
IDL Version 5.6
October, 2002 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Image
Processing
in IDL

1002IDL56IP

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Introduction to Image Processing in IDL .. 11
Overview of Image Processing .. 12

Digital Images and Image Processing ... 12
Understanding Image Definitions in IDL .. 15

Representing Image Data in IDL ... 16
Accessing Images .. 18

Querying Images ... 18
Importing Formatted Image Files ... 22

Exporting Formatted Image Files ... 23
Importing Unformatted Image Files ... 24

Exporting Unformatted Image Files ... 25
References ... 26

Chapter 2:
Creating Image Displays .. 27
Overview of Creating Image Displays .. 28
Image Processing in IDL 3

4

Differentiating Between Graphics Systems ... 30
Direct Graphics .. 30

Object Graphics ... 30
Understanding Windows and Related Device Coordinates 31

Creating Direct Graphics Image Displays ... 33
Displaying Binary Images with Direct Graphics .. 33

Displaying Grayscale Images with Direct Graphics ... 35
Displaying Indexed Images with Direct Graphics .. 38

Displaying RGB Images with Direct Graphics ... 42
Creating Object Graphics Image Displays ... 46

Displaying Binary Images with Object Graphics .. 46
Displaying Grayscale Images with Object Graphics ... 49

Displaying Indexed Images with Object Graphics .. 52
Displaying RGB images with Object Graphics ... 57

Displaying Multiple Images in a Window ... 62
Displaying Multiple Images in Direct Graphics .. 62

Displaying Multiple Images in Object Graphics ... 66
Zooming in on an Image .. 73

Zooming in on a Direct Graphics Image Display .. 73
Zooming in on an Object Graphics Image Display ... 76

Panning Within an Image ... 80
Panning in Direct Graphics ... 80

Panning in Object Graphics ... 82

Chapter 3:
Working with Color ... 87
Overview of Working with Color .. 88

Color Systems .. 88
Display Device Color Schemes ... 89

Image Data Organization ... 91
Chapter Overview .. 92

Understanding Colors within IDL Graphic Systems ... 94
Direct Graphics .. 94

Object Graphics ... 97
Loading Pre-defined Color Tables ... 100
Contents Image Processing in IDL

5

Modifying and Converting Color Tables .. 103
Using the XLOADCT Utility ... 103

Using the XPALETTE Utility .. 113
Using the MODIFYCT Routine ... 119

Converting to Other Color Systems .. 120
Converting Between Image Types .. 121

Converting Indexed Images to RGB Images .. 121
Converting RGB Images to Grayscale Images ... 124

Converting RGB Images to Indexed Images .. 129
Highlighting Features with a Color Table ... 134

Highlighting Features with Color in Direct Graphics ... 134
Highlighting Features with Color in Object Graphics .. 139

Showing Variations in Uniform Areas .. 145
Showing Variations with Direct Graphics .. 146

Applying Color Annotations to Images ... 153
Applying Color Annotations to Indexed Images in Direct Graphics 153

Applying Color Annotations to Indexed Images in Object Graphics 158
Applying Color Annotations to RGB Images in Direct Graphics 163

Applying Color Annotations to RGB Images in Object Graphics 168

Chapter 4:
Transforming Image Geometry .. 175
Overview of Geometric Transformations .. 176

Interpolation Methods ... 178
Cropping Images ... 180

Padding Images ... 184
Resizing Images .. 188

Shifting Images .. 191
Reversing Images .. 194

Transposing Images ... 197
Rotating Images ... 200

Rotating an Image by 90 Degree Increments .. 200
Using the ROT Function for Arbitrary Rotations ... 203

Planar Slicing of Volumetric Data .. 206
Displaying a Series of Planar Slices ... 206

Extracting a Slice of Volumetric Data .. 209
Image Processing in IDL Contents

6

Interactive Planar Slicing of Volumetric Data .. 211
Displaying Volumetric Data Using SLICER3 .. 212

Manipulating Volumetric Data Using SLICER3 .. 212
Displaying Volumes Using XVOLUME .. 216

Manipulating Volumetric Data Using XVOLUME .. 217

Chapter 5:
Mapping an Image onto Geometry .. 221
Overview of Mapping Images onto Geometric Surfaces ... 222

Mapping an Image onto Elevation Data .. 224
Opening Image and Geometry Files .. 224

Initializing the IDL Display Objects ... 225
Displaying the Image and Geometric Surface Objects ... 227

Mapping an Image onto a Sphere .. 233
Mapping an Image onto a Sphere Using Direct Graphics 233

Mapping an Image onto a Sphere Using Object Graphics 237

Chapter 6:
Working with Masks and Image Statistics 243
Overview of Masks and Image Statistics ... 244

Masking Images ... 246
Clipping Images ... 251

Locating Pixel Values in an Image .. 256
Calculating Image Statistics ... 262

Chapter 7:
Warping Images .. 269
Overview of Warping Images .. 270

Tips for Selecting Control Points .. 271
Creating Transparent Image Overlays ... 272

Displaying Image Transparencies Using Direct Graphics 272
Displaying Image Transparencies Using Object Graphics 272

Warping Images Using Direct Graphics .. 274
Warping Images Using Object Graphics ... 285

Chapter 8:
Working with Regions of Interest (ROIs) .. 299
Overview of Working with ROIs ... 300
Contents Image Processing in IDL

7

Contrasting an ROI’s Geometric Area and Mask Area .. 302
Defining Regions of Interest ... 303

Displaying ROI Objects in a Direct Graphics Window .. 306
Programmatically Defining ROIs and Computing Geometry and Pixel Statistics 311

Growing a Region ... 317
Creating and Displaying an ROI Mask ... 324

Testing an ROI for Point Containment .. 330
Creating a Surface Mesh of an ROI Group ... 334

Chapter 9:
Transforming Between Domains ... 339
Overview of Transforming Between Image Domains .. 340
Transforming to and from the Frequency Domain with FFT .. 343

Transforming to the Frequency Domain ... 343
Displaying Images in the Frequency Domain ... 349

Transforming from the Frequency Domain .. 354
Removing Noise with the FFT .. 358

Transforming to and from the Time-Frequency Domain with Wavelets 365
Transforming to the Time-Frequency Domain ... 365

Displaying Images in the Time-Frequency Domain ... 370
Transforming from the Time-Frequency Domain .. 374

Removing Noise with the Wavelet Transform ... 378
Transforming to and from the Hough and Radon Domains .. 383

Transforming to the Hough and Radon Domains (Projecting) 383
Transforming from the Hough and Radon Domains (Backprojecting) 389

Finding Straight Lines with the Hough Transform ... 394
Color Density Contrasting with the Radon Transform ... 402

Chapter 10:
Contrasting and Filtering ... 409
Overview of Contrasting and Filtering .. 410
Byte-Scaling .. 413

Working with Histograms ... 417
Equalizing with Histograms .. 418

Adaptive Equalizing with Histograms .. 422
Filtering an Image ... 428

Low Pass Filtering .. 429
Image Processing in IDL Contents

8

High Pass Filtering .. 433
Directional Filtering .. 438

Laplacian Filtering .. 442
Smoothing an Image .. 448

Smoothing with Average Values ... 448
Smoothing with Median Values .. 453

Sharpening an Image .. 459
Detecting Edges ... 464

Enhancing Edges with the Roberts Operator .. 464
Enhancing Edges with the Sobel Operator .. 467

Removing Noise ... 470
Windowing to Remove Noise ... 470

Lee Filtering to Remove Noise ... 475

Chapter 11:
Extracting and Analyzing Shapes ... 479
Overview of Extracting and Analyzing Image Shapes .. 480

Applying a Morphological Structuring Element to an Image 480
Guidelines for Determining Structuring Element Shapes and Sizes 484

Determining Intensity Values When Thresholding and Stretching Images 486
Thresholding an Image .. 487

Stretching an Image ... 488
Eroding and Dilating Image Objects .. 489

Characteristics of Erosion ... 489
Characteristics of Dilation ... 489

Applying Erosion and Dilation .. 490
Smoothing with MORPH_OPEN .. 496

Smoothing with MORPH_CLOSE .. 500
Detecting Peaks of Brightness ... 504

Creating Image Object Boundaries .. 508
Selecting Specific Image Objects .. 514

Detecting Edges of Image Objects ... 520
Creating Distance Maps ... 523

Thinning Image Objects ... 527
Combining Morphological Operations .. 534
Contents Image Processing in IDL

9

Analyzing Image Shapes ... 540
Using LABEL_REGION to Extract Image Object Information 540

Using CONTOUR to Extract Image Object Information 546

Index ... 551
Image Processing in IDL Contents

10
Contents Image Processing in IDL

Chapter 1:

Introduction to Image
Processing in IDL
This chapter describes the following topics:
Overview of Image Processing 12
Understanding Image Definitions in IDL . . 15

Representing Image Data in IDL 16

Accessing Images . 18
References . 26
Image Processing in IDL 11

12 Chapter 1: Introduction to Image Processing in IDL
Overview of Image Processing

Today, the medical industry, astronomy, physics, chemistry, forensics, remote
sensing, manufacturing, and defense are just some of the many fields that rely upon
images to store, display, and provide information about the world around us. The
challenge to scientists, engineers and business people is to quickly extract valuable
information from raw image data. This is the primary purpose of image processing –
converting images to information.

This book explains how to process images using IDL (Interactive Data Language).
IDL is a high-level programming language that contains an extensive library of image
processing and analysis routines. With IDL, you can quickly access image data and
begin investigating the best way to extract useful information.

Each chapter introduces image processing topics and includes information regarding
when one method may be preferred over another to enhance specific image features.
Numerous step-by-step examples illustrate IDL’s image processing and analysis
routines, allowing you to quickly understand how to get the desired results when
working with your own image data. This book is not intended to be a complete source
for image processing knowledge, an advanced image processing manual or an image
processing reference guide. This book is designed to teach people how to use IDL to
perform basic image processing, and does not assume that they are already experts in
the field of image processing.

Digital Images and Image Processing

A digital image is composed of a grid of pixels and stored as an array. A single pixel
represents a value of either light intensity or color. Images are processed to obtain
information beyond what is apparent given the image’s initial pixel values. Image
processing tasks can include any combination of the following:

Accessing Image Data — Image data must be displayed to initially determine what
features are to be extracted or what problem needs to be solved. After processing, the
image should be displayed to verify the results. Chapter 2, “Creating Image
Displays” details how to create Direct and Object Graphic displays containing binary,
indexed and RGB images.

Enhancing Images Using Color — Color can be a powerful tool for extracting
previously unseen information from images. Chapter 3, “Working with Color”
describes how to display images with inherent color information and alter the colors
to highlight specific features. Color can also be used to display additional
information, such as a legend describing the meaning of color values.
Overview of Image Processing Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 13
Modifying the Image View — Transforming, translating, rotating and resizing
images are common tasks used to focus the viewer’s attention on a specific area of the
image. Chapter 4, “Transforming Image Geometry” provides information on how to
precisely position images using IDL.

Adding Dimensionality to Image Data — Some images provide more information
when they are placed on a polygon, surface, or geometric shape such as a sphere.
Chapter 5, “Mapping an Image onto Geometry” shows how to display images over
surfaces and geometric shapes.

Working with Masks and Calculating Statistics — Image processing uses some
fundamental mathematical methods to alter image arrays. These include masking,
clipping, locating, and statistics. Chapter 6, “Working with Masks and Image
Statistics” introduces these operations and provides examples of masking and
calculating image statistics.

Warping Images — Some data acquisition methods can introduce an unwanted
curvature into an image. Image warping using control points can realign an image
along a regular grid or align two images captured from different perspectives. See
Chapter 7, “Warping Images” for more information.

Specifying Regions of Interest (ROIs) — When processing an image, you may
want to concentrate on a specific region of interest (ROI). ROIs can be determined,
displayed, and analyzed within IDL as described in Chapter 8, “Working with
Regions of Interest (ROIs)”.

Manipulating Images in Various Domains — One of the most useful tools in
image processing is the ability to transform an image from one domain to another.
Additional information can be derived from images displayed in frequency, time-
frequency, Hough, and Radon domains. Moreover, some complex processing tasks
are simpler within these domains. See Chapter 9, “Transforming Between Domains”
for details.

Enhancing Contrast and Filtering — Contrasting and filtering provide the ability
to smooth, sharpen, enhance edges and reduce noise within images. See Chapter 10,
“Contrasting and Filtering” for details on manipulating contrast and applying filters
to highlight and extract specific image features.

Extracting and Analyzing Shapes — Morphological operations provide a means
of determining underlying image structures. Used in combination, these routines
provide the ability to highlight, extract, and analyze features within an image. See
Chapter 11, “Extracting and Analyzing Shapes” for details.
Image Processing in IDL Overview of Image Processing

14 Chapter 1: Introduction to Image Processing in IDL
Before processing images, it is important to understand how images are defined, how
image data is represented, and how images are accessed (imported and exported)
within IDL. These topics are described within the following sections of this chapter:

• “Understanding Image Definitions in IDL” on page 15

• “Representing Image Data in IDL” on page 16

• “Accessing Images” on page 18
Overview of Image Processing Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 15
Understanding Image Definitions in IDL

An understanding of basic image definitions is necessary before proceeding with
image processing tasks. Some routines are specifically designed for certain types of
images. Binary, grayscale, and indexed images are two-dimensional arrays, while
RGB images are three-dimensional arrays. In which group an image belongs is
determined by its contents and how it relates to its color information.

Within IDL, an image can be categorized as follows:

Note
Grayscale and binary images can actually be treated as indexed images with an
associated grayscale color table.

Color information can also be represented in other forms, which are described in
“Converting to Other Color Systems” in Chapter 3.

Image Type Descriptions

Binary Images Binary images contain only two values (off or on). The off
value is usually a zero and the on value is usually a one. This
type of image is commonly used as a multiplier to mask
regions within another image.

Grayscale Images Grayscale images represent intensities. Pixels range from least
intense (black) to most intense (white). Pixel values usually
range from 0 to 255 or are scaled to this range when displayed.

Indexed Images Instead of intensities, a pixel value within an indexed image
relates to a color value within a color lookup table. Since
indexed images reference color tables composed of up to 256
colors, the data values of these images are usually scaled to
range between 0 and 255.

RGB Images Within the three-dimensional array of an RGB image, two of
the dimensions specify the location of a pixel within an image.
The other dimension specifies the color of each pixel The
color dimension always has a size of 3 and is composed of the
red, green, and blue color bands (channels) of the image.

Table 1-1: Image Definitions
Image Processing in IDL Understanding Image Definitions in IDL

16 Chapter 1: Introduction to Image Processing in IDL
Representing Image Data in IDL

Pixel values in an image file can be stored in many different data types. IDL
maintains 15 different data types. The original data type of an image is reflected in
IDL when importing the image, but the type can be converted once the image is
stored in an IDL variable. The following types are commonly used for images:

• Byte — An 8-bit unsigned integer ranging in value from 0 to 255. Pixels in
images are commonly represented as byte data.

• Unsigned Integer — A 16-bit unsigned integer ranging from 0 to 65535.

• Signed Integer — A 16-bit signed integer ranging from -32,768 to +32,767.

• Unsigned Longword Integer — A 32-bit unsigned integer ranging in value
from 0 to approximately four billion.

• Longword Integer — A 32-bit signed integer ranging in value from
approximately minus two billion to plus two billion.

• Floating-point — A 32-bit, single-precision, floating-point number in the
range from -1038 to 1038, with approximately 6 or 7 decimal places of
significance.

• Double-precision — A 64-bit, double-precision, floating-point number in the
range from -10308 to 10308 with approximately 14 decimal places of
significance.

While pixel values are commonly stored in files as whole numbers, they are usually
converted to floating-point or double-precision data types prior to performing
numerical computations. See “Converting RGB Images to Grayscale Images” in
Chapter 3 and “Calculating Image Statistics” in Chapter 6 for more information.

IDL provides predefined routines to convert data from one type to another. These
routines are shown in the following table:

Function Description

BYTE Convert to byte

BYTSCL Scale data to range from 0 to 255 and then convert to byte

UINT Convert to 16-bit unsigned integer

FIX Convert to 16-bit integer, or optionally other type

Table 1-2: Some IDL Data Type Conversion Functions
Representing Image Data in IDL Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 17
ULONG Convert to 32-bit unsigned integer

LONG Convert to 32-bit integer

FLOAT Convert to floating-point

DOUBLE Convert to double-precision floating-point

Function Description

Table 1-2: Some IDL Data Type Conversion Functions (Continued)
Image Processing in IDL Representing Image Data in IDL

18 Chapter 1: Introduction to Image Processing in IDL
Accessing Images

How an image is imported into IDL depends upon whether it is stored in an
unformatted binary file or a common image file format. IDL can query and import
image data contained in the following common image file formats:

Note
IDL can also import and export images stored in scientific data formats, such HDF
and netCDF. For more information on these formats, see the Scientific Data
Formats manual.

Accessing unformatted binary files requires you to provide information about the
data within the file such as dimension sizes, data arrangement, and data type. See
“Importing Unformatted Image Files” on page 24 for more information.

Querying Images

Common image file formats contain standardized header information that can be
queried. IDL provides the QUERY_IMAGE function to return valuable information
about images stored in supported image file formats.

For example, using the QUERY_IMAGE function, you can return information about
the mineral.png file in the examples/data directory. First, the path to the file can
be determined with the FILEPATH function:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

Now, you can use the QUERY_IMAGE function to return information about the file:

query = QUERY_IMAGE(file, info)

To determine the results of the QUERY_IMAGE function, you can print the value of
the query variable:

PRINT, 'query = ', query

• BMP • MrSID • PPM

• DICOM • PICT • SRF

• JPEG • PNG • TIFF
Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 19
If query is zero, the file cannot be accessed with IDL. If query is one, the file can be
accessed. IDL displays the following text in the Output Log:

query = 1

Because the query was successful, the info variable is now an IDL structure
containing important image parameters. The tags associated with this structure
variable are standard across image files. You can view the tags of this structure by
setting the STRUCTURE keyword to the HELP command with the info variable as
its argument:

HELP, info, /STRUCTURE

IDL displays the following text in the Output Log:

** Structure <1407e70>, 7 tags, length=36, refs=1:
CHANNELS LONG 1
DIMENSIONS LONG Array[2]
HAS_PALETTE INT 1
IMAGE_INDEX LONG 0
NUM_IMAGES LONG 1
PIXEL_TYPE INT 1
TYPE STRING 'PNG'

The structure tags provide the following information:

Tag Description

CHANNELS Provides the number of dimensions within the image array:

• 1 – two-dimensional array

• 3 – three-dimensional array

Print the number of dimensions using:

PRINT, 'Number of Channels: ', info.channels

For the mineral.png file, IDL displays the following text in
the Output Log:

Number of Channels: 1

DIMENSIONS Contains image array information including the width and
height. Print the image dimensions using:

PRINT, 'Size: ', info.dimensions

For the mineral.png file, IDL displays the following text in
the Output Log:

Size: 288 216

Table 1-3: Image Structure Tag Information
Image Processing in IDL Accessing Images

20 Chapter 1: Introduction to Image Processing in IDL
HAS_PALETTE Describes the presence or absence of a color palette:

• 1 (True) – the image has an associated palette

• 0 (False) – the image does not have an associated palette

Print whether a palette is present or not using:

PRINT, 'Is Palette Available?: ', info.has_palette

For the mineral.png file, IDL displays the following text in
the Output Log:

Is Palette Available?: 1

IMAGE_INDEX Gives the zero-based index number of the current image. Print
the index of the image using:

PRINT, 'Image Index: ', info.image_index

For the mineral.png file, IDL displays the following text in
the Output Log:

Image Index: 0

NUM_IMAGES Provides the number of images in the file. Print the number of
images in the file using:

PRINT, 'Number of Images: ', info.num_images

For the mineral.png file, IDL displays the following text in
the Output Log:

Number of Images: 1

Tag Description

Table 1-3: Image Structure Tag Information (Continued)
Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 21
PIXEL_TYPE Provides the IDL type code for the image data type. IDL type
codes represent the following data types:

• 0 – Undefined

• 1 – Byte

• 2 – Integer

• 3 – Longword integer

• 4 – Floating point

• 5 – Double-precision floating

• 6 – Complex floating

• 7 – String (does not apply for images)

• 8 – Structure (does not apply for images)

• 9 – Double-precision complex

• 10 – Pointer (does not apply for images)

• 11 – Object reference (does not apply for images)

• 12 – Unsigned Integer

• 13 – Unsigned Longword Integer

• 14 – 64-bit Integer

• 15 – Unsigned 64-bit Integer

Print the data type of the pixels in the image using:

PRINT, 'Data Type: ', info.pixel_type

For the mineral.png file, IDL displays the following text in
the Output Log:

Data Type: 1

TYPE Identifies the image file format. Print the format of the file
containing the image using:

PRINT, 'File Type: ' + info.type

For the mineral.png file, IDL displays the following text in
the Output Log:

File Type: PNG

Tag Description

Table 1-3: Image Structure Tag Information (Continued)
Image Processing in IDL Accessing Images

22 Chapter 1: Introduction to Image Processing in IDL
From the contents of the info variable, it can be determined that the single image
within the mineral.png file is an indexed image because it has only one channel (is
a two-dimensional array) and it has a color palette. The image also has byte pixel
values.

In addition to the generic QUERY_IMAGE routine, IDL provides query functions for
each of the following individual image file types:

These functions have the same syntax and usage as the QUERY_IMAGE function.

Importing Formatted Image Files

Images stored in common image file formats (shown in the introduction to this
section, “Accessing Images” on page 18) can be imported into IDL with the
READ_IMAGE function. This function provides output arguments for red, green,
and blue color table components, if available.

Note
You can use the QUERY_IMAGE function to determine the parameters of an image
as described in “Querying Images” on page 18.

For example, the rose.jpg file is a JPEG image file that contains an RGB image.
You can import this image using the READ_IMAGE function. First, you must
determine the path to this file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

Now you can use the READ_IMAGE function to import the image:

image = READ_IMAGE(file)

• QUERY_BMP • QUERY_MrSID • QUERY_PPM

• QUERY_DICOM • QUERY_PICT • QUERY_SRF

• QUERY_JPEG • QUERY_PNG • QUERY_TIFF
Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 23
IDL also provides individual READ_* routines for the following image file types:

These routines are similar to the READ_IMAGE function, but provide more details
for importing a specific image file if required.

Note
IDL can also import images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Exporting Formatted Image Files

Images can be exported to common image file formats using the WRITE_IMAGE
procedure. The WRITE_IMAGE procedure requires three inputs: the exported file’s
name, the image file type, and the image itself. You can also provide the red, green,
and blue color components to an associated color table if these components exist.

For example, you can import the image from the worldelv.dat binary file:

file = FILEPATH('worlelv.dat', $
SUNDIRECTORY = ['examples', 'data'])

imageSize = [360, 360]
image = READ_BINARY(file, DATA_DIMS = imageSize)

You can export this image to an image file (a JPEG file) with the WRITE_IMAGE
procedure:

WRITE_IMAGE, 'worldelv.dat', 'JPEG', image

IDL also provides individual WRITE_* routines for the following image file types:

• READ_BMP • READ_MrSID • READ_PPM

• READ_DICOM • READ_PICT • READ_SRF

• READ_INTERFILE • READ_PNG • READ_TIFF

• READ_JPEG

• WRITE_BMP • WRITE_JPEG • WRITE_PPM

• WRITE_DICOM • WRITE_PICT • WRITE_SRF

• WRITE_INTERFILE • WRITE_PNG • WRITE_TIFF
Image Processing in IDL Accessing Images

24 Chapter 1: Introduction to Image Processing in IDL
These routines are similar to the WRITE_IMAGE procedure, but provide more
flexibility when exporting a specific image file type.

Note
IDL can also export images stored in scientific data formats, such as HDF and
netCDF. For more information on these formats, see the Scientific Data Formats
manual.

Importing Unformatted Image Files

Images in unformatted binary files can be imported with the READ_BINARY
function using the DATA_DIMS and DATA_TYPE keywords as follows:

• You must specify the size of the image within the file using the DATA_DIMS
keyword. This is required because the READ_BINARY function assumes the
data values are arranged in a single vector (a one-dimensional array). The
DATA_DIMS keyword is used to specify the size of the two- or three-
dimensional image array.

• You can set the DATA_TYPE keyword to the image’s data type using the
associated IDL type code shown in the PIXEL_TYPE description in the
previous table. Most images in binary files are of the byte data type, which is
the default setting for the DATA_TYPE keyword.

No standard exists by which image parameters are provided in an unformatted binary
file. Often, these parameters are not provided at all. In this case, the owner of the file
should already be familiar with the size and type parameters of any images they need
to access within binary files.

For example, the worldelv.dat file is a binary file that contains an image. You can
only import this image by supplying the information that the data values of the image
are byte and that the image has dimensions of 360 pixels by 360 pixels. Before using
the READ_BINARY function to access this image, you must first determine the path
to the file:

file = FILEPATH('worlelv.dat', $
SUNDIRECTORY = ['examples', 'data'])

You can define the size parameters of the image with a vector:

imageSize = [360, 360]

An image type parameter is not required because we know that the data values of
image are byte, which is the default type for the READ_BINARY function.
Accessing Images Image Processing in IDL

Chapter 1: Introduction to Image Processing in IDL 25
The READ_BINARY function can now be used to import the image contained in the
worldelv.dat file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

Exporting Unformatted Image Files

Images in unformatted binary files can be exported with the WRITEU procedure.
Before using the WRITEU procedure, you must open a file to which the data will be
written using the OPENW procedure. Any file you open must be specifically closed
using either the FREE_LUN or CLOSE procedure when you are done exporting the
image.

For example, you can import the image from the rose.jpg image file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_IMAGE(file)

You can export this image to a binary file by first opening a new file:

OPENW, unit, 'rose.dat', /GET_LUN

Then, use the WRITEU procedure to write the image to the open file:

WRITEU, unit, image

You must remember to close the file once the data has been written to it:

FREE_LUN, unit
Image Processing in IDL Accessing Images

26 Chapter 1: Introduction to Image Processing in IDL
References

The following image processing sources were used in writing this book:

Baxes, Gregory A. Digital Image Processing: Principles and Applications. John
Wiley & Sons. 1994. ISBN 0-471-00949-0

Lee, Jong-Sen. “Speckle Suppression and Analysis for Synthetic Aperture Radar
Images”, Optical Engineering. vol. 25, no. 5, pp. 636 - 643. May 1986.

Russ, John C. The Image Processing Handbook, Third Edition. CRC Press LLC.
1999. ISBN 0-8493-2532-3

Weeks, Jr., Arthur R. Fundamentals of Electronic Image Processing. The Society of
Photo-Optical Instrumentation Engineers. 1996. ISBN 0-8194-2149-9
References Image Processing in IDL

Chapter 2:

Creating Image
Displays
This chapter describes the following topics:
Overview of Creating Image Displays 28
Differentiating Between Graphics Systems . 30

Creating Direct Graphics Image Displays . . 33
Creating Object Graphics Image Displays . 46

Displaying Multiple Images in a Window . 62
Zooming in on an Image 73

Panning Within an Image 80
Image Processing in IDL 27

28 Chapter 2: Creating Image Displays
Overview of Creating Image Displays

To understand how to display an image, you must understand IDL’s graphics systems,
window coordinate systems, and the types of images you can display. IDL has two
graphics systems, Direct Graphics and Object Graphics. Direct Graphics draws
directly to a current device. Object Graphics renders graphical elements objects with
instances of window objects. For more information, see “Differentiating Between
Graphics Systems” on page 30.

IDL can display four types of images: binary, grayscale, indexed, and RGB. How an
image is displayed depends upon its type. Binary images have only two values, zero
and one. Grayscale images represent intensities and use a normal grayscale color
table. Indexed images use an associated color table. RGB images contain their own
color information in layers known as bands or channels. Any of these images can be
displayed with Direct Graphics (see “Creating Direct Graphics Image Displays” on
page 33) or with Object Graphics (see “Creating Object Graphics Image Displays” on
page 46).

For information on how to display multiple images in the same window, see
“Displaying Multiple Images in a Window” on page 62.

You can magnify (zoom in on) a specific area of an image by changing the display to
show just that region. See “Zooming in on an Image” on page 73 for more
information.

When you zoom in on a feature within an image, you may want to move along the
feature at that magnification. The movement is known as panning. For more
information on panning, see “Panning Within an Image” on page 80.

The following list introduces image display tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s)/Object(s) Description

“Creating Direct
Graphics Image
Displays” on
page 33.

TV

TVSCL

Display binary, grayscale,
indexed, and RGB images using
the Direct Graphics system.

Table 2-1: Image Display Tasks and Related Image Display Routines.
Overview of Creating Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 29
Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of the files, including array sizes.

“Creating Object
Graphics Image
Displays” on
page 46

IDLgrImage

IDLgrPalette

Display binary, grayscale,
indexed, and RGB images using
the Object Graphics system.

“Displaying
Multiple Images in
a Window” on
page 62.

TV

TVSCL

IDLgrImage

Display multiple images in a
single Direct Graphics and
Object Graphics window.

“Zooming in on an
Image” on
page 73.

ZOOM

ZOOM_24

IDLgrImage

IDLgrView

Magnify specific areas of an
image using Direct and Object
Graphics.

“Panning Within
an Image” on
page 80.

SLIDE_IMAGE

IDLgrImage

IDLgrView

Zoom in on specific areas of an
image and then move to another
area within the image using
Direct and Object Graphics.

Task Routine(s)/Object(s) Description

Table 2-1: Image Display Tasks and Related Image Display Routines.
Image Processing in IDL Overview of Creating Image Displays

30 Chapter 2: Creating Image Displays
Differentiating Between Graphics Systems

IDL supports two distinct graphics modes: Direct Graphics and Object Graphics.
Direct Graphics relies on the concept of a current graphics device; IDL commands
like TV or PLOT create displays directly on the current graphics device. Object
Graphics uses an object-oriented programming interface to create graphic objects,
which must then be explicitly drawn to a destination of the programmer’s choosing.

Direct Graphics

The important aspects of Direct Graphics are:

• Direct Graphics uses a graphics device (X for X-windows systems displays,
WIN for Microsoft Windows displays, PS for PostScript files, etc.). You
switch between graphics devices using the SET_PLOT command, and control
the features of the current graphics device using the DEVICE command.

• Commands like TV, PLOT, XYOUTS, MAP_SET, etc. all draw their output
directly on the current graphics device.

• Once a direct-mode graphic is drawn to the graphics device, it cannot be
altered or re-used. This means that if you wish to recreate the graphic on a
different device, you must reissue the IDL commands to create the graphic.

• When you add a new item to an existing direct-mode graphic (using a routine
like OPLOT or XYOUTS), the new item is drawn in front of the existing items.

Object Graphics

The important aspects of Object Graphics are:

• Object Graphics is device independent. There is no concept of a current
graphics device when using object-mode graphics; any graphics object can be
displayed on any physical device for which a destination object can be created.

• Object Graphics is object-oriented. Graphics objects are meant to be created
and reused; you may create a set of graphic objects, modify their attributes,
draw them to a window on your computer screen, modify their attributes again,
then draw them to a printer device without reissuing all of the IDL commands
used to create the objects. Graphics objects also encapsulate functionality; this
means that individual objects include method routines that provide
functionality specific to the individual object.
Differentiating Between Graphics Systems Image Processing in IDL

Chapter 2: Creating Image Displays 31
• Object Graphics displays are rendered in three dimensions. 3D Rendering
implies many operations not needed when drawing Direct Graphics displays,
including calculation of normal vectors for lines and surfaces, lighting
considerations, and general object overhead. As a result, the time needed to
render a given object—a surface, say—will often be longer than the time taken
to draw the analogous image in Direct Graphics.

• Object Graphics uses a programmer’s interface. Unlike Direct Graphics, which
are well suited for both programming and interactive, ad hoc use, Object
Graphics is designed to be used in programs that are compiled and run. While
it is still possible to create and use graphics objects directly from the IDL
command line, the syntax and naming conventions make it more convenient to
build a program offline than to create graphics objects on the fly.

• Because objects persist in memory, there is a greater need for the programmer
to be cognizant of memory issues and memory leakage. Efficient design—
remembering to destroy unused object references and cleaning up—will avert
most problems, but even the best designs can be memory-intensive if large
numbers of graphic objects (or large datasets) are involved.

Understanding Windows and Related Device
Coordinates

Images are displayed within a window (Direct Graphics) or within an instance of a
window object (Object Graphics). In Direct Graphics, the WINDOW procedure is
used to initialize the coordinates system for the image display. In Object Graphics,
the IDLgrWindow, IDLgrView, and IDLgrModel objects are used to initialize the
coordinate system for the image display.

A coordinate system determines how and where the image appears within the
window. You can specify coordinates to IDL using one of the following coordinate
systems:

• Data Coordinates — This system usually spans the window with a range
identical to the range of the data. The system can have two or three dimensions
and can be linear, logarithmic, or semi-logarithmic.

• Device Coordinates — This coordinate system is the physical coordinate
system of the selected device. Device coordinates are integers, ranging from
(0, 0) at the bottom-left corner to (Vx –1, Vy –1) at the upper-right corner of the
display. Vx and Vy are the number of columns and rows of the device (a display
window for example).
Image Processing in IDL Differentiating Between Graphics Systems

32 Chapter 2: Creating Image Displays
Note
For images, the data coordinates are the same as the device coordinates. The device
coordinates of an image are directly related to the pixel locations within an image.
Unless otherwise specified, IDL draws each image pixel per each device pixel.

• Normal Coordinates — The normalized coordinate system ranges from zero to
one over columns and rows of the device.
Differentiating Between Graphics Systems Image Processing in IDL

Chapter 2: Creating Image Displays 33
Creating Direct Graphics Image Displays

The procedure used to display an image in Direct Graphics depends upon the type of
image to be displayed. Binary, grayscale, and indexed images are displayed with the
TV or TVSCL procedures in Direct Graphics. The TV procedure displays the image
in its original form. The TVSCL procedure displays the image scaled to range from 0
up to 255 depending on the colors available to IDL. RGB images are displayed with
the TV procedure.

Examples of creating such displays are shown in the following sections:

• “Displaying Binary Images with Direct Graphics”.

• “Displaying Grayscale Images with Direct Graphics” on page 35.

• “Displaying Indexed Images with Direct Graphics” on page 38.

• “Displaying RGB Images with Direct Graphics” on page 42.

Displaying Binary Images with Direct Graphics

Binary images are composed of pixels having one of two values, usually zero or one.
With most color tables, pixels having values of zero or one are displayed with almost
the same color, such as with a the default grayscale color table. Thus, a binary image
is usually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the
continent_mask.dat binary file. In this image, the oceans are zeros (black) and
the continents are ones (white). This type of image can be used to mask out data over
the oceans. The image contains byte data values and is 360 pixels by 360 pixels.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Binary Images with Direct Graphics” on page 35 or complete the
following steps for a detailed description of the process.

1. Determine the path to the continent_mask.dat file:

file = FILEPATH('continent_mask.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]

3. Use READ_BINARY to import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)
Image Processing in IDL Creating Direct Graphics Image Displays

34 Chapter 2: Creating Image Displays
4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. This command implies a
color table will be used. See “Foreground Color” in Chapter 3 for more
information.

DEVICE, DECOMPOSED = 0

5. Load a grayscale color table:

LOADCT, 0

6. Create a window and display the original image with the TV procedure:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'A Binary Image, Not Scaled'

TV, image

The resulting window should be all black (blank). The binary image contains
zeros and ones, which are almost the same color (black). Binary images should
be displayed with the TVSCL procedure in order to scale the ones to white.

7. Create another window and display the scaled binary image:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'A Binary Image, Scaled'

TVSCL, image

The following figure shows the results of scaling this display.

Figure 2-1: Binary Image in Direct Graphics
Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 35
Example Code: Displaying Binary Images with Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayBinaryImage_Direct.pro, compile and run the program to reproduce
the previous example.

PRO DisplayBinaryImage_Direct

; Determine the path to the file:
file = FILEPATH('continent_mask.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [360, 360]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the display,
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'A Binary Image, Not Scaled'
TV, image

; Create another window and display the image scaled
; to range from 0 up to 255.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'A Binary Image, Scaled'
TVSCL, image

END

Displaying Grayscale Images with Direct Graphics

Features within grayscale images are created by pixels that have varying intensities.
Pixel values range from least intense (black) to the most instance (white). Since a
grayscale image is composed of pixels of varying intensities, it is best displayed with
a color table that progresses linearly from black to white. Although IDL has several
such predefined color tables, the grayscale color table (B-W LINEAR), is the most
fitting choice when displaying grayscale images. IDL’s B-W LINEAR color table is
represented by an index value of 0. See “Loading Pre-defined Color Tables” in
Chapter 3 for more information on IDL’s predefined color tables.
Image Processing in IDL Creating Direct Graphics Image Displays

36 Chapter 2: Creating Image Displays
The following example imports a grayscale image from the convec.dat binary file.
This grayscale image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. Since the data type is byte, this
image does not need to be scaled before display. If the data was of any type other than
byte and the data values were not within the range from 0 to 255, the image would
need to be scaled prior to being displayed. See the TVSCL description in the IDL
Reference Guide for more information.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Grayscale Images with Direct Graphics” on page 37 or complete the
following steps for a detailed description of the process.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]

3. Using READ_BINARY, import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVICE, DECOMPOSED = 0

5. Load a grayscale color table:

LOADCT, 0

6. Create a window and display the original image with the TV procedure:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'A Grayscale Image'

TV, image
Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 37
The following figure shows the resulting grayscale image display.

Example Code: Displaying Grayscale Images with Direct
Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayGrayscaleImage_Direct.pro, compile and run the program to
reproduce the previous example.

PRO DisplayGrayscaleImage_Direct

; Determine the path to the file.
file = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [248, 248]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'A Grayscale Image'
TV, image

END

Figure 2-2: Grayscale Image in Direct Graphics
Image Processing in IDL Creating Direct Graphics Image Displays

38 Chapter 2: Creating Image Displays
Displaying Indexed Images with Direct Graphics

An indexed image contains up to 256 colors, typically defined by a color table
associated with the image. The value of each pixel relates to a color within the
associated color table. Combinations of the primary colors (red, green, and blue)
make up the colors within the color table. Most indexed images are stored as byte and
therefore do not require scaling prior to display.

The following example imports an indexed image from the avhrr.png image file.
This indexed image is a satellite photograph of the world.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Indexed Images with Direct Graphics” on page 41 or complete the
following steps for a detailed description of the process.

1. Determine the path to the avhrr.png file:

file = FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <141d0b0>, 7 tags, length=36, refs=1:

CHANNELS LONG 1
DIMENSIONS LONG Array[2]
HAS_PALETTE INT 1
IMAGE_INDEX LONG 0
NUM_IMAGES LONG 1
PIXEL_TYPE INT 1
TYPE STRING 'PNG'

4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

The HAS_PALETTE tag has a value of 1. Thus, the image has a palette (color
table), which is also contained within the file. The color table is made up of its
three primary components (the red component, the green component, and the
blue component).
Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 39
5. Use READ_IMAGE to import the image and its associated color table from
the file:

image = READ_IMAGE(file, red, green, blue)

6. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVICE, DECOMPOSED = 0

7. Load the red, green, and blue components of the image’s associated color
table:

TVLCT, red, green, blue

8. Create a window and display the original image with the TV procedure:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'An Indexed Image'

TV, image

9. Use the XLOADCT utility to display the associated color table:

XLOADCT

Click on the Done button of XLOADCT to exit out of the utility.

The following figure shows the resulting indexed image and its color table.

Figure 2-3: Indexed Image and Associated Color Table in Direct Graphics
Image Processing in IDL Creating Direct Graphics Image Displays

40 Chapter 2: Creating Image Displays
The data values within the image are indexed to specific colors within the
table. You can change the color table associated with this image to show how
an indexed image is dependent upon its related color table.

10. Change the current color table to the EOS B pre-defined color table:

LOADCT, 27

11. Redisplay the image to show the color table change:

TV, image

Note
This step is not always necessary to redisplay the image. On PseudoColor (8-bit) or
DirectColor systems, the display will update automatically when the current color
table is changed.

12. Use the XLOADCT utility to display the current color table:

XLOADCT

Click on the Done button of XLOADCT to exit out of the utility.

The following figure shows the indexed image with the EOS B color table.

Figure 2-4: Indexed Image and EOS B Color Table in Direct Graphics
Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 41
Example Code: Displaying Indexed Images with Direct
Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayIndexedImage_Direct.pro, compile and run the program to reproduce
the previous example. The BLOCK keyword is set when using the XLOADCT utility
to force the example routine to wait until the Done button is pressed to continue.

PRO DisplayIndexedImage_Direct

; Determine the path to the file.
file = FILEPATH('avhrr.png', $

SUBDIRECTORY = ['examples', 'data'])

; Query the file to determine image parameters.
queryStatus = QUERY_IMAGE(file, imageInfo)

; Output the results of the file query.
PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

; Set image size parameter.
imageSize = imageInfo.dimensions

; Import in the image and its associated color table
; from the file.
image = READ_IMAGE(file, red, green, blue)

; Initialize the display.
DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

; Create a window and display the image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'An Indexed Image'
TV, image

; Use the XLOADCT utility to display the color table.
XLOADCT, /BLOCK

; Change the color table to the EOS B pre-defined color
; table.
LOADCT, 27

; Redisplay the image with the EOS B color table.
TV, image

; Use the XLOADCT utility to display the current color
Image Processing in IDL Creating Direct Graphics Image Displays

42 Chapter 2: Creating Image Displays
; table.
XLOADCT, /BLOCK

END

Displaying RGB Images with Direct Graphics

RGB images are three-dimensional arrays made up of width, height, and three
channels of color information. In Direct Graphics, these images are displayed with
the TV procedure. The TRUE keyword to TV is set according to the interleaving of
the RGB image. With RGB images, the interleaving, or arrangement of the channels
within the image file, dictates the setting of the TRUE keyword. If the image is:

• pixel interleaved (3, w, h), TRUE is set to 1.

• line interleaved (w, 3, h), TRUE is set to 2.

• planar interleaved (w, h, 3), TRUE is set to 3.

You can determine if an image file contains an RGB image by querying the file. The
CHANNELS tag of the resulting query structure will equal 3 if the file’s image is
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

If you are using a PseudoColor display, your RGB images must be converted to
indexed images to be displayed within IDL. See “Foreground Color” in Chapter 3 for
more information on RGB images and PseudoColor displays.

The following example queries and imports a pixel-interleaved RGB image from the
rose.jpg image file. This pixel interleaved RGB image is a close-up photograph of
a red rose.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying RGB Images with Direct Graphics” on page 44 or complete the following
steps for a detailed description of the process.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)
Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 43
3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, length=36, refs=1:

CHANNELS LONG 3
DIMENSIONS LONG Array[2]
HAS_PALETTE INT 0
IMAGE_INDEX LONG 0
NUM_IMAGES LONG 1
PIXEL_TYPE INT 1
TYPE STRING 'JPEG'

The CHANNELS tag has a value of 3. Thus, the image is an RGB image.

4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

The type of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.

5. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

6. Determine the size of each dimension within the image:

imageDims = SIZE(image, /DIMENSIONS)

7. Determine the type of interleaving by comparing the dimension sizes to the
image size parameter from the file query:

interleaving = WHERE((imageDims NE imageSize[0]) AND $
(imageDims NE imageSize[1])) + 1

8. Output the results of the interleaving computation:

PRINT, 'Type of Interleaving = ', interleaving

The following text appears in the Output Log:

Type of Interleaving = 1

The image is pixel interleaved. If the resulting value was 2, the image would
have been line interleaved. If the resulting value was 3, the image would have
been planar interleaved.
Image Processing in IDL Creating Direct Graphics Image Displays

44 Chapter 2: Creating Image Displays
9. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to one before your first RGB image is
displayed within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information:

DEVICE, DECOMPOSED = 1

10. Create a window and display the image with the TV procedure:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'An RGB Image'

TV, image, TRUE = interleaving[0]

The following figure shows the resulting RGB image display.

Example Code: Displaying RGB Images with Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayRGBImage_Direct.pro, compile and run the program to reproduce the
previous example.

PRO DisplayRGBImage_Direct

; Determine the path to the file.
file = FILEPATH('rose.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Query the file to determine image parameters.
queryStatus = QUERY_IMAGE(file, imageInfo)

; Output the results of the file query.
PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

; Set the image size parameter from the query
; information.
imageSize = imageInfo.dimensions

Figure 2-5: RGB Image in Direct Graphics
Creating Direct Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 45
; Import the image.
image = READ_IMAGE(file)

; Determine the size of each dimension within the image.
imageDims = SIZE(image, /DIMENSIONS)

; Determine the type of interleaving by comparing the
; dimension sizes with the image size parameter from the
; file query.
interleaving = WHERE((imageDims NE imageSize[0]) AND $

(imageDims NE imageSize[1])) + 1

; Output the results of the interleaving computation.
PRINT, 'Type of Interleaving = ', interleaving

; Initialize display.
DEVICE, DECOMPOSED = 1

; Create a window and display the image with the TV
; procedure and its TRUE keyword.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'An RGB Image'
TV, image, TRUE = interleaving[0]

END
Image Processing in IDL Creating Direct Graphics Image Displays

46 Chapter 2: Creating Image Displays
Creating Object Graphics Image Displays

In Object Graphics, binary, grayscale, indexed, and RGB images are contained in
image objects. For display, the image object is contained within an object hierarchy,
which includes a model object and a view object. The view object is then drawn to a
window object. Some types of images must be scaled with the BYTSCL function
prior to display.

This section includes the following examples:

• “Displaying Binary Images with Object Graphics”.

• “Displaying Grayscale Images with Object Graphics” on page 49.

• “Displaying Indexed Images with Object Graphics” on page 52.

• “Displaying RGB images with Object Graphics” on page 57.

Displaying Binary Images with Object Graphics

Binary images are composed of pixels having one of two values, usually zero or one.
With most color tables, pixels having values of zero and one are displayed with
almost the same color, such as with the default grayscale color table. Thus, a binary
image is usually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the
continent_mask.dat binary file. In this image, the oceans are zeros (black) and
the continents are ones (white). This type of image can be used to mask out (omit)
data over the oceans. The image contains byte data values and is 360 pixels by 360
pixels.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Binary Images with Object Graphics” on page 48 or complete the
following steps for a detailed description of the process.

1. Determine the path to the continent_mask.dat file:

file = FILEPATH('continent_mask.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 47
3. Use READ_BINARY to import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Binary Image, Not Scaled')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image)

6. Add the image object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The resulting window should be all black (blank). The binary image contains
zeros and ones, which are almost the same color (black). A binary image
should be scaled prior to displaying in order to show the ones as white.

7. Initialize another window:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Binary Image, Scaled')

8. Update the image object with a scaled version of the image:

oImage -> SetProperty, DATA = BYTSCL(image)

9. Display the view in the window:

oWindow -> Draw, oView
Image Processing in IDL Creating Object Graphics Image Displays

48 Chapter 2: Creating Image Displays
The following figure shows the results of scaling this display.

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Example Code: Displaying Binary Images with Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayBinaryImage_Object.pro, compile and run the program to reproduce
the previous example.

PRO DisplayBinaryImage_Object

; Determine the path to the file.
file = FILEPATH('continent_mask.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [360, 360]

; Import the image.
image = READ_BINARY(file, DATA_DIMS = imageSize)

Figure 2-6: Binary Image in Object Graphics
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 49
; Initialize display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, $
TITLE = 'A Binary Image, Not Scaled')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

; Initialize image object.
oImage = OBJ_NEW('IDLgrImage', image)

; Add the image to the model, which is added to the
; view, and then display the view in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Initialize another window.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, $
TITLE = 'A Binary Image, Scaled')

; Update the image object with a scaled version of the
; image.
oImage -> SetProperty, DATA = BYTSCL(image)

; Display the view in the window.
oWindow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oView

END

Displaying Grayscale Images with Object Graphics

Since grayscale images are composed of pixels of varying intensities, they are best
displayed with color tables that progress linearly from black to white. IDL provides
several such pre-defined color tables, but the default grayscale color table is generally
suitable.

The following example imports a grayscale image from the convec.dat binary file.
This grayscale image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. Since the data type is byte, this
image does not need to be scaled before display. If the data was of any type other than
byte and the data values were not within the range of 0 up to 255, the display would
need to scale the image in order to show its intensities.
Image Processing in IDL Creating Object Graphics Image Displays

50 Chapter 2: Creating Image Displays
For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Grayscale Images with Object Graphics” on page 51 or complete the
following steps for a detailed description of the process.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]

3. Using READ_BINARY, import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

6. Add the image object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 51
The following figure shows the resulting grayscale image display

7. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Example Code: Displaying Grayscale Images with Object
Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayGrayscaleImage_Object.pro, compile and run the program to
reproduce the previous example.

PRO DisplayGrayscaleImage_Object

; Determine the path to the file.
file = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameters.
imageSize = [248, 248]

; Import the image.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

Figure 2-7: Grayscale Image in Object Graphics
Image Processing in IDL Creating Object Graphics Image Displays

52 Chapter 2: Creating Image Displays
oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

; Initialize image object.
oImage = OBJ_NEW('IDLgrImage', image, $

/GREYSCALE)

; Add the image object to the model, which is added to
; the view, then display the view in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oView

END

Displaying Indexed Images with Object Graphics

An indexed image contains up to 256 colors, typically defined by a color table
associated with the image. The value of each pixel relates to a color within the
associated color table. Combinations of the primary colors (red, green, and blue)
make up the colors within the color table. Most indexed images are stored as byte and
therefore do not require scaling prior to display.

The following example imports an indexed image from the avhrr.png image file.
This indexed image is a satellite photograph of the world.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Indexed Images with Object Graphics” on page 56 or complete the
following steps for a detailed description of the process.

1. Determine the path to the avhrr.png file:

file = FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 53
3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <141d0b0>, 7 tags, length=36, refs=1:

CHANNELS LONG 1
DIMENSIONS LONG Array[2]
HAS_PALETTE INT 1
IMAGE_INDEX LONG 0
NUM_IMAGES LONG 1
PIXEL_TYPE INT 1
TYPE STRING 'PNG'

4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

The HAS_PALETTE tag has a value of 1. Thus, the image has a palette (color
table), which is also contained within the file. The color table is made up of its
three primary components (the red component, the green component, and the
blue component).

5. Use READ_IMAGE to import the image and its associated color table from
the file:

image = READ_IMAGE(file, red, green, blue)

6. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'An Indexed Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

7. Initialize the image’s palette object:

oPalette = OBJ_NEW('IDLgrPalette', red, green, blue)

8. Initialize the image object with the resulting palette object:

oImage = OBJ_NEW('IDLgrImage', image, $
PALETTE = oPalette)
Image Processing in IDL Creating Object Graphics Image Displays

54 Chapter 2: Creating Image Displays
9. Add the image object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

10. Use the colorbar object to display the associated color table in another
window:

oCbWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [256, 48], $
TITLE = 'Original Color Table')

oCbView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., 256., 48.])

oCbModel = OBJ_NEW('IDLgrModel')
oColorbar = OBJ_NEW('IDLgrColorbar', PALETTE = oPalette, $

DIMENSIONS = [256, 16], SHOW_AXIS = 1)
oCbModel -> Add, oColorbar
oCbView -> Add, oCbModel
oCbWindow -> Draw, oCbView

The following figure shows the resulting indexed image and its color table.

The data values within the image are indexed to specific colors within the
table. You can change the color table associated with this image to show how
an indexed image is dependent upon its related color tables.

11. Change the palette (color table) to the EOS B pre-defined color table:

oPalette -> LoadCT, 27

Figure 2-8: Indexed Image and Associated Color Table in Object Graphics
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 55
12. Redisplay the image in another window to show the palette change:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'An Indexed Image')

oWindow -> Draw, oView

13. Redisplay the colorbar in another window to show the palette change:

oCbWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [256, 48], $
TITLE = 'EOS B Color Table')

oCbWindow -> Draw, oCbView

The following figure shows the indexed image with the EOS B color table.

14. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, [oView, oCbVeiw, oPalette]

Figure 2-9: Indexed Image and EOS B Color Table in Object Graphics
Image Processing in IDL Creating Object Graphics Image Displays

56 Chapter 2: Creating Image Displays
Example Code: Displaying Indexed Images with Object
Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayIndexedImage_Object.pro, compile and run the program to reproduce
the previous example.

PRO DisplayIndexedImage_Object

; Determine the path to the file.
file = FILEPATH('avhrr.png', $

SUBDIRECTORY = ['examples', 'data'])

; Query the file to determine image parameters.
queryStatus = QUERY_IMAGE(file, imageInfo)

; Output the results of the query.
PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

; Set the image size parameter.
imageSize = imageInfo.dimensions

; Import in the image.
image = READ_IMAGE(file, red, green, blue)

; Initialize the display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, TITLE = 'An Indexed Image')
oView = OBJ_NEW('IDLgrView', $

VIEWPLANE_RECT = [0., 0., imageSize])
oModel = OBJ_NEW('IDLgrModel')

; Initialize the image's palette object.
oPalette = OBJ_NEW('IDLgrPalette', red, green, blue)

; Initialize the image object with the resulting
; palette object.
oImage = OBJ_NEW('IDLgrImage', image, $

PALETTE = oPalette)

; Add the image object to the model, which is added to
; the view, then display the view in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Use the colorbar object to display the associated
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 57
; color table in another window.
oCbWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [256, 48], $
TITLE = 'Original Color Table')

oCbView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., 256., 48.])

oCbModel = OBJ_NEW('IDLgrModel')
oColorbar = OBJ_NEW('IDLgrColorbar', PALETTE = oPalette, $

DIMENSIONS = [256, 16], SHOW_AXIS = 1)
oCbModel -> Add, oColorbar
oCbView -> Add, oCbModel
oCbWindow -> Draw, oCbView

; Change the palette (color table) to the EOS B
; pre-defined color table.
oPalette -> LoadCT, 27

; Redisplay the image with the other color table in
; another window.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, TITLE = 'An Indexed Image')
oWindow -> Draw, oView

; Redisplay the colorbar with the other color table
; in another window.
oCbWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [256, 48], $
TITLE = 'EOS B Color Table')

oCbWindow -> Draw, oCbView

; Clean up object references.
OBJ_DESTROY, [oView, oCbView, oPalette]

END

Displaying RGB images with Object Graphics

RGB images are three-dimensional arrays made up of width, height, and three
channels of color information. In Object Graphics, an RGB image is contained within
an image object. The interleaving, or arrangement of the channels within the image
file, dictates the setting of the INTERLEAVE property of the image object. If the
image is:

• pixel interleaved (3, w, h), INTERLEAVE is set to 0.

• line interleaved (w, 3, h), INTERLEAVE is set to 1.

• planar interleaved (w, h, 3), INTERLEAVE is set to 2.
Image Processing in IDL Creating Object Graphics Image Displays

58 Chapter 2: Creating Image Displays
You can determine if an image file contains an RGB image by querying the file. The
CHANNELS tag of the resulting query structure will equal 3 if the file’s image is
RGB. The query does not determine which interleaving is used in the image, but the
array returned in DIMENSIONS tag of the query structure can be used to determine
the type of interleaving.

The following example queries and imports a pixel-interleaved RGB image from the
rose.jpg image file. This RGB image is a close-up photograph of a red rose. It is
pixel interleaved.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying RGB Images with Object Graphics” on page 60 or complete the following
steps for a detailed description of the process.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Output the results of the file query:

PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

The following text appears in the Output Log:

Query Status = 1
** Structure <14055f0>, 7 tags, length=36, refs=1:

CHANNELS LONG 3
DIMENSIONS LONG Array[2]
HAS_PALETTE INT 0
IMAGE_INDEX LONG 0
NUM_IMAGES LONG 1
PIXEL_TYPE INT 1
TYPE STRING 'JPEG'

The CHANNELS tag has a value of 3. Thus, the image is an RGB image.

4. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

The type of interleaving can be determined from the image size parameter and
actual size of each dimension of the image. To determine the size of each
dimension, you must first import the image.
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 59
5. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

6. Determine the size of each dimension within the image:

imageDims = SIZE(image, /DIMENSIONS)

7. Determine the type of interleaving by comparing the dimension sizes to the
image size parameter from the file query:

interleaving = WHERE((imageDims NE imageSize[0]) AND $
(imageDims NE imageSize[1]))

8. Output the results of the interleaving computation:

PRINT, 'Type of Interleaving = ', interleaving

The following text appears in the Output Log:

Type of Interleaving = 0

The image is pixel interleaved. If the resulting value was 1, the image would
have been line interleaved. If the resulting value was 2, the image would have
been planar interleaved.

9. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'An RGB Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

10. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, $
INTERLEAVE = interleaving[0])

11. Add the image object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView
Image Processing in IDL Creating Object Graphics Image Displays

60 Chapter 2: Creating Image Displays
The following figure shows the resulting RGB image display.

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Example Code: Displaying RGB Images with Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayRGBImage_Object.pro, compile and run the program to reproduce the
previous example.

PRO DisplayRGBImage_Object

; Determine the path to the file.
file = FILEPATH('rose.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Query the file to determine image parameters.
queryStatus = QUERY_IMAGE(file, imageInfo)

; Output the results of the query.
PRINT, 'Query Status = ', queryStatus
HELP, imageInfo, /STRUCTURE

; Set the image size parameter from the query
; information.
imageSize = imageInfo.dimensions

; Import in the image.
image = READ_IMAGE(file)

; Determine the size of each dimension within the image.

Figure 2-10: RGB Image in Object Graphics
Creating Object Graphics Image Displays Image Processing in IDL

Chapter 2: Creating Image Displays 61
imageDims = SIZE(image, /DIMENSIONS)

; Determine the type of interleaving by comparing
; dimension size and the size of the image.
interleaving = WHERE((imageDims NE imageSize[0]) AND $

(imageDims NE imageSize[1]))

; Output the results of the interleaving computation.
PRINT, 'Type of Interleaving = ', interleaving

; Initialize the display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, TITLE = 'An RGB Image')
oView = OBJ_NEW('IDLgrView', $

VIEWPLANE_RECT = [0., 0., imageSize])
oModel = OBJ_NEW('IDLgrModel')

; Initialize the image object.
oImage = OBJ_NEW('IDLgrImage', image, $

INTERLEAVE = interleaving[0])

; Add the image object to the model, which is added to
; the view, then display the view in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oView

END
Image Processing in IDL Creating Object Graphics Image Displays

62 Chapter 2: Creating Image Displays
Displaying Multiple Images in a Window

How multiple images are displayed in a single window depends upon which graphics
system is being used to display the images. Direct Graphics uses location input
arguments for the TV procedure to position images in a window. See “Displaying
Multiple Images in Direct Graphics” for more information. Object Graphics uses the
LOCATION keyword to the Init method of the image object to position images in a
window. See “Displaying Multiple Images in Object Graphics” on page 66 for more
information.

Displaying Multiple Images in Direct Graphics

The following example imports an RGB image from the rose.jpg image file. This
RGB image is a close-up photograph of a red rose and is pixel interleaved. This
example extracts the three color channels of this image, and displays them as
grayscale images in various locations within the same window.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Multiple Images in Direct Graphics” on page 65 or complete the
following steps for a detailed description of the process.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

4. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

5. Extract the channels (as images) from the pixel interleaved RGB image:

redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image[1, *, *])
blueChannel = REFORM(image[2, *, *])
Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 63
6. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVICE, DECOMPOSED = 0

7. Since the channels are grayscale images, load a grayscale color table:

LOADCT, 0

The TV procedure can be used to display the channels (grayscale images). The
TV procedure has two different location input arguments. One argument is
position. This argument arranges the image in a calculated location based on
the size of the display and the dimension sizes of the image. See TV in the IDL
Reference Guide for more information.

8. Create a window and horizontally display the three channels with the position
argument:

WINDOW, 0, XSIZE = 3*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'The Channels of an RGB Image'

TV, redChannel, 0
TV, greenChannel, 1
TV, blueChannel, 2

The following figure shows the resulting grayscale images.

The TV procedure can also be used with its x and y input arguments. These
arguments define the location of the lower left corner of the image. The values
of these arguments are in device coordinates by default. However, you can
provide data or normalized coordinates when the DATA or NORMAL
keyword is set. See TV in the IDL Reference Guide for more information.

Figure 2-11: Horizontal Display of RGB Channels in Direct Graphics
Image Processing in IDL Displaying Multiple Images in a Window

64 Chapter 2: Creating Image Displays
9. Create a window and vertically display the three channels with the x and y
arguments:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = 3*imageSize[1], $
TITLE = 'The Channels of an RGB Image'

TV, redChannel, 0, 0
TV, greenChannel, 0, imageSize[1]
TV, blueChannel, 0, 2*imageSize[1]

The following figure shows the resulting grayscale images.

The x and y arguments can also be used to create a display of overlapping
images. When overlapping images in Direct Graphics, you must remember the
last image placed in the window will be in front of the previous images. So if
you want to bring a display from the back of the window to the front, you must
redisplay it after all the other displays.

10. Create another window:

WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = 2*imageSize[1], $
TITLE = 'The Channels of an RGB Image'

Figure 2-12: Vertical Display of RGB Channels in Direct Graphics
Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 65
11. Make a white background to distinguish the edges of the images:

ERASE, !P.COLOR

12. Diagonally display the three channels with the x and y arguments:

TV, redChannel, 0, 0
TV, greenChannel, imageSize[0]/2, imageSize[1]/2
TV, blueChannel, imageSize[0], imageSize[1]

The following figure shows the resulting grayscale images.

Example Code: Displaying Multiple Images in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayMultiples_Direct.pro, compile and run the program to reproduce the
previous example.

PRO DisplayMultiples_Direct

; Determine the path to the file.
file = FILEPATH('rose.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Query the file to determine image parameters.
queryStatus = QUERY_IMAGE(file, imageInfo)

; Set the image size parameter from the query
; information.
imageSize = imageInfo.dimensions

Figure 2-13: Diagonal Display of RGB Channels in Direct Graphics
Image Processing in IDL Displaying Multiple Images in a Window

66 Chapter 2: Creating Image Displays
; Import the image.
image = READ_IMAGE(file)

; Extract the channels (as images) from the RGB image.
redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image[1, *, *])
blueChannel = REFORM(image[2, *, *])

; Initialize displays.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and horizontally display the channels.
WINDOW, 0, XSIZE = 3*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'The Channels of an RGB Image'
TV, redChannel, 0
TV, greenChannel, 1
TV, blueChannel, 2

; Create another window and vertically display the
; channels.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = 3*imageSize[1], $

TITLE = 'The Channels of an RGB Image'
TV, redChannel, 0, 0
TV, greenChannel, 0, imageSize[1]
TV, blueChannel, 0, 2*imageSize[1]

; Create another window.
WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = 2*imageSize[1], $

TITLE = 'The Channels of an RGB Image'

; Make a white background.
ERASE, !P.COLOR

; Diagonally display the channels.
TV, redChannel, 0, 0
TV, greenChannel, imageSize[0]/2, imageSize[1]/2
TV, blueChannel, imageSize[0], imageSize[1]

END

Displaying Multiple Images in Object Graphics

The following example imports an RGB image from the rose.jpg image file. This
RGB image is a close-up photograph of a red rose and is pixel interleaved. This
example extracts the three color channels of this image, and displays them as
grayscale images in various locations within the same window.
Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 67
For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Multiple Images in Object Graphics” on page 70 or complete the
following steps for a detailed description of the process.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

4. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

5. Extract the channels (as images) from the pixel interleaved RGB image:

redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image[1, *, *])
blueChannel = REFORM(image[2, *, *])

The LOCATION keyword to the Init method of the image object can be used
to position an image within a window. The LOCATION keyword uses data
coordinates, which are the same as device coordinates for images. Before
initializing the image objects, you should initialize the display objects. The
following steps display multiple images horizontally, vertically, and
diagonally.

6. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[3, 1], $
TITLE = 'The Channels of an RGB Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 3, 1])

oModel = OBJ_NEW('IDLgrModel')

7. Now initialize the image objects and arrange them with the LOCATION
keyword, see IDLgrImage for more information:

oRedChannel = OBJ_NEW('IDLgrImage', redChannel)
oGreenChannel = OBJ_NEW('IDLgrImage', greenChannel, $

LOCATION = [imageSize[0], 0])
oBlueChannel = OBJ_NEW('IDLgrImage', blueChannel, $

LOCATION = [2*imageSize[0], 0])
Image Processing in IDL Displaying Multiple Images in a Window

68 Chapter 2: Creating Image Displays
8. Add the image objects to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oRedChannel
oModel -> Add, oGreenChannel
oModel -> Add, oBlueChannel
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

These images can be displayed vertically in another window by first
initializing another window and then updating the view and images with
different location information.

9. Initialize another window object:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[1, 3], $
TITLE = 'The Channels of an RGB Image')

10. Change the view from horizontal to vertical:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 1, 3]

11. Change the locations of the channels:

oGreenChannel -> SetProperty, LOCATION = [0, imageSize[1]]
oBlueChannel -> SetProperty, LOCATION = [0, 2*imageSize[1]]

12. Display the updated view within the new window:

oWindow -> Draw, oView

Figure 2-14: Horizontal Display of RGB Channels in Object Graphics
Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 69
The following figure shows the resulting grayscale images.

These images can also be displayed diagonally in another window by first
initializing the other window and then updating the view and images with
different location information.The LOCATION can also be used to create a
display overlapping images. When overlapping images in Object Graphics,
you must remember the last image added to the model will be in front of the
previous images.

13. Initialize another window object:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[2, 2], $
TITLE = 'The Channels of an RGB Image')

14. Change the view to prepare for a diagonal display:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 2, 2]

Figure 2-15: Vertical Display of RGB Channels in Object Graphics
Image Processing in IDL Displaying Multiple Images in a Window

70 Chapter 2: Creating Image Displays
15. Change the locations of the channels:

oGreenChannel -> SetProperty, $
LOCATION = [imageSize[0]/2, imageSize[1]/2]

oBlueChannel -> SetProperty, $
LOCATION = [imageSize[0], imageSize[1]]

16. Display the updated view within the new window:

oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

17. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Example Code: Displaying Multiple Images in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
DisplayMultiples_Object.pro, compile and run the program to reproduce the
previous example.

Figure 2-16: Diagonal Display of RGB Channels in Object Graphics
Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 71
PRO DisplayMultiples_Object

; Determine the path to the file.
file = FILEPATH('rose.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Query the file to determine image parameters.
queryStatus = QUERY_IMAGE(file, imageInfo)

; Set the image size parameter from the query
; information.
imageSize = imageInfo.dimensions

; Import the image.
image = READ_IMAGE(file)

; Extract the channels (as images) from the RGB image.
redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image[1, *, *])
blueChannel = REFORM(image[2, *, *])

; Horizontally display the channels.

; Initialize the display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize*[3, 1], $
TITLE = 'The Channels of an RGB Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 3, 1])

oModel = OBJ_NEW('IDLgrModel')

; Initialize the image objects.
oRedChannel = OBJ_NEW('IDLgrImage', redChannel)
oGreenChannel = OBJ_NEW('IDLgrImage', greenChannel, $

LOCATION = [imageSize[0], 0])
oBlueChannel = OBJ_NEW('IDLgrImage', blueChannel, $

LOCATION = [2*imageSize[0], 0])

; Add the image objects to the model, which is added to
; the view, then display the view in the window.
oModel -> Add, oRedChannel
oModel -> Add, oGreenChannel
oModel -> Add, oBlueChannel
oView -> Add, oModel
oWindow -> Draw, oView

; Vertically display the channels.

; Initialize another window object.
Image Processing in IDL Displaying Multiple Images in a Window

72 Chapter 2: Creating Image Displays
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[1, 3], $
TITLE = 'The Channels of an RGB Image')

; Change the view from horizontal to vertical.
oView -> SetProperty, $

VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 1, 3]

; Change the locations of the channels.
oGreenChannel -> SetProperty, $

LOCATION = [0, imageSize[1]]
oBlueChannel -> SetProperty, $

LOCATION = [0, 2*imageSize[1]]

; Display the updated view in the new window.
oWindow -> Draw, oView

; Diagonally display the channels.

; Initialize another window object.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize*[2, 2], $
TITLE = 'The Channels of an RGB Image')

; Change the view from vertical to diagonal.
oView -> SetProperty, $

VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 2, 2]

; Change the locations of the channels.
oGreenChannel -> SetProperty, $

LOCATION = [imageSize[0]/2, imageSize[1]/2]
oBlueChannel -> SetProperty, $

LOCATION = [imageSize[0], imageSize[1]]

; Display the updated view in the new window.
oWindow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oView

END
Displaying Multiple Images in a Window Image Processing in IDL

Chapter 2: Creating Image Displays 73
Zooming in on an Image

Enlarging a specific section of an image is known as zooming. How zooming is
performed within IDL depends on the graphics system. In Direct Graphics, you can
use the ZOOM procedure to zoom in on a specific section of an image. See “Zooming
in on a Direct Graphics Image Display” for more information. If you are working
with RGB images, you can use the ZOOM_24 procedure.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. Using this method, the entire image is still contained within the image object,
while the view is changed to only show specific areas of the image object. See
“Zooming in on an Object Graphics Image Display” on page 76 for more
information.

Zooming in on a Direct Graphics Image Display

The following example imports a grayscale image from the convec.dat binary file.
This grayscale image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. The ZOOM procedure, which is a
Direct Graphics routine, is used to zoom in on the lower left corner of the image.

For code that you can copy and paste into an Editor window, see “Example Code:
Zooming in Direct Graphics” on page 75 or complete the following steps for a
detailed description of the process.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVICE, DECOMPOSED = 0
Image Processing in IDL Zooming in on an Image

74 Chapter 2: Creating Image Displays
5. Load a grayscale color table:

LOADCT, 0

6. Create a window and display the original image with the TV procedure:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'A Grayscale Image'

TV, image

The following figure shows the resulting grayscale image display.

7. Use the ZOOM to enlarge the lower left quarter of the image:

ZOOM, /NEW_WINDOW, FACT = 2, $
XSIZE = imageSize[0], YSIZE = imageSize[1]

Click in the lower left corner of the original image window.

Figure 2-17: A Grayscale Image in Direct Graphics
Zooming in on an Image Image Processing in IDL

Chapter 2: Creating Image Displays 75
The following figure shows the resulting zoomed image.

8. Right-click in the original image window to quit out of the ZOOM procedure.

Example Code: Zooming in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
Zooming_Direct.pro, compile and run the program to reproduce the previous
example.

PRO Zooming_Direct

; Determine the path to the file.
file = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [248, 248]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'A Grayscale Image'
TV, image

; Zoom into the lower left quarter of the image.

Figure 2-18: Enlarged Image Area in Direct Graphics
Image Processing in IDL Zooming in on an Image

76 Chapter 2: Creating Image Displays
ZOOM, /NEW_WINDOW, FACT = 2, $
XSIZE = imageSize[0], YSIZE = imageSize[1]

END

Zooming in on an Object Graphics Image Display

The following example imports a grayscale image from the convec.dat binary file.
This grayscale image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. The VIEWPLANE_RECT keyword
to the view object is updated to zoom in on the lower left corner of the image.

For code that you can copy and paste into an Editor window, see “Example Code:
Zooming in Object Graphics” on page 78 or complete the following steps for a
detailed description of the process.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

6. Add the image object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView
Zooming in on an Image Image Processing in IDL

Chapter 2: Creating Image Displays 77
The following figure shows the resulting grayscale image display.

7. Initialize another window:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'Zoomed Image')

8. Change the view to enlarge the lower left quarter of the image:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

9. Display the updated view in the new window:

oWindow -> Draw, oView

Figure 2-19: A Grayscale Image in Object Graphics
Image Processing in IDL Zooming in on an Image

78 Chapter 2: Creating Image Displays
The following figure shows the resulting zoomed image.

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Example Code: Zooming in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
Zooming_Object.pro, compile and run the program to reproduce the previous
example.

PRO Zooming_Object

; Determine the path to the file.
file = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [248, 248]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $

Figure 2-20: Enlarged Image Area in Object Graphics
Zooming in on an Image Image Processing in IDL

Chapter 2: Creating Image Displays 79
VIEWPLANE_RECT = [0., 0., imageSize])
oModel = OBJ_NEW('IDLgrModel')

; Initialize image object.
oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

; Add the image object to the model, which is added to
; the view, then display the view in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Initialize another window.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, TITLE = 'Enlarged Area')

; Change view to zoom into the lower left quarter of
; the image.
oView -> SetProperty, $

VIEWPLANE_RECT = [0., 0., imageSize/2]

; Display updated view in new window.
oWindow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oView

END
Image Processing in IDL Zooming in on an Image

80 Chapter 2: Creating Image Displays
Panning Within an Image

Panning involves moving an area of focus from one section of an image to other
sections. How panning is performed within IDL depends on the graphics system. In
Direct Graphics, you can use the SLIDE_IMAGE procedure to pan with sliders in an
application that contains the image. See “Panning in Direct Graphics” for more
information.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. The entire image is still contained within the image object, but the view is
changed to pan over specific areas of the image object. See “Panning in Object
Graphics” on page 82 for more information.

Panning in Direct Graphics

The following example imports a grayscale image from the nyny.dat binary file.
This grayscale image is an aerial view of New York City. The image contains byte
data values and is 768 pixels by 512 pixels. You can use the SLIDE_IMAGE
procedure to zoom in on the image and pan over it.

For code that you can copy and paste into an Editor window, see “Example Code:
Panning in Direct Graphics” on page 81 or complete the following steps for a detailed
description of the process.

1. Determine the path to the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [768, 512]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” in
Chapter 3 for more information.

DEVICE, DECOMPOSED = 0

5. Load a grayscale color table:

LOADCT, 0
Panning Within an Image Image Processing in IDL

Chapter 2: Creating Image Displays 81
6. Display the image with the SLIDE_IMAGE procedure:

SLIDE_IMAGE, image

Use the sliders in the display on the right side to pan over the image.

The following figure shows a possible display within the SLIDE_IMAGE
application.

Example Code: Panning in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
Panning_Direct.pro, compile and run the program to reproduce the previous
example.

PRO Panning_Direct

; Determine the path to the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [768, 512]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the display.
DEVICE, DECOMPOSED = 0

Figure 2-21: The SLIDE_IMAGE Application Displaying an Image of New York
Image Processing in IDL Panning Within an Image

82 Chapter 2: Creating Image Displays
LOADCT, 0

; Display the image with the SLIDE_IMAGE procedure.
SLIDE_IMAGE, image

END

Panning in Object Graphics

The following example imports a grayscale image from the nyny.dat binary file.
This grayscale image is an aerial view of New York City. The image contains byte
data values and is 768 pixels by 512 pixels. The VIEWPLANE_RECT keyword to
the view object is updated to zoom in on the lower left corner of the image. Then the
VIEWPLANE_RECT keyword is used to pan over the bottom edge of the image.

For code that you can copy and paste into an Editor window, see “Example Code:
Panning in Object Graphics” on page 85 or complete the following steps for a
detailed description of the process.

1. Determine the path to the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [768, 512]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Resize this large image to entirely display it on the screen:

imageSize = [256, 256]
image = CONGRID(image, imageSize[0], imageSize[1])

5. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

6. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)
Panning Within an Image Image Processing in IDL

Chapter 2: Creating Image Displays 83
7. Add the image object to the model, which is added to the view, then display the
view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

8. Initialize another window:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, TITLE = 'Panning Enlarged Image')

9. Change the view to zoom into the lower left quarter of the image:

viewplane = [0., 0., imageSize/2]
oView -> SetProperty, $

VIEWPLANE_RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

10. Display the updated view in the new window:

oWindow -> Draw, oView

Figure 2-22: A Grayscale Image Of New York in Object Graphics
Image Processing in IDL Panning Within an Image

84 Chapter 2: Creating Image Displays
The following figure shows the resulting enlarged image area.

11. Pan the view from the left side of the image to the right side of the image:

FOR i = 0, ((imageSize[0]/2) - 1) DO BEGIN & $
viewplane = viewplane + [1., 0., 0., 0.] & $
oView -> SetProperty, VIEWPLANE_RECT = viewplane & $
oWindow -> Draw, oView & $

ENDFOR

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Panning in Object
Graphics” on page 85.

Figure 2-23: Enlarged Image Area of New York in Object Graphics
Panning Within an Image Image Processing in IDL

Chapter 2: Creating Image Displays 85
The following figure shows the resulting enlarged image area panned to the
right side.

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Example Code: Panning in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
Panning_Object.pro, compile and run the program to reproduce the previous
example.

PRO Panning_Object

; Determine the path to the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [768, 512]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Resize the image.
imageSize = [256, 256]

Figure 2-24: Enlarged New York Image Area Panned to the Right in Object
Graphics
Image Processing in IDL Panning Within an Image

86 Chapter 2: Creating Image Displays
image = CONGRID(image, imageSize[0], imageSize[1])

; Initialize display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

; Initialize image object.
oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

; Add the image object to the model, which is added to
; the view, then display the view in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Initialize another window.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = imageSize, $
TITLE = 'Panning Enlarged Image')

; Change view to zoom into the lower left quarter of
; the image.
viewplane = [0., 0., imageSize/2]
oView -> SetProperty, VIEWPLANE_RECT = viewplane

; Display updated view in new window.
oWindow -> Draw, oView

; Pan the view from the left side of the image to the
; right side of the image.
FOR i = 0, ((imageSize[0]/2) - 1) DO BEGIN

viewplane = viewplane + [1., 0., 0., 0.]
oView -> SetProperty, VIEWPLANE_RECT = viewplane
oWindow -> Draw, oView

ENDFOR

; Clean up object references.
OBJ_DESTROY, oView

END
Panning Within an Image Image Processing in IDL

Chapter 3:

Working with Color
This chapter describes the following topics:
Overview of Working with Color 88
Understanding Colors within IDL Graphic
Systems . 94

Loading Pre-defined Color Tables 100
Modifying and Converting Color Tables . . 103

Converting Between Image Types 121
Highlighting Features with a Color Table 134

Showing Variations in Uniform Areas . . . 145
Applying Color Annotations to Images . . 153
Image Processing in IDL 87

88 Chapter 3: Working with Color
Overview of Working with Color

Color can play a critical role in the display and perception of digital imagery. This
section provides a basic overview of color systems, display devices, image types, and
the interaction of these elements within IDL. The remainder of the chapter builds
upon these fundamental concepts by describing how to load and modify color tables,
convert between image types, utilize color tables to highlight features, and apply
color annotations to images.

Color Systems

Color can be encoded using a number of different schemes. Many of these schemes
utilize a color triple to represent a location within a three-dimensional color space.
Examples of these systems include RGB (red, green, and blue), HSV (hue, saturation,
and value), HLS (hue, lightness, and saturation), and CMY (cyan, magenta, and
yellow).

Computer display devices typically rely on the RGB color system. In IDL, the RGB
color space is represented as a three-dimensional coordinate system, with the axes
corresponding to the red, green, and blue contributions, respectively. Each axis
ranges in value from 0 (no contribution) to 255 (full contribution). By design, this
range from 0 to 255 maps nicely to the full range of a byte data type.

An individual color is encoded as a coordinate within this RGB space. Thus, a color
consists of three elements: a red value, a green value, and a blue value.

The following figure shows that each displayable color corresponds to a location
within a three-dimensional color cube. The origin, (0, 0, 0), where each color
coordinate is 0, is black. The point at (255, 255, 255) is white, representing an
additive mixture of the full intensity of each of the three colors. Points along the main
diagonal - where intensities of each of the three primary colors are equal - are shades
Overview of Working with Color Image Processing in IDL

Chapter 3: Working with Color 89
of gray. The color yellow is represented by the coordinate (255, 255, 0), or a mixture
of 100% red, plus 100% green, and no blue.

Display Device Color Schemes

Most modern computer monitors use one of two basic schemes for displaying color at
each pixel:

• Indexed - A color is specified using an index into a hardware color lookup
table (or palette). Each entry of the color lookup table corresponds to an
individual color, and consists of a red value, a green value, and a blue value.
The size of the lookup table depends upon the hardware.

• RGB - A color is specified using an RGB triple: [red, green, blue]. The number
of bits used to represent each of the red, green, and blue components depends
upon the hardware.

The description of how color is to be interpreted on a given display device is referred
to as a visual. Each visual typically has a name that indicates how color is to be
represented. Two very common visual names are PseudoColor (which uses an
indexed color scheme) and TrueColor (which uses an RGB color scheme).

A visual also has a depth associated with it that describes how many bits are used to
represent a given color. Common bit depths include 8-bit (for PseudoColor visuals)
and 16- or 24-bit (for TrueColor visuals). An n-bit visual is capable of displaying 2n
total colors. Thus, an 8-bit PseudoColor visual can display 28 or 256 colors. A 24-bit
TrueColor visual can display 224 or 16,777,216 colors.

Figure 3-1: RGB Color Cube (Note: grays are on the main diagonal.)
Image Processing in IDL Overview of Working with Color

90 Chapter 3: Working with Color
PseudoColor visuals rely heavily upon the display device’s hardware color table for
image display. If the color table is modified, all images being displayed using that
color table will automatically update to reflect the change.

TrueColor visuals do not typically use a color table. The red, green, and blue
components are provided directly.

Setting a Visual on Unix Platforms

On Unix platforms, an application (such as IDL) may choose from among the set of
X visuals that are supported for the current display. Each visual is either grayscale or
color. Its corresponding color table may be either fixed (read-only), or it may be
changeable from within IDL (read-write). The color interpretation scheme is either
indexed or RGB. The following table shows the supported visuals for a given display,
which may include any combination:

The most common of these is PseudoColor and TrueColor.

Refer to the section “Understanding Colors within IDL Graphic Systems” on page 94
to learn more about how IDL selects a visual for image display.

To get the list of supported X visual classes on a given system, type the following
command at the Unix command line:

xdpyinfo

Setting a Visual on Windows Platforms

On Windows platforms, the visual is selected via the system Control Panel. To open
the Control Panel, select the Settings → Control Panel item from the Start menu.
Click on the Display control to open the Display Properties window. Within this

Visual Description

StaticGray grayscale, read-only, indexed

GrayScale grayscale, read-write, indexed

StaticColor color, read-only, indexed

PseudoColor color, read-write, indexed

TrueColor color, read-only, RGB

DirectColor color, read-write, RGB

Table 3-1: Visuals Supported in IDL on Unix Platforms
Overview of Working with Color Image Processing in IDL

Chapter 3: Working with Color 91
window, select the Settings tab. The Colors menu lists the supported visuals. The
following table shows that three visuals are supported (for the particular display
configuration used in this example):

You can use this dialog to change between visuals before starting an IDL session.

Image Data Organization

Numerous standards have been developed over the years to describe how an image
can be stored within a file. However, once the image is loaded into memory, it
typically takes one of two forms: indexed or RGB. An indexed image is a two-
dimensional array, and is usually stored as byte data. A two-dimensional array of a
different data type can be made into an indexed image by scaling it to the range from
0 to 255 using the BYTSCL function. See the BYTSCL description in the IDL
Reference Guide for more information.

An indexed image does not explicitly contain any color information. Its pixel values
represent indices into a color Look-Up Table (LUT). Colors are applied by using
these indices to look up the corresponding RGB triplet in the LUT. In some cases, the
pixel values of an indexed image reflect the relative intensity of each pixel. In other
cases, each pixel value is simply an index, in which case the image is usually
intended to be associated with a specific LUT. In this case, the LUT is typically
stored with the image when it is saved to a file.

An RGB (red, green, blue) image is a three-dimensional byte array that explicitly
stores a color value for each pixel. Scanned photographs are commonly stored as
RGB images. The color information is stored in three sections of a third dimension of
the image. These sections are known as color channels, color bands, or color layers.
One channel represents the amount of red in the image (the red channel), one channel
represents the amount of green in the image (the green channel), and one channel
represents the amount of blue in the image (the blue channel).

Visual Equivalence to Unix Visuals

256 Colors 8-bit PseudoColor

High Color (16 bit) 16-bit TrueColor

True Color (32 bit) 32-bit TrueColor

Table 3-2: Visuals Supported in IDL on Windows Platforms
Image Processing in IDL Overview of Working with Color

92 Chapter 3: Working with Color
Color interleaving is a term used to describe which of the dimensions of an RGB
image contain the three color channel values. Three types of color interleaving are
supported by IDL:

• Pixel interleaving — the color information is contained in the first dimension,
(3, n, m).

• Line interleaving — the color information is contained in the second
dimension, (n, 3, m).

• Planar interleaving — the color information is contained in the third
dimension, (n, m, 3).

Chapter Overview

The following list describes the color image display tasks and associated IDL image
color display routines covered in this chapter.

Tasks Routine(s)/Object(s) Description

“Understanding
Colors within
IDL Graphic
Systems” on
page 94

DEVICE Learn the differences of
working with color in Direct
and Object Graphics on
platforms supported in IDL.

“Loading Pre-
defined Color
Tables” on
page 100.

LOADCT

XLOADCT

Load and view one of IDL’s
pre-defined color tables.

“Modifying and
Converting
Color Tables”
on page 103.

XLOADCT

XPALETTE

TVLCT

MODIFYCT

HLS

HSV

COLOR_CONVERT

Use the XLOADCT and
XPALETTE utilities to modify
a color table and apply it to an
image. Save this new color
table as one of IDL’s pre-
defined tables.

Table 3-3: Color Image Display Tasks and Related Color Display Routines
Overview of Working with Color Image Processing in IDL

Chapter 3: Working with Color 93
Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of these files, including array
sizes.

“Converting
Between Image
Types” on
page 121.

TVLCT

COLOR_QUAN

Change an indexed image with
an associated color table to an
RGB image, and vice versa.

“Highlighting
Features with a
Color Table” on
page 134.

TVLCT

IDLgrPalette

IDLgrImage

Create an entire color table to
highlight features within an
image.

“Showing
Variations in
Uniform Areas”
on page 145.

H_EQ_CT

H_EQ_INT

TVLCT

Modify a color table with
histogram equalization to
display minor variations in
nearly uniform areas of an
image.

“Applying
Color
Annotations to
Images” on
page 153.

TVLCT

IDLgrPalette

Apply specific colors to
annotations on indexed or
RGB images to highlight
certain features within these
images.

Tasks Routine(s)/Object(s) Description

Table 3-3: Color Image Display Tasks and Related Color Display Routines
Image Processing in IDL Overview of Working with Color

94 Chapter 3: Working with Color
Understanding Colors within IDL Graphic
Systems

IDL supports two graphics systems: Direct Graphics and Object Graphics. This
section provides detailed descriptions of how color is represented and interpreted for
each system.

Direct Graphics

Visuals on Unix Platforms

When IDL creates its first Direct Graphics window, it must select a visual to be
associated with that window. By default, IDL selects an X Visual Class by requesting
(in order) from the following table until a supported visual is found, but a specific
visual can be explicitly requested at the beginning of an IDL session by setting the
appropriate keyword to the DEVICE procedure:

To request an 8-bit PseudoColor visual, the syntax would be:

DEVICE, PSEUDO_COLOR=8

Another approach to setting the visual information is to include the idl.gr_visual
and idl.gr_depth resources in your .Xdefaults file.

A visual is selected once per IDL session (when the first graphic window is created).
Once selected, the same visual will be used for all Direct Graphics windows in that
IDL session.

Order Visual Depth Related Keyword

First DirectColor 24-bit DIRECT_COLOR

Second TrueColor 24-bit (16-bit on Linux) TRUE_COLOR

Third PseudoColor 8-bit, then 4-bit PSEUDO_COLOR

Fourth StaticColor 8-bit, then 4-bit STATIC_COLOR

Fifth GrayScale any depth GRAY_SCALE

Sixth StaticGray any depth STATIC_GRAY

Table 3-4: Order of Visuals and their Related DEVICE Keywords
Understanding Colors within IDL Graphic Systems Image Processing in IDL

Chapter 3: Working with Color 95
Private versus Shared Colormaps

On Unix platforms, when a window manager is started, it creates a default colormap
that can be shared among applications using the display. This is called the shared
colormap.

A given application may request to use its own colormap that is not shared with other
applications. This is called a private colormap.

IDL attempts, whenever possible, to get color table entries in the shared colormap. If
enough colors are not available in the shared colormap, a private colormap is used. If
an X Visual class and depth are specified and they do not match the default visual of
the screen (see xdpyinfo), a private colormap is used.

If a private colormap is used, then colormap flashing may occur when an IDL
window is made current (in which case, the colors of other applications on the
desktop may no longer appear as you would expect), or when an application using the
shared colormap is made current (in which case, the colors within the IDL graphics
window may no longer appear as you would expect). This flashing behavior is to be
expected. By design, the IDL graphics window has been assigned a dedicated color
table so that the full range of requested colors can be utilized for image display.

Visuals on Windows Platforms

On Windows platforms, the visual that IDL uses is dependent upon the system
setting. For more information, “Setting a Visual on Windows Platforms” on page 90.

IDL Color Table

IDL maintains a single current color table for Direct Graphics. Refer to the sections
“Loading Pre-defined Color Tables” on page 100 and “Modifying and Converting
Color Tables” on page 103. IDL provides 41 pre-defined color tables.

Foreground Color

In IDL Direct Graphics, colors used for drawing graphic primitives (such as lines,
text annotations, etc.) are represented in one of two ways:

• Indexed - each color is an index into the current IDL color table

• RGB - each color is a long integer that contains the red value in the first eight
bits, the green value in the next eight bits, and the blue value in the next eight
bits. In other words, a color can be represented using the following equation:

color = red + 256*green + (256^2)*blue

The RGB form is only supported on TrueColor display devices.
Image Processing in IDL Understanding Colors within IDL Graphic Systems

96 Chapter 3: Working with Color
The DECOMPOSED keyword to the DEVICE procedure is used to notify IDL
whether color is to be interpreted as an index or as a composite RGB value. IDL then
maps any requested color to an encoding that is appropriate for the current display
device.

The foreground color (used for drawing) can be set by assigning a color value to the
!P.COLOR system variable field (or by setting the COLOR keyword on the individual
graphic routine).

If a color value is to be interpreted as an index, then inform IDL by setting the
DECOMPOSED keyword of the DEVICE routine to 0:

DEVICE, DECOMPOSED = 0

The foreground color can then be specified by setting !P.COLOR to an index into the
IDL color table. For example, if the foreground color is to be set to the RGB value
stored at entry 25 in the IDL color table, then use the following IDL command:

!P.COLOR = 25

If a color value is to be interpreted as a composite RGB value, then inform IDL by
setting the DECOMPOSED keyword of the DEVICE routine to 1:

DEVICE, DECOMPOSED = 1

The foreground color can then be specified by setting !P.COLOR to a composite
RGB value. For example, if the foreground color is to be set to the color yellow,
[255,255,0], then use the following IDL command:

!P.COLOR = 255 + (256*255)

Image Colors

Color for image data is handled in a fashion similar to other graphic primitives,
except that some special cases apply based upon the organization of the image data
and the visual of the current display device.

If the image is organized as a:

• two-dimensional array -

• If the display device is PseudoColor, then each pixel is interpreted as an
index into the IDL color table

• If the display device is TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 0, then each pixel value is interpreted as
an index into the IDL color table (thereby emulating a PseudoColor
display device).
Understanding Colors within IDL Graphic Systems Image Processing in IDL

Chapter 3: Working with Color 97
• If the display device is TrueColor and if the DECOMPOSED keyword for
the DEVICE procedure is set to 1, then each pixel value is interpreted as
the value to be copied to each of the red, green, and blue components of
the RGB color.

• RGB array - (Supported only for TrueColor display devices)

• Each pixel is interpreted as an RGB color composed of the three elements
in the extra color dimension of the array.

To display an RGB image on a PseudoColor device, use the COLOR_QUAN routine
to convert it to an indexed form. Refer to the section “Converting Between Image
Types” on page 121.

The TV command can be used to display the image in IDL. For RGB images, the
TRUE keyword can be used to indicate which form of interleaving is used.

Object Graphics

In Object Graphics, an underlying understanding of display device visuals and
corresponding color interpretation is not required. The color model has been
simplified (relative to Direct Graphics) to make the process of color display more
straightforward.

Palettes

The IDLgrPalette object class is used to represent color lookup tables. Any number of
palette objects may be instantiated at a given time. The following section will
describe how and when these palettes are utilized.

Color Models

Object Graphics supports two color models for its destination objects (such as an
IDLgrWindow): the Indexed Color Model, and the RGB Color Model.

If the Indexed Color Model is used, a color value (or individual image pixel) is
expected to be an index into the palette associated with the destination object. To load
a particular color table, create a palette object, then set it as a property of the
destination object in which the graphics are to be drawn (using the PALETTE
keyword in the SetProperty method of the destination object). If a palette is not
explicitly provided for a given destination object, a gray scale ramp is loaded by
default.

For the Indexed Color Model, a color may also be specified as an RGB triple
(although this is much less common). In this case, the nearest match within the
destination object’s palette will be sought and used to represent that color.
Image Processing in IDL Understanding Colors within IDL Graphic Systems

98 Chapter 3: Working with Color
If the RGB Color model is used, a color (or individual image pixel) is expected to be
either an index into a palette or an explicit RGB triple. When a color is specified as an
index, the index is used to look up a color in the nearest palette (if the graphic
includes a palette, that is used first; if the destination has a palette, that will be used
next; if no palette is available, a grayscale palette is assumed). If the RGB color
model is used, the palette associated with a destination object does not necessarily
have a one-to-one mapping to the hardware color lookup table for the device. For
instance, the destination object may have a grayscale ramp loaded as a palette, but the
hardware color lookup table for the device may be loaded with an even sampling of
colors from the RGB color cube. When a user requests that a graphical object be
rendered in a particular color, that object will appear in the nearest approximation to
that color that the device can supply.

The color model can be explicitly specified using the COLOR_MODEL keyword of
the Init method of a destination object. For example, to create a window using the
Indexed Color Model:

oWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 1)

The RGB color model is the default.

Atomic Graphic Object Colors

In IDL Object Graphics, colors used for drawing atomic graphic objects (such as an
IDLgrText object) are typically represented in one of two ways:

• Indexed - a color is an index into a palette

• RGB - a color is a three-element vector, [red, green, blue].

Color is set using the COLOR keyword of the Init or SetProperty method of the
graphic object. For example:

oPolyline -> SetProperty, COLOR = 128

or

oText -> SetProperty, COLOR = [255,0,255]

The interpretation of this color depends upon the color model associated with the
destination object. See the description of color models (above) for details.
Understanding Colors within IDL Graphic Systems Image Processing in IDL

Chapter 3: Working with Color 99
Image Colors

The IDLgrImage object is used to represent images in Object Graphics. This object
stores image data using the byte data type, and can take any of the following forms:

• An array with dimensions [n, m]. Each pixel is interpreted as an index into a
palette, or as an explicit gray scale value (if the GREYSCALE keyword is set).

• An array with dimensions [2, n, m] or [n, 2, m] or [n, m, 2]. Each pixel consists
of a gray scale value and an associated alpha channel value (alpha is used for
transparency effects).

• An array with dimensions [3, n, m] or [n, 3, m] or [n, m, 3]. Each pixel consists
of an RGB triple.

• An array with dimensions [4, n, m] or [n, 4, m] or [n, m, 4]. Each pixel consists
of an RGB triple and an associated alpha channel value.

The index or RGB triple for each pixel is interpreted according to the color model set
for the destination object in which it is to be drawn.
Image Processing in IDL Understanding Colors within IDL Graphic Systems

100 Chapter 3: Working with Color
Loading Pre-defined Color Tables

Although you can define your own color tables, IDL provides 41 pre-defined color
tables. You can access these tables through the LOADCT routine. Each color table
contained within this routine is specified through an index value ranging from 0 to 40.

Tip
If you are running IDL on a TrueColor display, set DEVICE, DECOMPOSED = 0
before your first color table related routine is used within an IDL session or
program. See “Foreground Color” on page 95 for more information.

1. View a list of IDL’s tables and their related indices by calling LOADCT
without an argument:

LOADCT

The following list is displayed in the Output Log:

% Compiled module: LOADCT.
% Compiled module: FILEPATH.
0-B-W LIMEAR 14-STEPS 28-Hardcandy
1-BLUE/WHITE 15-STERN SPECIAL 29-Nature
2-GRN-RED-BLU-WHT 16-Haze 30-Ocean
3-RED TEMPERATURE 17-Blue-Pastel-Red 31-
Peppermint
4-BLU/GRN/RED/YEL 18-Pastels 32-Plasma
5-STD GAMMA-II 19-Hue Sat Lightness 1 33-Blue-Red
6-PRISM 20-Hue Sat Lightness 2 34-Rainbow
7-RED-PURPLE 21-Hue Sat Value 1 35-Blue Waves
8-GREEN/WHITE LINEAR 22-Hue Sat Value 2 36-Volcano
9-GRN/WHT EXPOMENTIAL 23-Purple-Red+Stripes 37-Waves
10-GREEN-PINK 24-Beach 38-Rainbow18
11-BLUE_RED 25-Mac Style 39-
Rainbow+white
12-16 LEVEL 26-Eos A 40-
Rainbow+black
13-RAINBOW 27-Eos B

When running LOADCT without an argument, it will prompt you to enter the
number of one of the above color tables at the IDL command line.
Loading Pre-defined Color Tables Image Processing in IDL

Chapter 3: Working with Color 101
2. Enter in the number 5 at the Enter table number: prompt:

Enter table number: 5

The following text is displayed in the Output Log:

% LOADCT: Loading table STD GAMMA-II

If you already know the number of the pre-defined color table you want, you
can load a color table by providing that number as the first input argument to
LOADCT.

3. Load in color table number 13 (RAINBOW):

LOADCT, 13

The following text is displayed in the Output Log:

% LOADCT: Loading table RAINBOW

You can view the current color table with the XLOADCT utility.

4. View color table with XLOADCT utility:

XLOADCT

The following figure shows the resulting XLOADCT display.

This utility is designed to individually display each pre-defined color table.
When the Done button is pressed, the selected color table automatically

Figure 3-2: The XLOADCT Utility
Image Processing in IDL Loading Pre-defined Color Tables

102 Chapter 3: Working with Color
becomes IDL’s current color table. IDL maintains a color table on
PseudoColor displays or when the DECOMPOSED keyword to the DEVICE
command is set to zero (DEVICE, DECOMPOSED = 0) on TrueColor displays.
XLOADCT also allows you to make adjustments to the current color table.
Among other options, you can stretch the bottom, stretch the top, or apply a
gamma correction factor. See the next section, “Modifying and Converting
Color Tables” on page 103, for more information.
Loading Pre-defined Color Tables Image Processing in IDL

Chapter 3: Working with Color 103
Modifying and Converting Color Tables

IDL contains two graphical user interface (GUI) utilities for modifying a color table,
XLOADCT and XPALETTE. “Using the XLOADCT Utility” (below) and “Using
the XPALETTE Utility” on page 113 describe how to use these utilities to modify
color tables. See “Highlighting Features with a Color Table” on page 134 for more
information on how to programmatically modify and design a color table. Then the
“Using the MODIFYCT Routine” on page 119 section shows how to add the changed
color table from XLOADCT and XPALETTE to IDL’s list of pre-defined color
tables.

The following examples are based on the default RGB (red, green, and blue) color
system. IDL also contains routines that allow you to use other color systems
including hue, saturation, and value (HSV) and hue, lightness, and saturation (HLS).
These routines and color systems are explained in “Converting to Other Color
Systems” on page 120.

Using the XLOADCT Utility

The XLOADCT utility allows you to load one of IDL’s 41 pre-defined color tables
and change that color table if necessary. The following example shows how to use
XLOADCT to load a color table and then change that table to highlight specific
features of an image. The indexed image used in this example is a computed
tomography (CT) scan of a human thoracic cavity and is contained (without a default
color table) within the ctscan.dat file in IDL’s examples/data directory.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Using the XLOADCT Utility” on page 111 or complete the following steps for
a detailed description of the process.

1. Determine the path to the ctscan.dat binary file:

ctscanFile = FILEPATH('ctscan.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

ctscanSize = [256, 256]

3. Import the image from the file:

ctscanImage = READ_BINARY(ctscanFile, $
DATA_DIMS = ctscanSize)
Image Processing in IDL Modifying and Converting Color Tables

104 Chapter 3: Working with Color
4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword of the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVICE, DECOMPOSED = 0

Since the imported image does not have an associated color table, you need to
apply a pre-defined color table to display the image.

5. Initialize the display by applying the B-W LINEAR color table (index number
0):

LOADCT, 0
WINDOW, 0, TITLE = 'ctscan.dat', $

XSIZE = ctscanSize[0], YSIZE = ctscanSize[1]

6. Display the image using this color table:

TV, ctscanImage

As the following figure shows, the B-W LINEAR color table does not
highlight all of the aspects of this image. The XLOADCT utility can be used to
change the color table to highlight more features.

Figure 3-3: CT Scan Image with Grayscale Color Table
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 105
7. Open the XLOADCT utility:

XLOADCT

Select Rainbow + white and click Done to apply the color table.

The following figure shows the resulting XLOADCT display

After applying the new color table, you can now see the spine, liver, and
kidney within the image, as shown in the following figure. However, the
separations between the skin, the organs, and the cartilage and bone within the
spine are hard to distinguish.

Figure 3-4: Selecting Rainbow + white Color Table in XLOADCT Utility
Image Processing in IDL Modifying and Converting Color Tables

106 Chapter 3: Working with Color
8. Now re-display the image to show it on the Rainbow + white color table:

TV, ctscanImage

Note
You do not have to perform the previous step on a PseudoColor display. Changes to
the current color table automatically show in the current image window within a
PseudoColor display.

The following figure shows the CT scan image with the Ranbow+white color
table.

9. Redisplay the color table with the XLOADCT utility:

XLOADCT

Comparing the image to the color table, you can see that most image pixels are
not within the black to purple range. Therefore the black to purple pixels in the
image can be replaced by black. The black range can be stretched to move the
purple range to help highlight more features.

The Stretch Bottom slider in the XLOADCT utility increases the range of the
lowest color index. For example, if black was the color of the lowest index and
you increased the bottom stretch by 50 percent, the lower half of the color
table would become all black. The remaining part of the color table will
contain a scaled version of all the previous color ranges.

Figure 3-5: CT Scan Image with the Rainbow + white Color Table

spine

liver

kidney
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 107
10. Within XLOADCT, stretch the bottom part of the color table by 20 percent by
moving the slider as shown in the following figure:

TV, ctscanImage

Tip
Remember to click on the Done button after changing the Stretch Bottom slider,
then use TV to re-display the image to include the last changing made in the
XLOADCT utility.

In the following figure, you can now see the difference between skin and
organs. You can also see where cartilage and bone is located within the spine,
but now organs are hard to see. Most of the values in the top (the yellow to red
to white ranges) of the color table show just the bones. You can use less of
these ranges to show bones by stretching the top of the color table.

The Stretch Top slider in the XLOADCT utility allows you increase the range
of the highest color index. For example, if white was the color of the highest
index and you increased the top stretch by 50 percent, the higher half of the

Figure 3-6: CT Scan Image with Bottom Stretched by 20%

bones
Image Processing in IDL Modifying and Converting Color Tables

108 Chapter 3: Working with Color
color table would become all white. The remaining part of the color table will
contain a scaled version of all the previous color ranges.

11. Open XLOADCT:

XLOADCT

Stretch the bottom part of the color table by 20 percent and stretch the top part
of the color table by 20 percent (changing it from 100 to 80 percent).

Click Done and redisplay the image:

TV, ctscanImage

The following figure shows that the organs are more distinctive, but now the
liver and kidneys are not clearly distinguished. These features occur in the blue
range. You can shift the green range more toward the values of these organs
with a gamma correction.

With the Gamma Correction slider in the XLOADCT utility you can change
the contrast within the color table. A value of 1.0 indicates a linear ramp (no

Figure 3-7: CT Scan Image with Bottom and Top Stretched by 20%
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 109
gamma correction). Values other than 1.0 indicate a logarithmic ramp. Higher
values of gamma give more contrast. Values less than 1.0 yield lower contrast.

12. Within XLOADCT, stretch the bottom part of the color table by 20 percent,
stretch the top part of the color table by 20 percent (change it from 100 percent
to 80 percent), and decrease the Gamma Correction factor to 0.631:

XLOADCT

Redisplay the image:

TV, ctscanImage

All the features are now highlighted within the image as shown in the
following figure:

The previous steps showed how to use the Tables section of the XLOADCT
utility. XLOADCT also contains two other sections: Options and Function.
The Options section allows you to change what the sliders represent and how
they are used. When the Gang option is selected, the sliders become dependent

Figure 3-8: CT Scan Image with Bottom and Top Stretched by 20% and Gamma
Correction at 0.631

liver spine kidney
Image Processing in IDL Modifying and Converting Color Tables

110 Chapter 3: Working with Color
upon each other. When either the Stretch Bottom or Stretch Top sliders are
moved, the other ones reset to their default values (0 or 100, respectively).
With the Chop option, you can chop off the top of the color table (the range of
the Stretch Top is now black instead of the color at the original highest index).
With the Intensity option, you can change the slider to control the intensity
instead of the index location. The Stretch Bottom slider will darken the color
table and the Stretch Top slider will brighten the color table.

The Function section allows you to place control points which you can use to
change the color table with respect to the other colors in that table. The color
table function is shown as a straight line increasing from the lowest index (0)
to the highest index (255). The x-axis ranges from 0 to 255 and the y-axis
ranges from 0 to 255. Moving a control point in the x-direction has the same
effects as the previous sliders. Moving a control point in the y-direction
changes the color of that index to another color within the color table. For
example, if a control point is red at an index of 128 and the color table is green
at an index of 92, when the control point is moved in the y-direction to an
index of 92, the color at that x-location will become green. To understand how
the Function section work, you can use it to highlight just the bones with the
CT scan image.

13. Open XLOADCT:

XLOADCT

Select the Rainbow + white color table.

Switch to the Function section by selecting that option.

Select the Add Control Point button, and drag this new center control point
one half of the way to the right and one quarter of the way down as shown in
the following figure.

Click Done and redisplay the image:

TV, ctscanImage
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 111
The bones in the image are now highlighted.

Example Code: Using the XLOADCT Utility

Copy and paste the following text into the IDL Editor window. After saving the file as
UsingXLOADCT.pro, compile and run the program to reproduce the previous
example. The BLOCK keyword is set when using XLOADCT to force the example
routine to wait until the Done button is pressed to continue. If the BLOCK keyword
was not set, the example routine would produce all of the displays at once and then
end.

PRO UsingXLOADCT

; Determine the path to the file.
ctscanFile = FILEPATH('ctscan.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize image size parameter.
ctscanSize = [256, 256]

Figure 3-9: CT Scan Image with Central Control Point Moved One Half to the
Right and One Quarter Down

bones
Image Processing in IDL Modifying and Converting Color Tables

112 Chapter 3: Working with Color
; Import the image from the file.
ctscanImage = READ_BINARY(ctscanFile, $

DATA_DIMS = ctscanSize)

; Initialize display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
WINDOW, 0, TITLE = 'ctscan.dat', $

XSIZE = ctscanSize[0], YSIZE = ctscanSize[1]

; Display image.
TV, ctscanImage

; Select and display the "Rainbow + white" color
; table
XLOADCT, /BLOCK
TV, ctscanImage

; Increase "Stretch Bottom" by 20%.
XLOADCT, /BLOCK
TV, ctscanImage

; Increase "Stretch Bottom" by 20% and decrease
; "Stretch Top" by 20% (to 80%).
XLOADCT, /BLOCK
TV, ctscanImage

; Increase "Stretch Bottom" by 20%, decrease "Stretch
; Top" by 20% (to 80%), and decrease "Gamma Correction"
; to 0.631.
XLOADCT, /BLOCK
TV, ctscanImage

; Switch to "Function" section, select "Add Control
; Point" and drag this center control point one quarter
; of the way up and one quarter of the way left.
XLOADCT, /BLOCK
TV, ctscanImage

END
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 113
Using the XPALETTE Utility

Another utility, XPALETTE, can be used to change a specific color table entry or
range of entries. This example uses a single color (orange) to highlight pixels within
the spine of the CT scan image. Then, starting with the entry that was changed to
orange, a range of entries is selected and replaced with a ramp from orange to white
to highlight the bones within this image.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Using the XPALETTE Utility” on page 117 or complete the following steps
for a detailed description of the process.

1. Determine the path to the ctscan.dat binary file:

ctscanFile = FILEPATH('ctscan.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

ctscanSize = [256, 256]

3. Import the image from the file:

ctscanImage = READ_BINARY(ctscanFile, $
DATA_DIMS = ctscanSize)

4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVICE, DECOMPOSED = 0

5. Display the image from the ctscan.dat file with the B-W LINEAR color
table:

LOADCT, 0
WINDOW, 0, TITLE = 'ctscan.dat', $

XSIZE = ctscanSize[0], YSIZE = ctscanSize[1]
TV, ctscanImage
Image Processing in IDL Modifying and Converting Color Tables

114 Chapter 3: Working with Color
As shown in the following figure, the B-W LINEAR color table does not
distinguish all of the aspects of this image. The XPALETTE utility can be used
to change the color table.

6. Open the XPALETTE utility:

XPALETTE

Select the Predefined button in the XPALETTE utility to change the color
table to Rainbow + white.

Click on the Done button after you select the Rainbow + white color table in
XLOADCT and then click on the Done button in XPALETTE.

The following figure shows the resulting XPALETTE and XLOADCT
displays.

Figure 3-10: CT Scan Image with Grayscale Color Table

Figure 3-11: Selecting Rainbow + white Color Table in XPALETTE Utility
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 115
7. Now redisplay the image to show it with the Rainbow + white color table:

TV, ctscanImage

Your display should be similar to the following figure.

You can use XPALETTE to change a single color within the current color
table. For example, you can change the color at index number 115 to orange.

Figure 3-12: CT Scan Image with the Rainbow + white Color Table

bones
Image Processing in IDL Modifying and Converting Color Tables

116 Chapter 3: Working with Color
8. Open XPALETTE and click on the 115th index (in column 3 and row 7):

XPALETTE

Change its color to orange by moving the RGB (red, green, and blue) sliders
(Orange is made up of 255 red, 128 green, and 0 blue)

Click on the Done button after changing the Red, Green, and Blue sliders.

Use TV to redisplay the image to include the last changes made in the
XPALETTE utility:

TV, ctscanImage

The orange values now highlight some areas of the spine, kidney, and bones as
shown in the following figure.

You can highlight the bones even further by interpolating a new range in
between the orange and white indices.

Figure 3-13: CT Scan Image with Orange Added to the Color Table

orange pixels
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 117
9. Open XPALETTE:

Click on the 115th index and select the Set Mark button.

Click on the highest index (which is usually 255 but it could be less) and then
select the Interpolate button.

To see the result of this interpolation within XPALETTE, click on the Redraw
button.

Click Done and redisplay the image:

TV, ctscanImage

The following figure displays the image using the modified color table.

Example Code: Using the XPALETTE Utility

Copy and paste the following text into the IDL Editor window. After saving the file as
UsingXPALETTE.pro, compile and run the program to reproduce the previous
example. The BLOCK keyword is set when using XPALETTE to force the example
routine to wait until the Done button is pressed to continue. If the BLOCK keyword
was not set, the example routine would produce all of the displays at once and then
end.

Figure 3-14: CT Scan Image with Orange to White Range Added

bones
Image Processing in IDL Modifying and Converting Color Tables

118 Chapter 3: Working with Color
PRO UsingXPALETTE

; Determine the path to the file.
ctscanFile = FILEPATH('ctscan.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize image size parameter.
ctscanSize = [256, 256]

; Import the image from the file.
ctscanImage = READ_BINARY(ctscanFile, $

DATA_DIMS = ctscanSize)

; Initialize display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
WINDOW, 0, TITLE = 'ctscan.dat', $

XSIZE = ctscanSize[0], YSIZE = ctscanSize[1]

; Display image.
TV, ctscanImage

; Click on the "Predefined" button and select the
; "Rainbow + white" color table.
XPALETTE, /BLOCK
TV, ctscanImage

; Click on the 115th index, which is in column 3 and row
; 7, and then change its color to orange with the RGB
; (red, green, and blue) sliders. Orange is made up of
; 255 red, 128 green, and 0 blue.
XPALETTE, /BLOCK
TV, ctscanImage

; Click on the 115th index, click on the "Set Mark"
; button, click on the 255th index, and click on the
; "Interpolate" button. The colors within the 115 to
; 255 range are now changed to go between orange and
; white. To see this change within the XPALETTE
; utility, click on the "Redraw" button.
XPALETTE, /BLOCK
TV, ctscanImage

; Obtain the red, green, and blue vectors of this
; current color table.
TVLCT, red, green, blue, /GET

; Add this modified color table to IDL's list of
; pre-defined color tables and display results.
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 119
MODIFYCT, 41, 'Orange to White Bones', $
red, green, blue

XLOADCT, /BLOCK
TV, ctscanImage

END

Using the MODIFYCT Routine

The previously derived color table created in “Using the XPALETTE Utility” on
page 113 can be added to IDL’s list of pre-defined color tables with the TVLCT and
MODIFYCT routines. For code that you can copy and paste into a text editor (for
example the IDL Editor), see “Example Code: Using the XPALETTE Utility” on
page 117.

By default, TVLCT allows you to load in red, green, and blue vectors (either derived
by you or imported from an image file) to load a different current color table. TVLCT
also has a GET keyword. When the GET keyword is set, TVLCT returns the red,
green, and blue vectors of the current color table back to you. Using this you can
obtain the red, green, and blue vectors of the previously derived color table.

1. Obtain the red, green, and blue vectors of the current color table after
performing the steps in “Using the XPALETTE Utility” on page 113:

TVLCT, red, green, blue, /GET

The MODIFYCT routine uses these vectors as arguments. Now you can use
MODIFYCT to add this new color table to IDL’s list of pre-defined color
tables.

2. Add this modified color table to IDL’s list of pre-defined color tables and
display results:

MODIFYCT, 41, 'Orange to White Bones', $
red, green, blue

3. Display the results with XLOADCT:

XLOADCT
Image Processing in IDL Modifying and Converting Color Tables

120 Chapter 3: Working with Color
The modified color table has been added to IDL’s list of pre-defined color
tables as shown in the following figure.

The MODIFYCT routine can also be used to save changes to one of the existing pre-
defined color tables. See MODIFYCT in the IDL Reference Guide for more
information.

Converting to Other Color Systems

IDL defaults to the RGB color system, but if you are more accustomed to other color
systems, IDL is not restricted to working with only the RGB color system. You can
also use either the HSV (hue, saturation, and value) system or the HLS (hue,
lightness, and saturation) system. The HSV or HLS system can be specified by
setting the appropriate keyword (for example /HSV or /HLS) when using IDL color
routines.

IDL also contains routines to create color tables based on these color systems. The
HSV routine creates a color table based on the Hue, Saturation, and Value (HSV)
color system. The HLS routine creates a color table based on the Hue, Lightness,
Saturation (HLS) color system. You can also convert values of a color from any of
these systems to another with the COLOR_CONVERT routine. See
COLOR_CONVERT in the IDL Reference Guide for more information.

Figure 3-15: XLOADCT Showing Results of MODIFYCT
Modifying and Converting Color Tables Image Processing in IDL

Chapter 3: Working with Color 121
Converting Between Image Types

Sometimes an image type must be converted from indexed to RGB, RGB to
grayscale, or RGB to indexed. For example, an image may be imported into IDL as
an indexed image (from a PNG file for example) but it may need to be exported as an
RGB image (to a JPEG file for example). The opposite may also need to be done. See
“Foreground Color” on page 95 for more information on grayscale, indexed, and
RGB images.

Converting Indexed Images to RGB Images

The convec.dat file is a binary file that contains an indexed image (a two-
dimensional image and its associated color table) of the convection of the earth’s
mantle. This file does not contain a related color table. The following example
applies a color table to this image and then converts the image and table to an RGB
image (which contains its own color information).

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Converting Indexed Images to RGB Images” on page 123 or complete the
following steps for a detailed description of the process.

1. Determine the path to the convec.dat binary file:

convecFile = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

convecSize = [248, 248]

3. Import the image from the file:

convecImage = READ_BINARY(convecFile, $
DATA_DIMS = convecSize)

4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVICE, DECOMPOSED = 0

The EOS B color table is applied to highlight the features of this image.
Image Processing in IDL Converting Between Image Types

122 Chapter 3: Working with Color
5. Load the EOS B color table (index number 27) to highlight the image’s
features and initialize the display:

LOADCT, 27
WINDOW, 0, TITLE = 'convec.dat', $

XSIZE = convecSize[0], YSIZE = convecSize[1]

6. Now display the image with this color table:

TV, convecImage

The following figure shows the original image with an applied color table.

A color table is formed from three vectors (the red vector, the green vector, and
the blue vector). The same element of each vector together form an RGB
triplet to create a color. For example, the i-th element of the red vector may be
255, the ith element of the green vector may be 255, and the ith element of the
blue vector maybe 0. The RGB triplet of the ith element would then be (255,
255, 0), which is the color yellow. Since a color table contains 256 indices, its
three vectors have 256 elements each. You can access these vectors with the
TVLCT routine using the GET keyword.

Note
On some PseudoColor displays, fewer than 256 entries will be available.

Figure 3-16: Example of an Indexed Image With Associated Color Table
Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 123
7. Access the values of the color table by setting the GET keyword to the TVLCT
routine.

TVLCT, red, green, blue, /GET

This color table (color information) can be stored within the image by
converting it to an RGB image. For this example, the RGB image will be pixel
interleaved in order to be exported to a JPEG file.

Tip
If the original indexed image contains values of a data type other than byte, you
should byte-scale the image (with the BYTSCL routine) before using the following
method.

Before converting the indexed image into an RGB image, the resulting three-
dimensional array must be initialized.

8. Initialize the data type and the dimensions of the resulting RGB image:

imageRGB = BYTARR(3, convecSize[0], convecSize[1])

Each channel of the resulting RGB image can be derived from the red, green,
and blue vectors of the color table and the original indexed image.

9. Use the red, green, and blue vectors of the color table and the original indexed
image to form a single image composed of these channels:

imageRGB[0, *, *] = red[convecImage]
imageRGB[1, *, *] = green[convecImage]
imageRGB[2, *, *] = blue[convecImage]

10. Export the resulting RGB image to a JPEG file:

WRITE_JPEG, 'convecImage.jpg', imageRGB, TRUE = 1, $
QUALITY = 100.

The TRUE keyword is set to 1 because the resulting RGB image is pixel
interleaved. See WRITE_JPEG for more information.

Example Code: Converting Indexed Images to RGB Images

Copy and paste the following text into the IDL Editor window. After saving the file as
IndexedToRGB.pro, compile and run the program to reproduce the previous
example.

PRO IndexedToRGB

; Determine the path to the file.
convecFile = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])
Image Processing in IDL Converting Between Image Types

124 Chapter 3: Working with Color
; Initialize the image size parameter.
convecSize = [248, 248]

; Import the image from the file.
convecImage = READ_BINARY(convecFile, $

DATA_DIMS = convecSize)

; Initialize display.
DEVICE, DECOMPOSED = 0
LOADCT, 27
WINDOW, 0, TITLE = 'convec.dat', $

XSIZE = convecSize[0], YSIZE = convecSize[1]

; Display image.
TV, convecImage

; Obtain the red, green, and blue vectors that form the
; current color table.
TVLCT, red, green, blue, /GET

; Initialize the resulting RGB image.
imageRGB = BYTARR(3, convecSize[0], convecSize[1])

; Derive each color image from the vectors of the
; current color table.
imageRGB[0, *, *] = red[convecImage]
imageRGB[1, *, *] = green[convecImage]
imageRGB[2, *, *] = blue[convecImage]

; Write the resulting RGB image out to a JPEG file.
WRITE_JPEG, 'convec.jpg', imageRGB, TRUE = 1, $

QUALITY = 100.

END

Converting RGB Images to Grayscale Images

The following example extracts the three channels of an RGB image contained in the
glowing_gas.jpg file, which is in the examples/data directory. This file is
provided by the Hubble Heritage Team, which is made of AURA, STScI, and NASA.

The channels are extracted as grayscale (intensity) images. These images are
converted to floating-point data and then added together to form a single image,
which is a grayscale version of the original RGB image.
Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 125
For code that you can copy and paste into an Editor window, see “Example Code:
Converting RGB Images into Grayscale Images” on page 128 or complete the
following steps for a detailed description of the process.

1. Determine the path to the file:

file = FILEPATH('glowing_gas.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Query the file to determine the image parameters:

queryStatus = QUERY_JPEG(file, imageInfo)

3. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

4. Import the image from the file:

READ_JPEG, file, image

5. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to one before your first RGB image is
displayed within an IDL session or program. See “Foreground Color” on
page 95 for more information:

DEVICE, DECOMPOSED = 1

6. Create a window and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Glowing Gas RGB Image'

TV, image, TRUE = 1
Image Processing in IDL Converting Between Image Types

126 Chapter 3: Working with Color
The following figure shows the original RGB image.

7. Extract the channels (as images) from the RGB image:

redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image[1, *, *])
blueChannel = REFORM(image[2, *, *])

8. Initialize the grayscale display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

9. Create another window and display each channel of the RGB image:

WINDOW, 1, XSIZE = 3*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Red (left), Green (middle), ' + $
'and Blue (right) Channels of the RGB Image'

TV, redChannel, 0
TV, greenChannel, 1
TV, blueChannel, 2

Figure 3-17: The Glowing Gas RGB Image
Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 127
The following figure shows the RGB channels. The red channel is on the left,
the green channel is in the middle, and the blue channel is on the right.

10. Convert the channels into a single grayscale image.

grayscaleImage = BYTE(0.299*FLOAT(redChannel) + $
0.587*FLOAT(redChannel) + 0.114*FLOAT(blueChannel))

The pixel values of the channels are converted from byte values to floating-
point values because byte values cannot exceed 255. The adjustment factors
(0.299, 0.587, and 0.114) are used to enhance visual perception and to scale
the results to a range from 0 to 255. The BYTE function is used to restore the
pixel values back to their original data type.

11. Create another window and display the grayscale image:

WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Resulting Grayscale Image' + $

TV, grayscaleImage

Figure 3-18: The Channels of the Glowing Gas RGB Image
Image Processing in IDL Converting Between Image Types

128 Chapter 3: Working with Color
The following figure shows the result of creating a grayscale image from the
individual channels of an RGB image.

Example Code: Converting RGB Images into Grayscale Images

Copy and paste the following text into the IDL Editor window. After saving the file as
RGBToGrayscale.pro, compile and run the program to reproduce the previous
example.

PRO RGBToGrayscale

; Determine the path to the file.
file = FILEPATH('glowing_gas.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Query the file to determine image parameters.
queryStatus = QUERY_JPEG(file, imageInfo)

; Set the image size parameter from the query
; information.
imageSize = imageInfo.dimensions

; Import the image from the file.
READ_JPEG, file, image

; Initialize the RGB display.

Figure 3-19: Resulting Grayscale Image
Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 129
DEVICE, DECOMPOSED = 1

; Create a window and display the image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Glowing Gas RGB Image'
TV, image, TRUE = 1

; Extract the channels (as images) from the RGB image.
redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image[1, *, *])
blueChannel = REFORM(image[2, *, *])

; Initialize the grayscale display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create another window and display each channel of the
; RGB image.
WINDOW, 1, XSIZE = 3*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Red (left), Green (middle), ' + $
'and Blue (right) Channels of the RGB Image'

TV, redChannel, 0
TV, greenChannel, 1
TV, blueChannel, 2

; Convert the channels into a grayscale image.
grayscaleImage = BYTE(0.299*FLOAT(redChannel) + $

0.587*FLOAT(redChannel) + 0.114*FLOAT(blueChannel))

; Create another window and display the resulting
; grayscale image.
WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Resulting Grayscale Image'
TV, grayscaleImage

END

Converting RGB Images to Indexed Images

Although it is a relatively simple process to convert an RGB image to a grayscale
image, the process needed to convert an RGB image to an indexed image is more
complex. This process is more complex because the millions of possible colors
provided by an RGB image must be decomposed into the 256 colors used by an
indexed image. IDL’s COLOR_QUAN function may be used to perform this process.

The following example shows how to use the COLOR_QUAN function to convert an
RGB image to an indexed image. The elev_t.jpg file contains a pixel interleaved
Image Processing in IDL Converting Between Image Types

130 Chapter 3: Working with Color
RGB image, which has its own color information. This example converts the image
to an indexed image with an associated color table.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Converting RGB Images to Indexed Images” on page 132 or complete the
following steps for a detailed description of the process.

1. Determine the path to the elev_t.jpg file:

elev_tFile = FILEPATH('elev_t.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import the image from the elev_t.jpg file into IDL:

READ_JPEG, elev_tFile, elev_tImage

3. Determine the size of the imported image:

elev_tSize = SIZE(elev_tImage, /DIMENSIONS)

4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to one before your first RGB image is
displayed within an IDL session or program. See “Foreground Color” on
page 95 for more information:

DEVICE, DECOMPOSED = 1

5. Initialize the display:

WINDOW, 0, TITLE = 'elev_t.jpg', $
XSIZE = elev_tSize[1], YSIZE = elev_tSize[2]

6. Display the imported image:

TV, elev_tImage, TRUE = 1
Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 131
The following figure shows the original RGB image.

Note
If you are running IDL on a PseudoColor display, the RGB image will not be
displayed correctly. A PseudoColor display only allows the display of indexed
images. You can change the RGB image to an indexed image with the
COLOR_QUAN routine. An example of this method is shown in this section.

The RGB image is converted to an indexed image with the COLOR_QUAN
routine, but the DECOMPOSED keyword to the DEVICE command must be
set to zero (for TrueColor displays) before using COLOR_QUAN because it is
a color table related routine. See COLOR_QUAN in the IDL Reference Guide
for more information.

Figure 3-20: Example of an RGB Image
Image Processing in IDL Converting Between Image Types

132 Chapter 3: Working with Color
Note
COLOR_QUAN may result in some loss of color information since it quantizes the
image to a fixed number of colors (stored in the color table).

7. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVICE, DECOMPOSED = 0

8. Convert the RGB image to an indexed image with an associated color table:

imageIndexed = COLOR_QUAN(elev_tImage, 1, red, green, $
blue)

9. Export the resulting indexed image and its associated color table to a PNG file:

WRITE_PNG, 'elev_t.png', imageIndexed, red, green, blue

Example Code: Converting RGB Images to Indexed Images

Copy and paste the following text into the IDL Editor window. After saving the file as
RGBToIndexed.pro, compile and run the program to reproduce the previous
example.

PRO RGBToIndexed

; Determine path to the "elev_t.jpg" file.
elev_tFile = FILEPATH('elev_t.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Import image from file into IDL.
READ_JPEG, elev_tFile, elev_tImage

; Determine the size of the imported image.
elev_tSize = SIZE(elev_tImage, /DIMENSIONS)

; Initialize display.
DEVICE, DECOMPOSED = 1
WINDOW, 0, TITLE = 'elev_t.jpg', $

XSIZE = elev_tSize[1], YSIZE = elev_tSize[2]

; Display image.
TV, elev_tImage, TRUE = 1

; Convert RGB image to indexed image with associated
; color table.
DEVICE, DECOMPOSED = 0
Converting Between Image Types Image Processing in IDL

Chapter 3: Working with Color 133
imageIndexed = COLOR_QUAN(elev_tImage, 1, red, green, $
blue)

; Write resulting image and its color table to a PNG
; file.
WRITE_PNG, 'elev_t.png', imageIndexed, red, green, blue

END
Image Processing in IDL Converting Between Image Types

134 Chapter 3: Working with Color
Highlighting Features with a Color Table

For indexed images, custom color tables can be derived to highlight specific features.
Color tables are usually designed to vary within certain ranges to show dramatic
changes within an image. Some color tables are designed to highlight features with
drastic color change in adjacent ranges (for example setting 0 through 20 to black and
setting 21 through 40 to white).

Note
Color tables are associated with indexed images. RGB images already contain their
own color information. If you want to derive a color table for an RGB image, you
should convert it to an indexed image with the COLOR_QUAN routine. You should
also set COLOR_QUAN’s CUBE keyword to 6 to insure the resulting indexed
image is an intensity representation of the original RGB image. See COLOR_QUAN
in the IDL Reference Guide for more information

Highlighting Features with Color in Direct Graphics

The data in the mineral.png file in the examples/data directory comes with its
own color table. The following example will apply this related color table, then a pre-
defined color table, and finally derive a new color table to highlight specific features.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Highlighting Features with Color in Direct Graphics” on page 137 or complete
the following steps for a detailed description of the process.

1. Determine the path to the mineral.png file:

mineralFile = FILEPATH(‘mineral.png', $
SUBDIRECTORY = [‘examples', ‘data'])

2. Import the image from the mineral.png file into IDL:

mineralImage = READ_PNG(mineralFile, red, green, blue)

The image's associated color table is contained within the resulting red, green,
and blue vectors.

3. Determine the size of the imported image:

mineralSize = SIZE(mineralImage, /DIMENSIONS)
Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 135
4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVICE, DECOMPOSED = 0

5. Load the image’s associated color table with the TVLCT routine:

TVLCT, red, green, blue

6. Initialize the display:

WINDOW, 0, XSIZE = mineralSize[0], YSIZE = mineralSize[1], $
TITLE = 'mineral.png'

7. Display the imported image:

TV, mineralImage

This scanning electron microscope image shows mineral deposits in a sample
of polished granite and gneiss. The associated color table is a reverse
grayscale.

The following figure shows that the associated color table highlights the gneiss
very well, but the other features are not very clear. The other features can be
defined with IDL’s pre-defined color table, RAINBOW.

8. Load the RAINBOW color table and redisplay the image in another window:

LOADCT, 13
WINDOW, 1, XSIZE = mineralSize[0], YSIZE = mineralSize[1], $

TITLE = ‘RAINBOW Color'
TV, mineralImage

Figure 3-21: Mineral Image and Default Color Table (Direct Graphics)
Image Processing in IDL Highlighting Features with a Color Table

136 Chapter 3: Working with Color
The following figure shows that the yellow, cyan, and red sections are now
apparent, but the cracks are no longer visible. Details within the yellow areas
and the green background are also difficult to distinguish. These features can
be highlighted by designing your own color table.

The features within the image are at specific ranges in between 0 and 255.
Instead of a progressive color table, specific colors can be defined to be
constant over these ranges. Any contrasting colors can be used, but it is easiest
to derive the additive and subtractive primary colors used in the previous
section.

9. Define the colors for a new color table:

colorLevel = [[0, 0, 0], $; black
[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, 0, 255], $; blue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

10. Create a new color table that contains eight levels, including the highest end
boundary by first deriving levels for each color in the new color table:

numberOfLevels = CEIL(!D.TABLE_SIZE/8.)
level = INDGEN(!D.TABLE_SIZE)/numberOfLevels

11. Place each color level into its appropriate range.

newRed = colorLevel[0, level]
newGreen = colorLevel[1, level]
newBlue = colorLevel[2, level]

Figure 3-22: Mineral Image and RAINBOW Color Table (Direct Graphics)
Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 137
12. Include the last color in the last level:

newRed[!D.TABLE_SIZE - 1] = 255
newGreen[!D.TABLE_SIZE - 1] = 255
newBlue[!D.TABLE_SIZE - 1] = 255

13. Make the new color table current:

TVLCT, newRed, newGreen, newBlue

14. Display the image with this new color table in another window:

WINDOW, 2, XSIZE = mineralSize[0], $
YSIZE = mineralSize[1], TITLE = 'Cube Corner Colors'

TV, mineralImage

The following figure shows that each feature is now highlighted including the
cracks. The color table also highlights at least three different types of cracks.

Example Code: Highlighting Features with Color in Direct
Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
HighlightFeatures_Direct.pro, compile and run the program to reproduce the
previous example.

PRO HighlightFeatures_Direct

; Determine path to "mineral.png" file.
mineralFile = FILEPATH('mineral.png', $

SUBDIRECTORY = ['examples', 'data'])

; Import image from file into IDL.
mineralImage = READ_PNG(mineralFile, $

red, green, blue)

Figure 3-23: Mineral Image and Derived Color Table (Direct Graphics)
Image Processing in IDL Highlighting Features with a Color Table

138 Chapter 3: Working with Color
; Determine size of imported image.
mineralSize = SIZE(mineralImage, /DIMENSIONS)

; Apply imported color vectors to current color table.
DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

; Initialize display.
WINDOW, 0, XSIZE = mineralSize[0], YSIZE = mineralSize[1], $

TITLE = 'mineral.png'

; Display image.
TV, mineralImage

; Load "RAINBOW" color table and display image in
; another window.
LOADCT, 13
WINDOW, 1, XSIZE = mineralSize[0], YSIZE = mineralSize[1], $

TITLE = 'RAINBOW Color'
TV, mineralImage

; Define colors for a new color table.
colorLevel = [[0, 0, 0], $; black

[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, 0, 255], $; blue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

; Derive levels for each color in the new color table.
; NOTE: some displays may have less than 256 colors.
numberOfLevels = CEIL(!D.TABLE_SIZE/8.)
level = INDGEN(!D.TABLE_SIZE)/numberOfLevels

; Place each color level into its appropriate range.
newRed = colorLevel[0, level]
newGreen = colorLevel[1, level]
newBlue = colorLevel[2, level]

; Include the last color in the last level.
newRed[!D.TABLE_SIZE - 1] = 255
newGreen[!D.TABLE_SIZE - 1] = 255
newBlue[!D.TABLE_SIZE - 1] = 255

; Make the new color table current.
TVLCT, newRed, newGreen, newBlue
Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 139
; Display image in another window.
WINDOW, 2, XSIZE = mineralSize[0], $

YSIZE = mineralSize[1], TITLE = 'Cube Corner Colors'
TV, mineralImage

END

Highlighting Features with Color in Object Graphics

The previous example could have been done with Object Graphics. The color table is
derived in the same matter. This example shows how to create a color table to
highlight image features using Object Graphics.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Highlighting Features with Color in Object Graphics” on page 142 or complete
the following steps for a detailed description of the process.

1. Determine the path to the mineral.png file:

mineralFile = FILEPATH(‘mineral.png', $
SUBDIRECTORY = [‘examples', ‘data'])

2. Import the image and its associated color table into IDL:

mineralImage = READ_PNG(mineralFile, red, green, blue)

3. Determine the size of the imported image:

mineralSize = SIZE(mineralImage, /DIMENSIONS)

4. Initialize objects necessary for a graphics display:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [mineralSize[0], mineralSize[1]], $
TITLE = 'mineral.png')

oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = [0., 0., $
mineralSize[0], mineralSize[1]])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize a palette object containing the image’s associated color table and
apply the palette to the image objects:

oPalette = OBJ_NEW('IDLgrPalette', red, green, blue)
oImage = OBJ_NEW('IDLgrImage', mineralImage, $

PALETTE = oPalette)

The objects are then added to the view, which is displayed in the window.
Image Processing in IDL Highlighting Features with a Color Table

140 Chapter 3: Working with Color
6. Add the image to the model, then add the model to the view:

oModel -> Add, oImage
oView -> Add, oModel

Draw the view in the window:

oWindow -> Draw, oView

This scanning electron microscope image shows mineral deposits in a sample
of polished granite and gneiss. The associated color table is a reverse
grayscale.

The following figure shows that the associated color table highlights the gneiss
very well, but the other features are not very clear. The other features can be
defined with IDL’s pre-defined color table, RAINBOW.

The palette can easily be modified to show the RAINBOW pre-defined color
table in another instance of the window object.

7. Update palette with RAINBOW color table and then display the image with
this color table in another instance window of the window object:

oPalette -> LoadCT, 13
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [mineralSize[0], mineralSize[1]], $
TITLE = 'RAINBOW Color')

oWindow -> Draw, oView

The following figure shows that the yellow, cyan, and red sections are now
apparent, but the cracks are no longer visible. Details within the yellow areas

Figure 3-24: Mineral Image and Default Color Table (Object Graphics)
Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 141
and the green background are also difficult to distinguish. These features can
be highlighted by designing your own color table.

The features within the image are at specific ranges in between 0 and 255.
Instead of a progressive color table, specific colors can be defined to be
constant over these ranges. Any contrasting colors can be used, but the easiest
to derive are the additive and subtractive primary colors used in the previous
section.

8. Define colors for a new color table:

colorLevel = [[0, 0, 0], $; black
[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, 0, 255], $; blue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

9. Create a new color table that contains eight levels, including the highest end
boundary by first deriving levels for each color in the new color table:

numberOfLevels = CEIL(!D.TABLE_SIZE/8.)
level = INDGEN(!D.TABLE_SIZE)/numberOfLevels

10. Place each color level into its appropriate range.

newRed = colorLevel[0, level]
newGreen = colorLevel[1, level]
newBlue = colorLevel[2, level]

Figure 3-25: Mineral Image and RAINBOW Color Table (Object Graphics)
Image Processing in IDL Highlighting Features with a Color Table

142 Chapter 3: Working with Color
11. Include the last color in the last level:

newRed[!D.TABLE_SIZE - 1] = 255
newGreen[!D.TABLE_SIZE - 1] = 255
newBlue[!D.TABLE_SIZE - 1] = 255

Apply the new color table to the palette object:

12. Display the image with this color table in another window:

oPalette -> SetProperty, RED_VALUES = newRed, $
GREEN_VALUES = newGreen, BLUE_VALUES = newBlue

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [mineralSize[0], mineralSize[1]], $
TITLE = 'Cube Corner Colors')

oWindow -> Draw, oView

The following figure shows that each image feature is readily distinguishable.

13. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view and the palette
object:

OBJ_DESTROY, [oView, oPalette]

Example Code: Highlighting Features with Color in Object
Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
HighlightFeatures_Object.pro, compile and run the program to reproduce the
previous example.

Figure 3-26: Mineral Image and Derived Color Table (Object Graphics)
Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 143
PRO HighlightFeatures_Object

; Determine path to "mineral.png" file.
mineralFile = FILEPATH('mineral.png', $

SUBDIRECTORY = ['examples', 'data'])

; Import image from file into IDL.
mineralImage = READ_PNG(mineralFile, $

red, green, blue)

; Determine size of imported image.
mineralSize = SIZE(mineralImage, /DIMENSIONS)

; Initialize objects.
; Initialize display.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [mineralSize[0], mineralSize[1]], $
TITLE = 'mineral.png')

oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = [0., 0., $
mineralSize[0], mineralSize[1]])

oModel = OBJ_NEW('IDLgrModel')
; Initialize palette and image.
oPalette = OBJ_NEW('IDLgrPalette', red, green, blue)
oImage = OBJ_NEW('IDLgrImage', mineralImage, $

PALETTE = oPalette)

; Add image to model, then model to view, and draw final
; view in window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Update palette with RAINBOW color table and then
; display image in another instance of the window object.
oPalette -> LoadCT, 13
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [mineralSize[0], mineralSize[1]], $
TITLE = 'RAINBOW Color')

oWindow -> Draw, oView

; Define colors for a new color table.
colorLevel = [[0, 0, 0], $; black

[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, 0, 255], $; blue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white
Image Processing in IDL Highlighting Features with a Color Table

144 Chapter 3: Working with Color
; Derive levels for each color in the new color table.
; NOTE: some displays may have less than 256 colors.
numberOfLevels = CEIL(!D.TABLE_SIZE/8.)
level = INDGEN(!D.TABLE_SIZE)/numberOfLevels

; Place each color level into its appropriate range.
newRed = colorLevel[0, level]
newGreen = colorLevel[1, level]
newBlue = colorLevel[2, level]

; Include the last color in the last level.
newRed[!D.TABLE_SIZE - 1] = 255
newGreen[!D.TABLE_SIZE - 1] = 255
newBlue[!D.TABLE_SIZE - 1] = 255

; Update palette with new color table and then
; display image in another instance of the window object.
oPalette -> SetProperty, RED_VALUES = newRed, $

GREEN_VALUES = newGreen, BLUE_VALUES = newBlue
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [mineralSize[0], mineralSize[1]], $
TITLE = 'Cube Corner Colors')

oWindow -> Draw, oView

; Clean-up object references.
OBJ_DESTROY, [oView, oPalette]

END
Highlighting Features with a Color Table Image Processing in IDL

Chapter 3: Working with Color 145
Showing Variations in Uniform Areas

Histogram equalization is used to change either an image or its associated color table
to display minor variations within nearly uniform areas of the image. The histogram
of the image is used to determine where the image or color table should be equalized
to highlight these minor variations. Since this chapter pertains to color and color
tables, this section only discusses histogram equalization of color tables. See
“Working with Histograms” on page 417 for more information on how histogram
equalization effects images.

The histogram of an image shows the number of pixels for each color value within
the range of the image. If the minimum value of the image is 0 and the maximum
value of the image is 255, the histogram of the image shows the number of pixels for
each value ranging between and including 0 and 255. Peaks in the histogram
represent more common values within the image which usually consist of nearly
uniform regions. Valleys in the histogram represent less common values. Empty
regions within the histogram indicate that no pixels within the image contain those
values.

The following figure shows an example of a histogram and its related image. The
most common value in this image is 180, which appears to be the background of the
image. Although the background appears nearly uniform, it contains many subtle
variations (cracks).

During histogram equalization, the color table values associated with the empty
regions of the histogram are redistributed equally among the peaks and valleys. This
process creates intensity gradients within the peaks and valleys (replacing nearly
uniform values), thus highlighting minor variations.

Figure 3-27: Example of a Histogram (left) and Its Related Image (right)
Image Processing in IDL Showing Variations in Uniform Areas

146 Chapter 3: Working with Color
The following section provides a histogram equalization example in Direct Graphics,
which uses routines that directly work with the current color table. Since the concept
of a current color table does not apply to Object Graphics, you must use histogram
equalization routines that directly effect the image. See “Working with Histograms”
on page 417 for more information on histogram equalization with Object Graphics.

Showing Variations with Direct Graphics

The following example will apply histogram equalization to a color table associated
with an image of mineral deposits to reveal previously indistinguishable features.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Showing Variations with Direct Graphics” on page 150 or complete the
following steps for a detailed description of the process.

1. Determine the path to the mineral.png file:

file = FILEPATH(‘mineral.png', $
SUBDIRECTORY = [‘examples', ‘data'])

2. Import the image from the mineral.png file into IDL:

image = READ_PNG(file)

3. Determine the size of the imported image:

imageSize = SIZE(image, /DIMENSIONS)

4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program:

DEVICE, DECOMPOSED = 0

5. Initialize the image display:

LOADCT, 0
WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Histogram/Image'

6. Compute and display the histogram of the image. This step is not required to
perform histogram equalization on a color table within IDL. It is done here to
show how the histogram equalization affects the color table:

brightnessHistogram = BYTSCL(HISTOGRAM(image))
PLOT, brightnessHistogram, XSTYLE = 9, YSTYLE = 5, $

POSITION = [0.05, 0.2, 0.45, 0.9], $
XTITLE = 'Histogram of Image'
Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 147
7. Display the image within the same window.

TV, image, 1

The following figure shows the resulting histogram and its related image.

8. Use the H_EQ_CT procedure to perform histogram equalization on the current
color table:

H_EQ_CT, image

9. Display the original image in another window with the updated color table:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Histogram Equalized Color Table'

TV, image

Display the updated color table with the XLOADCT utility:

XLOADCT

Click on the Done button close the XLOADCT utility.

The following figure contains the results of the equalization on the image and
its color table. After introducing intensity gradients within previously uniform
regions of the image, the cracks are now more visible. However, some of the

Figure 3-28: Histogram (left) of the Mineral Image (right) in Direct Graphics
Image Processing in IDL Showing Variations in Uniform Areas

148 Chapter 3: Working with Color
original features are not as clear. These regions can be clarified by interactively
applying the amount of equalization to the color table.

The histogram equalizing process can also be interactively applied to a color
table with the H_EQ_INT procedure. The H_EQ_INT procedure provides an
interactive display, allowing you to use the cursor to control the amount of
equalization. The equalization applied to the color table is scaled by a fraction,
which is controlled by the movement of the cursor in the x-direction. If the
cursor is all the way to the left side of the interactive display, the fraction
equalized is close to zero, and the equalization has little effect on the color
table. If the cursor is all the way to the right side of the interactive display, the
fraction equalized is close to one, and the equalization is fully applied to the
color table (which is similar to the results from the H_EQ_CT procedure). You
can click on the right mouse button to set the amount of equalization and exit
out of the interactive display.

Figure 3-29: Resulting Image (left) and Color Table (right) of the Histogram
Equalization in Direct Graphics
Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 149
10. Use the H_EQ_INT procedure to interactively perform histogram equalization
on the current color table:

H_EQ_INT, image

Place the cursor at about 130 in the x-direction, which is about 0.5 equalized
(about 50% of the equalization applied by the H_EQ_CT procedure). You do
not have to be exact for this example. The y-direction location is arbitrary.

Click on the right mouse button.

The interactive display is similar to the following figure.

11. Display the image using the updated color table in another window:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Interactively Equalized Color Table'

TV, image

Display the updated color table with the XLOADCT utility:

XLOADCT

Click on the Done button close the XLOADCT utility.

Figure 3-30: Interactive Display for Histogram Equalization
Image Processing in IDL Showing Variations in Uniform Areas

150 Chapter 3: Working with Color
The following figure contains the results of the equalization on the image and
its color table. The original details have returned and the cracks are still
visible.

Example Code: Showing Variations with Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
HistogramEqualizing_Direct.pro, compile and run the program to reproduce
the previous example. The BLOCK keyword is set when using XLOADCT to force
the example routine to wait until the Done button is pressed to continue. If the
BLOCK keyword was not set, the example routine would produce all of the displays
at once and then end.

PRO HistogramEqualizing_Direct

; Determine path to file.
file = FILEPATH('mineral.png', $

SUBDIRECTORY = ['examples', 'data'])

Figure 3-31: Resulting Image (left) and Color Table (right) of the Interactive
Histogram Equalization in Direct Graphics
Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 151
; Import image from file into IDL.
image = READ_PNG(file)

; Determine size of imported image.
imageSize = SIZE(image, /DIMENSIONS)

;Initialize IDL on a TrueColor display to use
; color-related routines.
DEVICE, DECOMPOSED = 0

; Initialize the image display.
LOADCT, 0
WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Histogram/Image'

; Compute and scale histogram of image.
brightnessHistogram = BYTSCL(HISTOGRAM(image))

; Display histogram plot.
PLOT, brightnessHistogram, XSTYLE = 9, YSTYLE = 5, $

POSITION = [0.05, 0.2, 0.45, 0.9], $
XTITLE = 'Histogram of Image'

; Display image.
TV, image, 1

; Histogram equalize the color table.
H_EQ_CT, image

; Display image and updated color table in another
; window.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Histogram-Equalized Color Table'
TV, image

; Display the updated color table with the XLOADCT
; utility.
XLOADCT, /BLOCK

; Interactively histogram equalize the color table. The
; H_EQ_INT routine provides an interactive display to
; allow you to select the amount of equalization. Place
; the cursor at about 130 in the x-direction, which is
; about 0.5 equalized. The y-direction is arbitrary.
; Click on the right mouse button.
; NOTE: you do not have to be exact for this example.
H_EQ_INT, image

; Display image and updated color table in another
Image Processing in IDL Showing Variations in Uniform Areas

152 Chapter 3: Working with Color
; window.
WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Interactively Equalized Color Table'
TV, image

; Display the updated color table with the XLOADCT
; utility.
XLOADCT, /BLOCK

END
Showing Variations in Uniform Areas Image Processing in IDL

Chapter 3: Working with Color 153
Applying Color Annotations to Images

Many images are annotated to explain certain features or highlight specific details.
Color annotations are more noticeable than plain black or white annotations. In
Direct Graphics, how color annotations are applied depends on the type of image
(indexed or RGB) displayed. With indexed images, annotation colors are derived
from the image’s associated color table. With RGB images, annotation colors are
independent of the RGB image in Direct Graphics. Annotation colors and images are
separated within Object Graphics regardless of the image type.

Applying Color Annotations to Indexed Images in
Direct Graphics

Indexed images are usually associated with color tables. With Direct Graphics, these
related color tables are used for all the colors shown within a display. Color tables are
made up of up to 256 color triplets (red, green, and blue values of each color within
the table). If you want to apply a specific color to data or to an annotation, you must
change the red, green, and blue values at a specific index within the color table.

Color annotations are usually applied to label each color level within the image or to
allow color comparisons. This section shows how to label each color level on an
indexed image in Direct Graphics. As an example, an image of average world
temperature is imported from the worldtmp.png file. This file does not contain a
color table associated with this image, so a pre-defined color table will be applied.
This table provides the colors for the polygons and text used to make a colorbar for
this image. Each polygon uses the color of each level in the table. The text represents
the average temperature (in Celsius) of each level.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Applying Color Annotations to Indexed Images in Direct Graphics” on
page 156 or complete the following steps for a detailed description of the process.

1. Determine the path to the worldtmp.png file:

worldtmpFile = FILEPATH('worldtmp.png', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

2. Import the image from the worldtmp.png file into IDL:

worldtmpImage = READ_PNG(worldtmpFile)

3. Determine the size of the imported image:

worldtmpSize = SIZE(worldtmpImage, /DIMENSIONS)
Image Processing in IDL Applying Color Annotations to Images

154 Chapter 3: Working with Color
4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program. See “Foreground Color” on
page 95 for more information.

DEVICE, DECOMPOSED = 0

Since the imported image does not have an associated color table, the
Rainbow18 color table (index number 38) is applied to the display.

5. Initialize display:

LOADCT, 38
WINDOW, 0, XSIZE = worldtmpSize[0], YSIZE = worldtmpSize[1],
$

TITLE = 'Average World Temperature (in Celsius)'

6. Now display the image with this color table:

TV, worldtmpImage

The following figure is displayed.

Before applying the color polygons and text of each level, you must first
initialize their color values and their locations. The Rainbow18 color table has
only 18 different color levels, but still has 256 elements. You can use the
INDGEN routine to make an array of 18 elements ranging from 0 to 17 in
value, where each element contains the index of that element. Then you can

Figure 3-32: Temperature Image and Rainbow18 Color Table (Direct Graphics)
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 155
use the BYTSCL routine to scale these values to range from 0 to 255. The
resulting array contains the initial color value (from 0 to 255) of the associated
range (from 0 to 17, equalling 18 elements).

7. Initialize the color level parameter:

fillColor = BYTSCL(INDGEN(18))

8. Initialize the average temperature of each level, which directly depends on the
initial color value of each range. Temperature is linearly scaled to range from
-60 to 40 Celsius. You can convert the resulting temperature value to a string
variable to be used as text:

temperature = STRTRIM(FIX(((20.*fillColor)/51.) - 60), 2)

Note
When the fillColor variable in the previous statement is multiplied by the floating-
point value of 20 (denoted by the decimal after the number), the elements of the
array are converted from byte values to floating-point values. These elements are
then converted to integer values with the FIX routine so the decimal part will not be
displayed. The STRTRIM routine converts the integer values to string values to be
displayed as text. The second argument to STRTRIM is set to 2 to note the leading
and trailing blank characters should be trimmed away when the integer values are
converted to string values.

With the polygon color and text now defined, you can determine their
locations. You can use the POLYFILL routine to draw each polygon and the
XYOUTS routine to display each element of text. The process is repetitive
from level to level, so a FOR/DO loop is used to display the entire colorbar.
Since each polygon and text is drawn individually within the loop, you only
need to determine the location of a single polygon and an array of offsets for
each step in the loop. The following two steps describe this process.

9. Initialize the polygon and the text location parameters. Each polygon is 35
pixels in width and 18 pixels in height. The offset will move the y-location 18
pixels every time a new polygon is displayed:

x = [5., 40., 40., 5., 5.]
y = [5., 5., 23., 23., 5.] + 5.
offset = 18.*FINDGEN(19) + 5.
Image Processing in IDL Applying Color Annotations to Images

156 Chapter 3: Working with Color
10. Apply the polygons and text:

FOR i = 0, (N_ELEMENTS(fillColor) - 1) DO BEGIN & $
POLYFILL, x, y + offset[i], COLOR = fillColor[i], $
/DEVICE & $
XYOUTS, x[0] + 5., y[0] + offset[i] + 5., $
temperature[i], COLOR = 255*(fillColor[i] LT 255), $
/DEVICE & $

ENDFOR

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Applying Color
Annotations to Indexed Images in Direct Graphics” on page 156.

The following figure displays the colorbar annotation applied to the image.

Example Code: Applying Color Annotations to Indexed Images
in Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
ApplyColorbar_Indexed_Direct.pro, compile and run the program to
reproduce the previous example.

Figure 3-33: Temperature Image and Colorbar (Direct Graphics)
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 157
PRO ApplyColorbar_Indexed_Direct

; Determine path to "worldtmp.png" file.
worldtmpFile = FILEPATH('worldtmp.png', $

SUBDIRECTORY = ['examples', 'demo', 'demodata'])

; Import image from file into IDL.
worldtmpImage = READ_PNG(worldtmpFile)

; Determine size of imported image.
worldtmpSize = SIZE(worldtmpImage, /DIMENSIONS)

; Initialize display.
DEVICE, DECOMPOSED = 0
LOADCT, 38
WINDOW, 0, XSIZE = worldtmpSize[0], $

YSIZE = worldtmpSize[1], $
TITLE = 'Average World Temperature (in Celsius)'

; Display image.
TV, worldtmpImage

; Initialize color level parameter.
fillColor = BYTSCL(INDGEN(18))

; Initialize text variable.
temperature = STRTRIM(FIX(((20.*fillColor)/51.) - 60), 2)

; Initialize polygon and text location parameters.
x = [5., 40., 40., 5., 5.]
y = [5., 5., 23., 23., 5.] + 5.
offset = 18.*FINDGEN(19) + 5.

; Apply polygons and text.
FOR i = 0, (N_ELEMENTS(fillColor) - 1) DO BEGIN

POLYFILL, x, y + offset[i], COLOR = fillColor[i], $
/DEVICE
XYOUTS, x[0] + 5., y[0] + offset[i] + 5., $
temperature[i], COLOR = 255*(fillColor[i] LT 255), $
/DEVICE

ENDFOR

END
Image Processing in IDL Applying Color Annotations to Images

158 Chapter 3: Working with Color
Applying Color Annotations to Indexed Images in
Object Graphics

When using Object Graphics, the original color table does not need to be modified.
The color table (palette) pertains only to the image object not the window, view,
model, polygon, or text objects. Color annotations are usually applied to label each
color level within the image or to allow color comparisons. This section shows how
to label each color level on an indexed image in Object Graphics. As an example, an
image of average world temperature is imported from the worldtmp.png file. This
file does not contain a color table associated with this image, so a pre-defined color
table will be applied. This table provides the colors for the polygons and text used to
make a colorbar for this image. Each polygon uses the color of each level in the table.
The text represents the average temperature (in Celsius) of each level.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Applying Color Annotations to Indexed Images in Object Graphics” on
page 162 or complete the following steps for a detailed description of the process.

1. Determine the path to the worldtmp.png file:

worldtmpFile = FILEPATH('worldtmp.png', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

2. Import the image from the worldtmp.png file into IDL:

worldtmpImage = READ_PNG(worldtmpFile)

3. Determine the size of the imported image:

worldtmpSize = SIZE(worldtmpImage, /DIMENSIONS)

4. Initialize the display objects necessary for an Object Graphics display:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [worldtmpSize[0], worldtmpSize[1]], $
TITLE = 'Average World Temperature (in Celsius)')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0, 0, worldtmpSize[0], $
worldtmpSize[1]])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the palette object, load the Rainbow18 color table into the palette,
and then apply the palette to an image object:

oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 38
oImage = OBJ_NEW('IDLgrImage', worldtmpImage, $

PALETTE = oPalette)
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 159
6. Add the image to the model, then add the model to the view, and finally draw
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure is displayed.

Before applying the color polygons and text of each level, you must first
initialize their color values and their locations. The Rainbow18 color table has
only 18 different color levels, but still has 256 elements. You can use the
INDGEN routine to make an array of 18 elements ranging from 0 to 17 in
value, where each element contains the index of that element. Then you can
use the BYTSCL routine to scale these values to range from 0 to 255. The
resulting array contains the initial color value (from 0 to 255) of the associated
range (from 0 to 17, equalling 18 elements).

7. Initialize the color level parameter:

fillColor = BYTSCL(INDGEN(18))

Figure 3-34: Temperature Image and Rainbow18 Color Table (Object Graphics)
Image Processing in IDL Applying Color Annotations to Images

160 Chapter 3: Working with Color
8. Initialize the average temperature of each level, which directly depends on the
initial color value of each range. Temperature is linearly scaled to range from
-60 to 40 Celsius. You can convert the resulting temperature value to a string
variable to be used as text:

temperature = STRTRIM(FIX(((20.*fillColor)/51.) - 60), 2)

Note
When the fillColor variable in the previous statement is multiplied by the floating-
point value of 20 (denoted by the decimal after the number), the elements of the
array are converted from byte values to floating-point values. These elements are
then converted to integer values with the FIX routine so the decimal part will not be
displayed. The STRTRIM routine converts the integer values to string values to be
displayed as text. The second argument to STRTRIM is set to 2 to note the leading
and trailing black values should be trimmed away when the integer values are
converted to string values.

With the polygon color and text now defined, you can determine their
locations. You can use a polygon object to draw each polygon and text objects
to display each element of text. The process is repetitive from level to level, so
a FOR/DO loop is used to display the entire colorbar. Since each polygon and
text is drawn individually within the loop, you only need to determine the
location of a single polygon and an array of offsets for each step in the loop.
The following two steps describe this process.

9. Initialize the polygon and the text location parameters. Each polygon is 35
pixels in width and 18 pixels in height. The offset will move the y-location 18
pixels every time a new polygon is displayed:

x = [5., 40., 40., 5., 5.]
y = [5., 5., 23., 23., 5.] + 5.
offset = 18.*FINDGEN(19) + 5.

10. Initialize the polygon and text objects:

oPolygon = OBJARR(18)
oText = OBJARR(18)
FOR i = 0, (N_ELEMENTS(oPolygon) - 1) DO BEGIN & $

oPolygon[i] = OBJ_NEW('IDLgrPolygon', x, $
y + offset[i], COLOR = fillColor[i], $
PALETTE = oPalette) & $
oText[i] = OBJ_NEW('IDLgrText', temperature[i], $
LOCATIONS = [x[0] + 3., y[0] + offset[i] + 3.], $
COLOR = 255*(fillColor[i] LT 255), $
PALETTE = oPalette) & $

ENDFOR
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 161
Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Applying Color
Annotations to Indexed Images in Object Graphics” on page 162.

11. Add the polygons and text to the model, then add the model to the view, and
finally redraw the view in the window:

oModel -> Add, oPolygon
oModel -> Add, oText
oWindow -> Draw, oView

The following figure displays the colorbar annotation applied to the image.

12. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view and the palette
objects:

OBJ_DESTROY, [oView, oPalette]

Figure 3-35: Temperature Image and Colorbar (Object Graphics
Image Processing in IDL Applying Color Annotations to Images

162 Chapter 3: Working with Color
Example Code: Applying Color Annotations to Indexed Images
in Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
ApplyColorbar_Indexed_Object.pro, compile and run the program to
reproduce the previous example.

PRO ApplyColorbar_Indexed_Object

; Determine path to "worldtmp.png" file.
worldtmpFile = FILEPATH('worldtmp.png', $

SUBDIRECTORY = ['examples', 'demo', 'demodata'])

; Import image from file into IDL.
worldtmpImage = READ_PNG(worldtmpFile)

; Determine size of imported image.
worldtmpSize = SIZE(worldtmpImage, /DIMENSIONS)

; Initialize objects.
; Initialize display.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [worldtmpSize[0], worldtmpSize[1]], $
TITLE = 'Average World Temperature (in Celsius)')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0, 0, worldtmpSize[0], $
worldtmpSize[1]])

oModel = OBJ_NEW('IDLgrModel')
; Initialize palette and image.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 38
oImage = OBJ_NEW('IDLgrImage', worldtmpImage, $

PALETTE = oPalette)

; Add image to model, which is added to view, and then
; display view in window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Initialize color level parameter.
fillColor = BYTSCL(INDGEN(18))

; Initialize text variable.
temperature = STRTRIM(FIX(((20.*fillColor)/51.) - 60), 2)

; Initialize polygon and text location parameters.
x = [5., 40., 40., 5., 5.]
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 163
y = [5., 5., 23., 23., 5.] + 5.
offset = 18.*FINDGEN(19) + 5.

; Initialize polygon and text objects.
oPolygon = OBJARR(18)
oText = OBJARR(18)
FOR i = 0, (N_ELEMENTS(oPolygon) - 1) DO BEGIN

oPolygon[i] = OBJ_NEW('IDLgrPolygon', x, $
y + offset[i], COLOR = fillColor[i], $
PALETTE = oPalette)
oText[i] = OBJ_NEW('IDLgrText', temperature[i], $
LOCATIONS = [x[0] + 3., y[0] + offset[i] + 3.], $
COLOR = 255*(fillColor[i] LT 255), $
PALETTE = oPalette)

ENDFOR

; Add polygons and text to model and then re-display
; view in window.
oModel -> Add, oPolygon
oModel -> Add, oText
oWindow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, [oView, oPalette]

END

Applying Color Annotations to RGB Images in Direct
Graphics

RGB images contain their own color information. Color tables do not apply to RGB
images. With Direct Graphics the color of the annotations on an RGB image do not
depend on a color table.

Tip
If you are running IDL on a PseudoColor display, use the COLOR_QUAN routine
to convert the RGB image to an indexed image with an associated color table to
display the image and see the previous section, “Applying Color Annotations to
Indexed Images in Direct Graphics” on page 153.
Image Processing in IDL Applying Color Annotations to Images

164 Chapter 3: Working with Color
If you want to apply a specific color to data or an annotation, you must provide the
TrueColor index for that color. The TrueColor index ranges from 0 to 16,777,216.
You can derive a TrueColor index from its red, green, and blue values:

red = 255
green = 128
blue = 0
trueColorIndex = red + (256L*green) + ((256L^2)*blue)
PRINT, trueColorIndex

33023

where red, green, and blue are either scalars or vectors of values ranging from 0 to
255 and representing the amount of red, green, and blue in the resulting color. The L
after the numbers defines that number as a longword integer data type. The above red,
green, and blue combination creates the color of orange, which has a TrueColor index
of 33,023.

In this example, a color spectrum of additive and subtractive primary colors will be
drawn on an RGB image for comparison with the colors in an image. The
glowing_gas.jpg file (which is provided by the Hubble Heritage Team, made of
AURA, STScI, and NASA.) contains an RGB image of an expanding shell of
glowing gas surrounding a hot, massive star in our Milky Way Galaxy. This image
contains all the colors of this spectrum.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Applying Color Annotations to Indexed Images in Direct Graphics” on
page 156 or complete the following steps for a detailed description of the process.

1. Determine the path to the glowing_gas.jpg file:

cosmicFile = FILEPATH('glowing_gas.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import the image from the glowing_gas.jpg file into IDL:

READ_JPEG, cosmicFile, cosmicImage

3. Determine the size of the imported image. The image contained within this file
is pixel-interleaved (the color information is contained within the first
dimension). You can use the SIZE routine to determine the other dimensions of
this image:

cosmicSize = SIZE(cosmicImage, /DIMENSIONS)
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 165
4. If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to one before your first RGB image is
displayed within an IDL session or program. See “Foreground Color” on
page 95 for more information:

DEVICE, DECOMPOSED = 1

5. Use the dimensions determined in the previous step to initialize the display:

WINDOW, 0, XSIZE = cosmicSize[1], YSIZE = cosmicSize[2], $
TITLE = ‘glowing_gas.jpg'

6. Now display the image with the TRUE keyword set to 1 since the image is
pixel interleaved:

TV, cosmicImage, TRUE = 1

The following figure shows that the image contains all of the colors of the
additive and subtractive primary spectrum. In the following steps, a colorbar
annotation will be added to allow you to compare the colors of that spectrum
and the colors within the image.

You can use the following to determine the color and location parameters for
each polygon.

Figure 3-36: Cosmic RGB Image (Direct Graphics)
Image Processing in IDL Applying Color Annotations to Images

166 Chapter 3: Working with Color
7. Initialize the color parameters:

red = BYTARR(8) & green = BYTARR(8) & blue = BYTARR(8)
red[0] = 0 & green[0] = 0 & blue[0] = 0 ; black
red[1] = 255 & green[1] = 0 & blue[1] = 0 ; red
red[2] = 255 & green[2] = 255 & blue[2] = 0 ; yellow
red[3] = 0 & green[3] = 255 & blue[3] = 0 ; green
red[4] = 0 & green[4] = 255 & blue[4] = 255 ; cyan
red[5] = 0 & green[5] = 0 & blue[5] = 255 ; blue
red[6] = 255 & green[6] = 0 & blue[6] = 255 ; magenta
red[7] = 255 & green[7] = 255 & blue[7] = 255 ; white
fillColor = red + (256L*green) + ((256L^2)*blue)

8. After defining the polygon colors, you can determine their locations. Initialize
polygon location parameters:

x = [5., 25., 25., 5., 5.]
y = [5., 5., 25., 25., 5.] + 5.
offset = 20.*FINDGEN(9) + 5.

The x and y variables pertain to the x and y locations (in pixel units) of each
box of color. The offset maintains the spacing (in pixel units) of each box.
Since the image is made up of mostly a black background, the x border of the
colorbar is also determined to draw a white border around the polygons.

9. Initialize location of colorbar border:

x_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

The y border is already defined by the y variable.

These parameters are used with POLYFILL and PLOTS to draw the boxes of
the color spectrum and the colorbar border. Each polygon is 20 pixels wide and
20 pixels high. The offset will move the y-location 20 pixels every time a new
polygon is displayed.

10. Apply the polygons and border. You can use the POLYFILL routine to draw
each polygon. The process is repetitive from level to level, so a FOR/DO loop
is used to display the entire colorbar. Since each polygon is drawn individually
within the loop, you only need to determine the location of a single polygon
and an array of offsets for each step in the loop:

FOR i = 0, (N_ELEMENTS(fillColor) - 1) DO POLYFILL, $
x + offset[i], y, COLOR = fillColor[i], /DEVICE

PLOTS, x_border, y, COLOR = fillColor[7], /DEVICE
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 167
The POLYFILL and PLOTS routines result in the following display.

Example Code: Applying Color Annotations to RGB Images in
Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
ApplyColorbar_RGB_Direct.pro, compile and run the program to reproduce the
previous example.

PRO ApplyingColorbar_RGB_Direct

; Determine path to "glowing_gas.jpg" file.
cosmicFile = FILEPATH('glowing_gas.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Import image from file into IDL.
READ_JPEG, cosmicFile, cosmicImage

; Determine size of image.
cosmicSize = SIZE(cosmicImage, /DIMENSIONS)

; Initialize display.
DEVICE, DECOMPOSED = 1
WINDOW, 0, TITLE = 'glowing_gas.jpg', $

XSIZE = cosmicSize[1], YSIZE = cosmicSize[2]

Figure 3-37: Specified Colors on an RGB Image (Direct Graphics)
Image Processing in IDL Applying Color Annotations to Images

168 Chapter 3: Working with Color
; Diplay image.
TV, cosmicImage, TRUE = 1

; Initialize color parameters.
red = BYTARR(8) & green = BYTARR(8) & blue = BYTARR(8)
red[0] = 0 & green[0] = 0 & blue[0] = 0 ; black
red[1] = 255 & green[1] = 0 & blue[1] = 0 ; red
red[2] = 255 & green[2] = 255 & blue[2] = 0 ; yellow
red[3] = 0 & green[3] = 255 & blue[3] = 0 ; green
red[4] = 0 & green[4] = 255 & blue[4] = 255 ; cyan
red[5] = 0 & green[5] = 0 & blue[5] = 255 ; blue
red[6] = 255 & green[6] = 0 & blue[6] = 255 ; magenta
red[7] = 255 & green[7] = 255 & blue[7] = 255 ; white
fillColor = red + (256L*green) + ((256L^2)*blue)

; Initialize polygon location parameters.
x = [5., 25., 25., 5., 5.]
y = [5., 5., 25., 25., 5.] + 5.
offset = 20.*FINDGEN(9) + 5.

; Initialize location of colorbar border.
x_border = [x[0] + offset[0], x[1] + offset[7], $

x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

; Apply polygons and border.
FOR i = 0, (N_ELEMENTS(fillColor) - 1) DO POLYFILL, $

x + offset[i], y, COLOR = fillColor[i], /DEVICE
PLOTS, x_border, y, /DEVICE, COLOR = fillColor[7]

END

Applying Color Annotations to RGB Images in Object
Graphics

When using Object Graphics, colors can be defined just by the values of their red,
green, and blue components. The TrueColor index conversion equation is not
required for Object Graphics. In this example, a color spectrum of additive and
subtractive primary colors will be drawn on an RGB image for comparison with the
colors in that image. The glowing_gas.jpg file (which is provided by the Hubble
Heritage Team, made up of AURA, STScI, and NASA) contains an RGB image of an
expanding shell of glowing gas surrounding a hot, massive star in our Milky Way
Galaxy. This image contains all the colors of this spectrum.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Applying Color Annotations to RGB Images in Object Graphics” on page 172
or complete the following steps for a detailed description of the process.
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 169
1. Determine the path to the glowing_gas.jpg file:

cosmicFile = FILEPATH('glowing_gas.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import the image from the glowing_gas.jpg file into IDL:

READ_JPEG, cosmicFile, cosmicImage

3. Determine the size of the imported image. The image contained within this file
is pixel-interleaved (the color information is contained within the first
dimension). You can use the SIZE routine to determine the other dimensions of
this image:

cosmicSize = SIZE(cosmicImage, /DIMENSIONS)

4. Initialize the display objects required for an Object Graphics display:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [cosmicSize[1], cosmicSize[2]], $
TITLE = 'glowing_gas.jpeg')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., cosmicSize[1], $
cosmicSize[2]])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the image object. The INTERLEAVE keyword is set to 0 because the
RGB image is pixel-interleaved:

oImage = OBJ_NEW('IDLgrImage', cosmicImage, $
INTERLEAVE = 0, DIMENSIONS = [cosmicSize[1], $
cosmicSize[2]])

6. Add the image to the model, then add the model to the view, and finally draw
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following image contains all of the colors of the additive and subtractive
primary spectrum. A colorbar annotation can be added to compare the colors
Image Processing in IDL Applying Color Annotations to Images

170 Chapter 3: Working with Color
of that spectrum and the colors within the image. The color of each box is
defined in the following array.

You can use the following to determine the color and location parameters for
each polygon.

7. Initialize the color parameters:

fillColor = [[0, 0, 0], $; black
[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, 0, 255], $; blue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

8. After defining the polygon colors, you can determine their locations. Initialize
polygon location parameters:

x = [5., 25., 25., 5., 5.]
y = [5., 5., 25., 25., 5.] + 5.
offset = 20.*FINDGEN(9) + 5.

The x and y variables pertain to the x and y locations (in pixel units) of each
box of color. The offset maintains the spacing (in pixel units) of each box.

Figure 3-38: Cosmic RGB Image (Object Graphics)
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 171
Since the image is made up of mostly a black background, the x border of the
colorbar is also determined to draw a white border around the polygons.

9. Initialize location of colorbar border:

x_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

The y border is already defined by the y variable.

These parameters are used when initializing the polygon and polyline objects
These objects will be used draw the boxes of the color spectrum and the
colorbar border. Each polygon is 20 pixels wide and 20 pixels high. The offset
will move the y-location 20 pixels every time a new polygon is displayed.

10. Initialize the polygon objects. The process is repetitive from level to level, so a
FOR/DO loop will be used to display the entire colorbar. Since each polygon is
drawn individually within the loop, you only need to determine the location of
a single polygon and an array of offsets for each step in the loop:

oPolygon = OBJARR(8)
FOR i = 0, (N_ELEMENTS(oPolygon) - 1) DO oPolygon[i] = $

OBJ_NEW('IDLgrPolygon', x + offset[i], y, $
COLOR = fillColor[*, i])

11. The colorbar border is produced with a polyline object. This polyline object
requires a z variable to define it slightly above the polygons and image. The z
variable is required to place the polyline in front of the polygons. Initialize the
polyline (border) object:

z = [0.001, 0.001, 0.001, 0.001, 0.001]
oPolyline = OBJ_NEW('IDLgrPolyline', x_border, y, z, $

COLOR = [255, 255, 255])

12. The polygon and polyline objects can now be added to the model and then
displayed (re-drawn) in the window. Add the polygons and polyline to the
model, then add the model to the view, and finally redraw the view in the
window:

oModel -> Add, oPolygon
oModel -> Add, oPolyline
oWindow -> Draw, oView
Image Processing in IDL Applying Color Annotations to Images

172 Chapter 3: Working with Color
The following figure shows the colorbar annotation applied to the image.

13. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object:

OBJ_DESTROY, oView

Example Code: Applying Color Annotations to RGB Images in
Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
ApplyColorbar_RGB_Object.pro, compile and run the program to reproduce the
previous example.

PRO ApplyColorbar_RGB_Object

; Determine path to "glowing_gas.jpg" file.
cosmicFile = FILEPATH('glowing_gas.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Import image from file into IDL.
READ_JPEG, cosmicFile, cosmicImage

; Determine size of image.

Figure 3-39: Specified Colors on an RGB Image (Object Graphics)
Applying Color Annotations to Images Image Processing in IDL

Chapter 3: Working with Color 173
cosmicSize = SIZE(cosmicImage, /DIMENSIONS)

; Initialize objects.
; Initialize display.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [cosmicSize[1], cosmicSize[2]], $
TITLE = 'glowing_gas.jpg')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., cosmicSize[1], $
cosmicSize[2]])

oModel = OBJ_NEW('IDLgrModel')
; Initialize image.
oImage = OBJ_NEW('IDLgrImage', cosmicImage, $

INTERLEAVE = 0, DIMENSIONS = [cosmicSize[1], $
cosmicSize[2]])

; Add image to model, which is added to view, and then
; display view in window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Initialize color parameter.
fillColor = [[0, 0, 0], $; black

[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, 0, 255], $; blue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

; Initialize polygon location parameters.
x = [5., 25., 25., 5., 5.]
y = [5., 5., 25., 25., 5.] + 5.
offset = 20.*FINDGEN(9) + 5.

; Initialize location of colorbar border.
x_border = [x[0] + offset[0], x[1] + offset[7], $

x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

; Initialize polygon objects.
oPolygon = OBJARR(8)
FOR i = 0, (N_ELEMENTS(oPolygon) - 1) DO oPolygon[i] = $

OBJ_NEW('IDLgrPolygon', x + offset[i], y, $
COLOR = fillColor[*, i])

; Initialize polyline (border) object.
z = [0.001, 0.001, 0.001, 0.001, 0.001]
Image Processing in IDL Applying Color Annotations to Images

174 Chapter 3: Working with Color
oPolyline = OBJ_NEW('IDLgrPolyline', x_border, y, z, $
COLOR = [255, 255, 255])

; Add polgons and polyline to model and then re-display
; view in window.
oModel -> Add, oPolygon
oModel -> Add, oPolyline
oWindow -> Draw, oView

; Clean up object references.
OBJ_DESTROY, oView

END
Applying Color Annotations to Images Image Processing in IDL

Chapter 4:

Transforming Image
Geometry
This chapter describes the following topics:
Overview of Geometric Transformations . 176
Interpolation Methods 178

Cropping Images . 180
Padding Images . 184

Resizing Images . 188

Shifting Images . 191
Reversing Images 194

Transposing Images 197
Rotating Images . 200

Planar Slicing of Volumetric Data 206
Image Processing in IDL 175

176 Chapter 4: Transforming Image Geometry
Overview of Geometric Transformations

Geometric image transformation functions use mathematical transformations to crop,
pad, scale, rotate, transpose or otherwise alter an image array to produce a modified
view of an image. The transformations described in this chapter are linear
transformations. For a description of non-linear geometric transformations, see
Chapter 7, “Warping Images”.

When an image undergoes a geometric transformation, some or all of the pixels
within the source image are relocated from their original spatial coordinates to a new
position in the output image. When a relocated pixel does not map directly onto the
center of a pixel location, but falls somewhere in between the centers of pixel
locations, the pixel’s value is computed by sampling the values of the neighboring
pixels. This resampling, also known as interpolation, affects the quality of the output
image. See “Interpolation Methods” on page 178 for more information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description

“Cropping
Images” on
page 180.

SIZE

CURSOR

Focuses attention on important image
features by creating a rectangular region
of interest.

“Padding
Images” on
page 184.

SIZE Creates a border around the perimeter of
an image for presentation or advanced
filtering purposes.

“Resizing
Images” on
page 188.

CONGRID

REBIN

Enlarges or shrinks an image.

“Shifting
Images” on
page 191.

SHIFT Shifts image pixel values along any
image dimension.

Table 4-1: Image Processing Tasks and Related Image Processing Routines
Overview of Geometric Transformations Image Processing in IDL

Chapter 4: Transforming Image Geometry 177
Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of the files, including array sizes.

“Reversing
Images” on
page 194.

REVERSE Reverses array elements to flip an image
horizontally or vertically.

“Transposing
Images” on
page 197.

TRANSPOSE Interchanges array dimensions, reflecting
the image about a 45 degree line.

“Rotating
Images” on
page 200.

ROTATE

ROT

Rotates an image to any orientation,
using 90 degree or arbitrary increments.

“Planar Slicing
of Volumetric
Data” on
page 206.

EXTRACT_SLICE

SLICER3

XVOLUME

Displays a single slice or a series of
planar slices in a single window or
interactively extracts planar slices of
volumetric data.

Task Routine(s) Description

Table 4-1: Image Processing Tasks and Related Image Processing Routines
Image Processing in IDL Overview of Geometric Transformations

178 Chapter 4: Transforming Image Geometry
Interpolation Methods

When an image undergoes a geometric transformation, the location of each
transformed pixel may not map directly to a center of a pixel location in the output
image as shown in the following figure.

When the transformed pixel center does not directly coincide with a pixel in the
output image, the pixel value must be determined using some form of interpolation.
The appearance and quality of the output image is determined by the amount of error
created by the chosen interpolation method. Note the differences in the line edges
between the following two interpolated images.

Figure 4-1: Original Pixel Center Locations (Left) and Rotated Pixel Center
Locations (Right)

Figure 4-2: Simple Examples of Image Interpolation

Original Image Nearest Neighbor Bilinear Interpolation
Interpolation Methods Image Processing in IDL

Chapter 4: Transforming Image Geometry 179
There are a variety of possible interpolation methods available when using geometric
transforms in IDL. Interpolation methods include:

Nearest-neighbor interpolation — Assigns the value of the nearest pixel to
the pixel in the output image. This is the fastest interpolation method but the
resulting image may contain jagged edges.

Linear interpolation — Surveys the 2 closest pixels, drawing a line between
them and designating a value along that line as the output pixel value.

Bilinear interpolation — Surveys the 4 closest pixels, creates a weighted
average based on the nearness and brightness of the surveyed pixels and
assigns that value to the pixel in the output image.

Use cubic convolution if a higher degree of accuracy is needed. However, with
still images, the difference between images interpolated with bilinear and
cubic convolution methods is usually undetectable.

Trilinear interpolation — Surveys the 8 nearest pixels occurring along the
x, y, and z dimensions, creates a weighted average based on the nearness and
brightness of the surveyed pixels and assigns that value to the pixel in the
output image.

Cubic Convolution interpolation — Approximates a sinc interpolation by
using cubic polynomial waveforms instead of linear waveforms when
resampling a pixel. With a one-dimension source, this method surveys 4
neighboring pixels. With a two-dimension source, the method surveys 16
pixels. Interpolation of three-dimension sources is not supported. This
interpolation method results in the least amount of error, thus preserving the
highest amount of fine detail in the output image. However, cubic interpolation
requires more processing time.

Note
See the IDL Reference Guide for complete details about the interpolation options
available with each geometric image transformation function.
Image Processing in IDL Interpolation Methods

180 Chapter 4: Transforming Image Geometry
Cropping Images

Cropping an image extracts a rectangular region of interest from the original image.
This focuses the viewer’s attention on a specific portion of the image and discards
areas of the image that contain less useful information. Using image cropping in
conjunction with image magnification allows you to zoom in on a specific portion of
the image. This section describes how to exactly define the portion of the image you
wish to extract to create a cropped image. For information on how to magnify a
cropped image, see “Resizing Images” on page 188.

Image cropping requires a pair of (x, y) coordinates that define the corners of the new,
cropped image. The following example extracts the African continent from an image
of the world. For code that you can copy and paste into an IDL Editor window, see
“Example Code: Cropping an Image” on page 182.

1. Open the world image file, using the R,G,B arguments to obtain the image’s
color information:

world = READ_PNG (FILEPATH ('avhrr.png', $
SUBDIRECTORY = ['examples', 'data']), R, G, B)

2. Prepare the display device and load the color table with the red, green and blue
values retrieved from the image file in the previous step:

DEVICE, RETAIN = 2, DECOMPOSED = 0
TVLCT, R, G, B

3. Get the size of the image and prepare the window display using the dimensions
returned by the SIZE command:

worldSize = SIZE(world, /DIMENSIONS)
WINDOW, 0, XSIZE = worldSize[0], YSIZE = worldSize[1]

4. Display the image:

TV, world
Cropping Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 181
In this example, we will crop the image to display only the African continent as
shown in the following figure. Two sets of coordinates, (LeftLowX, LeftLowY) and
(RightTopX, RightTopY), will be used to create the new, cropped image array.

In the following step, use the CURSOR function to define the boundaries of the
cropped image. The values returned by the CURSOR function will be defined as the
variables shown in the previous image.

Note
To crop an image without interactively defining the cursor position, you can use the
actual coordinates of the cropped image array in place of the coordinate variables,
(LeftLowX, LeftLowY) and (RightTopX, RightTopY). See “Example Code: Cropping
an Image” on page 182 for an example.

5. Use the cursor function to define the lower-left corner of the cropped image by
entering the following line:

CURSOR, LeftLowX, LeftLowY, /DEVICE

The cursor changes to a cross hair symbol when it is positioned over the
graphics window. Click in the area to the left and below the African continent.

Figure 4-3: Defining the Boundaries of the Cropped Image Array

(RightTopX, RightTopY)

(LeftLowX, LeftLowY)
Image Processing in IDL Cropping Images

182 Chapter 4: Transforming Image Geometry
Note
The values for LeftLowX and LeftLowY appear in the IDLDE Variable Watch
window. Alternately, use PRINT, LeftLowX, LeftLowY to display these values.

6. Define the upper-right corner of the cropped image. Enter the following line
and then click above and to the right of the African continent.

CURSOR, RightTopX, RightTopY, /DEVICE

7. Name the cropped image and define its array using the lower-left and upper-
right x and y variables:

africa = world[LeftLowX:RightTopX, LeftLowY:RightTopY]

8. Prepare a window based on the size of the new array:

WINDOW, 2, XSIZE = (RightTopX - LeftLowX + 1), $
YSIZE = (RightTopY - LeftLowY + 1)

9. Display the cropped image:

TV, africa

Your image should appear similar to the following figure.

Example Code: Cropping an Image

The following program creates the same cropped image as the previous example but
uses numeric coordinates instead of named variable coordinates defined using the
interactive CURSOR function. Copy the following text into an IDL Editor window.

Figure 4-4: Result of the Cropped Image Example
Cropping Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 183
After saving the file as CropWorld.pro, compile and run the program to reproduce
the cropped image example.

PRO CropWorld

; Read in the image file.
world = READ_PNG(FILEPATH('avhrr.png', $

SUBDIRECTORY = ['examples', 'data']), R,G,B)

; Prepare the display device and load the color table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
TVLCT, R, G, B

; Get the size of the image array.
worldSize = SIZE(world, /DIMENSIONS)

; Use the returned dimensions to create a display window
; and display the original image.
WINDOW, 0, XSIZE = worldSize[0], YSIZE = worldSize[1]
TV, world

; Note: the following section uses numeric coordinates to
crop
; the array instead of defining coordinates using the CURSOR
; function. Compared to the step-by-step example, this line
has
; the following structure:
; africa = world[LeftLowX:RightTopX, LeftLowY:RightTopY]
africa = world [312:475, 103:264]

; Define the window size based on the size of the cropped
array
; using XSIZE = (RightTopX - LeftLowX + 1),
; YSIZE = (RightTopY - LeftLowY + 1)
WINDOW, 2, XSIZE =(475-312 + 1), YSIZE =(264-103 + 1)

; Display the cropped image.
TV, africa

END
Image Processing in IDL Cropping Images

184 Chapter 4: Transforming Image Geometry
Padding Images

Image padding introduces new pixels around the edges of an image. The border
provides space for annotations or acts as a boundary when using advanced filtering
techniques.

This exercise adds a 10-pixel border to left, right and bottom of the image and a 30-
pixel border at the top allowing space for annotation. The diagonal lines in the
following image represent the area that will be added to the original image. For an
example of padding an image, complete the following steps. If you prefer to cut and
paste the entire example into an IDL Editor window, see “Example Code: Padding an
Image” on page 186.

To add a border around the earth image, complete the following steps:

1. Open the world image file:

earth = READ_PNG(FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data']), R, G, B)

2. Prepare the display device:

DEVICE, DECOMPOSED = 0, RETAIN = 2

Figure 4-5: Diagonal Lines Indicate Padding

30 pixel pad

10 pixel pads
Padding Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 185
3. Load the color table with the red, green and blue values retrieved from the
image in step 1 and modify the color table so that the final index value of each
color band is the maximum color value (white):

TVLCT, R, G, B
maxColor = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxColor

4. Get the size of the image by entering the following line:

earthSize = SIZE(earth, /DIMENSIONS)

5. Define the amount of padding you want to add to the image. This example
adds 10 pixels to the right and left sides of the image equalling a total of 20
pixels along the x-axis. We also add 30 pixels to the top and 10 pixels to the
bottom of the image for a total of 40 pixels along the y-axis.

Using the REPLICATE syntax, Result = REPLICATE(Value, D1 [, ..., D8]),
create an array of the specified dimensions, and set Value equal to the byte
value of the final color index to make the white border:

paddedEarth = REPLICATE(BYTE(maxColor), earthSize[0] + 20, $
earthSize[1] + 40)

Note
The argument BYTE(maxColor) in the previous line produces a white background
only when white is designated as the final index value for the red, green and blue
bands of the color table you are using. As shown in step 3, this can be accomplished
by setting each color component (of the color table entry indexed by maxColor) to
255.

See Chapter 3, “Working with Color” for detailed information about modifying
color tables.

6. Copy the original image, earth, into the appropriate portion of the padded
array. The following line places the lower-left corner of the original image
array at the coordinates (10, 10) of the padded array:

paddedEarth [10,10] = earth

7. Prepare a window to display the image using the size of the original image plus
the amount of padding added along the x and y axes:

WINDOW, 0, XSIZE = earthSize[0] + 20, $
YSIZE = earthSize[1] + 40
Image Processing in IDL Padding Images

186 Chapter 4: Transforming Image Geometry
8. Display the padded image.

TV, paddedEarth

9. Place a title at the top of the image using the XYOUTS procedure.

x = (earthSize[0]/2) + 10
y = earthSize[1] + 15
XYOUTS, x, y, 'World Map', ALIGNMENT = 0.5, COLOR = 0, $

/DEVICE

The resulting image should appear similar to the following figure.

Example Code: Padding an Image

Copy the following code into the IDL Editor window and save it as
PaddedImage.pro. Compile and run the program to duplicate the image padding
example.

PRO PaddedImage

; Select and read the image file.
earth = READ_PNG (FILEPATH ('avhrr.png', $

SUBDIRECTORY = ['examples', 'data']), R, G, B)

; Load the color table and designate white to occupy the
; final position in the red, green and blue bands.

Figure 4-6: Resulting Padded Image
Padding Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 187
TVLCT, R, G, B
maxColor = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxColor

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2

; Get the size of the original image array.
earthSize = SIZE(earth, /DIMENSIONS)

; Return an array with the given dimensions.
paddedEarth = REPLICATE(BYTE(maxColor), earthSize[0] + 20, $

earthSize[1] + 40)

; Copy the original image into the appropriate portion
; of the new array.
paddedEarth [10,10] = earth

; Prepare a window and display the new image.
WINDOW, 0, XSIZE = earthSize[0] + 20, $

YSIZE = earthSize[1] + 40
TV, paddedEarth

; Place a title at the top of the image using the
; XYOUTS procedure.
x = (earthSize[0]/2) + 10
y = earthSize[1] + 15
XYOUTS, x, y, 'World Map', ALIGNMENT = 0.5, COLOR = 0, $

/DEVICE

END
Image Processing in IDL Padding Images

188 Chapter 4: Transforming Image Geometry
Resizing Images

Image resizing, or scaling, supports further image analysis by either shrinking or
expanding an image. Both the CONGRID and the REBIN functions resize one-, two-
or three-dimensional arrays. The CONGRID function resizes an image array by any
arbitrary amount. The REBIN function requires that the output dimensions of the new
array be an integer multiple of the original image’s dimensions.

When magnifying an image, new values are interpolated from the source image to
produce additional pixels in the output image.When shrinking an image, pixels are
resampled to produce a lower number of pixels in the output image. The default
interpolation method varies according to whether you are magnifying or shrinking
the image.

When magnifying an image:

• CONGRID defaults to nearest-neighbor sampling with 1D or 2D arrays and
automatically uses bilinear interpolation with 3D arrays.

• REBIN defaults to bilinear interpolation.

When shrinking an image:

• CONGRID uses nearest-neighbor interpolation to resample the image.

• REBIN averages neighboring pixel values in the source image that contribute
to a single pixel value in the output image.

The following example uses CONGRID since it offers more flexibility. However, if
you wish to resize an array proportionally, REBIN returns results more quickly. For
an example of magnifying an image using the CONGRID function, complete the
following steps. For code that you can copy and paste into an IDL Editor window, see
“Example: Resizing an Image Using CONGRID” on page 189.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [248, 248])

2. Load a color table and prepare the display device:

LOADCT, 28
DEVICE, DECOMPOSED = 0, RETAIN = 2
Resizing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 189
3. Prepare the window and display the original image:

WINDOW, 0, XSIZE = 248, YSIZE = 248
TV, image

4. Use the CONGRID function to increase the image array size to 600 by 600
pixels and force bilinear interpolation:

magnifiedImg = CONGRID(image, 600, 600, /INTERP)

5. Display the magnified image in a new window:

WINDOW, 1, XSIZE = 600, YSIZE = 600
TV, magnifiedImg

The following figure displays the original image (left) and the magnified view of the
image (right).

Example: Resizing an Image Using CONGRID

Copy and paste the following text into the Editor window. After saving the file as
MagnifyImage.pro, compile and run the program to reproduce the CONGRID
function example.

PRO MagnifyImage

; Select the file, and read in the data using known dimensions.
file = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

Figure 4-7: Original Image and Magnified Image
Image Processing in IDL Resizing Images

190 Chapter 4: Transforming Image Geometry
image = READ_BINARY(file, DATA_DIMS = [248, 248])

; Load a color table and prepare to display the image.
LOADCT, 28
DEVICE, DECOMPOSED = 0, RETAIN = 2
WINDOW, 0, XSIZE = 248, YSIZE = 248

; Display the original image.
TV, image

; Magnify the image and display it in a new window.
magnifiedImg = CONGRID(image, 600, 600, /INTERP)
WINDOW, 1, XSIZE = 600, YSIZE = 600
TV, magnifiedImg

END
Resizing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 191
Shifting Images

The SHIFT function moves elements of a vector or array along any dimension by any
number of elements. All shifts are circular. Elements shifted off one end are wrapped
around, appearing at the opposite end of the vector or array.

Occasionally, image files are saved with array elements offset. The SHIFT function
allows you to easily correct such images assuming you know the amounts of the
vertical and horizontal offsets. In the following example, the x-axis of original image
is offset by a quarter of the image width, and the y-axis is offset by a third of the
height.

Using the SHIFT syntax, Result = SHIFT(Array, S1, ..., Sn), we will enter
negative values for the S (dimension) amounts in order to correct the image offset.
For code that can be pasted into the Editor window, see “Example Code: Using Shift
to Correct an Image” on page 192.

1. Select the image file and read it into memory:

file = FILEPATH('shifted_endocell.png', $
SUBDIRECTORY = ['examples','data'])

image = READ_PNG(file, R, G, B)

2. Prepare the display device and load the image’s associated color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
TVLCT, R, G, B

Figure 4-8: Example of Misaligned Image Array Elements
Image Processing in IDL Shifting Images

192 Chapter 4: Transforming Image Geometry
3. Get the size of the image, prepare a window based upon the values returned by
the SIZE function, and display the image to be corrected:

imageSize = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'
TV, image

4. Use SHIFT to correct the original image. Move the elements along the x-axis
to the left, using a quarter of the array width as the x-dimension values. Move
the y-axis elements, using one third of the array height as the number of
elements to be shifted. By entering negative values for the amount the image
dimensions are to be shifted, the array elements move toward the x and y axes.

image = SHIFT(image, -(imageSize[0]/4), -(imageSize[1]/3))

5. Display the corrected image in a second window:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE='Shifted Image'

TV, image

The following figure displays the corrected image.

Example Code: Using Shift to Correct an Image

Copy and paste the following text into the IDLDE Editor window. After saving the
file as ShiftImageOffset.pro, compile and run the program to reproduce the
previous example.

PRO ShiftImageOffset

; Select and read in the image file.
file = FILEPATH('shifted_endocell.png', $

Figure 4-9: Resulting Shifted Array
Shifting Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 193
SUBDIRECTORY = ['examples','data'])
image = READ_PNG(file, R, G, B)

; Prepare the display device and load the
; color translation tables.
DEVICE, DECOMPOSED = 0, RETAIN = 2
TVLCT, R, G, B
HELP, image

; Get the image size.
imageSize = SIZE(image, /DIMENSIONS)

; Prepare the display window.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'

; Display the original image.
TV, image

; Shift the original image to correct for the misalignment.
image = SHIFT(image, -imageSize[0]/4, -imageSize[1]/3)

; Display the shifted image.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Shifted Image'
TV, image

END
Image Processing in IDL Shifting Images

194 Chapter 4: Transforming Image Geometry
Reversing Images

The REVERSE function allows you to reverse any dimension of an array. This allows
you to quickly change the viewing orientation of an image (flipping it horizontally or
vertically).

Note that in the REVERSE syntax,

Result = REVERSE(Array [, Subscript_Index][,/OVERWRITE])

Subscript_Index specifies the dimension number beginning with 1, not 0 as with
some other functions.

The following example demonstrates reversing the x-axis values (dimension 1) and
the y-axis values (dimension 2) of an image of a knee. For code that can be copied
into and IDL Editor window, see “Example Code: Reversing Images” on page 195.

1. Select the DICOM image of the knee and get the image’s dimensions:

image = READ_DICOM (FILEPATH('mr_knee.dcm', $
SUBDIRECTORY = ['examples', 'data']))

imgSize = SIZE (image, /DIMENSIONS)

2. Prepare the display device and load the gray scale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

3. Use the REVERSE function to reverse the x-axis values (flipHorzImg) and
y-axis values (flipVertImg):

flipHorzImg = REVERSE(image, 1)
flipVertImg = REVERSE(image, 2)

4. Create an output window that is 2 times the size of the x-dimension of the
image and 2 times the size of the y-dimension of the image:

WINDOW, 0, XSIZE = 2*imgSize[0], YSIZE = 2*imgSize[1], $
TITLE = 'Original (Top) & Flipped Images (Bottom)'

5. Display the images, controlling their placement in the graphics window by
using the Position argument to the TV command:

TV, image, 0
TV, flipHorzImg, 2
TV, flipVertImg, 3
Reversing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 195
Your output should appear similar to the following figure.

Example Code: Reversing Images

Copy and paste the following text into the IDL Editor window. After saving the file as
ReverseImage.pro, compile and run it to reproduce the REVERSE function
example.

PRO ReverseImage

; Select the file and get the image dimensions.
image = READ_DICOM (FILEPATH('mr_knee.dcm', $

SUBDIRECTORY = ['examples', 'data']))
imgSize = SIZE (image, /DIMENSIONS)

;Prepare the display device and load a color table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Reverse dimension 1 to flip the image horizontally.
flipHorzImg = REVERSE(image, 1)

; Reverse dimesion 2 to flip the image vertically.
flipVertImg = REVERSE(image, 2)

Figure 4-10: Original Image (Top); Reversed Dimension 1 (Bottom Left); and
Reversed Dimension 2 (Bottom Right)
Image Processing in IDL Reversing Images

196 Chapter 4: Transforming Image Geometry
; Prepare the window and display the original image.
WINDOW, 0, XSIZE = 2*imgSize[0], YSIZE = 2*imgSize[1], $

TITLE = 'Original (Top) & Flipped Images (Bottom)'
TV, image, 0

; Display the reversed images.
TV, flipHorzImg, 2
TV, flipVertImg, 3

END
Reversing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 197
Transposing Images

Transposing an image array interchanges array dimensions, reflecting an image about
a diagonal (for example, reflecting a square image about a 45 degree line). By default,
the TRANSPOSE function reverses the order of the dimensions. However, you can
control how the dimensions are altered by specifying the optional vector, P, in the
following statement:

Result = TRANSPOSE(Array[,P])

The values for P start at zero and correspond to the dimensions of the array. The
following example transposes a photomicrograph of smooth muscle cells. For code
that can be copied into the IDL Editor window, see “Example Code: Transposing an
Image” on page 198.

1. Open the file and prepare to display it with a color table:

READ_JPEG, FILEPATH('muscle.jpg', $
SUBDIRECTORY=['examples', 'data']), image

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Display the original image:

WINDOW, 0, XSIZE = 652, YSIZE = 444, TITLE = 'Original Image'
TV, image

3. Reduce the image size for display purposes:

smallImg = CONGRID(image, 183, 111)

4. Using the TRANSPOSE function, reverse the array dimensions. This
essentially flips the image across its main diagonal axis, moving the upper left
corner of the image to the lower right corner.

transposeImg1 = TRANSPOSE(smallImg)
WINDOW, 1, XSIZE = 600, YSIZE = 183, TITLE = 'Transposed
Images'
TV, transposeImg1, 0

5. Specifying the reversal of the array dimensions leads to the same result since
this is the default behavior of the TRANSPOSE function.

transposeImg2 = TRANSPOSE(smallImg, [1,0])
TV, transposeImg2, 2
Image Processing in IDL Transposing Images

198 Chapter 4: Transforming Image Geometry
6. However, specifying the original arrangement of the array dimensions results
in no image transposition.

transposeImg3 = TRANSPOSE(smallImg, [0,1])
TV, transposeImg3, 2

The following figure displays the original image (top) and the results of the various
TRANSPOSE statements (bottom).

Example Code: Transposing an Image

Copy and paste the following text into the Editor window. After saving the file as
TransposeImage.pro, compile and run the program to reproduce the
TRANSPOSE function example.

PRO TransposeImage

; Open the file and prepare to display it with a color table.
READ_JPEG, FILEPATH('muscle.jpg', $

SUBDIRECTORY=['examples', 'data']), image

Figure 4-11: Original (Top) and Transposed Images (Bottom) from Left to Right,
transposeImg1, transposeImg2, and transposeImg3
Transposing Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 199
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Display the original image.
WINDOW, 0, XSIZE = 652, YSIZE = 444, TITLE = 'Original Image'
TV, image

; Reduce the image size for display purposes.
smallImg = CONGRID(image, 183, 111)

; Flip the image across its main diagonal axis,
; placing the upper left corner in the lower right corner.
transposeImg1 = TRANSPOSE(smallImg)

; Specifying the reversal of array dimensions leads
; to the same result.
transposeImg2 = TRANSPOSE(smallImg, [1,0])

; Specifying the original array arrangement results in
; no transposition.
transposeImg3 = TRANSPOSE(smallImg, [0,1])

; Display the transposed images.
WINDOW, 1, XSIZE= 600, YSIZE=183, TITLE='Transposed Images'
TV, transposeImg1, 0
TV, transposeImg2, 2
TV, transposeImg3, 2

END
Image Processing in IDL Transposing Images

200 Chapter 4: Transforming Image Geometry
Rotating Images

To change the orientation of an image in IDL, use either the ROTATE or the ROT
function. The ROTATE function changes the orientation of an image by 90 degree
increments and/or transposes the array. The ROT function rotates an image by any
amount and offers additional resizing options. For more information, see “Using the
ROT Function for Arbitrary Rotations” on page 203.

Rotating an Image by 90 Degree Increments

The following example changes the orientation of an image by rotating it 270°. For
code that you can copy and paste into the Editor window, see “Example Code: Using
ROTATE” on page 202.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('galaxy.dat', $
SUBDIRECTORY=['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [256, 256])

2. Prepare the display device, load a color table, create a window, and display the
image:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 4
WINDOW, 0, XSIZE = 256, YSIZE = 256
TVSCL, image

3. Using the ROTATE syntax, Result = ROTATE (Array, Direction), rotate the
galaxy image 270° counterclockwise by setting the Direction argument equal
to 3. See “ROTATE Direction Argument Options” on page 201 for more
information.

rotateImg = ROTATE(image, 3)

4. Display the rotated image.

Window, 1, XSIZE = 256, YSIZE = 256,
TVSCL, rotateImg
Rotating Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 201
The following figure displays the original (left) and the rotated image (right).

ROTATE Direction Argument Options

The following table describes the Direction options available with the ROTATE
function syntax, Result = ROTATE (Array, Direction).

Figure 4-12: Using ROTATE to Alter Image Orientation

Direction Transpose?
Rotation

Counterclockwise
Sample
Image

0 No None

1 No 90°

2 No 180°

3 No 270°

Table 4-2: Direction Options Available with ROTATE
Image Processing in IDL Rotating Images

202 Chapter 4: Transforming Image Geometry
Example Code: Using ROTATE

Copy and paste the following text into the IDL Editor window. After saving the file as
RotateImage.pro, compile and run the program to reproduce the previous
example.

PRO RotateImage

; Select the file and read in the data using known dimensions.
file = FILEPATH('galaxy.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = [256, 256])

; Prepare the display device and load a color table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 4

; Create a window and display the original image.
WINDOW, 0, XSIZE = 256, YSIZE = 256
TVSCL, image

; Rotate the galaxy 270 degrees counterclockwise.
rotateImg = ROTATE(image, 3)

; Display the rotated image in a new window.
WINDOW, 1, XSIZE = 256, YSIZE = 256

4 Yes None

5 Yes 90°

6 Yes 180°

7 Yes 270°

Direction Transpose?
Rotation

Counterclockwise
Sample
Image

Table 4-2: Direction Options Available with ROTATE
Rotating Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 203
TVSCL, rotateImg

END

Using the ROT Function for Arbitrary Rotations

The ROT function supports clockwise rotation of an image by any specified amount
(not limited to 90 degree increments). Keywords also provide a means of optionally
magnifying the image, selecting the pivot point around which the image rotates, and
using either bilinear or cubic interpolation. If you wish to rotate an image only by 90
degree increments, ROTATE produces faster results.

The following example opens a image of a whirlpool galaxy, rotates it 33° clockwise
and shrinks it to 50% of its original size. To copy and paste this example into an IDL
Editor window, see “Example Code: Image Rotation Using the ROT Function” on
page 204.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('m51.dat', SUBDIRECTORY = ['examples',
'data'])
image = READ_BINARY(file, DATA_DIMS = [340, 440])

2. Prepare the display device and load a black and white color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

3. Create a window and display the original image:

WINDOW, 0, XSIZE = 340, YSIZE = 440
TVSCL, image

4. Using the ROT function syntax,

Result=ROT(A, Angle, [Mag, X0, Y0] [,/INTERP]
[,CUBIC=value{-1 to 0}] [, MISSING=value] [,/PIVOT])

enter the following line to rotate the image 33°, shrink it to 50% of its original
size, and fill the image display with a neutral gray color where there are no
original pixel values:

arbitraryImg = ROT(image, 33, .5, /INTERP, MISSING = 127)

5. Display the rotated image in a new window by entering the following two
lines:

WINDOW, 1, XSIZE = 340, YSIZE = 440
TVSCL, arbitraryImg
Image Processing in IDL Rotating Images

204 Chapter 4: Transforming Image Geometry
Your output should appear similar to the following figure.

The MISSING keyword maintains the original image’s boundaries, keeping the
interpolation from extending beyond the original image size. Replacing MISSING =
127 with MISSING = 0 in the previous example creates a black background by
using the default pixel color value of 0. Removing the MISSING keyword from the
same statement allows the image interpolation to extend beyond the image’s original
boundaries.

Example Code: Image Rotation Using the ROT Function

Copy and paste the following text into the IDL Editor window. After saving the file as
ArbitraryRotation.pro, compile and run the program to reproduce the previous
example.

PRO ArbitraryRotation

; Select the file and read in the data using known
; dimensions.
file = FILEPATH('m51.dat', SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = [340, 440])

; Prepare the display device and load a black and white

Figure 4-13: The Original Image (Left) and Modified Image (Right)
Rotating Images Image Processing in IDL

Chapter 4: Transforming Image Geometry 205
; color table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

;Create a window and display the original image.
WINDOW, 0, XSIZE = 340, YSIZE = 440
TVSCL, image

; Rotate the new image 33 degrees clockwise and shrink
; it by 50 % and keep the interpolation from extending
; beyond the array boundaries.
arbitraryImg = ROT(image, 33, .5, /INTERP, MISSING = 127)

; Display the rotated image.
WINDOW, 1, XSIZE = 340, YSIZE = 440
TVSCL, arbitraryImg

END
Image Processing in IDL Rotating Images

206 Chapter 4: Transforming Image Geometry
Planar Slicing of Volumetric Data

Volumetric displays are composed of a series of 2D slices of data which are layered
to produce the volume. IDL provides routines that allow you to display a series of the
2D slices in a single image window, display single orthogonal or non-orthogonal
slices of volumetric data, or interactively extract slices from a 3D volume. For more
information, see the following sections:

• “Displaying a Series of Planar Slices” in the following section

• “Extracting a Slice of Volumetric Data” on page 209

• “Interactive Planar Slicing of Volumetric Data” on page 211

Displaying a Series of Planar Slices

The following example displays 57 Magnetic Resonance Imaging (MRI) slices of a
human head within a single window as well as a single slice which is perpendicular to
the MRI data. For code that you can copy and paste into an IDL Editor window, see
“Example Code: Displaying a Series of Planar Slices” on page 208.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples',
'data'])
image = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

2. Load a color table to more easily distinguish between data values and prepare
the display device:

LOADCT, 5
DEVICE, DECOMPOSED = 0, RETAIN = 2

3. Create the display window. When displaying all 57 slices of the array in a
single window, the image size (80 by 100) and the number of slices (57)
determine the window size. In this case, 10 columns and 6 rows will contain all
57 slices of the volumetric data.

WINDOW, 0, XSIZE = 800, YSIZE = 600
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 207
4. Use the variable i in the following FOR statement to incrementally display
each image in the array. The i also functions to control the positioning which,
by default, uses the upper left corner as the starting point. Use 255b - array
to display the images using the inverse of the selected color table and the
ORDER keyword to draw each image from the top down instead of the bottom
up.

FOR i = 0, 56,1 DO TVSCL, 255b - image [*,*,i], /ORDER, i

5. To extract a central slice from the y, z plane, which is perpendicular to the x, y
plane of the MRI scans, specify 40 for the x-dimension value. Use REFORM
to decrease the number of array dimensions so that TV can display the image:

sliceImg = REFORM(image[40,*,*])

This results in a 100 by 57 array.

6. Use CONGRID to compensate for the sampling rate of the scan slices:

sliceImg = CONGRID(sliceImg, 100, 100)

7. Display the slice in the 47th window position:

TVSCL, 255b - sliceImg, 47

Since the image size is now 100 x 100 pixels, the 47th position in the 800 by
600 window is the final position.
Image Processing in IDL Planar Slicing of Volumetric Data

208 Chapter 4: Transforming Image Geometry
Your output should be similar to the following figure.

Note
This method of extracting slices of data is limited to orthogonal slices only. You can
extract single orthogonal and non-orthogonal slices of volumetric data using
EXTRACT_SLICE, described in the following section. See “Extracting a Slice of
Volumetric Data” on page 209 for more information.

Example Code: Displaying a Series of Planar Slices

Copy and paste the following text into the Editor window. Save the file as
DisplaySlices.pro, compile it and run it to reproduce the previous example.

PRO DisplaySlices

; Select the file, create an array and read in the data.
file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

; Load a color table and prepare the display window.
LOADCT,5
DEVICE, DECOMPOSED = 0, RETAIN = 2

Figure 4-14: Planar Slices of a MRI Scan of a Human Head
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 209
WINDOW, 0, XSIZE = 800, YSIZE = 600

; Initialize the FOR statement. Use i as the loop element
; for the slice and the position. Use "255b -" to display
; the images with the inverse of the selected color table
; and use /ORDER to draw the image from the top down.
FOR i = 0, 56, 1 DO TVSCL, 255b - image [*,*,i], /ORDER, i

; Now extract a single perpendicular slice of data.
sliceImg = REFORM(image[40,*,*])

; Compensate for the sampling rate of the scan slices
; and display the image.
sliceImg = CONGRID(sliceImg, 100, 100)
TVSCL, 255b - sliceImg, 47

END

Extracting a Slice of Volumetric Data

The EXTRACT_SLICE function extracts a single two-dimensional planar slice of
data from a three-dimensional volume. By setting arguments that specify the
orientation of the slice and a point in its center using the following syntax, you can
precisely control the orientation of the slicing plane.

Result = EXTRACT_SLICE(Vol, Xsize, Ysize, Xcenter, Ycenter,
Zcenter, Xrot, Yrot, Zrot [, ANISOTROPY=[xspacing, yspacing,
zspacing]] [, OUT_VAL=value] [, /RADIANS] [, /SAMPLE]
[, VERTICES=variable])

The following example demonstrates how to use EXTRACT_SLICE to extract the
same singular slice as that shown in the previous example. Complete the following
steps or see “Example Code: Extracting a Slice of Volumetric Data” on page 211 for
an example you can copy and paste into the Editor window.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples',
'data'])
volume = READ_BINARY(file, DATA_DIMS =[80, 100, 57])

2. Prepare the display device and load the grayscale color table.

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

3. Enter the following line to extract a sagittal planar slice from the MRI volume
of the head.

sliceImg = EXTRACT_SLICE $
Image Processing in IDL Planar Slicing of Volumetric Data

210 Chapter 4: Transforming Image Geometry
(volume, 110, 110, 40, 50, 28, 90.0, 90.0, 0.0, OUT_VAL =
0)

Note
The code within the previous parentheses specifies: the volume (Data), a size
greater than the Xsize and Ysize of the volume (110,110), the Xcenter, Ycenter and
Zcenter (40, 50, 28) denoting the x, y, and z index points through which the slice
will pass, the degree of x, y, and z rotation of the slicing plane (90.0, 90.0, 0.0)
and the OUT_VAL = 0 indicating that elements of the output array which fall
outside the original values will be given the value of 0 or black.

4. Use CONGRID to resize the output array to an easily viewable size. This is
also used to compensate for the sampling rate of the scan images.

bigImg = CONGRID (sliceImg, 400, 650, /INTERP)

5. Prepare a display window based on the resized array and display the image.

WINDOW, 0, XSIZE = 400, YSIZE = 650
TVSCL, bigImg

The image created by this example should appear similar to the following figure.

Figure 4-15: Example of Extracting a Slice of Data From a Volume
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 211
Example Code: Extracting a Slice of Volumetric Data

Copy and paste the following text into an IDL Editor window. After saving the file as
ExtractSlice.pro, compile and run the program to reproduce the previous
example.

PRO ExtractSlice

; Select the file and define the image array.
file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'])
volume = READ_BINARY(file, DATA_DIMS =[80, 100, 57])

; Prepare the display device and load a color table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Extract a slice from the volume.
sliceImg = EXTRACT_SLICE(volume, 110, 110, 40, 50, 28, $

90.0, 90.0, 0.0, OUT_VAL = 0)

; Enlarge the array.
bigImg = CONGRID(sliceImg, 400, 650, /INTERP)

; Display the image.
WINDOW, 0, XSIZE = 400, YSIZE = 650
TVSCL, bigImg

END

Interactive Planar Slicing of Volumetric Data

The series of two-dimensional images created by the magnetic resonance imaging
scan, shown in the section, “Displaying a Series of Planar Slices” on page 206, can
also be visualized as a three-dimensional volume using either of IDL’s interactive
volume visualization tools, SLICER3 or XVOLUME.

SLICER3 quickly creates visualizations of 3D data using IDL Direct Graphics. The
XVOLUME procedure employs IDL Object Graphics to create highly interactive
visualizations that take advantage of OpenGL hardware acceleration and multiple
processors for volume rendering. Since Object Graphics are rendered in memory and
not simply drawn, both the time and amount of virtual memory required to create a
XVOLUME visualization exceed those needed to create a Direct Graphics, SLICER3
visualization. For more information about XVOLUME, see “Displaying Volumes
Using XVOLUME” on page 216.
Image Processing in IDL Planar Slicing of Volumetric Data

212 Chapter 4: Transforming Image Geometry
Displaying Volumetric Data Using SLICER3

The Direct Graphics SLICER3 widget-based application allows you to view single or
multiple slices of a volume or to create an isosurface of the three-dimensional data.
Complete the following steps to load the head.dat volume into the SLICER3
application or see “Example Code: Displaying Volumetric Data Using SLICER3” on
page 215 for an example you can copy and paste into an IDL Editor window.

1. Select the data file and read in the data using known dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY=['examples',
'data'])
volume = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

2. To display all slices of the head.dat file as a volume in SLICER3, create a
pointer called hdata which passes the data array information to the
SLICER3 application.

pData = PTR_NEW(volume)

Note
You can load multiple arrays into the SLICER3 application by creating a pointer for
each array. Each array must have the same dimensions.

3. Load the data into the SLICER3 application. The DATA_NAMES designates
the data set in the application’s Data list. This field will be greyed out if only
one volumetric array has been loaded.

SLICER3, pData, DATA_NAMES ='head'

At first it is not apparent that your data has been passed to the SLICER3 application.
See the following section, “Manipulating Volumetric Data Using SLICER3” for
details on how to use this interface.

Manipulating Volumetric Data Using SLICER3

Once you have loaded a three-dimensional array into the SLICER3 application, the
interface offers numerous ways to visualize the data. The following steps cover
creating an isosurface, viewing a slice of data within the volume and rotating the
display.

1. In the SLICER3 application, select Surface from the Mode: list. Left-click in
the Surface Threshold window containing the logarithmic histogram plot of
the data and drag the green line to change the threshold value of the display. A
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 213
value in the low to mid 40’s works well for this image. Click Display to view
the isosurface of the data.

Note
To undo an action resulting in an unwanted image in the SLICER3 window, you can
either choose Tools → Delete and select the last item on the list to undo the last
action or choose Tools → Erase to erase the entire image.

2. Select Slice from the Mode list. Select the Expose, Orthogonal, and X
options. Left-click in the image window and drag the mouse halfway along the

Figure 4-16: An Isosurface of Volumetric Data
Image Processing in IDL Planar Slicing of Volumetric Data

214 Chapter 4: Transforming Image Geometry
X axis and then release the mouse button. The planar slice of volumetric data
appears at the point where you release the mouse button.

3. Change the colors used to display the slice by selecting Tools → Colors →
Slice/Block. In the color table widget, select STD Gamma-II from the list and
click Done to load the new color table.

4. Change the view of the display by selecting View from the Mode list. Here
you can change the rotation and zoom factors of the displayed image. Use the
slider bars to rotate the orientation cube. A preview of the cube’s orientation
appears in the small window above the controls. To create the orientation
shown in the following figure, move the slider to a rotation of -18 for Z and -80
for X. Click Display to change the orientation of the image in the window.

Figure 4-17: Visualizing a Slice of Volumetric Data
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 215
The following figure displays the final image.

To save the image currently in the display window, select File → Save → Save TIFF
Image. For more information about using the SLICER3 interface to manipulate
volumetric data, see “SLICER3” in the IDL Reference Guide.

Note
Enter the following line after closing the SLICER3 application to release memory
used by the pointer: PTR_FREE, pData

Example Code: Displaying Volumetric Data Using SLICER3

The following code can be copied and pasted into the IDL Editor window to quickly
pass the volumetric data contained in the head.dat file to the SLICER3 application.
Paste the following text into an IDL Editor window and save the program as
DisplaySLICER3.pro before compiling and running the program.

PRO DisplaySLICER3

; Select the file and define the array.
file = FILEPATH('head.dat', SUBDIRECTORY=['examples', 'data'])
volume = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

Figure 4-18: A Slice Overlaying an Isosurface
Image Processing in IDL Planar Slicing of Volumetric Data

216 Chapter 4: Transforming Image Geometry
; Create a pointer to the image data passed to SLICER3.
pData = PTR_NEW(volume)

; Load the data into the SLICER3 application.
SLICER3, pData, DATA_NAMES = 'head', /MODAL

; Release memory used by the pointer.
PTR_FREE, pData

END

Note
After running this program to load the data into the SLICER3 application, see
“Manipulating Volumetric Data Using SLICER3” on page 212 for tips on using the
interface.

Displaying Volumes Using XVOLUME

Unlike SLICER3, the IDL Object Graphics procedure, XVOLUME, allows you to
interactively manipulate 3D volumes and isosurfaces. While the following example
requires more processing time to display the same data (head.dat) as that
previously displayed with SLICER3, remember that the output is not the same. The
XVOLUME example is rendering an opaque volume of the data set whereas the
previous SLICER3 example simply displayed an isosurface. Although Object
Graphics display methods can require more processing time, they also offer
significant advantages including greater interactivity, true volume rendering with the
ability to specify opacities, and finer control over image and volumetric data.

Complete the following steps to load the head.dat volume into the XVOLUME
application or see “Example Code: Displaying Volumetric Data Using XVOLUME”
on page 219 for an example you can copy and paste into an IDL Editor window.

1. Select the file and read in the data, specifying known data dimensions:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples',
'data'])
volume = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

2. Reduce the size of the original array to speed up processing:

smallVol = CONGRID(volume, 40, 50, 27)

3. Using the INTERPOLATE keyword to smooth the data, display the volume
using the XVOLUME procedure:

XVOLUME, smallVol, /INTERPOLATE
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 217
After the data is passed to the XVOLUME application, an image similar to the
following figure appears.

Manipulating Volumetric Data Using XVOLUME

Once data has been loaded into the XVOLUME application, you can create color
coded contoured slices of data. Complete the following steps to create x-, y- and
z-dimensional contours of the head.dat volume.

1. Rotate the image of the head so that the nose is facing toward the right. Click
in the display window and, with your mouse button depressed, drag the mouse
cursor to reposition the image display.

2. Select the X, Y, and Z “Contours” options, located on the upper-left portion of
the XVOLUME interface.

Note
Turning off the XVOLUME “Auto-Render” feature produces faster responses to
processing requests.

3. Move the X Plane slider to a value of 22. A contour line appears in the display
window, running down the center of the image of the head. When you click in
the display window, the planar slice is visible.

4. Move the Y Plane slider to a value of 27. A contour line appears along the
middle of the y-dimension.

Figure 4-19: Visualizing a Volume with XVOLUME
Image Processing in IDL Planar Slicing of Volumetric Data

218 Chapter 4: Transforming Image Geometry
5. Move the Z Plane slider to a value of 12. Another contour line appears near
the middle of the z-dimension.

The XVOLUME interface should appear similar to the following figure.

Click in the image display window to show the contour lines.

Figure 4-20: Creating Dimensional Contours Using XVOLUME

Figure 4-21: Displaying Contours of Planar Slices Using XVOLUME
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 4: Transforming Image Geometry 219
Tip
After a volumetric array has been loaded into the XVOLUME application, it can be
animated using the XVOLUME_ROTATE procedure. To rotate the image above,
run the example program for “XVOLUME_ROTATE” in the IDL Reference Guide.

Example Code: Displaying Volumetric Data Using XVOLUME

The following code can be copied and pasted into the IDL Editor window to quickly
pass the volumetric data contained in the head.dat file to the XVOLUME
application. After saving the file as DisplayXVOLUME.pro, compile and run the
program to reproduce the previous example.

PRO DisplayXVOLUME

; Select the file and read in the data using known dimensions.
file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'])
volume = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

; Decrease the size of the array to speed up processing.
smallVol = CONGRID(volume, 40, 50, 27)

; Display the data using XVOLUME.
XVOLUME, smallVol, /INTERPOLATE

END

Tip
For information about manipulating data in the XVOLUME interface, see
“Manipulating Volumetric Data Using XVOLUME” on page 217.
Image Processing in IDL Planar Slicing of Volumetric Data

220 Chapter 4: Transforming Image Geometry
Planar Slicing of Volumetric Data Image Processing in IDL

Chapter 5:

Mapping an Image onto
Geometry
This chapter describes the following topics:
Overview of Mapping Images onto Geometric
Surfaces . 222

Mapping an Image onto Elevation Data . . 224
Mapping an Image onto a Sphere 233
Image Processing in IDL 221

222 Chapter 5: Mapping an Image onto Geometry
Overview of Mapping Images onto Geometric
Surfaces

Mapping an image onto geometry, also known as texture mapping, involves
overlaying an image or function onto a geometric surface. Images may be realistic,
such as satellite images, or representational, such as color-coded functions of
temperature or elevation. Unlike volume visualizations, which render each voxel
(volume element) of a three-dimensional scene, mapping an image onto geometry
efficiently creates the appearance of complexity by simply layering an image onto a
surface. The resulting realism of the display also provides information that is not as
readily apparent as with a simple display of either the image or the geometric surface.

Mapping an image onto a geometric surface is a two step process. First, the image is
mapped onto the geometric surface in object space. Second, the surface undergoes
view transformations (relating to the viewpoint of the observer) and is then displayed
in 2D screen space. You can use IDL Direct Graphics or Object Graphics to display
images mapped onto geometric surfaces.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description

“Mapping an
Image onto
Elevation Data”
on page 224.

SHADE_SURF Display the elevation data.

IDLgrWindow::Init
IDLgrView::Init
IDLgrModel::Init

Initialize the objects necessary
for an Object Graphics display.

IDLgrSurface::Init Initialize a surface object
containing the elevation data.

IDLgrImage::Init Initialize an image object
containing the satellite image.

XOBJVIEW Display the object in an
interactive IDL utility allowing
rotation and resizing.

Table 5-1: Tasks and Routines Associated with Mapping an Image onto
Geometry
Overview of Mapping Images onto Geometric Surfaces Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 223
“Mapping an
Image onto a
Sphere Using
Direct Graphics”
on page 233.

MESH_OBJ
REPLICATE

Create a sphere.

SCALE3 Specify system variables
required for 3D viewing.

SET_SHADING Control the light source used by
POLYSHADE.

TVSCL
POLYSHADE

Map the image onto the sphere
using POLYSHADE and
display the example with
TVSCL.

“Mapping an
Image onto a
Sphere Using
Object Graphics”
on page 237.

MESH_OBJ
REPLICATE

Create a sphere.

IDLgrModel::Init
IDLgrPalette::Init
IDLgrImage::Init

Initialize model, palette and
image objects.

FINDGEN
REPLICATE

Create normalized coordinates
in order to map the image onto
the sphere.

IDLgrPolygon::Init Assign the sphere to a polygon
object and apply the image
object.

XOBJVIEW Display the object in an
interactive IDL utility allowing
rotation and resizing.

Task Routine(s)/Object(s) Description

Table 5-1: Tasks and Routines Associated with Mapping an Image onto
Geometry (Continued)
Image Processing in IDL Overview of Mapping Images onto Geometric Surfaces

224 Chapter 5: Mapping an Image onto Geometry
Mapping an Image onto Elevation Data

The following Object Graphics example maps a satellite image from the Los
Angeles, California vicinity onto a DEM (Digital Elevation Model) containing the
area’s topographical features. The realism resulting from mapping the image onto the
corresponding elevation data provides a more informative view of the area’s
topography. The process is segmented into the following three sections:

• “Opening Image and Geometry Files”, in the following section

• “Initializing the IDL Display Objects” on page 225

• “Displaying the Image and Geometric Surface Objects” on page 227

Note
Data can be either regularly gridded (defined by a 2D array) or irregularly gridded
(defined by irregular x, y, z points). Both the image and elevation data used in this
example are regularly gridded. If you are dealing with irregularly gridded data, use
GRIDDATA to map the data to a regular grid.

See “Example Code: Mapping an Image onto a DEM” on page 230 for an example
that you can copy and paste into an Editor window or complete the following steps
for a detailed description of the process.

Opening Image and Geometry Files

The following steps read in the satellite image and DEM files and display the
elevation data.

1. Select the satellite image:

imageFile = FILEPATH('elev_t.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import the JPEG file:

READ_JPEG, imageFile, image

3. Select the DEM file:

demFile = FILEPATH('elevbin.dat', $
SUBDIRECTORY = ['examples', 'data'])
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 225
4. Define an array for the elevation data, open the file, read in the data and close
the file:

dem = READ_BINARY(demFile, DATA_DIMS = [64, 64])

5. Enlarge the size of the elevation array for display purposes:

dem = CONGRID(dem, 128, 128, /INTERP)

6. To quickly visualize the elevation data before continuing on to the Object
Graphics section, initialize the display, create a window and display the
elevation data using the SHADE_SURF command:

DEVICE, DECOMPOSED = 0
WINDOW, 0, TITLE = 'Elevation Data'
SHADE_SURF, dem

After reading in the satellite image and DEM data, continue with the next section to
create the objects necessary to map the satellite image onto the elevation surface.

Initializing the IDL Display Objects

After reading in the image and surface data in the previous steps, you will need to
create objects containing the data. When creating an IDL Object Graphics display, it
is necessary to create a window object (oWindow), a view object (oView) and a model
object (oModel). These display objects, shown in the conceptual representation in the
following figure, will contain a geometric surface object (the DEM data) and an
image object (the satellite image). These user-defined objects are instances of

Figure 5-1: Visual Display of the Elevation Data
Image Processing in IDL Mapping an Image onto Elevation Data

226 Chapter 5: Mapping an Image onto Geometry
existing IDL object classes and provide access to the properties and methods
associated with each object class.

Note
The XOBJVIEW utility (described in “Mapping an Image onto a Sphere Using
Object Graphics” on page 237) automatically creates window and view objects.

Complete the following steps to initialize the necessary IDL objects.

1. Initialize the window, view and model display objects. For detailed syntax,
arguments and keywords available with each object initialization, see
IDLgrWindow::Init, IDLgrView::Init and IDLgrModel::Init. The following
three lines use the basic syntax oNewObject = OBJ_NEW('Class_Name')
to create these objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, COLOR_MODEL = 0)
oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')

2. Assign the elevation surface data, dem, to an IDLgrSurface object. The
IDLgrSurface::Init keyword, STYLE = 2, draws the elevation data using a
filled line style:

oSurface = OBJ_NEW('IDLgrSurface', dem, STYLE = 2)

Figure 5-2: Conceptualization of Object Graphics Display Example

oModel - an IDLgrModel object

oView - an IDLgrView object

oWindow - an IDLgrWindow object

oSurface - the geometric elevation object

oImage - the satellite image object
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 227
3. Assign the satellite image to a user-defined IDLgrImage object using
IDLgrImage::Init:

oImage = OBJ_NEW('IDLgrImage', image, INTERLEAVE = 0, $
/INTERPOLATE)

INTERLEAVE = 0 indicates that the satellite image is organized using pixel
interleaving, and therefore has the dimensions (3, m, n). The INTERPOLATE
keyword forces bilinear interpolation instead of using the default nearest-
neighbor interpolation method.

Displaying the Image and Geometric Surface Objects

This section displays the objects created in the previous steps. The image and surface
objects will first be displayed in an IDL Object Graphics window and then with the
interactive XOBJVIEW utility.

1. Center the elevation surface object in the display window. The default object
graphics coordinate system is [–1,–1], [1,1]. To center the object in the
window, position the lower left corner of the surface data at [–0.5,–0.5, –0.5]
for the x, y and z dimensions:

oSurface -> GETPROPERTY, XRANGE = xr, YRANGE = yr, ZRANGE =
zr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
zs = NORM_COORD(zr)
zs[0] = zs[0] - 0.5
oSurface -> SETPROPERTY, XCOORD_CONV = xs, YCOORD_CONV = ys,
$

ZCOORD = zs
Image Processing in IDL Mapping an Image onto Elevation Data

228 Chapter 5: Mapping an Image onto Geometry
2. Map the satellite image onto the geometric elevation surface using the
IDLgrSurface::Init TEXTURE_MAP keyword:

oSurface -> SetProperty, TEXTURE_MAP = oImage, $
COLOR = [255, 255, 255]

For clearest display of the texture map, set COLOR = [255, 255, 255]. If the
image does not have dimensions that are exact powers of 2, IDL resamples the
image into a larger size that has dimensions which are the next powers of two
greater than the original dimensions. This resampling may cause unwanted
sampling artifacts. In this example, the image does have dimensions that are
exact powers of two, so no resampling occurs.

Note
If your texture does not have dimensions that are exact powers of 2 and you do not
want to introduce resampling artifacts, you can pad the texture with unused data to a
power of two and tell IDL to map only a subset of the texture onto the surface.

For example, if your image is 40 by 40, create a 64 by 64 image and fill part of it
with the image data:

textureImage = BYTARR(64, 64)
textureImage[0:39, 0:39] = image ; image is 40 by 40
oImage = OBJ_NEW('IDLgrImage', textureImage)

Then, construct texture coordinates that map the active part of the texture to a
surface (oSurface):

textureCoords = [[], [], [], []]
oSurface -> SetProperty, TEXTURE_COORD = textureCoords

The surface object in IDL 5.6 is has been enhanced to automatically perform the
above calculation. In the above example, just use the image data (the 40 by 40
array) to create the image texture and do not supply texture coordinates. IDL
computes the appropriate texture coordinates to correctly use the 40 by 40 image.
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 229
Note
Some graphic devices have a limit for the maximum texture size. If your texture is
larger than the maximum size, IDL scales it down into dimensions that work on the
device. This rescaling may introduce resampling artifacts and loss of detail in the
texture. To avoid this, use the TEXTURE_HIGHRES keyword to tell IDL to draw
the surface in smaller pieces that can be texture mapped without loss of detail.

3. Add the surface object, covered by the satellite image, to the model object.
Then add the model to the view object:

oModel -> Add, oSurface
oView -> Add, oModel

4. Rotate the model for better display in the object window. Without rotating the
model, the surface is displayed at a 90° elevation angle, containing no depth
information. The following lines rotate the model 90° away from the viewer
along the x-axis and 30° clockwise along the y-axis and the x-axis:

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], 30
oModel -> ROTATE, [1, 0, 0], 30

5. Display the result in the Object Graphics window:

oWindow -> Draw, oView

Figure 5-3: Image Mapped onto a Surface in an Object Graphics Window
Image Processing in IDL Mapping an Image onto Elevation Data

230 Chapter 5: Mapping an Image onto Geometry
6. Display the results using XOBJVIEW, setting the SCALE = 1 (instead of the
default value of 1/SQRT3) to increase the size of the initial display:

XOBJVIEW, oModel, /BLOCK, SCALE = 1

This results in the following display.

After displaying the model, you can rotate it by clicking in the application
window and dragging your mouse. Select the magnify button, then click near
the middle of the image. Drag your mouse away from the center of the display
to magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display.

7. Destroy unneeded object references after closing the display windows:

OBJ_DESTROY, [oView, oImage]

The oModel and oSurface objects are automatically destroyed when oView is
destroyed.

For an example of mapping an image onto a regular surface using both Direct and
Object Graphics displays, see “Mapping an Image onto a Sphere” on page 233.

Example Code: Mapping an Image onto a DEM

Copy and paste the following text into the IDL Editor window. After saving the file as
Elevation_Object.pro, compile and run the program to reproduce the previous
example.

Figure 5-4: Displaying the Image Mapped onto the Surface in XOBJVIEW
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 231
PRO Elevation_Object

; Obtaining path to image file.
imageFile = FILEPATH('elev_t.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Importing image file.
READ_JPEG, imageFile, image

; Obtaining path to DEM data file.
demFile = FILEPATH('elevbin.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Importing data.
dem = READ_BINARY(demFile, DATA_DIMS = [64, 64])
dem = CONGRID(dem, 128, 128, /INTERP)

; Initialize the display.
DEVICE, DECOMPOSED = 0, RETAIN = 2

; Displaying original DEM elevation data.
WINDOW, 0, TITLE = 'Elevation Data'
SHADE_SURF, dem

; Initialize the display objects.
oModel = OBJ_NEW('IDLgrModel')
oView = OBJ_NEW('IDLgrView')
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

COLOR_MODEL = 0)
oSurface = OBJ_NEW('IDLgrSurface', dem, STYLE = 2)
oImage = OBJ_NEW('IDLgrImage', image, $

INTERLEAVE = 0, /INTERPOLATE)

; Calculating normalized conversion factors and
; shifting -.5 in every direction to center object
; in the window.
; Keep in mind that your view default coordinate
; system is [-1,-1], [1, 1]
oSurface -> GetProperty, XRANGE = xr, $

YRANGE = yr, ZRANGE = zr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
zs = NORM_COORD(zr)
zs[0] = zs[0] - 0.5
oSurface -> SetProperty, XCOORD_CONV = xs, $

YCOORD_CONV = ys, ZCOORD = zs
Image Processing in IDL Mapping an Image onto Elevation Data

232 Chapter 5: Mapping an Image onto Geometry
; Applying image to surface (texture mapping).
oSurface -> SetProperty, TEXTURE_MAP = oImage, $

COLOR = [255, 255, 255]

; Adding objects to model,then adding model to view.
oModel -> Add, oSurface
oView -> Add, oModel

; Rotating model for better display of surface
; in the object window.
oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], 30
oModel -> ROTATE, [1, 0, 0], 30

; Drawing the view of the surface (Displaying the
; results).
oWindow -> Draw, oView

; Displaying results in XOBJVIEW utility to allow
; rotation
XOBJVIEW, oModel, /BLOCK, SCALE = 1

; Destroying object references, which are no longer
; needed.
OBJ_DESTROY, [oView, oImage]

END
Mapping an Image onto Elevation Data Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 233
Mapping an Image onto a Sphere

The following example maps an image containing a color representation of world
elevation onto a sphere using both Direct and Object Graphics displays. The example
is broken down into two sections:

• “Mapping an Image onto a Sphere Using Direct Graphics”

• “Mapping an Image onto a Sphere Using Object Graphics” on page 237

Mapping an Image onto a Sphere Using Direct
Graphics

See “Example Code: Mapping an Image onto a Sphere Using Direct Graphics” on
page 236 for an example that you can copy and paste into an Editor window or
complete the following steps for a detailed description of the process.

1. Select the file containing the world elevation image. Define the array, read in
the data and close the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [360, 360])

2. Prepare the display device to display a PseudoColor image:

DEVICE, DECOMPOSED = 0

3. Load a color table and using TVLCT, set the final index value of the red, green
and blue bands to 255 (white). Setting these index values to white provides for
the creation of a white window background in a later step.

LOADCT, 33
TVLCT, 255,255,255, !D.TABLE.SIZE - 1

(For comparison, TVLCT, 0, 0, 0, !D.TABLE_SIZE+1 would designate
a black window background.)

4. Create a window and display the image containing the world elevation data:

WINDOW, 0, XSIZE = 360, YSIZE = 360
TVSCL, image
Image Processing in IDL Mapping an Image onto a Sphere

234 Chapter 5: Mapping an Image onto Geometry
This image, shown in the following figure, will be mapped onto the sphere.

5. Use MESH_OBJ to create a sphere onto which the image will be mapped. The
following line specifies a value of 4, indicating a spherical surface type:

MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 360, 360), $
/CLOSED

The vertices and polygons variables are the lists that contain the mesh vertices
and mesh indices of the sphere. REPLICATE generates a 360 by 360 array,
each element of which will contain the value 0.25. Using REPLICATE in the
Array1 argument of MESH_OBJ specifies that the vertices variable is to
consist of 360 by 360 vertices, each positioned at a constant radius of 0.25
from the center of the sphere.

6. Create a window and define the 3D view. Use SCALE3 to designate
transformation and scaling parameters for 3D viewing. The AX and AZ
keywords specify the rotation, in degrees about the x and z axes:

WINDOW, 1, XSIZE = 512, YSIZE = 512
SCALE3, XRANGE = [-0.25,0.25], YRANGE = [-0.25,0.25], $

ZRANGE = [-0.25,0.25], AX = 0, AZ = -90

Figure 5-5: World Elevation Image
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 235
7. Set the light source to control the shading used by the POLYSHADE function.
Use SET_SHADING to modify the light source, moving it from the default
position of [0,0,1] with rays parallel to the z-axis to a light source position of
[-0.5, 0.5, 2.0]:

SET_SHADING, LIGHT = [-0.5, 0.5, 2.0]

8. Set the system background color to the default color index, defining a white
window background:

!P.BACKGROUND = !P.COLOR

9. Use TVSCL to display the world elevation image mapped onto the sphere.
POLYSHADE references the sphere created with the MESH_OBJ routine, sets
SHADES = image to map the image onto the sphere and uses the image
transformation defined by the T3D transformation matrix:

TVSCL, POLYSHADE(vertices, polygons, SHADES = image, /T3D)

The specified view of the image mapped onto the sphere is displayed in a Direct
Graphics window as shown in the following figure.

10. After displaying the image, restore the system’s default background color:

!P.BACKGROUND = 0

To create a Object Graphics display featuring a sphere that can be interactively
rotated and resized, complete the steps contained in the section, “Mapping an Image
onto a Sphere Using Object Graphics” on page 237.

Figure 5-6: Direct Graphics Display of an Image Mapped onto a Sphere
Image Processing in IDL Mapping an Image onto a Sphere

236 Chapter 5: Mapping an Image onto Geometry
Example Code: Mapping an Image onto a Sphere
Using Direct Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
MapOnSphere_Direct.pro, compile and run the program to reproduce the
previous example.

PRO MapOnSphere_Direct

; Importing image into IDL.
file = FILEPATH('worldelv.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = [360, 360])

; Initializing color table and setting the final
; index values to white.
DEVICE, DECOMPOSED = 0
LOADCT, 33
TVLCT, 255, 255, 255, !D.TABLE_SIZE - 1

; Displaying the original image.
WINDOW, 0, XSIZE = 360, YSIZE = 360
TVSCL, image

; Creating a 360x360 sphere with a constant radius of
; 0.25 to use as the data.
MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 360, 360), $

/CLOSED

; Creating the window defining the view.
WINDOW, 2, XSIZE = 512, YSIZE = 512
SCALE3, XRANGE = [-0.25,0.25], YRANGE = [-0.25,0.25], $

ZRANGE = [-0.25,0.25], AX = 0, AZ = -90

; Displaying data with image as texture map.
SET_SHADING, LIGHT = [-0.5, 0.5, 2.0]
!P.BACKGROUND = !P.COLOR
TVSCL, POLYSHADE(vertices, polygons, SHADES = image, /T3D)
!P.BACKGROUND = 0

END
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 237
Mapping an Image onto a Sphere Using Object
Graphics

This example maps an image containing world elevation data onto the surface of a
sphere and displays the result using the XOBJVIEW utility. This utility automatically
creates the window object and the view object, previously shown in the section,
“Initializing the IDL Display Objects” on page 225. Therefore, this example creates
an object based on IDLgrModel that contains the sphere, the image and the image
palette, as shown in the conceptual representation in the following figure.

See “Example Code: Mapping an Image onto a Sphere Using Object Graphics” on
page 240 for an example that you can copy and paste into an Editor window or
complete the following steps for a detailed description of the process.

Note
If you are continuing the exercise from the previous section, “Mapping an Image
onto a Sphere Using Direct Graphics”, skip steps 1, and 2. Proceed with step 3 to
create the necessary objects.

1. Select the world elevation image. Define the array, read in the data and close
the file.

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_BINARY(file, DATA_DIMS = [360, 360])

Figure 5-7: Conceptualization of XOBJVIEW Object Graphics Example

oModel - an IDLgrModel object
containing the sphere, image, and
palette

oPolygon - an object defining the sphere,

oImage - an object containing the image

oPalette - an object defining the color table

containing the image and palette
Image Processing in IDL Mapping an Image onto a Sphere

238 Chapter 5: Mapping an Image onto Geometry
2. Use the MESH_OBJ procedure to create a sphere onto which the image will be
mapped. The following invocation of MESH_OBJ uses a value of 4, which
represents a spherical mesh:

MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)

When the MESH_OBJ procedure completes, the vertices and polygons
variables contain the mesh vertices and polygonal mesh connectivity
information, respectively. Although our image is 360 by 360, we can texture
map the image to a mesh that has fewer vertices. IDL interpolates the image
data across the mesh, retaining all the image detail between polygon vertices.
The number of mesh vertices determines how close to perfectly round the
sphere will be. Fewer vertices produce a sphere with larger facets, while more
vertices make a sphere with smaller facets and more closely approximates a
perfect sphere. A large number of mesh vertices will increase the time required
to draw the sphere. In this example, MESH_OBJ produces a 101 by 101 array
of vertices that are located in a sphere shape with a radius of 0.25.

3. Initialize the display objects. In this example, it is necessary to define a model
object that will contain the sphere, the image and the color table palette. Using
the syntax, oNewObject = OBJ_NEW('Class_Name'), create the model,
palette and image objects:

oModel = OBJ_NEW('IDLgrModel')
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 33
oPalette -> SetRGB, 255, 255, 255, 255
oImage = OBJ_NEW('IDLgrImage', image, PALETTE = oPalette)

The previous lines initialize the oPalette object with the color table and then
set the final index value of the red, green and blue bands to 255 (white) in order
to use white (instead of black) to designate the highest areas of elevation. The
palette object is created before the image object so that the palette can be
applied when initializing the image object. For more information, see
IDLgrModel::Init, IDLgrPalette::Init and IDLgrImage::Init.

4. Create texture coordinates that define how the texture map is applied to the
mesh. A texture coordinate is associated with each vertex in the mesh. The
value of the texture coordinate at a vertex determines what part of the texture
will be mapped to the mesh at that vertex. Texture coordinates run from 0.0 to
1.0 across a texture, so a texture coordinate of [0.5, 0.5] at a vertex specifies
that the image pixel at the exact center of the image is mapped to the mesh at
that vertex. In this example, we want to do a simple linear mapping of the
texture around the sphere, so we create a convenience vector that describes the
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 239
mapping in each of the texture’s x- and y-directions, and then create these
texture coordinates:

vector = FINDGEN(101)/100.
texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates[0, *, *] = vector # REPLICATE(1., 101)
texure_coordinates[1, *, *] = REPLICATE(1., 101) # vector

The code above copies the convenience vector through the array in each
direction.

5. Enter the following line to initialize a polygon object with the image and
geometry data using the IDLgrPolygon::Init function. Set SHADING = 1 for
gouraud (smoother) shading. Set the DATA keyword equal to the sphere
defined with the MESH_OBJ function. Set COLOR to draw a white sphere onto
which the image will be mapped. Set TEXTURE_COORD equal to the texture
coordinates created in the previous steps. Assign the image object to the
polygon object using the TEXTURE_MAP keyword and force bilinear
interpolation:

oPolygons = OBJ_NEW('IDLgrPolygon', SHADING = 1, $
DATA = vertices, POLYGONS = polygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = oImage, /TEXTURE_INTERP)

Note
When mapping an image onto an IDLgrPolygon object, you must specify both
TEXTURE_MAP and TEXTURE_COORD keywords.

6. Add the polygon containing the image and the palette to the model object:

oModel -> ADD, oPolygons

7. Rotate the model -90° along the x-axis and y-axis:

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90

8. Display the results using XOBJVIEW, an interactive utility allowing you to
rotate and resize objects:

XOBJVIEW, oModel, /BLOCK
Image Processing in IDL Mapping an Image onto a Sphere

240 Chapter 5: Mapping an Image onto Geometry
After displaying the object, you can rotate the sphere by clicking in the display
window and dragging your mouse. Select the magnify button and click near the
middle of the sphere. Drag your mouse away from the center of the display to
magnify the image or toward the center of the display to shrink the image. Select the
left-most button on the XOBJVIEW toolbar to reset the display. The following figure
shows a rotated and magnified view of the world elevation object.

9. After closing the XOBJVIEW display, remove unneeded object references:

OBJ_DESTROY, [oModel, oImage, oPalette]

Example Code: Mapping an Image onto a Sphere
Using Object Graphics

Copy and paste the following text into the IDL Editor window. After saving the file as
MapOnSphere_Object.pro, compile and run the program to reproduce the
previous example.

Figure 5-8: Magnified View of World Elevation Object
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 5: Mapping an Image onto Geometry 241
PRO MapOnSphere_Object

; Importing image into IDL.
file = FILEPATH('worldelv.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = [360, 360])

; Creating a 51x51 sphere with a constant radius of
; 0.25 to use as the data.
MESH_OBJ, 4, vertices, polygons, $

REPLICATE(0.25, 101, 101)

; Creating a model object to contain the display.
oModel = OBJ_NEW('IDLgrModel')

; Creating image and palette objects to contain the
; imported image and color table.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 33
oPalette -> SetRGB, 255,255,255,255
oImage = OBJ_NEW('IDLgrImage', image, $

PALETTE = oPalette)

; Deriving texture map coordinates.
vector = FINDGEN(101)/100.
texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates[0, *, *] = vector # REPLICATE(1., 101)
texure_coordinates[1, *, *] = REPLICATE(1., 101) # vector

; Creating the polygon object containing the data.
oPolygons = OBJ_NEW('IDLgrPolygon', SHADING = 1, $

DATA = vertices, POLYGONS = polygons, $
COLOR = [255,255,255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = oImage, /TEXTURE_INTERP)

; Adding polygon to model container. NOTE: the polygon
; object already contains the texture map image and its
; related palette.
oModel -> ADD, oPolygons

; Rotating model to display zero degrees latitude and
; zero degrees longitude as front.
oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90

; Displaying results.
XOBJVIEW, oModel, /BLOCK
Image Processing in IDL Mapping an Image onto a Sphere

242 Chapter 5: Mapping an Image onto Geometry
; Cleaning up object references.
OBJ_DESTROY, [oModel, oImage, oPalette]

END
Mapping an Image onto a Sphere Image Processing in IDL

Chapter 6:

Working with Masks
and Image Statistics
This chapter describes the following topics:
Overview of Masks and Image Statistics . 244
Masking Images . 246

Clipping Images . 251

Locating Pixel Values in an Image 256
Calculating Image Statistics 262
Image Processing in IDL 243

244 Chapter 6: Working with Masks and Image Statistics
Overview of Masks and Image Statistics

Mathematical operations used with images include logic (conditional) operations and
statistics. Logic operations are used to make masks to apply threshold levels to clip
the pixel values of an image, and to locate pixel values. These operations help to
segment features in an image, after which statistics can be derived to provide a means
of comparison.

Masks are used to isolate specific features. A mask is a binary image, made by using
relational operators. A binary mask is multiplied by the original image to omit
specific areas. For more information, see “Masking Images” on page 246.

Threshold levels can be applied to an image to clip the pixel values to a floor or a
ceiling. Clipping enhances specific features, and is applied through minimum and
maximum operators. After the resulting images are byte-scaled, the specific features
remain while the other areas become part of the background. For more information,
see “Clipping Images” on page 251.

Locating pixel values is another way to segment specific features. Mathematical
expressions are used to determine the location of pixels with particular values within
the two-dimensional array representing the image. For more information, see
“Locating Pixel Values in an Image” on page 256.

When specific features have been segmented, image statistics (such as total, mean,
standard deviation, and variance) can be derived to quantify and compare them. For
more information, see “Calculating Image Statistics” on page 262.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces image math operations and associated IDL math
operators and routines covered in this chapter.

Task Operator(s) and Routine(s) Description

“Masking
Images” on
page 246.

Relational Operators

Mathematical Operators

Make masks and
apply them to
images.

Table 6-1: Image Math Tasks and Related Image Math Operators and
Routines
Overview of Masks and Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 245
Note
This chapter uses data files from the IDL examples/data and
examples/demo/demodata directories. Two files, data.txt and index.txt,
contain descriptions of the files, including array sizes.

“Clipping
Images” on
page 251.

Minimum and Maximum Operators

Mathematical Operators

Clip the pixel values
of an image to
highlight specific
features.

“Locating Pixel
Values in an
Image” on
page 256.

WHERE

Mathematical Operators

Locate specific
pixel values within
an image.

“Calculating
Image
Statistics” on
page 262

Mathematical Operators

IMAGE_STATISTICS

Calculate the sum,
mean, standard
deviation, and
variance of the pixel
values within an
image.

Task Operator(s) and Routine(s) Description

Table 6-1: Image Math Tasks and Related Image Math Operators and
Routines (Continued)
Image Processing in IDL Overview of Masks and Image Statistics

246 Chapter 6: Working with Masks and Image Statistics
Masking Images

Masking (also known as thresholding) is used to isolate features within an image
above, below, or equal to a specified pixel value. The value (known as the threshold
level) determines how masking occurs. In IDL, masking is performed with the
relational operators. IDL’s relational operators are shown in the following table.

For example, if you have an image variable and you want to mask it to include only
the pixel values equaling 125, the resulting mask variable is created with the
following IDL statement.

mask = image EQ 125

The mask level is applied to every element in the image array, which results in a
binary image.

Note
You can also provide both upper and lower bounds to masks by using the Boolean
operators; AND, NOT, OR, and XOR. See Boolean Operators in the Building IDL
Applications for more information on these operators.

The following example uses masks derived from the image contained in the
worldelv.dat file, which is in the examples/data directory. Masks are derived
to extract the oceans and land. These masks are applied back to the image to show
only on the oceans or the land. Masks are applied by multiplying them with the
original image.

Operator Description

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

Table 6-2: IDL’s Relational Operators
Masking Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 247
For code that you can copy and paste into an Editor window, see “Example Code:
Masking Images” on page 249 or complete the following steps for a detailed
description of the process.

1. Determine the path to the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 38

5. Create a window and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'World Elevation'

TV, image

The following figure shows the original image, which represents the elevation
levels of the world.

Figure 6-1: World Elevation Image
Image Processing in IDL Masking Images

248 Chapter 6: Working with Masks and Image Statistics
6. Make a mask of the oceans:

oceanMask = image LT 125

7. Multiply the ocean mask by the original image:

maskedImage = image*oceanMask

8. Create another window and display the mask and the results of the
multiplication:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Oceans Mask (left) and Resulting Image (right)'

TVSCL, oceanMask, 0
TV, maskedImage, 1

The following figure shows the mask of the world’s oceans and the results of
applying it to the original image.

9. Make a mask of the land:

landMask = image GE 125

10. Multiply the land mask by the original image:

maskedImage = image*landMask

Figure 6-2: Oceans Mask (left) and the Resulting Image (right)
Masking Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 249
11. Create another window and display the mask and the results of the
multiplication:

WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Land Mask (left) and Resulting Image (right)'

TVSCL, landMask, 0
TV, maskedImage, 1

The following figure shows the mask of the land masses of the world and the
results of applying it to the original image.

Example Code: Masking Images

Copy and paste the following text into the IDL Editor window. After saving the file as
MaskingImages.pro, compile and run the program to reproduce the previous
example.

PRO MaskingImages

; Determine the path to the file.
file = FILEPATH('worldelv.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameters.
imageSize = [360, 360]

; Import the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

Figure 6-3: Land Mask (left) and the Resulting Image (right)
Image Processing in IDL Masking Images

250 Chapter 6: Working with Masks and Image Statistics
; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 38

; Create a window and display the image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'World Elevation'
TV, image

; Make a mask of the oceans.
oceanMask = image LT 125

; Multiply the ocean mask by the original image.
maskedImage = image*oceanMask

; Create another window and display the mask and the
; results of the multiplication.
WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Oceans Mask (left) and Resulting Image (right)'
TVSCL, oceanMask, 0
TV, maskedImage, 1

; Make a mask of the land.
landMask = image GE 125

; Multiply the land mask by the original image.
maskedImage = image*landMask

; Create another window and display the mask and the
; results of the multiplication.
WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Land Mask (left) and Resulting Image (right)'
TVSCL, landMask, 0
TV, maskedImage, 1

END
Masking Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 251
Clipping Images

Clipping is used to enhance features within an image. You provide a threshold level
to determine how the clipping occurs. The values above (or below) the threshold level
remain the same while the other values are set equal to the level.

In IDL, clipping is performed with the minimum and maximum operators. IDL’s
minimum and maximum operators are shown in the following table.

The operators are used in an expression that contains an image array, the operator,
and then the threshold level. For example, if you have an image variable and you
want to scale it to include only the values greater than or equal to 125, the resulting
clippedImage variable is created with the following IDL statement.

clippedImage = image > 125

The threshold level is applied to every element in the image array. If the element
value is less than 125, it is set equal to 125. If the value is greater than or equal to 125,
it is left unchanged.

Note
When clipping is combined with byte-scaling, this is equivalent to performing a
stretch on an image. See “Determining Intensity Values When Thresholding and
Stretching Images” in Chapter 11 for more information.

The following example shows how to threshold an image of Hurricane Gilbert, which
is in the hurric.dat file in the examples/data directory. Two clipped images are
created. One contains all data values greater than 125 and the other contains all
values less than 125. Since these clipped images are grayscale images and do not use
the entire 0 to 255 range, they are displayed with the TV procedure and then scaled
with the TVSCL procedure, which scales the range of the image from 0 to 255.

For code that you can copy and paste into an Editor window, see “Example Code:
Thresholding Images” on page 254 or complete the following steps for a detailed
description of the process.

Operator Description

< Less than or equal to

> Greater than or equal to

Table 6-3: IDL’s Minimum and Maximum Operators
Image Processing in IDL Clipping Images

252 Chapter 6: Working with Masks and Image Statistics
1. Determine the path to the worldtmp.png file:

file = FILEPATH('hurric.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Define the image size parameter:

imageSize = [440, 340]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

5. Create a window and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Hurricane Gilbert'

TV, image

The following figure shows the original image of Hurricane Gilbert.

6. Clip the image to determine which pixel values are greater than 125:

topClippedImage = image > 125

Figure 6-4: Image of Hurricane Gilbert
Clipping Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 253
7. Create another window and display the clipped image with the TV (left) and
the TVSCL (right) procedures:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Image Greater Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, topClippedImage, 0
TVSCL, topClippedImage, 1

The following figure shows the resulting image of pixel values greater than
125 with the TV and TVSCL procedures.

8. Clip the image to determine which pixel values are less than a 125:

bottomClippedImage = image < 125

9. Create another window and display the clipped image with the TV and the
TVSCL procedures:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Image Less Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, bottomClippedImage, 0
TVSCL, bottomClippedImage, 1

Figure 6-5: Pixel Values Greater Than 125, TV (left) and TVSCL (right)
Image Processing in IDL Clipping Images

254 Chapter 6: Working with Masks and Image Statistics
The following figure shows the resulting image of pixel values less than 125
with the TV (left) and TVSCL (right) procedures.

Example Code: Thresholding Images

Copy and paste the following text into the IDL Editor window. After saving the file as
ClippingImages.pro, compile and run the program to reproduce the previous
example.

PRO ClippingImages

; Determine the path to the file.
file = FILEPATH('hurric.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Define the image size parameter.
imageSize = [440, 340]

; Import image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Hurricane Gilbert'
TV, image

Figure 6-6: Pixel Values Less Than 125, TV (left) and TVSCL (right)
Clipping Images Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 255
; Threshold the image by determining which pixel values
; are greater than 125.
topThreshold = image > 125

; Create another window and display the threshold image
; with the TV (left) and the TVSCL (right) procedures.
WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Image Greater Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, topThreshold, 0
TVSCL, topThreshold, 1

; Threshold the image by determining which pixel values
; are less than 125.
bottomThreshold = image < 125

; Create another window and display the threshold image
; with the TV (left) and the TVSCL (right) procedures.
WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Image Less Than 125, TV (left) ' + $
'and TVSCL (right)'

TV, bottomThreshold, 0
TVSCL, bottomThreshold, 1

END
Image Processing in IDL Clipping Images

256 Chapter 6: Working with Masks and Image Statistics
Locating Pixel Values in an Image

Locating pixel values within an image helps to segment features. You can use IDL’s
WHERE function to determine where features characterized by specific values
appear within the image. The WHERE function returns a vector of one-dimensional
indices, locating where the specified values occur within the image. The values are
specified with an expression input argument to the WHERE function. The expression
is defined with the relational operators, similar to how masking is performed. See
“Masking Images” on page 246 for more information on relational operators.

Since the WHERE function only returns the one-dimensional indices, you must
derive the column and row locations with the following statements.

column = index MOD imageSize[0]
row = index/imageSize[0]

where index is the result from the WHERE function and imageSize[0] is the width of
the image.

The WHERE function returns one-dimensional indices to allow you to easily use
these results as subscripts within the original image array or another array. This
ability allows you to combine values from one image with another image. The
following example combines specific values from the image within the
worldelv.dat file with the image within the worldtmp.png file. The
worldelv.dat file is in the examples/data directory and the worldtmp.png file
is in the examples/demo/demodata directory. First, the temperature data is shown
in the oceans and the elevation data is shown on the land. Then, the elevation data is
shown in the oceans and the temperature data is shown on the land.

For code that you can copy and paste into an Editor window, see “Example Code:
Locating Pixel Values in an Images” on page 259 or complete the following steps for
a detailed description of the process.

1. Determine the path to the file:

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]

3. Import the elevation image from the file:

elvImage = READ_BINARY(file, DATA_DIMS = imageSize)
Locating Pixel Values in an Image Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 257
4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 38

5. Create a window and display the elevation image:

WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'World Elevation (left) and Temperature (right)'

TV, elvImage, 0

6. Determine the path to the other file:

file = FILEPATH('worldtmp.png', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

7. Import the temperature image:

tmpImage = READ_PNG(file)

8. Display the temperature image:

TV, tmpImage, 1

The following figure shows the original world elevation and temperature
images.

9. Determine where the oceans are located within the elevation image:

ocean = WHERE(elvImage LT 125)

Figure 6-7: World Elevation (left) and Temperature (right)
Image Processing in IDL Locating Pixel Values in an Image

258 Chapter 6: Working with Masks and Image Statistics
10. Set the temperature image as the background:

image = tmpImage

11. Replace values from the temperature image with the values from the elevation
image only where the ocean pixels are located:

image[ocean] = elvImage[ocean]

12. Create another window and display the resulting temperature over land image:

WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Temperature Over Land (left) ' +
'and Over Oceans (right)'

TV, image, 0

13. Determine where the land is located within the elevation image:

land = WHERE(elvImage GE 125)

14. Set the temperature image as the background:

image = tmpImage

15. Replace values from the temperature image with the values from the elevation
image only where the land pixels are located:

image[land] = elvImage[land]

16. Display the resulting temperature over oceans image:

TV, image, 1
Locating Pixel Values in an Image Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 259
The following figure shows two possible image combinations using the world
elevation and temperature images.

Tip
You could also construct the same image using masks and adding them together.
For example, to create the second image (temperature over oceans), you could have
done the following:

mask = elvImage GE 125

image = (tmpImage*(1 - mask)) + (elvImage*mask)

For large images, using masks may be faster than using the WHERE routine.

Example Code: Locating Pixel Values in an Images

Copy and paste the following text into the IDL Editor window. After saving the file as
CombiningImages.pro, compile and run the program to reproduce the previous
example.

PRO CombiningImages

; Determine the path to the file.
file = FILEPATH('worldelv.dat', $

SUBDIRECTORY = ['examples', 'data'])

Figure 6-8: Temperature Over Land (left) and Over Oceans (right)
Image Processing in IDL Locating Pixel Values in an Image

260 Chapter 6: Working with Masks and Image Statistics
; Initialize image size parameter.
imageSize = [360, 360]

; Import the elevation image from the file.
elvImage = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 38

; Create a window and display the elevation image.
WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'World Elevation (left) and Temperature (right)'
TV, elvImage, 0

; Determine the path to the other file.
file = FILEPATH('worldtmp.png', $

SUBDIRECTORY = ['examples', 'demo', 'demodata'])

; Import the temperature image from the other file.
tmpImage = READ_PNG(file)

; Display the temperature image.
TV, tmpImage, 1

; Determine where the oceans are located within the
; elevation image.
ocean = WHERE(elvImage LT 125)

; Set the temperature image as the background.
image = tmpImage

; Replace values from the temperature image with values
; from the elevation image only where the ocean pixels
; are located.
image[ocean] = elvImage[ocean]

; Create another window and display the resulting
; temperature over land image.
WINDOW, 1, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Temperature Over Land (left) ' + $
'and Over Oceans (right)'

TV, image, 0

; Determine where the land is located within the
; elevation image.
land = WHERE(elvImage GE 125)
Locating Pixel Values in an Image Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 261
; Set the temperature image as the background.
image = tmpImage

; Replace values from the temperature image with values
; from the elevation image only where the land pixels
; are located.
image[land] = elvImage[land]

; Display the resulting temperature over oceans image.
TV, image, 1

END
Image Processing in IDL Locating Pixel Values in an Image

262 Chapter 6: Working with Masks and Image Statistics
Calculating Image Statistics

The statistical properties of an image provide useful information, such as the total,
mean, standard deviation, and variance of the pixel values. IDL’s
IMAGE_STATISTICS procedure can be used to calculate these statistical properties.
The MOMENT, N_ELEMENTS, TOTAL, MAX, MEAN, MIN, STDDEV, and
VARIANCE routines can also be used to calculate individual statistics, but most of
these values are already provided by the IMAGE_STATISTICS procedure.

The following example shows how to use the IMAGE_STATISTICS procedure to
calculate the statistical properties of an image. First, a mask is used to subtract the
convection of the earth’s core from the convection image contained in the
convec.dat file, which is in the examples/data directory. The resulting
difference represents the convection of just the earth’s mantle. The
IMAGE_STATISTICS procedure is applied to this difference image, and the
resulting values are displayed in the Output Log. Then, a mask is derived for the non-
zero values of the difference image, and the IMAGE_STATISTICS procedure is used
again, this time with the mask applied through the MASK keyword. The resulting
statistics can than be compared. The color table associated with this example is white
for zero values and dark red for 255 values.

For code that you can copy and paste into an Editor window, see step 9, “Determine
the statistics of the difference image:” on page 264 or complete the following steps
for a detailed description of the process.

1. Determine the path to the file:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter.

imageSize = [248, 248]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 27
Calculating Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 263
5. Create a window and display the image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Earth Mantle Convection'

TV, image

The following figure shows the original convection image.

6. Make a mask of the core and scale it to range from 0 to 255:

core = BYTSCL(image EQ 255)

7. Subtract the scaled mask from the original image:

difference = image - core

8. Create another window and display the difference of the original image and the
scaled mask:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Difference of Original & Core'

TV, difference

Figure 6-9: Earth Mantle Convection
Image Processing in IDL Calculating Image Statistics

264 Chapter 6: Working with Masks and Image Statistics
The following figure shows the convection of just the earth’s mantle.

9. Determine the statistics of the difference image:

IMAGE_STATISTICS, difference, COUNT = pixelNumber, $
DATA_SUM = pixelTotal, MAXIMUM = pixelMax, $
MEAN = pixelMean, MINIMUM = pixelMin, $
STDDEV = pixelDeviation, $
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

10. Print out the resulting statistics:

PRINT, ''
PRINT, 'IMAGE STATISTICS:'
PRINT, 'Total Number of Pixels = ', pixelNumber
PRINT, 'Total of Pixel Values = ', pixelTotal
PRINT, 'Maximum Pixel Value = ', pixelMax
PRINT, 'Mean of Pixel Values = ', pixelMean
PRINT, 'Minimum Pixel Value = ', pixelMin
PRINT, 'Standard Deviation of Pixel Values = ', $

pixelDeviation
PRINT, 'Total of Squared Pixel Values = ', $

pixelSquareSum
PRINT, 'Variance of Pixel Values = ', pixelVariance

Figure 6-10: The Difference of the Original Image and the Core
Calculating Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 265
IDL prints:

IMAGE STATISTICS:
Total Number of Pixels = 61504
Total of Pixel Values = 2.61691e+006
Maximum Pixel Value = 253.000
Mean of Pixel Values = 42.5486
Minimum Pixel Value = 0.000000
Standard Deviation of Pixel Values = 48.7946
Total of Squared Pixel Values = 2.57779e+008
Variance of Pixel Values = 2380.91

11. Derive a mask of the non-zero values of the image:

nonzeroMask = difference NE 0

12. Determine the statistics of the image with the mask applied:

IMAGE_STATISTICS, difference, COUNT = pixelNumber, $
DATA_SUM = pixelTotal, MASK = nonzeroMask, $
MAXIMUM = pixelMax, MEAN = pixelMean, $
MINIMUM = pixelMin, STDDEV = pixelDeviation, $
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

13. Print out the resulting statistics:

PRINT, ''
PRINT, 'MASKED IMAGE STATISTICS:'
PRINT, 'Total Number of Pixels = ', pixelNumber
PRINT, 'Total of Pixel Values = ', pixelTotal
PRINT, 'Maximum Pixel Value = ', pixelMax
PRINT, 'Mean of Pixel Values = ', pixelMean
PRINT, 'Minimum Pixel Value = ', pixelMin
PRINT, 'Standard Deviation of Pixel Values = ', $

pixelDeviation
PRINT, 'Total of Squared Pixel Values = ', $

pixelSquareSum
PRINT, 'Variance of Pixel Values = ', pixelVariance

IDL prints:

MASKED IMAGE STATISTICS:
Total Number of Pixels = 36325
Total of Pixel Values = 2.61691e+006
Maximum Pixel Value = 253.000
Mean of Pixel Values = 72.0416
Minimum Pixel Value = 1.00000
Standard Deviation of Pixel Values = 43.6638
Total of Squared Pixel Values = 2.57779e+008
Variance of Pixel Values = 1906.53
Image Processing in IDL Calculating Image Statistics

266 Chapter 6: Working with Masks and Image Statistics
The difference in the resulting statistics are because of the zero values, which
are a part of the calculations for the image before the mask is applied.

Example Code: Calculating Image Statistics

Copy and paste the following text into the IDL Editor window. After saving the file as
CalculatingStatistics.pro, compile and run the program to reproduce the
previous example.

PRO CalculatingStatistics

; Determine the path to the file.
file = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [248, 248]

; Import the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 27

; Create a window and display the image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Earth Mantle Convection'
TV, image

; Make a mask of the core and scale it to range from 0
; to 255.
core = BYTSCL(image EQ 255)

; Subtract the scaled mask from the original image.
difference = image - core

; Create another window and display the difference of
; the original image and the scaled mask.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Difference of Original & Core'
TV, difference

; Determine the statistics of the image.
IMAGE_STATISTICS, difference, COUNT = pixelNumber, $

DATA_SUM = pixelTotal, MAXIMUM = pixelMax, $
MEAN = pixelMean, MINIMUM = pixelMin, $
STDDEV = pixelDeviation, $
Calculating Image Statistics Image Processing in IDL

Chapter 6: Working with Masks and Image Statistics 267
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

; Print out the resulting statistics.
PRINT, ''
PRINT, 'IMAGE STATISTICS:'
PRINT, 'Total Number of Pixels = ', pixelNumber
PRINT, 'Total of Pixel Values = ', pixelTotal
PRINT, 'Maximum Pixel Value = ', pixelMax
PRINT, 'Mean of Pixel Values = ', pixelMean
PRINT, 'Minimum Pixel Value = ', pixelMin
PRINT, 'Standard Deviation of Pixel Values = ', $

pixelDeviation
PRINT, 'Total of Squared Pixel Values = ', $

pixelSquareSum
PRINT, 'Variance of Pixel Values = ', pixelVariance

; Derive a mask of the non-zero values of the image.
nonzeroMask = difference NE 0

; Determine the statistics of the image with the
; mask applied.
IMAGE_STATISTICS, difference, COUNT = pixelNumber, $

DATA_SUM = pixelTotal, MASK = nonzeroMask, $
MAXIMUM = pixelMax, MEAN = pixelMean, $
MINIMUM = pixelMin, STDDEV = pixelDeviation, $
SUM_OF_SQUARES = pixelSquareSum, $
VARIANCE = pixelVariance

; Print out the resulting statistics.
PRINT, ''
PRINT, 'MASKED IMAGE STATISTICS:'
PRINT, 'Total Number of Pixels = ', pixelNumber
PRINT, 'Total of Pixel Values = ', pixelTotal
PRINT, 'Maximum Pixel Value = ', pixelMax
PRINT, 'Mean of Pixel Values = ', pixelMean
PRINT, 'Minimum Pixel Value = ', pixelMin
PRINT, 'Standard Deviation of Pixel Values = ', $

pixelDeviation
PRINT, 'Total of Squared Pixel Values = ', $

pixelSquareSum
PRINT, 'Variance of Pixel Values = ', pixelVariance

END
Image Processing in IDL Calculating Image Statistics

268 Chapter 6: Working with Masks and Image Statistics
Calculating Image Statistics Image Processing in IDL

Chapter 7:

Warping Images
This chapter describes the following topics:
Overview of Warping Images 270
Creating Transparent Image Overlays 272

Warping Images Using Direct Graphics . . 274
Warping Images Using Object Graphics . 285
Image Processing in IDL 269

270 Chapter 7: Warping Images
Overview of Warping Images

In image processing, image warping is used primarily to correct optical distortions
introduced by camera lenses, or to register images acquired from either different
perspectives or different sensors. When correcting optical distortions, the original
image may be registered to a regular grid rather than to another image. In image
warping, corresponding control points (selected in the input and reference images)
control the geometry of the warping transformation. The arrays of control points
from the original input image, Xi and Yi, are stretched to conform to the control point
arrays Xo and Yo, designated in the reference image. Because these transformations
are frequently nonlinear, image warping is often known as rubber sheeting. For
general tips regarding control point selection see “Tips for Selecting Control Points”
on page 271.

Image warping in IDL is a three-step process. First, control points are selected
between two displayed images or between an image and a grid. Second, the resulting
arrays of control points, Xi, Yi, Xo, and Yo, are then input into one of IDL’s warping
routines. Third, the warped image resulting from the translation of the Xi, Yi points to
the Xo, Yo points, is displayed. It is often useful to display the warped image as a
transparency, overlaying the reference image. For more information on creating
transparencies with Direct and Object Graphics, see “Creating Transparent Image
Overlays” on page 272.

The following table introduces the tasks and routines covered in this chapter.

Task Routine Description

Creating a Direct
Graphics Display
of Image Warping

See “Warping
Images Using
Direct Graphics”
on page 274.

WSET

CURSOR

Set the window focus and select control
point coordinates.

WARP_TRI Warp the images using WARP_TRI’s
triangulation and interpolation.

POLYWARP Create arrays of polynomial coefficients
from the control point arrays before
using POLY_2D.

POLY_2D Warp the images using the polynomial
warping functions of POLY_2D.

XPALETTE Use XPALETTE to view a color table.

Table 7-1: Image Warping Tasks and Routines
Overview of Warping Images Image Processing in IDL

Chapter 7: Warping Images 271
Tips for Selecting Control Points

Both examples in this chapter use control points to define the image warping
transformation. To produce accurate results, use the following guidelines when
selecting corresponding control points:

• Select numerous control points. A warping transformation based on many
control points produces a more accurate result than one based on only a few
control points.

• Select control points near the edges of the image in addition to control points
near the center of the image.

• Select a higher density of control points in irregular or highly varying areas of
the image.

• Select points in which you are confident. Including points with poor accuracy
may generate worse results then a warp model with fewer points.

Creating an
Object Graphics
Display of Image
Warping

See “Warping
Images Using
Object Graphics”
on page 285.

IDLgrPalette::Init Create a palette object.

XROI Select control points using the XROI
utility.

WARP_TRI Warp the input image to the reference
image using the triangulation and
interpolation functions of WARP_TRI.

SIZE

BYTARR

Change the warped image into a RGB
image containing an alpha channel to
enable transparency.

IDLgrImage::Init Initialize transparent image and base
image objects.

IDLgrWindow::Init

IDLgrView::Init

IDLgrModel::Init

Initialize the objects necessary for an
Object Graphics display.

Task Routine Description

Table 7-1: Image Warping Tasks and Routines (Continued)
Image Processing in IDL Overview of Warping Images

272 Chapter 7: Warping Images
Creating Transparent Image Overlays

It is possible to create and display a transparent image using either IDL Direct
Graphics or IDL Object Graphics. Creating a transparent image is useful in the
warping process when you want to overlay a transparency of the warped image onto
the reference image (the image in which Xo, Yo control points were selected). The
method used to create and display the transparent image depends on whether the
resulting image is being displayed with Direct Graphics or Object Graphics.

Displaying Image Transparencies Using Direct
Graphics

Creating a transparent overlay in Direct Graphics requires devising a mask to alter the
array of the image that is to be displayed as a transparency. The mask retains only the
pixel values that will appear in the transparent overlay. The base image and the
transparent warped image can then be displayed as a blended image in a Direct
Graphics window.

With Direct Graphics displays, only a single color table can be applied to the blended
image in a display window. For an example of creating a blended image, combining a
warped image and a base image, see “Warping Images Using Direct Graphics” on
page 274.

Note
For precise control over the color tables associated with the reference image and the
warped image transparency, consider using Object Graphics.

Displaying Image Transparencies Using Object
Graphics

In Object Graphics, a transparent image is created by adding an alpha channel to the
image array. The alpha channel is used to define the level of transparency in an image
object. The Object Graphics example in this chapter uses the IDLgrImage object to
create an image object and employs the BLEND_FUNCTION keyword to specify
how the transparency of the alpha channel is applied. Other methods of applying a
transparent object include using the TEXTURE_MAP keyword in conjunction with
either an IDLgrPolygon or IDLgrSurface object.
Creating Transparent Image Overlays Image Processing in IDL

Chapter 7: Warping Images 273
Object Graphics allows precise control over the color palettes used to display image
objects. By initializing a palette object, both the reference image object and the
transparent, warped image object can be displayed using individual color palettes.
For an example, see “Warping Images Using Object Graphics” on page 285.
Image Processing in IDL Creating Transparent Image Overlays

274 Chapter 7: Warping Images
Warping Images Using Direct Graphics

Image warping requires selection of corresponding control points in an input image
and either a reference image or a regular grid. The input image is warped so that the
input image control points match the control points specified in the reference image.

Using Direct Graphics, the following example warps the input image, a Magnetic
Resonance Image (MRI) proton density scan of a human thoracic cavity, to the
reference image, a Computed Tomography (CT) bone scan of the same region. For
code that you can copy and paste into an IDL Editor window, see “Example Code:
Direct Graphics Display of Image Warping” on page 282 or complete the following
steps for a detailed description of the process.

1. Select the MRI proton density image file:

mriFile= FILEPATH('pdthorax124.jpg', $
Subdirectory = ['examples', 'data'])

2. Use READ_JPEG to read in the input image, which will be warped to the CT
bone scan image. Then prepare the display device, load a grayscale color table,
create a window and display the image:

READ_JPEG, mriFile, mriImg
DEVICE, DECOMPOSED = 0
LOADCT, 0
WINDOW, 0, XSIZE = 256, YSIZE = 256, $

TITLE = 'MRI Proton Density Input Image'
TV, mriImg

3. Select the CT bone scan image file:

ctboneFile = FILEPATH('ctbone157.jpg', $
Subdirectory = ['examples', 'data'])

4. Use READ_JPEG to read in the reference image and create a window:

READ_JPEG, ctboneFile, ctboneImg
WINDOW, 2, XSIZE = 483, YSIZE = 410, $

TITLE = 'CT Bone Scan Reference Image'

5. Load the “Hue Sat Lightness 2" color table, making the image’s features easier
to distinguish. After displaying the image, return to the gray scale color table.

LOADCT, 20
TV, ctboneImg
LOADCT, 0

Proceed with the following section to begin selecting control points.
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 275
Direct Graphics Example: Selecting Control Points

This section describes selecting corresponding control points in the two displayed
images. The array of control points (Xi, Yi) in the input image will be mapped to the
array of points (Xo, Yo) selected in the reference image. The following image shows
the points to be selected in the input image.

1. Set focus on the first image window:

WSET, 0

2. Select the first control point using the CURSOR function. After entering the
following line, the cursor changes to a cross hair when positioned over the
image window. Position the cross hair so that it is on the first control point,
“CP 1", depicted by a white circle in the lower-left corned of the previous
figure, and click the left mouse button. The x, y coordinate values of the first
control point will be saved in the variables xi1, yi1:

CURSOR, xi1, yi1, /DEVICE

Figure 7-1: Control Points (CP) Selection in the Input Image

(xi1, yi1)

(xi3, yi3)

(xi4, yi4)

(xi5, yi5)

(xi6, yi6)

CP 1

CP 2

CP 3

CP 4

CP 5

CP 6
(xi2, yi2)

(xi7, yi7)

CP 8

CP 7

(xi9, yi9) (xi8, yi8)
CP 9

(xi7, yi7)
Image Processing in IDL Warping Images Using Direct Graphics

276 Chapter 7: Warping Images
Note
The values for xi1 and yi1 are displayed in the IDLDE Variable Watch window. If
you are not running the IDLDE, you can type PRINT, xi1, yi1 to see the
values.

Tip
After entering the first line and selecting the first control point in the display
window, place your cursor in the IDL command line and press the Up Arrow key.
The last line entered is displayed and can be easily modified.

3. Continue selecting control points. After you enter each of the following lines,
select the appropriate control point in the input image as shown in the previous
figure:

CURSOR, xi2, yi2, /DEVICE
CURSOR, xi3, yi3, /DEVICE
CURSOR, xi4, yi4, /DEVICE
CURSOR, xi5, yi5, /DEVICE
CURSOR, xi6, yi6, /DEVICE
CURSOR, xi7, yi7, /DEVICE
CURSOR, xi8, yi8, /DEVICE
CURSOR, xi9, yi9, /DEVICE

4. Set the focus on the window containing the reference image to prepare to
select corresponding control points:

WSET, 2

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control points in the reference image as
you selected in the input image. The control points must also be selected in the
same order since the point Xi1, Yi1 will be warped to Xo1, Yo1.
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 277
The following figure displays the control points to be selected in the next step.

5. Select the control points in the reference image. These are the corresponding
points to which the input image control points will be warped. After entering
each line, select the appropriate control point as shown in the previous figure:

CURSOR, xo1, yo1, /DEVICE
CURSOR, xo2, yo2, /DEVICE
CURSOR, xo3, yo3, /DEVICE
CURSOR, xo4, yo4, /DEVICE
CURSOR, xo5, yo5, /DEVICE
CURSOR, xo6, yo6, /DEVICE
CURSOR, xo7, yo7, /DEVICE
CURSOR, xo8, yo8, /DEVICE
CURSOR, xo9, yo9, /DEVICE

Figure 7-2: Control Point (CP) Selection in the Reference Image

(xo1, yo1)

(xo2, yo2)

(xo3, yo3) (xo5, yo5)

(xo6, yo6)

(xo7, yo7)
CP 1

CP 2

CP 3 CP 5

CP 6

CP 7

(xo4, yo4)

CP 9
(xo9, yo9)

CP 4

(xo8, yo8)
CP 8
Image Processing in IDL Warping Images Using Direct Graphics

278 Chapter 7: Warping Images
6. Place the control points into vectors (one-dimensional arrays) required by IDL
warping routines. WARP_TRI and POLYWARP use the variables Xi, Yi and
Xo, Yo as containers for the control points selected in the original input and
reference images. Geometric transformations control the warping of the input
image (Xi, Yi) values to the reference image (Xo, Yo) values. Enter the
following lines to load the control point values into the one-dimensional
arrays:

Xi = [xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9]
Yi = [yi1, yi2, yi3, yi4, yi5, yi6, yi7, yi8, yi9]
Xo = [xo1, xo2, xo3, xo4, xo5, xo6, xo7, xo8, xo9]
Yo = [yo1, yo2, yo3, yo4, yo5, yo6, yo7, yo8, yo9]

Example Code: Warping and Displaying a Transparent Image
Using Direct Graphics

This section uses the control points defined in the previous section to warp the
original MRI scan to the CT scan, using both of IDL’s warping routines, WARP_TRI
and POLY_2D. After outputting the warped image, it will be altered for display as a
transparency in Direct Graphics.

1. Warp the input image, mriImg, onto the reference image using WARP_TRI.
This function uses the irregular grid of the reference image, defined by Xo, Yo,
as a basis for triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image, OUTPUT_SIZE=vector]
[, /QUINTIC] [, /EXTRAPOLATE])

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of the selected control points:

warpTriImg = WARP_TRI(Xo, Yo, Xi, Yi, mriImg, $
OUTPUT_SIZE=[483, 410], /EXTRAPOLATE)

Note
Images requiring more aggressive warp models may not have good results outside
of the extent of the control points when WARP_TRI is used with the
/EXTRAPOLATE keyword.
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 279
2. Create a new window and display the warped image:

WINDOW, 3, XSIZE = 483, YSIZE = 410, TITLE = 'WARP_TRI image'
TV, warpTriImg

You can see the how precisely the control points were selected by the amount
of distortion in the resulting warped image. The following figure shows little
distortion.

3. Use POLYWARP in conjunction with POLY_2D to create another warped
image for comparison with the WARP_TRI image. First use the POLYWARP
procedure to create arrays (p, q) containing the polynomial coefficients
required by the POLY_2D function:

POLYWARP, Xi, Yi, Xo, Yo, 1, p, q

4. Using the p, q array values generated by POLYWARP, warp the original
image, mriImg, onto the CT bone scan using the POLY_2D function syntax,

Result = POLY_2D(Array, P, Q [, Interp [, Dimx, Dimy]]
[, CUBIC={-1 to 0}] [, MISSING=value])

Specify a value of 1 for the Interp argument to use bilinear interpolation and
set DimX, DimY equal to the reference image dimensions:

warpPolyImg = POLY_2D(mriImg, p, q, 1, 483, 410)

Figure 7-3: Warped Image Produced with WARP_TRI
Image Processing in IDL Warping Images Using Direct Graphics

280 Chapter 7: Warping Images
5. Create a new window and display the image created using POLY_2D:

WINDOW, 4, XSIZE = 483, YSIZE = 410, TITLE = 'Poly_2D image'
TV, warpPolyImg

The following image shows little difference from the WARP_TRI image other
than more accurate placement in the display window.

Direct Graphics displays in IDL allow you to display a combination of images in the
same Direct Graphics window. The following steps display various intensities of the
warped image and the reference image in a Direct Graphics window.

6. Use the XPALETTE tool to view the color table applied to the bone scan
image by first entering:

XPALETTE

In the XPALETTE utility, display a color table by selecting the Predefined
button. In the resulting XLOADCT dialog, scroll down and select Hue
Saturation Lightness 2. Click Done. In the XPALETTE utility, click Redraw.
Compare the bone scan image, displayed in window 2, to the displayed color
table. To mask out the less important background information, select a color
close to that of the body color in the image.

Figure 7-4: Warped Image Produced with POLY_2D
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 281
The following figure displays a portion of the XPALETTE utility with such a
selection.

7. Using the knowledge that the body color’s index number is 55, mask out the
less important background information of the bone scan image by creating an
array containing only pixel values greater than 55. Multiply the mask by the
image to retain the color information and use BYTSCL to scale the resulting
array from 0 to 255:

ctboneMask = BYTSCL((ctboneImg GT 55) * ctboneImg)

8. Display a blended image using the full intensity of the bone scan image and a
75% intensity of the warped image. The following statement displays the
pixels in the bone scan with the full range of colors in the color table while
using the lower 75% of the color table values for the warped image. After
adding the arrays, scale the results for display purposes:

blendImg = BYTSCL(ctboneMask + 0.75 * warpPolyImg)

9. Create a window and display the result:

WINDOW, 5, XSIZE = 483, YSIZE = 410, TITLE = 'Blended Image'
TV, blendImg

Figure 7-5: Using XPALETTE to Identify Mask Values
Image Processing in IDL Warping Images Using Direct Graphics

282 Chapter 7: Warping Images
The clavicles and rib bones of the reference image are clearly displayed in the
following figure.

While Direct Graphics supports displaying indexed images as transparent blended
images, you could also apply alpha blending to RGB images that are output to a
TrueColor display. However, creating image transparencies which retain their color
information is more easily accomplished using Object Graphics. For an example of
using Object Graphics to display a warped image transparency over another image
see “Warping Images Using Object Graphics” on page 285.

Example Code: Direct Graphics Display of Image Warping

Copy and paste the following text into an IDL Editor window. After saving the file as
MRIWarping_direct.pro, compile and run the program to reproduce the previous
example.

PRO MRIWarping_Direct

; Select the MRI proton density scan file.
mriFile = FILEPATH('pdthorax124.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Read in the MRI file, prepare the display,
; load the gray scale color table and display the image.

Figure 7-6: Direct Graphics Display of a Transparent Blended Image
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 283
READ_JPEG, mriFile, mriImg
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0
WINDOW, 0, XSIZE = 256, YSIZE = 256, $

TITLE = 'MRI Proton Density Input Image'
TV, mriImg

; Select the CT bone scan file.
ctboneFile = FILEPATH('ctbone157.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Read in the file and create another window.
READ_JPEG, ctboneFile, ctboneImg
WINDOW, 2, XSIZE = 483, YSIZE = 410, $

TITLE = 'CT Bone Scan Reference Image'

; Display the image with a color table to highlight
; features.
LOADCT, 20
TV, ctboneImg

; Return to the gray scale palette
LOADCT, 0

; Designate the control points in the input image
; (mriImg) in window 0). In the example steps, these
; points were selected with the CURSOR function.
Xi = [21, 65, 104, 129, 161, 198, 235, 170, 107]
Yi = [25, 131, 207, 229, 211, 121, 16, 134, 140]

; Designate the corresponding control points in the
; reference image (ctboneImg in window 2). In the
; example steps, these points were selected with the
; CURSOR function.
Xo = [34, 121, 183, 243, 303, 377, 454, 319, 198]
Yo = [10, 207, 357, 400, 363, 206, 12, 222, 233]

; Using the control points, warp the input image
; (mriImg) onto the reference image (ctboneImg).
warpTriImg = WARP_TRI(Xo, Yo, Xi, Yi, mriImg, $

OUTPUT_SIZE = [483, 410], /EXTRAPOLATE)
;Display new image.
WINDOW, 3, XSIZE = 483, YSIZE = 410, $

TITLE = 'WARP_TRI image'
TV, warpTriImg

; Use POLYWARP to create the variables (p,q) needed by
; POLY_2D.
POLYWARP, Xi, Yi, Xo, Yo, 1, p, q
Image Processing in IDL Warping Images Using Direct Graphics

284 Chapter 7: Warping Images
; Using the values generated by POLYWARP, warp the
; original image. Specify 1 for bilinear interpolation
; and set the output size equal to the ctboneImg image
; dimensions.
warpPolyImg = POLY_2D(mriImg, p, q, 1, 483, 410)

; Create a window and display the image.
WINDOW, 4, XSIZE = 483, YSIZE = 410, $

TITLE = 'Poly_2D image'
TV, warpPolyImg

; Mask out the lower pixel values in the ctboneImg
; image.
ctboneMask = BYTSCL((ctboneImg GT 55) * ctboneImg)

; Display an image using the full intensity of the bone
; scan image and a 75% intensity of the warped image.
blendImg = BYTSCL(ctboneMask + 0.75 * warpPolyImg)

; Display the blended image.
WINDOW, 5, XSIZE = 483, YSIZE = 410, $

TITLE = 'Blended Image'
TV, blendImg

END
Warping Images Using Direct Graphics Image Processing in IDL

Chapter 7: Warping Images 285
Warping Images Using Object Graphics

The following example warps an African land-cover characteristics image to a
political map of the continent. After displaying the images and selecting control
points in each image using the XROI utility, the resulting warped image is altered to
include an alpha channel, enabling transparency. Image objects are then created and
displayed in an IDL Object Graphics display. For code that you can copy and paste
into an IDL Editor window, see “Example Code: Object Graphics Display of Image
Warping” on page 295 or complete the following steps for a detailed description of
the process.

1. Select the political map image. This is the reference image to which the land
cover image will be warped:

mapFile= FILEPATH('afrpolitsm.png', $
Subdirectory = ['examples', 'data'])

2. Use READ_PNG routine to read in the file. Specify mapR, mapG, mapB to
read in the image’s associated color table:

mapImg = READ_PNG(mapFile, mapR, mapG, mapB)

3. Using IDLgrPalette::Init, assign the image’s color table to a palette object,
which will be applied to an image object in a later step:

mapPalette = OBJ_NEW('IDLgrPalette', mapR, mapG, mapB)

4. Select and open the land cover input image, which will be warped to the map:

landFile = FILEPATH('africavlc.png', $
Subdirectory = ['examples', 'data'])

landImg = READ_PNG (landFile, landR, landG, landB)

Object Graphics Example: Selecting Control Points

This section describes using the XROI utility to select corresponding control points
in the two images. The arrays of control points in the input image, (Xi, Yi), will be
mapped to the array of points selected in the reference image, (Xo, Yo).

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control points in the reference image as
you select in the input image. The control points must also be selected in the same
order since the point Xi1, Yi1 will be warped to Xo1, Yo1.
Image Processing in IDL Warping Images Using Object Graphics

286 Chapter 7: Warping Images
The following figure shows the points to be selected in the input image.

Reasonably precise warping of the land classification image to the political map
requires selecting numerous control points because of the irregularity of the
continent’s border. Select the control points in the land classification image as
described in the following steps.

1. Load the image and its associated color table into the XROI utility, specifying
the REGIONS_OUT keyword to save the region defined by the control points
in the landROIout object:

XROI, landImg, landR, landG, landB, $
REGIONS_OUT = landROIout, /BLOCK

Figure 7-7: Selecting Control Points in the Input Image

CP 1

CP 2

CP 3

CP 4

CP 5

CP 6

CP 7 CP 8 CP 9 CP 10

CP 11

CP 16
(xi1, yi1)

(xi2, yi2)

(xi3, yi3)

(xi4, yi4)

(xi5, yi5)

(xi6, yi6)

(xi7, yi7) (xi8, yi8) (x9i, yi9) (xi10, yi10)

(xi11, yi11)

(xi12, yi12)

(xi13, yi13)

(xi14, yi14)

(xi15, yi15)(xi16, yi16)

CP 12

CP 13

CP 14

CP 15

(xi14, yi14)
Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 287
Select the Draw Polygon button from the XROI utility toolbar shown in the
following figure. Position the crosshairs symbol over CP1, shown in the
previous figure, and click the left mouse button. Repeat this action for each
successive control point. After selecting the sixteenth control point, position
the crosshairs over the first point selected and click the right mouse button to
close the region. Your display should appear similar to the following figure.

Note
It is of no concern that portions of the continent lie outside the polygonal boundary.
The EXTRAPOLATE keyword to WARP_TRI enables warping of the image areas
lying outside of the boundary of control points. However, images requiring more
aggressive warp models may not have good results outside of the extent of the
control points when WARP_TRI is used with the /EXTRAPOLATE keyword.

Figure 7-8: Selecting Control Points Using XROI

Draw Polygon
Image Processing in IDL Warping Images Using Object Graphics

288 Chapter 7: Warping Images
2. Close the XROI window and assign the landROIout object data to the Xi and Yi
control point vectors:

landROIout -> GetProperty, DATA = landROIdata
Xi = landROIdata[0,*]
Yi = landROIdata[1,*]

The following figure displays the corresponding control points to be selected in the
reference image of the political map. These control points will make up the Xo and
Yo arrays required by the IDL warping routines.

Figure 7-9: Control Points to be Selected in the Reference Image

CP 1
(xo1, yo1)

CP 2
(xo2, yo2)

CP 3
(xo3, yo3)

CP 4
(xo4, yo4)

CP 5
(xo5, yo5)

CP 6
(xo6, yo6)

CP 7
(xo7, yo7)

CP 8
(xo8, yo8)

CP 9
(xo9, yo9)

CP 10
(xo10, yo10)

CP 11
(xo11, yo11)

CP 12
(xo12, yo12)

CP 13
(xo13, yo13)

CP 14
(xo14, yo14)

CP 15
(xo15, yo15)

CP 16
(xo16, yo16)
Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 289
3. Load the image of the political map and its associated color table into the
XROI utility, specifying the REGIONS_OUT keyword to save the selected
region in the mapROIout object:

XROI, mapImg, mapR, mapG, mapB, $
REGIONS_OUT=mapROIout,/BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol over CP1, shown in the previous figure, and click the left
mouse button. Repeat this action for each successive control point. After
selecting the sixteenth control point, position the crosshairs over the first point
selected and click the right mouse button to close the region. Your display
should appear similar to the following figure.

4. Close the XROI window and assign the mapROIout object data to the Xo and
Yo control point vectors:

mapROIout -> GetProperty, DATA=mapROIdata
Xo = mapROIdata[0,*]
Yo = mapROIdata[1,*]

Figure 7-10: Selecting Control Points Using XROI
Image Processing in IDL Warping Images Using Object Graphics

290 Chapter 7: Warping Images
Object Graphics Example: Warping and Displaying a
Transparent Image

The following section describes warping the land cover image to the political map
and creating image objects. The resulting warped image will then be made into a
transparency by creating an alpha channel for the image. Finally, the transparent
object will be displayed as an overlay to the original political map.

1. Warp the input image, landImg, onto the reference image using WARP_TRI.
This function uses the irregular grid of the reference image, defined by Xo, Yo,
as a basis for triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image
[, OUTPUT_SIZE=vector][, /QUINTIC] [, /EXTRAPOLATE]

)

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of selected control points:

warpImg = WARP_TRI(Xo, Yo, Xi, Yi, landImg, $
OUTPUT_SIZE=[600, 600], /EXTRAPOLATE)

2. While not required, you can quickly check the precision of the warp in a Direct
Graphics display before proceeding with creating a transparency by entering
the following lines:

DEVICE, DECOMPOSED = 0
TVLCT, landR, landG, landB
WINDOW, 3, XSIZE = 600, YSIZE = 600, $

TITLE = 'Image Warped with WARP_TRI'
TV, warpImg
Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 291
Precise control point selection results in accurate warping. If there is little
distortion, as in the following figure, control points were successfully selected
in nearly corresponding positions in both images.

3. A transparent image object must be a grayscale or an RGB (24-bit) image
containing an alpha channel. The alpha channel controls the transparency of
the pixels. See IDLgrImage::Init for more information.

The following lines convert the warped image and its associated color table
into a RGB image containing four channels (red, green, blue, and alpha). First,
get the dimensions of the warped image and then use BYTARR to create
alphaWarp, a 4-channel by xdim by ydim array, where (xdim, ydim) are the
dimensions of the warped image:

warpImgDims = SIZE(warpImg, /Dimensions)
alphaWarp = BYTARR(4, warpImgDims[0], warpImgDims[1])

4. Load the red, green and blue channels of the warped land characteristics image
into the first three channels of the alphaWarp array:

alphaWarp[0, *, *] = landR[warpImg]
alphaWarp[1, *, *] = landG[warpImg]
alphaWarp[2, *, *] = landB[warpImg]

Figure 7-11: Resulting Warped Image
Image Processing in IDL Warping Images Using Object Graphics

292 Chapter 7: Warping Images
5. Define the transparency of the alpha channel. First, create an array, masking
out the black background of the warped image (where pixel values equal 0) by
retaining only pixels with values greater than 0:

mask = (warpImg GT 0)

Apply the resulting mask to the alpha channel, the fourth channel of the array.
This channel creates a 50% transparency of the pixels of the first three
channels (red, green, blue) of the alphaWarp by multiplying the mask by 128B
(byte). Alpha channel values range from 0 (completely transparent) to 255
(completely opaque):

alphaWarp [3, *, *] = mask*128B

Note
You can set the transparency of an entire image. To set the transparency of all pixels
at 50% in this example, your could replace the two previous steps with the
following two lines:

mask = BYTARR(s[0], s[1]) + 128
alphaWarp [3, *, *] = mask

6. Initialize the transparent image object using IDLgrImage::Init. Specify the
BLEND_FUNCTION property of the image object to control how the alpha
channel is interpreted. Setting the BLEND_FUNCTION to [3, 4] allows you to
see through the foreground image to the background. The foreground opacity
is defined by the alpha channel value, specified in the previous step:

oAlphaWarp = OBJ_NEW('IDLgrImage', alphaWarp, $
DIMENSIONS = [600, 600], BLEND_FUNCTION = [3, 4])

7. Initialize the reference image object, applying the palette created earlier:

oMapImg = OBJ_NEW('IDLgrImage', mapImg, $
DIMENSIONS = [600,600], PALETTE = mapPalette)

8. Using IDLgrWindow::Init, initialize a window object in which to display the
images:

oWindow = OBJ_NEW('IDLgrWindow', DIMENSIONS = [600, 600], $
RETAIN = 2, TITLE = 'Overlay of Land Cover Transparency')
Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 293
9. Create a view object using IDLgrView::Init. The VIEWPLANE_RECT
keyword controls the image display in the Object Graphics window. First
create an array, viewRect, which specifies the x-placement, y-placement, width,
and height of the view surface. The values 0, 0 place the (0, 0) coordinate of
viewing surface in the lower-left corner of the Object Graphics window:

viewRect = [0, 0, 600, 600]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)

10. Using IDLgrModel::Init, initialize a model object to which the images will be
applied. Add the base image and the transparent alpha image to the model:

oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oMapImg
oModel -> Add, oAlphaWarp

Note
Image objects appear in the Object Graphics window in the order in which they are
added to the model. If a transparent object is added to the model before an opaque
object, it will not be visible.

11. Add the model, containing the images, to the view and draw the view in the
window:

oView -> Add, oModel
oWindow -> Draw, oView
Image Processing in IDL Warping Images Using Object Graphics

294 Chapter 7: Warping Images
The following figure shows the warped image transparency overlaid onto the
original reference image, the political map.

12. Use OBJ_DESTROY to clean up unneeded object references including the
region objects:

OBJ_DESTROY, [oView, oMapImg, oAlphaWarp, $
mapPalette, landROIout, mapROIout]

Figure 7-12: Object Graphics Display of the Political Map with a Transparent
Land Cover Overlay
Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 295
Example Code: Object Graphics Display of Image Warping

Copy and paste the following text into an IDL Editor window. After saving the file as
TransparentWarping_object.pro, compile and run the program to reproduce
the previous example.

PRO TransparentWarping_Object

; Open the political map, the base image to which the
; land cover image will be warped.
mapFile= FILEPATH('afrpolitsm.png', $

SUBDIRECTORY = ['examples', 'data'])
mapImg = READ_PNG(mapFile, mapR, mapG, mapB)

; Assign the mapImg's color table to a palette object.
mapPalette = OBJ_NEW('IDLgrPalette', mapR, mapG, mapB)

; Open the land cover characteristics image
; that will be warped to the political map.
landFile = FILEPATH('africavlc.png', $

SUBDIRECTORY = ['examples', 'data'])
landImg = READ_PNG (landFile, landR, landG, landB)

; Select the control point using the polygon tool in
; XROI.
XROI, landImg, landR, landG, landB, $

REGIONS_OUT = landROIout, /BLOCK
PRINT, 'Select control points using Draw Polygon tool'
; Assign the ROI data to the Xi and Yi control point
; vectors.
landROIout -> GetProperty, DATA = landROIdata
Xi = landROIdata[0,*]
Yi = landROIdata[1,*]

; Select the control point in the reference image
; using the polygon tool in XROI.
XROI, mapImg, mapR, mapG, mapB, $

REGIONS_OUT = mapROIout, /BLOCK
PRINT, 'Select control points using Draw Polygon tool'
; Assign the ROI data to the Xo and Yo control point
; vectors.
mapROIout -> GetProperty, DATA = mapROIdata
Xo = mapROIdata[0,*]
Yo = mapROIdata[1,*]

; Using the control point vectors, warp the land
; classification image to the political map.
warpImg = WARP_TRI(Xo, Yo, Xi, Yi, landImg, $

OUTPUT_SIZE = [600, 600], /EXTRAPOLATE)
Image Processing in IDL Warping Images Using Object Graphics

296 Chapter 7: Warping Images
; Quickly display the warped image in a Direct Graphics
; window to check the precision of the warp. Load the
; image's associated color table and display it.
DEVICE, DECOMPOSED = 0
TVLCT, landR, landG, landB
WINDOW, 3, XSIZE = 600, YSIZE = 600, $

TITLE = 'Image Warped with WARP_TRI'
TV, warpImg

; Make the warped land classification image into a
; 24-bit RGB image in order to use alpha blending.
warpImgDims = SIZE(warpImg, /Dimensions)
alphaWarp = BYTARR(4, warpImgDims[0], warpImgDims[1])

; Get the red, green and blue values used by the image
; and assign them to the first three channels of the
; alpha image array.
alphaWarp[0, *, *] = landR[warpImg]
alphaWarp[1, *, *] = landG[warpImg]
alphaWarp[2, *, *] = landB[warpImg]

; Create a transparency mask, the same size as the
; warpImg array. Mask out the black pixels with a
; values of 0. Set the alpha channel by multiplying
; the mask by 128, resulting in a 50% transparency.
mask = (warpImg GT 0)
alphaWarp [3, *, *] = mask*128B
; To alter the transparency, change the value 128. This
; value can range from 0 (completely transparent) to
; 255 (completely opaque).

; Create the objects necessary for the Object Graphics
; display. Create the transparent overlay image object.
oAlphaWarp = OBJ_NEW('IDLgrImage', alphaWarp, $

DIMENSIONS = [600, 600], BLEND_FUNCTION = [3,4])

; Create the background, mapImg object and apply its
; palette.
oMapImg = OBJ_NEW('IDLgrImage', mapImg, $

DIMENSIONS = [600, 600], PALETTE = mapPalette)

; Create a window in which to display the objects.
oWindow = OBJ_NEW('IDLgrWindow', $

DIMENSIONS = [600, 600], RETAIN = 2, $
TITLE = 'Overlay of Land Cover Transparency')

; Create a view.
viewRect = [0, 0, 600, 600]
Warping Images Using Object Graphics Image Processing in IDL

Chapter 7: Warping Images 297
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)

; Create a model object.
oModel = OBJ_NEW('IDLgrModel')

; Add the transparent image after the adding the base
; image.
oModel -> Add, oMapImg
oModel -> Add, oAlphaWarp

; Add the model containing the images to the view.
oView -> Add, oModel

; Draw the view in the window.
oWindow -> Draw, oView

; Clean up objects.
OBJ_DESTROY, [oView, oMapImg, oAlphaWarp, $

mapPalette, landROIout, mapROIout]

END
Image Processing in IDL Warping Images Using Object Graphics

298 Chapter 7: Warping Images
Warping Images Using Object Graphics Image Processing in IDL

Chapter 8:

Working with Regions
of Interest (ROIs)
This chapter describes creating and analyzing regions of interest (ROIs) and includes the following
topics:
Overview of Working with ROIs 300
Defining Regions of Interest 303

Displaying ROI Objects in a Direct Graphics
Window . 306
Programmatically Defining ROIs and
Computing Geometry and Pixel Statistics . 311

Growing a Region 317
Creating and Displaying an ROI Mask . . 324

Testing an ROI for Point Containment . . . 330
Creating a Surface Mesh of an ROI Group 334
Image Processing in IDL 299

300 Chapter 8: Working with Regions of Interest (ROIs)
Overview of Working with ROIs

A region of interest (ROI) is an area of an image defined for further analysis or
processing. There are several ways to define ROIs. The XROI utility enables the
interactive definition of single or multiple regions from an image using the mouse.
Routines such as CONTOUR or REGION_GROW enable the programmatic
definition of ROIS. CONTOUR traces the outlines of thresholded ROIs while the
REGION_GROW routine expands an initial region to include all connected,
neighboring pixels that meet given conditions. Once an ROI is defined, it can be
displayed or undergo further analysis.

An ROI can be displayed using either Direct Graphics or Object Graphics. In Direct
Graphics, the DRAW_ROI routine quickly displays single or multiple ROI objects or
an ROI group. In Object Graphics, the XROI utility displays defined ROIs and can
output ROI data to specified ROI objects. Any ROI object, whether defined
programmatically or interactively, can undergo further processing as an analysis-
oriented IDLanROI object, or can be used for display as an IDLgrROI object. See
IDLanROI and IDLgrROI in the IDL Reference Guide for more information.

Note
When computing ROI geometry, there is a difference between a region’s area when
it is displayed on a screen versus the region’s computed, geometric area. See
“Contrasting an ROI’s Geometric Area and Mask Area” on page 302 for details.

Multiple ROIs can also be defined from a multi-image data set and added to an
IDLanROIGroup object for triangulation into a 3D mesh. Alternatively, multiple
ROIs can be defined in a single image and added to a group object. ROI groups can
be displayed in a Direct Graphics window with DRAW_ROI or with the Object
Graphics XOBJVIEW utility.

The following table introduces the tasks and routines covered in this chapter.

Task Routine(s)/Object(s) Description

“Defining Regions
of Interest” on
page 303.

XROI Create an ROI
interactively, prior to
analysis or display.

Table 8-1: Tasks and Routines Associated with Regions of Interest
Overview of Working with ROIs Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 301
“Displaying ROI
Objects in a Direct
Graphics Window”
on page 306.

DRAW_ROI Display ROI objects in a
Direct Graphics window.

“Programmatically
Defining ROIs and
Computing
Geometry and Pixel
Statistics” on
page 311.

CONTOUR
DRAW_ROI
IDLanROI::ComputeMask
IMAGE_STATISTICS
IDLanROI::ComputeGeometry

Define ROIs using
CONTOUR and display
them using DRAW_ROI.
Return various statistics
for each ROI.

“Growing a
Region” on
page 317.

REGION_GROW Expand an original region
to include all connected,
neighboring pixels which
meet specified
constraints.

“Creating and
Displaying an ROI
Mask” on
page 324.

IDLanROI::ComputeMask Create a 2D mask of an
ROI, compute the area of
the mask and display a
magnified view of the
image region.

“Testing an ROI for
Point Containment”
on page 330.

IDLanROI::ContainsPoints Determine whether a
point lies within the
boundary of a region.

“Creating a Surface
Mesh of an ROI
Group” on
page 334.

IDLanROIGroup::Add
IDLanROIGroup::ComputeMesh
XOBJVIEW

Add ROIs to an ROI
group object, triangulate
a surface mesh and
display the group object
using XOBJVIEW.

Task Routine(s)/Object(s) Description

Table 8-1: Tasks and Routines Associated with Regions of Interest (Continued)
Image Processing in IDL Overview of Working with ROIs

302 Chapter 8: Working with Regions of Interest (ROIs)
Contrasting an ROI’s Geometric Area and Mask Area

When working with ROIs, many users note a discrepancy between the computation
of an ROI’s geometric area and the computation of the mask area (the number of
pixels an ROI contains when displayed). Intuition might lead one to believe that the
results should be the same. However, as the following figure shows, the computed
geometric area (the result of a pure mathematical calculation) differs from the
displayed (masked) area, which is subject to the artifacts of digital sampling.

When displaying a region (or computing the area of its mask), each vertex of the
region is mapped to a corresponding discrete pixel location. No matter where the
vertex falls within the pixel, the entire pixel location is set since the region is being
displayed. For example, for any vertex coordinate (x, y) where:

1.5 ≤ x < 2.5 and 1.5 ≤ y < 2.5

the vertex coordinate is assigned a value of (2, 2). Therefore, the area of the displayed
(masked) region is typically larger than the computed geometric area. While the
geometric area of a 2 by 2 region equals 4 as expected, the mask area of the identical
region equals 9 due to the centering of the pixels when the region is displayed.

The ROI Information dialog of the XROI utility reports the region’s “Area”
(geometric area) and “# Pixels” (mask area). To programmatically compute an ROI’s
geometric area, use IDLanROI::ComputeGeometry. To programmatically compute
the area of a displayed region, use IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS. See “Programmatically Defining ROIs and Computing
Geometry and Pixel Statistics” on page 311 for examples of these computations.

Figure 8-1: A Region’s Undisplayed Area (left) vs. Displayed Area (right)
Overview of Working with ROIs Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 303
Defining Regions of Interest

The XROI utility allows you to quickly load an image file, define single or multiple
ROIs, and obtain geometry and statistical data about the ROIs. While regions can be
defined programmatically (see “Programmatically Defining ROIs and Computing
Geometry and Pixel Statistics” on page 311 and “Growing a Region” on page 317),
the XROI utility enables the interactive creation and selection of an ROI using the
mouse.

For a quick introduction to creating ROIs using XROI, complete the following steps:

1. Open XROI by typing the following at the command line:

XROI

2. Load an image using the image file selection dialog. Select earth.jpg from
the examples/demo/demodata directory. Click Open.The image appears in
the XROI utility.

The XROI toolbar contains the following buttons:

Depending on the value of the TOOLS keyword, the XROI toolbar may also contain
the following buttons:

Save: Opens a file selection dialog for saving ROIs to a .sav file.

Info: Opens the ROI Information window for the currently
defined ROI.

Copy: Copies the contents of the display area to the clipboard.

Flip: Flips the image vertically. Any defined ROIs do not move.

Translate/
Scale:

Click this button to translate or scale ROIs. Mouse down
inside the bounding box selects a region, mouse motion
translates (repositions) the region. Mouse down on a scale
handle of the bounding box enables scaling (stretching,
enlarging and shrinking) of the region according to mouse
motion. Mouse up finishes the translation or scaling.
Image Processing in IDL Defining Regions of Interest

304 Chapter 8: Working with Regions of Interest (ROIs)
3. Flip the image vertically to display it right-side-up by clicking the Flip button.

4. Select the Draw Freehand button and use the mouse to interactively define an
ROI encompassing the African continent. Your image should be similar to the
following figure.

Draw
Rectangle:

Click this button to draw rectangular ROIs. Mouse down
positions one corner of the rectangle, mouse motions creates
the rectangle, positioning the rectangle’s opposite corner,
mouse up finishes the rectangular region.

Draw
Ellipse:

Click this button to draw elliptical ROIs. Mouse down
positions the center of the ellipse, mouse motion positions
the corner of the ellipse’s bounding box, mouse up finishes
the elliptical region.

Draw
Freehand:

Draw freehand ROIs. Mouse down begins an ROI, mouse
motion defines the ROI vertices (following the path of the
mouse), mouse up closes the ROI.

Draw
Polygon:

Draw polygon ROIs. Mouse down begins an ROI,
subsequent mouse clicks add vertices, double-click closes
the ROI.

Select: Select an ROI. Clicking the image draws a cross hairs
symbol at the nearest vertex of the selected ROI.

Figure 8-2: Defining an ROI of Africa and Showing the ROI Information Dialog
Defining Regions of Interest Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 305
5. After releasing the mouse button, the ROI Information dialog appears,
displaying ROI statistics. You can now define another ROI, save the defined
ROI as a .sav file or exit the XROI utility.

Using XROI syntax allows you to programmatically load an image and specify a
variable for REGIONS_OUT that will contain the ROI data. The region data can then
undergo further analysis and processing. The following code lines open the
previously opened image for ROI creation and selection and specify to save the
region data as oROIAfrica.

; Select the file, read the data and load the image’s color table.
imgFile = FILEPATH('earth.jpg', $

SUBDIRECTORY = ['examples', 'demo', 'demodata'])
image = READ_IMAGE(imgFile, R, G, B)
TVLCT, R, G, B

; Display the image using XROI. Specify a variable for REGIONS_OUT
; to save the ROI information.
XROI, image, R, G, B, REGIONS_OUT = oROIAfrica

The ROI information, oROIAfrica, can then be analyzed using IDLanROI methods or
the REGION_GROW procedure. The ROI data can also be displayed using
DRAW_ROI or as an IDLgrROI object. Such tasks are covered in the following
sections.
Image Processing in IDL Defining Regions of Interest

306 Chapter 8: Working with Regions of Interest (ROIs)
Displaying ROI Objects in a Direct Graphics
Window

The DRAW_ROI procedure displays single or multiple IDLanROI objects in a Direct
Graphics window. The procedure allows you to layer the ROIs over the original
image and specify the line style and color with which each region is drawn. The
DRAW_ROI procedure also provides a means of easily displaying interior regions or
“holes” within a defined ROI.

The following example uses the XROI utility to define two regions, a femur and tibia
from a DICOM image of a knee, and draws them in a Direct Graphics window. For
code that you can copy and paste into an Editor window, see “Example Code:
Displaying ROIs in a Direct Graphics Window” on page 309 or complete the
following steps for a detailed description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file using the READ_DICOM function and get its
size:

kneeImg = READ_DICOM(FILEPATH('mr_knee.dcm', $
SUBDIRECTORY = ['examples','data']))

dims = SIZE(kneeImg, /DIMENSIONS)

3. Rotate the image 180 degrees so that the femur will be at the top of the display:

kneeImg = ROTATE(BYTSCL(kneeImg), 2)

4. Open the file in the XROI utility to create an ROI containing the femur. The
following line includes the ROI_GEOMETRY and STATISTICS keywords so
that specific ROI information can be retained for printing in a later step:

XROI, kneeImg, REGIONS_OUT = femurROIout, $
ROI_GEOMETRY = femurGeom,$
STATISTICS = femurStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar, shown in the
following figure. Position the crosshairs anywhere along the border of the
femur and click the left mouse button to begin defining the ROI. Move your
mouse to another point along the border and left-click again. Repeat the
process until you have defined the outline for the ROI. To close the region,
double-click the left mouse button. Your display should appear similar to the
following figure.
Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 307
Close the XROI utility to store the ROI information in the variable,
femurROIout.

5. Create an ROI containing the tibia, using the following XROI statement:

XROI, kneeImg, REGIONS_OUT = tibiaROIout, $
ROI_GEOMETRY = tibiaGeom, $
STATISTICS = tibiaStats, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol anywhere along the border of the tibia and draw the region
shown in the following figure, repeating the same steps as those used to define
the femur ROI. Close the XROI utility to store the ROI information in the
specified variables.

Figure 8-3: Defining the Femur ROI

Figure 8-4: Defining the Tibia ROI

Draw Polygon
Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

308 Chapter 8: Working with Regions of Interest (ROIs)
6. Create a Direct Graphics display containing the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, kneeImg

7. Load the 16-level color table to display the regions using different colors. Use
DRAW_ROI statements to specify how each ROI is drawn:

LOADCT, 12
DRAW_ROI, femurROIout, /LINE_FILL, COLOR = 80, SPACING = 0.1,
$

ORIENTATION = 315, /DEVICE
DRAW_ROI, tibiaROIout, /LINE_FILL, COLOR = 42, SPACING = 0.1,
$

ORIENTATION = 30, /DEVICE

In the previous statements, the ORIENTATION keyword specifies the degree
of rotation of the lines used to fill the drawn regions. The DEVICE keyword
indicates that the vertices of the regions are defined in terms of the device
coordinate system where the origin (0,0) is in the lower-left corner of the
display.

Your results should appear similar to the following figure, with the ROI objects
layered over the original image.

Figure 8-5: Defined Region Objects Overlaid onto Original Image
Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 309
8. Print the statistics for the femur and tibia ROIs. This information has been
stored in the femurGeom, femurStat, tibiaGeom and tibiaStat variable
structures, defined in the previous XROI statements. Use the following lines to
print geometrical and statistical data for each ROI:

PRINT, 'FEMUR Region Geometry and Statistics'
PRINT, 'area =', femurGeom.area, $

'perimeter = ', femurGeom.perimeter, $
'population =', femurStats.count

PRINT, ' '
PRINT, 'TIBIA Region Geometry and Statistics'
PRINT, 'area =', tibiaGeom.area, $

'perimeter = ', tibiaGeom.perimeter, $
'population =', tibiaStats.count

Note
Notice the difference between the “area” value, indicating the region’s geometric
area, and the “population” value, indicating the number of pixels covered by the
region when it is displayed. This difference is expected and is explained in the
section, “Contrasting an ROI’s Geometric Area and Mask Area” on page 302.

9. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [femurROIout, tibiaROIout]

Example Code: Displaying ROIs in a Direct Graphics Window

Copy and paste the following text into the IDL Editor window. After saving the file as
DrawROIex.pro, compile and run the program to reproduce the previous example.

PRO DrawROIex

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open the image file and get its size.
kneeImg = READ_DICOM(FILEPATH('mr_knee.dcm',$

SUBDIRECTORY = ['examples','data']))
dims = SIZE(kneeImg, /DIMENSIONS)

; Flip the image vertically.
kneeImg = ROTATE(BYTSCL(kneeImg), 2)

; Open the file in the XROI utility to select the femur region.
XROI, kneeImg, REGIONS_OUT = femurROIout, $

ROI_GEOMETRY = femurGeom,$
Image Processing in IDL Displaying ROI Objects in a Direct Graphics Window

310 Chapter 8: Working with Regions of Interest (ROIs)
STATISTICS = femurStats, /BLOCK

; Open the file in XROI to select tibia region.
XROI, kneeImg, REGIONS_OUT = tibiaROIout, $

ROI_GEOMETRY = tibiaGeom, $
STATISTICS = tibiaStats, /BLOCK

; Create a window and display the original image.
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, kneeImg

; Load the 16-level colortable to display regions in color
; and draw them in a Direct Graphics window.
LOADCT, 12
DRAW_ROI, femurROIout, /LINE_FILL, COLOR = 80, SPACING = 0.1, $

ORIENTATION = 315, /DEVICE
DRAW_ROI, tibiaROIout, /LINE_FILL, COLOR = 42, SPACING = 0.1, $

ORIENTATION = 30, /DEVICE

; Print selected stats for the femur and tibia.
PRINT, 'FEMUR Region Geometry and Statistics'
PRINT, 'area =', femurGeom.area, $

' perimeter = ', femurGeom.perimeter, $
' population =', femurStats.count

PRINT, ' '
PRINT, 'TIBIA Region Geometry and Statistics'
PRINT, 'area =', tibiaGeom.area, $

' perimeter = ', tibiaGeom.perimeter, $
' population =', tibiaStats.count

; Destroy object references.
OBJ_DESTROY, [femurROIout, tibiaROIout]

END
Displaying ROI Objects in a Direct Graphics Window Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 311
Programmatically Defining ROIs and
Computing Geometry and Pixel Statistics

While most examples in this chapter use interactive methods to define ROIs, a region
can also be defined programmatically. The following example uses thresholding and
the CONTOUR function to programmatically trace region outlines. After the path
information of the regions has been input into ROI objects, the DRAW_ROI
procedure displays each region. The example then computes and returns the
geometric area and perimeter of each region as well as the number of pixels making
up each region when it is displayed.

For code that you can copy and paste into an Editor window, see “Example Code:
Defining an ROI and Computing ROI Statistics” on page 314 or complete the
following steps for a detailed description of the process.

1. Prepare the display device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file and get its dimensions:

img = READ_PNG(FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data']))

dims = SIZE(img, /DIMENSIONS)

3. Create a window and display the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, img

The following figure displays the initial image.

Figure 8-6: Initial Image
Image Processing in IDLProgrammatically Defining ROIs and Computing Geometry and Pixel Sta-

312 Chapter 8: Working with Regions of Interest (ROIs)
4. Create a mask that identifies the darkest pixels, whose values are less than 50:

threshImg = (img LT 50)

Note
See “Determining Intensity Values When Thresholding and Stretching Images” on
page 486 for a useful strategy to use when determining threshold values.

5. Create and apply a 3x3 square structuring element, using the erosion and
dilation operators to close gaps in the thresholded image:

strucElem = REPLICATE(1, 3, 3)
threshImg = ERODE(DILATE(TEMPORARY(threshImg), $

strucElem), strucElem)

6. Use the CONTOUR procedure to extract the boundaries of the thresholded
regions. Store the path information and coordinates of the contours in the
variables pathInfo and pathXY as follows:

CONTOUR, threshImg, LEVEL = 1, $
XMARGIN = [0, 0], YMARGIN = [0, 0], $
/NOERASE, PATH_INFO = pathInfo, PATH_XY = pathXY, $
XSTYLE = 5, YSTYLE = 5, /PATH_DATA_COORDS

The PATH_INFO variable contains the path information for the contours.
When used in conjunction with the PATH_XY variable, containing the
coordinates of the contours, the CONTOUR procedure records the outline of
closed regions. See CONTOUR in the IDL Reference Guide for full details.

7. Display the original image in a second window and load a discrete color table:

WINDOW, 2, XSIZE = dims[0], YSIXE = dims[1]
TVSCL, img
LOADCT, 12

8. Input the data of each of the contour paths into IDLanROI objects:

FOR I = 0,(N_ELEMENTS(PathInfo) - 1) DO BEGIN & $

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Defining an ROI and
Computing ROI Statistics” on page 314.
Programmatically Defining ROIs and Computing Geometry and Pixel Statistics Image Processing

Chapter 8: Working with Regions of Interest (ROIs) 313
9. Initialize oROI with the contour information of the current region:

line = [LINDGEN(PathInfo(I).N), 0] & $
oROI = OBJ_NEW('IDLanROI', $

(pathXY(*, pathInfo(I).OFFSET + line))[0, *], $
(pathXY(*, pathInfo(I).OFFSET + line))[1, *]) & $

10. Draw the ROI object in a Direct Graphics window using DRAW_ROI:

DRAW_ROI, oROI, COLOR = 80 & $

11. Use the IDLanROI::ComputeMask function in conjunction with
IMAGE_STATISTICS to obtain maskArea, the number of pixels covered by
the region when it is displayed. The variable, maskResult, is input as the value
of MASK in the second statement in order to return the maskArea:

maskResult = oROI -> ComputeMask($
DIMENSIONS = [dims[0], dims[1]]) & $

IMAGE_STATISTICS, img, MASK = maskResult, $
COUNT = maskArea & $

12. Use the IDLanROI::ComputeGeometry function to return the geometric area
and perimeter of each region. In the following example, SPATIAL_SCALE
defines that each pixel represents 1.2 by 1.2 millimeters:

ROIStats = oROI -> ComputeGeometry($
AREA = geomArea, PERIMETER = perimeter, $
SPATIAL_SCALE = [1.2, 1.2, 1.0]) & $

Note
The value for SPATIAL _SCALE in the previous statement is used only as an
example. The actual spatial scale value is typically known based upon equipment
used to gather the data.

13. Print the statistics for each ROI when it is displayed and wait 3 seconds before
proceeding to the display and analysis of the next region:

PRINT, ' ' & $
PRINT, 'Region''s mask area = ', $

FIX(maskArea), ' pixels' & $
PRINT, 'Region''s geometric area = ', $

FIX(geomArea), ' mm' & $
PRINT, 'Region''s perimeter = ', $

FIX(perimeter),' mm' & $
WAIT, 3

14. Remove each unneeded object reference after displaying the region:

OBJ_DESTROY, oROI & $
Image Processing in IDLProgrammatically Defining ROIs and Computing Geometry and Pixel Sta-

314 Chapter 8: Working with Regions of Interest (ROIs)
15. End the FOR loop:

ENDFOR

The outlines of the ROIs recorded by the CONTOUR function have been
translated into ROI objects and displayed using DRAW_ROI. Each region’s
“mask area,” (computed using IDLanROI::ComputeMask in conjunction with
IMAGE_STATISTICS) shows the number of pixels covered by the region
when it is displayed on the screen.

Each region’s geometric area and perimeter, (computed using
IDLanROI::ComputeGeometry’s SPATIAL_SCALE keyword) results in the
following geometric area and perimeter measurements in millimeters.

Example Code: Defining an ROI and Computing ROI Statistics

Copy and paste the following text into the IDL Editor window. After saving the file as
ProgramDefineROI.pro, compile and run the program to reproduce the previous
example.

PRO ProgramDefineROI

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open the image file and get its size.
img = READ_PNG(FILEPATH('mineral.png', $

SUBDIRECTORY = ['examples', 'data']))
dims = SIZE(img, /DIMENSIONS)

Figure 8-7: Display of Programmatically Defined Regions
Programmatically Defining ROIs and Computing Geometry and Pixel Statistics Image Processing

Chapter 8: Working with Regions of Interest (ROIs) 315
; Create a window and display the original image.
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, img, 0

; Create a mask that identifies the darkest pixels,
; whose values are less than 50.
threshImg = (img LT 50)

; Get rid of gaps, applying a 3x3 element to the image
; using the erosion and dilation morphological
; operators.
strucElem = REPLICATE(1, 3, 3)
threshImg = ERODE(DILATE(TEMPORARY(threshImg), $

strucElem), strucElem)

; Extract the contours of the thresholded image.
CONTOUR, threshImg, LEVEL = 1, $

XMARGIN = [0, 0], YMARGIN = [0, 0], $
/NOERASE, PATH_INFO = pathInfo, PATH_XY = pathXY, $
XSTYLE = 5, YSTYLE = 5, /PATH_DATA_COORDS

; Display the original image in a second window and
; load a discrete color table.
WINDOW, 2, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, img
LOADCT, 12

; For each region, feed the contours into an IDLgrROI
; object for display with DRAW_ROI.
FOR I = 0, (N_ELEMENTS(pathInfo) - 1) DO BEGIN

; Initialize the IDLgrROI object with the contour
; information of the current region with the FOR
; loop.
line = [LINDGEN(pathInfo(I).N), 0]
oROI = OBJ_NEW('IDLanROI', $

(pathXY(*,pathInfo(I).OFFSET + line))[0, *], $
(pathXY(*,pathInfo(I).OFFSET + line))[1, *])

; Draw each ROI defined by thresholding and
; contouring.
DRAW_ROI, oROI, COLOR = 80

; Use ComputeMask in conjunction with
; IMAGE_STATISTICS to obtain the number of pixels
; covered by the regions when displayed.
maskResult = oROI -> ComputeMask(DIMENSIONS = $

[dims[0], dims[1]])
Image Processing in IDLProgrammatically Defining ROIs and Computing Geometry and Pixel Sta-

316 Chapter 8: Working with Regions of Interest (ROIs)
IMAGE_STATISTICS, img, MASK = maskResult, $
COUNT = maskArea

; Use ComputeGeometry to obtain the geometric area
; and perimeter of each region where 1 pixel =
; 1.2 x 1.2 mm.
ROIStats = oROI -> ComputeGeometry($

AREA = geomArea, PERIMETER = perimeter, $
SPATIAL_SCALE = [1.2, 1.2, 1.0])

; Print the statistics of each ROI when it is
; displayed and wait 3 seconds before proceeding to
; next region.
PRINT, ' '
PRINT, 'Region''s mask area =', $

FIX(maskArea), ' pixels'
PRINT, 'Region''s geometric area =', $

FIX(geomArea), ' mm'
PRINT, 'Region''s perimeter = ', $

FIX(perimeter), ' mm'
WAIT, 3

; Remove each unneeded object reference after
; displaying it.
OBJ_DESTROY, oROI

; End the FOR loop.
ENDFOR

END
Programmatically Defining ROIs and Computing Geometry and Pixel Statistics Image Processing

Chapter 8: Working with Regions of Interest (ROIs) 317
Growing a Region

The REGION_GROW function is an analysis routine that allows you to identify a
complicated region without having to manually draw intricate boundaries. This
function expands a given region based upon the constraints imposed by either a
threshold range (minimum and maximum pixel values) or by a multiplier of the
standard deviation of the original region. REGION_GROW expands an original
region to include all connected neighboring pixels that fall within the specified limits.

The following example interactively defines an initial region within a cross-section of
a human skull. The initial region is then expanded using both methods of region
expansion, thresholding and standard deviation multiplication.

For code that you can copy and paste into an Editor window, see “Example Code:
Growing an ROI” on page 322 or complete the following steps for a detailed
description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select the file, read in the data and get the image dimensions:

file = FILEPATH('md1107g8a.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE
dims = SIZE(img, /DIMENSIONS)

3. Double the size of the image for display purposes and compute the new
dimensions:

img = REBIN(BYTSCL(img), dims[0]*2, dims[1]*2)
dims = 2*dims

4. Create a window and display the original image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $
TITLE = 'Click on Image to Select Point of ROI'

TVSCL, img
Image Processing in IDL Growing a Region

318 Chapter 8: Working with Regions of Interest (ROIs)
The following figure shows the initial image.

5. Define the original region pixels. Using the CURSOR function, select the
original region by positioning your cursor over the image and clicking on the
region indicated in the previous figure by the “+” symbol. Then create a 10 by
10 square ROI, named roipixels, at the selected x, y, coordinates:

CURSOR, xi, yi, /DEVICE
x = LINDGEN(10*10) MOD 10 + xi
y = LINDGEN(10*10) / 10 + yi
roiPixels = x + y * dims[0]

Note
A region can also be defined and grown using the XROI utility. See the XROI
procedure in the IDL Reference Guide for more information.

6. Delete the window after selecting the point:

WDELETE, 0

7. Set the topmost color table entry to red:

topClr = !D.TABLE_SIZE - 1
TVLCT, 255, 0, 0, topClr

Figure 8-8: Original Image Showing Region to be Selected

+

Growing a Region Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 319
8. Display the initial region using the previously defined color:

regionPts = BYTSCL(img, TOP = (topClr - 1))
regionPts[roiPixels] = topClr
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'Original Region'
TV, regionPts

The following figure shows the initial ROI that will be input and expanded with the
REGION_GROW function.

9. Using the REGION_GROW function syntax,

Result = REGION_GROW(Array, ROIPixels [, /ALL_NEIGHBORS]
[, STDDEV_MULTIPLIER=value | THRESHOLD=[min,max]])

input the original region, roipixels, and expand the region to include all
connected pixels which fall within the specified THRESHOLD range:

newROIPixels = REGION_GROW(img, roiPixels, $
THRESHOLD = [215,255])

Note
If neither the THRESHOLD nor the STDDEV_MULTIPLIER keywords are
specified, REGION_GROW automatically applies THRESHOLD, using the
minimum and maximum pixels values occurring within the original region.

Figure 8-9: Square ROI at Selected Coordinates

Original
Region
Image Processing in IDL Growing a Region

320 Chapter 8: Working with Regions of Interest (ROIs)
10. Show the results of growing the original region using threshold values:

regionImg = BYTSCL(img, TOP = (topClr-1))
regionImg[newROIPixels] = topClr
WINDOW, 2, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'THRESHOLD Grown Region'
TV, regionImg

Note
An error message such as “Attempt to subscript REGIONIMG with
NEWROIPIXELS is out of range” indicates that the pixel values within the
defined region fall outside of the minimum and maximum THRESHOLD values.
Either define a region containing pixel values that occur within the threshold range
or alter the minimum and maximum values.

The left-hand image in the following figure shows that the region has been expanded
to clearly identify the optic nerves. Now expand the original region by specifying a
standard deviation multiplier value as described in the following step.

11. Expand the original region using a value of 7 for STDDEV_MULTIPLIER:

stddevPixels = REGION_GROW(img, roiPixels, $
STDDEV_MULTIPLIER = 7)

12. Create a new window and show the resulting ROI:

WINDOW, 3, XSIZE = dims[0], YSIZE = dims[1], $
TITLE = "STDDEV_MULTIPLIER Grown Region"

regionImg2 = BYTSCL(img, TOP = (topClr - 1))
regionImg2[stddevPixels] = topClr
TV, regionImg2
Growing a Region Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 321
The following figure displays the results of growing the original region using
thresholding (left) and standard deviation multiplication (right).

Note
Your results for the right-hand image may differ. Results of growing a region using
a standard deviation multiplier will vary according to the exact mean and deviation
of the pixel values within the original region.

Figure 8-10: Regions Expanded Using REGION_GROW
Image Processing in IDL Growing a Region

322 Chapter 8: Working with Regions of Interest (ROIs)
Example Code: Growing an ROI

Copy and paste the following text into the IDL Editor window. After saving the file as
RegionGrowEx.pro, compile and run the program to reproduce the previous
example.

PRO RegionGrowEx

; Prepare the display device and load a grayscale color
; table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Load an image and get the image dimensions.
file = FILEPATH('md1107g8a.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, img, /GRAYSCALE
dims = SIZE(img, /DIMENSIONS)

; Double the size of the image for display purposes and
; get the new dimensions.
img = REBIN(BYTSCL(img), dims[0]*2, dims[1]*2)
dims = 2*dims

; Create a window and display the image.
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'Click on Image to Select Point of ROI'
TVSCL, img

; Define the original region pixels. Use the CURSOR
; function to select the region, making a 10x10 square
; at the selected x,y, coordinates.
CURSOR, xi, yi, /DEVICE
x = LINDGEN(10*10) MOD 10 + xi
y = LINDGEN(10*10) / 10 + yi
roiPixels = x + y * dims[0]

; Delete the window after selecting the point.
WDELETE, 0

; Set the topmost color table entry to red.
topClr = !D.TABLE_SIZE - 1
TVLCT, 255, 0, 0, topClr

; Scale the array, setting the maximum array value
; equal to one less than the value of topClr.
regionPts = BYTSCL(img, TOP = (topClr - 1))

; Show the results of the original region selection.
Growing a Region Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 323
regionPts[roiPixels] = topClr
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'Original Region'
TV, regionPts

; Grow the region. The THRESHOLD values are determined
; empirically.
newROIPixels = REGION_GROW(img, roiPixels, $

THRESHOLD = [215,255])

; Show the result of the region grown using
; thresholding.
regionImg = BYTSCL(img, TOP = (topClr - 1))
regionImg[newROIPixels] = topClr
WINDOW, 2, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'THRESHOLD Grown Region'
TV, regionImg

; Show the results of growing the region using
; STDDEV_MULTIPLIER in a new window.
stddevPixels = REGION_GROW(img, roiPixels, $

STDDEV_MULTIPLIER = 7)

WINDOW, 3, XSIZE = dims[0], YSIZE = dims[1], $
TITLE = "STDDEV_MULTIPLIER Grown Region"

regionImg2 = BYTSCL(img, TOP = (topClr - 1))
regionImg2[stddevPixels] = topClr
TV, regionImg2

END
Image Processing in IDL Growing a Region

324 Chapter 8: Working with Regions of Interest (ROIs)
Creating and Displaying an ROI Mask

The IDLanROI::ComputeMask function method defines a 2D mask of a region
object, returning an array in which all pixels that lie outside of the region have a value
of 0. The mask can then be used to extract the portion of the original image that lies
within the ROI. The following example defines an ROI, computes a mask, applies the
mask to retain only the portion of the image defined by the ROI, and produces a
magnified view of the ROI. For code that you can copy and paste into an Editor
window, see “Example Code: Defining an ROI Mask” on page 327 or complete the
following steps for a detailed description of the process.

1. Select the file, read in the data and get the image dimensions:

file = FILEPATH('md5290fc1.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE
dims = SIZE(img, /DIMENSIONS)

2. Pass the image to XROI and use the Draw Polygon tool to define the region
shown in the following figure:

XROI, img, REGIONS_OUT = ROIout, /BLOCK

Close the XROI window to save the region object data in the variable, ROIout.

Figure 8-11: ROI Definition in XROI

Draw Polygon
Creating and Displaying an ROI Mask Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 325
3. Assign the ROI data to the arrays, x and y:

ROIout -> GetProperty, DATA = ROIdata
x = ROIdata[0,*]
y = ROIdata[1,*]

4. Set the properties of the ROI:

ROIout -> SetProperty, COLOR = [255,255,255], THICK = 2

5. Initialize an IDLgrImage object containing the original image data:

oImg = OBJ_NEW('IDLgrImage', img,$
DIMENSIONS = dims)

6. Create a window in which to display the image and the ROI:

oWindow = OBJ_NEW('IDLgrWindow', DIMENSIONS = dims, $
RETAIN = 2, TITLE = 'Selected ROI')

7. Create the view plane and initialize the view:

viewRect = [0, 0, dims[0], dims[1]]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)

8. Initialize a model object and add the image and ROI to the model. Add the
model to the view and draw the view in the window to display the ROI overlaid
onto the original image:

oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oImg
oModel -> Add, ROIout
oView -> Add, oModel
oWindow -> Draw, oView

9. Use the IDLanROI::ComputeMask function to create a 2D mask of the region.
Pixels that fall outside of the ROI will be assigned a value of 0:

maskResult = ROIout -> ComputeMask(DIMENSIONS = dims)

10. Use the IMAGE_STATISTICS procedure to compute the area of the mask,
inputting maskResult as the MASK value. Print count to view the number of
pixels occurring within the masked region:

IMAGE_STATISTICS, img, MASK = MaskResult, COUNT = count
PRINT, 'area of mask = ', count,' pixels'

Note
The COUNT keyword to IMAGE_STATISTICS returns the number of pixels
covered by the ROI when it is displayed, the same value as that shown in the
“# Pixels” field of XROI’s ROI Information dialog.
Image Processing in IDL Creating and Displaying an ROI Mask

326 Chapter 8: Working with Regions of Interest (ROIs)
11. From the ROI mask, create a binary mask, consisting of only zeros and ones.
Multiply the binary mask times the original image to retain only the portion of
the image that was defined in the original ROI:

mask = (maskResult GT 0)
maskImg = img * mask

12. Using the minimum and maximum values of the ROI array, create a cropped
array, cropImg, and get its dimensions:

cropImg = maskImg[min(x):max(x), min(y): max(y)]
cropDims = SIZE(cropImg, /DIMENSIONS)

13. Initialize an image object with the cropped region data:

oMaskImg = OBJ_NEW('IDLgrImage', cropImg, $
DIMENSIONS = dims)

14. Using the cropped region dimensions, create an offset window. Multiply the x
and y dimensions times the value by which you wish to magnify the ROI:

oMaskWindow = OBJ_NEW('IDLgrWindow', $
DIMENSIONS = 2 * cropDims, RETAIN = 2, $
TITLE = 'Magnified ROI', LOCATION = dims)

15. Create the display objects and display the cropped and magnified ROI:

oMaskView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)
oMaskModel = OBJ_NEW('IDLgrModel')
oMaskModel -> Add, oMaskImg
oMaskView -> Add, oMaskModel
OMaskWindow -> Draw, oMaskView
Creating and Displaying an ROI Mask Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 327
The original and the magnified view of the ROI are shown in the following figure.

16. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [oView, oMaskView, ROIout]

Example Code: Defining an ROI Mask

Copy and paste the following text into the IDL Editor window. After saving the file as
ScaleMask_object.pro, compile and run the program to reproduce the previous
example.

PRO ScaleMask_Object

; Select the image file and get the image dimensions.
file= FILEPATH('md5290fc1.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, img, /GRAYSCALE
dims = SIZE(img, /DIMENSIONS)

; Pass the image to XROI and define the region.
XROI, img, REGIONS_OUT = ROIout, /BLOCK

; Assign the ROI data to the arrays, x and y.
ROIout -> GetProperty, DATA = ROIdata
x = ROIdata[0,*]
y = ROIdata[1,*]

Figure 8-12: Original and Magnified View of the ROI
Image Processing in IDL Creating and Displaying an ROI Mask

328 Chapter 8: Working with Regions of Interest (ROIs)
; Set the properties of the ROI.
ROIout -> SetProperty, COLOR = [255,255,255], THICK = 2

; Create the image object.
oImg = OBJ_NEW('IDLgrImage', img,$

DIMENSIONS = dims)

; Create a window in which to display the selected ROI.
oWindow = OBJ_NEW('IDLgrWindow', DIMENSIONS = dims, $

RETAIN = 2, TITLE = 'Selected ROI')

; Create the display objects and display the region.
viewRect = [0, 0, dims[0], dims[1]]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)

oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oImg
oModel -> Add, ROIout
oView -> Add, oModel
oWindow -> Draw, oView

; Create a mask and print area of the mask.
maskResult = ROIout -> ComputeMask($

DIMENSIONS = dims)
IMAGE_STATISTICS, img, MASK = MaskResult, COUNT = count
PRINT, 'area of mask = ', count,' pixels'

; Mask out all portions of the image except for the ROI.
mask = (maskResult GT 0)
maskImg = img*mask

; Create a image containing only the cropped ROI.
cropImg = maskImg[min(x):max(x), min(y): max(y)]
cropDims = SIZE(cropImg, /DIMENSIONS)
oMaskImg = OBJ_NEW('IDLgrImage', cropImg, $

DIMENSIONS = dims)

; Create a window in which to display the cropped ROI.
; Multiply the dimensions times the value you wish to
; magnify the ROI.
oMaskWindow = OBJ_NEW('IDLgrWindow', $

DIMENSIONS = 2 * cropDims, RETAIN = 2, $
TITLE = 'Magnified ROI', LOCATION = dims)

; Create the display objects and display the cropped
; ROI.
oMaskView = OBJ_NEW('IDLgrView', $

VIEWPLANE_RECT = viewRect)
Creating and Displaying an ROI Mask Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 329
oMaskModel = OBJ_NEW('IDLgrModel')
oMaskModel -> Add, oMaskImg
oMaskView -> Add, oMaskModel
OMaskWindow -> Draw, oMaskView

; Clean up objects.
OBJ_DESTROY, [oView, oMaskView, ROIout]

END
Image Processing in IDL Creating and Displaying an ROI Mask

330 Chapter 8: Working with Regions of Interest (ROIs)
Testing an ROI for Point Containment

The IDLanROI::ContainsPoints function method determines whether a point having
given coordinates lies inside, outside, on the boundary of, or on the vertex of a
designated ROI. The following example allows the creation of an ROI within an
image of the world using XROI. After exiting XROI, a point is selected and tested to
determine its relationship to the ROI. The example then creates textual and graphical
displays of the results.

For code that you can copy and paste into an Editor window, see “Example Code:
Testing an ROI Object for Point Containment” on page 332 or complete the
following steps for a detailed description of the process.

1. Prepare the display device:

DEVICE, DECOMPOSED = 0, RETAIN = 2

2. Select and open the image file and get its dimensions:

img = READ_PNG(FILEPATH('avhrr.png', $
SUBDIRECTORY = ['examples', 'data']), R, G, B)

dims = SIZE(img, /DIMENSIONS)

3. Open the file in the XROI utility to create an ROI:

XROI, img, REGIONS_OUT = ROIout, R, G, B, /BLOCK, $
TITLE = 'Create ROI and Close Window'

After creating any region using the tool of your choice, close the XROI utility
to save the ROI object data in the variable, ROIout.

4. Load the image color table and display the image in a new window:

TVLCT, R, G, B
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'Left-Click Anywhere in Image'
TV, img

5. The CURSOR function allows you to select and define the coordinates of a
point. After entering the following line, position your cursor anywhere in the
image window and click the left mouse button to select a point:

CURSOR, xi, yi, /DEVICE

6. Delete the window after selecting the point:

WDELETE, 0
Testing an ROI for Point Containment Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 331
7. Using the coordinates returned by the CURSOR function, determine the
placement of the point in relation to the ROI object using
IDLanROI::ContainsPoints:

ptTest = ROIout -> ContainsPoints(xi,yi)

8. The value of ptTest, returned by the previous statement, ranges from 0 to 3.
Create the following vector of string data where the index value of the string
element relates to value of ptTest. Print the actual and textual value of ptTest:

containResults = [$
'Point lies outside ROI', $
'Point lies inside ROI', $
'Point lies on the edge of the ROI', $
'Point lies on vertex of the ROI']

PRINT, 'Result =',ptTest,': ', containResults[ptTest]

9. Complete the following steps to create a visual display of the ROI and the
point that you have defined. First, create a 7 by 7 ROI indicating the point:

x = LINDGEN(7*7) MOD 7 + xi
y = LINDGEN(7*7) / 7 + yi
point = x + y * dims[0]

10. Define the color with which the ROI and point are drawn:

maxClr = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxClr

11. Draw the point within the original image and display it:

regionPt = img
regionPt[point] = maxClr
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE='Containment Test Results'
TV, regionPt

12. Draw the ROI over the image using DRAW_ROI:

DRAW_ROI, ROIout, COLOR = maxClr, /LINE_FILL, $
THICK = 2, LINESTYLE = 0, ORIENTATION = 315, /DEVICE

13. Clean up object references that are not destroyed by the window manager:

OBJ_DESTROY, ROIout
Image Processing in IDL Testing an ROI for Point Containment

332 Chapter 8: Working with Regions of Interest (ROIs)
The following figure displays a region covering South America and a point
within the African continent. Your results will depend upon the ROI and point
you have defined when running this program.

Example Code: Testing an ROI Object for Point Containment

Copy and paste the following text into the IDL Editor window. After saving the file as
ContainmentTest.pro, compile and run the program to reproduce the previous
example.

PRO ContainmentTest

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2

; Select and open the image file and get its size.
img = READ_PNG(FILEPATH('avhrr.png', $

SUBDIRECTORY = ['examples', 'data']), R, G, B)
dims = SIZE(img, /DIMENSIONS)

; Open the file in the XROI utility to select a ROI.
XROI, img, REGIONS_OUT = ROIout, R, G, B, /BLOCK, $

TITLE = 'Create ROI and Close Window'

; Load the image color table and display the image.
TVLCT, R, G, B
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE = 'Left-Click Anywhere in Image'
TV, img

Figure 8-13: Detail of Point Containment Test
Testing an ROI for Point Containment Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 333
; Select and define the coordinates of a point and
; delete window.
PRINT, 'Left-click anywhere in the image.'
CURSOR, xi, yi, /DEVICE
WDELETE, 0

; Test for point containment within the ROI
; and print result of the containment test.
ptTest = ROIout -> ContainsPoints(xi,yi)
containResults = [$

'Point lies outside ROI', $
'Point lies inside ROI', $
'Point lies on the edge of the ROI', $
'Point lies on vertex of the ROI']

PRINT, 'Result =', ptTest, ':', $
containResults[ptTest]

; Create a 7x7 square indicating original point.
x = LINDGEN(7*7) MOD 7 + xi
y = LINDGEN(7*7) / 7 + yi
point = x + y * dims[0]

; Define the color to use for the ROI and point.
maxClr = !D.TABLE_SIZE - 1
TVLCT, 255, 255, 255, maxClr

; Identify the point within the original image.
regionPt = img
regionPt[point] = maxClr

; Create a window and display the point and ROI.
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1], $

TITLE='Containment Test Results'
TV, regionPt
DRAW_ROI, ROIout, COLOR = maxClr, /LINE_FILL, $

THICK = 2, LINESTYLE = 0, ORIENTATION = 315, /DEVICE

; Destroy object references.
OBJ_DESTROY, ROIout

END
Image Processing in IDL Testing an ROI for Point Containment

334 Chapter 8: Working with Regions of Interest (ROIs)
Creating a Surface Mesh of an ROI Group

An IDLanROIGroup contains multiple ROIs. The ROI group consists of either
several ROIs defined in a single image, or a stack of ROIs, each of which has been
defined from a separate slice of a multi-image data set. An ROI group can be
translated into a surface mesh, a mask, or tested for point containment. The following
example defines ROIs from a data set containing 57 MRI images of a human head.
After all ROIs have been defined with the utility and each region has been added to
the group, IDLanROI::ComputeMesh triangulates a surface mesh. The resulting
vertices and connectivity array are used to create a polygon object that is displayed
using XOBJVIEW.

For code that you can copy and paste into an Editor window, see “Example Code:
Creating an ROI Mesh from an ROI Group” on page 337 or complete the following
steps for a detailed description of the process.

1. Prepare the display device and load a color table to more easily distinguish
image features:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5
TVLCT, R, G, B, /GET

2. Select and open the file:

file = FILEPATH('head.dat', SUBDIRECTORY =
['examples','data'])
img = READ_BINARY(file, DATA_DIMS = [80,100,57])

3. Resize the array for display purposes and to compensate for the sampling rate
of the scan slices:

img = CONGRID(img, 200, 225, 57)

4. Initialize an IDLanROIGroup object to which individual ROIs will be added:

oROIGroup = OBJ_NEW('IDLgrROIGroup')

5. Use a FOR loop to define an ROI within every fifth slice of data. Add each ROI
to the group:

FOR i=0, 54, 5 DO BEGIN & $
XROI, img[*, *,i], R, G, B, REGIONS_OUT = oROI, $

/BLOCK, ROI_SELECT_COLOR = [255, 255, 255] & $
oROI -> GetProperty, DATA = roiData & $
roiData[2, *] = 2.2*i & $
oRoi -> ReplaceData, roiData & $
oRoiGroup -> Add, oRoi & $

ENDFOR
Creating a Surface Mesh of an ROI Group Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 335
Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO loop in
placed in an IDL program as shown in “Example Code: Defining an ROI and
Computing ROI Statistics” on page 314.

The following image shows samples of the ROIs to be defined.

To limit the time needed complete this exercise, the previous FOR statement
arranges to display every fifth slice of data for ROI selection. To obtain higher
quality results, consider selecting an ROI in every other slice of data.

6. Compute the mesh for the ROI group using IDLanROIGroup::ComputeMesh:

result = oROIGroup -> ComputeMesh(verts, conn)

Figure 8-14: ROIs to be Defined
Image Processing in IDL Creating a Surface Mesh of an ROI Group

336 Chapter 8: Working with Regions of Interest (ROIs)
Note
The ComputeMesh function will fail if the ROIs contain interior regions (holes), are
self-intersecting or are of a TYPE other than the default, closed polygon.

7. Prepare to display the mesh, scaling and translating the array for display in
XOBJVIEW:

nImg = 57
xymax = 200.0
zmax = float(nImg)
oModel = OBJ_NEW('IDLgrModel')
oModel -> Scale, 1./xymax,1./xymax, 1.0/zmax
oModel -> Translate, -0.5, -0.5, -0.5
oModel -> Rotate, [1,0,0], -90
oModel -> Rotate, [0, 1, 0], 30
oModel -> Rotate, [1,0,0], 30

8. Create an IDLgrPolygon object using the results of ComputeMesh:

oPoly = OBJ_NEW('IDLgrPolygon', verts, POLYGON = conn, $
COLOR = [128, 128, 128], SHADING = 1)

9. Add the polygon to the model and display the polygon object in XOBJVIEW:

oModel -> Add, oPoly
XOBJVIEW, oModel, /BLOCK

10. Clean up object references that are not destroyed by the window manager
when you close the Object Graphics displays:

OBJ_DESTROY, [oROI, oROIGroup, oPoly, oModel]
Creating a Surface Mesh of an ROI Group Image Processing in IDL

Chapter 8: Working with Regions of Interest (ROIs) 337
The following figure displays the mesh created by defining an ROI in every
other slice of data instead of from every fifth slice as described in this example.
Therefore, your results will likely vary.

Example Code: Creating an ROI Mesh from an ROI Group

Copy and paste the following text into the IDL Editor window. After saving the file as
GroupROIMesh.pro, compile and run the program to reproduce the previous
example.

Pro GroupROIMesh

; Prepare the display device and load a color table
; to more easily distinguish image features.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5
TVLCT, R, G, B, /GET

; Select and open the file.
file = FILEPATH('head.dat', $

SUBDIRECTORY = ['examples', 'data'])
img = READ_BINARY(file, DATA_DIMS = [80,100,57])

; Resize the array for display purposes and to
; compensate for the sampling rate of the scan slices.
img = CONGRID(img, 200, 225, 57)

; Initialize a ROI group object to which individual
; ROIs will be added.
oROIGroup = OBJ_NEW('IDLgrROIGroup')

Figure 8-15: Result of Creating a Mesh from a Group of ROIs
Image Processing in IDL Creating a Surface Mesh of an ROI Group

338 Chapter 8: Working with Regions of Interest (ROIs)
; Use a FOR loop to define ROIs with which to create
; the mesh. Add each ROI to the group.
FOR i=0, 54, 5 DO BEGIN

XROI, img[*, *,i], R, G, B, REGIONS_OUT = oROI, $
/BLOCK, ROI_SELECT_COLOR = [255, 255, 255]

oROI -> GetProperty, DATA = roiData
roiData[2, *] = 2.2*i
oRoi -> ReplaceData, roiData
oRoiGroup -> Add, oRoi

ENDFOR

; Compute the mesh for the group.
result = oROIGroup -> ComputeMesh(verts, conn)

; Prepare to display the mesh, scaling and translating
; the array for display in XOBJVIEW.
nImg = 57
xymax = 200.0
zmax = float(nImg)
oModel = OBJ_NEW('IDLgrModel')
oModel -> Scale, 1./xymax,1./xymax, 1.0/zmax
oModel -> Translate, -0.5, -0.5, -0.5
oModel -> Rotate, [1, 0, 0], -90
oModel -> Rotate, [0, 1, 0], 30
oModel -> Rotate, [1, 0, 0], 30

; Create a polygon object using the results of
; ComputeMesh.
oPoly = OBJ_NEW('IDLgrPolygon', verts, POLYGON = conn, $

COLOR = [128, 128, 128], SHADING = 1)

; Add the polygon to the model and display the polygon
; object in XOBJVIEW.
oModel -> Add, oPoly
XOBJVIEW, oModel, /BLOCK

; Clean up object references.
OBJ_DESTROY, [oROI, oROIGroup, oPoly, oModel]

END
Creating a Surface Mesh of an ROI Group Image Processing in IDL

Chapter 9:

Transforming Between
Domains
This chapter describes the following topics:
Overview of Transforming Between Image
Domains . 340
Transforming to and from the Frequency
Domain with FFT 343

Transforming to and from the Time-Frequency
Domain with Wavelets 365
Transforming to and from the Hough and
Radon Domains . 383
Image Processing in IDL 339

340 Chapter 9: Transforming Between Domains
Overview of Transforming Between Image
Domains

Some processes performed on an image in the spatial domain may be very
computationally expensive. These same processes may be significantly easier to
perform after transforming an image to a different domain. These transformations are
the basis for many image filters, applied to remove noise, to sharpen, or extract
features. Domain transformations also provide additional information about an image
and can offer compression benefits.

The most common representation of a pixel’s value and location is spatial, where it
appears in three dimensions (x, y, and z). Pixel value and location in this space is
usually referred to by column (x), row (y), and value (z), and is known as the spatial
domain. However, a pixel’s value and location can be represented in other domains.

In the frequency or Fourier domain, the value and location are represented by
sinusoidal relationships that depend upon the frequency of a pixel occurring within
an image. In this domain, pixel location is represented by its x- and y-frequencies and
its value is represented by an amplitude. Images can be transformed into the
frequency domain to determine which pixels contain more important information and
whether repeating patterns occur. See “Transforming to and from the Frequency
Domain with FFT” on page 343 for more information on the frequency domain.

In the time-frequency or wavelet domain, the value and location are represented by
sinusoidal relationships that only partially transform the image into the frequency
domain. Like the transformation to the full frequency domain, the transformation to
the time-frequency domain helps to determine the important information in an image.
See “Transforming to and from the Time-Frequency Domain with Wavelets” on
page 365 for more information on the time-frequency domain.

In the Hough domain, pixels are presented by sinusoidal lines. Since straight lines
within an image are transformed into the Hough domain as intersecting sinusoidal
lines, these intersections can be used to determine if and where straight lines occur
within an image. See “Transforming to and from the Hough and Radon Domains” on
page 383 for more information on the Hough domain.
Overview of Transforming Between Image Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 341
In the Radon domain, a line of pixels occurring in an image is represented by a single
point. This transformation is useful for detecting specific features and image
compression. Since transforming images to and from the Hough and Radon domains
use similar methods, the Radon image representation is described in the same section
as the Hough representation. See “Transforming to and from the Hough and Radon
Domains” on page 383 for more information on the Radon domain.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image domain transformations and associated IDL
image transformation routines covered in this chapter.

Task Routine(s) Description

“Transforming to and
from the Frequency
Domain with FFT” on
page 343

FFT Transform images into
the frequency domain
and back into the spatial
domain with the Fast
Fourier Transform. Then
show how to use this
process to remove noise
from an image.

“Transforming to and
from the Time-
Frequency Domain
with Wavelets” on
page 365

WTN Transform images into
the time-frequency
domain and back into the
spatial domain with the
Wavelet transform. Then
show how to use this
process to remove noise
from an image.

Table 9-1: Image Transformation Tasks and Related Routines
Image Processing in IDL Overview of Transforming Between Image Domains

342 Chapter 9: Transforming Between Domains
Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of the files, including array sizes.

“Transforming to and
from the Hough and
Radon Domains” on
page 383

HOUGH

RADON

Transform images into
the Hough and the Radon
domains and back into
the spatial domain with
the Hough and Radon
transforms. Then show
how to use these
processes to detect
straight lines and
improve contrast within
an image.

Task Routine(s) Description

Table 9-1: Image Transformation Tasks and Related Routines (Continued)
Overview of Transforming Between Image Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 343
Transforming to and from the Frequency
Domain with FFT

The Fast Fourier Transform (FFT) is used in numerical analysis to transform an
image between spatial and frequency domains. The FFT decomposes an image into
sines and cosines of varying amplitudes and phases. The values of the resulting
transform represent the amplitudes of particular horizontal and vertical frequencies.
This image information in the frequency domain shows how often patterns are
repeated within an image. Low frequencies represent gradual variations in an image,
while high frequencies correspond to abrupt variations in the image.

Low frequencies tend to contain the most information because they determine the
overall shape or pattern in the image. High frequencies provide detail in the image,
but they are often contaminated by the spurious effects of noise. Masks can be easily
applied to the image within the frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and Fast
Fourier Transforms (FFTs):

• “Transforming to the Frequency Domain”

• “Displaying Images in the Frequency Domain” on page 349

• “Transforming from the Frequency Domain” on page 354

The FFT process is the basis for many filters used in image processing. One of the
easiest FFT filters to understand is the one used for background noise removal. This
filter is simply a mask applied to the image in the frequency domain. See “Removing
Noise with the FFT” on page 358 for an example of how to use this type of filter.

Transforming to the Frequency Domain

When an image is transformed with FFT from the spatial domain to the frequency
domain, the transformation process is referred to as a forward FFT. The forward FFT
process can be performed with IDL’s FFT function.

In the frequency domain, the lowest frequencies usually contain most of the
information, which is shown by the large peak in the center of the data. If the
transform is shown as a surface, the peak of low frequencies appears as a spike. If the
transform is shown as an image, the peak of low frequencies is composed of the
brightest pixels.

If the image does not contain any background noise, the rest of the data frequencies
are very close to zero. However, the results of the FFT function have a very wide
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

344 Chapter 9: Transforming Between Domains
range. An initial display may not show any variations from zero, but a smaller range
will show that the image does actually contain background noise. Since scaling a
range can sometimes be quite arbitrary, different methods are used. See “Displaying
Images in the Frequency Domain” on page 349 for more information on displaying
the results of a forward FFT.

The following example shows how to use IDL’s FFT function to compute a forward
FFT. This example uses the first image within the abnorm.dat file in the
examples/data directory. The results of the FFT function are shifted to move the
origin (0, 0) of the x- and y-frequencies to the center of the data. Frequency
magnitude then increases with distance from the origin. If the results are not centered,
then the negative frequencies appear after the positive frequencies because of the
storage scheme of the FFT process. See the FFT description in the IDL Reference
Guide for more information on this storage scheme.

For code that you can copy and paste into an Editor window, see “Example Code:
Transforming to the Frequency Domain” on page 347 or complete the following steps
for a detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Define a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 345
The following figure shows the original image.

5. With the FFT function, transform the image into the frequency domain:

ffTransform = FFT(image)

6. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the display axes.

interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $

FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $

FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

Note
The previous two steps were performed because of the storage scheme of the FFT
process. See the FFT description in the IDL Reference Guide for more information
on this storage scheme.

Figure 9-1: Original Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

346 Chapter 9: Transforming Between Domains
8. Create another window and display the frequency transform:

WINDOW, 1, TITLE = 'FFT: Transform'
SHADE_SURF, fftShifted, hFreqShifted, vFreqShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Real Part of Transform', CHARSIZE = 1.5

The following figure shows the results of applying the FFT to the image. The
data at the high frequencies seem to be close to zero, but the peak (spike) along
the z-axis is so large that a closer look is needed.

Note
The data type of the array returned by the FFT function is complex, which contains
real and imaginary parts. The amplitude is the absolute value of the FFT, while the
phase is the angle of the complex number, computed using the arctangent. In the
above surface, we are only displaying the real part. In most cases, the imaginary
part will look the same as the real part.

Figure 9-2: FFT of the Gated Blood Pool Image
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 347
9. Create another window and display the frequency transform with a data (z)
range of 0 to 5:

WINDOW, 2, TITLE = 'FFT: Transform (Closer Look)'
SHADE_SURF,fftShifted, hFreqShifted, vFreqShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Real Part of Transform', CHARSIZE = 1.5, $
ZRANGE = [0., 5.]

The following figure shows the resulting transform after scaling the z-axis
range from 0 to 5. You can now see that the central peak is surrounded by
smaller peaks containing both high frequency information and noise.

Example Code: Transforming to the Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving the file as
ForwardFFT.pro, compile and run the program to reproduce the previous example.

PRO ForwardFFT

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

Figure 9-3: FFT of the Gated Blood Pool Image Scaled Between 0 and 5
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

348 Chapter 9: Transforming Between Domains
SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.
WINDOW, 0, XSIZE = displaySize[0], $

YSIZE = displaySize[1], TITLE = 'Original Image'
TVSCL, CONGRID(image, displaySize[0], $

displaySize[1])

; Transform the image into the frequency domain.
ffTransform = FFT(image)

; Shift the zero frequency location from (0, 0) to
; the center of the display.
center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

; Calculate the horizontal and vertical frequency
; values, which will be used as the values for the
; axes of the display.
interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $

FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $

FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

; Create another window and display the frequency
; transform.
WINDOW, 1, TITLE = 'FFT: Transform'
SHADE_SURF, fftShifted, hFreqShifted, vFreqShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 349
; Create another window and display the frequency
; transform within the data (z) range of 0 to 5.
WINDOW, 2, TITLE = 'FFT: Transform (Closer Look)'
SHADE_SURF, fftShifted, hFreqShifted, vFreqShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 5.]

END

Displaying Images in the Frequency Domain

Within the frequency domain, the range of values from the peak to the high frequency
noise is extreme. You can use a logarithmic scale to retain the shape of the surface,
but reduce its range. Since the logarithmic scale only applies to positive values, you
should first compute the power spectrum, which is the absolute value squared of the
transform.

The following example shows how to display the results of IDL’s FFT function. This
example also uses the first image within the abnorm.dat file in the
examples/data directory. The results of the transform are shifted to move the
origin (0, 0) of the horizontal and vertical frequencies to the center of the display. If
the results are not centered then the negative frequencies appear after the positive
frequencies because of the storage scheme of the FFT process. See FFT for more
information on its storage scheme.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Images in the Frequency Domain” on page 352 or complete the following
steps for a detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

350 Chapter 9: Transforming Between Domains
4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])

The following figure shows the original image.

5. Transform the image into the frequency domain:

ffTransform = FFT(image)

6. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
powerShifted = SHIFT(ffTransform, center)

7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the display axes.

interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $

FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $

FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

Figure 9-4: Original Gated Blood Pool Image
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 351
Note
The previous two steps were performed because of the storage scheme of the FFT
process. See the FFT description in the IDL Reference Guide for more information
on this storage scheme.

8. Compute the power spectrum of the transform:

powerSpectrum = ABS(fftShifted)^2

9. Apply a logarithmic scale to values of the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

10. Create another window and display the power spectrum as a surface:

WINDOW, 1, TITLE = 'FFT Power Spectrum: '+ $
'Logarithmic Scale (surface)'

SHADE_SURF, scaledPowerSpect, hFreqShifted, vFreqShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Log-scaled Power Spectrum', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Log(Squared Amplitude)', CHARSIZE = 1.5

The following figure shows the log-scaled power spectrum as a surface. Both
low and high frequency information are visible in this display.

Figure 9-5: Log-scaled FFT Power Spectrum of Image (as a surface)
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

352 Chapter 9: Transforming Between Domains
Note
The data type of the array returned by the FFT function is complex, which contains
real and imaginary parts. The amplitude is the absolute value of the FFT, while the
phase is the angle of the complex number, computed using the arctangent. In the
above surface, we are only displaying the real part. In most cases, the imaginary
part will look the same as the real part.

11. Create another window and display the log-scaled transform as an image:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'FFT Power Spectrum: Logarithmic Scale (image)'

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1])

The following figure shows the log-scaled power spectrum as an image. The
brighter pixels near the center of the display represent the low frequency peak
of information-containing data. The noise appears as random darker pixels
within the image.

Example Code: Displaying Images in the Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving the file as
DisplayFFT.pro, compile and run the program to reproduce the previous example.

PRO DisplayFFT

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])

Figure 9-6: Log-scaled FFT Power Spectrum of Image (as an image)
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 353
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Original Image'
TVSCL, CONGRID(image, displaySize[0], $

displaySize[1])

; Transform the image into the frequency domain.
ffTransform = FFT(image)

; Shift the zero frequency location from (0, 0) to
; the center of the display.
center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

; Calculate the horizontal and vertical frequency
; values, which will be used as the values for the
; axes of the display.
interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $

FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $

FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

; Compute the power spectrum of the transform.
powerSpectrum = ABS(fftShifted)^2

; Apply a logarithmic scale to the power spectrum.
scaledPowerSpect = ALOG10(powerSpectrum)

; Create another window and display the log-scaled
; power spectrum as a surface.
WINDOW, 1, TITLE = 'FFT Power Spectrum: ' + $

'Logarithmic Scale (surface)'
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

354 Chapter 9: Transforming Between Domains
SHADE_SURF, scaledPowerSpect, hFreqShifted, vFreqShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Log-scaled Power Spectrum', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Log(Abs(Amplitude^2))', CHARSIZE = 1.5

; Create another window and display the log-scaled
; power spectrum as an image.
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'FFT Power Spectrum: Logarithmic Scale (image)'
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1])

END

Transforming from the Frequency Domain

After manipulating an image within the frequency domain, you will need to
transform the image back to the spatial domain. This transformation process is
referred to as an inverse FFT. The inverse FFT process can be performed with IDL’s
FFT function by setting the INVERSE keyword.

The following example shows how to use IDL’s FFT function to compute an inverse
FFT. This example uses the first image within the abnorm.dat file in the
examples/data directory. The image is not manipulated in this example while it is
in the frequency domain to show that no information is lost when using the FFT.
However, manipulating spurious high frequency data within the frequency domain is
a useful way to remove background noise from an image, as shown in “Removing
Noise with the FFT” on page 358.

For code that you can copy and paste into an Editor window, see “Example Code:
Transforming from the Frequency Domain” on page 356 or complete the following
steps for a detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 355
3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. With the FFT function, transform the image into the frequency domain:

ffTransform = FFT(image)

5. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
powerShifted = SHIFT(ffTransform, center)

Note
This step was performed because of the storage scheme of the FFT process. See the
FFT description in the IDL Reference Guide for more information on this storage
scheme.

6. Compute the power spectrum of the transform:

powerSpectrum = ABS(fftShifted)^2

7. Apply a logarithmic scale to values of the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

8. Create a window and display the power spectrum as an image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Power Spectrum Image'

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1])

The following figure shows the log-scaled power spectrum.

Figure 9-7: Log-scaled FFT Power Spectrum of the Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

356 Chapter 9: Transforming Between Domains
9. With the FFT function, transform the frequency domain data back to the
original image (obtain the inverse transform):

fftInverse = REAL_PART(FFT(ffTransform, /INVERSE))

Note
The data type of the array returned by the FFT function is complex, which contains
real and imaginary parts. The amplitude is the absolute value of the FFT, while the
phase is the angle of the complex number, computed using the arctangent. In the
above surface, we are only displaying the real part. In most cases, the imaginary
part will look the same as the real part.

10. Create another window and display the inverse transform as an image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'FFT: Inverse Transform'

TVSCL, CONGRID(fftInverse, displaySize[0], $
displaySize[1])

The inverse transform is the same as the original image as shown in the
following figure. Unlike some domain transformations, all image information
is retained when transforming data to and from the frequency domain.

Example Code: Transforming from the Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving the file as
InverseFFT.pro, compile and run the program to reproduce the previous example.

Figure 9-8: Inverse FFT of the Gated Blood Pool Image
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 357
PRO InverseFFT

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Transform the image into the frequency domain.
ffTransform = FFT(image)

; Shift the zero frequency location from (0, 0) to
; the center of the display.
center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

; Compute the power spectrum of the transform.
powerSpectrum = ABS(fftShifted)^2

; Apply a logarithmic scale to the power spectrum.
scaledPowerSpect = ALOG10(powerSpectrum)

; Create a window and display the power spectrum.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Power Spectrum Image'
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1])

; Compute the inverse
fftInverse = REAL_PART(FFT(ffTransform, /INVERSE))

; Create another window and display the inverse
; transform as an image
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'FFT: Inverse Transform'
TVSCL, CONGRID(fftInverse, displaySize[0], $

displaySize[1])

END
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

358 Chapter 9: Transforming Between Domains
Removing Noise with the FFT

This example uses IDL’s FFT function to remove noise from an image. The image
comes from the abnorm.dat file found in the examples/data directory. The first
display contains the original image and its transform. The noise is very evident in the
transform. A surface representation of the power spectrum helps to determine the
threshold necessary to remove the noise from the image. In the surface
representation, the noise appears random and below a ridge containing the spike. The
ridge and spike represent coherent information within the image. A mask is applied
to the transform to remove the noise and the inverse transform is applied, resulting in
a clearer image.

For code that you can copy and paste into an Editor window, see “Example Code:
Removing Noise with the FFT” on page 362 or complete the following steps for a
detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the original image

WINDOW, 0, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image and Power Spectrum'

TVSCL, CONGRID(image, displaySize[0], displaySize[1]), 0

5. Transform the image into the frequency domain:

ffTransform = FFT(image)

6. Shift the zero frequency location from (0, 0) to the center of the display:

center = imageSize/2 + 1
powerShifted = SHIFT(ffTransform, center)
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 359
7. Calculate the horizontal and vertical frequency values, which will be used as
the values for the axes of the display.

interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $

FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $

FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

Note
The previous two steps were performed because of the storage scheme of the FFT
process. See the FFT description in the IDL Reference Guide for more information
on this storage scheme.

8. Compute the power spectrum of the transform:

powerSpectrum = ABS(fftShifted)^2

9. Apply a logarithmic scale to values of the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

10. Display the log-scaled power spectrum:

TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $
displaySize[1]), 1
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

360 Chapter 9: Transforming Between Domains
The following figure shows the original image and its log-scaled power
spectrum. The black pixels (which appear random) in the power spectrum
represent noise.

11. Scale the power spectrum to make its maximum value equal to zero:

scaledPS0 = scaledPowerSpect - MAX(scaledPowerSpect)

12. Create another window and display the scaled transform as a surface:

WINDOW, 1, $
TITLE = 'Power Spectrum Scaled to a Zero Maximum'

SHADE_SURF, scaledPowerSpect, hFreqShifted, vFreqShifted, $
/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Zero Maximum Power Spectrum', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Max-Scaled(Log(Power Spectrum))', $
CHARSIZE = 1.5

Figure 9-9: Original Image and Its FFT Power Spectrum
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 361
The following figure shows the resulting log-scaled power spectrum as a
surface.

Note
The data type of the array returned by the FFT function is complex, which contains
real and imaginary parts. The real part is the amplitude, and the imaginary part is
the phase. In image processing, we are more concerned with the amplitude, which
is the only part represented in the surface and displays of the results of the
transformation. However, the imaginary part is retained for the inverse transform
back into the spatial domain.

13. Threshold the image at a value of -5.25, which is just below the peak of the
power spectrum, to remove the noise:

mask = REAL_PART(scaledPS0) GT -5.25

14. Apply the mask to the transform to exclude the noise:

maskedTransform = fftShifted*mask

Figure 9-10: FFT Power Spectrum of the Image Scaled to a Zero Maximum
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

362 Chapter 9: Transforming Between Domains
15. Create another window and display the power spectrum of the masked
transform:

WINDOW, 2, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Power Spectrum of Masked Transform and Results'

TVSCL, CONGRID(ALOG10(ABS(maskedTransform^2)), $
displaySize[0], displaySize[1]), 0, /NAN

16. Shift the masked transform to the position of the original transform:

maskedShiftedTrans = SHIFT(maskedTransform, -center)

17. Apply the inverse transformation to the masked transform:

inverseTransform = REAL_PART(FFT(maskedShiftedTrans, $
/INVERSE))

18. Display the results of the inverse transformation:

TVSCL, CONGRID(inverseTransform, displaySize[0], $
displaySize[1]), 1

The following figure shows the power spectrum of the masked transform and
its inverse, which contains less noise than the original image.

Example Code: Removing Noise with the FFT

Copy and paste the following text into an IDL Editor window. After saving the file as
RemovingNoiseWithFFT.pro, compile and run the program to reproduce the
previous example.

Figure 9-11: Masked FFT Power Spectrum and Resulting Inverse Transform
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 363
PRO RemovingNoiseWithFFT

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = 2*displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Original Image and Power Spectrum'
TVSCL, CONGRID(image, displaySize[0], displaySize[1]), 0

; Transform the image into the frequency domain.
ffTransform = FFT(image)

; Shift the zero frequency location from (0, 0) to
; the center of the display.
center = imageSize/2 + 1
fftShifted = SHIFT(ffTransform, center)

; Calculate the horizontal and vertical frequency
; values, which will be used as the values for the
; axes of the display.
interval = 1.
hFrequency = INDGEN(imageSize[0])
hFrequency[center[0]] = center[0] - imageSize[0] + $

FINDGEN(center[0] - 2)
hFrequency = hFrequency/(imageSize[0]/interval)
hFreqShifted = SHIFT(hFrequency, -center[0])
vFrequency = INDGEN(imageSize[1])
vFrequency[center[1]] = center[1] - imageSize[1] + $

FINDGEN(center[1] - 2)
vFrequency = vFrequency/(imageSize[1]/interval)
vFreqShifted = SHIFT(vFrequency, -center[1])

; Compute the power spectrum of the transform.
powerSpectrum = ABS(fftShifted)^2

; Apply a logarithmic scale to the power spectrum.
scaledPowerSpect = ALOG10(powerSpectrum)
Image Processing in IDL Transforming to and from the Frequency Domain with FFT

364 Chapter 9: Transforming Between Domains
; Display the log-scaled power spectrum.
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1]), 1

; Scale the power spectrum to a zero maximum.
scaledPS0 = scaledPowerSpect - MAX(scaledPowerSpect)

; Create another window and display the scaled transform
; as a surface.
WINDOW, 1, $

TITLE = 'Power Spectrum Scaled to a Zero Maximum'
SHADE_SURF, scaledPS0, hFreqShifted, vFreqShifted, $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Zero Maximum Power Spectrum', $
XTITLE = 'Horizontal Frequency', $
YTITLE = 'Vertical Frequency', $
ZTITLE = 'Max-Scaled(Log(Power Spectrum))', $
CHARSIZE = 1.5

; Threshold the image using -5.25, which is just below
; the peak of the transform, to remove the noise.
mask = REAL_PART(scaledPS0) GT -5.25

; Mask the transform to exclude the noise.
maskedTransform = fftShifted*mask

; Create another window and display the power spectrum
; of the masked transform.
WINDOW, 2, XSIZE = 2*displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Power Spectrum of Masked Transform and Results'
TVSCL, CONGRID(ALOG10(ABS(maskedTransform^2)), $

displaySize[0], displaySize[1]), 0, /NAN

; Shift the masked transform to the position of the
; original transform.
maskedShiftedTrans = SHIFT(maskedTransform, -center)

; Apply the inverse transformation to masked transform.
inverseTransform = REAL_PART(FFT(maskedShiftedTrans, $

/INVERSE))

; Display results of inverse transformation.
TVSCL, CONGRID(inverseTransform, displaySize[0], $

displaySize[1]), 1

END
Transforming to and from the Frequency Domain with FFT Image Processing in IDL

Chapter 9: Transforming Between Domains 365
Transforming to and from the Time-
Frequency Domain with Wavelets

Images do not have to be completely transformed into the frequency domain. Some
transformations only partially convert an image into the frequency domain. One of
the most common types of these transformations is into the time-frequency or
wavelet domain.

The Discrete Wavelet Transform (DWT) is used in numerical analysis to transform an
image from the spatial domain to the time-frequency domain and back again. This
transform is different from the FFT. The FFT decomposes an image with sines and
cosines over the entire image. In contrast, the wavelet functions are applied multiple
times over portions.

The image information within the time-frequency domain shows the frequency of
patterns within an image, and how these patterns vary over the image. The low
frequencies typically contain most of the information, which is commonly seen as a
peak (spike) of data within the time-frequency domain. The information at the high
frequencies is usually noise. The image can easily be altered within the time-
frequency domain to remove the noise.

The following sections introduce the concepts needed to work with images and
Discrete Wavelet Transforms (DWTs):

• “Transforming to the Time-Frequency Domain”

• “Displaying Images in the Time-Frequency Domain” on page 370

• “Transforming from the Time-Frequency Domain” on page 374

The wavelet transformation process is the basis for many image compression
algorithms. See “Removing Noise with the Wavelet Transform” on page 378 for an
example of how wavelets can be used to compress data and remove noise.

Transforming to the Time-Frequency Domain

When an image is transformed with a DWT from the spatial domain to the time-
frequency domain, the transformation process is referred to as a forward DWT. The
forward DWT process can be performed with IDL’s WTN function.

The low frequencies usually contain most of the useful information within the image,
which is shown by the peak (spike) of data around the origin within the time-
frequency domain. If the image does not contain any background noise, the rest of the
data frequency values are very close to zero. However, the results of the WTN
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

366 Chapter 9: Transforming Between Domains
function have a very wide range. An initial display may not show any variations from
zero, but a smaller surface range will show that the image does actually contain
background noise. Since scaling a range can sometimes be quite arbitrary, different
methods are used. See “Displaying Images in the Time-Frequency Domain” on
page 370 for more information on displaying the results of a forward DWT.

The following example shows how to use IDL’s WTN function to compute a forward
DWT. This example uses the first image within the abnorm.dat file, which is in the
examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Transforming to the Time-Frequency Domain” on page 369 or complete the
following steps for a detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 367
The following figure shows the original image.

5. With the WTN function, transform the image into the wavelet domain:

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Create another window and display the wavelet transform:

WINDOW, 1, TITLE = 'Wavelet: Transform'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

Figure 9-12: Original Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

368 Chapter 9: Transforming Between Domains
The following figure shows the wavelet transform. The data at the high
frequencies seems to be close to zero, but the peak (spike) in the z range is so
large that a closer look is needed.

7. Create another window and display the wavelet transform, scaling the data (z)
range from 0 to 200:

WINDOW, 2, TITLE = 'Wavelet: Transform (Closer Look)'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number',
ZTITLE = 'Amplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 200.]

Figure 9-13: Wavelet Transform of Gated Blood Pool Image
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 369
The following figure shows the wavelet transform with the z-axis ranging from
0 to 200. A closer looks shows that the image does contain background noise.

Example Code: Transforming to the Time-Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving the file as
ForwardWavelet.pro, compile and run the program to reproduce the previous
example.

PRO ForwardWavelet

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.

Figure 9-14: Wavelet Transform of Image Scaled Between 0 and 200
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

370 Chapter 9: Transforming Between Domains
WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])

; Transform the image into the wavelet domain.
waveletTransform = WTN(image, 20)

; Create another window and display the frequency
; transform.
WINDOW, 1, TITLE = 'Wavelet: Transform'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

; Create another window and display the frequency
; transform within the data (z) range of 0 to 200.
WINDOW, 2, TITLE = 'Wavelet: Transform (Closer Look)'
SHADE_SURF, waveletTransform, /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Transform of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5, $
ZRANGE = [0., 200.]

END

Displaying Images in the Time-Frequency Domain

Within the time-frequency domain, the range of values from the peak to the spurious
high frequency data is extreme. The logarithmic scale is applied to retain the shape of
the surface, but reduce its range. Since the logarithmic scale only applies to positive
values, you should first compute the power spectrum, which is the absolute value
squared of the transform.

The following example shows how to display the results of IDL’s WTN function.
This example also uses the first image within the abnorm.dat file, which is in the
examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Displaying Images in the Time-Frequency Domain” on page 373 or complete the
following steps for a detailed description of the process.
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 371
1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])

The following figure shows the original image.

5. Transform the image into the time-frequency domain.

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Less wavelet filter
coefficients can be used with larger images to decrease computation time.

Figure 9-15: Original Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

372 Chapter 9: Transforming Between Domains
6. Compute the power spectrum.

powerSpectrum = ABS(waveletTransform)^2

7. Apply a logarithmic scale to the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

8. Create another window and display the log-scaled power spectrum as a
surface:

WINDOW, 1, TITLE = 'Wavelet Power Spectrum: ' + $
'Logarithmic Scale (surface)'

SHADE_SURF, scaledPowerSpect, /XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Log-scaled Power Spectrum of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number', $
ZTITLE = 'Log(Squared Amplitude)', CHARSIZE = 1.5

The following figure shows the log-scaled power spectrum of the wavelet
transform as a surface.

Figure 9-16: Log-scaled Wavelet Power Spectrum of Image (as a surface)
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 373
9. Create another window and display the log-scaled power spectrum as an
image:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Wavelet Power Spectrum: Logarithmic Scale

(image)'
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1])

The following figure shows the log-scaled power spectrum as an image. Most
of the signal is located near the origin (the lower left of the power spectrum
image). This data is shown as bright pixels at the origin. The noise appears in
the rest of the image.

Example Code: Displaying Images in the Time-Frequency
Domain

Copy and paste the following text into an IDL Editor window. After saving the file as
DisplayWavelet.pro, compile and run the program to reproduce the previous
example.

PRO DisplayWavelet

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.

Figure 9-17: Log-scaled Wavelet Power Spectrum of Image (as am image)
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

374 Chapter 9: Transforming Between Domains
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.
WINDOW, 0, XSIZE = displaySize[0], $

YSIZE = displaySize[1], TITLE = 'Original Image'
TVSCL, CONGRID(image, displaySize[0], $

displaySize[1])

; Transform the image into the time-frequency domain.
waveletTransform = WTN(image, 20)

; Compute the power spectrum.
powerSpectrum = ABS(waveletTransform)^2

; Apply a logarithmic scale to the power spectrum.
scaledPowerSpect = ALOG10(powerSpectrum)

; Create another window and display the log-scaled
; power spectrum as a surface.
WINDOW, 1, TITLE = 'Wavelet Power Spectrum: ' + $

'Logarithmic Scale (surface)'
SHADE_SURF, scaledPowerSpect, /XSTYLE, /YSTYLE, /ZSTYLE, $

TITLE = 'Log-scaled Power Spectrum of Image', $
XTITLE = 'Horizontal Number', $
YTITLE = 'Vertical Number', $
ZTITLE = 'Log(Abs(Amplitude^2))', CHARSIZE = 1.5

; Create another window and display the log-scaled
; power spectrum as an image.
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Wavelet Power Secptrum: Logarithmic Scale (image)'
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1])

END

Transforming from the Time-Frequency Domain

After manipulating an image within the time-frequency domain, you will need to
transform it back to the spatial domain. This transformation process is referred to as
an inverse DWT. The inverse DWT process can be performed with IDL’s WTN
function by setting the INVERSE keyword.
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 375
The following example shows how to use IDL’s WTN function to compute an inverse
DWT. This example uses the first image within the abnorm.dat file, which is in the
examples/data directory. The image is not manipulated while it is in the time-
frequency domain to show that no data is lost when using the DWT. However,
manipulating data within the time-frequency domain is a useful way to compress data
and remove background noise from an image, as shown in “Removing Noise with the
Wavelet Transform” on page 378.

For code that you can copy and paste into an Editor window, see “Example Code:
Transforming from the Time-Frequency Domain” on page 377 or complete the
following steps for a detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. With the WTN function, transform the image into the wavelet domain:

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

5. Compute the power spectrum:

powerSpectrum = ABS(waveletTransform)^2

6. Apply a logarithmic scale to the power spectrum:

scaledPowerSpect = ALOG10(powerSpectrum)

7. Create a window and display the log-scaled power spectrum as an image:

; Create a window and display the transform.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Power Spectrum Image'
TVSCL, CONGRID(scaledPowerSpect, displaySize[0], $

displaySize[1])
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

376 Chapter 9: Transforming Between Domains
The following figure shows the log-scaled power spectrum of the image.

8. With the WTN function, transform the wavelet domain data back to the
original image (obtain the inverse transform):

waveletInverse = WTN(waveletTransform, 20, /INVERSE)

9. Create another window and display the inverse transform as an image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Wavelet: Inverse Transform'

TVSCL, CONGRID(waveletInverse, displaySize[0], $
displaySize[1])

Figure 9-18: Log-scaled Wavelet Power Spectrum of Image
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 377
The inverse transform is the same as the original image as shown in the
following figure. No image data is lost when transforming an image to and
from the time-frequency domain.

Example Code: Transforming from the Time-Frequency Domain

Copy and paste the following text into an IDL Editor window. After saving the file as
InverseWavelet.pro, compile and run the program to reproduce the previous
example.

PRO InverseWavelet

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Transform the image into the frequency domain.
waveletTransform = WTN(image, 20)

; Compute the power spectrum.
powerSpectrum = ABS(waveletTransform)^2

Figure 9-19: Inverse of the Wavelet Transform of the Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

378 Chapter 9: Transforming Between Domains
; Apply a logarithmic scale to the power spectrum.
scaledPowerSpectrum = ALOG10(powerSpectrum)

; Create a window and display the transform.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Power Spectrum Image'
TVSCL, CONGRID(scaledPowerSpectrum, displaySize[0], $

displaySize[1])

; Compute the inverse
waveletInverse = WTN(waveletTransform, 20, /INVERSE)

; Create another window and display the inverse
; transform as an image
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Wavelet: Inverse Transform'
TVSCL, CONGRID(waveletInverse, displaySize[0], $

displaySize[1])

END

Removing Noise with the Wavelet Transform

This example uses IDL’s WTN function to remove noise from an image. The image
comes from the abnorm.dat file found in the examples/data directory. The first
display contains the original image and its wavelet transform. The noise is very
evident in the image. A surface of the transform helps to determine beyond which
point the noise occurs. Only the important data is kept and noise is replaced by zero
values. The inverse transform is then applied, resulting in a cleaner image.

For code that you can copy and paste into an Editor window, see “Example Code:
Removing Noise with the Wavelet Transform” on page 381 or complete the
following steps for a detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 379
3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image and Power Spectrum'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1]), 0

5. Determine the wavelet transform of the image:

waveletTransform = WTN(image, 20)

The Coef argument is set to 20 to specify 20 wavelet filter coefficients to
provide the most efficient wavelet estimate possible. Fewer wavelet filter
coefficients can be used with larger images to decrease computation time.

6. Display the power spectrum of the transform:

TVSCL, CONGRID(ALOG10(ABS(waveletTransform^2)), $
displaySize[0], displaySize[1]), 1

The following figure shows the original image and its power spectrum within
the time-frequency domain.

Figure 9-20: Gated Blood Pool Image and Its Wavelet Power Spectrum
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

380 Chapter 9: Transforming Between Domains
7. Crop the transform to only include the quadrant of data closest to the spike of
low frequency in the lower-left corner:

croppedTransform = FLTARR(imageSize[0], imageSize[1])
croppedTransform[0, 0] =
waveletTransform[0:(imageSize[0]/2), $

0:(imageSize[1]/2)]

8. Create another window and display the power spectrum of the cropped
transform as an image:

WINDOW, 1, XSIZE = 2*displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Power Spectrum of Cropped Transform and Results'

TVSCL, CONGRID(ALOG10(ABS(croppededTransform^2)), $
displaySize[0], displaySize[1]), 0, /NAN

9. Apply the inverse transformation to the masked power spectrum:

inverseTransform = WTN(maskedTransform, 20, /INVERSE)

10. Display results of the inverse transform:

TVSCL, CONGRID(inverseTransform, displaySize[0], $
displaySize[1]), 1

The following figure shows the power spectrum of the cropped transform and
its resulting inverse transform. The cropping process shows that only one
quarter of the data was needed to reconstruct the image. The image is
compressed by a 4:1 ratio.

Figure 9-21: Masked Wavelet Power Spectrum and Its Resulting Inverse
Transform
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 381
Example Code: Removing Noise with the Wavelet Transform

Copy and paste the following text into an IDL Editor window. After saving the file as
RemovingNoiseWithWavelet.pro, compile and run the program to reproduce the
previous example.

PRO RemovingNoiseWithWavelet

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = 2*displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Original Image and Power Spectrum'
TVSCL, CONGRID(image, displaySize[0], displaySize[1]), 0

; Determine the transform of the image.
waveletTransform = WTN(image, 20)

; Display the power spectrum.
TVSCL, CONGRID(ALOG10(ABS(waveletTransform^2)), $

displaySize[0], displaySize[1]), 1

; Crop the transform to only include data close to
; the spike in the lower-left corner.
croppedTransform = FLTARR(imageSize[0], imageSize[1])
croppedTransform[0, 0] = waveletTransform[0:(imageSize[0]/2), $

0:(imageSize[1]/2)]

; Create another window and display the power spectrum
; of the cropped transform as an image.
WINDOW, 1, XSIZE = 2*displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Power Spectrum of Cropped Transform and Results'
TVSCL, CONGRID(ALOG10(ABS(croppedTransform^2)), $

displaySize[0], displaySize[1]), 0, /NAN

; Apply the inverse transformation to cropped transform.
inverseTransform = WTN(croppedTransform, 20, /INVERSE)
Image Processing in IDL Transforming to and from the Time-Frequency Domain with Wavelets

382 Chapter 9: Transforming Between Domains
; Display results of inverse transformation.
TVSCL, CONGRID(inverseTransform, displaySize[0], $

displaySize[1]), 1

END
Transforming to and from the Time-Frequency Domain with Wavelets Image Processing in IDL

Chapter 9: Transforming Between Domains 383
Transforming to and from the Hough and
Radon Domains

The Hough transform is used to transform from the spatial domain to the Hough
domain and back again. The image information within the Hough domain shows the
pixels of the original (spatial) image as sinusoidal curves. If the points of the original
image form a straight line, their related sinusoidal curves in the Hough domain will
intersect. Many intersections produce a peak. Masks can be easily applied to the
image within the Hough domain to determine if and where straight lines occur.

The Radon transform is used to transform from the spatial domain to the Radon
domain and back again. The image information within the Radon domain shows a
line through the original image as a point. Specific features (geometries) in the
original image produce peaks or collections of points. Masks can be easily applied to
the image within the Radon domain to determine if and where these specific features
occur.

Unlike transformations to and from the frequency and time-frequency domains, the
Hough and Radon transforms do lose some data during the transformation process.
These transformations are usually applied to the original image as a mask instead of
producing an image from the results of the transform itself. See the HOUGH and
RADON descriptions in the IDL Reference Guide for more information on Hough
and Radon transform theory.

The following sections introduce the concepts needed to work with images and these
transforms:

• “Transforming to the Hough and Radon Domains (Projecting)” on page 383

• “Transforming from the Hough and Radon Domains (Backprojecting)” on
page 389

The Hough transformation process is used to find straight lines within an image. See
“Finding Straight Lines with the Hough Transform” on page 394 for an example. The
Radon transformation process is used to enhance contrast within an image. See
“Color Density Contrasting with the Radon Transform” on page 402 for an example.

Transforming to the Hough and Radon Domains
(Projecting)

When an image is transformed from the spatial domain to either the Hough or Radon
domain, the transformation process is referred to as a Hough or Radon projection.
Image Processing in IDL Transforming to and from the Hough and Radon Domains

384 Chapter 9: Transforming Between Domains
The projection process can be performed with either IDL’s HOUGH function or
IDL’s RADON function, depending on which transform you want to use.

The following example shows how to use IDL’s HOUGH and RADON functions to
compute and display the Hough and Radon projections. This example uses the first
image within the abnorm.dat file, which is in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Hough and Radon Projections” on page 387 or complete the following steps for a
detailed description of the process.

1. Import the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Define the display size and offset parameters to resize and position the images
when displaying them:

displaySize = 2*imageSize
offset = displaySize/3

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 385
The following figure shows the original image.

5. With the HOUGH function, transform the image into the Hough domain:

houghTransform = HOUGH(image, RHO = houghRadii, $
THETA = houghAngles, /GRAY)

6. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(houghTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

Figure 9-22: Original Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

386 Chapter 9: Transforming Between Domains
The following figure shows the resulting Hough transform.

7. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTransform = RADON(image, RHO = radonRadii, $
THETA = radonAngles, /GRAY)

8. Create another window and display the Radon transform:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(radonTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

Figure 9-23: Hough Transform of the Gated Blood Pool Image
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 387
The following figure shows the resulting Radon transform.

Example Code: Hough and Radon Projections

Copy and paste the following text into an IDL Editor window. After saving the file as
ForwardHoughAndRadon.pro, compile and run the program to reproduce the
previous example.

PRO ProjectHoughAndRadon

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Define the display size and offset parameters to
; resize and position the images when displaying them.
displaySize = 4*imageSize
offset = displaySize/3

; Initialize the displays.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the image.

Figure 9-24: Radon Transform of the Gated Blood Pool Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

388 Chapter 9: Transforming Between Domains
WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1])

; With the HOUGH function, transform the image into the
; Hough domain.
houghTransform = HOUGH(image, RHO = houghRadii, $

THETA = houghAngles, /GRAY)

; Create another window and display the Hough transform
; with axes.
WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(houghTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

; With the RADON function, transform the image into the
; Radon domain.
radonTransform = RADON(image, RHO = radonRadii, $

THETA = radonAngles, /GRAY)

; Create another window and display the Radon transform
; with axes.
WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(radonTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

END
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 389
Transforming from the Hough and Radon Domains
(Backprojecting)

After manipulating an image within either the Hough or Radon domain, you may
need to transform the image from that domain back to the spatial domain. This
transformation process is referred to as a Hough or Radon backprojection. The
backprojection process can be performed with either IDL’s HOUGH function or
IDL’s RADON function, depending on which domain your image is in. You can
perform the backprojection process with these functions by setting the
BACKPROJECT keyword.

The following example shows how to use IDL’s HOUGH and RADON functions to
compute the backprojection from these domains. This example uses the first image
within the abnorm.dat file, which is in the examples/data directory. Although
the image is not manipulated while it is in the Hough or Radon domain, information
is lost when using these transforms.

For code that you can copy and paste into an Editor window, see “Example Code:
Hough and Radon Backprojections” on page 392 or complete the following steps for
a detailed description of the process.

1. Import in the first image from the abnorm.dat file:

imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Define the display size and offset parameters to resize and position the images
when displaying them:

displaySize = 2*imageSize
offset = displaySize/3

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. With the HOUGH function, transform the image into the Hough domain:

houghTransform = HOUGH(image, RHO = houghRadii, $
THETA = houghAngles, /GRAY)
Image Processing in IDL Transforming to and from the Hough and Radon Domains

390 Chapter 9: Transforming Between Domains
5. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(houghTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

6. With the RADON function, transform the image into the Radon domain with
axes provided by the PLOT procedure:

radonTransform = RADON(image, RHO = radonRadii, $
THETA = radonAngles, /GRAY)

7. Create another window and display the Radon transform:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(radonTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 391
The following figure shows the Hough and Radon transforms.

8. Backproject the Hough and Radon transforms:

backprojectHough = HOUGH(houghTransform, /BACKPROJECT, $
RHO = houghRadii, THETA = houghAngles, $
NX = imageSize[0], NY = imageSize[1])

backprojectRadon = RADON(radonTransform, /BACKPROJECT, $
RHO = radonRadii, THETA = radonAngles, $
NX = imageSize[0], NY = imageSize[1])

9. Create another window and display the original image with the Hough and
Radon backprojections:

WINDOW, 2, XSIZE = (3*displaySize[0]), $
YSIZE = displaySize[1], $
TITLE = 'Hough and Radon Backprojections'

TVSCL, CONGRID(image, displaySize[0], $
displaySize[1]), 0

TVSCL, CONGRID(backprojectHough, displaySize[0], $
displaySize[1]), 1

TVSCL, CONGRID(backprojectRadon, displaySize[0], $
displaySize[1]), 2

Figure 9-25: Hough (left) and Radon (right) Transforms of Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

392 Chapter 9: Transforming Between Domains
The following figure shows the original image and its Hough and Radon
transforms. These resulting images shows information is blurred when using
the Hough and Radon transformations.

Example Code: Hough and Radon Backprojections

Copy and paste the following text into an IDL Editor window. After saving the file as
BackprojectHoughAndRadon.pro, compile and run the program to reproduce the
previous example.

PRO BackprojectHoughAndRadon

; Import the image from the file.
imageSize = [64, 64]
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Define the display size and offset parameters to
; resize and position the images when displaying them.
displaySize = 4*imageSize
offset = displaySize/3

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; With the HOUGH function, transform the image into the
; Hough domain.
houghTransform = HOUGH(image, RHO = houghRadii, $

Figure 9-26: Original Gated Blood Pool Image (left), Hough Backprojection
(center), and Radon Backprojection (right)
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 393
THETA = houghAngles, /GRAY)

; Create another window and display the Hough transform
; with axes.
WINDOW, 0, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(houghTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, houghAngles, houghRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

; With the RADON function, transform the image into the
; Radon domain.
radonTransform = RADON(image, RHO = radonRadii, $

THETA = radonAngles, /GRAY)

; Create another window and display the Radon transform
; with axes.
WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(radonTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, radonAngles, radonRadii, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

; Backproject the Hough and Radon transforms.
backprojectHough = HOUGH(houghTransform, /BACKPROJECT, $

RHO = houghRadii, THETA = houghAngles, $
NX = imageSize[0], NY = imageSize[1])

backprojectRadon = RADON(radonTransform, /BACKPROJECT, $
RHO = radonRadii, THETA = radonAngles, $
NX = imageSize[0], NY = imageSize[1])

; Create another window and display the original image
; with the Hough and Radon backjections.
WINDOW, 2, XSIZE = (3*displaySize[0]), $

YSIZE = displaySize[1], $
TITLE = 'Hough and Radon Backprojections'

TVSCL, CONGRID(image, displaySize[0], $
Image Processing in IDL Transforming to and from the Hough and Radon Domains

394 Chapter 9: Transforming Between Domains
displaySize[1]), 0
TVSCL, CONGRID(backprojectHough, displaySize[0], $

displaySize[1]), 1
TVSCL, CONGRID(backprojectRadon, displaySize[0], $

displaySize[1]), 2

END

Finding Straight Lines with the Hough Transform

This example uses the Hough transform to find straight lines within an image. The
image comes from the rockland.png file found in the examples/data directory.
The image is a saturation composite of a 24 hour period in Rockland, Maine. A
saturation composite is normally used to highlight intensities, but the Hough
transform is used in this example to extract the power lines, which are straight lines.
The Hough transform is applied to the green band of the image. The results of the
transform are scaled to only include lines longer than 85 pixels. The scaled results are
then backprojected by the Hough transform to produce an image of only the straight
power lines.

For code that you can copy and paste into an Editor window, see “Example Code:
Finding Straight Lines with the Hough Transform” on page 399 or complete the
following steps for a detailed description of the process.

1. Import the image from the rockland.png file:

file = FILEPATH('rockland.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file)

2. Determine the size of the image:

imageSize = SIZE(image, /DIMENSIONS)

3. Initialize a TrueColor display:

DEVICE, DECOMPOSED = 1

4. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[1], YSIZE = imageSize[2], $
TITLE = 'Rockland, Maine'

TV, image, TRUE = 1
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 395
The following figure shows the original image.

5. Use the image from green channel to provide an outline of shapes:

intensity = REFORM(image[1, *, *])

6. Determine the size of the intensity image derived from the green channel:

intensitySize = SIZE(intensity, /DIMENSIONS)

7. Threshold the intensity image to highlight the power lines:

mask = intensity GT 240

Note
The intensity image values range from 0 to 255. The threshold was derived by
iteratively viewing the intensity image at several different values.

8. Initialize the remaining displays:

DEVICE, DECOMPOSED = 0
LOADCT, 0

Figure 9-27: Image of Rockland, Maine
Image Processing in IDL Transforming to and from the Hough and Radon Domains

396 Chapter 9: Transforming Between Domains
9. Create another window and display the masked image:

WINDOW, 1, XSIZE = intensitySize[0], $
YSIZE = intensitySize[1], $
TITLE = 'Mask to Locate Power Lines'

TVSCL, mask

The following figure shows the mask of the original image.

10. Transform the mask with the HOUGH function:

transform = HOUGH(mask, RHO = rho, THETA = theta)

11. Define the size and offset parameters for the transform displays:

displaySize = [256, 256]
offset = displaySize/3

12. Reverse the color table to clarify the lines:

TVLCT, red, green, blue, /GET
TVLCT, 255 - red, 255 - green, 255 - blue

Figure 9-28: Mask of Rockland Image
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 397
13. Create another window and display the Hough transform with axes provided
by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

14. Scale the transform to obtain just the power lines, retaining only those lines
longer than 85 pixels:

transform = (TEMPORARY(transform) - 85) > 0

The value of 85 comes from an estimate of the length of the power lines within
the original and intensity images.

15. Create another window and display the scaled Hough transform with axes
provided by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Scaled Hough Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

The top image in the following figure shows the Hough transform of the
intensity image. This transform is masked to only include straight lines of
Image Processing in IDL Transforming to and from the Hough and Radon Domains

398 Chapter 9: Transforming Between Domains
more than 85 pixels. The bottom image in the following figure shows the
results of this mask. Only the far left and right intersections are retained.

Figure 9-29: The Hough Transform (top) and the Scaled Transform (bottom) of
the Masked Intensity Image

Remaining
Intersections
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 399
16. Backproject to compare with the original image:

backprojection = HOUGH(transform, /BACKPROJECT, $
RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySize[1])

17. Create another window and display the resulting backprojection:

WINDOW, 4, XSIZE = intensitySize[0], $
YSIZE = intensitySize[1], $
TITLE = 'Resulting Power Lines'

TVSCL, backprojection

The following figure shows the resulting backprojection, which contains only
the power lines.

Example Code: Finding Straight Lines with the Hough
Transform

Copy and paste the following text into an IDL Editor window. After saving the file as
FindingLinesWithHough.pro, compile and run the program to reproduce the
previous example.

Figure 9-30: The Resulting Backprojection of the Scaled Hough Transform
Image Processing in IDL Transforming to and from the Hough and Radon Domains

400 Chapter 9: Transforming Between Domains
PRO FindingLinesWithHough

; Import the image from file.
file = FILEPATH('rockland.png', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_PNG(file)

; Determine size of image.
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the TrueColor display.
DEVICE, DECOMPOSED = 1

; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[1], YSIZE = imageSize[2], $

TITLE = 'Rockland, Maine'
TV, image, TRUE = 1

; Use the image from green channel to provide outlines
; of shapes.
intensity = REFORM(image[1, *, *])

; Determine size of intensity image.
intensitySize = SIZE(intensity, /DIMENSIONS)

; Mask intensity image to highlight power lines.
mask = intensity GT 240

; Initialize the remaining displays.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create another window and display the masked image.
WINDOW, 1, XSIZE = intensitySize[0], $

YSIZE = intensitySize[1], $
TITLE = 'Mask to Locate Power Lines'

TVSCL, mask

; Transform mask.
transform = HOUGH(mask, RHO = rho, THETA = theta)

; Define the size and offset parameters for the
; transform displays.
displaySize = [256, 256]
offset = displaySize/3

; Reverse color table to clarify lines.
TVLCT, red, green, blue, /GET
TVLCT, 255 - red, 255 - green, 255 - blue
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 401
; Create another window and display the Hough transform
; with axes.
WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Hough Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

; Scale transform to obtain just the power lines.
transform = (TEMPORARY(transform) - 85) > 0

; Create another window and display the scaled transform.
WINDOW, 3, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Scaled Hough Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Hough Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5, $
COLOR = !P.BACKGROUND

; Backproject to compare with original image.
backprojection = HOUGH(transform, /BACKPROJECT, $

RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySize[1])

; Create another window and display the results.
WINDOW, 4, XSIZE = intensitySize[0], $

YSIZE = intensitySize[1], $
TITLE = 'Resulting Power Lines'

TVSCL, backprojection

END
Image Processing in IDL Transforming to and from the Hough and Radon Domains

402 Chapter 9: Transforming Between Domains
Color Density Contrasting with the Radon Transform

This example uses the Radon transform to provide more contrast within an image
based on its color density. The image comes from the endocell.jpg file found in
the examples/data directory. The image is a photomicrograph of cultured
endothelial cells. The edges (outlines) within the image are defined by the Roberts
filter. The Radon transform is then applied to the filtered image. The transform is
scaled to only include the values above the mean of the transform. The scaled results
are backprojected by the Radon transform. The resulting backprojection is used as a
mask on the original image. The final resulting image shows more color contrast
along the edges of the cell nuclei within the image.

For code that you can copy and paste into an Editor window, see “Example Code:
Color Density Contrasting with the Radon Transform” on page 406 or complete the
following steps for a detailed description of the process.

1. Import in the image from the endocell.jpg file:

file = FILEPATH('endocell.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, endocellImage

2. Determine the image’s size, but divide it by 4 to reduce the image:

imageSize = SIZE(endocellImage, /DIMENSIONS)/4

3. Resize the image to a quarter of its original length and width:

endocellImage = CONGRID(endocellImage, $
imageSize[0], imageSize[1])

4. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

5. Create a window and display the original image:

WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original (left) and Filtered (right)'

TV, endocellImage, 0

6. Filter the original image to clarify the edges of the cells:

image = ROBERTS(endocellImage)

7. Display the filtered image:

TVSCL, image, 1
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 403
The following figure shows the original image and the results of the edge
detection filter.

8. Transform the filtered image:

transform = RADON(image, RHO = rho, THETA = theta)

9. Define the size and offset parameters for the transform displays:

displaySize = [256, 256]
offset = displaySize/3

10. Create another window and display the Radon transform with axes provided by
the PLOT procedure:

WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

Figure 9-31: Endothelial Cells Image (left) and the Resulting Edge-Filtered
Image (right)
Image Processing in IDL Transforming to and from the Hough and Radon Domains

404 Chapter 9: Transforming Between Domains
11. Scale the transform to include only the density values above the mean of the
transform:

scaledTransform = transform > MEAN(transform)

12. Create another window and display the scaled Radon transform with axes
provided by the PLOT procedure:

WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $
YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Scaled Radon Transform'

TVSCL, CONGRID(scaledTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

The following figure shows the original Radon transform of the edge-filtered
image and the resulting scaled transform. The high intensity values within the
diamond shape of the center of the transform represent high color density
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 405
within the filtered and original image. The transform is scaled to highlight this
segment of intersecting lines.

Figure 9-32: Radon Transform (top) and Scaled Transform (bottom)
of the Edge-Filtered Image
Image Processing in IDL Transforming to and from the Hough and Radon Domains

406 Chapter 9: Transforming Between Domains
13. Backproject the scaled transform:

backprojection = RADON(scaledTransform, /BACKPROJECT, $
RHO = rho, THETA=theta, NX = imageSize[0], $
NY = imageSize[1])

14. Create another window and display the backprojection:

WINDOW, 3, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Backproject (left) and Final Result (right)'

TVSCL, backprojection, 0

15. Use the backprojection as a mask to provide a color density contrast of the
original image:

constrastingImage = endocellImage*backprojection

16. Display the resulting contrast image:

TVSCL,constrastingImage, 1

The following figure shows the Radon backprojection and a combined image
of the original and the backprojection. The cell nuclei now have more contrast
than the rest of the image.

Example Code: Color Density Contrasting with the Radon
Transform

Copy and paste the following text into an IDL Editor window. After saving the file as
ContrastingCellsWithRadon.pro, compile and run the program to reproduce
the previous example.

Figure 9-33: The Backprojection of the Radon Transform and the Resulting
Contrast Image
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 9: Transforming Between Domains 407
PRO ContrastingCellsWithRadon

; Import the image from the file.
file = FILEPATH('endocell.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, endocellImage

; Determine image's size, but divide it by 4 to reduce
; the image.
imageSize = SIZE(endocellImage, /DIMENSIONS)/4

; Resize image to a quarter its original length and
; width.
endocellImage = CONGRID(endocellImage, $

imageSize[0], imageSize[1])

; Initialize the displays.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original (left) and Filtered (right)'
TV, endocellImage, 0

; Filter original image to clarify the edges of the
; cells.
image = ROBERTS(endocellImage)

; Display the filtered image.
TVSCL, image, 1

; Transform the filtered image.
transform = RADON(image, RHO = rho, THETA = theta)

; Define the size and offset parameters for the
; transform displays.
displaySize = [256, 256]
offset = displaySize/3

; Create another window and display the Radon transform
; with axes.
WINDOW, 1, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Radon Transform'

TVSCL, CONGRID(transform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Radon Transform', XTITLE = 'Theta', $
Image Processing in IDL Transforming to and from the Hough and Radon Domains

408 Chapter 9: Transforming Between Domains
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

; Scale the transform to include only the density
; values above the mean of the transform.
scaledTransform = transform > MEAN(transform)

; Create another window and display the scaled Radon
; transform with axes.
WINDOW, 2, XSIZE = displaySize[0] + 1.5*offset[0], $

YSIZE = displaySize[1] + 1.5*offset[1], $
TITLE = 'Scaled Radon Transform'

TVSCL, CONGRID(scaledTransform, displaySize[0], $
displaySize[1]), offset[0], offset[1]

PLOT, theta, rho, /XSTYLE, /YSTYLE, $
TITLE = 'Scaled Radon Transform', XTITLE = 'Theta', $
YTITLE = 'Rho', /NODATA, /NOERASE, /DEVICE, $
POSITION = [offset[0], offset[1], $
displaySize[0] + offset[0], $
displaySize[1] + offset[1]], CHARSIZE = 1.5

; Backproject the scaled transform.
backprojection = RADON(scaledTransform, /BACKPROJECT, $

RHO = rho, THETA=theta, NX = imageSize[0], $
NY = imageSize[1])

; Create another window and display the backprojection.
WINDOW, 3, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Backproject (left) and Final Result (right)'
TVSCL, backprojection, 0

; Use the backprojection as a mask to provide
; a color density contrast of the original image.
constrastingImage = endocellImage*backprojection

; Display resulting contrast image.
TVSCL, constrastingImage, 1

END
Transforming to and from the Hough and Radon Domains Image Processing in IDL

Chapter 10:

Contrasting and
Filtering
This chapter describes the following topics:
Overview of Contrasting and Filtering . . . 410
Byte-Scaling . 413

Working with Histograms 417
Filtering an Image 428

Smoothing an Image 448
Sharpening an Image 459

Detecting Edges . 464
Removing Noise . 470
Image Processing in IDL 409

410 Chapter 10: Contrasting and Filtering
Overview of Contrasting and Filtering

Contrast within an image is based on the brightness or darkness of a pixel in relation
to other pixels. Modifying the contrast among neighboring pixels can enhance the
ability to extract information from the image. Operations such as noise removal and
smoothing decrease contrast and make neighboring pixel values more similar. Other
operations such as scaling pixel values, edge detection and sharpening increase
contrast to highlight specific image features.

A simple way to modify contrast is to scale the pixel values within an image. Within
IDL, the pixel values of displayed images typically range from 0 to 255. Byte-scaling
changes the range of values within an image to a linear progression from a minimum
of 0 to a maximum of 255. For images with pixel values exceeding 255, byte-scaling
produces a more linear display with the minimum value as the darkest pixel and the
maximum value as the brightest pixel. For images with a smaller range in pixel
values, byte-scaling increases the contrast and brightens dark areas. See “Byte-
Scaling” on page 413 for more information on byte-scaling.

Contrast can also be increased to show more variations within uniform areas of the
image using histogram equalization operations. These operations modify the
distribution of pixel values within an image. See “Working with Histograms” on
page 417 for more information on using histograms to modify contrast.

Filters provide another means of changing contrast within an image. A filter is
represented by a kernel, which is an array that is multiplied and added to each pixel
(and its surrounding values) within an image. Examples of such filters include low
pass, high pass, directional, and Laplacian filters. See “Filtering an Image” on
page 428 for more information on these filters. The following list introduces some of
the specific operations covered in this section:

• Low pass filtering - a low pass filter provides the basis for smoothing
operations. If an image contains too many variations to be able to determine
specific features, smoothing can decrease the contrast so that some areas
(especially the background) will not distract from viewing other areas of the
image. See “Smoothing an Image” on page 448 for more information on
smoothing.

• High pass filtering - a high pass filter provides the basis for sharpening
operations. Some variations within areas of an image are too slight, causing
some features to be indistinguishable from other features (usually the
background). Sharpening increases the contrast in these areas, allowing these
features to be clearly displayed. See “Sharpening an Image” on page 459 for
more information on sharpening.
Overview of Contrasting and Filtering Image Processing in IDL

Chapter 10: Contrasting and Filtering 411
• Directional and Laplacian filters - these filters are the basis for edge detection
operations. Shapes within an image are distinguished by their edges, which
typically involve a sharp gradient. Edge detection increases the contrast
between the boundary of the shape and the adjoining areas. See “Detecting
Edges” on page 464 for more information on edge detection.

• Windowing and adaptive filters - more advanced filters are used to remove
noise from an image. The variation in values between the noise and the image
data is typically extreme, which detracts from the image clarity. Decreasing the
contrast reduces the visible noise and allows the image to be properly viewed.
See “Removing Noise” on page 470 for more information on removing noise
within an image.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

The following list introduces the image contrasting and filtering tasks and associated
IDL image routines covered in this chapter.

Type of Contrasts
or Filters

Routines Description

“Byte-Scaling” on
page 413

BYTSCL Byte-scale the data
values of an image to
produce a more
continuous display or to
increase its contrast.

“Working with
Histograms” on
page 417

HIST_EQUAL

ADAPT_HIST_EQUAL

Use histogram
equalization to show
minor variations in
uniform areas.

“Filtering an Image”
on page 428

CONVOL Enhance contrast by
applying some basic
filters (low pass, high
pass, directional, and
Laplacian) to images.

Table 10-1: Image Contrasting and Filtering Tasks and Related Routines
Image Processing in IDL Overview of Contrasting and Filtering

412 Chapter 10: Contrasting and Filtering
Note
This chapter uses data files from the IDL examples/data directory. Two files,
data.txt and index.txt, contain descriptions of the files, including array sizes.

“Smoothing an Image”
on page 448

SMOOTH

MEDIAN

Smooth high variations
within an image.

“Sharpening an
Image” on page 459

CONVOL Sharpen an image by
decreasing too bright
pixels and increasing too
dark pixels.

“Detecting Edges” on
page 464

ROBERTS

SOBEL

Use the contrast within
an image to detect the
possible edges of shapes.

“Removing Noise” on
page 470

HANNING

LEEFILT

Remove noise from an
image by either
windowing or using an
adaptive filter.

Type of Contrasts
or Filters

Routines Description

Table 10-1: Image Contrasting and Filtering Tasks and Related Routines
Overview of Contrasting and Filtering Image Processing in IDL

Chapter 10: Contrasting and Filtering 413
Byte-Scaling

The data values of some images may be greater than 255. When displayed with the
TV routine or the IDLgrImage object, the data values above 255 are wrapped around
the range of 0 to 255. This type of display may produce discontinuities in the
resulting image.

The display can be changed to not wrap around and appear more linear by byte-
scaling the image. The scaling process is linear with the minimum data value scaled
to 0 and the maximum data value scaled to 255. You can use the BYTSCL function to
perform this scaling process.

If the range of the pixel values within an image is less than 0 to 255, you can use the
BYTSCL function to increase the range from 0 to 255. This change will increase the
contrast within the image by increasing the brightness of darker regions. Keywords to
the BYTSCL function also allow you to decrease contrast by setting the highest value
of the image to less than 255.

Note
The BYTSCL function usually results in a different data type (byte) and range (0 to
255) from the original input data. When converting data with BYTSCL for display
purposes, you may want to keep your original data as a separate variable for
statistical and numerical analysis.

The following example shows how to use the BYTSCL function to scale data with
values greater than 255, producing a more uniform display. This example uses a
Magnetic Resonance Image (MRI) of a human brain within the mr_brain.dcm file
in the examples/data directory. The values of this data are unsigned integer and
range from 0 to about 800.

For code that you can copy and paste into an Editor window, see “Example Code:
Byte-Scaling” on page 415 or complete the following steps for a detailed description
of the process.

1. Import the image from the mr_brain.dcm file:

file = FILEPATH('mr_brain.dcm', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_DICOM(file)
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 5
Image Processing in IDL Byte-Scaling

414 Chapter 10: Contrasting and Filtering
3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image

The following figure shows the original image.

4. Byte-scale the image:

scaledImage = BYTSCL(image)

5. Create another window and display the byte-scaled image:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Byte-Scaled Image'

TV, scaledImage

Figure 10-1: Magnetic Resonance Image (MRI) of a Human Brain
Byte-Scaling Image Processing in IDL

Chapter 10: Contrasting and Filtering 415
The following figure shows the result of byte-scaling. Unlike the original
image, the byte-scaled image accurately represents the maximum and
minimum pixel values by linearly adjusting the range for display.

Example Code: Byte-Scaling

Copy and paste the following text into an IDL Editor window. After saving the file as
ByteScaling.pro, compile and run the program to reproduce the previous
example.

PRO ByteScaling

; Import the image from the file.
file = FILEPATH('mr_brain.dcm', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_DICOM(file)
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the displays.
DEVICE, DECOMPOSED = 0
LOADCT, 5

; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'
TV, image

; Byte-scale the image.
scaledImage = BYTSCL(image)

; Create another window and display the byte-scaled

Figure 10-2: Byte-Scaled MRI
Image Processing in IDL Byte-Scaling

416 Chapter 10: Contrasting and Filtering
; image.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Byte-Scaled Image'
TV, scaledImage

END
Byte-Scaling Image Processing in IDL

Chapter 10: Contrasting and Filtering 417
Working with Histograms

The histogram of an image shows the number of pixels for each pixel value within the
range of the image. Peaks in the histogram represent more common values within the
image that usually consist of nearly uniform regions. Valleys in the histogram
represent less common values. Empty regions within the histogram indicate that no
pixels within the image contain those values.

The following figure shows an example of a histogram and its related image. The
most common value in this image is 180, composing the background of the image.
Although the background appears nearly uniform, it contains many small variations.

The contrast of these variations can be increased by equalizing the image’s
histogram. Either the image’s color table or the image itself can be equalized based
on the information within the image’s histogram. This section shows how to enhance
the contrast within an image by modifying the image itself. See “Showing Variations
in Uniform Areas” in Chapter 3 for more information on enhancing contrast by
modifying the color table of an image using the image’s histogram information.

During histogram equalization, the values occurring in the empty regions of the
histogram are redistributed equally among the peaks and valleys. This process creates
intensity gradients within these regions (replacing nearly uniform values), thus
highlighting minor variations.

IDL contains the ability to perform histogram equalization and adaptive histogram
equalization. The following sections show how to use these forms of histogram
equalization to modify images within IDL:

• “Equalizing with Histograms”

• “Adaptive Equalizing with Histograms” on page 422

Figure 10-3: Example of a Histogram (left) and Its Related Image (right)
Image Processing in IDL Working with Histograms

418 Chapter 10: Contrasting and Filtering
Equalizing with Histograms

You can use the HIST_EQUAL function to perform basic histogram equalization
within IDL. Unlike histogram equalization methods performed on color tables, the
HIST_EQUAL function results in a modified image, which has a different histogram
than the original image. The resulting image shows more variations (increased
contrast) within uniform areas than the original image.

The following example applies histogram equalization to an image of mineral
deposits to reveal previously indistinguishable features. This example uses the
mineral.png file in the examples/data directory.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Equalizing with Histograms” on page 421 or complete the following steps for
a detailed description of the process.

1. Import the image and color table from the mineral.png file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file, red, green, blue)
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

3. Create a window and display the original image with its color table:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image

The following figure shows the original image.

Figure 10-4: The Mineral Image and Its Related Color Table
Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 419
4. Create another window and display the histogram of the original image:

WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM(image), /XSTYLE, /YSTYLE, $

TITLE = 'Mineral Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

The following figure shows the original image’s histogram.

5. Histogram equalize the image:

equalizedImage = HIST_EQUAL(image)

6. Create another window and display the equalized image:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Equalized Image'

TV, equalizedImage

Figure 10-5: Histogram of the Original Image
Image Processing in IDL Working with Histograms

420 Chapter 10: Contrasting and Filtering
The following figure shows the results of the histogram equalization. Small
variations within the uniform regions are now much more noticeable.

7. Create another window and display the histogram of the equalized image:

WINDOW, 3, TITLE = 'Histogram of Equalized Image'
PLOT, HISTOGRAM(equalizedImage), /XSTYLE, /YSTYLE, $

TITLE = 'Equalized Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

Figure 10-6: Equalized Mineral Image
Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 421
The following figure shows the modified image’s histogram. The resulting
histogram is now more uniform than the original histogram.

Example Code: Equalizing with Histograms

Copy and paste the following text into an IDL Editor window. After saving the file as
Equalizing.pro, compile and run the program to reproduce the previous example.

PRO Equalizing

; Import the image from the file.
file = FILEPATH('mineral.png', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_PNG(file, red, green, blue)
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.
DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'
TV, image

; Create another window and display the histogram of the

Figure 10-7: Histogram of the Equalized Image
Image Processing in IDL Working with Histograms

422 Chapter 10: Contrasting and Filtering
; the original image.
WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM(image), /XSTYLE, /YSTYLE, $

TITLE = 'Mineral Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

; Histogram-equalize the image.
equalizedImage = HIST_EQUAL(image)

; Create another window and display the equalized image.
WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Equalized Image'
TV, equalizedImage

; Create another window and display the histogram of the
; equalizied image.
WINDOW, 3, TITLE = 'Histogram of Equalized Image'
PLOT, HISTOGRAM(equalizedImage), /XSTYLE, /YSTYLE, $

TITLE = 'Equalized Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

END

Adaptive Equalizing with Histograms

Adaptive histogram equalization involves applying equalization based on the local
region surrounding each pixel. Each pixel is mapped to an intensity proportional to its
rank within the surrounding neighborhood. This type of equalization also tends to
reduce the disparity between peaks and valleys within the image’s histogram.

You can use the ADAPT_HIST_EQUAL function to perform the adaptive histogram
equalization process within IDL. Like the HIST_EQUAL function, the
ADAPT_HIST_EQUAL function results in a modified image, which has a different
histogram than the original image.

The following example applies adaptive histogram equalization to an image of
mineral deposits to reveal previously indistinguishable features. This example uses a
the mineral.png file in the examples/data directory.

For code that you can copy and paste into an IDL Editor window, see “Example
Code: Adaptive Equalizing with Histograms” on page 426 or complete the following
steps for a detailed description of the process.
Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 423
1. Import the image and color table from the mineral.png file:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_PNG(file, red, green, blue)
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

3. Create a window and display the original image with its color table:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image

The following figure shows the original image.

4. Create another window and display the histogram of the original image:

WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM(image), /XSTYLE, /YSTYLE, $

TITLE = 'Mineral Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

Figure 10-8: The Mineral Image and Its Related Color Table
Image Processing in IDL Working with Histograms

424 Chapter 10: Contrasting and Filtering
The following figure shows the resulting display.

5. Apply adaptive histogram equalization to the image:

equalizedImage = ADAPT_HIST_EQUAL(image)

6. Create another window and display the equalized image:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Adaptive Equalized Image'

TV, equalizedImage

Figure 10-9: Histogram of the Original Image
Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 425
The following figure shows the results of adaptive histogram equalization. All
the variations within the image are now noticeable.

7. Create another window and display the histogram of the equalized image:

WINDOW, 3, TITLE = 'Histogram of Adaptive Equalized Image'
PLOT, HISTOGRAM(equalizedImage), /XSTYLE, /YSTYLE, $

TITLE = 'Adaptive Equalized Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

Figure 10-10: Adaptive Equalized Mineral Image
Image Processing in IDL Working with Histograms

426 Chapter 10: Contrasting and Filtering
The following figure shows the modified image’s histogram. The resulting
histogram contains no empty regions and fewer extreme peaks and valleys than
the original image.

Example Code: Adaptive Equalizing with Histograms

Copy and paste the following text into an IDL Editor window. After saving the file as
AdaptiveEqualizing.pro, compile and run the program to reproduce the
previous example.

PRO AdaptiveEqualizing

; Import the image from the file.
file = FILEPATH('mineral.png', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_PNG(file, red, green, blue)
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.
DEVICE, DECOMPOSED = 0
TVLCT, red, green, blue

; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'
TV, image

Figure 10-11: Histogram of the Adaptive Equalized Image
Working with Histograms Image Processing in IDL

Chapter 10: Contrasting and Filtering 427
; Create another window and display the histogram of the
; the original image.
WINDOW, 1, TITLE = 'Histogram of Image'
PLOT, HISTOGRAM(image), /XSTYLE, /YSTYLE, $

TITLE = 'Mineral Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

; Histogram-equalize the image.
equalizedImage = ADAPT_HIST_EQUAL(image)

; Create another window and display the equalized image.
WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Adaptive Equalized Image'
TV, equalizedImage

; Create another window and display the histogram of the
; equalizied image.
WINDOW, 3, TITLE = 'Histogram of Adaptive Equalized Image'
PLOT, HISTOGRAM(equalizedImage), /XSTYLE, /YSTYLE, $

TITLE = 'Adaptive Equalized Image Histogram', $
XTITLE = 'Intensity Value', $
YTITLE = 'Number of Pixels of That Value'

END
Image Processing in IDL Working with Histograms

428 Chapter 10: Contrasting and Filtering
Filtering an Image

Image filtering is useful for many applications, including smoothing, sharpening,
removing noise, and edge detection. A filter is defined by a kernel, which is a small
array applied to each pixel and its neighbors within an image. In most applications,
the center of the kernel is aligned with the current pixel, and is a square with an odd
number (3, 5, 7, etc.) of elements in each dimension. The process used to apply filters
to an image is known as convolution, and may be applied in either the spatial or
frequency domain. See Chapter 9, “Overview of Transforming Between Image
Domains” for more information on image domains.

Within the spatial domain, the first part of the convolution process multiplies the
elements of the kernel by the matching pixel values when the kernel is centered over
a pixel. The elements of the resulting array (which is the same size as the kernel) are
averaged, and the original pixel value is replaced with this result. The CONVOL
function performs this convolution process for an entire image.

Within the frequency domain, convolution can be performed by multiplying the FFT
(Fast Fourier Transform) of the image by the FFT of the kernel, and then
transforming back into the spatial domain. The kernel is padded with zero values to
enlarge it to the same size as the image before the forward FFT is applied. These
types of filters are usually specified within the frequency domain and do not need to
be transformed. IDL’s DIST and HANNING functions are examples of filters already
transformed into the frequency domain. See “Windowing to Remove Noise” on
page 470 for more information on these types of filters.

The following examples in this section will focus on some of the basic filters applied
within the spatial domain using the CONVOL function:

• “Low Pass Filtering” on page 429

• “High Pass Filtering” on page 433

• “Directional Filtering” on page 438

• “Laplacian Filtering” on page 442

Since filters are the building blocks of many image processing methods, these
examples merely show how to apply filters, as opposed to showing how a specific
filter may be used to enhance a specific image or extract a specific shape. This basic
introduction provides the information necessary to accomplish more advanced
image-specific processing.
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 429
Note
The following filters mentioned are not the only filters used in image processing.
Most image processing textbooks contain more varieties of filters.

Low Pass Filtering

A low pass filter is the basis for most smoothing methods. An image is smoothed by
decreasing the disparity between pixel values by averaging nearby pixels (see
“Smoothing an Image” on page 448 for more information).

Using a low pass filter tends to retain the low frequency information within an image
while reducing the high frequency information. An example is an array of ones
divided by the number of elements within the kernel, such as the following 3 by 3
kernel:

Note
The above array is an example of one possible kernel for a low pass filter. Other
filters may include more weighting for the center point, or have different smoothing
in each dimension.

The following example shows how to use IDL’s CONVOL function to smooth an
aerial view of New York City within the nyny.dat file in the examples/data
directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Low Pass Filtering” on page 432 or complete the following steps for a detailed
description of the process.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

1 9⁄ 1 9⁄ 1 9⁄
1 9⁄ 1 9⁄ 1 9⁄
1 9⁄ 1 9⁄ 1 9⁄
Image Processing in IDL Filtering an Image

430 Chapter 10: Contrasting and Filtering
2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

The following figure shows the cropped section of the original image.

5. Create a kernel for a low pass filter:

kernelSize = [3, 3]
kernel = REPLICATE((1./(kernelSize[0]*kernelSize[1])), $

kernelSize[0], kernelSize[1])

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

Figure 10-12: Cropped New York Image
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 431
7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Low Pass Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

The following figure shows the resulting display. The high frequency pixel
values have been blurred as a result of the low pass filter.

8. Add the original and the filtered image together to show how the filter effects
the image.

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Low Pass Combined New York Image'

TVSCL, CONGRID(croppedImage + filteredImage, $
displaySize[0], displaySize[1])

Figure 10-13: Low Pass Filtered New York Image
Image Processing in IDL Filtering an Image

432 Chapter 10: Contrasting and Filtering
The following figure shows the resulting display. In the resulting combined
image, the structures within the city are not as pixelated as in the original
image. The image is smoothed (blurred) to appear more continuous.

Example Code: Low Pass Filtering

Copy and paste the following text into an IDL Editor window. After saving the file as
LowPassFiltering.pro, compile and run the program to reproduce the previous
example.

PRO LowPassFiltering

; Import the image from the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Crop the image to focus in on the bridges.
croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

; Create a window and display the cropped image.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Cropped New York Image'

Figure 10-14: Low Pass Combined New York Image
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 433
TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

; Create a low pass filter.
kernelSize = [3, 3]
kernel = REPLICATE((1./(kernelSize[0]*kernelSize[1])), $

kernelSize[0], kernelSize[1])

; Apply the filter to the image.
filteredImage = CONVOL(FLOAT(croppedImage), kernel, $

/CENTER, /EDGE_TRUNCATE)

; Create another window and display the resulting
; filtered image.
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Low Pass Filtered New York Image'
TVSCL, CONGRID(filteredImage, displaySize[0], $

displaySize[1])

; Create another window and display the combined image.
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Low Pass Combined New York Image'
TVSCL, CONGRID(croppedImage + filteredImage, $

displaySize[0], displaySize[1])

END

High Pass Filtering

A high pass filter is the basis for most sharpening methods. An image is sharpened
when contrast is enhanced between adjoining areas with little variation in brightness
or darkness (see “Sharpening an Image” on page 459 for more detailed information).

A high pass filter tends to retain the high frequency information within an image
while reducing the low frequency information. The kernel of the high pass filter is
designed to increase the brightness of the center pixel relative to neighboring pixels.
The kernel array usually contains a single positive value at its center, which is
completely surrounded by negative values. The following array is an example of a 3
by 3 kernel for a high pass filter:

1 9⁄– 1– 9⁄ 1– 9⁄
1– 9⁄ 8 9⁄ 1– 9⁄
1– 9⁄ 1– 9⁄ 1– 9⁄
Image Processing in IDL Filtering an Image

434 Chapter 10: Contrasting and Filtering
Note
The above array is an example of one possible kernel for a high pass filter. Other
filters may include more weighting for the center point.

The following example shows how to use IDL’s CONVOL function with a 3 by 3
high pass filter to sharpen an aerial view of New York City within the nyny.dat file
in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
High Pass Filtering” on page 437 or complete the following steps for a detailed
description of the process.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 435
The following figure shows the cropped section of the original image.

5. Create a kernel for a high pass filter:

kernelSize = [3, 3]
kernel = REPLICATE(-1., kernelSize[0], kernelSize[1])
kernel[1, 1] = 8.

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'High Pass Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 10-15: Cropped New York Image
Image Processing in IDL Filtering an Image

436 Chapter 10: Contrasting and Filtering
The following figure shows the results of applying the high pass filter. The
high frequency information is retained.

8. Add the original and the filtered image together to show how the filter effects
the image.

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'High Pass Combined New York Image'

TVSCL, CONGRID(croppedImage + filteredImage, $
displaySize[0], displaySize[1])

The following figure shows the resulting display. In the resulting combined
image, the structures within the city are more pixelated than in the original
image. The pixels are highlighted and appear more discontinuous, exposing
the three-dimensional nature of the structures within the image.

Figure 10-16: High Pass Filtered New York Image

Figure 10-17: High Pass Combined New York Image
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 437
Example Code: High Pass Filtering

Copy and paste the following text into an IDL Editor window. After saving the file as
HighPassFiltering.pro, compile and run the program to reproduce the previous
example.

PRO HighPassFiltering

; Import the image from the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Crop the image to focus in on the bridges.
croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

; Create a window and display the cropped image.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Cropped New York Image'
TVSCL, CONGRID(croppedImage, displaySize[0], $

displaySize[1])

; Create a high pass filter.
kernelSize = [3, 3]
kernel = REPLICATE(-1./9., kernelSize[0], kernelSize[1])
kernel[1, 1] = 8./9.

; Apply the filter to the image.
filteredImage = CONVOL(FLOAT(croppedImage), kernel, $

/CENTER, /EDGE_TRUNCATE)

; Create another window and display the resulting
; filtered image.
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'High Pass Filtered New York Image'
TVSCL, CONGRID(filteredImage, displaySize[0], $

displaySize[1])

; Create another window and display the combined images.
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'High Pass Combined New York Image'
Image Processing in IDL Filtering an Image

438 Chapter 10: Contrasting and Filtering
TVSCL, CONGRID(croppedImage + filteredImage, $
displaySize[0], displaySize[1])

END

Directional Filtering

A directional filter forms the basis for some edge detection methods. An edge within
an image is visible when a large change (a steep gradient) occurs between adjacent
pixel values. This change in values is measured by the first derivatives (often referred
to as slopes) of an image. Directional filters can be used to compute the first
derivatives of an image (see “Detecting Edges” on page 464 for more information on
edge detection).

Directional filters can be designed for any direction within a given space. For images,
x- and y-directional filters are commonly used to compute derivatives in their
respective directions. The following array is an example of a 3 by 3 kernel for an x-
directional filter (the kernel for the y-direction is the transpose of this kernel):

Note
The above array is an example of one possible kernel for a x-directional filter. Other
filters may include more weighting in the center of the nonzero columns.

The following example shows how to use IDL’s CONVOL function to determine the
first derivatives of an image in the x-direction. The resulting derivatives are then
scaled to just show negative, zero, and positive slopes. This example uses the aerial
view of New York City within the nyny.dat file in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Directional Filtering” on page 441 or complete the following steps for a detailed
description of the process.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

1– 0 1

1– 0 1

1– 0 1
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 439
2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

The following figure shows the cropped section of the original image.

5. Create a kernel for an x-directional filter:

kernelSize = [3, 3]
kernel = FLTARR(kernelSize[0], kernelSize[1])
kernel[0, *] = -1.
kernel[2, *] = 1.

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

Figure 10-18: Cropped New York Image
Image Processing in IDL Filtering an Image

440 Chapter 10: Contrasting and Filtering
7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Direction Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

The resulting image shows some edge information. The most noticeable edge
is seen as a “shadow” for each bridge. This information represents the slopes
in the x-direction of the image. The filtered image can then be scaled to
highlight these slopes.

8. Create another window and display negative slopes as black, zero slopes as
gray, and positive slopes as white:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Slopes of Direction Filtered New York Image'

TVSCL, CONGRID(-1 > FIX(filteredImage/50) < 1,
displaySize[0], $

displaySize[1])

The following figure shows the negative slopes (black areas), zero slopes (gray
areas), and positive slopes (white areas) produced by the x-directional filter.

Figure 10-19: Direction Filtered New York Image
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 441
The adjacent black and white areas show edges in the x-direction, such as
along the bridge closest to the right side of the image.

Example Code: Directional Filtering

Copy and paste the following text into an IDL Editor window. After saving the file as
DirectionFiltering.pro, compile and run the program to reproduce the
previous example.

PRO DirectionFiltering

; Import the image from the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Crop the image to focus in on the bridges.
croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

; Create a window and display the cropped image.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Cropped New York Image'
TVSCL, CONGRID(croppedImage, displaySize[0], $

displaySize[1])

Figure 10-20: Slopes of Direction Filtered New York Image
Image Processing in IDL Filtering an Image

442 Chapter 10: Contrasting and Filtering
; Create a directional filter.
kernelSize = [3, 3]
kernel = FLTARR(kernelSize[0], kernelSize[1])
kernel[0, *] = -1.
kernel[2, *] = 1.

; Apply the filter to the image.
filteredImage = CONVOL(FLOAT(croppedImage), kernel, $

/CENTER, /EDGE_TRUNCATE)

; Create another window and display the resulting
; filtered image.
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Direction Filtered New York Image'
TVSCL, CONGRID(filteredImage, displaySize[0], $

displaySize[1])

; Create another window and display negative slopes as
; black, zero slopes as gray, and positive slopes as
; white.
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Slopes of Direction Filtered New York Image'
TVSCL, CONGRID(-1 > FIX(filteredImage/50) < 1, displaySize[0], $

displaySize[1])

END

Laplacian Filtering

A Laplacian filter forms another basis for edge detection methods. A Laplacian filter
can be used to compute the second derivatives of an image, which measure the rate at
which the first derivatives change. This helps to determine if a change in adjacent
pixel values is an edge or a continuous progression (see “Detecting Edges” on
page 464 for more information on edge detection).

Kernels of Laplacian filters usually contain negative values in a cross pattern (similar
to a plus sign), which is centered within the array. The corners are either zero or
positive values. The center value can be either negative or positive. The following
array is an example of a 3 by 3 kernel for a Laplacian filter:

0 1– 0

1– 4 1–

0 1– 0
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 443
Note
The above array is an example of one possible kernel for a Laplacian filter. Other
filters may include positive, nonzero values in the corners and more weighting in
the centered cross pattern.

The following example shows how to use IDL’s CONVOL function with a 3 by 3
Laplacian filter to determine the second derivatives of an image. This type of
information is used within edge detection processes to find ridges. This example uses
an aerial view of New York City within the nyny.dat file in the examples/data
directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Laplacian Filtering” on page 446 or complete the following steps for a detailed
description of the process.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])
Image Processing in IDL Filtering an Image

444 Chapter 10: Contrasting and Filtering
The following figure shows the cropped section of the original image.

5. Create a kernel of a Laplacian filter:

kernelSize = [3, 3]
kernel = FLTARR(kernelSize[0], kernelSize[1])
kernel[1, *] = -1.
kernel[*, 1] = -1.
kernel[1, 1] = 4.

6. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(croppedImage), kernel, $
/CENTER, /EDGE_TRUNCATE)

7. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Laplace Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 10-21: Cropped New York Image
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 445
The following figure contains positive and negative second derivative
information. The positive values represent depressions (valleys) and the
negative values represent ridges.

8. Create another window and display only the negative values (ridges) within the
image:

WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Negative Values of Laplace Filtered New York

Image'
TVSCL, CONGRID(filteredImage < 0, $

displaySize[0], displaySize[1])

Figure 10-22: Laplacian Filtered New York Image
Image Processing in IDL Filtering an Image

446 Chapter 10: Contrasting and Filtering
The following figure shows the negative values produced by the Laplacian
filter. The most noticeable ridges in this result are the medians within the wide
boulevards of the city.

Example Code: Laplacian Filtering

Copy and paste the following text into an IDL Editor window. After saving the file as
LaplaceFiltering.pro, compile and run the program to reproduce the previous
example.

PRO LaplaceFiltering

; Import the image from the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Crop the image to focus in on the bridges.
croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

; Create a window and display the cropped image.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Cropped New York Image'

Figure 10-23: Negative Values of Laplacian Filtered New York Image
Filtering an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 447
TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

; Create a Laplacian filter.
kernelSize = [3, 3]
kernel = FLTARR(kernelSize[0], kernelSize[1])
kernel[1, *] = -1.
kernel[*, 1] = -1.
kernel[1, 1] = 4.

; Apply the filter to the image.
filteredImage = CONVOL(FLOAT(croppedImage), kernel, $

/CENTER, /EDGE_TRUNCATE)

; Create another window and display the resulting
; filtered image.
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Laplace Filtered New York Image'
TVSCL, CONGRID(filteredImage, displaySize[0], $

displaySize[1])
PRINT, MIN(filteredImage), MAX(filteredImage)

; Create another window and display only the negative
; values of the image.
WINDOW, 2, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Negative Values of Laplace Filtered New York Image'
TVSCL, CONGRID(filteredImage < 0, $

displaySize[0], displaySize[1])

END
Image Processing in IDL Filtering an Image

448 Chapter 10: Contrasting and Filtering
Smoothing an Image

Smoothing is often used to reduce noise within an image or to produce a less
pixelated image. Most smoothing methods are based on low pass filters. See “Low
Pass Filtering” on page 429 for more information.

Smoothing is also usually based on a single value representing the image, such as the
average value of the image or the middle (median) value. The following examples
show how to smooth using average and middle values:

• “Smoothing with Average Values”

• “Smoothing with Median Values” on page 453

Smoothing with Average Values

The following example shows how to use the SMOOTH function to smooth an image
with a moving average. Surfaces of the original and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the
rbcells.jpg file in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Smoothing with Average Values” on page 452 or complete the following steps for a
detailed description of the process.

1. Import the image from the rbcells.jpg file:

file = FILEPATH('rbcells.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, image
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image
Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 449
The following figure shows the original image. This image contains many
varying pixel values within the background.

4. Create another window and display the original image as a surface:

WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Red Blood Cell Image'

Figure 10-24: Original Red Blood Cells Image
Image Processing in IDL Smoothing an Image

450 Chapter 10: Contrasting and Filtering
The following figure shows the surface of the original image. This image
contains many discontinuous values shown as sharp peaks (spikes) in the
middle range of values.

5. Smooth the image with the SMOOTH function, which uses the average value
of each group of pixels affected by the 5 by 5 kernel applied to the image:

smoothedImage = SMOOTH(image, 5, /EDGE_TRUNCATE)

The width argument of 5 is used to specify that a 5 by 5 smoothing kernel is to
be used.

6. Create another window and display the smoothed image as a surface:

WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Smoothed Cell Image'

Figure 10-25: Surface of Original Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 451
The following figure shows the surface of the smoothed image. The sharp
peaks in the original image have been decreased.

7. Create another window and display the smoothed image:

WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Smoothed Image'

TV, smoothedImage

Figure 10-26: Surface of Average-Smoothed Red Blood Cells Image
Image Processing in IDL Smoothing an Image

452 Chapter 10: Contrasting and Filtering
The following figure shows the smoothed image. Less variations between pixel
values occur within the background of the resulting image.

Example Code: Smoothing with Average Values

Copy and paste the following text into an IDL Editor window. After saving the file as
SmoothingWithSMOOTH.pro, compile and run the program to reproduce the
previous example.

PRO SmoothingWithSMOOTH

; Import the image from the file.
file = FILEPATH('rbcells.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'
TV, image

Figure 10-27: Average-Smoothed Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 453
; Create another window and display the original image
; as a surface.
WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Red Blood Cell Image'

; Smooth the image with the SMOOTH function, which uses
; the averages of image values.
smoothedImage = SMOOTH(image, 5, /EDGE_TRUNCATE)

; Create another window and display the smoothed image
; as a surface.
WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Smoothed Cell Image'

; Create another window and display the smoothed image.
WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Smoothed Image'
TV, smoothedImage

END

Smoothing with Median Values

The following example shows how to use IDL’s MEDIAN function to smooth an
image by median values. Surfaces of the original and smooth images are displayed to
show how discontinuous values are made more continuous. This example uses the
photomicrograph image of human red blood cells contained within the
rbcells.jpg file in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Smoothing with Median Values” on page 457 or complete the following steps for a
detailed description of the process.

1. Import the image from the rbcells.jpg file:

file = FILEPATH('rbcells.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, image
imageSize = SIZE(image, /DIMENSIONS)
Image Processing in IDL Smoothing an Image

454 Chapter 10: Contrasting and Filtering
2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Image'

TV, image

The following figure shows the original image. This image contains many
varying pixel values within the background.

4. Create another window and display the original image as a surface:

WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Red Blood Cell Image'

Figure 10-28: Original Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 455
The following figure shows the surface of the original display. This image
contains many discontinuous values shown as sharp peaks (spikes) in the
middle range of values.

5. Smooth the image with the MEDIAN function, which uses the middle value of
each group of pixels affected by the 5 by 5 kernel applied to the image:

smoothedImage = MEDIAN(image, 5)

6. Create another window and display the smoothed image as a surface:

WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Smoothed Cell Image'

Figure 10-29: Surface of Original Red Blood Cells Image
Image Processing in IDL Smoothing an Image

456 Chapter 10: Contrasting and Filtering
The following figure shows the smoothed surface. The sharp peaks in the
original image are decreased by the MEDIAN function.

7. Create another window and display the smoothed image:

WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Smoothed Image'

TV, smoothedImage

Figure 10-30: Surface of Middle-Smoothed Red Blood Cells Image
Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 457
The following figure shows the results of applying the median filter. Less
variations occur within the background of the resulting image, yet feature
edges remain clearly defined.

Example Code: Smoothing with Median Values

Copy and paste the following text into an IDL Editor window. After saving the file as
SmoothingWithMEDIAN.pro, compile and run the program to reproduce the
previous example.

PRO SmoothingWithMEDIAN

; Import the image from the file.
file = FILEPATH('rbcells.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Image'
TV, image

Figure 10-31: Middle-Smoothed Red Blood Cells Image
Image Processing in IDL Smoothing an Image

458 Chapter 10: Contrasting and Filtering
; Create another window and display the original image
; as a surface.
WINDOW, 1, TITLE = 'Original Image as a Surface'
SHADE_SURF, image, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Red Blood Cell Image'

; Smooth the image with the MEDIAN function, which uses
; the middle values of image.
smoothedImage = MEDIAN(image, 5)

; Create another window and display the smoothed image
; as a surface.
WINDOW, 2, TITLE = 'Smoothed Image as a Surface'
SHADE_SURF, smoothedImage, /XSTYLE, /YSTYLE, CHARSIZE = 2., $

XTITLE = 'Width Pixels', $
YTITLE = 'Height Pixels', $
ZTITLE = 'Intensity Values', $
TITLE = 'Smoothed Cell Image'

; Create another window and display the smoothed image.
WINDOW, 3, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Smoothed Image'
TV, smoothedImage

END
Smoothing an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 459
Sharpening an Image

Sharpening an image increases the contrast between bright and dark regions to bring
out features.

The sharpening process is basically the application of a high pass filter to an image.
The following array is a kernel for a common high pass filter used to sharpen an
image:

Note
The above array is an example of one possible kernel for a sharpening filter. Other
filters may include more weighting for the center point.

As mentioned in the filtering section of this chapter, filters can be applied to images
in IDL with the CONVOL function. See “High Pass Filtering” on page 433 for more
information on high pass filters.

The following example shows how to use IDL’s CONVOL function and the above
high pass filter kernel to sharpen an image. This example uses the Magnetic
Resonance Image (MRI) of a human knee contained within the mr_knee.dcm file in
the examples/data directory. Within the original knee MRI, some information is
nearly as dark as the background. This image is sharpened to display these dark areas
with improved contrast.

For code that you can copy and paste into an Editor window, see “Example Code:
Sharpening an Image” on page 462 or complete the following steps for a detailed
description of the process.

1. Import the image from the mr_knee.dcm file:

file = FILEPATH('mr_knee.dcm', $
SUBDIRECTORY = ['examples', 'data'])

image = READ_DICOM(file)
imageSize = SIZE(image, /DIMENSIONS)

2. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

1 9⁄– 1– 9⁄ 1– 9⁄
1– 9⁄ 1 1– 9⁄
1– 9⁄ 1– 9⁄ 1– 9⁄
Image Processing in IDL Sharpening an Image

460 Chapter 10: Contrasting and Filtering
3. Create a window and display the original image:

WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Original Knee MRI'

TVSCL, image

The following figure shows the original image.

4. Create a kernel for a sharpening (high pass) filter:

kernelSize = [3, 3]
kernel = REPLICATE(-1./9., kernelSize[0], kernelSize[1])
kernel[1, 1] = 1.

5. Apply the filter to the image:

filteredImage = CONVOL(FLOAT(image), kernel, $
/CENTER, /EDGE_TRUNCATE)

Figure 10-32: Original Knee MRI
Sharpening an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 461
6. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Sharpen Filtered Knee MRI'

TVSCL, filteredImage

The following figure shows the results of applying the sharpening (high pass)
filter. Pixels that differ dramatically in contrast with surrounding pixels are
brightened.

7. Create another window and display the combined images:

WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $
TITLE = 'Sharpened Knee MRI'

TVSCL, image + filteredImage

Figure 10-33: Sharpen FIltered Knee MRI
Image Processing in IDL Sharpening an Image

462 Chapter 10: Contrasting and Filtering
The following figure shows the combination of the sharpened and original
images. This image is sharper, containing more information within several
regions, especially the tips of the bones.

Example Code: Sharpening an Image

Copy and paste the following text into an IDL Editor window. After saving the file as
Sharpening.pro, compile and run the program to reproduce the previous example.

PRO Sharpening

; Import the image from the file.
file = FILEPATH('mr_knee.dcm', $

SUBDIRECTORY = ['examples', 'data'])
image = READ_DICOM(file)
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

Figure 10-34: Sharpened Knee MRI
Sharpening an Image Image Processing in IDL

Chapter 10: Contrasting and Filtering 463
; Create a window and display the original image.
WINDOW, 0, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original Knee MRI'
TVSCL, image

; Create a sharpening (high pass) filter.
kernelSize = [3, 3]
kernel = REPLICATE(-1./9., kernelSize[0], kernelSize[1])
kernel[1, 1] = 1.

; Apply the filter to the image.
filteredImage = CONVOL(FLOAT(image), kernel, $

/CENTER, /EDGE_TRUNCATE)

; Create another window and display the resulting
; filtered image.
WINDOW, 1, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Sharpen Filtered Knee MRI'
TVSCL, filteredImage

; Create another window and display the combined images.
WINDOW, 2, XSIZE = imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Sharpened Knee MRI'
TVSCL, image + filteredImage

END
Image Processing in IDL Sharpening an Image

464 Chapter 10: Contrasting and Filtering
Detecting Edges

Detecting edges is another way to help extract features. Many edge detection
methods use either directional or Laplacian filters. See “Directional Filtering” on
page 438 and “Laplacian Filtering” on page 442 for more information on directional
and Laplacian filters.

IDL contains two basic edge detection routines, the ROBERTS and SOBEL
functions. See the ROBERTS and SOBEL descriptions in the IDL Reference Guide
for more information on these operators. Morphological operators are used for more
complex edge detection. See “Detecting Edges of Image Objects” in Chapter 11 for
more information on these operators.

The following examples show how to use these routines to detect edges of shapes
within an image:

• “Enhancing Edges with the Roberts Operator”

• “Enhancing Edges with the Sobel Operator” on page 467

The results of these edge detection routines can be added or subtracted from the
original image to enhance the contrast of the edges within that image. Edge detection
results are also used to calculate masks. See “Masking Images” in Chapter 6 for more
information on masks.

Enhancing Edges with the Roberts Operator

The following example shows how to use the ROBERTS function to detect edges
within an image. This example uses the aerial view of New York City within the
nyny.dat file in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Enhancing edges with the Roberts Operator” on page 466 or complete the following
steps for a detailed description of the process.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]
Detecting Edges Image Processing in IDL

Chapter 10: Contrasting and Filtering 465
3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

The following figure shows the cropped section of the original image.

5. Apply the Roberts filter to the image:

filteredImage = ROBERTS(croppedImage)

6. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

Figure 10-35: Cropped New York Image
Image Processing in IDL Detecting Edges

466 Chapter 10: Contrasting and Filtering
The following figure shows the results of applying the Roberts filter. Edges
have been highlighted around all elements separated by significant differences
in pixel values.

Example Code: Enhancing edges with the Roberts Operator

Copy and paste the following text into an IDL Editor window. After saving the file as
DetectingEdgesWithROBERTS.pro, compile and run the program to reproduce
the previous example.

PRO DetectingEdgesWithROBERTS

; Import the image from the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Crop the image to focus in on the bridges.
croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

; Create a window and display the cropped image.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Cropped New York Image'

Figure 10-36: Roberts Filter Applied to the New York Image
Detecting Edges Image Processing in IDL

Chapter 10: Contrasting and Filtering 467
TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])

; Apply the filter to the image with the ROBERTS function.
filteredImage = ROBERTS(croppedImage)

; Create another window and display the resulting
; filtered image.
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Filtered New York Image'
TVSCL, CONGRID(filteredImage, displaySize[0], $

displaySize[1])

END

Enhancing Edges with the Sobel Operator

The following example shows how to use the SOBEL function to detect edges within
an image. This example uses the aerial view of New York City within the nyny.dat
file in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Enhancing edges with the Sobel Operator” on page 469 or complete the following
steps for a detailed description of the process.

1. Import the image from the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Crop the image to focus in on the bridges:

croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

4. Create a window and display the cropped image:

WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Cropped New York Image'

TVSCL, CONGRID(croppedImage, displaySize[0], $
displaySize[1])
Image Processing in IDL Detecting Edges

468 Chapter 10: Contrasting and Filtering
The following figure shows the cropped section of the original image.

5. Apply the Sobel filter to the image:

filteredImage = SOBEL(croppedImage)

6. Create another window and display the resulting filtered image:

WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $
TITLE = 'Filtered New York Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

The following figure shows the edge enhancement results of applying the
Sobel operator.

Figure 10-37: Cropped New York Image

Figure 10-38: Sobel Filter Applied to the New York Image
Detecting Edges Image Processing in IDL

Chapter 10: Contrasting and Filtering 469
Example Code: Enhancing edges with the Sobel Operator

Copy and paste the following text into an IDL Editor window. After saving the file as
DetectingEdgesWithSOBEL.pro, compile and run the program to reproduce the
previous example.

PRO DetectingEdgesWithSOBEL

; Import the image from the file.
file = FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [768, 512]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Crop the image to focus in on the bridges.
croppedSize = [96, 96]
croppedImage = image[200:(croppedSize[0] - 1) + 200, $

180:(croppedSize[1] - 1) + 180]

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0
displaySize = [256, 256]

; Create a window and display the cropped image.
WINDOW, 0, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Cropped New York Image'
TVSCL, CONGRID(croppedImage, displaySize[0], $

displaySize[1])

; Apply the filter to the image with the SOBEL function.
filteredImage = SOBEL(croppedImage)

; Create another window and display the resulting
; filtered image.
WINDOW, 1, XSIZE = displaySize[0], YSIZE = displaySize[1], $

TITLE = 'Filtered New York Image'
TVSCL, CONGRID(filteredImage, displaySize[0], $

displaySize[1])

END
Image Processing in IDL Detecting Edges

470 Chapter 10: Contrasting and Filtering
Removing Noise

When a device (such as a camera or scanner) captures an image, the device
sometimes adds extraneous noise to the image. This noise must be removed from the
image for other image processing operations to return valuable results. Some noise
can simply be removed by smoothing an image or masking it within the frequency
domain, but most noise requires more involved filtering, such as windowing or
adaptive filters. The following example shows how to use windowing and adaptive
filters to remove noise from an image within IDL:

• “Windowing to Remove Noise”

• “Lee Filtering to Remove Noise” on page 475

Windowing to Remove Noise

Within the frequency domain, a filter is applied to an image by multiplying the FFT
of that image by the FFT of the filter. When the FFT of a image is multiplied by the
FFT of a filter to perform convolution, this process is known as windowing.

The DIST and HANNING functions are examples of windowing filters already
transformed into the frequency domain. Windowing with the DIST function has the
same effect as applying a high pass filter. The high frequency information is retained,
while the effect of the low frequency information is decreased. In contrast, the
HANNING function retains the low frequency information. The results of the
HANNING function are similar to a mask used to remove noise in an image. The
HANNING function can be used to create either a Hanning or Hamming window.
Although the DIST and the HANNING functions perform different filtering tasks,
these filters are applied the same way, so only one example is provided in this section.

Windowing is different than simply using a mask within the frequency domain. Using
a mask omits information within the image, while windowing retains the information,
but decreases its effect on the image. See Chapter 9, “Removing Noise with the FFT”
for more information on using a mask to remove noise from an image.

The following example shows how to use the HANNING function when windowing
an image to remove background noise. This example uses the first image within the
abnorm.dat file in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code:
Windowing to Remove Noise” on page 474 or complete the following steps for a
detailed description of the process.
Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 471
1. Import the image from the abnorm.dat file:

file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [64, 64]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the original image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], displaySize[1])

The following figure shows the original image.

5. Determine the forward Fourier transformation of the image:

transform = SHIFT(FFT(image), (imageSize[0]/2), $
(imageSize[1]/2))

Figure 10-39: Original Gated Blood Pool Image
Image Processing in IDL Removing Noise

472 Chapter 10: Contrasting and Filtering
6. Create another window and display the power spectrum:

WINDOW, 1, TITLE = 'Surface of Forward FFT'
SHADE_SURF, (2.*ALOG10(ABS(transform))), /XSTYLE, /YSTYLE, $

/ZSTYLE, TITLE = 'Power Spectrum', $
XTITLE = 'Mode', YTITLE = 'Mode', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

The following figure shows the power spectrum of the original image. Noise
within the image is shown as small peaks.

7. Use a Hanning mask to filter out the noise:

mask = HANNING(imageSize[0], imageSize[1])
maskedTransform = transform*mask

8. Create another window and display the masked power spectrum:

WINDOW, 2, TITLE = 'Surface of Filtered FFT'
SHADE_SURF, (2.*ALOG10(ABS(maskedTransform))), $

/XSTYLE, /YSTYLE, /ZSTYLE, TITLE = 'Masked Power
Spectrum', $

XTITLE = 'Mode', YTITLE = 'Mode', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

Figure 10-40: Power Spectrum of the Gated Blood Pool Image
Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 473
The following figure shows the results of applying the Hanning window. The
Hanning window gradually smooths the high frequency peaks within the
image.

9. Apply the inverse transformation to the masked frequency domain image:

inverseTransform = FFT(SHIFT(maskedTransform, $
(imageSize[0]/2), (imageSize[1]/2)), /INVERSE)

10. Create another window and display the results of the inverse transformation:

WINDOW, 3, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Hanning Filtered Image'

TVSCL, CONGRID(REAL_PART(inverseTransform), $
displaySize[0], displaySize[1])

Figure 10-41: Masked Power Spectrum of the Gated Blood Pool Image
Image Processing in IDL Removing Noise

474 Chapter 10: Contrasting and Filtering
The following figure shows the resulting display. Visible noise within the
image has been reduced, while the valuable image data has been retained.

Example Code: Windowing to Remove Noise

Copy and paste the following text into an IDL Editor window. After saving the file as
RemovingNoiseWithHANNING.pro, compile and run the program to reproduce the
previous example.

PRO RemovingNoiseWithHANNING

; Import the image from the file.
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [64, 64]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = displaySize[0], $

YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], displaySize[1])

; Determine the forward Fourier transformation of the

Figure 10-42: Resulting Hanning Filtered Image
Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 475
; image.
transform = SHIFT(FFT(image), (imageSize[0]/2), $

(imageSize[1]/2))

; Create another window and display the power spectrum.
WINDOW, 1, TITLE = 'Surface of Forward FFT'
SHADE_SURF, (2.*ALOG10(ABS(transform))), $

/XSTYLE, /YSTYLE, /ZSTYLE, TITLE = 'Power Spectrum', $
XTITLE = 'Mode', YTITLE = 'Mode', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

; Use a Hanning mask to filter out the noise.
mask = HANNING(imageSize[0], imageSize[1])
maskedTransform = transform*mask

; Create another window and display the masked power
; spectrum.
WINDOW, 2, TITLE = 'Surface of Filtered FFT'
SHADE_SURF, (2.*ALOG10(ABS(maskedTransform))), $

/XSTYLE, /YSTYLE, /ZSTYLE, $
TITLE = 'Masked Power Spectrum', $
XTITLE = 'Mode', YTITLE = 'Mode', $
ZTITLE = 'Amplitude', CHARSIZE = 1.5

; Apply the inverse transformation to masked frequency
; domain image.
inverseTransform = FFT(SHIFT(maskedTransform, $

(imageSize[0]/2), (imageSize[1]/2)), /INVERSE)

; Create another window and display the results of
; inverse transformation.
WINDOW, 3, XSIZE = displaySize[0], $

YSIZE = displaySize[1], $
TITLE = 'Hanning Filtered Image'

TVSCL, CONGRID(REAL_PART(inverseTransform), $
displaySize[0], displaySize[1])

END

Lee Filtering to Remove Noise

Unlike the Hanning window, the Lee filter is convolved within the spatial domain.
The Lee filter is an adaptive filter, which changes according to the local statistics of
the current pixel. The LEEFILT routine applies the Lee filter to an image to remove
background noise.
Image Processing in IDL Removing Noise

476 Chapter 10: Contrasting and Filtering
The following example shows how to use the LEEFILT function to remove
background noise from an image. This example uses the first image within the
abnorm.dat file in the examples/data directory.

For code that you can copy and paste into an Editor window, see “Example Code: Lee
Filtering to Remove Noise” on page 477 or complete the following steps for a
detailed description of the process.

1. Import the image from the abnorm.dat file:

file = FILEPATH('abnorm.dat', $
SUBDIRECTORY = ['examples', 'data'])

imageSize = [64, 64]
image = READ_BINARY(file, DATA_DIMS = imageSize)

2. Initialize a display size parameter to resize the image when displaying it:

displaySize = 2*imageSize

3. Initialize the display:

DEVICE, DECOMPOSED = 0
LOADCT, 0

4. Create a window and display the original image:

WINDOW, 0, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], displaySize[1])

The following figure shows the original image.

Figure 10-43: Original Gated Blood Pool Image
Removing Noise Image Processing in IDL

Chapter 10: Contrasting and Filtering 477
5. Apply the Lee filter to the image:

filteredImage = LEEFILT(image, 1)

6. Create another window and display the Lee filtered image:

WINDOW, 1, XSIZE = displaySize[0], $
YSIZE = displaySize[1], $
TITLE = 'Lee Filtered Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

The following figure shows the results of applying the Lee filter, which
adaptively smooths areas that contains noise.

Example Code: Lee Filtering to Remove Noise

Copy and paste the following text into an IDL Editor window. After saving the file as
RemovingNoiseWithLEEFILT.pro, compile and run the program to reproduce the
previous example.

PRO RemovingNoiseWithLEEFILT

; Import the image from the file.
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])
imageSize = [64, 64]
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize a display size parameter to resize the
; image when displaying it.
displaySize = 2*imageSize

Figure 10-44: Lee Filtered Gated Blood Pool Image
Image Processing in IDL Removing Noise

478 Chapter 10: Contrasting and Filtering
; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Create a window and display the original image.
WINDOW, 0, XSIZE = displaySize[0], $

YSIZE = displaySize[1], $
TITLE = 'Original Image'

TVSCL, CONGRID(image, displaySize[0], displaySize[1])

; Apply the Lee filter to the image.
filteredImage = LEEFILT(image, 1)

; Create another window and display the Lee filtered
; image
WINDOW, 1, XSIZE = displaySize[0], $

YSIZE = displaySize[1], $
TITLE = 'Lee Filtered Image'

TVSCL, CONGRID(filteredImage, displaySize[0], $
displaySize[1])

END
Removing Noise Image Processing in IDL

Chapter 11:

Extracting and
Analyzing Shapes
This chapter describes using morphological operations in conjunction with image analysis routines
to extract and analyze image elements. This chapter includes the following topics:
Overview of Extracting and Analyzing Image
Shapes . 480
Guidelines for Determining Structuring
Element Shapes and Sizes 484

Determining Intensity Values When
Thresholding and Stretching Images 486

Eroding and Dilating Image Objects 489
Smoothing with MORPH_OPEN 496

Smoothing with MORPH_CLOSE 500

Detecting Peaks of Brightness 504
Creating Image Object Boundaries 508

Selecting Specific Image Objects 514
Detecting Edges of Image Objects 520

Creating Distance Maps 523
Thinning Image Objects 527

Combining Morphological Operations . . . 534
Analyzing Image Shapes 540
Image Processing in IDL 479

480 Chapter 11: Extracting and Analyzing Shapes
Overview of Extracting and Analyzing Image
Shapes

Morphological image processing operations reveal the underlying structures and
shapes within binary and grayscale images, clarifying basic image features. While
individual morphological operations perform simple functions, they can be combined
to extract specific information from an image. Morphological operations often
precede more advanced pattern recognition and image analysis operations such as
segmentation. Shape recognition routines commonly include image thresholding or
stretching to separate foreground and background image features. See “Determining
Intensity Values When Thresholding and Stretching Images” on page 486 for tips on
how to produce the desired results.

This chapter also provides examples of more advanced image analysis routines that
return information about specific image elements. One example identifies unique
regions within an image and the other finds the area of a specific image feature. See
“Analyzing Image Shapes” on page 540 for more information.

Note
In this book, Direct Graphics examples are provided by default. Object Graphics
examples are provided in cases where significantly different methods are required.

Applying a Morphological Structuring Element to an
Image

Morphological operations apply a structuring element or morphological mask to an
image. A structuring element that is applied to an image must be 2 dimensional,
having the same number of dimensions as the array to which it is applied. A
morphological operation passes the structuring element, of an empirically determined
size and shape, over an image. The operation compares the structuring element to the
underlying image and generates an output pixel based upon the function of the
morphological operation. The size and shape of the structuring element determines
what is extracted or deleted from an image. In general, smaller structuring elements
preserve finer details within an image than larger elements. For more information on
selecting and creating a structuring element, see “Guidelines for Determining
Structuring Element Shapes and Sizes” on page 484.
Overview of Extracting and Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 481
Morphological operations can be applied to either binary or grayscale images. When
applied to a binary image, the operation returns pixels that are either black, having a
logical value of 0, or white, having a logical value of 1. Each image pixel and its
neighboring pixels are compared against the structuring element to determine the
pixel’s value in the output image. With grayscale images, pixel values are determined
by taking a neighborhood minimum or neighborhood maximum value (as required by
the morphological process). The structuring element provides the definition of the
shape of the neighborhood.

The following table introduces image processing tasks and associated IDL image
processing routines covered in this chapter.

Task Routine(s) Description

“Eroding and
Dilating Image
Objects” on
page 489.

ERODE Reduce the size of
objects in relation to
their background.

DILATE Expand the size of
objects in relation to
their background.

“Smoothing with
MORPH_OPEN”
on page 496.

MORPH_OPEN Apply an erosion
operation followed by
a dilation operation to
a binary or grayscale
image.

“Smoothing with
MORPH_CLOSE”
on page 500.

MORPH_CLOSE Apply a dilation
operation followed by
an erosion operation to
a binary or grayscale
image.

“Detecting Peaks
of Brightness” on
page 504.

MORPH_TOPHAT Retain only the
brightest pixels within
a grayscale image.

“Creating Image
ObjectBoundaries”
on page 508.

WATERSHED Detect boundaries
between similar
regions in a grayscale
image.

Table 11-1: Shape Extraction and Analysis Tasks and Routines
Image Processing in IDL Overview of Extracting and Analyzing Image Shapes

482 Chapter 11: Extracting and Analyzing Shapes
“Selecting Specific
Image Objects” on
page 514.

MORPH_HITORMISS Use “hit” and “miss”
structures to identify
image elements that
meet the specified
conditions.

“Detecting Edges
of Image Objects”
on page 520.

MORPH_GRADIENT Subtract an eroded
version of a grayscale
image from a dilated
version of the image,
highlighting edges.

“Creating Distance
Maps” on
page 523.

MORPH_DISTANCE Estimate for each
binary foreground
pixel the distance to
the nearest background
pixel, using a given
norm.

“Thinning Image
Objects” on
page 527.

MORPH_THIN Subtract hit-or-miss
results from a binary
image. Repeated
thinning results in
pixel-wide linear
representations of
image objects.

“Analyzing Image
Shapes” on
page 540.

LABEL_REGION Identify and assign
index numbers to
discrete regions within
a binary image.

CONTOUR Create a contour plot
and extract information
about specific
contours.

Task Routine(s) Description

Table 11-1: Shape Extraction and Analysis Tasks and Routines (Continued)
Overview of Extracting and Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 483
Note
For an example that uses a combination of morphological operations to remove
bridges from the waterways of New York, see “Combining Morphological
Operations” on page 534.
Image Processing in IDL Overview of Extracting and Analyzing Image Shapes

484 Chapter 11: Extracting and Analyzing Shapes
Guidelines for Determining Structuring
Element Shapes and Sizes

Determining the size and shape of a structuring element is largely an empirical
process. However, the overall selection of a structuring element depends upon the
geometric shapes you are attempting to extract from the image data. For example, if
you are dealing with biological or medical images, which contain few straight lines or
sharp angles, a circular structuring element is an appropriate choice. When extracting
shapes from geographic aerial images of a city, a square or rectangular element will
allow you to extract angular features from the image.

While most examples in this chapter use simple structuring elements, you may need
to create several different elements or different rotations of a singular element in
order to extract the desired shapes from your image. For example, if you wish to
extract the rectangular roads from an aerial image, the initial rectangular element will
need to be rotated a number of ways to account for multiple orientations of the roads
within the image.

The size of the structuring element depends upon what features you wish to extract
from the image. Larger structuring elements preserve larger features while smaller
elements preserve the finer details of image features.

The following table shows how to easily create simple disk-shaped, square, rectangle,
diagonal and custom structuring elements using IDL. The visual representations of
the structures, shown in the right-hand column, indicate that the shape of each binary
structuring element is defined by foreground pixels having a value of one.

IDL Code For Structuring Element Shapes Examples

Disk-Shaped Structuring Element

Use SHIFT in conjunction with DIST to create the disk shape.

radius = 3
strucElem = SHIFT(DIST(2*radius+1), radius, $

radius) LE radius

Change radius to alter the size of the structuring element.

Table 11-2: Creating Various Structuring Elements Shapes with IDL
Guidelines for Determining Structuring Element Shapes and Sizes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 485
Square Structuring Element

Use DIST to define the square array.

side = 3
strucElem = DIST(side) LE side

Change side to alter the size of the structuring element.

Vertical Rectangular Structuring Element

Use BYTARR to define the initial array.

strucElem = BYTARR(3,3)
strucElem [0,*] = 1

Create a 2 x 3 structure by adding strucElem[1,*] = 1.

Horizontal Rectangular Structuring Element

Use BYTARR to define the initial array.

strucElem = BYTARR(3,3)
strucElem [*,0] = 1

Create a 3 x 2 structure by adding, strucElem[*,1] = 1.

Diagonal Structuring Element

Use IDENTITY to create the initial array.

strucElem = BYTE(IDENTITY(3))

Note - BYTE is used to create a byte array, consistent with the
other structuring elements.

Irregular Structuring Elements

Define custom arrays to create irregular structuring elements
or a series of rotations of a single structuring element.

strucElem = [[1,0,0,0,0,0,1], $
[1,1,0,0,0,1,1], $
[0,1,1,1,1,1,0], $
[0,0,1,1,1,0,0], $
[0,0,1,1,1,0,0], $
[0,1,1,0,1,1,0], $
[1,1,0,0,0,1,1], $
[1,0,0,0,0,0,1]]

Note - Creating a series of rotations of a single structuring
element is covered in “Thinning Image Objects” on page 527.

IDL Code For Structuring Element Shapes Examples

Table 11-2: Creating Various Structuring Elements Shapes with IDL
Image Processing in IDL Guidelines for Determining Structuring Element Shapes and Sizes

486 Chapter 11: Extracting and Analyzing Shapes
Determining Intensity Values When
Thresholding and Stretching Images

Thresholding and stretching images separate foreground pixels from background
pixels and can be performed before or after applying a morphological operation to an
image. While a threshold operation produces a binary image and a stretch operation
produces a scaled, grayscale image, both operations rely upon the definition of an
intensity value. This intensity value is compared to each pixel value within the image
and an output pixel is generated based upon the conditions stated within the threshold
or stretch statement.

Intensity histograms provide a means of determining useful intensity values as well
as determining whether or not an image is a good candidate for thresholding or
stretching. A histogram containing definitive peaks of intensities indicates that an
image’s foreground and background features can be successfully separated. A
histogram containing connected, graduated ranges of intensities indicates the image
is likely a poor candidate for thresholding or stretching.

Note
To quickly view the intensity histogram of an image, create a window and use
PLOT in conjunction with HISTOGRAM, entering PLOT, HISTOGRAM(image)
where image denotes the image for which you wish to view a histogram.

Figure 11-1: Determining Appropriateness of Images for Thresholding or
Stretching Using Intensity Histograms

Poor CandidateGood Candidate
Determining Intensity Values When Thresholding and Stretching Images Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 487
Thresholding an Image

Thresholding outputs a binary image as determined by a threshold intensity and one
of the relational operators: EQ, NE, GE, GT, LE, or LT. In a statement containing a
relational operator, thresholding compares each pixel in the original image to a
threshold intensity. The output pixels (comprising the binary image) are assigned a
value of 1 (white) when the relational statement is true and 0 (black) when the
statement is false.

The following figure shows an intensity histogram of an image containing mineral
crystals. The histogram indicates that the image can be successfully thresholded since
there are definitive peaks of intensities. Also shown in the following figure, a
statement such as img LE 50 produces an image where all pixels less than the
threshold intensity value of 50 are assigned a foreground pixel value of 1 (white). The
statement, img GE 50 produces a contrasting image where all original pixels values
greater than 50 are assigned a foreground pixel value (white).

Figure 11-2: Image Thresholding

Original Image img LE 50 img GE 50

Intensity Histogram of Original Image
Image Processing in IDL Determining Intensity Values When Thresholding and Stretching Images

488 Chapter 11: Extracting and Analyzing Shapes
Stretching an Image

Stretching an image (also know as scaling) creates a grayscale image, scaling a range
of selected pixel values across all possible intensities. When using TVSCL or
BYTSCL in conjunction with the > and < operators, a range of pixels defined by the
intensity value and operator are scaled across the entire intensity range, (0 to 255).

The following figure shows the results of displaying each image stretching statement
using TVSCL, image:

• image = img < 50 — All pixel values greater than 50 are assigned a value
of 50, now the maximum pixel value (white). Applying TVSCL or BYTSCL
stretches the remaining pixel values across all possible intensities (0 to 255).

• image = img < 190 — All pixel values greater than 190 are assigned a
value of 190, now the maximum pixel value (white). Applying TVSCL or
BYTSCL stretches the remaining pixel values across all possible intensities
(0 to 255).

• image = img > 150 < 190 — Using two intensity values, extract a single
peak of values shown in the histogram, all values less than 150 are assigned a
minimum pixel value (black) and all values greater than 190 are assigned a
maximum pixel value (white). Applying TVSCL or BYTSCL stretches the
remaining pixel values across all possible intensities (0 to 255).

Figure 11-3: Image Stretching

Original Image and Intensity Histogram

img < 50 img < 190 img > 150 < 190
Determining Intensity Values When Thresholding and Stretching Images Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 489
Eroding and Dilating Image Objects

The basic morphological operations, erosion and dilation, produce contrasting results
when applied to either grayscale or binary images. Erosion shrinks image objects
while dilation expands them. The specific actions of each operation are covered in the
following sections.

Characteristics of Erosion

• Erosion generally decreases the sizes of objects and removes small anomalies
by subtracting objects with a radius smaller than the structuring element.

• With grayscale images, erosion reduces the brightness (and therefore the size)
of bright objects on a dark background by taking the neighborhood minimum
when passing the structuring element over the image.

• With binary images, erosion completely removes objects smaller than the
structuring element and removes perimeter pixels from larger image objects.

Characteristics of Dilation

• Dilation generally increases the sizes of objects, filling in holes and broken
areas, and connecting areas that are separated by spaces smaller than the size
of the structuring element.

• With grayscale images, dilation increases the brightness of objects by taking
the neighborhood maximum when passing the structuring element over the
image.

• With binary images, dilation connects areas that are separated by spaces
smaller than the structuring element and adds pixels to the perimeter of each
image object.
Image Processing in IDL Eroding and Dilating Image Objects

490 Chapter 11: Extracting and Analyzing Shapes
Applying Erosion and Dilation

The following example applies erosion and dilation to grayscale and binary images.
When using erosion or dilation, avoid the generation of indeterminate values for
objects occurring along the edges of the image by padding the image, as shown in the
following example. For code that you can copy and paste into an Editor window, see
“Example Code: Eroding and Dilating Image Elements” on page 493 or complete the
following steps for a detailed description of the process.

Note
This example uses a file from the examples/demo/demodata directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to install the demo data file needed for this example.

1. Prepare the display device:

DEVICE, DECOMPOSED = 0, RETAIN = 2

2. Load a grayscale color table:

LOADCT, 0

3. Select and read in the image file. Use the GRAYSCALE keyword to
READ_JPEG to open the grayscale image:

file = FILEPATH('pollens.jpg', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

READ_JPEG, file, img, /GRAYSCALE

4. Get the size of the image:

dims = SIZE(img, /DIMENSION)

5. Define the structuring element. A radius of 2 results in a structuring element
near the size of the specks of background noise. This radius also affects only
the edges of the larger objects (whereas a larger radius would cause significant
distortion of all image features):

radius = 2

6. Create a disk-shaped structuring element that corresponds to the shapes
occurring within the image:

strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous statement.
Eroding and Dilating Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 491
7. Add a border to the image to avoid generating indeterminate values when
passing the structuring element over objects along the edges of an image. If the
starting origin of the structuring element is not specified in the call to ERODE,
the origin defaults to one half the width of the structuring element. Therefore,
creating a border equal to one half of the structuring element width (equal to
the radius) is sufficient to avoid indeterminate values. Create padded images
for both the erode operation (using the maximum array value for the border),
and the dilate operation (using the minimum array value for the border) as
follows:

erodeImg = REPLICATE(MAX(img), dims[0]+2, dims[1]+2)
erodeImg [1,1] = img

dilateImg = REPLICATE(MIN(img), dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

Note
Padding is only necessary when accurate edge values are important. Adding a pad
equal to more that one half the width of the structuring element does not negatively
effect the morphological operation, but does minutely add to the processing time.
The padding can be removed from the image after applying the morphological
operation and before displaying the image if desired.

8. Get the size of either of the padded images, create a window and display the
original image:

padDims = SIZE(erodeImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*padDims[0], YSIZE = padDims[1], $

TITLE = "Original, Eroded and Dilated Grayscale Images"
TVSCL, img, 0

9. Apply the ERODE function to the grayscale image using the GRAY keyword
and display the image:

erodeImg = ERODE(erodeImg, strucElem, /GRAY)
TVSCL, erodeImg, 1

10. For comparison, apply DILATE to the same image and display it:

dilateImg = DILATE(dilateImg, strucElem, /GRAY)
TVSCL, dilateImg, 2

The following image displays the effects of erosion (middle) and dilation (right).
Erosion removes pixels from perimeters of objects, decreases the overall brightness
of the grayscale image and removes objects smaller than the structuring element.
Image Processing in IDL Eroding and Dilating Image Objects

492 Chapter 11: Extracting and Analyzing Shapes
Dilation adds pixels to perimeters of objects, brightens the image, and fills in holes
smaller than the structuring element as shown in the following figure.

11. Create a window and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

12. To compare the effects of erosion and dilation on binary images, create a
binary image, retaining pixels with values greater than or equal to 120:

img = img GE 120

13. Create padded binary images for the erode and dilation operations, using 1 as
the maximum array value for the erosion image and 0 as the minimum value
for the dilation image:

erodeImg = REPLICATE(1B, dims[0]+2, dims[1]+2)
erodeImg [1,1] = img

dilateImg = REPLICATE(0B, dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

Figure 11-4: Original (left), Eroded (center) and Dilated (right) Grayscale Images
Eroding and Dilating Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 493
14. Get the dimensions of either image, create a second window and display the
binary image:

dims = SIZE(erodeImg, /DIMENSIONS)
WINDOW, 2, XSIZE = 3*dims[0], YSIZE = dims[1], $

TITLE = "Original, Eroded and Dilated Binary Images"
TVSCL, img, 0

15. Using the structuring element defined previously, apply the erosion and
dilation operations to the binary images and display the results by entering the
following lines:

erodeImg = ERODE(erodeImg, strucElem)
TVSCL, erodeImg, 1
dilateImg = DILATE(dilateImg, strucElem)
TVSCL, dilateImg, 2

The results are shown in the following figure.

Example Code: Eroding and Dilating Image Elements

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphErodeDilate.pro, compile and run the program to reproduce the previous
example.

PRO MorphErodeDilate

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Load an image.
file = FILEPATH('pollens.jpg', $

SUBDIRECTORY = ['examples', 'demo', 'demodata'])
READ_JPEG, file, img, /GRAYSCALE

; Get the image size.

Figure 11-5: Original, Eroded and Dilated Binary Images
Image Processing in IDL Eroding and Dilating Image Objects

494 Chapter 11: Extracting and Analyzing Shapes
dims = SIZE(img, /DIMENSIONS)

; Create the structuring element, a disk with a radius
; of 2.
radius = 2
strucElem = SHIFT(DIST(2*radius+1), $

radius, radius) LE radius

; Print the structuring element in order to visualize
; the previous statement.
PRINT, strucElem

; To avoid indeterminate edge values, add padding equal
; to one half the size of the structuring element
; (equal to the radius). Pad image to be eroded with
; maximum array value, and image to be dilated with
; minimum array value.
erodeImg = REPLICATE(MAX(img), dims[0]+2, dims[1]+2)
erodeImg [1,1] = img
dilateImg = REPLICATE(MIN(img), dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

; Get the size of either of the padded images,
; create a window and display the original image.
padDims = SIZE(erodeImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*padDims[0], YSIZE = padDims[1], $

TITLE = "Original, Eroded and Dilated Grayscale Images"
TVSCL, img, 0

; Use the erosion operator on the image, applying the
; structuring element. Display the image.
erodeImg = ERODE(erodeImg, strucElem, /GRAY)
TVSCL, erodeImg, 1

; Apply the dilation operator to the image, and display
; it.
dilateImg = DILATE(dilateImg, strucElem, /GRAY)
TVSCL, dilateImg, 2

; Create a window and display a histogram to help
; determine the threshold intensity value.
WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

; Create a binary image of the grayscale image.
img = img GE 120

; Create padded binary images for the erode
; and dilate operations.
Eroding and Dilating Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 495
erodeImg = REPLICATE(1B, dims[0]+2, dims[1]+2)
erodeImg [1,1] = img
dilateImg = REPLICATE(0B, dims[0]+2, dims[1]+2)
dilateImg [1,1] = img

; Get the dimensions, create a second window
; and display the binary image.
dims = SIZE(erodeImg, /DIMENSIONS)
WINDOW, 2, XSIZE = 3*dims[0], YSIZE = dims[1], $

TITLE = "Original, Eroded and Dilated Binary Images"
TVSCL, img, 0

; Apply the erosion and dilation operators to the
; binary images and display the results.
erodeImg = ERODE(erodeImg, strucElem)
TVSCL, erodeImg, 1
dilateImg = DILATE(dilateImg, strucElem)
TVSCL, dilateImg, 2

END
Image Processing in IDL Eroding and Dilating Image Objects

496 Chapter 11: Extracting and Analyzing Shapes
Smoothing with MORPH_OPEN

The MORPH_OPEN function applies the opening operation, which is erosion
followed by dilation, to a binary or grayscale image. The opening operation removes
noise from an image while maintaining the overall sizes of objects in the foreground.
Opening is a useful process for smoothing contours, removing pixel noise,
eliminating narrow extensions, and breaking thin links between features. After using
an opening operation to darken small objects and remove noise, thresholding or other
morphological processes can be applied to the image to further refine the display of
the primary shapes within the image.

The following example applies the opening operation to an image of microscopic
spherical organisms, Rhinosporidium seeberi protozoans. After applying the opening
operation and thresholding the image, only the largest elements of the image are
retained, the mature R.seeberi organisms.

For code that you can copy and paste into an Editor window, see “Example Code:
Using MORPH_OPEN to Remove Noise” on page 498 or complete the following
steps for a detailed description of the process.

1. Prepare the display device and load grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, image, /GRAYSCALE

3. Get the image dimensions, prepare a window and display the image:

dims = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Defining Shapes with Opening Operation'
TVSCL, image, 0

4. Define the radius of the structuring element and create a disk-shaped element
to extract circular features:

radius = 7
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Compared to the previous example, a larger element is used in order to retain
only the larger image elements, discarding all of the smaller background
features. Further increases in the size of the structuring element would extract
even larger image features.
Smoothing with MORPH_OPEN Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 497
Tip
Enter PRINT, strucElem to view the structure created by the previous statement.

5. Apply the MORPH_OPEN function to the image, specifying the GRAY
keyword for the grayscale image:

morphImg = MORPH_OPEN(image, strucElem, /GRAY)

6. Display the image:

TVSCL, morphImg, 1

The following figure shows the original image (left) and the application of the
opening operation to the original image (right). The opening operation has
enhanced and maintained the sizes of the large bright objects within the image
while blending the smaller background features.

The following steps apply the opening operator to a binary image.

7. Create a window and use HISTOGRAM in conjunction with PLOT, displaying
an intensity histogram to help determine the threshold intensity value:

WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

Figure 11-6: Application of the Opening Operation to a Grayscale Image
Image Processing in IDL Smoothing with MORPH_OPEN

498 Chapter 11: Extracting and Analyzing Shapes
8. Using the histogram as a guide, create a binary image. To prepare to remove
background noise, retain only areas of the image where pixel values are equal
to or greater than 160:

threshImg = image GE 160
WSET, 0
TVSCL, threshImg, 2

9. Apply the opening operation to the binary image to remove noise and smooth
contours, and then display the image:

morphThresh = MORPH_OPEN(threshImg, strucElem)
TVSCL, morphThresh, 3

The combination of thresholding and applying the opening operation has successfully
extracted the primary foreground features as shown in the following figure.

Example Code: Using MORPH_OPEN to Remove Noise

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphOpenExample.pro, compile and run the program to reproduce the previous
example.

PRO MorphOpenExample

; Prepare the display device and load grayscale color
; table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open the image file.
file = FILEPATH('r_seeberi.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image, /GRAYSCALE

Figure 11-7: Binary Image (left) and Application of the Opening Operator to the
Binary Image (right)
Smoothing with MORPH_OPEN Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 499
; Get the image dimensions, prepare a window and
; display the image.
dims = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE='Defining Shapes with the Opening Operator'
TVSCL, image, 0

; Define the radius of the structuring element and
; create the disk.
radius = 7
strucElem = SHIFT(DIST(2*radius+1), $

radius, radius) LE radius

; Apply the opening operator to the image.
morphImg = MORPH_OPEN(image, strucElem, /GRAY)
TVSCL, morphImg, 1

; Create a window and display an intensity histogram
; to help determine the threshold intensity value.
WINDOW, 1, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(image)

; Threshold the image to prepare to remove background
; noise.
threshImg = image GE 160

; Display the thresholded image.
WSET, 0
TVSCL, threshImg, 2

; Apply the opening operator to the thresholded image.
morphThresh = MORPH_OPEN(threshImg, strucElem)

; Display the image.
TVSCL, morphThresh, 3

END
Image Processing in IDL Smoothing with MORPH_OPEN

500 Chapter 11: Extracting and Analyzing Shapes
Smoothing with MORPH_CLOSE

The morphological closing operation performs dilation followed by erosion, the
opposite of the opening operation. The MORPH_CLOSE function smooths contours,
links neighboring features, and fills small gaps or holes. The operation effectively
brightens small objects in binary and grayscale images. Like the opening operation,
primary objects retain their original shape.

The following example uses the closing operation and a square structuring element to
extract the shapes of mineral crystals.

For code that you can copy and paste into an Editor window, see “Example Code:
Using MORPH_CLOSE” on page 502 or complete the following steps for a detailed
description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select the file, read the data and get the image dimensions:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

img = READ_PNG(file)
dims = SIZE(img, /DIMENSIONS)

3. Using the dimensions of the image add a border for display purposes:

padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

4. Get the padded image size, create a window and display the original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE=2*dims[0], YSIZE=2*dims[1], $

TITLE='Defining Shapes with the Closing Operator'
TVSCL, padImg, 0

5. Using DIST, define a small square structuring element in order to retain the
detail and angles of the image features:

side = 3
strucElem = DIST(side) LE side

Tip
Enter PRINT, strucElem to view the structure created by the previous statement.
Smoothing with MORPH_CLOSE Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 501
6. Apply MORPH_CLOSE to the image and display the resulting image:

closeImg = MORPH_CLOSE(padImg, strucElem, /GRAY)
TVSCL, closeImg, 1

The following figure shows the original image (left) and the results of applying
the closing operator (right). Notice that the closing operation has removed
much of the small, dark noise from the background of the image, while
maintaining the characteristics of the foreground features.

7. Determine a threshold value, using an intensity histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(closeImg)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

8. Threshold the original image and display the resulting binary image:

binaryImg = padImg LE 160
WSET, 0
TVSCL, binaryImg, 2

9. Now display a binary version of the closed image:

binaryClose = closeImg LE 160
TVSCL, binaryClose, 3

The results of thresholding the original and closed image using the same intensity
value clearly display the actions of the closing operator. The dark background noise

Figure 11-8: Original (left) and Closed Image (right)
Image Processing in IDL Smoothing with MORPH_CLOSE

502 Chapter 11: Extracting and Analyzing Shapes
has been removed, much as if a dilation operation had been applied, yet the sizes of
the foreground features have been maintained.

Example Code: Using MORPH_CLOSE

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphCloseExample.pro, compile and run the program to reproduce the previous
example.

PRO MorphCloseExample

; Prepare the display device and load grayscale color
; table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open the image file.
file = FILEPATH('mineral.png', $

SUBDIRECTORY=['examples', 'data'])
img = READ_PNG(file)

; Get the image dimensions, prepare a window and
; display the image.
dims = SIZE(img, /DIMENSIONS)

; Pad the image and get the new dimensions.
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5, 5] = img
dims = SIZE(padImg, /DIMENSIONS)

; Display the padded image.
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Extracting Shapes with the Closing Operator'
TVSCL, padImg, 0

Figure 11-9: Threshold of Original Image (left) and Closed Image (right)
Smoothing with MORPH_CLOSE Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 503
; Define the size of the structuring element
; and create the square.
side = 3
strucElem = DIST(side) LE side
PRINT, strucElem

; Apply the closing operator to the image and display
; it.
closeImg = MORPH_CLOSE(padImg, strucElem, /GRAY)
TVSCL, closeImg, 1

; Create a window and display an intensity histogram
; to help determine the threshold intensity value.
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(closeImg)

; Display a binary version of the original image.
binaryImg = padImg LE 160
WSET, 0
TVSCL, binaryImg, 2

; Display a binary version of the closed image for
; for comparison with the original.
binaryClose = closeImg LE 160
TVSCL, binaryClose, 3

END
Image Processing in IDL Smoothing with MORPH_CLOSE

504 Chapter 11: Extracting and Analyzing Shapes
Detecting Peaks of Brightness

The morphological top-hat operation, MORPH_TOPHAT, is also known as a peak
detector. This operator extracts only the brightest pixels from the original grayscale
image by first applying an opening operation to the image and then subtracting the
result from the original image. The top-hat operation is especially useful when
identifying small image features with high levels of brightness.

The following example applies the top-hat operation to an image of a mature
Rhinosporidium seeberi sporangium (spore case) with endospores. The circular
endospores will be extracted using a small disk-shaped structuring element. The top-
hat morphological operation effectively highlights the small bright endospores within
the image.

For code that you can copy and paste into an Editor window, see “Example Code:
Detecting Bright Peaks with MORPH_TOPHAT” on page 506 or complete the
following steps for a detailed description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT,0

2. Select and open the image file as a grayscale image:

file = FILEPATH('r_seeberi_spore.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE

3. Get the image dimensions, and add a border for display purposes:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

4. Get the new dimensions, create a window and display the original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 1, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Detecting Small Features with MORPH_TOPHAT'
TVSCL, padImg, 0

5. After examining the structures you want to extract from the image (the small
bright specks), define a circular structuring element with a small radius:

radius = 3
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius
Detecting Peaks of Brightness Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 505
Tip
Enter PRINT, strucElem to view the structure created by the previous statement.

6. Apply MORPH_TOPHAT to the image and display the results:

tophatImg = MORPH_TOPHAT(padImg, strucElem)
TVSCL, tophatImg, 1

The following figure shows the original image (left) and the peaks of
brightness that were detected after the top-hat operation subtracted an opened
image from the original image (right).

7. Determine an intensity value with which to stretch the image using an intensity
histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(padImg)

Note
Using an intensity histogram as a guide for determining intensity values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

Figure 11-10: Original (left) and Top-hat Image (right)
Image Processing in IDL Detecting Peaks of Brightness

506 Chapter 11: Extracting and Analyzing Shapes
8. Highlight the brighter image features by displaying a stretched version of the
image:

stretchImg = tophatImg < 70
WSET, 0
TVSCL, stretchImg, 2

Pixels with values greater than 70 are assigned the maximum pixel value
(white) and the remaining pixels are scaled across the full range of intensities.

9. Create a binary mask of the image to display only the brightest pixels:

threshImg = tophatImg GE 60
TVSCL, threshImg, 3

The stretched top-hat image (left) and the image after applying a binary mask
(right) are shown in the following figure. The endospores within the image
have been successfully highlighted and extracted using the MORPH_TOPHAT
function.

Example Code: Detecting Bright Peaks with MORPH_TOPHAT

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphTophatExample.pro, compile and run the program to reproduce the
previous example.

PRO MorphTophatExample

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT,0

Figure 11-11: Stretched Top-hat Image (left) and Binary Mask (right)
Detecting Peaks of Brightness Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 507
; Select and open the image file.
file = FILEPATH('r_seeberi_spore.jpg',$

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, img, /GRAYSCALE

; Get the image dimensions, create a window and
; display image.
dims = SIZE(img, /DIMENSIONS)

; Pad the image.
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

; Get the new dimensions, create a window and display
; the image.
dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE='Detecting Small Features with MORPH_TOPHAT'
TVSCL, padImg, 0

; Define and create the structuring element.
radius = 3
strucElem = SHIFT(DIST(2*radius+1), $

radius, radius) LE radius

; Apply the top-hat operator to the image and display
; it.
tophatImg = MORPH_TOPHAT(padImg, strucElem)
TVSCL, tophatImg , 1

; Create a window and display an intensity histogram
; to help determine the threshold intensity value.
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(padImg)

; Stretch and redisplay the image.
WSET, 0
stretchImg = tophatImg < 70
TVSCL, stretchImg, 2

; Threshold and display the binary image.
threshImg = tophatImg GE 60
TVSCL, threshImg, 3

END
Image Processing in IDL Detecting Peaks of Brightness

508 Chapter 11: Extracting and Analyzing Shapes
Creating Image Object Boundaries

The WATERSHED function applies the watershed operation to grayscale images.
This operation creates boundaries in an image by detecting borders between poorly
distinguished image areas that contain similar pixel values.

To understand the watershed operation, imagine translating the brightness of the
image pixels into height. The brightest pixels become tall peaks and the darkest
pixels become basins or depressions. Now imagine flooding the image. The
watershed operation detects boundaries among areas with nearly the same value or
height by noting the points where single pixels separate two similar areas. The points
where these areas meet are then translated into boundaries.

Note
Images are usually smoothed before applying the watershed operation. This
removes noise and small, unimportant fluctuations in the original image that can
produce oversegmentation and a lack of meaningful boundaries.

The following example combines an image containing the boundaries defined by the
watershed operation and the original image, a 1982 Landsat satellite image of the
Barringer Meteor Crater in Arizona. For code that you can copy and paste into an
Editor window, see “Example Code: Detecting Boundaries with WATERSHED” on
page 512 or complete the following steps for a detailed description of the process.

1. Prepare the display device and load the grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image of Barringer Meteor Crater, AZ:

file = FILEPATH('meteor_crater.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE

3. Get the image size and create a window:

dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*dims[0], YSIZE = 2*dims[1]

4. Display the original image, annotating it using the XYOUTS procedure:

TVSCL, img, 0
XYOUTS, 50, 444, 'Original Image', Alignment = .5, $

/DEVICE, COLOR = 255
Creating Image Object Boundaries Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 509
5. Using /EDGE_TRUNCATE to avoid spikes along the edges, smooth the image
to avoid oversegmentation and display the smoothed image:

smoothImg = smooth(7, /EDGE_TRUNCATE)
TVSCL, smoothImg, 1
XYOUTS, (60 + dims[0]), 444, 'Smoothed Image', $

Alignment = .5, /DEVICE, COLOR = 255

The following figure shows that the smoothing operation retains the major
features within the image.

6. Define the radius of the structuring element and create the disk:

radius = 3
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous statement.

7. Use the top-hat operation before using watershed to highlight the bright areas
within the image.

tophatImg = MORPH_TOPHAT(smoothImg, strucElem)

8. Display the image:

TVSCL, tophatImg, 2
XYOUTS, (60 + 2*dims[0]), 444, 'Top-hat Image', $

Alignment = .5, /DEVICE, COLOR = 255

Figure 11-12: Smoothing the Original Image
Image Processing in IDL Creating Image Object Boundaries

510 Chapter 11: Extracting and Analyzing Shapes
9. Determine an intensity value with which to stretch the image using an intensity
histogram as a guide:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(smoothImg)

An intensity histogram of the smoothed image is used instead of the top-hat
image since it was empirically determined that the top-hat histogram did not
provide the required information.

Note
Using an intensity histogram as a guide for determining intensity values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

10. Stretch the image to set all pixels with a value greater than 70 to the maximum
pixel value (white) and display the results:

WSET, 0
tophatImg = tophatImg < 70
TVSCL, tophatImg
XYOUTS, 75, 210, 'Stretched Top-hat Image', $

Alignment = .5, /DEVICE, COLOR = 255

The original top-hat image (left) and the results of stretching the image (right)
are shown in the following figure.

Figure 11-13: Original (left) and Stretched Top-hat Image (right)
Creating Image Object Boundaries Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 511
11. Apply the WATERSHED function to the stretched top-hat image. Specify
8-neighbor connectivity to survey the eight closest pixels to the given pixel,
resulting in fewer enclosed regions, and display the results:

watershedImg = WATERSHED(tophatImg, CONNECTIVITY = 8)
TVSCL, watershedImg, 4
XYOUTS, (70 + dims[0]), 210, 'Watershed Image', $

Alignment = .5, /DEVICE, COLOR = 255

12. Combine the watershed image with the original image and display the result:

img [WHERE (watershedImg EQ 0)]= 0
TVSCL, img, 5
XYOUTS, (70 + 2*dims[0]), 210, 'Watershed Overlay', $

Alignment = .5, /DEVICE, COLOR = 255

The following display shows all images created in the previous example. The final
image, shown in the lower right-hand corner of the following figure, shows the
original image with an overlay of the boundaries defined by the watershed operation.

Figure 11-14: Boundaries Defined by the Watershed Operation
Image Processing in IDL Creating Image Object Boundaries

512 Chapter 11: Extracting and Analyzing Shapes
Example Code: Detecting Boundaries with WATERSHED

Copy and paste the following text into the IDL Editor window. After saving the file as
WatershedExample.pro, compile and run the program to reproduce the previous
example.

PRO WatershedExample

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open image of Barrington Meteor Crater,
; AZ.
file = FILEPATH('meteor_crater.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, img, /GRAYSCALE

; Get the image size, create a window and display the
; image.
dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Defining Boundaries with WATERSHED'

; Display the original image.
TVSCL, img, 0
XYOUTS, 50, 444, 'Original Image', Alignment = .5, $

/DEVICE, COLOR = 255

; Smooth the image and display it.
smoothImg = SMOOTH(img, 7, /EDGE_TRUNCATE)
TVSCL, smoothImg, 1
XYOUTS, (60 + dims[0]), 444, 'Smoothed Image', $

ALIGNMENT = .5, /DEVICE, COLOR = 255

; Define the radius and create the structuring element.
radius = 3
strucElem = SHIFT(DIST(2*radius+1), $

radius, radius) LE radius

; Use the top-hat operator before using watershed to
; highlight bright areas within the image.
tophatImg = MORPH_TOPHAT(smoothImg, strucElem)

; Display the image.
TVSCL, tophatImg, 2
XYOUTS, (60 + 2*dims[0]), 444, 'Top-hat Image', $

ALIGNMENT = .5, /DEVICE, COLOR = 255
Creating Image Object Boundaries Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 513
; Determine the intensity value using a histogram as a
; guide. Stretch the image.
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(smoothImg)
tophatImg = tophatImg < 70

; Display the stretched image.
WSET, 0
TVSCL, tophatImg
XYOUTS, 75, 210, 'Stretched Top-hat Image', $

ALIGNMENT = .5, /DEVICE, COLOR = 255

; Use the WATERSHED operator to create boundaries
; and display the results.
watershedImg = WATERSHED(tophatImg, CONNECTIVITY = 8)
TVSCL, watershedImg, 4
XYOUTS, (70 + dims[0]), 210, 'Watershed Image', $

ALIGNMENT = .5, /DEVICE, COLOR = 255

; Overlay the boundaries defined by watershed onto
; the original image.
img [WHERE (watershedImg EQ 0)] = 0
TVSCL, img, 5
XYOUTS, (70 + 2*dims[0]), 210, 'Watershed Overlay', $

ALIGNMENT = .5, /DEVICE, COLOR = 255

END
Image Processing in IDL Creating Image Object Boundaries

514 Chapter 11: Extracting and Analyzing Shapes
Selecting Specific Image Objects

The hit-or-miss morphological operation is used primarily for identifying specific
shapes within binary images. The MORPH_HITORMISS function uses two
structuring elements; a “hit” structure and a “miss” structure. The operation first
applies an erosion operation with the hit structure to the original image. The
operation then applies an erosion operator with the miss structure to an inverse of the
original image. The matching image elements entirely contain the hit structure and
are entirely and solely contained by the miss structure.

Note
An image must be padded with a border equal to one half the size of the structuring
element if you want the hit-or-miss operation to be applied to image elements
occurring along the edges of the image.

The hit-or-miss operation is very sensitive to the shape, size and rotation of the two
structuring elements. Hit and miss structuring elements must be specifically designed
to extract the desired geometric shapes from each individual image. When dealing
with complicated images, extracting specific image regions may require multiple
applications of hit and miss structures, using a range of sizes or several rotations of
the structuring elements.

The following example uses the image of the Rhinosporidium seeberi parasitic
protozoans, containing simple circular shapes. After specifying distinct hit and miss
structures, the elements of the image that meet the hit and miss conditions are
identified and overlaid on the original image.

For code that you can copy and paste into an Editor window, see “Example Code:
Identifying Objects with MORPH_HITORMISS” on page 518 or complete the
following steps for a detailed description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples','data'])

READ_JPEG, file, img, /GRAYSCALE
Selecting Specific Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 515
3. Pad the image so that objects at the edges of the image are not discounted:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg [5,5] = img

Failing to pad an image causes all objects occurring at the edges of the image
to fail the hit and miss conditions.

4. Get the image dimensions, create a window and display the padded image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 3*dims[0], YSIZE = 2*dims[1], $

TITLE='Displaying Hit-or-Miss Matches'
TVSCL, padImg, 0

5. Define the radius of the structuring element and create a large, disk-shaped
element to extract the large, circular image objects:

radstr = 7
strucElem = SHIFT(DIST(2*radstr+1), radstr, radstr) LE radstr

Tip
Enter PRINT, strucElem to view the structure created by the previous statement.

6. Apply MORPH_OPEN for a smoothing effect and display the image:

openImg = MORPH_OPEN(padImg, strucElem, /GRAY)
TVSCL, openImg, 1

7. Since the hit-or-miss operation requires a binary image, display an intensity
histogram as a guide for determining a threshold value:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(openImg)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

8. Create a binary image by retaining only those image elements with pixel
values greater than or equal to 150 (the bright foreground objects):

threshImg = openImg GE 150
WSET, 0
TVSCL, threshImg, 2
Image Processing in IDL Selecting Specific Image Objects

516 Chapter 11: Extracting and Analyzing Shapes
The results of opening (left) and thresholding (right) are shown in the
following figure.

9. Create the structuring elements for the hit-or-miss operation:

radhit = 7
radmiss = 23
hit = SHIFT(DIST(2*radhit+1), radhit, radhit) LE radhit
miss = SHIFT(DIST(2*radmiss+1), radmiss, radmiss) GE radmiss

While the shapes of the structuring elements are purposefully circular, the
sizes were chosen after empirically testing, seeking elements suitable for this
example.

Tip
Enter PRINT, hit or PRINT, miss to view the structures.

The following figures shows the hit and miss structuring elements and the binary
image. Knowing that the region must enclose the hit structure and be surrounded by a
background area at least as large as the miss structure, can you predict which regions
will be “matches?”

Figure 11-15: Results of Opening (left) and Thresholding (right)

Figure 11-16: Applying the Hit and Miss Structuring Elements to a Binary Image

Hit Structure

Miss Structure
Selecting Specific Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 517
10. Apply the MORPH_HITORMISS function to the binary image. Image regions
matching the hit and miss conditions are designated at matches:

matches = MORPH_HITORMISS(threshImg, hit, miss)

11. Display the elements matching the hit and miss conditions, dilating the
elements to the radius of a hit:

dmatches = DILATE(matches, hit)
TVSCL, dmatches, 3

12. Display the original image overlaid with the matching elements:

padImg [WHERE (dmatches EQ 1)] = 1
TVSCL, padImg, 4

The following figure shows the elements of the image which matched the hit and
miss conditions, having a radius of at least 7 (the hit structure), yet fitting entirely
inside a structure with a radius of 23 (the miss structure).

Initially, it may appear that more regions should have been “matches” since they met
the hit condition of having a radius of 7 or more. However, as the following figure
shows, many such regions failed the miss condition since neighboring regions
impinged upon the miss structure. Such a region appears on the left in the following
figure.

Figure 11-17: Image Elements Matching Hit and Miss Conditions

Figure 11-18: Example of Hit and Miss Relationship

Region is entirely
contained within
the “miss” structure.

Other regions prevent
a match for the miss
structuring element.

MatchNo Match
Image Processing in IDL Selecting Specific Image Objects

518 Chapter 11: Extracting and Analyzing Shapes
Considering the simplicity of the previous image, it is understandable that selecting
hit and miss structures for more complex images can require significant empirical
testing. It is to your advantage to keep in mind how sensitive the hit-or-miss operation
is to the shapes, sizes and rotations of the hit and miss structures.

Example Code: Identifying Objects with MORPH_HITORMISS

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphHitorMissExample.pro, compile and run the program to reproduce the
previous example.

PRO MorphHitorMissExample

; Prepare the display device and load a grayscale color
; table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open an image of the parasitic protozoa.
file = FILEPATH('r_seeberi.jpg', $

SUBDIRECTORY=['examples','data'])
READ_JPEG, file, img, /GRAYSCALE

; Pad the image to avoid discounting edge objects.
dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg[5, 5] = img

; Get the image dimensions.
dims = SIZE(padImg, /DIMENSIONS)

; Prepare a window and display the image.
WINDOW, 0, XSIZE=3*dims[0], YSIZE=2*dims[1], $

TITLE='Displaying Hit-or-Miss Matches'
TVSCL, padImg, 0

; Define and create a structuring element for the
; opening operator.
radstr = 7
strucElem = SHIFT(DIST(2*radstr+1), $

radstr, radstr) LE radstr

; Apply the opening operator for a smoothing effect.
openImg = MORPH_OPEN(padImg, strucElem, /GRAY)
TVSCL, openImg, 1

; Use an intensity histogram as a guide for
; thresholding.
Selecting Specific Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 519
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(openImg)

; Threshold the image.
threshImg = openImg GE 150
WSET, 0
TVSCL, threshImg, 2

; Create the structuring elements for the hit-or-miss
; operator.
radhit = 7
radmiss = 23
hit = SHIFT(DIST(2*radhit+1), radhit, radhit) LE radhit
miss = SHIFT(DIST(2*radmiss+1), $

radmiss, radmiss) GE radmiss

; Using structuring elements, define matching regions.
matches = MORPH_HITORMISS(threshImg, hit, miss)

; Display the regions matching hit and miss conditions.
; Dilate the matches to the radius of a 'hit'.
dmatches = DILATE(matches, hit)
TVSCL, dmatches, 3

; Display the original image overlaid with the matching
; regions.
padImg [WHERE (dmatches EQ 1)] = 1
TVSCL, padImg, 4

END
Image Processing in IDL Selecting Specific Image Objects

520 Chapter 11: Extracting and Analyzing Shapes
Detecting Edges of Image Objects

The MORPH_GRADIENT function applies the gradient operation to a grayscale
image. This operation highlights object edges by subtracting an eroded version of the
original image from a dilated version. Repeatedly applying the gradient operator or
increasing the size of the structuring element results in wider edges.

The following example extracts image features by applying the morphological
gradient operation to an image of the Mars globe. For code that you can copy and
paste into an Editor window, see “Example Code: Displaying Edges with
MORPH_GRADIENT” on page 522 or complete the following steps for a detailed
description of the process.

1. Prepare the display device and load the grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and read in the file:

file = FILEPATH('marsglobe.jpg', $
SUBDIRECTORY=['examples', 'data'])

READ_JPEG, file, image, /GRAYSCALE

3. Get the image size, create a window and display the smoothed image:

dims = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE =2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Original and MORPH_GRADIENT Images'

The original image is shown in the following figure.

Figure 11-19: Image of Mars Globe
Detecting Edges of Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 521
4. Preserve the greatest amount of detail within the image by defining a
structuring element with a radius of 1, avoiding excessively thick edge lines:

radius = 1
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous statement.

5. Apply the MORPH_GRADIENT function to the image and display the result:

morphImg = MORPH_GRADIENT(image, strucElem)
TVSCL, morphImg, 2

6. To more easily distinguish features within the dark image, prepare to stretch
the image by displaying an intensity histogram:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(1-image)

The previous line returns a histogram of an inverse of the original image since
the final display will also be an inverse display for showing the greatest detail.

7. Stretch the image and display its inverse:

WSET, 0
TVSCL, 1-(morphImg < 87), 3

The following figure displays the initial and stretched gradient images.

Figure 11-20: Initial and Stretched Results of the Gradient Operation
Image Processing in IDL Detecting Edges of Image Objects

522 Chapter 11: Extracting and Analyzing Shapes
Example Code: Displaying Edges with MORPH_GRADIENT

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphGradientEx.pro, compile and run the program to reproduce the previous
example.

PRO MorphGradientEx

; Prepare the display device
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and read in the file.
file = FILEPATH('marsglobe.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image, /GRAYSCALE

; Get the image size, create a window and display the
; image.
dims = SIZE(image, /DIMENSIONS)
WINDOW, 0, XSIZE =2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Original and MORPH_GRADIENT Images'
TVSCL, image, 0

; Define the structuring element, apply the
; morphological operator and display the image.
radius = 1
strucElem = SHIFT(DIST(2*radius+1), $

radius, radius) LE radius
morphImg = MORPH_GRADIENT(image, strucElem)
TVSCL, morphImg, 2

; Display an inverse intesity histogram to determine
; stretch intensity value.
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(1 - image)

; Display inverse of stretched gradient image.
WSET, 0
TVSCL, 1 - (morphImg < 87), 3

END
Detecting Edges of Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 523
Creating Distance Maps

The MORPH_DISTANCE function computes a grayscale, N-dimensional distance
map from a binary image. The map shows, for each foreground pixel, the distance to
the nearest background pixel using a given norm. The norm simply defines how
neighboring pixels are sampled. See the MORPH_DISTANCE description in the IDL
Reference Guide for full details. The resulting values in the grayscale image denote
the distance from the surveyed pixel to the nearest background pixel. The brighter the
pixel, the farther it is from the background.

The following example applies the distance transformation to a grayscale image of a
cultured sample of Neocosmospora vasinfecta, a common fungal plant pathogen. For
code that you can copy and paste into an Editor window, see “Example Code:
Displaying Distances with MORPH_DISTANCE” on page 525 or complete the
following steps for a detailed description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and load an image:

file = FILEPATH('n_vasinfecta.jpg', $
SUBDIRECTORY = ['examples', 'data'])

READ_JPEG, file, img, /GRAYSCALE

3. Get the size of the image and create a border for display purposes:

dims = SIZE(img, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+10, dims[1]+10)
padImg[5,5] = img

4. Get the dimensions of the padded image, create a window and display the
original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE='Distance Map and Overlay of Binary Image'
TVSCL, padImg, 0

5. Use an intensity histogram as a guide for creating a binary image:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(padImg)
Image Processing in IDL Creating Distance Maps

524 Chapter 11: Extracting and Analyzing Shapes
Note
Using an intensity histogram as a guide for determining intensity values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

6. Before using the distance transform, the grayscale image must be translated
into a binary image. Create and display a binary image containing the dark
tubules. Threshold the image, masking out pixels with values greater than 120:

binaryImg = stretchImg LT 120
WSET, 0
TVSCL, binaryImg, 1

The original image (left) and binary image (right) appear in the following
figure.

7. Compute the distance map using MORPH_DISTANCE, specifying
“chessboard” neighbor sampling, which surveys each horizontal, vertical and
diagonal pixel touching the pixel being surveyed, and display the result:

distanceImg = MORPH_DISTANCE(binaryImg, NEIGHBOR_SAMPLING =
1)
TVSCL, distanceImg, 2

8. Display a combined image of the distance map and the binary image. Black
areas within the binary image (having a value of 0) are assigned the maximum
pixel value occurring in the distance image:

distanceImg [WHERE (binaryImg EQ 0)] = MAX(distanceImg)
TVSCL, distanceImg, 3

Figure 11-21: Original Image (left) and Binary Image (right)
Creating Distance Maps Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 525
The distance map (left) and resulting blended image (right) show the distance
of each image element pixel from the background.

Example Code: Displaying Distances with MORPH_DISTANCE

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphDistanceExample.pro, compile and run the program to reproduce the
previous example.

PRO MorphDistanceExample

; Prepare the display device and load grayscale color
; table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and load an image.
file = FILEPATH('n_vasinfecta.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, img, /GRAYSCALE
dims = SIZE(img, /DIMENSIONS)

; Pad the image for display purposes.
padImg = REPLICATE(0B, dims[0] + 10, dims[1] + 10)
padImg[5, 5] = img

; Get the size of the padded image.
dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Distance Map and Overlay of Thresholded Image'
TVSCL, padImg, 0

; Use an intensity histogram to help determine

Figure 11-22: Distance Map (left) and Merged Map and Binary Image (right)
Image Processing in IDL Creating Distance Maps

526 Chapter 11: Extracting and Analyzing Shapes
; threshold intensity value.
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(padImg)

; Create a binary image.
binaryImg = padImg LT 120
WSET, 0
TVSCL, binaryImg, 1

; Compute distance map using "chessboard" neighbor
; sampling.
distanceImg = MORPH_DISTANCE(binaryImg, $

NEIGHBOR_SAMPLING = 1)
TVSCL, distanceImg, 2

; Overlay the distance map onto the binary image. Black
; areas within the binary image are assigned the maximum
; pixel brightness within the distance image.
distanceImg[WHERE(binaryImg EQ 0)] = MAX(distanceImg)
TVSCL, distanceImg, 3

END
Creating Distance Maps Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 527
Thinning Image Objects

The MORPH_THIN function performs a thinning operation on binary images. After
designating “hit” and “miss” structures, the thinning operation applies the hit-or-miss
operator to the original image and then subtracts the result from the original image.

The thinning operation is typically applied repeatedly, leaving only pixel-wide linear
representations of the image objects. The thinning operation halts when no more
pixels can be removed from the image. This occurs when the thinning operation
(applying the hit and miss structures and subtracting the result) produces no change
in the input image. At this point, the thinned image is identical to the input image.

When repeatedly applying the thinning operation, each successive iteration uses hit
and miss structures that have had the individual elements of the structures rotated one
position clockwise. For example, the following 3-by-3 arrays show the initial
structure (left) and the structure after rotating the elements one position clockwise
around the central value (right).

h0 = [[0,0,0], h1 = [[0,0,0],
[0,1,0], [1,1,0],
[1,1,1]] [1,1,0]]

The following example uses eight rotations of each of the original hit and miss
structuring elements. The repeated application of the thinning operation results in an
image containing only pixel-wide lines indicating the original grains of pollen. This
example displays the results of each successive thinning operation.

Note
This example uses a file from the examples/demo/demodata directory of your
installation. If you have not already done so, you will need to install “IDL Demos”
from your product CD-ROM to install the demo data file needed for this example.

For code that you can copy and paste into an Editor window, see “Example Code:
Thinning Image Objects” on page 531 or complete the following steps for a detailed
description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('pollens.jpg', $
SUBDIRECTORY = ['examples','demo','demodata'])

READ_JPEG, file, img, /GRAYSCALE
Image Processing in IDL Thinning Image Objects

528 Chapter 11: Extracting and Analyzing Shapes
3. Get the image dimensions, create a window and display the original image:

dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE='Original, Binary and Thinned Images'
TVSCL, img, 0

4. The thinning operation requires a binary image. Create a binary image,
retaining pixels with values greater than or equal to 140, and display the
image:

binaryImg = img GE 140
TVSCL, binaryImg, 1

Note
The following lines were used to determine the threshold value:
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)
See “Determining Intensity Values When Thresholding and Stretching Images” on
page 486 for details about using a histogram to determine intensity values.

5. Prepare hit and miss structures for thinning. Rotate the outer elements of each
successive hit and miss structure one position clockwise:

Note
For a version of these structures that is easy to copy and paste into an Editor
window, see “Example Code: Thinning Image Objects” on page 531.

h0 = [[0b,0,0], $
[0,1,0], $
[1,1,1]]

m0 = [[1b,1,1], $
[0,0,0], $
[0,0,0]]

h1 = [[0b,0,0], $
[1,1,0], $
[1,1,0]]

m1 = [[0b,1,1], $
[0,0,1], $
[0,0,0]]

h2 = [[1b,0,0], $
[1,1,0], $
[1,0,0]]

m2 = [[0b,0,1], $
[0,0,1], $
[0,0,1]]

h3 = [[1b,1,0], $
[1,1,0], $
Thinning Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 529
[0,0,0]]
m3 = [[0b,0,0], $

[0,0,1], $
[0,1,1]]

h4 = [[1b,1,1], $
[0,1,0], $
[0,0,0]]

m4 = [[0b,0,0], $
[0,0,0], $
[1,1,1]]

h5 = [[0b,1,1], $
[0,1,1], $
[0,0,0]]

m5 = [[0b,0,0], $
[1,0,0], $
[1,1,0]]

h6 = [[0b,0,1], $
[0,1,1], $
[0,0,1]]

m6 = [[1b,0,0], $
[1,0,0], $
[1,0,0]]

h7 = [[0b,0,0], $
[0,1,1], $
[0,1,1]]

m7 = [[1b,1,0], $
[1,0,0], $
[0,0,0]]

6. Define the iteration variables for the WHILE loop and prepare to pass in the
binary image:

bCont = 1b
iIter = 1
thinImg = binaryImg
Image Processing in IDL Thinning Image Objects

530 Chapter 11: Extracting and Analyzing Shapes
7. Enter the following WHILE loop statements into the Editor window. The loop
specifies that the image will continue to be thinned with MORPH_THIN until
the thinned image is equal to the image input into the loop. Since thinImg
equals inputImg, the loop is exited when a complete iteration produces no
changes in the image. In this case, the condition, bCont eq 1 fails and the
loop is exited.

WHILE bCont EQ 1b DO BEGIN & $
PRINT,'Iteration: ', iIter & $
inputImg = thinImg & $
thinImg = MORPH_THIN(inputImg, h0, m0) & $
thinImg = MORPH_THIN(thinImg, h1, m1) & $
thinImg = MORPH_THIN(thinImg, h2, m2) & $
thinImg = MORPH_THIN(thinImg, h3, m3) & $
thinImg = MORPH_THIN(thinImg, h4, m4) & $
thinImg = MORPH_THIN(thinImg, h5, m5) & $
thinImg = MORPH_THIN(thinImg, h6, m6) & $
thinImg = MORPH_THIN(thinImg, h7, m7) & $
TVSCL, thinImg, 2 & $
WAIT, 1 & $
bCont = MAX(inputImg - thinImg) & $
iIter = iIter + 1 & $

ENDWHILE

Note
The & after BEGIN and the $ allow you to use the WHILE/DO loop at the IDL
command line. These & and $ symbols are not required when the WHILE/DO loop
in placed in an IDL program as shown in “Example Code: Thinning Image Objects”
on page 531.

8. Display an inverse of the final result:

TVSCL, 1 - thinImg, 3
Thinning Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 531
The following figure displays the results of the thinning operation, reducing the
original objects to a single pixel wide lines.

Each successive thinning iteration removed pixels marked by the results of the
hit-or-miss operation as long as the removal of the pixels would not destroy the
connectivity of the line.

Example Code: Thinning Image Objects

Copy and paste the following text into the IDL Editor window. After saving the file as
MorphThinExample.pro, compile and run the program to reproduce the previous
example.

Note
The following code displays the eight pairs of hit and miss structuring elements on
individual lines so that the code can be easily copied into an Editor window.
Although it is less visible, the elements of each successive structure are rotated as
described in the beginning of this section, “Thinning Image Objects” on page 527.

Figure 11-23: Original Image (top left), Binary Image (top right), Thinned Image
(bottom left) and Inverse Thinned Image (bottom right)
Image Processing in IDL Thinning Image Objects

532 Chapter 11: Extracting and Analyzing Shapes
PRO MorphThinExample

; Prepare the display device and load grayscale color
; table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Load an image.
file = FILEPATH('pollens.jpg', $

SUBDIRECTORY = ['examples', 'demo', 'demodata'])
READ_JPEG, file, img, /GRAYSCALE

; Get the image size, prepare a display window and
; display the image.
dims = SIZE(img, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Original, Binary and Thinned Images'
TVSCL, img, 0

; Generate a binary image by thresholding.
binaryImg = img GE 140
TVSCL, binaryImg, 1

; Prepare hit and miss structures for thinning.
h0 = [[0b, 0, 0], [0, 1, 0], [1, 1, 1]]
m0 = [[1b, 1, 1], [0, 0, 0], [0, 0, 0]]
h1 = [[0b, 0, 0], [1, 1, 0], [1, 1, 0]]
m1 = [[0b, 1, 1], [0, 0, 1], [0, 0, 0]]
h2 = [[1b, 0, 0], [1, 1, 0], [1, 0, 0]]
m2 = [[0b, 0, 1], [0, 0, 1], [0, 0, 1]]
h3 = [[1b, 1, 0], [1, 1, 0], [0, 0, 0]]
m3 = [[0b, 0, 0], [0, 0, 1], [0, 1, 1]]
h4 = [[1b, 1, 1], [0, 1, 0], [0, 0, 0]]
m4 = [[0b, 0, 0], [0, 0, 0], [1, 1, 1]]
h5 = [[0b, 1, 1], [0, 1, 1], [0, 0, 0]]
m5 = [[0b, 0, 0], [1, 0, 0], [1, 1, 0]]
h6 = [[0b, 0, 1], [0, 1, 1], [0, 0, 1]]
m6 = [[1b, 0, 0], [1, 0, 0], [1, 0, 0]]
h7 = [[0b, 0, 0], [0, 1, 1], [0, 1, 1]]
m7 = [[1b, 1, 0], [1, 0, 0], [0, 0, 0]]

; Iterate until the thinned image is identical to
; the input image for a given iteration.
bCont = 1b
iIter = 1
thinImg = binaryImg
WHILE bCont EQ 1b DO BEGIN

PRINT,'Iteration: ', iIter
inputImg = thinImg
Thinning Image Objects Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 533
; Perform the thinning using the first pair
; of structure elements.
thinImg = MORPH_THIN(inputImg, h0, m0)

; Perform the thinning operation using the
; remaining structural element pairs.
thinImg = MORPH_THIN(thinImg, h1, m1)
thinImg = MORPH_THIN(thinImg, h2, m2)
thinImg = MORPH_THIN(thinImg, h3, m3)
thinImg = MORPH_THIN(thinImg, h4, m4)
thinImg = MORPH_THIN(thinImg, h5, m5)
thinImg = MORPH_THIN(thinImg, h6, m6)
thinImg = MORPH_THIN(thinImg, h7, m7)

; Display the results of thinning and wait a second for
; display purposes.
TVSCL, thinImg, 2
WAIT, 1

; Test the condition and increment the loop.
bCont = MAX(inputImg - thinImg)
iIter = iIter + 1

; End WHILE loop statements.
ENDWHILE

; Show inverse of final result.
TVSCL, 1 - thinImg, 3

END
Image Processing in IDL Thinning Image Objects

534 Chapter 11: Extracting and Analyzing Shapes
Combining Morphological Operations

The following example uses a variety of morphological operations to remove bridges
from a satellite image of New York waterways. For code that you can copy and paste
into an Editor window, see “Example Code: Combining Morphological Operations in
Feature Extraction” on page 537 or complete the following steps for a detailed
description of the process.

1. Prepare the display device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Specify the known dimensions and use READ_BINARY to load the image:

xsize = 768
ysize = 512
img = READ_BINARY(FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data']), $
DATA_DIMS = [xsize, ysize])

3. Increase the image's contrast and display the image:

img = BYTSCL(img)
WINDOW, 1, TITLE = 'Original Image'
TVSCL, img

Figure 11-24: Original Image
Combining Morphological Operations Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 535
4. Prepare to threshold the image, using an intensity histogram as a guide for
determining the intensity value:

WINDOW, 4, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

5. Create a mask of the darker pixels that have values less than 70:

maskImg = img LT 70

6. Define and create a small square structuring element, which has a shape
similar to the bridges which will be masked out:

side = 3
strucElem = DIST(side) LE side

7. Remove details in the binary mask's shape by applying the opening operation:

maskImg = MORPH_OPEN(maskImg, strucElem)

8. Fuse gaps in the mask's shape by applying the closing operation and display
the image:

maskImg = MORPH_CLOSE(maskImg, strucElem)
WINDOW, 1, title='Mask After Opening and Closing'
TVSCL, maskImg

This results in the following figure:

Figure 11-25: Image Mask After Opening and Closing Operations
Image Processing in IDL Combining Morphological Operations

536 Chapter 11: Extracting and Analyzing Shapes
9. Prepare to remove all but the largest region in the mask by labeling the regions:

labelImg = LABEL_REGION(maskImg)

10. Discard the black background by keeping only the white areas of the previous
figure:

regions = labelImg[WHERE(labelImg NE 0)]

11. Define mainRegion as the area where the population of the labelImg region
matches the region with the largest population:

mainRegion = WHERE(HISTOGRAM(labelImg) EQ $
MAX(HISTOGRAM(regions)))

12. Define maskImg as the area of labelImg equal to the largest region of
mainRegion, having an index number of 0 and display the image:

maskImg = labelImg EQ mainRegion[0]
Window, 3, TITLE = 'Final Masked Image'
TVSCL, maskImg

This results in a mask of the largest region, the waterways, as shown in the
following figure.

13. Remove noise and smooth contours in the original image:

newImg = MORPH_OPEN(img, strucElem, /GRAY)

14. Replace the new image with the original image, where it’s not masked:

newImg[WHERE(maskImg EQ 0)] = img[WHERE(maskImg EQ 0)]

Figure 11-26: Final Image Mask
Combining Morphological Operations Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 537
15. View the results using FLICK to alternate the display between the original
image and the new image containing the masked areas:

WINDOW, 0, XSIZE = xsize, YSIZE = ysize
FLICK, img, newImg

Hit any key to stop the image from flickering. Details of the two images are
shown in the following figure.

Example Code: Combining Morphological Operations in
Feature Extraction

To reproduce the previous example, copy and paste the code into an Editor window.
After saving the file as RemoveBridges.pro, compile and run the program.

PRO RemoveBridges

; Prepare the display device.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Read an image of New York using known dimensions.
xsize = 768
ysize = 512
img = READ_BINARY(FILEPATH('nyny.dat', $

SUBDIRECTORY = ['examples', 'data']), $
DATA_DIMS = [xsize, ysize])

Figure 11-27: Details of Original (left) and Resulting Image of New York (right)
Image Processing in IDL Combining Morphological Operations

538 Chapter 11: Extracting and Analyzing Shapes
; Increase image's contrast and display it.
img = BYTSCL(img)
WINDOW, 0
TVSCL, img

; Use a histogram to determine threshold value.
WINDOW, 4, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(img)

; Create an image mask from thresholded image.
maskImg = img LT 70

; Make a square-shaped structuring element.
side = 3
strucElem = DIST(side) LE side

; Remove details in the mask's shape.
maskImg = MORPH_OPEN(maskImg, strucElem)

; Fuse gaps in the mask's shape and display.
maskImg = MORPH_CLOSE(maskImg, strucElem)
WINDOW, 1, title='Mask After Opening and Closing'
TVSCL, maskImg

; Label regions to prepare to remove all but
; the largest region in the mask.
labelImg = LABEL_REGION(maskImg)

; Remove background and all but the largest region.
regions = labelImg[WHERE(labelImg NE 0)]
mainRegion = WHERE(HISTOGRAM(labelImg) EQ $

MAX(HISTOGRAM(regions)))
maskImg = labelImg EQ mainRegion[0]

; Display the resulting mask.
Window, 3, TITLE = 'Final Masked Image'
TVSCL, maskImg

; Remove noise and smooth contours in the original
; image.
newImg = MORPH_OPEN(img, strucElem, /GRAY)

; Replace new image with original image, where not
; masked.
newImg[WHERE(maskImg EQ 0)] = img[WHERE(maskImg EQ 0)]

; View result, comparing the new image with the
; original.
PRINT, 'Hit any key to end program.'
Combining Morphological Operations Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 539
WINDOW, 2, XSIZE = xsize, YSIZE = ysize, $
TITLE = 'Hit Any Key to End Program'

; Flicker between original and new image.
FLICK, img, newImg

END
Image Processing in IDL Combining Morphological Operations

540 Chapter 11: Extracting and Analyzing Shapes
Analyzing Image Shapes

After using a morphological operation to expose the basic elements within an image,
it is often useful to then extract and analyze specific information about those image
elements. The following examples use the LABEL_REGION function and the
CONTOUR procedure to identify and extract information about specific image
objects.

The LABEL_REGION function labels all of the regions within a binary image,
giving each region a unique index number. Use this function in conjunction with the
HISTOGRAM function to view the population of each region. See “Using
LABEL_REGION to Extract Image Object Information” in the following section for
an example.

The CONTOUR procedure draws a contour plot from image data, and allows the
selection of image objects occurring at a specific contour level. Further processing
using PATH_* keywords returns the location and coordinates of polygons that define
a specific contour level. See “Using CONTOUR to Extract Image Object
Information” on page 546 for an example.

Using LABEL_REGION to Extract Image Object
Information

The following example identifies unique regions within the image of the
Rhinosporidium seeberi parasitic protozoans and prints out region populations. For
code that you can copy and paste into an Editor window, see “Example Code:
Displaying Regions with LABEL_REGION” on page 544 or complete the following
steps for a detailed description of the process.

1. Prepare the display device and load a grayscale color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

2. Select and open the image file:

file = FILEPATH('r_seeberi.jpg', $
SUBDIRECTORY = ['examples','data'])

READ_JPEG, file, image, /GRAYSCALE

3. Get the image dimensions and add a border (for display purposes only):

dims = SIZE(image, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+20, dims[1]+20)
padImg[10,10] = image
Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 541
4. Get the dimensions of the padded image, create a window and display the
original image:

dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Opened, Thresholded and Labeled Region Images'
TVSCL, padImg, 0

5. Create a large, circular structuring element to extract the large circular
foreground features. Define the radius of the structuring element and create the
disk:

radius = 5
strucElem = SHIFT(DIST(2*radius+1), radius, radius) LE radius

Tip
Enter PRINT, strucElem to view the structure created by the previous statement.

6. Apply the opening operation to the image to remove background noise and
display the image:

openImg = MORPH_OPEN(padImg, strucElem, /GRAY)
TVSCL, openImg, 1

This original image (left) and opened image (right) appear in the following
figure.

7. Display an intensity histogram to use as a guide when thresholding:

WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(openImg)

Figure 11-28: Original Image (left) and Application of Opening Operator (right)
Image Processing in IDL Analyzing Image Shapes

542 Chapter 11: Extracting and Analyzing Shapes
Note
Using an intensity histogram as a guide for determining threshold values is
described in the section, “Determining Intensity Values When Thresholding and
Stretching Images” on page 486.

8. Retain only the brighter, foreground pixels by setting the threshold intensity at
170 and display the binary image:

threshImg = openImg GE 170
WSET, 0
TVSCL, threshImg, 2

9. Identify unique regions using the LABEL_REGION function:

regions = LABEL_REGION(threshImg)

10. Use the HISTOGRAM function to calculate the number of elements in each
region:

hist = HISTOGRAM(regions)

11. Create a FOR loop that will return the population and percentage of each
foreground region based on the results returned by the HISTOGRAM
function:

FOR i=1, N_ELEMENTS (hist) - 1 DO PRINT, 'Region', i, $
', Pixel Popluation = ', hist(i), $
' Percent = ', 100.*FLOAT(hist[i])/(dims[0]*dims[1])

12. Load a color table and display the regions. For this example, use the sixteen
level color table to more easily distinguish individual regions:

LOADCT, 12
TVSCL, regions, 3
Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 543
In the following figure, the image containing the labeled regions (right) shows
19 distinct foreground regions.

Tip
Display the color table by entering XLOADCT at the command line. By viewing
the color table, you can see that region index values start in the lower-left corner of
the image. Realizing this makes it easier to relate the region populations printed in
the Output Log with the regions shown in the image.

13. Create a new window and display the individual region populations by
graphing the values of hist using the SURFACE procedure:

WINDOW, 1, $
TITLE = 'Surface Representation of Region Populations'

FOR i = 1, N_ELEMENTS(hist)-1 DO $
regions[WHERE(regions EQ i)] = hist[i]

SURFACE, regions

Figure 11-29: Binary Image (left) and Image of Unique Regions (right)
Image Processing in IDL Analyzing Image Shapes

544 Chapter 11: Extracting and Analyzing Shapes
The previous command results in the following display of the region
populations.

Example Code: Displaying Regions with LABEL_REGION

Copy and paste the following text into the IDL Editor window. After saving the file as
LabelRegionExample.pro, compile and run the program to reproduce the
previous example.

PRO LabelRegionExample

; Prepare the display device and load grayscale color
; table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 0

; Select and open the image file.
file = FILEPATH('r_seeberi.jpg', $

SUBDIRECTORY = ['examples', 'data'])
READ_JPEG, file, image, /GRAYSCALE

; Get the image dimensions and add a border to the
; image.
dims = SIZE(image, /DIMENSIONS)
padImg = REPLICATE(0B, dims[0]+20, dims[1]+20)
padImg [10,10] = image

Figure 11-30: Surface Representation of Region Populations
Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 545
; Get the size of the padded image and display it.
dims = SIZE(padImg, /DIMENSIONS)
WINDOW, 0, XSIZE = 2*dims[0], YSIZE = 2*dims[1], $

TITLE = 'Opened, Thresholded and Labeled Region Images'
TVSCL, padImg, 0

; Define the radius of the structuring element and
; create the disk.
radius = 5
strucElem = SHIFT(DIST(2*radius+1), $

radius, radius) LE radius

; Apply the opening operator to the image.
openImg = MORPH_OPEN(padImg, strucElem, /GRAY)
TVSCL, openImg, 1

; Determine threshold value using histogram as a guide.
WINDOW, 2, XSIZE = 400, YSIZE = 300
PLOT, HISTOGRAM(openImg)

; Threshold the image to prepare to remove background
; noise.
threshImg = openImg GE 170

; Display the image.
WSET, 0
TVSCL, threshImg, 2

; Identify regions and print each region's pixel
; population and percentage.
regions = LABEL_REGION(threshImg)
hist = HISTOGRAM(regions)
FOR i=1, N_ELEMENTS (hist) - 1 DO PRINT, 'Region', i, $

', Pixel Popluation = ', hist(i), ' Percent = ', $
100.*FLOAT(hist[i])/(dims[0]*dims[1])

; Load a color table and display the regions.
LOADCT, 12
TVSCL, regions, 3

; Display the pixel population of the regions.
WINDOW, 1, $

TITLE='Surface Representation of Region Populations'
FOR i=1, N_ELEMENTS(hist)-1 DO $

regions[WHERE(regions EQ i)] = hist [i]
SURFACE, regions

END
Image Processing in IDL Analyzing Image Shapes

546 Chapter 11: Extracting and Analyzing Shapes
Using CONTOUR to Extract Image Object Information

It is possible to extract information about an image feature using the CONTOUR
procedure. The following example illustrates how to select an image feature and
return the area of that feature, in this case, calculating the size of a gas pocket in a CT
scan of the thoracic cavity.

Note
For more information on computing statistics for defined image objects see Chapter
8, “Working with Regions of Interest (ROIs)”

For code that you can copy and paste into an Editor window, see “Example Code:
Extracting the Area of a Contour” on page 548 or complete the following steps for a
detailed description of the process.

1. Prepare the display device and load a color table:

DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5

2. Determine the path to the file:

file = FILEPATH('ctscan.dat', $
SUBDIRECTORY = ['examples', 'data'])

3. Initialize the size parameters:

dims = [256, 256]

4. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = dims)

5. Create a window and display the image:

WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, image

6. Create another window and use CONTOUR to display a filled contour of the
image, specifying 255 contour levels which correspond to the number of
values occurring in byte data:

WINDOW, 2
CONTOUR, image, /XSTYLE, /YSTYLE, NLEVELS = 255, $

/FILL

Note
Replace NLEVELS = 255 with NLEVELS = MAX(image) if your display uses less
than 256 colors.
Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 547
7. Use the PATH_* keywords to obtain information about the contours occurring
at level 40:

CONTOUR, image, /XSTYLE, /YSTYLE, LEVELS = 40, $
PATH_INFO = info, PATH_XY = xy, /PATH_DATA_COORDS

The PATH_INFO variable, info, contains information about the paths of the
contours, which when used in conjunction with PATH_XY, traces closed
contour paths. Specify PATH_DATA_COORDS when using PATH_XY if you
want the contour positions to be measured in data units instead of the default
normalized units.

8. Using the coordinate information obtained in the previous step, use the PLOTS
procedure to draw the contours of image objects occurring at level 40, using a
different line style for each contour:

FOR i = 0, (N_ELEMENTS(info) - 1) DO PLOTS, $
xy[*, info[i].offset:(info[i].offset + info[i].n - 1)], $
LINESTYLE = (i < 5), /DATA

9. The specified contour is drawn with a dashed line or LINESTYLE number 2
(determined by looking at “Graphics Keywords” in Appendix H of the IDL
Reference Guide). Use REFORM to create vectors containing the x and y
boundary coordinates of the contour:

x = REFORM(xy[0, info[2].offset:(info[2].offset + $
info[2].n - 1)])

y = REFORM(xy[1, info[2].offset:(info[2].offset + $
info[2].n - 1)])

10. Set the last element of the coordinate vectors equal to the first element to
ensure that the contour area is completely enclosed:

x = [x, x[0]]
y = [y, y[0]]

11. This example obtains information about the left-most gas pocket. For display
purposes only, draw an arrow pointing to the region of interest:

ARROW, 10, 10, (MIN(x) + MAX(x))/2, COLOR = 180, $
(MIN(y) + MAX(y))/2, THICK = 2, /DATA
Image Processing in IDL Analyzing Image Shapes

548 Chapter 11: Extracting and Analyzing Shapes
The gas pocket is indicated with an arrow as shown in the following figure.

12. Output the resulting coordinate vectors, using TRANSPOSE to print vertical
lists of the coordinates:

PRINT, ''
PRINT, ' x , y'
PRINT, [TRANSPOSE(x), TRANSPOSE(y)], FORMAT = '(2F15.6)'

The FORMAT statement tells IDL to format two 15 character floating point
values that have 6 characters following the decimal of each value.

13. Use the POLY_AREA function to compute the area of the polygon created by
the x and y coordinates and print the result:

area = POLY_AREA(x, y)
PRINT, 'area = ', ROUND(area), ' square pixels'

The result, 121 square pixels, appears in the Output Log.

Example Code: Extracting the Area of a Contour

Copy and paste the following text into the IDL Editor window. After saving the file as
ExtractContourInfo.pro, compile and run the program to reproduce the
previous example.

Figure 11-31: Gas Pocket Indicated in CT Scan of Thoracic Cavity
Analyzing Image Shapes Image Processing in IDL

Chapter 11: Extracting and Analyzing Shapes 549
PRO ExtractContourInfo

; Prepare the display device and load a color table.
DEVICE, DECOMPOSED = 0, RETAIN = 2
LOADCT, 5

; Determine the path to the file.
file = FILEPATH('ctscan.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize size parameters.
dims = [256, 256]

; Import the image from the file.
image = READ_BINARY(file, DATA_DIMS = dims)

; Create a window and display the image.
WINDOW, 0, XSIZE = dims[0], YSIZE = dims[1]
TVSCL, image

; Display the filled contour in another window.
WINDOW, 2, TITLE = 'Contour of CT Scan'
CONTOUR, image, /XSTYLE, /YSTYLE, NLEVELS = 255, $

/FILL

; Use the PATH_* keywords to obtain the vertices (and
; related information) of contour areas occurring at
; level 40.
CONTOUR, image, /XSTYLE, /YSTYLE, LEVELS = 40, $

PATH_INFO = info, PATH_XY = xy, /PATH_DATA_COORDS

; Plot the level 40 contours over the filled contour
; display. Use different linestyles for each closed
; contour at level 40.
FOR i = 0, (N_ELEMENTS(info) - 1) DO PLOTS, $

xy[*, info[i].offset:(info[i].offset + info[i].n - 1)], $
LINESTYLE = (i < 5), /DATA

; From the previous display, we determined the gas
; pocket we are interested in is the third closed
; contour at level 40, with the number 2, dashed line
; style. Obtain the x and y coordinates for this closed
; contour.
x = REFORM(xy[0, info[2].offset:(info[2].offset + $

info[2].n - 1)])
y = REFORM(xy[1, info[2].offset:(info[2].offset + $

info[2].n - 1)])
HELP, (xy[0, info[2].offset:(info[2].offset +$

info[2].n - 1)])
Image Processing in IDL Analyzing Image Shapes

550 Chapter 11: Extracting and Analyzing Shapes
PRINT, (xy[1, info[2].offset:(info[2].offset + $
info[2].n - 1)])

; Set the last element of the coordinate vectors to the
; first element to ensure that the contour area is
; completely enclosed.
x = [x, x[0]]
y = [y, y[0]]

; Draw an arrow pointing to the region of interest for
; display purposes only.
ARROW, 10, 10, (MIN(x) + MAX(x))/2, COLOR = 180, $

(MIN(y) + MAX(y))/2, THICK = 2, /DATA

; Output the resulting vectors.
PRINT, ''
PRINT, ' x , y'
PRINT, [TRANSPOSE(x), TRANSPOSE(y)], FORMAT = '(2F15.6)'

; Compute area of gas pocket and output results.
area = POLY_AREA(x, y)
PRINT, 'area = ', ROUND(area), ' square pixels'

END
Analyzing Image Shapes Image Processing in IDL

Index

A
adaptive

filtering, 475
histogram equalization, 422

adding borders. See padding images
alpha channel, 272
annotating

indexed images, 158
RGB images, 163, 168

B
backprojecting

Hough transform, 389
Radon transform, 389

bilinear interpolation, 179

binary images
data definition, 15
displaying

Direct Graphics, 33
Object Graphics, 46

masking, 244
morphological operations, 480
thinning operation, 527

borders. See padding images
boundaries, 508
byte-scaling, 413

C
clipping an image, 251
closing operator, 500
CMY color system, 88
Image Processing in IDL 551

552
color
channels, 91
Direct Graphics, 95
IDL objects, 92
IDL routines, 92
Object Graphics, 97
systems

CMY, 88
converting, 120
HLS, 88
HSV, 88
RGB, 88

tables
highlighting image features, 134
loading, 100
Look-Up Table (LUT), 91
modifying, 103, 113, 119
pre-defined tables, 100

visuals
Direct Graphics, 96
Object Graphics, 99
Unix, 90
Windows, 90

color density contrasting, 402
colormaps, 95
compression, 365
contrast

enhancements, 410
IDL routines, 411

contrasting color density, 402
control points, 271, 275, 285
converting

color systems, 120
color tables, 103
data types, 16
image types, 121
indexed images to RGB, 121
RGB images to grayscale, 124
RGB images to indexed, 129

convolution, 428

coordinate systems
device, 31
normalized, 32
window, 31

correcting shifted images, 191
cropping images, 180
cubic convolution interpolation, 179

D
data types

converting, 16
IDL indices, 21
image files, 16

DEM
geometric surface object, 225
overlaying images, 224

derivatives
first, 438
second, 442

detecting edges
directional filtering, 438
Laplacian filtering, 442
Roberts operator, 464
Sobel operator, 467

Digital Elevation Model. See DEM
dilation operator, 489
Direct Graphics

color
indexed, 95
RGB, 95

color annotations
indexed images, 153
RGB images, 163

displaying
binary images, 33
grayscale images, 35
indexed images, 38
multiple images, 62
RGB images, 42

displaying transparent images, 272
Index Image Processing in IDL

553
highlighting minor variations, 146
highlighting with color, 134
manipulating images

panning, 80
zooming, 73

versus Object Graphics, 30
ROI selection, 306, 311
visuals

Unix, 94
Windows, 95

window coordinates, 31
directional filtering, 438
displaying

Direct Graphics
binary images, 33
grayscale images, 35
indexed images, 38
multiple images, 62
RGB images, 42

frequency transform, 349
Hough transform, 384
IDL routines, 28
images mapped onto surfaces, 227
Object Graphics

binary images, 46
grayscale images, 49
indexed images, 52
multiple images, 66
RGB images, 57

Radon transform, 384
time-frequency transform, 370
wrap around, 413

displaying IDL objects, 28
distance map, 523
distance windowing, 470
domains

frequency, 340
Hough, 340
Radon, 341
spatial, 340
time-frequnecy, 340

E
edge detection, 520

directional filtering, 438
Laplacian filtering, 442
Roberts operator, 464
Sobel operator, 467

elevation data
overlaying on surfaces, 224

enhancing images, 410
equalizing

adaptive, 422
histograms, 418

erosion operator, 489
expanding an image, 188
expanding image objects, 489
exporting

formatted image files, 23
unformatted image files, 25

extracting image object information, 540, 546
extracting volume slices, 209

F
Fast Fourier Transform.

See frequency transform
FFT. See frequency transform
files

accessing, 18
exporting

formatted, 23
unformatted, 25

importing
formatted, 22
unformatted, 24

querying, 18
filtering

adaptive, 475
convolution, 428
directional, 438
high pass, 433
Image Processing in IDL Index

554
IDL routines, 411
Laplacian, 442
Lee, 475
low pass, 429
windowing, 470

finding straight lines, 394
first derivatives, 438
flipping images. See rotating an image
forward transforms

frequency, 343
time-frequency, 365

frequency domain, 340
frequency transform

displaying, 349
forward, 343
inverse, 354
removing noise, 358

G
geometric area, 302
geometric transformations

IDL routines, 176
interpolation methods, 178

gradient operator, 520
grayscale images

data definition, 15
displaying

Direct Graphics, 35
Object Graphics, 49

morphological operations, 480
zooming, 73, 76

growing an ROI, 317

H
Hamming windowing, 470
Hanning windowing, 470
high pass filtering, 433

highlighting
Direct Graphics, 134
histogram equalization, 145
image features, 134
Object Graphics, 139
variations in images, 145
variations with Direct Graphics, 146

histogram equalization
adaptive, 422
color table contrast, 145
pixel value contrast, 418

histograms, 417, 486
hit-or-miss operator, 514
HLS color system, 88
Hough domain, 340
Hough transform

backprojecting, 389
displaying, 384
finding straight lines, 394
projecting, 383

HSV color system, 88

I
IDL data types, 21
IDL objects

color, 92
displaying, 28
mapping images onto geometry, 222
region of interest (ROI), 300

IDL routines
color, 92
contrast enhancements, 411
converting data types, 16
displaying, 28
domain transformation, 341
filtering, 411
geometric transformations, 176
mapping images onto geometry, 222
masking and clipping images, 244
morphological operations, 481
Index Image Processing in IDL

555
regions of interest (ROIs), 300
transforms, 341
warping images, 270

image processing
calculating statistics, 262
geometric transformations, 176
mapping images onto geometry, 221
morphological operations, 480
querying file formats, 18
references, 26
ROI analysis, 300
shape analysis, 484
techniques, 12
warping transparent images, 274

image registration. See warping images
image transformation methods, 176
image transparency, 272
images

adding a border, 184
adding color annotation, 153
calculating statistics, 262
clipping, 251
compression, 365
correcting misalignment, 191
creating boundaries, 508
cropping, 180
data types, 16
displaying in Direct Graphics

binary, 33
grayscale, 35
indexed images, 38
multiple images, 62
RGB, 42

displaying in Object Graphics
binary, 46
grayscale, 49
indexed images, 52
multiple images, 66
RGB, 57

expanding, 188
exporting files, 23, 25

file types, 15
first derivatives, 438
flipping, 194
highlighting features, 134
importing files, 22, 24
interpolation, 176
magnifying, 188
manipulating in Direct Graphics

panning, 80
zooming, 73

manipulating in Object Graphics
panning, 82
zooming, 76

masking, 244
morphological operations, 480
padding, 180, 184
pixel value location, 256
querying file formats, 18
resampling, 176
resizing, 180, 188
reversing, 194
ROI analysis, 300
scaling, 188
second derivatives, 442
shifting, 191
shrinking, 188
statistical calculations, 262
structure tag information, 19
thresholding, 487
transparent overlays, 272
transposing, 194, 197
warping a transparency, 272

importing
formatted image files, 22
unformatted image files, 24

indexed color
color tables, 91

indexed images
color annotations, 153, 158
converting to RGB, 121
data definition, 15
Image Processing in IDL Index

556
displaying
Direct Graphics, 38
Object Graphics, 52

intensity histogram, 486
intensity value, 486
interpolation

bilinear, 179
cubic convolution, 179
image quality, 178
linear, 179
methods, 179
nearest-neighbor, 179
trilinear, 179

inverse transforms
frequency, 354
time-frequency, 374

isosurface of 3D data, 212

K
kernels

directional, 438
high pass, 433
Laplacian, 442
low pass, 429

L
labeling regions, 540
Laplacian filtering, 442
layering images, 222
Lee filtering, 475
linear interpolation, 179
linear transformations, 176
locating pixel values, 256
Look-Up Table (LUT), 91
low pass filtering, 429

M
magnifying an image, 188
manipulating images

panning
Direct Graphics, 80
Object Graphics, 82

zooming
Direct Graphics, 73
Object Graphics, 76

manipulating volume data, 212
mapping

images onto a sphere
creating display objects, 237
Direct Graphics, 233
Object Graphics, 237

images onto geometry
creating objects, 225
Digital Elevation Model, 224
displaying, 227
IDL objects, 222
IDL routines, 222
Object Graphics, 224

transparent images, 285
transparent overlays, 285

mask area, 302
masking an image, 244
mathematical operators, 244
modifying color tables, 103
morphological mask. See structuring element
morphological operations

closing, 500
combining operations, 534
dilation, 489
distance map, 523
erosion, 489
gradient, 520
hit-or-miss, 514
IDL routines, 481
opening, 496
structuring element, 480
thinning, 527
Index Image Processing in IDL

557
top-hat, 504
watershed, 508

multiple images
displaying in Direct Graphics, 62
displaying in Object Graphics, 66

N
nearest-neighbor interpolation, 179
noise removal

adaptive filtering, 475
frequency transform, 358
Lee filter, 475
smoothing, 496
time-frequency, 378
windowing, 470

nonlinear transformations, 270

O
Object Graphics

color annotations
indexed images, 158
RGB images, 168

versus Direct Graphics, 30
displaying

binary images, 46
grayscale images, 49
indexed images, 52
multiple images, 66
RGB images, 57

displaying transparent images, 272
highlighting with color, 139
manipulating images

panning, 82
zooming, 76

ROI selection, 303
visuals, 97

opening operator, 496

operators
closing, 500
dilation, 489
erosion, 489
gradient, 520
hit-or-miss, 514
opening, 496
Roberts, 464
Sobel, 467
thinning, 527
top-hat, 504
watershed, 508

optical distortion correction, 270
overlaying images on geometries, 222

P
padding images

borders, 180
morphological processing, 490

panning images
Direct Graphics, 80
Object Graphics, 82

peak detector. See top-hat operator
pivoting in rotation, 203
pixel value locations, 256
planar slicing

interactively, 211
volumes, 206

private colormaps, 95
projecting

Hough transform, 383
Radon transform, 383

PseudoColor visuals, 89

Q
querying image files, 18
Image Processing in IDL Index

558
R
Radon domain, 341
Radon transform

backprojecting, 389
contrasting color, 402
displaying, 384
projecting, 383

references, 26
region labeling, 540
region of interest. See ROI
removing noise

adaptive filtering, 475
frequency transform, 358
Lee filter, 475
time-frequency transform, 378
windowing, 470

resampling images. See interpolation
resizing images, 180, 188
reversing an image, 194, 197
RGB color system, 88
RGB images

color annotations, 163, 168
converting to grayscale, 124
converting to indexed, 129
data definition, 15
displaying

Direct Graphics, 42
Object Graphics, 57

Roberts operator, 464
ROI

determining point location, 330
geometric area, 302
grouping multiple ROIs, 334
growing an area, 317
IDL objects, 300
IDL routines, 300
mask area, 302
masking an area, 324
selecting interactively, 303
selecting programmatically, 311
surface mesh, 334

rotating an image
90 degree increments, 200
arbitrary increments, 203

rubber sheeting. See warping images

S
scaling

See also stretching
byte, 413
images, 188
stretching images, 488

second derivatives, 442
segmenting image features, 256
setting a pivot point, 203
shape analysis, 484
shape detection, 480
shared colormaps, 95
sharpening an image, 433, 459
shift correction, 191
shifting an image, 191
shrinking

image objects, 489
images, 188

slicing volumes
extracting a slice, 209
series of slices, 206

smoothing
average values, 448
dilation/erosion, 500
erosion/dilation, 496
low pass filtering, 429
median values, 453

Sobel operator, 467
spatial domain, 340
statistics

image processing calculations, 262
masking, 262

stretching
intensity values, 488
scaling images, 488
Index Image Processing in IDL

559
structure tags, 19
structuring element, 480, 484, 514
surfaces

overlaying images, 222
triangulated ROI mesh, 334

T
texture mapping.

See mapping, images onto geometry
thinning operator, 527
thresholding

clipping levels, 251
intensity, 487
intensity values, 486
masking features, 246
ROI analysis, 311

tie points. See control points
time-frequency domain, 340
time-frequency transform

displaying, 370
forward, 365
inverse, 374
removing noise, 378

top-hat operator, 504
transformations

geometric, 176
linear, 176
nonlinear, 270
warping, 270

transforms
frequency

displaying, 349
forward, 343
inverse, 354
removing noise, 358

Hough
backprojecting, 389
displaying, 384
finding straight lines, 394
projecting, 383

IDL routines, 341
Radon

backprojecting, 389
contrasting color, 402
displaying, 384
projecting, 383

time-frequency
displaying, 370
forward, 365
inverse, 374
removing noise, 378

transparency
adding an alpha channel, 272
displaying in Direct Graphics, 272
displaying in Object Graphics, 272

transparent image overlays
creating, 272
Direct Graphics, 274
Object Graphics, 285

transposing an image, 194, 197
triangulating surface meshes, 334
trilinear interpolation, 179
TrueColor visuals, 89, 95

U
utility routines

changing palettes, 113
loading color tables, 103
modifying color tables, 119

V
volumes

manipulating, 212
slicing, 206

volumetric data
displaying with SLICER3, 212
displaying with XVOLUME, 216
Image Processing in IDL Index

560
W
warping images

Direct Graphics display, 274
IDL routines, 270
Object Graphics display, 285
selecting control points, 271

watershed operator, 508
wavelet transform.

See time-frequency transform

windowing
distance, 470
Hamming, 470, 470
Hanning, 470

wrap around displays, 413

Z
zooming images

Direct Graphics, 73
Object Graphics, 76
Index Image Processing in IDL

	Online Documentation
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL DataMiner Guide
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit User's Guide

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Image Processing in IDL: Contents
	Introduction to Image Processing in IDL
	Overview of Image Processing
	Digital Images and Image Processing

	Understanding Image Definitions in IDL
	Representing Image Data in IDL
	Accessing Images
	Querying Images
	Importing Formatted Image Files
	Exporting Formatted Image Files
	Importing Unformatted Image Files
	Exporting Unformatted Image Files

	References

	Creating Image Displays
	Overview of Creating Image Displays
	Differentiating Between Graphics Systems
	Direct Graphics
	Object Graphics
	Understanding Windows and Related Device Coordinates

	Creating Direct Graphics Image Displays
	Displaying Binary Images with Direct Graphics
	Example Code: Displaying Binary Images with Direct Graphics

	Displaying Grayscale Images with Direct Graphics
	Example Code: Displaying Grayscale Images with Direct Graphics

	Displaying Indexed Images with Direct Graphics
	Example Code: Displaying Indexed Images with Direct Graphics

	Displaying RGB Images with Direct Graphics
	Example Code: Displaying RGB Images with Direct Graphics

	Creating Object Graphics Image Displays
	Displaying Binary Images with Object Graphics
	Example Code: Displaying Binary Images with Object Graphics

	Displaying Grayscale Images with Object Graphics
	Example Code: Displaying Grayscale Images with Object Graphics

	Displaying Indexed Images with Object Graphics
	Example Code: Displaying Indexed Images with Object Graphics

	Displaying RGB images with Object Graphics
	Example Code: Displaying RGB Images with Object Graphics

	Displaying Multiple Images in a Window
	Displaying Multiple Images in Direct Graphics
	Example Code: Displaying Multiple Images in Direct Graphics

	Displaying Multiple Images in Object Graphics
	Example Code: Displaying Multiple Images in Object Graphics

	Zooming in on an Image
	Zooming in on a Direct Graphics Image Display
	Example Code: Zooming in Direct Graphics

	Zooming in on an Object Graphics Image Display
	Example Code: Zooming in Object Graphics

	Panning Within an Image
	Panning in Direct Graphics
	Example Code: Panning in Direct Graphics

	Panning in Object Graphics
	Example Code: Panning in Object Graphics

	Working with Color
	Overview of Working with Color
	Color Systems
	Display Device Color Schemes
	Setting a Visual on Unix Platforms
	Setting a Visual on Windows Platforms

	Image Data Organization
	Chapter Overview

	Understanding Colors within IDL Graphic Systems
	Direct Graphics
	Visuals on Unix Platforms
	Private versus Shared Colormaps
	Visuals on Windows Platforms
	IDL Color Table
	Foreground Color
	Image Colors

	Object Graphics
	Palettes
	Color Models
	Atomic Graphic Object Colors
	Image Colors

	Loading Pre-defined Color Tables
	Modifying and Converting Color Tables
	Using the XLOADCT Utility
	Example Code: Using the XLOADCT Utility

	Using the XPALETTE Utility
	Example Code: Using the XPALETTE Utility

	Using the MODIFYCT Routine
	Converting to Other Color Systems

	Converting Between Image Types
	Converting Indexed Images to RGB Images
	Example Code: Converting Indexed Images to RGB Images

	Converting RGB Images to Grayscale Images
	Example Code: Converting RGB Images into Grayscale Images

	Converting RGB Images to Indexed Images
	Example Code: Converting RGB Images to Indexed Images

	Highlighting Features with a Color Table
	Highlighting Features with Color in Direct Graphics
	Example Code: Highlighting Features with Color in Direct Graphics

	Highlighting Features with Color in Object Graphics
	Example Code: Highlighting Features with Color in Object Graphics

	Showing Variations in Uniform Areas
	Showing Variations with Direct Graphics
	Example Code: Showing Variations with Direct Graphics

	Applying Color Annotations to Images
	Applying Color Annotations to Indexed Images in Direct Graphics
	Example Code: Applying Color Annotations to Indexed Images in Direct Graphics

	Applying Color Annotations to Indexed Images in Object Graphics
	Example Code: Applying Color Annotations to Indexed Images in Object Graphics

	Applying Color Annotations to RGB Images in Direct Graphics
	Example Code: Applying Color Annotations to RGB Images in Direct Graphics

	Applying Color Annotations to RGB Images in Object Graphics
	Example Code: Applying Color Annotations to RGB Images in Object Graphics

	Transforming Image Geometry
	Overview of Geometric Transformations
	Interpolation Methods
	Cropping Images
	Example Code: Cropping an Image

	Padding Images
	Example Code: Padding an Image

	Resizing Images
	Example: Resizing an Image Using CONGRID

	Shifting Images
	Example Code: Using Shift to Correct an Image

	Reversing Images
	Example Code: Reversing Images

	Transposing Images
	Example Code: Transposing an Image

	Rotating Images
	Rotating an Image by 90 Degree Increments
	ROTATE Direction Argument Options
	Example Code: Using ROTATE

	Using the ROT Function for Arbitrary Rotations
	Example Code: Image Rotation Using the ROT Function

	Planar Slicing of Volumetric Data
	Displaying a Series of Planar Slices
	Example Code: Displaying a Series of Planar Slices

	Extracting a Slice of Volumetric Data
	Example Code: Extracting a Slice of Volumetric Data

	Interactive Planar Slicing of Volumetric Data
	Displaying Volumetric Data Using SLICER3
	Manipulating Volumetric Data Using SLICER3
	Example Code: Displaying Volumetric Data Using SLICER3

	Displaying Volumes Using XVOLUME
	Manipulating Volumetric Data Using XVOLUME
	Example Code: Displaying Volumetric Data Using XVOLUME

	Mapping an Image onto Geometry
	Overview of Mapping Images onto Geometric Surfaces
	Mapping an Image onto Elevation Data
	Opening Image and Geometry Files
	Initializing the IDL Display Objects
	Displaying the Image and Geometric Surface Objects
	Example Code: Mapping an Image onto a DEM

	Mapping an Image onto a Sphere
	Mapping an Image onto a Sphere Using Direct Graphics
	Example Code: Mapping an Image onto a Sphere Using Direct Graphics

	Mapping an Image onto a Sphere Using Object Graphics
	Example Code: Mapping an Image onto a Sphere Using Object Graphics

	Working with Masks and Image Statistics
	Overview of Masks and Image Statistics
	Masking Images
	Example Code: Masking Images

	Clipping Images
	Example Code: Thresholding Images

	Locating Pixel Values in an Image
	Example Code: Locating Pixel Values in an Images

	Calculating Image Statistics
	Example Code: Calculating Image Statistics

	Warping Images
	Overview of Warping Images
	Tips for Selecting Control Points

	Creating Transparent Image Overlays
	Displaying Image Transparencies Using Direct Graphics
	Displaying Image Transparencies Using Object Graphics

	Warping Images Using Direct Graphics
	Direct Graphics Example: Selecting Control Points
	Example Code: Warping and Displaying a Transparent Image Using Direct Graphics
	Example Code: Direct Graphics Display of Image Warping

	Warping Images Using Object Graphics
	Object Graphics Example: Selecting Control Points
	Object Graphics Example: Warping and Displaying a Transparent Image
	Example Code: Object Graphics Display of Image Warping

	Working with Regions of Interest (ROIs)
	Overview of Working with ROIs
	Contrasting an ROI’s Geometric Area and Mask Area

	Defining Regions of Interest
	Displaying ROI Objects in a Direct Graphics Window
	Example Code: Displaying ROIs in a Direct Graphics Window

	Programmatically Defining ROIs and Computing Geometry and Pixel Statistics
	Example Code: Defining an ROI and Computing ROI Statistics

	Growing a Region
	Example Code: Growing an ROI

	Creating and Displaying an ROI Mask
	Example Code: Defining an ROI Mask

	Testing an ROI for Point Containment
	Example Code: Testing an ROI Object for Point Containment

	Creating a Surface Mesh of an ROI Group
	Example Code: Creating an ROI Mesh from an ROI Group

	Transforming Between Domains
	Overview of Transforming Between Image Domains
	Transforming to and from the Frequency Domain with FFT
	Transforming to the Frequency Domain
	Example Code: Transforming to the Frequency Domain

	Displaying Images in the Frequency Domain
	Example Code: Displaying Images in the Frequency Domain

	Transforming from the Frequency Domain
	Example Code: Transforming from the Frequency Domain

	Removing Noise with the FFT
	Example Code: Removing Noise with the FFT

	Transforming to and from the Time- Frequency Domain with Wavelets
	Transforming to the Time-Frequency Domain
	Displaying Images in the Time-Frequency Domain
	Example Code: Displaying Images in the Time-Frequency Domain

	Transforming from the Time-Frequency Domain
	Example Code: Transforming from the Time-Frequency Domain

	Removing Noise with the Wavelet Transform
	Example Code: Removing Noise with the Wavelet Transform

	Transforming to and from the Hough and Radon Domains
	Transforming to the Hough and Radon Domains (Projecting)
	Example Code: Hough and Radon Projections

	Transforming from the Hough and Radon Domains (Backprojecting)
	Example Code: Hough and Radon Backprojections

	Finding Straight Lines with the Hough Transform
	Example Code: Finding Straight Lines with the Hough Transform

	Color Density Contrasting with the Radon Transform
	Example Code: Color Density Contrasting with the Radon Transform

	Contrasting and Filtering
	Overview of Contrasting and Filtering
	Byte-Scaling
	Example Code: Byte-Scaling

	Working with Histograms
	Equalizing with Histograms
	Example Code: Equalizing with Histograms

	Adaptive Equalizing with Histograms
	Example Code: Adaptive Equalizing with Histograms

	Filtering an Image
	Low Pass Filtering
	Example Code: Low Pass Filtering

	High Pass Filtering
	Example Code: High Pass Filtering

	Directional Filtering
	Example Code: Directional Filtering

	Laplacian Filtering
	Example Code: Laplacian Filtering

	Smoothing an Image
	Smoothing with Average Values
	Example Code: Smoothing with Average Values

	Smoothing with Median Values
	Example Code: Smoothing with Median Values

	Sharpening an Image
	Example Code: Sharpening an Image

	Detecting Edges
	Enhancing Edges with the Roberts Operator
	Example Code: Enhancing edges with the Roberts Operator

	Enhancing Edges with the Sobel Operator
	Example Code: Enhancing edges with the Sobel Operator

	Removing Noise
	Windowing to Remove Noise
	Example Code: Windowing to Remove Noise

	Lee Filtering to Remove Noise
	Example Code: Lee Filtering to Remove Noise

	Extracting and Analyzing Shapes
	Overview of Extracting and Analyzing Image Shapes
	Applying a Morphological Structuring Element to an Image

	Guidelines for Determining Structuring Element Shapes and Sizes
	Determining Intensity Values When Thresholding and Stretching Images
	Thresholding an Image
	Stretching an Image

	Eroding and Dilating Image Objects
	Characteristics of Erosion
	Characteristics of Dilation
	Applying Erosion and Dilation
	Example Code: Eroding and Dilating Image Elements

	Smoothing with MORPH_OPEN
	Example Code: Using MORPH_OPEN to Remove Noise

	Smoothing with MORPH_CLOSE
	Example Code: Using MORPH_CLOSE

	Detecting Peaks of Brightness
	Example Code: Detecting Bright Peaks with MORPH_TOPHAT

	Creating Image Object Boundaries
	Example Code: Detecting Boundaries with WATERSHED

	Selecting Specific Image Objects
	Example Code: Identifying Objects with MORPH_HITORMISS

	Detecting Edges of Image Objects
	Example Code: Displaying Edges with MORPH_GRADIENT

	Creating Distance Maps
	Example Code: Displaying Distances with MORPH_DISTANCE

	Thinning Image Objects
	Example Code: Thinning Image Objects

	Combining Morphological Operations
	Example Code: Combining Morphological Operations in Feature Extraction

	Analyzing Image Shapes
	Using LABEL_REGION to Extract Image Object Information
	Example Code: Displaying Regions with LABEL_REGION

	Using CONTOUR to Extract Image Object Information
	Example Code: Extracting the Area of a Contour

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

