords to obtain information about the contours occurring
at level 40:

CONTOUR, inmge, /XSTYLE, /YSTYLE, LEVELS = 40, $
PATH I NFO = info, PATH XY = xy, /PATH DATA COORDS

The PATH_INFO variable, info, contains information about the paths of the
contours, which when used in conjunction with PATH_XY, traces closed
contour paths. Specify PATH_DATA_COORDS when using PATH_XY if you
want the contour positions to be measured in data units instead of the default
normalized units.

8. Using the coordinate information obtained in the previous step, usethe PLOTS
procedure to draw the contours of image objects occurring at level 40, using a
different line style for each contour:

FORi = 0, (N_ELEMENTS(info) - 1) DO PLOTS, $
xy[*, info[i].offset:(info[i].offset + info[i].n - 1)], &
LI NESTYLE = (i < 5), /DATA

9. The specified contour is drawn with adashed line or LINESTY LE number 2
(determined by looking at “ Graphics Keywords” in Appendix H of the IDL
Reference Guide). Use REFORM to create vectors containing the x and y
boundary coordinates of the contour:

X = REFORM xy[0, info[2].offset:(info[2].offset + $
info[2].n - 1)])

y = REFORM xy[1, info[2].offset:(info[2].offset + $
info[2].n - 1)])

10. Set the last element of the coordinate vectors equal to the first element to
ensure that the contour areais completely enclosed:

x =[x, x[0]]
y = [y, y[0]]
11. This example obtains information about the left-most gas pocket. For display
purposes only, draw an arrow pointing to the region of interest:

ARROW 10, 10, (M N(x) + MAX(x))/2, COLOR = 180, $
(MN(y) + MAX(y))/2, THICK = 2, /DATA

Image Processing in IDL Analyzing Image Shapes

548 Chapter 11: Extracting and Analyzing Shapes

The gas pocket isindicated with an arrow as shown in the following figure.

ol o . -

P E IS e U RS IS |
a 50 100 150 200 250

Figure 11-31: Gas Pocket Indicated in CT Scan of Thoracic Cavity

12. Output the resulting coordinate vectors, using TRANSPOSE to print vertical
lists of the coordinates:

PRI NT,
PRI NT, X , y'
PRI NT, [TRANSPOSE(x), TRANSPOSE(y)], FORMAT = '(2F15.6)"

The FORMAT statement tells IDL to format two 15 character floating point
values that have 6 characters following the decimal of each value.

13. Usethe POLY_AREA function to compute the area of the polygon created by
the x and y coordinates and print the result:

area = POLY_AREA(X, V)
PRINT, "area = ', ROUND(area), ' square pixels'

Theresult, 121 sguare pixels, appearsin the Output Log.
Example Code: Extracting the Area of a Contour

Copy and paste the following text into the IDL Editor window. After saving thefile as
Ext ract Cont our | nf 0. pr o, compile and run the program to reproduce the
previous example.

Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 549

PRO Ext ract Contour | nfo

; Prepare the display device and |oad a color table.
DEVI CE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5

; Determine the path to the file.
file = FILEPATH(' ctscan.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize size paraneters.
dins = [256, 256]

; Import the image fromthe file.
i mage = READ_BI NARY(file, DATA DI M5 = dins)

; Create a window and di splay the imge.
WNDOW 0, XSIZE = dins[0], YSIZE = dinms[1]
TVSCL, inage

; Display the filled contour in another w ndow.

WNDOW 2, TITLE = 'Contour of CT Scan'

CONTOUR, image, /XSTYLE, /YSTYLE, NLEVELS = 255, $
/FILL

; Use the PATH_* keywords to obtain the vertices (and

; related information) of contour areas occurring at

;. level 40.

CONTOUR, inmage, /XSTYLE, /YSTYLE, LEVELS = 40, $
PATH_INFO = info, PATH XY = xy, /PATH DATA COCRDS

: Plot the | evel 40 contours over the filled contour

; display. Use different linestyles for each cl osed

; contour at |evel 40.

FOR i = 0, (N_ELEMENTS(info) - 1) DO PLOTS, $
xy[*, info[i].offset:(info[i].offset + info[i].n - 1)], &
LI NESTYLE = (i < 5), /DATA

; From the previous display, we deternined the gas

; pocket we are interested in is the third closed

; contour at level 40, with the nunber 2, dashed Iine

; style. Obtain the x and y coordinates for this closed

; contour.

X = REFORM xy[0, info[2].offset:(info[2].offset + $
info[2].n - 1)])

y = REFORMxy[1, info[2].offset:(info[2].offset + $
info[2].n - 1)])

HELP, (xy[O, info[2].offset:(info[2].offset +$
info[2] .n - 1)])

Image Processing in IDL Analyzing Image Shapes

550

Chapter 11: Extracting and Analyzing Shapes

PRI NT, (xy[1, info[2].offset:(info[2].0offset + $
info[2].n - 1)])

; Set the last elenent of the coordinate vectors to the
; first element to ensure that the contour area is

; conpl etely encl osed.

x =[x, x[0]]

y = [y, y[O0]]

; Draw an arrow pointing to the region of interest for

; display purposes only.

ARROW 10, 10, (M N(x) + MAX(x))/2, COLOR = 180, $
(MN(y) + MAX(y))/2, THICK = 2, /DATA

; Qutput the resulting vectors.

PRI NT,

PRI NT, X , y'

PRI NT, [TRANSPOSE(x), TRANSPOSE(y)], FORMAT = ' (2F15.6)"

; Conpute area of gas pocket and output results.
area = POLY_AREA(X, V)
PRINT, "area = ', ROUND(area), ' square pixels'

END

Analyzing Image Shapes Image Processing in IDL

Index

A

adaptive

filtering, 475

histogram equalization, 422
adding borders. See padding images
alpha channel, 272
annotating

indexed images, 158

RGB images, 163, 168

B

backprojecting
Hough transform, 389
Radon transform, 389
bilinear interpolation, 179

Image Processing in IDL

binary images
data definition, 15
displaying
Direct Graphics, 33
Object Graphics, 46
masking, 244
morphological operations, 480
thinning operation, 527
borders. See padding images
boundaries, 508
byte-scaling, 413

C

clipping an image, 251
closing operator, 500
CMY color system, 88

551

552

color
channels, 91
Direct Graphics, 95
IDL objects, 92
IDL routines, 92
Object Graphics, 97
systems
CMY, 88
converting, 120
HLS, 88
HSV, 88
RGB, 88
tables
highlighting image features, 134
loading, 100
Look-Up Table (LUT), 91
modifying, 103, 113, 119
pre-defined tables, 100
visuals
Direct Graphics, 96
Object Graphics, 99
Unix, 90
Windows, 90
color density contrasting, 402
colormaps, 95
compression, 365
contrast
enhancements, 410
IDL routines, 411
contrasting color density, 402
control points, 271, 275, 285
converting
color systems, 120
color tables, 103
datatypes, 16
image types, 121
indexed images to RGB, 121
RGB images to grayscale, 124
RGB images to indexed, 129
convolution, 428

Index

coordinate systems
device, 31
normalized, 32
window, 31
correcting shifted images, 191
cropping images, 180
cubic convolution interpolation, 179

D

data types
converting, 16
IDL indices, 21
image files, 16
DEM
geometric surface object, 225
overlaying images, 224
derivatives
first, 438
second, 442
detecting edges
directiona filtering, 438
Laplacian filtering, 442
Raoberts operator, 464
Sobel operator, 467
Digital Elevation Model. See DEM
dilation operator, 489
Direct Graphics
color
indexed, 95
RGB, 95
color annotations
indexed images, 153
RGB images, 163
displaying
binary images, 33
grayscale images, 35
indexed images, 38
multiple images, 62
RGB images, 42
displaying transparent images, 272

Image Processing in IDL

highlighting minor variations, 146
highlighting with color, 134
manipulating images
panning, 80
zooming, 73
versus Object Graphics, 30
ROI selection, 306, 311
visuals
Unix, 94
Windows, 95
window coordinates, 31
directiona filtering, 438
displaying
Direct Graphics
binary images, 33
grayscale images, 35
indexed images, 38
multipleimages, 62
RGB images, 42
frequency transform, 349
Hough transform, 384
IDL routines, 28
images mapped onto surfaces, 227
Object Graphics
binary images, 46
graysca e images, 49
indexed images, 52
multiple images, 66
RGB images, 57
Radon transform, 384
time-frequency transform, 370
wrap around, 413
displaying IDL objects, 28
distance map, 523
distance windowing, 470
domains
frequency, 340
Hough, 340
Radon, 341
spatial, 340
time-frequnecy, 340

Image Processing in IDL

E

edge detection, 520
directional filtering, 438
Laplacian filtering, 442
Raoberts operator, 464
Sobel operator, 467

elevation data
overlaying on surfaces, 224

enhancing images, 410

equalizing
adaptive, 422
histograms, 418

erosion operator, 489

expanding an image, 188

expanding image objects, 489

exporting
formatted image files, 23
unformatted image files, 25

553

extracting image object information, 540, 546

extracting volume slices, 209

E

Fast Fourier Transform.
See frequency transform
FFT. See frequency transform
files
accessing, 18
exporting
formatted, 23
unformatted, 25
importing
formatted, 22
unformatted, 24
querying, 18
filtering
adaptive, 475
convolution, 428
directional, 438
high pass, 433

Index

554

IDL routines, 411 highlighting

Laplacian, 442 Direct Graphics, 134

Lee, 475 histogram equalization, 145

low pass, 429 image features, 134

windowing, 470 Object Graphics, 139
finding straight lines, 394 variationsin images, 145
first derivatives, 438 variations with Direct Graphics, 146
flipping images. See rotating an image histogram equalization
forward transforms adaptive, 422

frequency, 343 color table contrast, 145

time-frequency, 365 pixel value contrast, 418
frequency domain, 340 histograms, 417, 486
frequency transform hit-or-miss operator, 514

displaying, 349 HLS color system, 88

forward, 343 Hough domain, 340

inverse, 354 Hough transform

removing noise, 358 backprojecting, 389

displaying, 384
finding straight lines, 394

G projecting, 383

geometric area, 302 HSV color system, 88

geometric transformations

IDL routines, 176 |
interpolation methods, 178
gradient operator, 520 IDL datatypes, 21
grayscale images IDL objects
data definition, 15 color, 92
displaying displaying, 28
Direct Graphics, 35 mapping images onto geometry, 222
Object Graphics, 49 region of interest (ROI), 300
morphological operations, 480 IDL routines
zooming, 73, 76 color, 92
growing an ROI, 317 contrast enhancements, 411
converting data types, 16
displaying, 28
H domain transformation, 341

filtering, 411

geometric transformations, 176
mapping images onto geometry, 222
masking and clipping images, 244
morphological operations, 481

Hamming windowing, 470
Hanning windowing, 470
high passfiltering, 433

Index Image Processing in IDL

regions of interest (ROIs), 300
transforms, 341
warping images, 270
image processing
calculating statistics, 262
geometric transformations, 176
mapping images onto geometry, 221
morphological operations, 480
querying file formats, 18
references, 26
ROI analysis, 300
shape analysis, 484
techniques, 12
warping transparent images, 274
image registration. See warping images
image transformation methods, 176
image transparency, 272
images
adding a border, 184
adding color annotation, 153
calculating statistics, 262
clipping, 251
compression, 365
correcting misalignment, 191
creating boundaries, 508
cropping, 180
datatypes, 16
displaying in Direct Graphics
binary, 33
grayscale, 35
indexed images, 38
multipleimages, 62
RGB, 42
displaying in Object Graphics
binary, 46
grayscale, 49
indexed images, 52
multiple images, 66
RGB, 57
expanding, 188
exporting files, 23, 25

Image Processing in IDL

file types, 15
first derivatives, 438
flipping, 194
highlighting features, 134
importing files, 22, 24
interpolation, 176
magnifying, 188
manipulating in Direct Graphics
panning, 80
zooming, 73
manipulating in Object Graphics
panning, 82
zooming, 76
masking, 244
morphological operations, 480
padding, 180, 184
pixel value location, 256
querying file formats, 18
resampling, 176
resizing, 180, 188
reversing, 194
ROI analysis, 300
scaling, 188
second derivatives, 442
shifting, 191
shrinking, 188
statistical calculations, 262
structure tag information, 19
thresholding, 487
transparent overlays, 272
transposing, 194, 197
warping atransparency, 272
importing
formatted image files, 22
unformatted image files, 24
indexed color
color tables, 91
indexed images
color annotations, 153, 158
converting to RGB, 121
data definition, 15

555

Index

556

displaying
Direct Graphics, 38
Object Graphics, 52
intensity histogram, 486
intensity value, 486
interpolation
bilinear, 179
cubic convolution, 179
image quality, 178
linear, 179
methods, 179
nearest-neighbor, 179
trilinear, 179
inverse transforms
frequency, 354
time-frequency, 374
isosurface of 3D data, 212

K

kernels
directional, 438
high pass, 433
Laplacian, 442
low pass, 429

L

labeling regions, 540
Laplacian filtering, 442
layering images, 222
Leefiltering, 475

linear interpolation, 179
linear transformations, 176
locating pixel values, 256
Look-Up Table (LUT), 91
low pass filtering, 429

Index

M

magnifying an image, 188
manipulating images
panning
Direct Graphics, 80
Object Graphics, 82
zooming
Direct Graphics, 73
Object Graphics, 76
manipulating volume data, 212
mapping
images onto a sphere
creating display objects, 237
Direct Graphics, 233
Object Graphics, 237
images onto geometry
creating objects, 225
Digital Elevation Model, 224
displaying, 227
IDL objects, 222
IDL routines, 222
Object Graphics, 224
transparent images, 285
transparent overlays, 285
mask area, 302
masking an image, 244
mathematical operators, 244
modifying color tables, 103

morphological mask. See structuring element

morphological operations
closing, 500
combining operations, 534
dilation, 489
distance map, 523
erosion, 489
gradient, 520
hit-or-miss, 514
IDL routines, 481
opening, 496
structuring element, 480
thinning, 527

Image Processing in IDL

top-hat, 504
watershed, 508
multiple images
displaying in Direct Graphics, 62
displaying in Object Graphics, 66

N

nearest-neighbor interpolation, 179
noise removal
adaptivefiltering, 475
frequency transform, 358
Leefilter, 475
smoothing, 496
time-frequency, 378
windowing, 470
nonlinear transformations, 270

(@)

Object Graphics
color annotations
indexed images, 158
RGB images, 168
versus Direct Graphics, 30
displaying
binary images, 46
graysca e images, 49
indexed images, 52
multiple images, 66
RGB images, 57
displaying transparent images, 272
highlighting with color, 139
manipulating images
panning, 82
zooming, 76
ROI selection, 303
visuas, 97
opening operator, 496

Image Processing in IDL

557

operators

closing, 500

dilation, 489

erosion, 489

gradient, 520

hit-or-miss, 514

opening, 496

Roberts, 464

Sobel, 467

thinning, 527

top-hat, 504

watershed, 508
optical distortion correction, 270
overlaying images on geometries, 222

p

padding images

borders, 180

morphological processing, 490
panning images

Direct Graphics, 80

Object Graphics, 82
peak detector. See top-hat operator
pivoting in rotation, 203
pixel valuelocations, 256
planar dicing

interactively, 211

volumes, 206
private colormaps, 95
projecting

Hough transform, 383

Radon transform, 383
PseudoColor visuals, 89

Q

querying imagefiles, 18

Index

558

R

Radon domain, 341
Radon transform
backprojecting, 389
contrasting color, 402
displaying, 384
projecting, 383
references, 26
region labeling, 540
region of interest. See ROI
removing noise
adaptivefiltering, 475
frequency transform, 358
Leefilter, 475
time-frequency transform, 378
windowing, 470
resampling images. See interpolation
resizing images, 180, 188
reversing an image, 194, 197
RGB color system, 88
RGB images
color annotations, 163, 168
converting to grayscale, 124
converting to indexed, 129
data definition, 15
displaying
Direct Graphics, 42
Object Graphics, 57
Raoberts operator, 464
ROI
determining point location, 330
geometric area, 302
grouping multiple ROIs, 334
growing an area, 317
IDL objects, 300
IDL routines, 300
mask area, 302
masking an area, 324
selecting interactively, 303
selecting programmaticaly, 311
surface mesh, 334

Index

rotating an image
90 degree increments, 200
arbitrary increments, 203

rubber sheeting. See warping images

S

scaling

See also stretching

byte, 413

images, 188

stretching images, 488
second derivatives, 442
segmenting image features, 256
setting a pivot point, 203
shape analysis, 484
shape detection, 480
shared colormaps, 95
sharpening an image, 433, 459
shift correction, 191
shifting an image, 191
shrinking

image objects, 489

images, 188
slicing volumes

extracting adice, 209

series of dices, 206
smoothing

average values, 448

dilation/erosion, 500

erosion/dilation, 496

low pass filtering, 429

median values, 453
Sobel operator, 467
spatial domain, 340
statistics

image processing calculations, 262

masking, 262
stretching

intensity values, 488

scaling images, 488

Image Processing in IDL

structure tags, 19
structuring element, 480, 484, 514
surfaces
overlaying images, 222
triangulated ROl mesh, 334

T

texture mapping.

See mapping, images onto geometry

thinning operator, 527
thresholding
clipping levels, 251
intensity, 487
intensity values, 486
masking features, 246
ROI analysis, 311
tie points. See control points
time-frequency domain, 340
time-frequency transform
displaying, 370
forward, 365
inverse, 374
removing noise, 378
top-hat operator, 504
transformations
geometric, 176
linear, 176
nonlinear, 270
warping, 270
transforms
frequency
displaying, 349
forward, 343
inverse, 354
removing noise, 358
Hough
backprojecting, 389
displaying, 384
finding straight lines, 394
projecting, 383

Image Processing in IDL

IDL routines, 341
Radon
backprojecting, 389
contrasting color, 402
displaying, 384
projecting, 383
time-frequency
displaying, 370
forward, 365
inverse, 374
removing noise, 378
transparency
adding an alpha channel, 272
displaying in Direct Graphics, 272
displaying in Object Graphics, 272
transparent image overlays
creating, 272
Direct Graphics, 274
Object Graphics, 285
transposing an image, 194, 197
triangul ating surface meshes, 334
trilinear interpolation, 179
TrueColor visuals, 89, 95

U

utility routines
changing palettes, 113
loading color tables, 103
modifying color tables, 119

%4

volumes
manipulating, 212
slicing, 206
volumetric data
displaying with SLICERS, 212
displaying with XVOLUME, 216

559

Index

560

W windowing
o distance, 470
warping images Hamming, 470, 470
Direct Graphics display, 274 Hanning, 470

IDL routines, 270
Object Graphics display, 285
selecting control points, 271

wrap around displays, 413

watershed operator, 508 Z
wavelet transform. o
See time-frequency transform Zooming Images

Direct Graphics, 73
Object Graphics, 76

Index Image Processing in IDL

	Online Documentation
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL DataMiner Guide
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit User's Guide

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Image Processing in IDL: Contents
	Introduction to Image Processing in IDL
	Overview of Image Processing
	Digital Images and Image Processing

	Understanding Image Definitions in IDL
	Representing Image Data in IDL
	Accessing Images
	Querying Images
	Importing Formatted Image Files
	Exporting Formatted Image Files
	Importing Unformatted Image Files
	Exporting Unformatted Image Files

	References

	Creating Image Displays
	Overview of Creating Image Displays
	Differentiating Between Graphics Systems
	Direct Graphics
	Object Graphics
	Understanding Windows and Related Device Coordinates

	Creating Direct Graphics Image Displays
	Displaying Binary Images with Direct Graphics
	Example Code: Displaying Binary Images with Direct Graphics

	Displaying Grayscale Images with Direct Graphics
	Example Code: Displaying Grayscale Images with Direct Graphics

	Displaying Indexed Images with Direct Graphics
	Example Code: Displaying Indexed Images with Direct Graphics

	Displaying RGB Images with Direct Graphics
	Example Code: Displaying RGB Images with Direct Graphics

	Creating Object Graphics Image Displays
	Displaying Binary Images with Object Graphics
	Example Code: Displaying Binary Images with Object Graphics

	Displaying Grayscale Images with Object Graphics
	Example Code: Displaying Grayscale Images with Object Graphics

	Displaying Indexed Images with Object Graphics
	Example Code: Displaying Indexed Images with Object Graphics

	Displaying RGB images with Object Graphics
	Example Code: Displaying RGB Images with Object Graphics

	Displaying Multiple Images in a Window
	Displaying Multiple Images in Direct Graphics
	Example Code: Displaying Multiple Images in Direct Graphics

	Displaying Multiple Images in Object Graphics
	Example Code: Displaying Multiple Images in Object Graphics

	Zooming in on an Image
	Zooming in on a Direct Graphics Image Display
	Example Code: Zooming in Direct Graphics

	Zooming in on an Object Graphics Image Display
	Example Code: Zooming in Object Graphics

	Panning Within an Image
	Panning in Direct Graphics
	Example Code: Panning in Direct Graphics

	Panning in Object Graphics
	Example Code: Panning in Object Graphics

	Working with Color
	Overview of Working with Color
	Color Systems
	Display Device Color Schemes
	Setting a Visual on Unix Platforms
	Setting a Visual on Windows Platforms

	Image Data Organization
	Chapter Overview

	Understanding Colors within IDL Graphic Systems
	Direct Graphics
	Visuals on Unix Platforms
	Private versus Shared Colormaps
	Visuals on Windows Platforms
	IDL Color Table
	Foreground Color
	Image Colors

	Object Graphics
	Palettes
	Color Models
	Atomic Graphic Object Colors
	Image Colors

	Loading Pre-defined Color Tables
	Modifying and Converting Color Tables
	Using the XLOADCT Utility
	Example Code: Using the XLOADCT Utility

	Using the XPALETTE Utility
	Example Code: Using the XPALETTE Utility

	Using the MODIFYCT Routine
	Converting to Other Color Systems

	Converting Between Image Types
	Converting Indexed Images to RGB Images
	Example Code: Converting Indexed Images to RGB Images

	Converting RGB Images to Grayscale Images
	Example Code: Converting RGB Images into Grayscale Images

	Converting RGB Images to Indexed Images
	Example Code: Converting RGB Images to Indexed Images

	Highlighting Features with a Color Table
	Highlighting Features with Color in Direct Graphics
	Example Code: Highlighting Features with Color in Direct Graphics

	Highlighting Features with Color in Object Graphics
	Example Code: Highlighting Features with Color in Object Graphics

	Showing Variations in Uniform Areas
	Showing Variations with Direct Graphics
	Example Code: Showing Variations with Direct Graphics

	Applying Color Annotations to Images
	Applying Color Annotations to Indexed Images in Direct Graphics
	Example Code: Applying Color Annotations to Indexed Images in Direct Graphics

	Applying Color Annotations to Indexed Images in Object Graphics
	Example Code: Applying Color Annotations to Indexed Images in Object Graphics

	Applying Color Annotations to RGB Images in Direct Graphics
	Example Code: Applying Color Annotations to RGB Images in Direct Graphics

	Applying Color Annotations to RGB Images in Object Graphics
	Example Code: Applying Color Annotations to RGB Images in Object Graphics

	Transforming Image Geometry
	Overview of Geometric Transformations
	Interpolation Methods
	Cropping Images
	Example Code: Cropping an Image

	Padding Images
	Example Code: Padding an Image

	Resizing Images
	Example: Resizing an Image Using CONGRID

	Shifting Images
	Example Code: Using Shift to Correct an Image

	Reversing Images
	Example Code: Reversing Images

	Transposing Images
	Example Code: Transposing an Image

	Rotating Images
	Rotating an Image by 90 Degree Increments
	ROTATE Direction Argument Options
	Example Code: Using ROTATE

	Using the ROT Function for Arbitrary Rotations
	Example Code: Image Rotation Using the ROT Function

	Planar Slicing of Volumetric Data
	Displaying a Series of Planar Slices
	Example Code: Displaying a Series of Planar Slices

	Extracting a Slice of Volumetric Data
	Example Code: Extracting a Slice of Volumetric Data

	Interactive Planar Slicing of Volumetric Data
	Displaying Volumetric Data Using SLICER3
	Manipulating Volumetric Data Using SLICER3
	Example Code: Displaying Volumetric Data Using SLICER3

	Displaying Volumes Using XVOLUME
	Manipulating Volumetric Data Using XVOLUME
	Example Code: Displaying Volumetric Data Using XVOLUME

	Mapping an Image onto Geometry
	Overview of Mapping Images onto Geometric Surfaces
	Mapping an Image onto Elevation Data
	Opening Image and Geometry Files
	Initializing the IDL Display Objects
	Displaying the Image and Geometric Surface Objects
	Example Code: Mapping an Image onto a DEM

	Mapping an Image onto a Sphere
	Mapping an Image onto a Sphere Using Direct Graphics
	Example Code: Mapping an Image onto a Sphere Using Direct Graphics

	Mapping an Image onto a Sphere Using Object Graphics
	Example Code: Mapping an Image onto a Sphere Using Object Graphics

	Working with Masks and Image Statistics
	Overview of Masks and Image Statistics
	Masking Images
	Example Code: Masking Images

	Clipping Images
	Example Code: Thresholding Images

	Locating Pixel Values in an Image
	Example Code: Locating Pixel Values in an Images

	Calculating Image Statistics
	Example Code: Calculating Image Statistics

	Warping Images
	Overview of Warping Images
	Tips for Selecting Control Points

	Creating Transparent Image Overlays
	Displaying Image Transparencies Using Direct Graphics
	Displaying Image Transparencies Using Object Graphics

	Warping Images Using Direct Graphics
	Direct Graphics Example: Selecting Control Points
	Example Code: Warping and Displaying a Transparent Image Using Direct Graphics
	Example Code: Direct Graphics Display of Image Warping

	Warping Images Using Object Graphics
	Object Graphics Example: Selecting Control Points
	Object Graphics Example: Warping and Displaying a Transparent Image
	Example Code: Object Graphics Display of Image Warping

	Working with Regions of Interest (ROIs)
	Overview of Working with ROIs
	Contrasting an ROI’s Geometric Area and Mask Area

	Defining Regions of Interest
	Displaying ROI Objects in a Direct Graphics Window
	Example Code: Displaying ROIs in a Direct Graphics Window

	Programmatically Defining ROIs and Computing Geometry and Pixel Statistics
	Example Code: Defining an ROI and Computing ROI Statistics

	Growing a Region
	Example Code: Growing an ROI

	Creating and Displaying an ROI Mask
	Example Code: Defining an ROI Mask

	Testing an ROI for Point Containment
	Example Code: Testing an ROI Object for Point Containment

	Creating a Surface Mesh of an ROI Group
	Example Code: Creating an ROI Mesh from an ROI Group

	Transforming Between Domains
	Overview of Transforming Between Image Domains
	Transforming to and from the Frequency Domain with FFT
	Transforming to the Frequency Domain
	Example Code: Transforming to the Frequency Domain

	Displaying Images in the Frequency Domain
	Example Code: Displaying Images in the Frequency Domain

	Transforming from the Frequency Domain
	Example Code: Transforming from the Frequency Domain

	Removing Noise with the FFT
	Example Code: Removing Noise with the FFT

	Transforming to and from the Time- Frequency Domain with Wavelets
	Transforming to the Time-Frequency Domain
	Displaying Images in the Time-Frequency Domain
	Example Code: Displaying Images in the Time-Frequency Domain

	Transforming from the Time-Frequency Domain
	Example Code: Transforming from the Time-Frequency Domain

	Removing Noise with the Wavelet Transform
	Example Code: Removing Noise with the Wavelet Transform

	Transforming to and from the Hough and Radon Domains
	Transforming to the Hough and Radon Domains (Projecting)
	Example Code: Hough and Radon Projections

	Transforming from the Hough and Radon Domains (Backprojecting)
	Example Code: Hough and Radon Backprojections

	Finding Straight Lines with the Hough Transform
	Example Code: Finding Straight Lines with the Hough Transform

	Color Density Contrasting with the Radon Transform
	Example Code: Color Density Contrasting with the Radon Transform

	Contrasting and Filtering
	Overview of Contrasting and Filtering
	Byte-Scaling
	Example Code: Byte-Scaling

	Working with Histograms
	Equalizing with Histograms
	Example Code: Equalizing with Histograms

	Adaptive Equalizing with Histograms
	Example Code: Adaptive Equalizing with Histograms

	Filtering an Image
	Low Pass Filtering
	Example Code: Low Pass Filtering

	High Pass Filtering
	Example Code: High Pass Filtering

	Directional Filtering
	Example Code: Directional Filtering

	Laplacian Filtering
	Example Code: Laplacian Filtering

	Smoothing an Image
	Smoothing with Average Values
	Example Code: Smoothing with Average Values

	Smoothing with Median Values
	Example Code: Smoothing with Median Values

	Sharpening an Image
	Example Code: Sharpening an Image

	Detecting Edges
	Enhancing Edges with the Roberts Operator
	Example Code: Enhancing edges with the Roberts Operator

	Enhancing Edges with the Sobel Operator
	Example Code: Enhancing edges with the Sobel Operator

	Removing Noise
	Windowing to Remove Noise
	Example Code: Windowing to Remove Noise

	Lee Filtering to Remove Noise
	Example Code: Lee Filtering to Remove Noise

	Extracting and Analyzing Shapes
	Overview of Extracting and Analyzing Image Shapes
	Applying a Morphological Structuring Element to an Image

	Guidelines for Determining Structuring Element Shapes and Sizes
	Determining Intensity Values When Thresholding and Stretching Images
	Thresholding an Image
	Stretching an Image

	Eroding and Dilating Image Objects
	Characteristics of Erosion
	Characteristics of Dilation
	Applying Erosion and Dilation
	Example Code: Eroding and Dilating Image Elements

	Smoothing with MORPH_OPEN
	Example Code: Using MORPH_OPEN to Remove Noise

	Smoothing with MORPH_CLOSE
	Example Code: Using MORPH_CLOSE

	Detecting Peaks of Brightness
	Example Code: Detecting Bright Peaks with MORPH_TOPHAT

	Creating Image Object Boundaries
	Example Code: Detecting Boundaries with WATERSHED

	Selecting Specific Image Objects
	Example Code: Identifying Objects with MORPH_HITORMISS

	Detecting Edges of Image Objects
	Example Code: Displaying Edges with MORPH_GRADIENT

	Creating Distance Maps
	Example Code: Displaying Distances with MORPH_DISTANCE

	Thinning Image Objects
	Example Code: Thinning Image Objects

	Combining Morphological Operations
	Example Code: Combining Morphological Operations in Feature Extraction

	Analyzing Image Shapes
	Using LABEL_REGION to Extract Image Object Information
	Example Code: Displaying Regions with LABEL_REGION

	Using CONTOUR to Extract Image Object Information
	Example Code: Extracting the Area of a Contour

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

