=i DL

External
Development
Guide

RE SEARCH IDL Version 5.6
October, 2002 Edition
SYST EMS Copyright © Research Systems
L A Kodak Company

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerica Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ jsatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library

Copyright © 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and A pplied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisysunder U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424,

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Ccontents

Chapter 1:

OV EIVIBW ittt e e e e e e e e e e e e ee e e e e e saaatea e e eaeeeeeeeaeeeeeeeennnens 11
ADOUL IS IMANUAEL ..o e e e e e s 12
Supported Inter-Language Communication Techniquesin IDLcccooceviriie e, 13
Dynamic Linking Terminology and CONCEPLSeoeiieerririie et 19
When isit Appropriate to Combine External Code With IDL?cccceoiiiecinninie e 21
Skills Required to Combine External Code With IDLcccooviriiiiicenceee e 22
IDL OFQANIZAHIONeieeiieiiie et eeiee e eesteeseessee s e eae s e e e sseeseeeseesaeesae e st seessasenseaaeansesssenas 26
EXtErnal DEfINITIONS ..ottt st e e e e e e e e seee 28
Interpreting Logical Boolean ValUEScoooiiiiiiiiiiieiee e 29
Compilation And Linking DELailSooiiiiiiiiiini et e e 30
Recommended REAAINGccoiuee ittt e e e e e e 31

External Development Guide 3

4

Part I: Techniqgues That Do Not Use IDL's Internal API

Chapter 2:

Using SPAWN and UNIX PIPESccuuiiiiiiiiiiiiiiiiie et 35
Chapter 3:

Overview: COM and ActiveX in IDL ..o 39
COM ODJECLS QN IDL ...ttt ettt e e e e et sn e 40
USiNg COM ODJECtS WIth IDL ..ottt e e 42
Skills Required to USE COM ODJECESccueriruerririeiireerere ettt 44
Chapter 4:

Using COM ODBjJECtS iN IDL ..ot 45
USING COM ODJECES IN IDL ..ottt s 46
IDLcoml Dispatch Object Naming SChemeccoiriieieiniene e e 48
Creating IDLcomIDispatCh ODJECEScc.cveiirieieiieiiie et 52
Method Calls on IDLcomIDispatCh OBJECESccveuiririeieeirie e e 53
Managing COM ODbjJECt PrOPEITIESocveueriiereeieiire sttt 61
References to Other COM ODJECESooveueririereeieiise sttt st 63
Destroying IDLcomIDiSpatch ODJECLScoviveriieeiire et e 64
COM-IDL Data TYPe MEPPING ...ccuerueeuereeieierieseeieieseerese et seesesreiesessesnessesse e s s enseseenes 65
Example: RSIDEMOCOMPONENE ..ot eresie st e ses e e e e 67
Chapter 5:

Using ActiveX Controls in IDL ... 71
Using ActiveX ControlSiN IDLccoiiiiiieinie ettt e 72
ActiveX Control Naming SCREMEcc.occiriieiee e e e 73
Creating ACHIVEX CONIOIS ..ottt e 74
Method Calls 0N ACHVEX CONIOISc.coueeuiriiie ettt 76
Managing ActiveX Control Propertiesococeeoeeirereneeiriese s s 78
ACHVEX WIAJEL EVENES ...ovieiiieie ettt e e 79
Destroying ACHVEX CONLIOISoceiuirieieieeiirt ettt e e e 82
Example: Calendar CONLIOloceeireiieeire et e 83
Example: Spreadsheet CONIOl ..ot e 86
Chapter 6:

The IDLDrawWidget ActiveX Control ..o 91
OVEIVIBIW ..ttt ettt et et ekt e h e es et ehe se e se et eh e bes b et enens e e nnene s 92
Creating an Interface and Handling EVENLS ..o 94

Contents External Development Guide

WOrking With IDL PrOCEAUIEScueeeuiriiieserie ettt s e enene e 100
AAVANCET EXAMPIES ..ottt et e et e nene e 103
Copying and Printing IDL GraphiCScccoeirieinciereee st s 104
XLoadCT Functionality Using Visual BaSiCcccceveiienneniineineeece e 108
XPalette Functionality Using Visual BaSICcccooeeereiienineniieie e 109
Integrating Object Graphics Using Visual BaSICccccourerereeneeine e 110
Sharing a Grid Control Array With IDLccooiiiiiieice e s 111
Handling Events Within ViSual BaSICccccorieiriiienieiniese e e 112
Distributing Y our ActiveX APPHICALIONccoeieireiiereeineene st 113
Chapter 7:

IDLDrawWidget Control Referencecoooooiiiiiiiiiiiiiieiieeieeeeeeeeeee 115
[DLDIAWWIAGEL ..eeveieieeeeeie ettt ettt b et st et a et se e 116
IMEBENOUS ..ot h et ee e et h e e et e nen s 117
Do Methods (RUNEIME ONIY) ...t et e 127
PrOPEITIES ..ottt et ee e e et e b e e e s et e nen e 129
R0 ONIY PrOPEITIES ..c.eviieeiee ettt ettt et nene e 133
AULO EVENE PrOPEITIES ...ttt et s e e 135
BVENTS e e et e e e 137
Chapter 8:

CALL_EXTERNAL et 139
The CALL_EXTERNAL FUNCHON ...coiiiiiriiiee et s 140
PaSSING PAIAIMELENSoeiuiiiieieeiet ettt e et e e e s 150
USING AULO GIUE ... et e en e 152
BaSIC C EXAMPIES ...ttt sttt e et e et e nen e 154
WIapPEr ROULINES ...ttt sttt et eb e st e ennene e 157
PaSSING SIMNQG DAcueeviieiireeiire et se e et nene e 159
PaSSING ATTAY DELAccveeeeiriieieciet ettt e et e e ene e 163
PASSING SETUCIUIESvectireie ettt e et ebe e et e nene e 165
FOrtran EXaMPIESoiuiiieiieie ettt e et s e e s 167
Chapter 9:

Remote Procedure Calls ... 171
IDL and Remote Procedure CallS ...t e 172
USING IDL @S 8N RPC SEIVEYccuiiiiiiieeeiiie ettt st 173
CHENt VAITEDIES ... e 174

External Development Guide Contents

Linking to the CHent LiDrary ... e 175
Compatibility With Older IDL COUEccueiiriiriiieire et 177
The IDL RPC LIDIaIY ...ooe ettt et e e e 179
RPC EXAMPIES ...ttt sttt et st e eb e sr e en e ebesn e s 204

Part II: IDL's Internal API
Chapter 10:

IDL INtErNalS: TYPES ..ottt 207
TYPE COUES ...ttt ettt et ee e et e b e e es e et s e e re e et nes 208
MapPIiNG Of BASIC TYPES ...cuerviieririeitiieiie e esire ettt e er e e es e sae e ees 210
IDL_MEMINT and IDL_FILEINT TYPES ...c.ccierieeiirierieneerireie et 213
Chapter 11:

IDL Internals: Variables ... 215
IDL and Interna VariableSccoceeieie ittt e 216
The IDL_VARIABLE SLUCIUIEeoiiieeeieriereee ettt st see e e e snens 217
SCAlAr VATADIES ..ottt et se e e s e e see e e e e eneenrens 220
ATTAY VAITADIES ...t et 221
SHUCIUIE VAITADIES ...ttt s s e e et nnens 223
HEBD VaITADIES ...t e e 228
Temporary VariableS ...t e 229
Creating an Array from EXiSting Dataccoeeeruemreeiineeieeee s 236
Getting DYNAMIC MEMOTYoiviieiiieeie ettt s st sr et e e 238
ACCESSING VarialDl@ Dalacoveueeeirieriieciee ettt e 240
COPYING VATADIES ...ttt e e et 241
StOriNG SCAlAr VAIUESc.ocuiieiiiiciire sttt 242
Obtaining the Name of aVariable ... 244
Looking Up Main Program Variablesccccceiirireeieie e s 245
Looking Up VariableSin CUrrent SCOPEccceverrerereerieiesrinseeseesie e seeseese s e 246
Chapter 12:

IDL Internals: Keyword ProCessSingccceeeeeenniiniieniciiiieneeneeeee 247
IDL and KeyWOord PrOCESSINGccveeererieieeeeiesiesteeseeieiesreeseesee e sneesaeseessesneessesssseesnes 248
Creating Routines that ACCEPt KEYWOITScoveiueeerieiireeireee e 249
Overview Of IDL KeyWOrd ProCESSINGccccerveruermrerrerieireesirsesieseee s s seesesesseseenens 250
The IDL_KW _PAR SEIUCIUIE ...coueieeeieie ettt ettt see e e s e sreseeneaneesnens 252
The IDL_KW_ARR_DESC_R StIUCIUIcceiirireeeiieiee e e 255

Contents External Development Guide

Keyword Processing OPLIONSccoerereeirereneeeieieseseeieses e seeseesese s e ses e seesesessens 256
The KW_RESULT SITUCEUIE ...eoeieiee ettt sttt s s see e aneanee e 258
ProCessing KEYWOITSccucirieuirieieieee sttt se e e st e enene s 259
ClEANING UP ettt et se e et e b e et s e e en e 262
KeyWord EXBMPIESc.ooviieiieeie et et e 263
The Pre-IDL 5.5 KeYWOId AP ..ot e 270
Chapter 13:

IDL Internals: String ProCesSiNgcccoovveiiiiiiiiiiiiiiiiiiieeeeeeeeee e 277
String ProcessiNg @nd IDLc.ccueiiiieiecieeiee sttt e e 278
ACCeSSING IDL_STRING VAUES ...ttt e 279
COPYING SEINQS vttt ettt se s st es et ebe e st ss e bese et b e ns et e e eaesr e e seeseens 280
DEIEIING SEFMNGS ..vveuteeie ettt ettt er e e e er e e et b e sae e et e ennenenae s 281
Setting an IDL_STRING VEIUEccooiuirieiiireiiie et 282
Obtaining a String of @ GIVEN LENGNocoiiiiiieeeece e 283
Chapter 14:

IDL Internals: Error HaNdlingcooovieiiiiiiiiiie e 285
MESSAOE BIOCKS ...ttt ettt et e nen e 286
[SSUING EITOr IMESSAgESouiieiiiietiie sttt st ettt et nr e sene s 288
Looking Up A Message Code Dy NEaIMEcoreeuirerierieiniee e e 294
ChecKinNg ATQUMENTSc.oruiieeiiieinie et sttt se e sr e s eb s ne e e senseens 295
Chapter 15:

IDL Internals: Type CONVEIrSION ...ocoiiiiiiiiiiiiiiiiiiieiiiiiee e 299
Converting ArgumentSt0 C SCAIAIScuverrireeirieee et e 300
GeNeral TYPE CONVEISION ...cuoeiuiiiiereeaierisie sttt ere et ss e ese e s ne e ne s e e senaeens 301
Converting to SPECITIC TYPESoueeuereeieirie sttt er e e 302
Chapter 16:

IDL Internals: UNIX Signals ... 303
IDL @NA SIGNEIS ...ttt et st ne e nene e 304
SIGNAl HANAIENS ...t et e e 307
Establishing @ Signal HaNAIEr ..o e 308
Removing a Signal Handler ... e 309
UNIX SIGNal MBSKS ...ttt et e 310

External Development Guide Contents

Chapter 17:

IDL Internals: Files and Input/Outputcccoveiiiiiiiiiiiiieeee 315
IDL and INPUL/OULPUL FITESooviiiiiieiieeeeirt ettt et e e 316
FIle INFOrMELION ...ttt e et 318
OPENING FIIES ..ottt e et n e e 322
ClOSING FIIES ..ot e st r et b e 324
Preventing File ClOSING ..o e s 325
CheCKiNg File SLALUScveuirieriiieiiee ettt s n e e 326
Allocating and Freeing FIle UNItSccooiiiieice e 328
DeteCting ENG Of FIlE ..ot e e s 330
FIushing BUFFEred D@ccuevveuereirie et e 331
Reading @ SiNgIE CharaCteroceciieiieieiireee et e 332
Output Of IDL VarT@DIEScoueiviiieireeie et 333
Adding to the JOUrNal File ..o e e e e 334
Chapter 18:

IDL INternals: TIMEIS ...t 335
IDL @NA TIMEFS ..ottt sttt ettt rr e e et et b e et eb b e e s ereneenn s 336
MaKIiNG TIMEr REQUESESc.ooveieririiitiieie ettt ettt e s e s 337
Canceling Asynchronous Timer REJUESESco.eiveereriineeieeee e 339
BIOCKING UNEX TIMENS ..ttt e e e e 340
Chapter 19:

IDL Internals: Miscellaneous Informationoocccciiiiiiiiiiieeen. 343
DYNAMIC MEIMIOIYiueieiiteie ettt ettt sttt st s e e e eb b e es e erenr s s 344
EXITHANAIES ...ttt et e e e 347
USEY INEEITUPLS ..ttt e st s e sre e e sn e nn e e 348
Functions for Returning System Variablescccooviiiieinieneneceine s 349
Terminal INFOrMELIONociiieiiei et e 350
ENSUNNG UNIX TTY SEBLEoieieieciiiciee ettt et 352
TYPE INFOMMELION ...ttt e e s e e 353
USEN INFOMMELTION ...ttt et e e e 355
CONSLANTS ...ttt e et e e e ettt sr e e e s e et e e e e en e e e nnneennes 356
IVTBCTOS ...ttt ettt e ettt e et et e e se e en e ea e eae et e e sree er e e nn e nr e e 357

Contents External Development Guide

Part Ill: Techniques That Use IDL's Internal API
Chapter 20:

Adding System ROULINESoiiiiiiiiiiiieeeeeeeee e 361
IDL and SysStem ROULINESoceeuireiieieientenie et ss e e e enenie s 362
The System ROULiNE INEITACEooveieririieiie e e 363
EXamples HEIO WOTTA ... e 364
Example: Doing aLittle More (MULT2)oooiiiiiie et 365
Example: A Complete Numerical Routine Example (FZ_ROOTS2)cccccooeveiieennene 368
Example: An Example Using Routine Design Iteration (RSUM)cccccoevverincinnene 376
REGISIENNG ROULINES ...ttt sttt et e enene e 386
Enabling and Disabling SyStem ROULINEScciieiiirieinie e e 389
LINKIMAGE ..ottt ettt e sttt st e bbbt e e 396
Dynamically Loadable MOAUIESccccoriiieiiieiiree et e 398
Chapter 21:

CallabI@ IDL ..o 407
Calling IDL aS @ SUDIOULINEooiieieiieeie sttt e s 408
When isCallable IDL APProPriate?ccoeoeereerireeieneee st esesseie e 409
Licensing Issues and Callable IDLccooiieirieireeeeee e e 412
USING CallabI@ IDL ...ttt et e e 413
[NITTBIIZALION ..t e et e et e s 415
DIVErting IDL OULPULcviuieiieieetire et e s st ennenenie e 419
EXECUtiNG IDL SEALEMENESeoueeeireciiee ettt et ene e 421
Runtime IDL and Embedded IDL ...t e 422
(O31== 0 0o OO PT T O ST UTPS 423
Issues and EXAMPIES: UNIX ..o e e 424
I ssues and Examples: MicroSoft WIiNAOWScccoeuerieinine e 439
Chapter 22:

Adding External Widgets tO IDLcooooeiiiiiiiiiiiiiieeeeeeeeee e 449
IDL and EXtErNal WIAQELScceeuireeieeee ittt e ene e 450
WIDGET_STUB ...ttt sttt s ettt st bbb 451
WIDGET_CONTROL/WIDGET_STUB ..ottt 452
Functions for Use With StUD WITGQELSeoeirieiree e 454
Internal Callback FUNCLIONSccoiiiiiie i e e 457
UNIX WIDGET_STUB Example: WIDGET_ARROWB ..o 459

External Development Guide Contents

10

Contents

Appendix A:

Obsolete Internal INterfacescoveeeiiiieiiii e 465
Interfaces ODSOIEtEd IN TDL 5.5 ...vee et e 466
Interfaces ODSOIELEA IN ITDL 5.6c.eeeeeeeceeieceee ettt e eean 479
Simplified ROULINE INVOCALIONotiiieiieie et 482
Obsolete Error Handling AP ..ot e 489
[T PP 491

External Development Guide

Chapter 1.
Overview

This chapter discusses the following topics:

About thisManual 12
Supported I nter-Language Communication
TechniquesinIDL 13
Dynamic Linking Terminology and
concepts 19
When isit Appropriate to Combine External
CodewithIDL? it 21

External Development Guide

Skills Required to Combine External Code

withIDL 22
IDL Organization 26
External Definitions 28
Interpreting Logical Boolean Values 29
Compilation And Linking Details 30
Recommended Reading 31

11

12 Chapter 1: Overview

About this Manual

The External Devel opment Guide describes options for using code not written in the
IDL language alongside IDL itself. It is divided into three parts:

Part I: Techniques That Do Not Use IDL's Internal API

This section discusses techniques that allow IDL to work together with programs
written in other programming languages, using IDL’s “public” interfaces. Little or no
familiarity with IDL’sinternal interfaces is required. For many users, the techniques
in this section will solve most problems that require IDL to use — or be used by —
other programs. Topics covered in Part | include:

» Letting IDL programsinteract with UNIX programs via pipes.
» Incorporating COM objects and ActiveX controlsinto IDL programs.

* Giving Microsoft Windows programs access to IDL features viathe
IDLDrawWidget ActiveX control.

* Using IDL asaRemote Procedure Call server on a UNIX system.

» Calling routines written in other programming languages from within IDL
using the CALL_EXTERNAL function.

Part II: IDL’s Internal API

This section describes IDL’sinterna implementation in enough detail to allow you to
write an IDL system routine in another compiled programming language (usually C)
and link it with IDL.

Part Ill: Techniques That Use IDL’s Internal API

This section describes the process of combining IDL with code written in another
programming language. Topics covered in Part 111 include:

» Creating a system routine using the interface described in Part 11 and linking
that routineinto IDL at runtime.

» Cadlling IDL as asubroutine from another program (* Callable IDL").
* Adding user-defined widgets to | DL widget applications.

About this Manual External Development Guide

Chapter 1: Overview 13

Supported Inter-Language Communication
Techniques in IDL

IDL supports anumber of different techniques for communicating with the operating
system and programs written in other languages. These methods are described, in
brief, below.

Options are presented in approximate order of increasing complexity. We recommend
that you favor the simpler options at the head of thislist over the more complex ones
that follow if they are capable of solving your problem.

It can be difficult to choose the best option — thereis a certain amount of overlap
between their abilities. We highlight the advantages and disadvantages of each
method aswell as make recommendationsto help you decide which approach to take.
By comparing this list with the requirements of the problem you are trying to solve,
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

All the benefits of using a high level, interpreted, array oriented environment
with high levels of platform independence.

Disadvantages
Not always possible.
Recommendation

Writing in IDL isthe easiest path. If you have existing code in another language that
issimple enoughto translate to IDL, thisis the best way to go. You should investigate
the other optionsif the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardized
package. Another good reason for considering the techniques described in this book
isif you wish to access IDL abilities from alarge program written in some other
language.

SPAWN

The simplest (but most limited) way to access programs external to IDL isto use the
SPAWN procedure. Calling SPAWN spawns a child process that executes a specified

External Development Guide Supported Inter-Language Communication Techniques in IDL

14

Chapter 1: Overview

command. The output from SPAWN can be captured in an IDL string variable. Under
UNIX, IDL can communicate with achild process through a bi-directional pipe using
SPAWN. More information about SPAWN can be found in Chapter 2, “Using
SPAWN and UNIX Pipes’ or in the documentation for “SPAWN" in the IDL
Reference Guide manual.

Advantages

* Simplicity
» Allowsuse of existing standal one programs.

* Under UNIX, data can be sent to and returned by the program via a pipe,
making sophisticated inter-program communication possible quickly and
easily.

Disadvantages

* Non-UNIX hosts are unable to use the pipe facility to communicate with the
program. Data can only be sent to the command via arguments to SPAWN.

Recommendation

SPAWN is the easiest form of interprocess communication supported by IDL and
allows accessing operating system commands directly.

Microsoft COM and ActiveX

IDL supports the inclusion of COM objects and ActiveX controls within IDL
applications running on Microsoft Windows systems by encapsulating the object or
control inan IDL object. Full accessto the COM object or ActiveX control’s methods
isavailable in this manner, allowing you to incorporate features not available in IDL
into IDL programs. For more information, see Chapter 3, “Overview: COM and
ActiveX inIDL".

IDL aso provides the IDLDrawWidget ActiveX control. The IDLDrawWidget
control is built around IDL for Windows and provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in languages such as C,
C++, Visual Basic, Fortran, Delphi, and others. For more information, see Chapter 6,
“The IDLDrawWidget ActiveX Control”.

Advantages

* Integrates easily with an important interprocess communication mechanism
under Microsoft Windows.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: Overview 15

* May support ahigher level interface than the function call interfaces supported
by the remaining options.

Disadvantages
» Only supported under Microsoft Windows.
Recommendation

Incorporate COM objects or ActiveX controls into your Windows-only IDL
application if doing so provides functionality you cannot easily duplicate in IDL.

Usethe DL ActiveX control if you are writing a Windows-only application in a
language that supports ActiveX and you wish to use IDL to perform computation or
graphics within a framework established by this other application.

UNIX Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communication
between IDL and other programs. IDL isrun as an RPC server and your own program
isrun asaclient. IDL's RPC functionality is documented in Chapter 9, “Remote
Procedure Calls’.

Advantages

» Code executes in a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

* APl issimilar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

» Possibility of overlapped execution on a multi-processor system.
Disadvantages

» Complexity of managing RPC servers.
» Bandwidth limitations of network for moving large amounts of data.

* Only supported under UNIX.
Recommendation

Use RPC if you are coding in a distributed UNIX-only environment and the amount
of data being moved is reasonable on your network. CALL_EXTERNAL might be

External Development Guide Supported Inter-Language Communication Techniques in IDL

16

Chapter 1: Overview

more appropriate for especialy simple tasks, or if the external code is not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL's CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same memory and data space.
CALL_EXTERNAL is much easier to use than either system routines
(LINKIMAGE, DLMs) or Callable IDL and is often the best (and simplest) way to
communicate with other programs. CALL_EXTERNAL isalso supported on al IDL
platforms.

While many of the topics in this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found in Chapter
8, “CALL_EXTERNAL" and the documentation for “CALL_EXTERNAL” in the
IDL Reference Guide manual.

Advantages

* Allowscalling arbitrary code written in other languages.

* Reqguireslittle or no understanding of IDL internals.

Disadvantages

e Errorsin coding can easily corrupt the IDL program.
* Requires understanding of system programming, compiler, and linker.

» Datamust be passed to and from IDL in precisely the correct type and size or
memory corruption and program errors will result.

» System and hardware dependent, requiring different binaries for each target
system.

Recommendation

Use CALL_EXTERNAL to call code written for general use in another language
(that is, without knowledge of IDL internals). For safety, you should call your
CALL_EXTERNAL functions within special IDL procedures or functions that do
error checking of the inputs and return values. In this way, you can reduce the risks of
corruption and give your callers an appropriate IDL-like interface to the new
functionality. If you use this method to incorporate external code into IDL, Research
Systems highly recommends that you also use the MAKE_DLL procedure and the
AUTO_GLUE keyword to CALL_EXTERNAL.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: Overview 17

If you lack knowledge of IDL internals, CALL_EXTERNAL is the best way to add
external code quickly. Programmerswho do understand IDL internalswill often write
a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, DLMs)

It is possible to write system routines for IDL using a compiled language such as C.
Such routines are written to have the standard IDL calling interface, and are
dynamically linked, aswith CALL_EXTERNAL. They are more difficult to write,
but more flexible and powerful. System routines provide accessto variables and other
objectsinside of IDL.

This book contains the information necessary to successfully add your own code to
IDL as asystem routine. Especially important is Chapter 20, “ Adding System
Routines’. Additional information about system routines can be found in Chapter 8,
“CALL_EXTERNAL" and in the documentation for “LINKIMAGE” inthe IDL
Reference Guide manual.

Advantages

* Thisisthemost fully integrated option. It allows you to write IDL system
routines that are indistinguishable from those written by RSI.

* Inuse, system routines are very robust and fault tolerant.

» Allowsdirect accessto IDL user variables and other important data structures.
Disadvantages

* All the disadvantages of CALL_EXTERNAL.

* Reguiresin-depth understanding of IDL internals, discussed in Part |1 of this
manual .

Recommendation

Use system routines if you require the highest level of integration of your code into
the IDL system. UNIX users with RPC experience should consider using RPCsto get
the benefits of distributed processing. If your task is sufficiently simple or you do not
have the desire or timeto learn IDL internals, CALL_EXTERNAL isan efficient
way to get the job done.

External Development Guide Supported Inter-Language Communication Techniques in IDL

18

Chapter 1: Overview

Callable IDL

IDL is packaged in a shareable form that allows other programsto call IDL asa
subroutine. This shareable portion of IDL can be linked into your own programs.
Thisuse of IDL isreferred to as“Callable IDL” to distinguish it from the more usual
case of calling your code fromIDL viaCALL_EXTERNAL or as a system routine
(LINKIMAGE, DLM).

Thisbook contains the information necessary to successfully call IDL from your own
code.

Advantages

» Supported on dl systems.
» Allowsextremely low level accessto IDL.

Disadvantages

» All the disadvantages of CALL_EXTERNAL or IDL system routines.

» IDL imposes some limitations on programming techniques that your program
can use.

Recommendation

Most platforms offer a specialized method to call other programs that might be more
appropriate. Windows users should consider the ActiveX control or COM
component. UNIX users should consider using the IDL RPC server. If these options
are not appropriate for your task and you wish to call IDL from another program, then
use Callable IDL.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: Overview 19

Dynamic Linking Terminology and Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into aform which is loadable by
programs at run time aswell as link time. The ability to load them at run time is what
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

* UNIX: Sharable Libraries
* Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such files sharable librariesin order to have a consistent
and uniform way to refer to them. It should be understood that thisis a generic usage
that applies equally to all of these systems. Sharable libraries contain functions that
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the linker
gives you control over which functions and data (often referred to as symbols) are
visible from the outside (public symbols) and which are hidden (private symbols).
Such control over the interface presented by a sharable library can be very useful.
Your system documentation discusses these options and explains how to build a
sharable library.

Dynamic linking is the enabling technology for many of the techniques discussed in
thismanual. If you intend to use any of these techniques, you should first be sure to
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL usesdynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as system routines.

Callable IDL

Most of IDL isbuilt asasharable library. The actual IDL program that implements
the standard interactive IDL program links to this library and uses it to do its work.
Since IDL isasharable library, it can be called by other programs.

External Development Guide Dynamic Linking Terminology and Concepts

20 Chapter 1: Overview

Remote Procedure Calls (RPCs)

The DL RPC server isaprogram that linksto the IDL sharablelibrary. The IDL RPC
client sidelibrary is also a sharable library. Your RPC client program links against it
to obtain access to the IDL RPC system.

Dynamic Linking Terminology and Concepts External Development Guide

Chapter 1: Overview 21

When is it Appropriate to Combine External
Code with IDL?

IDL isan interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys alarge amount of portability across these
platforms because IDL provides access to system abilities at arelatively high level of
abstraction. The large majority of IDL users have no need to understand itsinner
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

* Many sites have an existing investment in other code that they would prefer to
use from IDL rather than incurring the cost of rewriting it in the IDL language.

» Itisoften best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviors to it, and incur the ongoing maintenance costs of supporting it.

* IDL may belargely suitable for a given task, requiring only the addition of an
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understand
the following caveats:

* Research Systems attempts to keep the interfaces described in this document
stable, and we endeavor to minimize gratuitous change. However, we reserve
the right to make any changes required by the future evolution of the system.
Codelinked with IDL ismorelikely to require updates and changes to work
with new releases of IDL than programs written in the IDL language.

* Theact of linking compiled codeto IDL isinherently less portable than use of
IDL at the user level.

» Troubleshooting and debugging such applications can be very difficult. With
standard IDL, mafunctionsin the program are clearly the fault of Research
Systems, and given a reproducible bug report, we attempt to fix them
promptly. A program that combines IDL with other code makesit difficult to
unambiguously determine where the problem lies. The level of support
Research Systems can provide in such troubleshooting is minimal. The
programmer is responsible for locating the source of the difficulty. If the
problemisin IDL, asimple program demonstrating the problem must be
provided before we can address the issue.

External Development Guide When is it Appropriate to Combine External Code with IDL?

22 Chapter 1: Overview

Skills Required to Combine External Code
with IDL

Thereisalarge difference between the level at which atypical user sees DL
compared to that of the internals programmer. To the user, IDL is an easy-to-use,
array-oriented language that combines numerical and graphical abilities, and runs on
many platforms. Internally, IDL isalarge C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, and a
large amount of operating system-dependent code.

The amount of knowledge required to effectively writeinternals code for IDL can
come as a surprise to the user who isonly familiar with IDL’s external face. To be
successful, the programmer must have experience and proficiency in many of the
following areas:

Microsoft COM

To incorporate a COM object into your IDL program, you should be familiar with
COM interfacesin general and the interface of the object you are using in particular.

Microsoft ActiveX

To incorporate an ActiveX control into your IDL widget application, you should be
familiar with COM interfacesin general and the interface of the control you are using
in particular.

To use the IDLDrawWidget ActiveX control, you should be familiar with the
programming environment in which you will be using the control (Visual Basic, for
example). A level of understanding of ActiveX and COM is necessary.

UNIX RPC

Touse DL asan RPC server, aknowledge of Sun RPC (Also knownasONC RPC) is
required. Sun RPC is the fundamental enabling technology that underlies the popul ar
NFS (Network File System) software available on all UNIX systems, and as such, is
universally available on UNIX. The system documentation on this subject should be
sufficient.

ANSI C

IDL iswrittenin ANSI C. To understand the data structures and routines described in
this document, you must have a complete understanding of this language.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: Overview 23

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand the
compilation tools being used as well as those used to build IDL and how they might
interact. IDL is built with the standard C compiler used (and usually supplied) by the
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions (C++, Fortran, ...)

Itis possibleto link IDL directly with code written in compiled languages other than
C dthough the details differ depending on the machine, language, and compiler used.
It is the programmer’s responsibility to understand the inter-language calling
conventions and rulesfor the target environment—there are too many possibilitiesfor
Research Systems to actively document them all. ANSI C is astandard system
programming language on al systems supported by IDL, so it isusually
straightforward to combine it with code written in other compiled languages. You
need to understand:

» The conventions used to pass parameters to functionsin both languages. For
example, C uses call-by-value while Fortran uses call-by-reference. It is easy
to compensate for such conventions, but they must be taken into account.

» Any systematic name changes applied by the compilers. For example, some
compilers add underscores at the beginning or end of names of functions and
globa data.

* Any run-timeinitialization that must be performed. On many systems, the real
initial entry point for the program is not main(), but a different function that
performs someinitialization work and then calls your main() function. Usually
these issues have been addressed by the system vendor, who has alarge
interest in allowing such inter-language usage:

* Ifyoucall IDL from aprogram written in alanguage other than C, hasthe
necessary initialization occurred?

* IfyouuselDL to cal codewritten in alanguage other than C, do you need
to take steps to initialize the runtime system for that language?

* Arethe two runtime systems compatible?

Alternativesto direct linking (Microsoft COM or Active X) exist on some systems
that simplify the details of inter-language linking.

C++

We are often asked if IDL can call C++ code. Compatibility with C has alwaysbeen a
strong design goal for C++, and C++ islargely a superset of the C language. It

External Development Guide Skills Required to Combine External Code with IDL

24 Chapter 1: Overview

certainly is possible to combine IDL with C++ code. Callable IDL is especially
simple, as all you need to do isto include the idl_export.h header file in your C++
code and then call the necessary IDL functions directly. Calling C++ code from IDL
(CALL_EXTERNAL, System Routines) is also possible, but there are some issues
you should be aware of:

* AsaC program, IDL isnot able to directly call C++ methods, or use other
object-oriented features of the C++ language. To use these C++ features, you
must supply afunction with C linkage (using an extern “C” specification) for
IDL to call. That routine, which iswritten in C++ isthen able to use the C++
features.

» IDL doesnot initialize any necessary C++ runtime code. Your system may
require such code to be executed before your C++ code can run. Consult your
system documentation for details. (Please be aware that thisinformation can be
difficult to find; locating it may reguire some detective work on your part.)

Fortran
I ssues to be aware of when combining IDL with Fortran:

* The primary issue surrounding the calling of Fortran code from IDL is one of
understanding the calling conventions of the two languages. C passes
everything by value, and supplies an operator that lets you explicitly take the
address of amemory object. Fortran passes everything by reference (by
address). Difficultiesin calling FORTRAN from C usually come down to
handling this issue correctly. Some people find it helpful to write a C wrapper
function to call their Fortran code, and then have IDL call the wrapper. Thisis
generally not necessary, but may be convenient.

» |IDL isaC program, and as such, does not initialize any necessary Fortran
runtime code. Your system may require such code to be executed before your
Fortran code can run. In particular, Fortran code that does its own input output
often requires such startup code to be executed. Consult your system
documentation for details. One common strategy that can minimize this sort of
problemisto use IDL's /O facilitiesto do 1/O, and have your Fortran code
limit itself to computation.

Operating System Features And Conventions

With the exception of purely numerical code, the programmer must usually fully
understand the target operating system environment in which IDL is running in order
to write code to link withiit.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: Overview 25

Microsoft Windows

You must be an experienced Windows programmer with an understanding of 32—-bit
applications, WIN32, and DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, and
possibly even X Windows depending on the scope of the code being linked.

External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: Overview

IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understand a
little about its internal operation. This section is intended to give just enough
background to understand the material that follows. Traditional interpreted languages
work according to the following a gorithm:

while (statements remaining) {
Get next statement.
Perform |l exi cal analysis and parse statenent.
Execute statenent.

}

This description isaccurate at a conceptual level, and most early interpretersdid their
work in exactly thisway dueto its simplicity. However, this scheme isinefficient
because:

» The meaning of each statement is determined by the relatively expensive
operations of lexica analysis, parsing, and semantic analysis each and every
time the statement is encountered.

» Since each statement is considered in isolation, any statement that requires
jumping to adifferent location in the program will require an expensive search
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system is the interpreter.
The interpreter implements a simple, stack-based postfix language, in which each
instruction corresponds to a primitive of the IDL language. Thisinternal formisa
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into thisinternal form by the IDL compiler when the .RUN
executive command is issued, or when any other command requires a new routine to
be executed. Oncethe IDL routineiscompiled, the original version isignored, and all
references to the routine are to the compiled version. Some of the advantages of this
organization are:

* The expensive compilation processis only performed once, no matter how
often the resulting code is executed.

» Statements are not considered in isolation, so the compiler keeps track of the
information required to make jumping to anew location in the program fast.

* Thebinary internal form is much faster to interpret than the original form.

IDL Organization External Development Guide

Chapter 1: Overview 27

» Theinterna form is compact, leading to better use of main memory, and
allowing more code to fit in any memory cache the computer might be using.

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains pointers
to variables, which are implemented by IDL_VARIABLE structures (see “The
IDL_VARIABLE Structure” on page 217). Pointersto IDL_VARIABLEs are
referred to as IDL_VPTRs. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and then
pushing the IDL_VPTR to the resulting IDL _VARIABLE back onto the stack. The
removed items are the arguments to the instruction, and the new element represents
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routineis compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error if an
invalid number of argumentsis specified.

At execution time, the interpreter instructions that execute system procedures and
functions operate as follows:

1. Look up the requested routine in theinternal table of routines.
2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If theroutine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpreter
does all the work related to pushing and popping elements from the stack. The called
function need only worry about executing its operation and providing a result.

External Development Guide IDL Organization

28 Chapter 1: Overview

External Definitions

Thefilei dl _export . h,found intheext er nal /i ncl ude subdirectory of the
IDL distribution, supplies all the IDL-specific definitions required to write code for
inclusion with IDL. As such, thisfile defines the interface between IDL and your
code. It will be worth your while to examine this file, reading the comments and
getting a general idea of what is available. If you are not writing in C, you will have
to trandate the definitions in this file to suit the language you are using.

Warning
i dl _export . h contains some declarations which are necessary to the compilation
process, but which are still considered private to Research Systems. Such
declarations are likely to be changed in the future and should not be depended on. In
particular, many of the structure data types discussed in this document have more
fields than are discussed here—such fields should not be used. For this reason, you
should alwaysincludei dl _expor t . h rather than entering the type definitions
from this document. Thiswill aso protect you from changes to these data structures
in future releases of IDL. Anythingini dl _export . h that isnot explicitly
discussed in this document should not be relied upon.

The following two lines should be included near the top of every C program file that
isto become part of IDL:

#i ncl ude <stdi o. h>
#i nclude "idl_export.h"

External Definitions External Development Guide

Chapter 1: Overview 29

Interpreting Logical Boolean Values

IDL iswritten in the C programming language, and this manual therefore discusses C
language functions and data structures from the IDL program. In this documentation,
you will see referencesto logical (boolean) arguments and resultsreferred to in any
of the following forms: True, False, TRUE, FALSE, IDL_TRUE, IDL_FALSE, and
possibly other permutations on these. In all cases, the meaning of true and falsein
this manual correspond to those of the C programming language: A zero (0) valueis
interpreted as “false”, and anon-zero valueis “true”.

When reading this manual, please be aware of the following points:

» Unless otherwise specified, the actual word used when discussing logical
valuesis not important (i.e. true, True, TRUE, and IDL_TRUE) al mean the
same thing.

* Internaly, IDL usesthe IDL_TRUE and IDL_FAL SE macros described in
“Macros” on page 357, for hard-wired logical constants. These macros have
the values 1, and 0 respectively. This convention is nothing more than
reflection of the need for a consistent standard within our code, and adesire to
keep IDL names within a standard namespace to avoid collisions with user
selected names. Otherwise, any of those other alternative names might have
been used with equally good results.

 Wedon'tusethe IDL_TRUE and IDL_FAL SE convention in the text of this
book because it would be unnecessarily awkward, preferring the more natural
True/TRUE and False/FALSE.

* Theconvention for truth valuesin the IDL Language differ from those used in
the C language. It isimportant to keep the language being used in mind when
reading code to avoid drawing incorrect conclusions about its meaning.

External Development Guide Interpreting Logical Boolean Values

30 Chapter 1: Overview

Compilation And Linking Details

Once you've written your code, you need to compileit and link it into IDL before it

can be run. Information on how to do thisis available in the various subdirectories of
theext er nal subdirectory of the | DL distribution. Referencesto filesthat are useful
in specific situations are contained in this book.

In addition:

* ThelDL MAKE_DLL procedure, documented in the IDL Reference Manual,
provides a portable high level mechanism for building sharable libraries from
code written in the C programming language.

 ThelDL 'MAKE_DLL system variableisused by the MAKE_DLL procedure
to construct C compiler and linker commands appropriate for the target
platform. If you do not use MAKE_DLL to compile and link your code, you
may find the value of IMAKE_DLL.CC and IMAKE_DLL.LD helpful in
determining which options to specify to your compiler and linker, in
conjunction with your system and compiler documentation. For the C
language, the optionsin IMAKE_DLL should be very close to what you need.
For other languages, the IMAKE_DLL options should still be helpful in
determining which options to use, as on most systems, al the language
compilers accept similar options.

e TheUNIX IDL distribution hasabi n subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with these filesisaMakef i | e that shows how to build IDL from
the shareable libraries present in the directory. Thelink linein this makefile
should be used as a starting point when linking your code with Callable IDL—
simply omit mai n. o and include your own object files, containing your own
main program.

* A more detailed description of the issuesinvolved in compiling and linking
your code can be found in this book under “Compiling Programs That Call
IDL” on page 424.

Compilation And Linking Details External Development Guide

Chapter 1: Overview 31

Recommended Reading

There are many books written on the topics discussed in the previous section. The
following list includes books we have found to be the most useful over the yearsin
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are also excellent. The absence of abook from thislist
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9.
Thisistheoriginal C language reference, and is essential reading for this subject.

In addition, you should study the vendor supplied documentation for your compiler.

Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applicationsthat call IDL in the Microsoft Windows environment.

Petzold, Charles. Programming Windows, The Definitive Guide to the Win32 API,
Microsoft Press, 1998. ISBN 157231995X (Supersedes: Programming Windows 95).

Richter, Jeffrey. Programming Applications for Microsoft Windows. Microsoft Press,
1999. ISBN 1572319968 (Supersedes: Advanced Windows, Third Edition).

The Microsoft Devel oper Network (MSDN) supplies essential documentation for
programming in the Windows environment. This documentation is part of the Visual
C++ environment. More information on the MSDN is available at

http://nmsdn. m crosoft. com.

UNIX

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,

M assachusetts: Addison Wesley, 1992. ISBN 0-201-56317-7. This is the definitive
reference for UNIX system programmers. It covers all the important UNIX concepts
and covers the major UNIX variants in complete detail.

Rochkind, Marc J. Advanced UNI X Programming. Englewood Cliffs, New Jersey:
Prentice Hall, 1985. ISBN 0-13-011818-4. Thisvolumeisalso extremely well written
and does an excellent job of explaining and motivating the fundamental UNIX
conceptsthat underlie the UNIX system calls. This book suffersin comparison to the
Stevens book in that it discusses older UNIX systems rather than current systems and

External Development Guide Recommended Reading

32

Chapter 1: Overview

lacks discussion of networking. However, what it does cover is correct and very
readable, and it is much shorter than Stevens.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

X Windows

The X Windows series by O’ Reilly & Associates contains all the information needed
to program for the X Window system. There are several volumes—the ones you wil
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys. X Window System. Digital Press. Thisis
purely areference manual, as opposed to the O’ Reilly books which contain alarge
amount of tutoria aswell as referenceinformation. This book is primarily useful for
those using XLIB to draw graphicsinto Motif Draw Widgets and for those who need
to understand the base layers of X Windows. Motif programmers may not require this
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of quality
and usefulness. Note that most X Windows books are updated with each version of
the system. (X Version 11, Release 6 is the current version at this printing.)

Recommended Reading External Development Guide

Part I: Techniques
That Do Not Use
IDL’s Internal API

Chapter 2:

Using SPAWN and
UNIX Pipes

IDL's SPAWN procedure spawns a child process to execute acommand or series of
commands. Cross-platform use of SPAWN is described in detail in the IDL Reference
Guide. This section describes a procedure available only on UNIX systems:
communicating with the spawned child process using UNIX pipes.

By default, calls to the SPAWN procedure cause the IDL process to wait until the
child process has finished before continuing. On UNIX systems, IDL can attach a
bidirectiona pipe to the standard input and output of the child process, and then
continue without waiting for the child processto finish. The pipe created in this
manner appearsin the IDL process as anormal logical file unit.

Once a process has been started in this way, the normal IDL input/output facilities
can be used to communicate with it. The ability to use a child process in this manner
allowsyou to solve specialized problems using other languages and to take advantage
of existing programs.

In order to start such a process, use the UNIT keyword to SPAWN to specify anamed
variable in which the logical file unit number will be stored. Once the child process

External Development Guide 35

Chapter 2: Using SPAWN and UNIX Pipes

has done its work, use the FREE_LUN procedure to close the pipe and delete the
process.

When using achild processin thismanner, it isimportant to understand the following
points:

» Closing thefile unit causes the child process to be killed. Therefore, do not
close the unit until the child process completesits work.

* A UNIX pipeissimply abuffer maintained by the operating system. It has a
fixed length and can therefore become completely filled. When this happens,
the operating system puts the process that is filling the pipe to deep until the
process at the other end consumes the buffered data. The use of abidirectional
pipe can lead to deadl ock situations in which both processes are waiting for the
other. This can happen if the parent and child processes do not synchronize
their reading and writing activities.

* Most C programs use the input/output facilities provided by the Standard C
Library (stdio). In situationswhere IDL and the child process are carrying on a
running dialog (as opposed to a single transaction), the normal buffering
performed by stdio on the output file can cause communications to hang. We
recommend calling the stdio setbuf() function as the first statement of the child
program to eliminate such buffering.

(void) setbuf(stdout, (char *) 0);

It isimportant that this statement occur before any output operation is
executed; otherwise, it may not have any effect.

Example: Communicating with a Child Process
Under UNIX

The C program shown in the following example (t est _pi pe. c¢) accepts floating-
point values from its standard input and returns their average on the standard output.
In actual practice, such atrivial program would never be used from IDL, sinceitis
simpler and more efficient to perform the calculation within IDL itself. The example
does, however, serve to illustrate a method by which significant programs can be
called from IDL.

In the interest of brevity, some error checking that would normally be included in
such aprogram has been omitted. For example, areal program would need to check
the non-zero return valuesfrom f read(3) andf wri t e(3) to ensure that the
desired amount of data was actually transferred.

This program performs the following steps:

External Development Guide

Chapter 2: Using SPAWN and UNIX Pipes 37

©CO~NOUIAWNPEF
-~

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>
mai n()
float *data, total = 0.0;
char *err_str;
int i, n;
/* Make sure the output is not buffered */
set buf (stdout, (char *) 0);
/* Find out how many points */
if (!fread(&n, sizeof(n), 1, stdin)) goto error;
/* Get nenory for the array */
if (!(data = (float *) nmalloc(n * sizeof(*data)))) goto error;
/* Read the data */
if (!fread(data, sizeof(*data), n, stdin)) goto error;
/* Cal cul ate the average */
for (i=0; i < n; i++) total += data[i];
total /= (float) n;
/* Return the answer */
if (!fwite(&otal, sizeof(*data), 1, stdout)) goto error;
return;
error:
err_str = strerror(errno);
if (lerr_str) err_str = "<unknown error>";
fprintf(stderr, "test_pipe: %\n", err_str);

Table 2-1: test_pipe.c

1. Readsalonginteger that tells how many data points to expect, becauseit is
desirable to be able to average an arbitrary number of points.

2. Obtains dynamic memory viathe malloc() function, and reads the datainto it.
3. Cadlculates the average of the points.
4. Returnsthe answer as a single floating-point value.

Since the amount of input and output for this program is explicitly known and
because it reads all of itsinput at the beginning and writes all of itsresults at the end,
adeadlock situation cannot occur.

The following IDL statements use test_pipe to determine the average of the values 0
to O:

;Start test_pipe. The use of the NOSHELL keyword is not necessary,

External Development Guide

38

Chapter 2: Using SPAWN and UNIX Pipes

; but speeds up the start-up process.
SPAWN, 'test _pipe', UNIT = UNIT, /NOSHELL

; Send the nunber of points followed by the actual data.
WRI TEU, UNI'T, 10L, FI NDGEN(10)

; Read t he answer.
READU, UNI T, ANSVER

; Announce the result.
PRI NT, "Average = ", ANSVER

; Close the pipe, delete the child process, and deall ocate the
;logical file unit.
FREE_LUN, UNIT

Executing these statements gives the result:
Aver age = 4.50000

This mechanism provides the UNIX IDL user asimple and efficient way to augment
IDL with code written in other languages such as C or Fortran. It is, however, not as
efficient as writing the required operation entirely in IDL. The actual cost depends
primarily on the amount of data being transferred. For example, the above example
can be performed entirely in IDL using a simple statement such as the following:

PRI NT, 'Average = ', TOTAL(FI NDGEN(10))/10.0

External Development Guide

Chapter 3:

Overview: COM and
ActiveX In IDL

This chapter discusses the following topics:

COM Objectsand IDL 40 Skills Required to use COM Objects
Using COM Objectswith IDL 42

External Development Guide

39

40 Chapter 3: Overview: COM and ActiveX in IDL

COM Objects and IDL

Microsoft’s Component Object Model, or COM, is a specification for devel oping
modular software components. COM is not a programming language or an AP, but
an implementation of a component architecture. A component architectureisa
method of designing software components so that they can be easily connected
together, reused, or replaced without re-compiling the application that uses them.
Other examples of this methodology include the Object Management Group's
Common Object Request Broker Architecture (CORBA) and Sun’s JavaBeans
technologies.

ActiveX controls are a special class of COM object that follow a set of Microsoft
interface specifications; they are normally designed to present a user interface.

IDL for Windows supports three methods for using COM -based software
components in your applications:

» Exposing aCOM object asan IDL object,
* Including an ActiveX control in an IDL widget hierarchy,

* Including the IDL DrawWidget ActiveX control in an application writtenin a
language other than IDL.

Note
While COM components can be developed for numerous platforms, most COM -
based software is written for Microsoft Windows platforms. IDL for Windows
supportsthe inclusion of COM technologies, but IDL for UNIX does not. The
chaptersin this section will discuss COM in the context of Microsoft Windows
exclusively.

What are COM Objects?

A COM object, or component, is a piece of software that:

» isalibrary, rather than astandalone application (that is, it runsinside some sort
of client application such as DL, a Visual Basic application, or aweb
browser);

» isdistributed in acompiled, executable form;
» exposes agroup of methods and propertiesto its client application;

I'n addition to these criteria, a component may also supply a user interface that can be
manipulated by the user. COM objects that supply a user interface and send events to

COM Objects and IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 41

the programs that use them are generally packaged as ActiveX controls, althoughiitis
not a requirement that an ActiveX control provide a user interface.

COM objects and ActiveX controls are nearly always packaged as Windows
executable (. exe), dynamic link library(. dl |), or object linking and embedding
(. ocx) files.

Why Use COM Objects with IDL?

There are several reasons to use COM technologies alongside IDL:

* COM objects can be designed to use the facilities of the underlying Windows
operating system. If you need access to Windows features not exposed within
IDL, incorporating a COM object into your IDL program may provide the
functionality you need.

» COM objects have been written to provide custom user interface elements or
accomplish specific tasks. Many of these components are available to you free
or at minimal cost. If you work exclusively in a Windows environment,
incorporating a pre-written component in your IDL program may be faster
than coding the same functionality in IDL.

* Using the I DLDrawWidget ActiveX control, you can rapidly incorporate IDL
functionality into a Windows application created with any COM-aware
environment. COM -aware environments include Visual Basic, Visual C++,
and even VBScript.

External Development Guide COM Objects and IDL

42

Chapter 3: Overview: COM and ActiveX in IDL

Using COM Objects with IDL

The three methods for using COM objects with IDL are:
* Exposing aCOM Object asan IDL Object,
* Including an ActiveX Control in an IDL Widget Hierarchy,

* Using the IDLDrawWidget ActiveX Control in an application writtenin a
language other than IDL.

Exposing a COM Object as an IDL Object

IDL’'s IDLcoml Dispatch object class creates an IDL object that communicates with
an underlying COM object using the COM abject’s I Dispatch interface. When you
create an | DL.comlIDispatch object, you provide theidentifier for the COM object you
wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’'s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
The IDLcomlDispatch object is useful when you want to incorporate a generic
COM object into your IDL application. If the COM object you want to useis an
ActiveX control, use the WIDGET_ACTIVEX routine, discussed below.

For details on using the IDL comlIDispatch object class to incorporate COM objects
into your IDL applications, see Chapter 4, “Using COM Objectsin IDL".

Including an ActiveX Control in an IDL Widget
Hierarchy

IDL's WIDGET_ACTIVEX routine incorporates an ActiveX control directly into an
IDL widget hierarchy. Thisallowsyou to place the ActiveX control in an IDL widget
interface, and to receive widget events directly from the control for handling by a
standard IDL widget event handler.

Internally, IDL uses the same mechanismsit uses when creating | DL coml Dispatch
objects when it instantiates an ActiveX control as part of an IDL widget hierarchy.
After the widget hierarchy has been realized, an object reference to the IDL object
that encapsul ates the ActiveX control can be retrieved and used as an interface with
the ActiveX control. This alows you to cal the ActiveX control’s methods and get
and set its properties using standard IDL object conventions and syntax.

Using COM Objects with IDL External Development Guide

Chapter 3: Overview: COM and ActiveX in IDL 43

For details on using the WIDGET_ACTIVEX routine to incorporate Activex
controlsinto your IDL applications, see Chapter 5, “Using ActiveX ControlsinIDL".

Using the IDLDrawWidget ActiveX Control

IDL for Windows distributions include an ActiveX control that makes IDL
functionality available to other applications. Including the IDL DrawWidget control
in your Windows application allows you to create your own user interface using the
programming language of your choice, while using IDL's data analysis and display
functionality.

Note
The IDLDrawWidget ActiveX control providesa COM interface to IDL, but

requires an IDL installation to function. This meansthat in order for an application
to use the IDL DrawWidget control, alicensed copy of IDL must beinstalled on the
same computer.

For details on using the IDL DrawWidget ActiveX control in your own Windows
applications, see Chapter 6, “ The IDLDrawWidget ActiveX Control”.

External Development Guide Using COM Objects with IDL

44 Chapter 3: Overview: COM and ActiveX in IDL

Skills Required to use COM Objects

Although IDL provides an abstracted interface to COM functionality, you must be
familiar with some aspects of COM to successfully intertwine COM and IDL.

If You Are Using COM Objects

If you are using a COM object directly, viathe IDLcomlDispatch object, you will
need a thorough understanding of the COM object you are using, including its
methods and properties. An understanding of the Windows tools used to discover
information about COM objectsis useful.

If You Are Using ActiveX Controls

If you are incorporating an ActiveX control into an IDL widget hierarchy using
WIDGET_ACTIVEX, you will need a thorough understanding of the ActiveX
control you are using, including its methods, properties, and the information returned
when an event is generated. An understanding of the Windows tools used to discover
information about ActiveX controlsis useful.

If You Are Using the IDLDrawWidget ActiveX Control

If you are incorporating the IDL DrawWidget ActiveX control in your own Windows
application, you will need a thorough understanding of your own application
development tools, including how they are used to interact with ActiveX controls.
Details about the IDL DrawWidget control itself are provided in Chapter 6, “The
IDLDrawWidget ActiveX Control” and Chapter 7, “1DL DrawWidget Control
Reference”.

If You Are Creating Your Own COM Object

If you are creating your own COM object to beincluded in IDL, you will need a
thorough understanding of both your development environment and of COM itself. It
is beyond the scope of this manual to discuss creation of COM objects, but you
should be able to incorporate any component created by following the COM
specification into IDL by following the procedures outlined here.

Skills Required to use COM Objects External Development Guide

Chapter 4.

Using COM QObjects

In IDL

This chapter discusses the following topics:

Using COM Objectsin IDL
IDLcoml Dispatch Object Naming Scheme . 48

Creating IDLcoml Dispatch Objects 52
Method Calls on IDLcomlDispatch Objects 53
Managing COM Object Properties 61

External Development Guide

References to Other COM Objects. 63
Destroying IDLcomIDispatch Objects 64
COM-IDL DataTypeMapping 65
Example: RSIDemoComponent 67

45

46 Chapter 4: Using COM Objects in IDL

Using COM Objects in IDL

If you want to incorporate a COM object that does not present its own user interface
into your IDL application, use IDL’s IDLcomlDispatch object class.

IDL’s IDLcomlDispatch object class creates an IDL object that uses the COM

I Dispatch interface to communicate with an underlying COM object. When you
create an IDL comlIDispatch object, you provide information about the COM aobject
you wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
If the COM object you want to use in your IDL application is an ActiveX control,
use the WIDGET_ACTIVEX routine, discussed in Chapter 5, “Using ActiveX
ControlsinIDL".

Object Creation

To create an IDL object that encapsulates a COM object, use the OBJ_NEW function
as described in “ Creating |DLcoml Dispatch Objects’ on page 52. IDL creates a
dynamic subclass of the IDLcoml Dispatch object class, based on information you
specify for the COM object.

Method Calls and Property Management

Once you have created your |DLcomlDispatch object within IDL, use normal IDL
object method calls to interact with the object. (See Chapter 21, “Object Basics’ in
the Building IDL Applications manual for a discussion of IDL objects.) COM object
properties can be set and retrieved using the GetProperty and SetProperty methods
implemented for the IDLcomIDispatch class. See “Method Calls on

IDLcoml Dispatch Objects” on page 53 and “Managing COM Object Properties’ on
page 61 for details.

Object Destruction

Destroy DL comlDispatch objects using the OBJ_DESTROY procedure. See
“Destroying DL comlDispatch Objects” on page 64 for details.

Using COM Objects in IDL External Development Guide

Chapter 4: Using COM Objects in IDL a7

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that ingtalls them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually.

To register acomponent (. dl | or . exe) or acontrol (. ocx), use the Windows
command line program r egsvr 32, supplying it with name of the component or
control to register. For example, the IDL distribution includes a COM component
named RSIDemoComponent, contained in afile named RSI DenoConponent . dl |
located in the exanpl es\ COVBr i dge subdirectory of the IDL distribution. To
register this component, do the following:

1. Open aWindows command prompt.

2. Change directoriesto the exanpl es\ COVBri dge subdirectory of the IDL
distribution.

3. Enter the following command:
regsvr32 RS| DenpConponent . dl |

Windows will display a pop-up dialog informing you that the component has been
registered. (You can specify the“ / s ” parameter tor egsvr 32 to prevent the dialog
from being displayed.)

Note
You only need to register acomponent once on agiven machine. It is not necessary
to register a component before each use.

External Development Guide Using COM Objects in IDL

48

Chapter 4: Using COM Objects in IDL

IDLcomIDispatch Object Naming Scheme

When you create an |DLcomlDispatch object, IDL automatically creates a dynamic
subclass of the IDL comlDispatch class to contain the COM object. IDL determines
which COM abject to instantiate by parsing the class name you provide to the
OBJ_NEW function. You specify the COM object to use by creating a class name
that combines the name of the base class (IDLcomlDispatch) with either the COM
class identifier or the COM program identifier for the object. The resulting class
name looks like

| DLcom Di spat ch$l D_t ype$I D
where ID_typeis one of the following:
e CLSI Dif theobject isidentified by its COM class ID, or
* PROG Dif the object isidentified by its COM program ID,
and ID is the COM object’s actua class or program identifier string.

Note
While COM objects incorporated into IDL are instances of the dynamic subclass
created when the COM object is instantiated, they still expose the functionality of
the class IDLcoml Dispatch, which is the direct superclass of the dynamic subclass.
All IDLcoml Dispatch methods are available to the dynamic subclass.

Class Ildentifiers

A COM object’'s classidentifier (generally referred to asthe CLSID) is a 128-bit
identifying string that is guaranteed to be unique for each object class. The strings
used by COM asclass IDs are also referred to as Globally Unique I dentifiers
(GUIDs) or Universally Unique Identifiers (UUIDs). It is beyond the scope of this
chapter to discuss how class IDs are generated, but it is certain that every COM
object has a unique CLSID.

COM class|Dsare 32-character strings of alphanumeric characters and numeral s that
look like this:

{ A77BC2B2- 88EC- 4D2A- B2B3- F556 ACB52E52}

The above class identifier identifies the RSIDemoComponent class included with
IDL.

When you create an IDLcomlDispatch object using a CLSID, you must modify the
standard CLSID string in two ways:

IDLcomIDispatch Object Naming Scheme External Development Guide

Chapter 4: Using COM Objects in IDL 49

1. You must omit the opening and closing braces ({ }).

2. You must replace the dash characters (-) in the CLSID string with
underscores (_).

See “Creating IDLcoml Dispatch Objects’ on page 52 for example class hames
supplied to the OBJ_NEW function.

Note
If you do not know the class ID of the COM object you wish to expose as an IDL
object, you may be ableto determineit using an application provided by Microsoft;
see “Finding COM Class and Program IDs’ on page 50 for details.

Program Identifiers

A COM object’s program identifier (generally referred to asthe PROGID) isa
mapping of the classidentifier to amore human-friendly string. Unlike class IDs,
program IDs are not guaranteed to be unique, so namespace conflicts are possible.
Program IDs are, however, easier to work with; if you are not worried about name
conflicts, use the identifier you are most comfortable with.

Program I Ds are alphanumeric strings that can take virtually any form, although by
convention they look like this:

PROGRAM Conponent . ver si on

For example, the RSIDemoComponent class included with IDL has the following
program ID:

RSI DenoConponent . RSI DenoOhj 1. 1

When you create an | DL comlDispatch object using a PROGID, you must modify the
standard PROGID string by replacing the dot characters (.) with underscores (_).

See “Creating IDLcoml Dispatch Objects’ on page 52 for example class hames
supplied to the OBJ_NEW function.

Note
If you do not know the program ID of the COM object you wish to expose as an
IDL object, you may be able to determine it using an application provided by
Microsoft; see “Finding COM Class and Program IDs” on page 50 for details.

External Development Guide IDLcomIDispatch Object Naming Scheme

50 Chapter 4: Using COM Objects in IDL

Finding COM Class and Program IDs

In generd, if you wish to incorporate a COM object into an IDL program, you will
know the COM class or program |D — either because you created the COM object
yourself, or because the devel oper of the abject provided you with the information.

If you do not know the class or program I D for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. You can download the OLE/COM Object Viewer at no charge
directly from Microsoft. As of thiswriting, you can locate the tool by pointing your
Web browser to:

http://www.microsoft.com/com
and then selecting “ Downloads’ from the “Resources’ menu.

The OLE/COM Object Viewer displays all of the COM objectsinstalled on a
computer, and allows you to view information about the objects and their interfaces.

5 OLE/COM Dbject Yiewer] 3

File ©hject Yiew Help

=3 £l Bl

--égz RequestMakeCall Class | Hoicon FSIDemalbjl Class

-, Reveal Transition Akl (i 77RCR2-BBEC-40 24 B2E 3 FE5RACEE2E G2}
¢ RevealTrans

--égz RichText Apppearance
[, RichText General Prope

Registry Implementationl Activationl Launch Permissionsl Access Permissions

: CLSID = 5
i @&, RIPBWizard Class i {A77BC2B2-BBEC-4D2A-B2E3-FES6ACES2E52} = RIDemaOhl Class | |
@ Ripple X InprocServer3z [<no name>] = d:\RSIdd\RSIDEM-~1.DLL

"éz RM Enlls.tment Helper InprocServer3Z [ThreadingModel] = Apartment

"éﬁ RMGetLicense Class PraglD = RSIDemaComponent. RSIDemaohil. 1

--égz Role-based Security Po Programmable

@ Rol - Typelib = {62AD7ER6-B067-48F 7-BA02-7F4589361DCE}

"@ RotateBvr Class WersionIndependentProgID = RSIDemoComponent, RSIDemoObjl

"éﬁ Route Class RSIDemoCamponent REIDemaOhj1.1 = RSIDema0hjl Class

"éﬁ Rowssthislper iy L CLSID = {A77BC2E2-B8EC-4D2A-B2E3-FES6ACES2ES2)

--égz RSIDemoObil Class Typelib =

@, RSIDemoObj2 Class b
@, RSIDemoObj3 Class

B 0= RSIDemoComponent 1.0 Type Library
R e . o =
4 I I 3
Ready i

Figure 4-1: Microsoft's OLE/COM Object Viewer application.

Note
You can copy an object’s class ID to the clipboard by selecting the object in the
leftmost panel of the object viewer, clicking the right mouse button, and selecting
“Copy CLSID to Clipboard” from the context menu.

IDLcomIDispatch Object Naming Scheme External Development Guide

http://www.microsoft.com/com

Chapter 4: Using COM Objects in IDL 51

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HEL P command with the OBJECTS keyword. IDL displays the full dynamic
subclass name, including the class ID or program I D that was used when the object

was created.

External Development Guide IDLcomIDispatch Object Naming Scheme

52 Chapter 4: Using COM Objects in IDL

Creating IDLcomIDispatch Objects

To expose a COM object asan IDL object, use the OBJ_NEW function to create a
dynamic subclass of the | DL coml Dispatch object class. The name of the subclass
must be constructed as described in “IDLcomlIDispatch Object Naming Scheme” on
page 48, and identifies the COM object to be instantiated.

Note
If the COM object you want to use within IDL isan ActiveX control, use the
WIDGET_ACTIVEX routine as described in Chapter 5, “Using ActiveX Controls
inIDL". Instantiating the ActiveX control as part of an IDL widget hierarchy
allowsyou to respond to events generated by the control, whereas COM objectsthat
are instantiated using the OBJ_NEW do not generate events that IDL is aware of.

For example, suppose you wish to include a COM component with the class ID
{ A77BC2B2- 88EC- 4D2A- B2B3- F556 ACB52E52}

and the program 1D
RSI DenoConponent . RSI DenoOhj 1. 1

inan IDL program. Use either of the following calls to the OBJ_NEW function:

Obj Ref = OBJ_NEW $
"I DLcom Di spat ch$CLSI D$A77BC2B2_88EC_4D2A B2B3_F556ACB52E52")

or

Obj Ref = OBI_NEW $
"1 DLcom Di spat ch$PROG D$RSI DenpConponent _RSI DenpChj 1_1')

IDL'sinterna COM subsystem instantiates the COM object within an
IDL coml Dispatch object with one of the following the dynamic class names

| DLcom Di spat ch$CLSI DSA77BC2B2_88EC_4D2A B2B3_F556ACB52E52
or
| DLcom Di spat ch$PROGI D$RSI DenpConponent _RS| DenpoOhj 1_1

and sets up communication between the object and IDL. You can work with the
IDLcoml Dispatch object just as you would with any other IDL object; calling the
object’s methods, and getting and setting its properties.

See “IDLcomlIDispatch” in the IDL Reference Guide manual for additional details.

Creating IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 53

Method Calls on IDLcomIDispatch Objects

IDL alowsyou to call the underlying COM aobject’s methods by calling methods on
the IDLcomlDispatch object. IDL handles conversion between IDL data types and
the data types used by the component, and any resultsare returned in IDL variables of
the appropriate type.

Aswith all IDL objects, the general syntax is:
result = Obj Ref -> Method([Argunents])
or
Obj Ref -> Method[, Argunents]

where Cbj Ref isan object reference to an instance of a dynamic subclass of the
IDL coml Dispatch class.

Function vs. Procedure Methods

In COM, dl object methods are functions. IDL’s implementation of the

IDLcoml Dispatch object maps COM methods that supply areturn value using the
retval attributeasIDL functions, and COM methods that do not supply areturn
valueviather et val attribute as procedures. See “Displaying Interface Information
using the Object Viewer” on page 57 for more information on determining which
methods use ther et val attribute.

The IDLcomlDispatch::GetProperty and I DLcoml Dispatch:: SetProperty methods are
special cases. These methods are IDL object methods — not methods of the
underlying COM abject — and they use procedure syntax. The process of getting and
setting properties on COM objects encapsulated in | DLcoml Dispatch objectsis
discussed in “Managing COM Object Properties’ on page 61.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDLcoml Dispatch
object implements Init or Cleanup methods, they will be overridden by IDL’s
lifecycle methods — the COM object’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDLcoml Dispatch object, so any methods of the underlying COM object that use
these names will be inaccessible from IDL.

External Development Guide Method Calls on IDLcomIDispatch Objects

54 Chapter 4: Using COM Objects in IDL

What Happens When a Method Call is Made?

When a method is called on an IDL coml Dispatch object, the method nhame and
arguments are passed to the internal IDL COM subsystem, where they are used to
construct the appropriate |Dispatch method calls for the underlying COM object.

From the point of view of an IDL user issuing method calls on the |DLcomlI Dispatch
object, this processis completely transparent. The IDL user smply calls the COM
object’s method using IDL syntax, and IDL handles the translation.

Data Type Conversions

IDL and COM use different data types internally. While you should be aware of the
types of data expected by the COM object’s methods and the types it returns, you do
not need to worry about converting between IDL data types and COM data types
manually. IDL’s dynamic type conversion facilities handle all conversion of data
types between IDL and the COM system. The data type mappings are described in
“COM-IDL Data Type Mapping” on page 65.

For example, if the COM object that underlies an IDLcomlDispatch object has a
method that requires avalue of type INT as an input argument, you would supply the
value asan IDL Long. If you supplied the value as any other IDL datatype, IDL
would first convert the value to an IDL Long using its normal data type conversion
mechanism before passing the value to the COM object asan INT.

Similarly, if aCOM abject returns a BOOL value, IDL will place the valuein a
variable of Byte type, with avalue of 1 (one) signifying True or avalue of 0 (zero)
signifying False.

Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is passed along to COM object methods called on IDLcomlIDispatch
objects, and to the IDL coml Dispatch::GetProperty method. This means that if an
argument is not required by the underlying COM object method, it can be omitted
from the method call used on the IDLcoml Dispatch object.

Note
Only method arguments defined with the opt i onal token in the object’s interface

definition are optional. See “ Displaying Interface Information using the Object

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 55

Viewer” on page 57 for more information regarding the object’s interface definition
file.

Warning
If an argument that is not optional is omitted from the method call used on the
IDL coml Dispatch object, IDL will generate an error.

Argument Order

Like IDL, COM treats arguments as positional parameters. This means that it makes
adifference where in the argument list an argument occurs. (Contrast thiswith IDL’s
handling of keywords, which can occur anywhere in the argument list after the
routine name.) COM enforces the following ordering for arguments to object
methods:

1. Required arguments
2. Optional arguments for which default values are defined
3. Optional arguments for which no default values are defined

The same order applies when the method is called on an IDLcoml Dispatch object.

Default Argument Values

COM dlows objects to specify a default value for any method arguments that are
optional. If acall to amethod that has an optional argument with a default value
omits the optional argument, the default value is used. IDL behavesin the same way
as COM when calling COM object methods on IDL comlDispatch objects, and when
calling the IDLcomIDispatch::GetProperty method.

M ethod arguments defined with thedef aul t val ue() token inthe abject’sinterface
definition are optional, and will use the specified default value if omitted from the
method call. See “ Displaying I nterface Information using the Object Viewer” on
page 57 for more information regarding the object’s interface definition file.

Argument Skipping

COM allows methods with optional arguments to accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL provides the same functionality for COM object methods called on

IDLcoml Dispatch objects, but not for the I DL coml Dispatch::GetProperty or
SetProperty methods.

External Development Guide Method Calls on IDLcomIDispatch Objects

56

Chapter 4: Using COM Objects in IDL

To skip one or more arguments from alist of optional arguments, include the SKI1P
keyword in the method call. The SKIP keyword accepts either a scalar or a vector of
numbers specifying which arguments are not provided.

Note
Theindicesfor the list of method arguments are zero-based — that is, the first
method argument (either optional or required) is argument O (zero), the next is
argument 1 (one), etc.

For example, suppose a COM object method accepts four arguments, of which the
second, third, and fourth are optional:

Obj Met hod, argl, arg2-optional, arg3-optional, arg4-optional

To call this method on the IDL coml Dispatch object that encapsulates the underlying
COM object, skipping ar g2, use the following command:

obj Ref -> Obj Met hod, argl, arg3, arg4, SKIP=1

Notethat the SKIP keyword uses the index value 1 to indicate the second argument in
the argument list. Similarly, to skip ar g2 and ar g3, use the following command:

obj Ref -> (bj Method, argl, arg4, SKIP=[1, 2]

Finally, note that you do not need to supply the SKIP keyword if the arguments are
supplied in order. For example, to skip ar g3 and ar g4, use the following command:

obj Ref -> (bj Met hod, argl, arg2

Finding Object Methods

In most cases, when you incorporate a COM object into an IDL program, you will
know what the COM object’s methods are and what arguments and data types those
methods take — either because you created the COM object yourself, or because the
developer of the object provided you with the information. If for some reason you do
not know what methods the COM object supports, you may be able to determine
which methods are available and what parameters they accept using the OLE/COM
Object Viewer application provided by Microsoft. (See “Finding COM Class and
Program IDs” on page 50 for information on acquiring the OLE/COM Object
Viewer.)

Warning
Finding information about a COM object’s methods using the OLE/COM Object
Viewer requires amoderately sophisticated understanding of COM programming,
or at least COM interface definitions. While we provide some hints in this section
on how to interpret the interface definition, if you are not already familiar with the

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 57

structure of COM objectsyou may find this materia inadequate. If possible, consult
the devel oper of the COM object you wish to use rather than attempting to
determine its structure using the object viewer.

Displaying Interface Information using the Object Viewer

You can use the OLE/COM Object Viewer to view the interface definitions for any
COM object on your Windows machine. Select aCOM object in the leftmost panel of
the object viewer, click the right mouse button, and select “View Type Information...”
A new window titled “I TypeLib Viewer” will be displayed, showing all of the
component’s interfaces (Figure 4-2).

5 ITypeLib Yiewer _ 10l =|
File Wiew
B o 2|
E" RSIDEMOCOMPOMENTLIb (RSIDemaComp |/ / Generated .IDL file (by the OLE/COM Object Viewer) -
. Y
@ coclass RSIDemoObil o . .
(dispinterface IRSIDemoohiL /¢ typelib filename: RSIDemclomponent . dll
B¢ interface IRSIDemobjl [
---@ coclass RSIDemaCbiz uuid{52ADTEEG-8D67-48F7-BE92-TF488936100CE) ,
(- dispinterface IRSIDemoOb2 ;Ei’slzﬂfl-?lﬁsm - f 1.0 Type Lib]
. . elpstring (" =m0l omporiEn: . = Library").
? interface RSIDemoObi2 custom (DE77BAG4-5170-1101-A20A-0000F87730E9, 83951780,
@ coclass RSIDemoCbj3 custom (DET7BAG3-5170-1101-A2DA-0000F28773CE9, 1017680769

[+-#f dispinterface IRSIDemoCbi3
-9 interface IRSIDemoOk}3 1
library RSIDEMOCOMPONENTLib
{

/4 TLib - /¢ TLib : OLE Autcmation : (00020430-0000-
0000-C000-000000000046}

importlib({"stdole2.t1b") ;

/¢ Forward declare all types defined in this typelib
interface IRSIDemctbil;

d | 5| s it El
Ready o
Figure 4-2: Viewing a COM object’s interface definition.
Note

The top lines in the right-hand panel will say something like:

/1 Generated .IDL file (by the OLE/ COM Obj ect Vi ewer)
/1

/1 typelib filename: RSIDenmpbConponent.dl |
The “.IDL file” in this case has nothing to do with IDL, the Interactive Data

Language. Here “IDL" stands for Interface Description Language — alanguage
used to define component interfaces. If you are familiar with the Interface

External Development Guide Method Calls on IDLcomIDispatch Objects

58 Chapter 4: Using COM Objects in IDL

Description Language, you can often determine what a component is designed to
do.

With the top-level object selected in the |l eft-hand pane of the ITypelib Viewer, scroll
down in the right-hand pane until you find the section that defines the | Dispatch
interface for the object in question. The definition will look something like this:

interface IRSI DenoObj 1 : IDispatch {
[i d(0x00000001)]
HRESULT Get CLSID([out, retval] BSTR* pBstr);
[i d(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);
[i d(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);
[i d(0x00000003)]
HRESULT Di spl ayMessageStr();
[i d(0x00000004)]
HRESULT Msg2l nPar ans(
[in] BSTR str,
[in] long val,
[out, retval] BSTR* pVal);
[i d(0x00000005)]
HRESULT Get | ndexObj ect (
[in] long ndxObj,
[out, retval] IDispatch** ppDisp);
[i d(0x00000006)]
HRESULT Get ArrayOf Obj ect s(
[out] long* pQCbj Count,
[out, retval] VARI ANT* psaQbjs);
i

M ethod definitions ook like this:

[id(0x00000001)]
HRESULT Get CLSID([out, retval] BSTR* pBstr);

where thelineincluding thei d string is an identifier used by the object to refer to its
methods and the following line or lines (usually beginning with HRESULT) define the
method’s interface.

Again, whileit is beyond the scope of this manual to discuss COM object methodsin
detail, the following points may assist you in determining how to use a COM object:

* Methods whose definitionsinclude ther et val attribute will appear in IDL as
functions.

[id(0x00000001)]
HRESULT Get CLSID([out, retval] BSTR* pBstr);

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 59

* Methods that do not includether et val attribute will appear in IDL as
procedures.

[i d(0x00000003)]
HRESULT Di spl ayMessageStr () ;

» Methodswhose definitionsinclude the pr opget attribute allow youto retrieve
an object property using the DL comlDispatch::GetProperty method. You
cannot call these methods directly in IDL; see “Managing COM Object
Properties’ on page 61 for additiona details.

[1d(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);

» Methods whose definitions include the pr opput attribute allow you to set an
object property using the IDLcoml Dispatch::SetProperty method. You cannot
call these methods directly in IDL; see“Managing COM Object Properties’ on
page 61 for additional details.

[1d(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);

* Methods that accept optional input values will include the opt i onal tokenin
the argument’s definition. For example, the following definition indicates that
the second input argument is optional:

[id(0x00000004)]

HRESULT Msglor 21 nPar ans(
[in] BSTR str,
[in, optional] int val,
[out, retval] BSTR* pVal);

» Methods that provide default values for optional arguments replace the
opti onal tokenwiththedef aul t val ue() token, wherethe default value of
the argument is supplied between the parentheses. For example, the following
definition indicates that the second input argument is optional, and has a
default value of 15:

HRESULT Msglor 21 nPar ans(
[in] BSTR str,
[in, defaultvalue(15)] int val,
[out, retval] BSTR* pVval);

* While methods generaly return an HRESULT value, thisis not a requirement.
Displaying Interface Information using the IDL HELP Procedure

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the

External Development Guide Method Calls on IDLcomIDispatch Objects

60 Chapter 4: Using COM Objects in IDL
HEL P command with the OBJECTS keyword. IDL displaysalist of objects, along

with their methods, with function and procedure methods in separate groups for each
object class.

Method Calls on IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL 61

Managing COM Object Properties

As aconvenience to the IDL programmer, COM object methods that have been
defined using the pr opget and pr opput attributes are accessible via the

IDLcoml Dispatch object’s GetProperty and SetProperty methods. This means that
rather than calling the COM object’s methods directly to get and set property values,
you use the standard IDL syntax.

Note
If aCOM object method’s interface definition includes either the pr opget or the
propput attribute, you must use the IDL GetProperty and SetProperty methods to
get and set values. IDL does not allow you to call these methods directly.

Aswith all IDL objects, the IDLcomlDispatch object’s GetProperty and SetProperty
methods use procedure syntax. Keywords to the methods represent the names of the
properties being retrieved or set, and the keyword values represent either an IDL
variable into which the property value is placed or an IDL expression that isthe value
to which the property is set. You must use the procedure syntax when calling either
method, even if the underlying COM object methods being used are functions rather
than procedures.

Setting Properties

To set aproperty value on a COM object, use the following syntax:
Obj Ref -> SetProperty, KEYWORD=Expression

where Cbj Ref isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Expression isan IDL expression
representing the property value to be set.

You can set multiple property valuesin a single statement by supplying multiple
KEYWORD=Expression pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM aobject’s
property setting method. The partia keyword name functionality provided by IDL
isnot valid with IDLcomlIDispatch objects.

Getting Properties

To retrieve a property value from a COM aobject, use the following syntax:

External Development Guide Managing COM Object Properties

62 Chapter 4: Using COM Objects in IDL

bj Ref -> GetProperty, KEYWORD=Vari abl e

where Cbj Ref isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD is the COM object property name, and Variable isthe name of an IDL
variable that will contain the retrieved property value.

You can get multiple property valuesin a single statement by supplying multiple
KEYWORD=Variable pairs.

Note
KEYWORD must map exactly to the full name of the underlying COM aobject’s
property getting method. The partial keyword name functionality provided by IDL
isnot valid with IDLcomlIDispatch objects.

Because some of the underlying COM aobject’s pr opget methods may require
arguments, the IDL.coml Dispatch object’s GetProperty method will accept optional
arguments. To retrieve a property using a method that takes arguments, use the
following syntax:

bj Ref -> GetProperty, KEYWORD=Variable [, argO, argl, ... argn]

Note, however, that if arguments are required, you can only specify one property to
retrieve.

Managing COM Obiject Properties External Development Guide

Chapter 4: Using COM Objects in IDL 63

References to Other COM Objects

It is not uncommon for COM objects to return references to other COM objects,
either as a property value or via an object method. If an IDLcoml Dispatch object
returns a reference to another COM object’s | Dispatch interface, IDL automatically
creates an | DL.comlDispatch object to contain the object reference.

For example, suppose the Get Ot her bj ect method to the COM abject
encapsulated by the IDLcomIDispatch object Obj 1 returns areference to another
COM object.

Ghj2 = bj1 -> Get & her vj ect ()

Here, bj 2 isan IDLcoml Dispatch object that encapsul ates some other COM object.
Obj 2 behaves in the same manner as any | DL coml Dispatch object.

Note that IDLcomlIDispatch objects created in this manner are not linked in any way
to the object whose method created them. In the above example, this means that
destroying Obj 1 does not destroy Obj 2. If the COM object you are using creates new
IDLcoml Dispatch objects in this manner, you must be sure to explicitly destroy the
automatically-created objects along with those you explicitly create, using the
OBJ_DESTROY procedure.

External Development Guide References to Other COM Objects

64 Chapter 4: Using COM Objects in IDL

Destroying IDLcomIDispatch Objects

Use the OBJ_DESTROY procedure to destroy and | DL.coml Dispatch object.

When OBJ DESTROY s called with an IDL comlDispatch object as an argument,
the underlying reference to the COM object is released and IDL resources relating to
that object are freed.

Note
Destroying an IDL coml Dispatch object does not automatically cause the

destruction of the underlying COM object. COM employs a reference-counting
methodology and expects the COM abject to destroy itself when there are no
remaining references. When an IDLcomlDispatch object is destroyed, IDL simply
decrements the reference count on the underlying COM object.

Destroying IDLcomIDispatch Objects External Development Guide

Chapter 4: Using COM Objects in IDL

COM-IDL Data Type Mapping

65

When data moves from IDL to a COM object and back, IDL handles conversion of

variable data types automatically. The datatype mappings are shown in Table 4-1.

COM Type

IDL Type

BOOL (VT_BOOL)

Byte (true =1, false=0)

ERROR Long

(VT_ERROR)

CY (VT_CY) Doubl e (see note bel ow)
DATE (VT_DATE) Double

11 (VT_I1) Byte

INT (VT_INT) Long

UINT (VT_UINT)

Unsigned Long

VT_USERDEFINED

The IDL type is passed through.

VT_UIl Byte

VT 12 Integer

VT_UI2 Unsigned integer
VT_ERROR Long

VT_l4 Long

VT_Ul4 Unsigned Long
VT_I8 Long64

VT_UI8 Unsigned Long 64
VT R4 Float

VT_BSTR String

VT_R8 Double
VT_DISPATCH IDLcomlIDispatch

Table 4-1: IDL-COM Data Type Mapping.

External Development Guide

COM-IDL Data Type Mapping

66 Chapter 4: Using COM Objects in IDL

COM Type IDL Type

VT_UNKNOWN IDLcomlDispatch

Table 4-1: (Continued) IDL-COM Data Type Mapping.
Note on the COM CY Data Type

The COM CY datatypeisascaled 64-bit integer, supporting exactly four digitsto the
right of the decimal point. To provide an easy-to-use interface, IDL automatically
scales the integer as part of the data conversion that takes place between COM and
IDL, allowing the IDL user to treat the number as a double-precision floating-point
value. When the value is passed back to the COM object, it will be truncated if there
are more than four significant digits to the right of the decimal point.

For example, the IDL double-precision value 234. 56789 would be passed to the
COM object as234. 5678.

COM-IDL Data Type Mapping External Development Guide

Chapter 4: Using COM Objects in IDL 67

Example: RSIDemoComponent

This example uses a COM component included in the IDL distribution. The
RSIDemoComponent isincluded purely for demonstration purposes, and does not
perform any useful work beyond illustrating how IDLcomlDispatch objects are
created and used.

The RSIDemoComponent is contained in afile named RSI DemoConponent . dl |
located in the exanpl es\ COVBr i dge subdirectory of the IDL distribution. Before
attempting to execute this example, make sure the component is registered on your
system as described in “ Registering COM Components on a Windows Machine” on
page 47.

There are three objects defined by the RSIDemoComponent. The example begins by
using RSIDemoObj 1, which has the program ID:

RSI DenoConponent . RSI DenoObj 1
and the class ID:

{ A77BC2B2- 88EC- 4D2A- B2B3- F556 ACB52E52}
Note
The following section develops an IDL procedure called | DispatchDemo that
illustrates use of the RSIDemoComponent. The complete . pr o fileisincluded in
the exanpl es\ COMBr i dge subdirectory of the IDL distribution as
| Di spat chDeno. pro.

1. Begin by creating an IDLcomlIDispatch object from the COM object. You can
use either the class ID or the program ID. Remember that if you use the class
ID, you must remove the braces ({ }) and replace the hyphens with
underscores.

obj 1 = OBJ_NEW $
' | DLCOM Di spat ch$PROG D$RSI DenpConponent _RSI DenpOhbj 1')

or (with Class ID):

obj 1 = OBJ_NEW $
" | DLCOM Di spat ch$CLSI D$A77BC2B2_88EC 4D2A B2B3_F556ACB52E52')

2. The COM object implements the Get CLSI D method, which returns the class
ID for the component. You canretrievethisvaluein and IDL variable and print
it. The string should be' { A77BC2B2- 88EC- 4D2A- B2B3-

F556ACB52E52} " .

strCLSI D = obj 1- >Get CLSI ()
PRI NT, strCLSID

External Development Guide Example: RSIDemoComponent

68

Chapter 4: Using COM Objects in IDL

Note
The GetCL SID method returns the class identifier of the object using the
standard COM separators (-).

The COM object has a property named MessageSt r. To retrieve the value of
the MessageSt r property, enter:

obj1 -> GetProperty, MessageStr = out Str
PRI NT, out Str

IDL should print ' RSI DenpObj 1' .

You can also set the MessageSt r property of the object and display it using
the object’'s Di spl ayMessageSt r method, which displays the value of the
MessageSt r property in a Windows dialog:

obj1 -> SetProperty, MessageStr = 'Hello, world
obj 1 -> Displ ayMessageStr

The Msg2l nPar ans method takes two input parameters and concatenates
them into asingle string. Executing the following commands should cause IDL
toprint' The value is: 25'.

instr = 'The value is:

val = 25L

out Str = obj 1- >Msg2l nPar ans(i nstr, val)
PRI NT, outStr

To view all known information about the IDL coml Dispatch object, including
its dynamic subclass name and the names of its methods, use the IDL HELP
command with the OBJECTS keyword:

HELP, obj1, /OBJECTS

The Get | ndexObj ect () method returns an object reference to one of the
following three possible objects:

* RSI DenpObj 1 (index = 1)
* RSI DenpObj 2 (index = 2)
* RSI DenpQbj 3 (index = 3)

If theindex isnot 1, 2, or 3, the Get | ndexCObj ect method will return an error.

To get areference to RSI Denobj 3, use the following command:
obj 3 = obj 1- >Get | ndexObj ect (3)

Example: RSIDemoComponent External Development Guide

Chapter 4: Using COM Objects in IDL 69

8. All three objects have the Get CLSI D method. You can use this method to
verify that the desired object was returned. The output of the following
commands should be '{ 13AB135D- A361- 4A14- B165- 785B03AB5023} ' .

obj 3CLSI D = obj 3- >Get CLSI X)
PRI NT, obj 3CLSI D

9. Remember to destroy aretrieved object when you are finished with it:
OBJ_DESTROY, obj 3

10. Next, use the COM abject’s Get Ar r ayOf Chj ect s() method to return a
vector of object references to RSI DenoCbj 1, RSI Denobj 2, and
RSI Denmohj 3, respectively. The number of elementsin the vector is returned
in the first parameter; the result should 3.

obj s = obj 1->Get ArrayOf Cbj ect s(cltens)
PRI NT, cltens

11. Since each object implementsthe Get CLSI D method, you could loop through
all the object references and get its class ID:

FORi =0, cltens-1 do begin

obj CLSID = objs[i] -> GetCLSID()

PRI NT, 'Object[',i,'] CLSID: ', objCLSID
ENDFOR

12. Remember to destroy object references when you are finished with them:

OBJ_DESTROY, objs
OBJ_DESTROY, obj1

External Development Guide Example: RSIDemoComponent

70 Chapter 4: Using COM Objects in IDL

Example: RSIDemoComponent External Development Guide

Chapter 5:

Using ActiveX Controls

In IDL

This chapter discusses the following topics:

Using ActiveX ControlsinIDL 72
ActiveX Control Naming Scheme 73
Method Calls on ActiveX Controls 76
Managing ActiveX Control Properties 78

External Development Guide

ActiveX Widget Events 79
Destroying ActiveX Controls. 82
Example: Caendar Control 83
Example: Spreadsheet Control 86

71

72 Chapter 5: Using ActiveX Controls in IDL

Using ActiveX Controls in IDL

If you want to incorporate a COM object that presents a user interface (that is, an
ActiveX control) into your IDL application, use IDL'sWIDGET_ACTIVEX routine
to placethe control in an IDL widget hierarchy. IDL provides the same object method
and property manipulation facilities for ActiveX controls asit does for COM objects
incorporated using the IDL comlDispatch object interface, but adds the ability to
process events generated by the ActiveX control using IDL’s widget event handling
mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows NT/2000/XP (and | ater)

platforms.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsul ates the ActiveX control. IDLcomActiveX
objects are a subclass of the | DLcomlDispatch object class, and share al of the
IDLcoml Dispatch methods and mechanisms discussed in Chapter 4, “Using COM
Objectsin IDL”. You should be familiar with the material in that chapter before
attempting to incorporate ActiveX controlsin your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActiveX
control, use the IDL comlDispatch object class.

Registering COM Components on a Windows
Machine

Beforea COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that ingtalls them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually. For a description of the registration process, see “ Registering
COM Components on a Windows Machine” on page 47.

Using ActiveX Controls in IDL External Development Guide

Chapter 5: Using ActiveX Controls in IDL 73

ActiveX Control Naming Scheme

When you incorporate an ActiveX control into an IDL widget hierarchy using the
WIDGET_ACTIVEX routine, IDL automatically creates an IDLcomActiveX object
that instantiates the control and handles all communication between it and IDL. You
tell IDL which ActiveX control to ingtantiate by passing the COM class or program
ID for the ActiveX control to the WIDGET_ACTIVEX routine as a parameter.

IDL automatically creates a dynamic subclass of the IDLcomActiveX class (whichis
itself a subclass of the IDL coml Dispatch class) to contain the ActiveX control. The
resulting class name looks like

| DLcomActi veX$l D_t ype$l D
where ID_typeis one of the following:
e CLSI Dif theobject isidentified by its COM class ID, or
* PROG Dif the object isidentified by its COM program ID,
and ID is the COM object’s actua class or program identifier string.

For more on COM class and program IDs see “ Class Identifiers’ on page 48 and
“Program Identifiers” on page 49.

While you will never need to use this dynamic class name directly, you may see it
reported by IDL viathe HELP routine or in error messages. Note that when IDL
reports the name of the dynamic subclass, it will replace the hyphen charactersin a
class ID and the dot charactersin a program ID with underscore characters. Thisis
because neither the hyphen nor the dot character are valid in IDL object names.

Finding COM Class and Program IDs

In generd, if you wish to incorporate an ActiveX object into an IDL widget
hierarchy, you will know the COM class or program ID — either because you created
the control yourself, or because the developer of the control provided you with the
information.

If you do now know the class or program ID for the COM abject you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. For more information, see “Finding COM Class and Program
IDs” on page 50.

External Development Guide ActiveX Control Naming Scheme

74 Chapter 5: Using ActiveX Controls in IDL

Creating ActiveX Controls

To include an ActiveX control in an IDL application, use the WIDGET_ACTIVEX
function, supplying the COM class or program ID of the ActiveX control asthe
COM_ID argument.

Note
If the object you want to use in your IDL application is not an ActiveX control, use
the IDLcomlDispatch object class as described in Chapter 4, “Using COM Objects
inIDL". Instantiating a non-ActiveX component using the WIDGET_ACTIVEX
function is not supported, and may |lead to unpredictabl e results.

Once the ActiveX object has been instantiated within an IDL widget hierarchy, you
can call the control’s native methods as described in “Method Calls on ActiveX
Controls’ on page 76, and access or modify its properties as described in “Managing
ActiveX Control Properties’ on page 78. IDL widget events generated by the control
arediscussed in “ActiveX Widget Events’ on page 79.

For example, suppose you wished to include an ActiveX control with the class ID:
{ 0002E510- 0000- 0000- CO00- 000000000046}

and the program ID:
OWC. Spr eadsheet. 9

inan IDL widget hierarchy. Use either of the following calls the
WIDGET_ACTIVEX function:

wWAX = W DGET_ACTI VEX(wBase, $
' 0002E510- 0000- 0000- C000- 000000000046")

or
WAX = W DGET_ACTI VEX(wBase, ' OAC. Spreadsheet.9', | D TYPE=1)

where wBase isthewidget ID of the base widget that will contain the ActiveX
control.

Note
When instantiating an ActiveX control using the WIDGET_ACTIVEX function,
you do not need to modify the class or program ID as you do when creating an
IDL coml Dispatch object using the OBJ_NEW function. Be aware, however, that
when IDL creates the underlying IDLcomActiveX object, the dynamic class name
will replace the hyphens from aclass ID or the dots from a program ID with
underscore characters.

Creating ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 75

IDL'sinternal COM subsystem instantiates the ActiveX control within an
IDLcomActiveX object with one of the following dynamic class names

| DLcomAct i veX$CLSI DS0002E510_0000_0000_C0O00_000000000046
or
| DLcomAct i veX$PROG D$OWC_Spr eadsheet _9

and sets up communication between the object and IDL. IDL also places the control
into the specified widget hierarchy and prepares to accept widget events generated by
the control.

See “WIDGET_ACTIVEX” inthe IDL Reference Guide manual for additional
details.

External Development Guide Creating ActiveX Controls

76 Chapter 5: Using ActiveX Controls in IDL

Method Calls on ActiveX Controls

IDL alowsyou to cal the underlying ActiveX control’s methods by calling methods
on the IDLcomActiveX object that is automatically created when you call the
WIDGET_ACTIVEX function. IDL handles conversion between IDL datatypes and
the data types used by the component, and any resultsare returned in IDL variabl es of
the appropriate type.

Aswith all IDL objects, the general syntax is:
result = Obj Ref -> Method([Argunents])

or
Obj Ref -> Method[, Argunents]

where Cbj Ref isan object reference to an instance of a dynamic subclass of the
IDLcomActiveX class.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, method calls on
IDLcomActiveX objects follow the same rules as calls on DL coml Dispatch objects.
You should read and understand “Method Calls on IDLcomlDispatch Objects” on
page 53 before calling an ActiveX control’s methods.

Retrieving the Object Reference

Unlike IDLcoml Dispatch objects, which you create explicitly with a cal to the
OBJ_NEW function, IDLcomActiveX objects are created automatically by IDL. To
obtain an object reference to the automatically created IDLcomActiveX object, use
the GET_VALUE keyword to the WIDGET_CONTROL procedure.

For example, consider the following lines of IDL code:

wBase = W DGET_BASE()

wAX = W DGET_ACTI VEX(wBase, ' nmyProgram nyConponent.1', | D TYPE=1)

W DGET_CONTROL, wBase, / REALI ZE

W DGET_CONTROL, WAX, GET_VALUE=0Ax
Thefirst line creates a base widget that will hold the ActiveX control. The second
line instantiates the ActiveX control using its program ID and creates an
IDLcomActiveX object. Thethird line realizes the base widget and the ActiveX
control it contains — note that the ActiveX widget must be realized before you can
retrieve areference to the IDLcomActiveX object. The fourth line uses the
WIDGET_CONTROL procedure to retrieve an object reference to the

Method Calls on ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 77

IDLcomActiveX object in the variable oAx. You can use this object reference to call
the ActiveX control’s methods and set its properties.

External Development Guide Method Calls on ActiveX Controls

78 Chapter 5: Using ActiveX Controls in IDL

Managing ActiveX Control Properties

As aconvenience to the IDL programmer, ActiveX control methods that have been
defined using the pr opget and pr opput attributes are accessible via the
IDLcomActiveX object’s GetProperty and SetProperty methods, which are inherited
directly from the IDL coml Dispatch object class. This means that rather than calling
the ActiveX control’s methods directly to get and set property values, you use the
standard IDL syntax.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. Asaresult, IDL’sfacilities for managing
the properties of ActiveX controls follow the same rules as for IDLcomlDispatch
objects. You should read and understand “Managing COM Object Properties’ on
page 61 before working with an ActiveX control’s properties.

Managing ActiveX Control Properties External Development Guide

Chapter 5: Using ActiveX Controls in IDL 79

ActiveX Widget Events

Events generated by an ActiveX control are dispatched using the standard DL
widget methodology. When an ActiveX event is passed into IDL, it is packaged in an
anonymous IDL structure that contains the ActiveX event parameters.

While the actual structure of an event generated by an ActiveX control will depend
on the control itself, the following gives an idea of the structure's format:

{ID . 0L,

TOP . 0oL,

HANDLER . 0oL,

DI SPI D : OL, ; The DISPID of the callback nethod
EVENT_NAME : "", ; The name of the callback nethod
<Paraml nane> : <Paraml val ue>,

<Paran2 nane> : <Paran? val ue>,

<ParanmN nane> : <ParanN val ue>

}

Aswith other IDL Widget event structures, thefirst threefieldsare standard. ID isthe
widget id of the widget generating the event, TOP is the widget ID of the top level
widget containing 1D, and HANDLER contains the widget | D of the widget
associated with the handler routine.

The DISPID field contains the decimal representation of the dispatch ID (or DISPID)
of the method that was called. Note that in the OLE/COM Object Viewer, this 1D
number is presented as a hexadecimal number. Other applications (Microsoft Visual
Studio among them) may display the decimal representation.

The EVENT_NAME field contains the name of the method that was called.

The Param name fields contain the values of parameters returned by the called
method. The actual parameter name or names displayed, if any, depend on the
method being called by the ActiveX control.

Using the ActiveX Widget Event Structure

Since the widget event structure generated by an ActiveX control depends on the
method that generated the event, it isimportant to check the type of event before
processing valuesin IDL. Successfully parsing the event structure requires a detailed
understanding of the dispatch interface of the ActiveX control; you must know either
the DISPID or the method name of the method, and you must know the names and
data types of the values returned.

External Development Guide ActiveX Widget Events

80 Chapter 5: Using ActiveX Controls in IDL

For example, suppose the ActiveX control you are incorporating into your IDL
application includes two methods named Met hod1 and Met hod2 in adispatch
interface that looks like this:

di spinterface MyDi splnterface {
properties:
met hods:
[id(0x00000270)]
void Methodl([in] Eventlnfo* Eventlnfo);
[id(0x00000272)]
HRESULT Met hod2([out, retval] BSTR* EditData);
b

A widget event generated by acall to Met hod1, which has no return values, would
look something like:

** Structure <3fb7288>, 5 tags, |ength=32, data | ength=32:

I D LONG 13
TOP LONG 12
HANDLER LONG 12
DI SPI D LONG 624
EVENT_NAME STRI NG ' Met hod1'

Note that the DISPID is 624, the decimal equivalent of 270 hexadecimal.

A widget event generated by acall to Met hod2, which has one return value, would
look something like:

** Structure <3fb7288>, 6 tags, |ength=32, data |ength=32:

I D LONG 13

TOP LONG 12

HANDLER LONG 12

DI SPI D LONG 626
EVENT_NAME STRI NG ' Met hod?2'

EDI TDATA STRI NG 'sone text val ue'

An DL event-handler routine could use the value of the DISPID field to check which
of these two ActiveX control methods generated the event before attempting to use
the value of the EDITDATA field:

PRO nyRout i ne_event, event
| F(event. Dl SPID eq 626) THEN BEG N
PRI NT, event. EDI TDATA
ENDI F ELSE BEG N
<do sonething el se>
ENDEL SE
END

ActiveX Widget Events External Development Guide

Chapter 5: Using ActiveX Controls in IDL 81

Dynamic Elements in the ActiveX Event Structure

Parameter data included in an event structure generated by an ActiveX control can
take the form of an array. If this happens, the array is placed in an IDL pointer, and
the pointer, rather than the array itself, isincluded in the IDL event structure.
Similarly, an ActiveX control may return areference to another COM object, as
described in “ References to Other COM Objects’ on page 63, in its event structure.

IDL pointers and objects created in this way are not automatically removed; it is the
IDL programmer’s responsibility free them using a routine such as PTR_FREE,
HEAP_FREE, or OBJ DESTROY.

If it is unclear whether the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when your event-handler routine has finished with the event. Thiswill ensure that all
dynamic portions of the structure are rel eased.

External Development Guide ActiveX Widget Events

82 Chapter 5: Using ActiveX Controls in IDL

Destroying ActiveX Controls

An ActiveX control incorporated in an IDL widget hierarchy is destroyed when any
of the following occurs:

» When the widget hierarchy to which the ActiveX widget belongsis destroyed.

* Whenacal to WIDGET_CONTROL, wAX, /IDESTROY is made, where wAx
isthe widget ID of the ActiveX widget.

* When the underlying IDLcomActiveX object is destroyed by acall to
OBJ DESTROY.

In most cases, cleanup of an application that includes an ActiveX control is not
different from an application using only IDL native widgets. However, becauseit is
possible for an ActiveX control to return references to other COM objectsto IDL,
you must be sure to keep track of all objects created by your application and destroy
them as necessary. See “References to Other COM Objects’” on page 63 for details.

In addition, it is possible for the widget event structure generated by an ActiveX
control to include IDL pointers or object references. Pointers and object references
included in the event structure are not automatically destroyed. See “Dynamic
Elementsin the ActiveX Event Structure” on page 81 for more information.

Destroying ActiveX Controls External Development Guide

Chapter 5: Using ActiveX Controls in IDL 83

Example: Calendar Control

This example uses an ActiveX control that displays a calendar interface. The control,
contained in thefilenmscal . ocx, isinstalled along with atypical installation of
Microsoft Office 97, and may al so be present on your system if you have upgraded to
amorerecent version of Microsoft Office. If the control is not present on your system
(you'll know the contral is not present if the example code does not display a
calendar similar to the one shown in Figure 5-1 on page 85), you can download a
copy free of charge directly from the following Microsoft web site:

http://ww. m crosoft.com O fi ceDev/ FreeStuff/nscal dl . htm

If you download the control, placethe filenscal . exe in aknown location and
execute the file; you will be prompted for a directory in which to placemscal . ocx.
Open a command prompt window in the directory you chose and register the control
as described in “ Registering COM Components on a Windows Machine” on page 47.

The calendar control has the program ID:
MSCAL. Cal endar . 7
and the class ID:

{ 8E27C92B- 1264- 101C- 8A2F- 040224009C02}
Note
The following section develops an IDL routine called ActiveXCal that illustrates
use of the calendar ActiveX control within an IDL widget hierarchy. The complete

. pro fileisincluded in the exanpl es\ COVBri dge subdirectory of the IDL
distribution as Act i veXcCal . pro.

1. Createthe ActiveXCal procedure. (Remember that in the Act i veXCal . pro
file, this procedure occurslast.)

PRO Acti veXcCal
2. Create atop-level base widget to hold the ActiveX control.

wBase = W DGET_BASE(COLUMN = 1, SCR_XSIZE = 400, $
TITLE="1DL ActiveX Wdget Cal endar Control ')

3. Create basewidgetsto hold labelsfor the selected month, day, and year. Set the
initial values of the labels.

wSubBase = W DGET_BASE(wBase, /ROW

wVoi d = W DGET_LABEL(wSubBase, value = 'Month: ')
whvbnt h = W DGET_LABEL(wSubBase, value = 'Cctober')
wSubBase = W DGET_BASE(wBase, /ROW

wVoi d = W DGET_LABEL(wSubBase, VALUE = 'Day: ')

External Development Guide Example: Calendar Control

84

10.

11.

Chapter 5: Using ActiveX Controls in IDL

wDay = W DGET_LABEL(wSubBase, VALUE = '22')
wSubBase = W DGET_BASE(wBase, /ROW

wVoi d W DGET_LABEL(wSubBase, VALUE
wYear W DGET_LABEL(wSubBase, VALUE

"Year: ')
'1999")

Instantiate the ActiveX Control, using the control’s class ID.

WAX=W DGET_ACTI VEX(wBase, $
' { 8E27C92B- 1264- 101C- 8A2F- 040224009002} ')

Realize the top-level base widget.
W DGET_CONTROL, wBase, / REALIZE

Set the top-level base’s user value to an anonymous structure containing
widget I Ds of the month, day, and year label widgets.

W DGET_CONTROL, wBase, $
SET_WALUE = {nont h: wiWbnt h, day: wDay, year:wYear}

Retrieve the object 1D of the IDLcomActiveX object that encapsulates the
ActiveX control. Use the GetProperty method to retrieve the current values of
the month, day, and year from the control.

W DGET_CONTROL, wAXx, GET_VALUE = 0AX
0AX- >CGet Property, nonth=nonth, day=day, year=year

Set the values of thelabel widgetsto reflect the current date, as reported by the
ActiveX control.

W DGET_CONTROL, wibnth, SET_VALUE=STRTR M nonth, 2)
W DGET_CONTROL, wDay, SET_VALUE=STRTR M day, 2)
W DGET_CONTROL, wYear, SET_VALUE=STRTRI M year, 2)

Cal XMANAGER to manage the widget events, and end the procedure.
XMANAGER, ' ActiveXCal', wBase

END

Now create an event-handling routine for the calendar control. (Remember that
inthe Act i veXCal . pr o file, this procedure occurs before the ActiveXCal
procedure.)

PRO ActiveXCal _event, ev

The ActiveX widget isthe only widget in this application that generates widget
events, so the D field of the event structure is guaranteed to contain the widget
ID of that widget. Use the GET_VALUE keyword to retrieve an object
reference to the IDLcomActiveX object that encapsulates the control.

W DGET_CONTROL, ev.|D, GET_VALUE = oCal

Example: Calendar Control External Development Guide

Chapter 5: Using ActiveX Controls in IDL 85

12. The user value of the top-level base widget is an anonymous structure that
holds the widget | Ds of the month, day, and year label widgets (see step 6
above). Retrieve the structure into a variable named st at e.

W DGET_CONTROL, ev.TOP, GET_UVALUE = state

13. Use the GetProperty method on the IDLcomActiveX object to retrieve the
current values of the month, day, and year from the calendar control.

ocal - >Get Property, nonth=nonth, day=day, year=year

14. Use WIDGET_CONTROL to set the values of the month, day, and year label
widgets.

W DGET_CONTROL, state.nmonth, SET_VALUE = STRTRI M nont h, 2)
W DGET_CONTROL, state.day, SET_VALUE = STRTRI M day, 2)
W DGET_CONTROL, state.year, SET_VALUE = STRTRI M year, 2)

15. Call HEAP_FREE to ensure that dynamic portions of the event structure are
released, and end the procedure.

HEAP_FREE, ev
END

Running the ActiveX Cal procedure displays a widget that |ooks like the following:

&]|IDL ActiveX Widget Calendar Control 'I] 3
Month: &
Cray: 1
Year 2002
May 2002 May e REE
Sun Mon Tue Wed Thu Fri Sat
28 29 a0 2 3 4
= B 7 g 9 10 1
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 28 30 bl 1
2 (il 4 i B 7 i

Figure 5-1: An IDL widget program using an ActiveX calendar control.

External Development Guide Example: Calendar Control

86 Chapter 5: Using ActiveX Controls in IDL

Example: Spreadsheet Control

This example uses an ActiveX control that displays a spreadsheet interface. The
control, contained in thefilenmsowc. dl | , isinstalled along with atypical installation
of Microsoft Office. If the control is not present on your system (you'll know the
control is not present if the example code fails when trying to realize the widget
hierarchy), the example will not run.

The spreadsheet control has the program ID:
OWC. Spr eadsheet. 9
and the class ID:
{ 0002E510- 0000- 0000- CO00- 000000000046}

Information about the spreadsheet control’s properties and methods was gleaned from
Microsoft Excel 97 Visual Basic Step by Step by Reed Jacobson (Microsoft Press,
1997) and by inspection of the control’s interface using the OLE/COM Object Viewer
application provided by Microsoft. It is beyond the scope of this manual to describe
the spreadsheet control’s interface in detail.

Note
Thefollowing section develops an IDL routine called ActiveX SSthat illustrates use
of the spreadsheet ActiveX control within an IDL widget hierarchy. The complete
. pro fileisincluded in the exanpl es\ COVBri dge subdirectory of the IDL
distribution as Act i veXSS. pr o.

1. Create afunction that will retrieve data from cells selected in the spreadsheet
control. The function takes two arguments: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control, and avariable
to contain the data from the selected cells.

FUNCTI ON ss_get Sel ecti on, 0SS, aData

2. Retrieve an object that represents the selected cells. Note that when the
ActiveX control returns this object, IDL automatically creates an
IDLcomActiveX object that makes it accessible within IDL.

0SS- >CGet Property, SELECTI ON=oSel
3. Retrieve the total number of cells selected.
oSel - >Get Property, COUNT=nCell s

Example: Spreadsheet Control External Development Guide

Chapter 5: Using ActiveX Controls in IDL 87

4,

If no cells are selected, destroy the selection object and return zero (the failure
code).

|F (nCells LT 1) THEN BEG N
OBJ_DESTROY, oSel
RETURN, O

ENDI F

Retrieve objects that represent the dimensions of the selection.
0Sel - >Get Property, COLUWNS=0Col s, ROWs=0Rows
Get the dimensions of the selection, then destroy the column and row objects.

0oCol s- >CGet Property, COUNT=nCol s
OBJ_DESTROY, oCol s
oRows- >Cet Property, COUNT=nRows
OBJ_DESTROY, oRows

Create afloating point array with the same dimensions as the selection.
aData = FLTARR(nCol s, nRows, /NOZERO);
Iterate through the cells, doing the following:

» Retrieve an object that represents the cell. Note that the numeric index of
the FOR loop is passed to the GetProperty method as an argument.

» Get the value contained in the cell.
* Set the appropriate element of the aData array to the cell's value.
* Destroy the object.

FOR i=1, nCells DO BEG N
oSel ->Get Property, |TEM=oltem i
ol tem >Get Property, VALUE=vVal ue

abData[i-1] = vValue
OBJ_DESTROY, oltem
ENDFOR

Destroy the selection object.
OBJ_DESTROY, oSel

10. Return one (the success code) and end the function definition.

RETURN, 1

END

External Development Guide Example: Spreadsheet Control

88

11.

12.

13.

14.

15.

16.

17.

18.

Chapter 5: Using ActiveX Controls in IDL

Next, create a procedure that sets the values of the cellsin the spreadsheet.
This procedure takes one argument: an object referenceto the IDLcomAcctiveX
object that instantiates the spreadsheet control.

PRO ss_set Data, 0SS
Define the size of the data array.
nX = 20
Get an object representing the active spreadsheet.
0SS- >CGet Property, ActiveSheet=0Sheet
Get an object representing the cellsin the spreadsheet.
oSheet - >Get Property, CELLS=0Cells
Generate some data.
i m = BESELJ(DI ST(nX))
Iterate through the elements of the data array, doing the following:

» Retrieve an object that represents the cell that corresponds to the data
element. Note that the numeric indices of the FOR loops are passed to the
GetProperty method as arguments.

e Set the value of the cell.

» Dedtroy the object.

FOR i =0, nX-1 DO BEG N
FOR j =0, nX-1 DO BEG N
0Cel | s->CGet Property, | TEMcoltem i+1, j+1
ol tem >Set Property, VALUE=in(i,j)
OBJ_DESTROY, oltem
ENDFOR
ENDFOR

Destroy the spreadsheet and cell objects, and end the procedure.

OBJ_DESTROY, oSheet
OBJ_DESTROY, oCells

END
Next, create a procedure to handle events generated by the widget application.
PRO ActiveXSS_event, ev

Example: Spreadsheet Control External Development Guide

Chapter 5: Using ActiveX Controls in IDL 89

19.

20.

21.

22.

23.

24.

25.

26.

27.

The user value of the top-level base widget is set equal to a structure that
contains the widget 1D of the ActiveX widget. Retrieve the structure into the
variable sState.

W DGET_CONTROL, ev. TOP, GET_UVALUE=sState, /NO_COPY

Use the value of the DISPID field of the event structure to sort out “ selection
changing” events.

IF (ev. D SPID EQ 1513) THEN BEG N

Place data from selected cells in variable aData, using the
ss_get Sel ect i on function defined above. Check to make sure that the
function returns a success value (one) before proceeding.

| F (ss_get Selection(sState. oSS, aData) NE 0) THEN BEG N
Get the dimensions of the aData variable.
szData = Sl ZE(aDat a)
If aDataistwo-dimensional, display asurface, otherwise, plot the data.

IF (szData[0] GI 1 AND szData[1] GI 1 AND szData[2] GT 1) $
THEN SURFACE, aData $
ELSE $
PLOT, aData
ENDI F

ENDI F

Reset the state variable sState and end the procedure.
W DGET_CONTROL, ev.TOP, SET_UVALUE=sState, /NO_COPY

END
Create the main widget creation routine.
PRO Acti veXSS

I EXCEPT=0 ; Ignore floating-point underflow errors.
Create a top-level base widget.

wBase = W DGET_BASE(COLUMN=1, $
TITLE="1 DL ActiveX Spreadsheet Exanple")

Instantiate the ActiveX spreadsheet control in awidget.

WAX=W DGET_ACTI VEX(wBase, $
' {0002E510- 0000- 0000- C000- 000000000046}, $
SCR_XSI ZE=600, SCR_YSI ZE=400)

External Development Guide Example: Spreadsheet Control

90

28.

29.

30.

31

32.

33.

Chapter 5: Using ActiveX Controls in IDL

Realize the widget hierarchy.
W DGET_CONTROL, wBase, / REALIZE

The value of an ActiveX widget is an object reference to the IDLcomActiveX
object that encapsulates the ActiveX control. Retrieve the object referencein
the variable 0SS.

W DGET_CONTROL, WAx, GET_VALUE=0SS
Turn off the TitleBar property on the spreadsheet control.
0SS- >Set Property, DisplayTitleBar=0

Populate the spreadsheet control with data, using the ss_set Dat a function
defined above.

ss_setData, 0SS

Set the user value of the top-level base widget to an anonymous structure that
contains the widget 1D of the spreadsheet ActiveX widget.

W DGET_CONTROL, wBase, SET_UVALUE={0SS: 0SS}
Cal XMANAGER to manage the widgets, and end the procedure.
XMANAGER, ' Acti veXSS', wBase, /NO_BLOCK

END

Running the ActiveX SS procedure display widgets that look like the following:

sl
Bi-l¥ B R i Al =1

@~ || @ | r =

10
11
12
13
1
15
16
17
18
13
20
|

i 10|]|

A B c D E
0765195 0223891 -0260052) -0359715
0.765198) 0559134 0.090405|-0.310045 -0.386167 0.
0223831 0090405 -0.196545 -0 392293 -0.326575 4
0260052 -0 310045 -0.392293 -0 370336 -0.177597
039715 -0.386187 -0.326876 0177697 0.04583
01778597 | -0 1446R5 -0046335 0101258 0.243877
0.150645) 0172849 0228844 0285637 0.29445
0.300079 0299556 02836804 0245062 0156777
0171651 0186777 001102 0.029915 -0.076487
-0.090334 -0 103734 -0 140967 -0.191787 -0.236522
0245036 | 0247792 0.24963 0240943 -0.207336 0.
-0.090334 -0 103734 -0 140967 -0.191787 -0.236522
0171651 0156777 001102 0.029915 -0.076487
0.300079 0299556 02836804 0245062 0156777
0.150645) 0172849 0228844 0285837 0.29445
01778597 | -0 144665 -0.046336 | 0101256 0.243877 0.29¢
-0.39715 -0.386187 | -0.326875 0177597 | 0.04583
0260052 -0 310045 -0.392295 -0 370336 -0.177597

0223891 0.090405 -0.196548 -0.392293| -0.326875 -0.04 = =
0765198 0.559134 0.090405 -0.310045)-0.386167 -0.144665 0.172843 0.299655 0.1567 o
| ;IJ

Figure 5-2: An IDL widget program using an ActiveX spreadsheet control.

Example: Spreadsheet Control External Development Guide

Chapter 6:

The IDLDrawWidget
ActiveX Control

This chapter discusses the following topics:

OVerview ..., 92
Creating an Interface and Handling Events . 94
Working with IDL Procedures.......... 100
Advanced Examples 103
Copying and Printing IDL Graphics 104

XLoadCT Functiondity Using Visual Basic.. 108

External Development Guide

XPalette Functionality Using Visual Basic 109
Integrating Object GraphicsUsing Visud Basc 110
Sharing a Grid Control Array with IDL .. 111
Handling Events within Visual Basic 112
Distributing Your ActiveX Application .. 113

91

92 Chapter 6: The IDLDrawWidget ActiveX Control

Overview

The Microsoft Windows version of IDL includes an ActiveX control that provides a
powerful way to integrate all the data analysis and visualization features of IDL with
other programming languages that support ActiveX controls. ActiveX is a set of
technol ogies that enables software components to interact, regardless of the language
in which they were written. This makes it possible, for example, to design a software
interface with Microsoft Visual Basic and have I DL respond to the eventsiit
generates. The major features of the IDL ActiveX control include the following:

» ThelDL ActiveX control makesit possible to display IDL direct and object
graphics within an OLE container that supports ActiveX controls;

» ThelDL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itself;

* ThelDL ActiveX control greatly simplifies the process of moving data to and
from IDL and an external program;

* And finaly, theinterface to the IDL ActiveX control appears nativeto the
external application.

Other issues to note regarding the ActiveX control are:

e ThelDL ActiveX control isintended primarily for use in applications
developed with Visual Basic 5.0 or greater. The control can beincluded in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visual Basic-style
data types to exchange data between a Visual Basic application and IDL. A
Visual C++ programmer will need to use OLE’s VARI ANT and SAFEARRAY
types. A discussion of how to use the IDL ActiveX control with these
languages is beyond the scope of this manual.

* ThelDL ActiveX control does not support any non-blocking IDL widgets.
When you call awidget from an ActiveX Control, you will not have access to
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of awidget using the given functionality.
For an example, see “XLoadCT Functionality Using Visual Basic” on
page 108.

The ActiveX interface to IDL consists of asingle control called IDL DrawWidget.
When this control is included in a project, it exposes the features of IDL through its

Overview External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 93

properties and methods. The | DL DrawWidget can aso trigger events. The
properties and methods of the I DL DrawWidget are listed in Chapter 7,
“IDLDrawWidget Control Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visual Basic. These techniques begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphicsin aVisual Basic
window.

A Note about Versions of the IDL ActiveX Control

Periodically, Research Systems rel eases a new version of the IDLDrawX ActiveX
control. Older versions of the control will continue to work as they aways have, but
the new versions may include new features or other enhancements.

Why Are New Versions of the Control Created?

One of the features of COM s that interfaces areimmutable. That is to say that when
you create an interface, you “contractually” agree that the interface won’t change.
Changes to the way the control interacts with other components require that a new
interface — and thus a new version of the control — must be created. Since the IDL
ActiveX control isa COM object it is bound by this agreement. When Research
Systems makes improvements to the ActiveX control interface by adding new
methods and properties, we release anew ActiveX control with the new interface.

What Must You Change to Take Advantage of a New Control?

If you are a Visual Basic user, you need to add the new version of the control to your
project and remove the old versions. For example, if you are upgrading to the
“IDLDrawX3 ActiveX Control Module” included with IDL version 5.6, you would
add this control to your project and remove the “IDLDrawX ActiveX Control
Module” or “IDLDrawX?2 ActiveX Control Module” from your project. The source
code need not change.

What About Previous ActiveX Controls?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, they are no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

External Development Guide Overview

94 Chapter 6: The IDLDrawWidget ActiveX Control

Creating an Interface and Handling Events

The goal of thisfirst example isvery simple: to create a user interface in Microsoft
Visual Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following figure:

. IDL OCX Control: Simple Example [O] X]

% Compiled module: DIST.
40 4 1800 J

|

Figure 6-1: A simple example showing the IDLDrawWidget and
text returned by IDL

As the figure shows, our first example program consists of two buttons (“ Plot Data’
and “Exit"), agraphics area, and atext box. All of these elements reside on top of
what is caled aform in Visual Basic parlance. (A formin Visual Basicissimilar to a
top level basein IDL.) Clicking the “Plot Data” button causes IDL to produce the

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control

95

surface plot shown. Clicking “Exit” causes DL and the Visual Basic program to free

memory and exit.

1fPrivate Sub Form Load()
2 n = | DLDrawW dget 1. | ni t | DL(For mlL. hWhd)
3 If n <=0 Then
4 MsgBox ("IDL failed to initialize")
5 End
6 End | f
7 | DLDr awW dget 1. Cr eat eDr awW dget
8 | DLDr awW dget 1. Set Cut put Wad (/| DL_CQut put _Box. hWhd)
9 End Sub
Visual . .
. 10fQPrivate Sub Plot_Button_Cick()
Basic 11 | DLDr awW dget 1. ExecuteStr ("Z = SHI FT(DI ST(40), 20, 20)")
12 | DLDr awW dget 1. Execut eStr ("Z = EXP(-(Z/ 10)72)")
13 | DLDr awW dget 1. Execut eStr (" SURFACE, Z")
14 | DLDr awW dget 1. Execut eStr (" PRI NT, SIZE(2)")
15QEnd Sub
16fPrivate Sub Exit_Button_Click()
17 | DLDr awW dget 1. DoExi t
18 End
19End Sub

Table 6-1: Source code for a simple example

Drawing the Interface

Begin building the first example by creating a new Visua Basic project, adding the

IDL ActiveX control, and drawing the interface components. Launch Microsoft

Visual Basic and create a new project.

1. AddtheIDL ActiveX component to the project. Visua Basic displaysalist of

all available components when you select the Components from the Project

menu.

Components E

Contrals | Designers Insertable Objects |

T - o
[JImage Document
[1Index OLE Control madule

[Keywardsearch OLE Control module

[ILM Runtime Control

[redia Clip
M ea

Y T B PP TR I

Figure 6-2: List of Available Components

External Development Guide Creating an Interface and Handling Events

96 Chapter 6: The IDLDrawWidget ActiveX Control

Select the “IDLDrawX3 ActiveX Control module’ check box and close the
—& Components window. Visual Basic will display the IDLDrawWidget'siconin
the tool bar, as shown to the | eft.

2. Begin drawing the interface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display area was created with IDL DrawWidget.

Specifying the IDL Path and Graphics Level

Having added | DL DrawWidget to the Visual Basic project, we now have access to
IDL DrawWidget's properties and methods. Use the I dIPath and GraphicsL evel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and abject graphics capabilities. Refer to Chapter 7,
“IDLDrawWidget Control Reference” for a complete list of the properties and
methods to | DL DrawWidget.

1. UseVisua Basic's Properties window to select the | DL DrawWidget. All of
the IDL DrawWidget's properties can be set using the Properties window.
Many properties can also be set within the source code. These distinctions are
noted in Chapter 7, “IDLDrawWidget Control Reference”.

Propertiez - DL DrawWwidgeti =]

| IDLDrawwidget1 IDLDrawidget =]
Alphabetic | Cateqgarized I
(Cuskom) -
M 1D Cr vy
EackColor [&H=s000000F:
EaseMarne IDLCrawiwidget1Base
Borderstyle 0- Mone
Bufferld -1
Causesvalidation True
Craglcon {Mone)
Craghode 0 - vbManual
CorawdidgetMame | IDLDrawiWidgetl
Enable True
Enabled True
Getyalueharne
GraphicsLewel 1
Height 2415
HelpZontextID |0
IdPath hd
{Name)
Returns the name used in code to identify an
object.

Figure 6-3: Visual Basic Properties window

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 97

2. Locate the I dIPath property and enter the directory path to your IDL
installation. If you installed IDL in its default location, this path will be:

c:\rsi\idl 54

3. Locatethe GraphicsL evel property and set it equal to 1. ThisselectsIDL's
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the IDL DrawWidget set, now write
some Visua Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form Load()
End Sub

Visual Basic's Form_L oad routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the | DL DrawWidget,
and direct output from IDL to atext box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needs to beinitialized before Visual Basic can interact with the

IDL DrawWidget. Thisis done with the InitlDL method. I nitIDL takesthe hwnd
of the form containing the | DL DrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the | DL DrawWidget were not changed, IDL
can be initialized with the following statement.

n = | DLDrawW dget 1. | ni t | DL(For mL. hWhd)

A conditional statement isincluded to display an error message and exit the program
if IDL failed to initialize.
If n <= 0 Then
MsgBox ("I1DL failed to initialize")

End
End | f

External Development Guide Creating an Interface and Handling Events

98 Chapter 6: The IDLDrawWidget ActiveX Control

Creating the Draw Widget

When a box is drawn with the “IDLDrawWidget” icon in the toolbar, an OCX frame
iscreated. Thisisa container for the | DL DrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. Thisis accomplished with the CreateDrawWidget method, as shown in the
following statement:

| DLDr awW dget 1. Cr eat eDr awW dget
Directing IDL Output to a Text Box

The example program displays any output returned by IDL in atext box created in
Visual Basic. Thisisaccomplished with the SetOutputWnd method of the

IDL DrawWidget. The SetOutputWnd method takes the hWnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named | DL_Output_Box, hence the following statement.

| DLDr awW dget 1. Set Qut put Wad (| DL_Qut put _Box. hWhd)

Note

Although thisis the last statement within the Form_L oad() subroutine, it could be
placed before the call to InitIDL to get standard IDL version information printed.

Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basic isto let Visual Basic manage the
events and pass instructions to IDL. Recall that our example program contains two
buttons: “Plot Data” and “Exit”. When you double-click on “Plot Data”, Visua Basic
automatically creates the following subroutine:

Private Sub Plot_Button_Cick()
End Sub

Visual Basic will execute any statements within this subroutine when the user clicks
“Plot Data’. Instructions are passed to IDL using the ExecuteStr method to the

IDL DrawWidget. The ExecuteStr method takes a string as an argument. This string
ispassed to IDL for execution asif it were entered at the IDL command line. Thefive

statements which follow instruct IDL to produce the surface plot shown in the figure
above.

| DLDr awW dget 1. ExecuteStr ("Z = SHIFT(DI ST(40), 20, 20)")
| DLDr awW dget 1. ExecuteStr ("Z EXP(-(2/10)72)")

| DLDr awW dget 1. Execut eStr (" SURFACE, Z")

| DLDr awW dget 1. ExecuteStr ("PRINT, SlIZE(Z)")

Creating an Interface and Handling Events External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 99

Cleaning Up and Exiting

This project exits when the user clicks “Exit”. Exiting is atwo step process. IDL is
given a chance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.
Private Sub Exit_Button_Cick()
| DLDr awW dget 1. DoExi t

End
End Sub

External Development Guide Creating an Interface and Handling Events

100 Chapter 6: The IDLDrawWidget ActiveX Control

Working with IDL Procedures

In this next example a project is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It isimportant to realize that the ActiveX control
interacts with IDL at the main level. Thus, aVisual Basic program passing
instructionsto IDL isidentical to entering the sameinstructions at the IDL command
line. In this example Visual Basic is only used to create the user interface and
dispatch events. The dataresidesin memory controlled by IDL. IDL isused for all
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and residesin the
exanpl es\ doc\ Act i veX\ SecondExanpl e directory.

. Second Example: Interacting with IDL Procedures [O] X]

Open

Scale Original

IBIack #whhite VI

i

Roberts |

Exit

[]

Original Filtered

% Compiled module: SETCOLORS. ;I
% Compiled module: APPLYSOBEL.

*% Compiled module: APPLYROBERTS.

% Loaded DLM: JPEG.

% Compiled module: COMGRID.

% Compiled module: LOADCT.

% Compiled module: FILEPATH.

% LOADCT: Loading table B-w LINEAR LI

Figure 6-4: The User Interface with Two Draw Widgets

The user interface consists of two | DL DrawWidget objects. The one on the left will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 101

Creating the Interface

Theinterfaceis created as it was in the first example, by drawing the interface
componentsin Visual Basic. Two | DL DrawWidgets are created. Set the path
(c:\rsi\idl 54) and graphics level properties (type 1) of both.

Initializing IDL

Although there are two | DL DrawWidget objects, only one instance of the ActiveX
control needsto beinitialized. Both of the IDL DrawWidget objects do need to be
created, however.

Thisis done with the two statements below:

| DLDr awW dget 1. Cr eat eDr awW dget
| DLDr awW dget 2. Cr eat eDr awW dget

Compiling the IDL Code

This example uses IDL procedures contained ina. pr o file named

SecondExanpl e. pro. Thisfile contains IDL procedures. Before these procedures
can be called from Visua Basic, SecondExanpl e. pr o needs to be compiled.
Thisassumesthat the . pr o fileresidesin the same directory asthe Visual Basic
project. The path method of the App object returns the directory from which the
Visual Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, '" + App.Path + "'"
| DLDr awW dget 1. ExecuteStr (Worki ngDi rectory)

The . pr o can then be compiled. A conditional statement is used to exit the program
if IDL was unableto locatethe. pr o file.

Dispatching Button Events to IDL
Because Visual Basic is used primarily for the user interface components of the

application, IDL’s procedures have been created for processing the button eventsin
the application. Thisis accomplished through the ExecuteStr method of the

External Development Guide Working with IDL Procedures

102 Chapter 6: The IDLDrawWidget ActiveX Control

IDL DrawWidget, as called in the following figure; when you click “Open”, the
OpenFile procedure is defined as bel ow.

. 1QPrivate Sub Open_Button_Click(lndex As I|nteger)
Visual 2 | DLCommand = "QpenFile, " + Str(BaselD)
Basic 3 | DLDr awW dget 1. Execut eStr (| DLComrand)

4QEnd Sub

Table 6-2: User Interface of Example Project

OpenFileisauser procedure that utilizes IDL's DIALOG_PICKFILE function to
enable the user to select afile for display within the IDL DrawWidget.

Cleaning Up and Exiting

Like the first example, this program exits when the user clicks “Exit”. An additional
call has been made to DestroyDrawWidget. Thisisn’t necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsL evel property of the I DL DrawWidget during program execution use this

method.

1JPRO OpenFile, TLB

2 W DGET_CONTROL, TLB, GET_UWVALUE = ptr

3 Pat hName = DI ALOG PI CKFI LE(TI TLE = $

4 'Select a JPEG file', FILTER = '"*.jpg")

5 | F (PathNane NE '') THEN BEG N

6 DEVI CE, DECOMPCSED = 0

7 READ_JPEG, PathName, Data, Col orTable
IDL 8 (*(*ptr).Qiginal ArrayPTR) = Data

9 (*(*ptr).CigCol or MapPTR) = Col or Tabl e

10 TVLCT, (*(*ptr).OrigCol or MapPTR)

11 TV, (*(*ptr).Oiginal ArrayPTR)

12 ENDI F ELSE BEG N

13 Result = DI ALOG_MESSAGE(' No JPEG file selected , /ERROR)

14 ENDEL SE

15 END

Table 6-3: The Open File Procedure

Working with IDL Procedures External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 103

Advanced Examples

Each of the following examples builds on the concepts that you' ve already learned in
this chapter.

The user interface and projects for each of the examples have been created and can be
found in the distribution in the exanpl es\ doc\ Acti veX\ proj ect directory
where project is the name of the example. These examples assume that you are
already familiar with the following concepts:

Creating a new project in Visual Basic;

Adding the IDL DrawWidget control to the VB control toolbar;

Drawing the IDL DrawWidget on your form;

Initializing IDL with InitIDL;

Creating the draw widget with CreateDrawWidget;

Executing commands with ExecuteStr;

Using IDL . pr o code to respond to auto-events within the | DL DrawWidget;
Setting properties for the I DL DrawWidget objects.

These examples demonstrate the following:

Copying and Printing IDL Graphics

XLoadCT Functionality Using Visual Basic
XPalette Functionality Using Visual Basic
Integrating Object Graphics Using Visual Basic
Sharing a Grid Control Array with IDL

Handling Events within Visual Basic

External Development Guide Advanced Examples

104 Chapter 6: The IDLDrawWidget ActiveX Control
Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphics to print the contents of an | DL DrawWidget window.

This exampleillustrates the following concepts:
» Opening an existing project in Visual Basic;

» Copying an IDL graphic to the Windows clipboard using the CopyWindow
method,;

* Executing IDL user routines,
* Printing an IDL graphic.
Opening the VBCopyPrint project
Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,

changeto the exanpl es\ docs\ Act i veX\ VBCopyPri nt directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

Mew Project HE

Mew Existing I HECEnll

Loak jn: 3 VBCopyPrint
3 rsi
WBCopyPr| 1 1083
(] examples
1 doc
T Actived
B0k /B CopyFrin
g2 E_Diive [E2]
g2 F_Drive [F) -
File name: | Open I
Files of wpe: [Project Files [*.vbp" mak " vba] =l Tensd |
Help |

™ Don't show this dialog in the future

Figure 6-5: Opening the VBCopyPrint project

Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 105

Running the VBCopyPrint Example

Select “ Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Printing and Copying Direct Graphics

Copy

1DL Print

WB Print

il

Figure 6-6: VBCopyPrint example

Copying IDL Graphic to the clipboard

To copy the graphic, click on“Copy”. The code for “Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as shown in line
6 of the following table.

Private Sub cndCopy_d i ck()

| DLDr awW dget 1. CopyW ndow

Scr een. MbusePoi nter = vbDefaul t

MsgBox "W ndow copied to clipboard."”
End Sub

1 ' Copy the direct graphics window to the clipboard
2 Scr een. MbusePoi nter = vbHour gl ass
. 3 "Erase anything currently on the clipboard

Visual 4] dipboard. dear

Basic 5 ' Copy the draw wi dget to the clipboard
6
7
8

Table 6-4: Copy button Source Code

External Development Guide Copying and Printing IDL Graphics

106

Chapter 6: The IDLDrawWidget ActiveX Control

Printing the IDL Graphic using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The“IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.

IDL

PRO VBPri nt Wndow, Draw d

; Get the windowindex of the drawable to be printed
W DGET_CONTROL, Drawl d, Get_Val ue=I ndex

©CO~NOUIAWNPEP

10 ;Create a Printe.r obj ect and draw the graphic to it
11 oPrinter = OBJ_NEW (' I DLgrPrinter')

13 ;Display a print dialog box
14 Result = DI ALOG PRI NTERSETUP(oPri nt er)

18 oPrinter->Draw, 6\ﬁ ew

22lEND : VBPr i nt W ndow

Table 6-5: IDL VBPrintWindow Code

Executing IDL user routines with Visual Basic

The VBCopyPrint example executes a user routine, written in IDL, to support the
printing of the I DL DrawWidget window. Thisisdone with the ExecuteStr method,
as shown in line 4 below, by passing a string of the routine name along with the ID of
the IDL DrawWidget.

Visual
Basic

Private Sub cndPrintIDL_Cick()
"Print the current drawabl e w dget's w ndow contents
"using | DL object graphics
Scr een. MusePoi nter = vbHour gl ass
| DLDr awW dget 1. Execut eStr "VBPri nt W ndow, " &
St r$(1 DLDr awW dget 1. Dr awl d)
Screen. MousePoi nter = vbDefaul t
MsgBox "W ndow sent to printer."
End Sub

oo wWNBE

Table 6-6: Print Button Source Code

Copying and Printing IDL Graphics External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 107

Printing the IDL Graphic Using Visual Basic

The VBPrint command usesthe Windows clipboard and Visual Basic printer support
to print the IDL Graphic, as shown in the following table.

Visual
Basic

1fPrivate Sub cndPrintVB_Cick()

2 CommonDi al ogl. Cancel Error = True

3 On Error GoTo ErrHandl er

4 CommonDi al ogl. ShowPri nt er

5Q' -- Copy the window s contents to the clipboard
6 'Erase anything currently on the clipboard
7 Cli pboard. d ear

8 | DLDr awW dget 1. Copy W ndow

9 '-- Send the picture located on the clipboard,
10 "to the printer

11 Printer.PaintPicture Cipboard. GetData, 0, 0
12 Printer. EndDoc 'Send it to the printer
13Exit Sub

14 QEr r Handl er:

15

16 Exit Sub

17§End Sub

Table 6-7: VBPrint Command

External Development Guide Copying and Printing IDL Graphics

108 Chapter 6: The IDLDrawWidget ActiveX Control

XLoadCT Functionality Using Visual Basic

The VBL0adCT example duplicates the XLOADCT functionality usingaVB
interface. The VBLoadCT. pr o source code is afunctional duplicate of XLOADCT
with procedure callsreplacing the x| oadct _event procedure aswell as DL
widgets being replaced by VB controls. See the following figure for more
information. In addition, this example extends XLOADCT by adding the following
features:

» Options menu by clicking the right mouse button on a color;
» Useof IDL syntax to create separate functions for red, blue and green;
» Ability to save user created color tables.
This example illustrates the foll owing concepts:
* Modifying existing IDL library code for use with the IDL DrawWidget;

« |DL to Visua Basic color table conversion.

&, VBLoadCT I[=] B3
File Edit
B-wf LINEAR -
BELUE WHITE
GRMN-RED-BLUAWHT
RED TEMPERATURE
ELUE/GREEM/RED/YELLOW
STD GakdbAl
1} FRISHM
4 v |RED-PURPLE
J—I J GREEMAWHITE LINEAR
Stretch B ottarn GRMNAWHT ExPOMENTIAL
100 GREEM-PIME.
ELUE-RED
1 »
J —IJ 16 LEVEL
Stretch Top RaltBOw
1 STEPS
STERM SPECIAL
[l »
J —I J Haze LI

Gamma Corection

Figure 6-7: VBLoadCT example

XLoadCT Functionality Using Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control

109

XPalette Functionality Using Visual Basic

Like VBL 0adCT, VBPalette demonstrates how to duplicate IDL tool functionality
using a Visual Basic interface. The VBPal et t e. pr o fileisafunctiona duplicate
of the XPalette source with the event procedure and IDL widgets replaced with auto-

event procedures and VB controls.

This exampleillustrates the following concepts:

* Modifying existing IDL library code for use with the IDL DrawWidget;

e Converting an IDL event procedure to the I DL DrawWidget auto-event

procedures.

. VBPalette
File Palette

Color Index | 118 B/ LINEAR
GRN-RED-BLLAWHT

Fied = FIED TEMPERATURE
BLUE/GREEN/REDAELLOW

Green 25 57D GAMMAI

PRISM
RED-PURPLE
1 colors].thl

Blue 255

= 3

50 100 150 200 250 300

Green

50 100 150 200 250 300
Blue

50 100 150 200 250 300

- Create a Color Function
Start Index IDL Function

Output Window

Red= | [0 [hgtscl sin findigen (2581-10)

|
Reset Ried

Gieen= | [0 [oyiscl fsin limdgen (256T-05])

Reset Green

Bluz= | [0| [btscl (sn findgen (256F-025)

Reset Blug
H

Figure 6-8: VBPalette Example

External Development Guide

XPalette Functionality Using Visual Basic

110 Chapter 6: The IDLDrawWidget ActiveX Control

Integrating Object Graphics Using Visual
Basic

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the | DL DrawWidget control. The | DL DrawWidget
can also use IDL’s object graphics sub-system by changing the

IDL DrawWidget.GraphicsL evel property as demonstrated with the VBObjGraph
examplein the following figure.

This exampleillustrates the following concepts:
» Setting the GraphicsL evel property to create an object graphics window;
e Trandating agraphics abject using VB controls.
e Using IDLDrawWidget auto-events.

Object Graphics Example

Eile Edit

Left click and drag on surface to rotate.

. Auto Ratate

b

Figure 6-9: VBObjGraph example

Integrating Object Graphics Using Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control

Sharing a Grid Control Array with IDL

111

VBSharelD demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the IDL DrawWidget object. The datais
presented to the user in a Visual Basic grid control enabling the user to edit the data

and see the resultsin real time. See the following figure:

This example illustrates the following concepts:

» Shows how to process mouse events within VB to get the data coordinates of

an IDL plot.

» Demonstrates how to convert (x,y) VB coordinatesinto IDL data coordinates,
to give the cursor location in data values relative to the current plot.

» Demonstrates how to use aVVB grid control to edit data values that are
reflected in the IDL plot after each keystroke.

i, YBShareld

Move the cursor over the plot, and type a number to edit the current
value. or click on the cell to edit.

- [O] %]

10 J
0.5 =
0of 3
—asf]
—1CE =
[+ 20 40 &0 a0 100
000 241 JE 141 - 757 -954 -27 57 889 12
-544 -1.000 -537 420 591 =] -288 - 961 -751 150
13 Een -003 -B4E 132 B3 958 271 -EE4
-988 - 404 551 1.000 529 -428 -992 -E44 256 964
745 -153 -917 -832 018 851 .02 124 - 768 -954
-262 E70 987 3% -553 -1.000 -522 43 993 E37
-305 - 966 -3 67 520 827 -027 - 856 -893 -115
774 551 254 -E77 -985 -388 BEE 1.000 514 - 444
-994 -E30 13 968 733 -176 -923 -822 035 BED

294

108

779

-5948

- 245

B3

.904

.380

-573

Reset |

IbICoords

External Development Guide

Figure 6-10: VBSharelD

Sharing a Grid Control Array with IDL

112 Chapter 6: The IDLDrawWidget ActiveX Control

Handling Events within Visual Basic

The VBPaint exampl e uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will

get the (x,y) location within the window, and maodify the color of the current pixel in
the image. See the following figure:

This exampleillustrates the following concepts:

Converting from a VB pixel coordinate system to the IDL coordinate system;

Converting aV B color representation (long) into an IDL color representation
(RGB);

Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color dialog;

* Processing mouse events within VB to draw into an IDL window.

s, Exampled !E
Hold Left button to draw. Right button to erase

Calor...

(o=

Color HE
Basic colors:
|
el ||
NN
EEEEE
ERE .
Customn colors:
I A e
FEEEEEEN
D efing Custorn Colors »» I
Crce |

Figure 6-11: VBPaint example

Handling Events within Visual Basic External Development Guide

Chapter 6: The IDLDrawWidget ActiveX Control 113

Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 13, “Creating IDL Projects” in the Building IDL Applications
manual .

External Development Guide Distributing Your ActiveX Application

114 Chapter 6: The IDLDrawWidget ActiveX Control

Distributing Your ActiveX Application External Development Guide

Chapter 7:

IDLDrawWidget Control
Reference

This chapter describes the following topics:

IDLDrawWidget 116 Read Only Properties................. 133
Methods. 117 Auto Event Properties 135
Do Methods (Runtime Only) 127 Events ... 137
Properties oL 129

External Development Guide 115

116 Chapter 7: IDLDrawWidget Control Reference

IDLDrawWidget

The IDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visual
Basic, Fortran, Delphi, etc. Methods and properties of the IDL DrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the | DL DrawWidget:

* Methods

* Do Methods (Runtime Only)
* Properties

* Read Only Properties

e Auto Event Properties

e Events

IDLDrawWidget External Development Guide

Chapter 7: IDLDrawWidget Control Reference 117

Methods

In ActiveX terminology, methods are specia statements that execute on behalf of an
object in aprogram. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on a button in a Visual
Basic program. The syntax of amethod statement is:

obj ect. net hod val ue
where

» Object isthe name of an object you want to control, for example an
IDL DrawWidget.

* Method is the name of the method you want to execute.

* Valueisan optional parameter used by the method. The various methodsto the
IDL DrawWidget may require zero, one, or multiple parameters.

Note
When a method returns aBOOL, the value TRUE isequal to 1 and FAL SE is equal
to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.
Parameters

BSTR: The name of the array variable that you wish to copy.
Returns

VARIANT: Reference to the array.
Remarks

This function returns an array reference that is local to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.

External Development Guide Methods

118 Chapter 7: IDLDrawWidget Control Reference
CopyWindow

This method copies the contents of the | DL DrawWidget window to the Windows
clipboard.

Parameters
None.
Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an IDL DrawWidget in an ActiveX control frame. When you
drag and drop the | DL DrawWidget, you are creating the frame that will contain the

actual draw widget. Drawing operations to the control cannot be made until this
method is called.

Parameters
None.
Returns
LONG: The widget ID of the created draw widget or -1 in the event of an error.
DestroyDrawWidget
This method destroys the | DL DrawWidget, but not the ActiveX control frame.
Parameters
None.
Returns

None.
DoEXxit

This method exits the ActiveX control and frees any resourcesin use by IDL.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 119

After all IDL ActiveX control useis complete, but before the EDE application exits,
you must call DoEXxit to allow the ActiveX control to shutdown IDL gracefully and

free any resources in use.
Parameters

None.
Returns

None.

Remarks

In spite of the name, DoEXit isnot one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoExit is called, you are not allowed to call methods or set properties within

the IDL ActiveX control from the currently running EDE application, regardl ess of
which IDL DrawWidget the method was called on. Attempting to do so will result
in aruntime error subsequently causing the EDE application to crash.

ExecuteStr
This method passes a string to IDL which IDL then executes.

Parameters
BSTR: A string containing the command that IDL will execute.

Returns
LONG: 0 if successful or the IDL error code if it fails.

Remarks
Most IDL commands that are executed with ExecuteStr run in the main level.

GetNamedData

This method returns the IDL data value associated with the named variable.

External Development Guide Methods

120 Chapter 7: IDLDrawWidget Control Reference

Parameters
BSTR: A string containing the name of an IDL variable.
Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn't exist.

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT datatypes.

IDL Type Variant Type

IDL_TYP BYTE VT _UI1
IDL_TYP_INT VT 12
IDL_TYP_LONG VT 14
IDL_TYP_FLOAT |VT R4
IDL_TYP_DOUBLE |VT_R8
IDL_TYP_STRING | VT _BSTR

Table 7-1: Supported IDL data types and the corresponding
VARIANT data types

InitIDL

Thismethod initializes IDL. IDL only needs to beinitialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL is caled with the hWnd of the main window for the container
application. If thisvalueis null, the ActiveX control uses the hwnd of the ActiveX
control frame.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 121

Returns

LONG: Long vaue indicating status of IDL

Value Meaning
1 Successful
0 Failure
-1 IDL ActiveX control is
not licensed
-2 IDL is unlicensed (demo)

Table 7-2: Status of IDL

If your application contains more than asingle IDL DrawWidget (e.g.
IDLDrawWidget1 and | DL DrawWidget2) the Initl DL method should only be
called on one of the abjects, not both.

The DL ActiveX control relies on IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The I dIPath property can be set so the
control can find avalid IDL distribution (thei dl 32. dI). If avalid distribution is
not found in either the path as set in the I dIPath property or the current directory, a
dialog will be displayed giving the user the opportunity to specify the location of his
IDL digtribution. This behavior may be overridden at runtime by locating and
specifying the path to the IDL distribution prior to calling either the InitIDL or
SetOutputWnd methods.

InitIDLEX

Thismethod initializes IDL. It isidentical to the InitIDL method except that it has an
additional parameter, Flags, alowing initialization flags to be passed on to IDL. See
the description of the “InitiIDL” on page 120 for details on the return value.

Parameters

LONG: InitIDL is caled with the hWwnd of the main window for the container
application. If thisvalueis null, the ActiveX control usesthe hwnd of the ActiveX
control frame.

External Development Guide Methods

122

Chapter 7: IDLDrawWidget Control Reference

LONG: Flags. A bitmask used to specify initialization options. The alowed bit
values are:

Flag Meaning

IDL_INIT_RUNTIME | Setting thisbit causes IDL to check out aruntime
license instead of the normal license. In Visual C++
applications, the define constant
IDL_INIT_RUNTIME exported inexport . h can be
used. For Visual Basic applications use the actual
value of this constant, IDL_INIT_RUNTIME=4,
since the defined constant is not available.

Table 7-3: InitIDLEX Flags.

Returns

LONG: Long vaue indicating status of IDL. See the description of the return value
under “InitIDL” on page 120 for details.

Print

Methods

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of a Direct Graphics window at screen resolution (72-96 dpi). For
information about controlling print resolution of an object graphics window, seethe
Bufferld property.

Note
In order to print the contents of an Object Graphics window, you must associate the
IDL graphicstree (an IDLgrView object) with the IDLgrWindow object used by the
underlying draw widget. Do this by setting the GRAPHICS_TREE property of the
IDLgrWindow object to the IDLgrView object:

; Retrieve the wi ndow obj ect associated with the draw w dget.

| DLDr awW dget : : Execut eStr ("W dget _Control, |DLDraww dget, $
Get _Val ue =oW ndow") ;

; Set the Graphics_Tree property to the view object.

| DLDr awW dget : : Execut eStr (" oW ndow >Set Property, $
Graphics_Tree = oView');

External Development Guide

Chapter 7: IDLDrawWidget Control Reference 123

Parameters

XOffset: The X offset to print the graphic in 0.01 of a millimeter.

Y Offset: The Y offset to print the graphic in 0.01 of a millimeter.
Width: The desired width of the printed graphic in 0.01 of a millimeter.
Height: The desired height of the printed graphic in 0.01 of a millimeter.

The X offset plus the width should be less than or equal to the width of asingle page.
TheY offset plus the height should be less than or equal to the height of asingle
page. The origin of the offset 0,0 isin the upper left corner of a page. If these values
are set to 0, the ActiveX control will print a graphic in the upper |eft corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns

BOOL: TRUE if printing succeeded.
RegisterForEvents

This method causes | DL DrawWidget to pass the specified events to the application.
These events only apply if the user hasn’t set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning
0 Stop forwarding al events
1 Forward mouse move events
2 Forward mouse button events
4 Forward view scrolled events
8 Forward expose events

Table 7-4: Forwarding Events

Note
M otion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you forward mouse move events, your event handler should

External Development Guide Methods

124

Chapter 7: IDLDrawWidget Control Reference

check the reported position of the mouse to determine whether it has in fact moved
before doing extensive processing.

Returns

BOOL: TRUE if successful.

SetNamedArray

Methods

This method creates a named IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changesin either IDL or the EDE
will be reflected in both.

Parameters

BSTR: Name of array variableto createin IDL.
VARIANT: Array datato be shared with IDL.

BOOL: Trueif IDL should free ashared array when IDL releases its reference, false
if not.

Returns

WORD: 1 if successful, O if set failed.

Remarks

Because SetNamedArray creates an array whose datais shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

The array parameter of SetNamedArray must have alifetime beyond the calling
function. Thus, in Visua Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

Note
In order to allow data to be shared between IDL and the external environment, the

lock count on the underlying array is incremented. Some external environments,
notably later versions of Delphi, do not alow array locking to extend beyond a
single method call and will signal an error when SetNamedArray() returns. If this
occurs, the data cannot be shared between IDL and the external environment using

External Development Guide

Chapter 7: IDLDrawWidget Control Reference 125

SetNamedArray(). Use the SetNamedData() method to insert a copy of the array
into IDL.

The following table lists the accepted variant types and the corresponding IDL types.

Variant Types IDL Types
VT_UI1 - unsigned char IDL_TYP BYTE
VT_I1 - signed char IDL_TYP_BYTE
VT_I2 - signed short IDL_TYP_INT
VT_l4- signed long IDL_TYP_LONG
VT_RA4 - float IDL_TYP_FLOAT
VT_RS8 - double IDL_TYP_DOUBLE

Table 7-5: Accepted Variant Types and the Corresponding IDL Types
SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can also be used
to change the value of an existing IDL variable.

Parameters

BSTR: Name of the variable to createin IDL.
VARIANT: Datato be copied in IDL.

Returns

WORD 1 if successful.
SetOutputWnd

This method sends output from IDL to the specified window.
Parameters

HWND: The hWnd of the edit control that will receive the output.

External Development Guide Methods

126 Chapter 7: IDLDrawWidget Control Reference

Returns

None.

Note
SetOutputWnd isthe only method that can be called prior to acall to I nitIDL.

VariableExists

This method determines if a specified variable isdefined in IDL.
Parameters

BSTR: Name of variable to check.
Returns

BOOL:TRUE if variable isdefined in IDL at the main level. Falseif the variableis
not defined.

Methods External Development Guide

Chapter 7: IDLDrawWidget Control Reference 127

Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress
This method calls the IDL procedure specified in the OnButtonPress property.
Parameters
None.
Returns
None.
DoButtonRelease
This method callsthe IDL procedure specified in the OnButtonRelease property.
Parameters
None.
Returns
None.
Do Expose
This method callsthe IDL procedure specified in the OnExpose property.
Parameters
None.
Returns

None.

External Development Guide Do Methods (Runtime Only)

128 Chapter 7: IDLDrawWidget Control Reference

DoMotion
This method calls the IDL procedure specified in the OnM otion property.
Parameters
None.
Returns

None.

Do Methods (Runtime Only) External Development Guide

Chapter 7: IDLDrawWidget Control Reference 129

Properties

Properties are used to specify the various attributes of an | DL DrawWidget, such as
its color, width and height. Most properties may be set at design time by configuring
the properties sheet in Visual Basic, or at runtime by executing statementsin the
program code.

The syntax for setting a property in the codeiis:
obj ect. property = val ue
where

* Object is the name of the object you want to change, e.g. IDL DrawWidgetn
where n isthe number Visual Basic assigned to the I DL DrawWidget.

» Property isthe characteristic you want to change.
* Valueisthe new property setting.

Note
All properties relating to window size and/or position are in pixel units unless
otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. BackColor may be
specified at design time or runtime.

BaseName

This property names a variable that IDL will use for the pseudo base. If this property
isset, the IDL DrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not

destroy it. The BaseName property can be set at design time or at runtime prior to a
cal to CreateDrawWidget.

Default=1DL DrawWidgetBase
Bufferid

The Bufferld controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

External Development Guide Properties

130 Chapter 7: IDLDrawWidget Control Reference

1. A vaueof -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

2. A vaue of 0 will cause the graphicsto print at roughly two times the screen
resolution. This format is suitable for shaded surfaces or vertex colored mesh
surfaces. Thisisthe default.

3. A vauegreater then 0 will be construed a s an IDLgrBuffer object reference
whose datawill be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information, see “IDLgrBuffer” in the IDL Reference Guide manual.

Note
You must set the GRAPHICS_TREE property of the IDLgrWindow object for these
print options to work.

DrawWidgetName

Returns or setsavariablethat IDL will use for the draw widget. If this property is set,
the DL DrawWidget will create an IDL variable with this name that containsthe ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to acall to CreateDrawWidget.

Default=I1DL DrawWidget
Enabled

Returns or sets a value that determines whether aform or control can respond to user-
generated events such as mouse events.

Default=TRUE
GraphicsLevel (Runtime/Design time)

This property specifies the graphics level of the draw widget. Lega vauesare 1 or 2.
If you set the GraphicsL evel = 1 and call the CreateDrawWidget method, the
procedure will create an IDL direct graphics window. GraphicsL evel = 2 resultsin
an IDL object graphics window. The GraphicsL evel property can be set at design
time or at runtime prior to acall to CreateDrawWidget.

Default=1

Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 131

IdIPath

This property specifiesthe fully qualified path to the IDL32.DLL. The I dIPath
property can be set at design time or at runtime prior to acal to I nitIDL or
SetOutputWnd.

Default=NULL

Renderer

This property specifies either the software or hardware renderer for object graphics

windowsisto be used. It has no effect if the GraphicsLevel property issetto 1. Valid
values are:

* 0= Platform native OpenGL
» 1=IDL’s software implementation

By default, the setting in your IDL preferencesis used.

External Development Guide Properties

132 Chapter 7: IDLDrawWidget Control Reference

Retain (Runtime/Design time)

This property sets the retain mode of the IDLDrawWidget: 0, 1, or 2. The retain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifies that IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to acall to
CreateDrawWidget.

Default=1
Visible (Runtime/Design time)
Shows or hides the IDLDrawWidget. When Visibleis TRUE the IDL DrawWidget is

shown, when FAL SE the IDL DrawWidget is hidden. Hiding the IDL DrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended

for display.
Default=TRUE

Xsize (Design time)

Virtual width of DL DrawWidget. If thisvaue is greater than the Xviewport va ue,
scroll barswill be added.

Ysize (Design time)

Virtual height of IDL DrawWidget. If thisvalue is greater than the Yviewport value,
scroll barswill be added.

Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 133

Read Only Properties

Baseld (Runtime)

Widget ID of the pseudo base. The Basel d property isnot valid until acall to
CreateDrawWidget has been made.

Drawld (Runtime)

Widget ID of the created draw widget. The Drawld property is not valid until a call
to CreateDrawWidget has been made.

hwWnd (Runtime)

Window handle of the ActiveX control. ThehWnd property isnot valid until acall to
CreateDrawWidget has been made.

LastIidIError (Runtime)

A string that contains the last IDL error message. This string will not changeiif the
ExecuteStr method is called and an error does not occur.

Scroll

Trueif the widget will contain scroll bars.
Default=FALSE

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport
Set at design time when the control isdropped or moved. Representsthe visible width

of the draw widget. If scroll bars are present Xviewport will include the width of the
scroll bars.

External Development Guide Read Only Properties

134 Chapter 7: IDLDrawWidget Control Reference

Yoffset

Set at design time when the control is dropped or moved. Represents the y offset of
the draw widget within the parent application.

Yviewport
Set at design time when the control is dropped or moved. Represents the visible

height of the draw widget. If scroll bars are present Yviewport will include the height
of the scrall bars.

Read Only Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 135

Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when amouse button is pressed. The procedure
must be in the form:

pro button_press, drawid, button, xPos, yPos

Default=NULL

OnButtonRelease
AnIDL procedure that will be called when a mouse button is released. The procedure
must bein the form:

pro button_rel ease, drawid, button, xPos, yPos

Default=NULL
OnDbIClick

An IDL procedure that will be called when amouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button_dblclick, drawid, button, xPos, yPos
The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid values
are:

o 1— Left mouse button.
e 2 — Middle mouse button.

* 4 — Right mouse button.

Table 7-6: OnDblClick Parameters

External Development Guide Auto Event Properties

136 Chapter 7: IDLDrawWidget Control Reference

Parameter Description
xPos The horizontal position of the mouse when the button was clicked.
yPos The vertica position of the mouse when the button was clicked.

Table 7-6: (Continued) OnDbIClick Parameters (Continued)
Default=NULL

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, draw d

Default=NULL
OnlInit

An IDL procedure that will be called when adraw widget isinitially created. The
procedure must be in the form:

pro init, drawid, baseld

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

Default=NULL
OnMotion

An IDL procedure that will be called when the mouse is moved over the draw widget
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawld, button, xPos, yPos

Default=NULL

Note
Motion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you provide an event-handler for mouse motion events, your
event handler should check the reported position of the mouse to determine whether
it has in fact moved before doing extensive processing.

Auto Event Properties External Development Guide

Chapter 7: IDLDrawWidget Control Reference 137

Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, | DL DrawWidget can respond to the following standard Visual Basic
events:

e MouseDown
e MouseMove
* MouseUp

OnViewScrolled

OnViewScrolled isan | DL DrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the
Scroll property is TRUE.

Note
You must call Register For Events passing the flags to indicate the events you want
to process. Neglecting this step will send the eventsto IDL for processing.

External Development Guide Events

138 Chapter 7: IDLDrawWidget Control Reference

Events External Development Guide

Chapter 8:

CALL _EXTERNAL

This chapter discusses the following topics:

The CALL_EXTERNAL Function 140
Passing Parameters 150
UsingAutoGlue 152
BasicCExamples 154
Wrapper Routines 157

External Development Guide

Passing StringData 159
Passing ArrayData 163
Passing Structures 165
Fortran Examples 167

139

140 Chapter 8: CALL_EXTERNAL

The CALL_EXTERNAL Function

IDL allowsyou to integrate programs written in other |languages with your IDL code,
either by calling a compiled function from an IDL program or by linking a compiled
function into IDL’s interna system routine table:

» The CALL_EXTERNAL function allowsyou to call external functions
(written in C/C++ or Fortran, for example) from your IDL programs. You
should be comfortable writing and building programs in the external language
being used, but significant knowledge of IDL's internals beyond basic type
mapping between the languages is generally not necessary.

* Anadternativeto CALL_EXTERNAL isto writean IDL system routine and
mergeit with IDL at runtime. Routines merged in this fashion are added to
IDL’sinternal system routine table and are available in the same manner as
IDL built-in routines. Thistechnique is discussed in Chapter 20, “Adding
System Routines’. To write a system routine, you will need to understand the
IDL internals discussed in later sections of this book.

This chapter coversthe basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX and Windows versions of IDL. It
can be helpful to refer to the documentation for “CALL_EXTERNAL” inthelDL
Reference Guide manual when reading this material.

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. Arguments passed to IDL are passed to this external code, and
returned data from the external code is automatically presented as the result from
CALL_EXTERNAL asan IDL variable. IDL and the called routine share the same
process address space. Because of this, CALL_EXTERNAL avoids the overhead of
process creation of the SPAWN routine. In addition, the shareable object library is
only loaded the first time it is referenced, saving overhead on subsequent calls.

CALL_EXTERNAL is much easier to use than writing a system routine. Unlike a
system routine, however, CALL_EXTERNAL does not check the type or number of
parameters. Programming errors in the external routine are likely to result in
corrupted data (either in the routine or in IDL) or to cause IDL to crash. See
“Common CALL_EXTERNAL Pitfalls’ on page 147 for help in avoiding some of
the more common mistakes.

Example Code in the IDL Distribution

This chapter contains examples of CALL_EXTERNAL use. All of the code for these
examples, along with additional examples, can be found inthecal | _ext er nal

The CALL_EXTERNAL Function External Development Guide

Chapter 8: CALL_EXTERNAL 141

subdirectory of the ext er nal directory of the IDL distribution. The C language
examples use the MAKE_DLL procedure, and can therefore be easily run on any
platform supported by IDL. To build the sharable library containing the external C
code and then run all of the provided examples, execute the following IDL
statements:

PUSHD, FI LEPATH(' ', SUBDI RECTORY=["'external’,'call_external’,’C1])

ALL_CALLEXT_EXAMPLES
POPD

Additional information on these examples, including details on running the
individual examples, can be found in the README file located in that directory.

CALL_EXTERNAL Compared To UNIX Child Process

In many situations, a UNIX IDL user has a choice of using the SPAWN procedure to
start achild process that executes external code and communicates with IDL viaa
pipe connecting the two processes. The advantages of this approach are:

* Simplicity.

» The processes do not share address space, and are therefore protected from
each other’s mistakes.

The advantages of CALL_EXTERNAL are:

» IDL and the called routine share the same memory and data space. Although
this can be a disadvantage (as noted above) there are times where sharing
address space is advantageous. For example, large data can be easily and
cheaply shared in this manner.

» CALL_EXTERNAL avoids the overhead of process creation and parameter
passing.

* The shareable object library containing the called routine is only loaded the
first timeit is referenced, whereas a SPAWNed process must be created for
each use of the external code.

Compilation and Linking Of External Code

Each operating system requires different compilation and link statements for
producing a shareable object suitable for usage with CALL_EXTERNAL. Thisis
even true between different implementations of a common operating system family.
For example, most UNIX systems require unique options despite their shared
heritage. You must consult your system and compiler documentation to find the
appropriate options for your system.

External Development Guide The CALL_EXTERNAL Function

142

Chapter 8: CALL_EXTERNAL

The DL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
aportable high level mechanism for building sharable libraries from code written in
the C programming language. |n many situations, this procedure can completely
handle the task of building sharable libraries to be used with CALL_EXTERNAL.
MAKE_DLL requiresthat you have a C compiler installed on your system that is
compatible with the compiler described by the IDL IMAKE_DLL system variable.

The IDL IMAKE_DLL system variableisused by the MAKE_DLL procedureto
construct C compiler and linker commands appropriate for the target platform. If you
do not use MAKE_DLL to compile and link your code, you may find the contents of
IMAKE_DLL.CC and 'IMAKE_DLL.LD helpful in determining which options to
specify to your compiler and linker, in conjunction with your system and compiler
documentation. For the C language, the optionsin IMAKE_DLL should be very
close to what you need. For other languages, the IMAKE_DLL options should be
helpful in determining which options to use, as on most systems, all the language
compilers accept smilar options.

AUTO GLUE

As described in “Passing Parameters’ on page 150, CALL_EXTERNAL uses the
IDL Portable Calling Convention to call external code. This convention uses an
(argc, ar gv) styleinterfaceto allow CALL_EXTERNAL to cal routines with
arbitrary numbers and types of arguments. Such an interface is necessary, because
IDL, like any compiled program, cannot generate arbitrary function calls at runtime.

Of course, most C functions are not written to the IDL portable convention. Rather,
they are written using the natural form of argument passing used in compiled
programs. It is therefore common for IDL programmers to write so-called glue
functionsto match the IDL calling interface to that of the target function. On systems
that have a C compiler installed that is compatible with the one described by the IDL
IMAKE_DLL system variable, the AUTO_GLUE keyword to CALL_EXTERNAL
can be used to instruct IDL to automatically write, compile, and load this glue code
on demand, and using a cache to preserve this glue code for future invocations of
functions with the same interface.

AUTO_GLUE thus alows CALL_EXTERNAL to call functions with a natural
interface, without requiring the user to write or compile additional code.
AUTO_GLUE isdescribed in the documentation for “CALL_EXTERNAL” in the
IDL Reference Guide manual, aswell asin “Using Auto Glue” on page 152. The
examples givenin “Basic C Examples’ on page 154 show CALL_EXTERNAL used
with and without AUTO_GLUE.

The CALL_EXTERNAL Function External Development Guide

Chapter 8: CALL_EXTERNAL 143

Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using IDL _M essage(). Performing input/output from
code external to IDL, especially to the user console or tty (e.g. st di n or st dout),
may generate unexpected results.

Memory Cleanup

IDL hasastrict internal policy that it never performs memory cleanup on memory
that it did not allocate. This policy is necessary so that external code which alocates
memory can use any memory allocation package it desires, and so that thereisno
confusion about which code is responsible for releasing allocated memory.

Note
The code that alocates memory is aways responsible for freeing it. IDL alocates
and frees memory for itsinternal needs, and external code is not allowed to release
such memory except through a proper IDL function documented for that purpose.
Similarly, IDL will never intentionally free memory that it did not allocate.

As such, IDL does not perform any memory cleanup calls on the values returned
from external code called viathe CALL_EXTERNAL routine. Because of this, any
dynamic memory returned to IDL will not be returned to the system, which will result
in amemory leak. Users should be aware of this behavior and design their
CALL_EXTERNAL routinesin such amanner as not to return dynamically allocated
memory to IDL. The discussion in “Passing String Data” on page 159 contains an
example of doing this with strings.

Memory Access

IDL and your external code share the same address space within the same running
program. This means that mistakes common in compiled languages, such as awild
pointer altering memory that it does not own, can cause problems elsewhere. In
particular, external code can easily corrupt IDL’s data structures and otherwise cause
IDL tofail. Authors of such code must be especially careful to guard against such
Eerrors.

Argument Data Types

When using CALL_EXTERNAL to call external code, IDL passesits argumentsto
the called code using the data types that were passed to it. It has no way to verify

External Development Guide The CALL_EXTERNAL Function

144 Chapter 8: CALL_EXTERNAL

independently that these types are the actual types expected by the external routine. If
the datatypes passed are not of the types expected by the external code, the results
are undefined, and can easily include memory corruption or even crashing of the IDL
program.

Warning
You must ensure that the arguments passed to external code are of the exact type
expected by that routine. Failure to do so will result in undefined behavior.

Mapping IDL Data Types To External Language Types

When writing external code for use with CALL_EXTERNAL, your code must use
data types that are compatible with the C datatypes used internally by IDL to
represent the IDL data types. This mapping isthe topic of Chapter 10, “IDL Internas:
Types'.

By-Value And By-Reference Arguments

There are two basic forms in which arguments can be passed between functionsin
compiled languages such as C/C++ and Fortran. To use CALL_EXTERNAL
successfully, you should be comfortable with these terms and their meanings. In
particular, Fortran programmers are often unaware that Fortran code passes
everything by reference, and that C code defaults to passing everything by value. By
default, CALL_EXTERNAL passes arguments by reference (unless this behavior is
explicitly altered by the use of the ALL_VALUE or VALUE keywords), so no special
action istypically required to call Fortran code viaCALL_EXTERNAL.

Warning
You must ensure that the arguments passed to externa code are passed using the
correct method — by value, or by reference. Failure to do so will result in
undefined behavior.

Arguments Passed By Value

A copy of the value of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are local to that routine, and do not change
the original value of the variable in the calling routine. C/C++ pass everything by
value, but have an explicit address-of operator (&) that is used to pass addresses of
variables and get by-reference behavior.

The CALL_EXTERNAL Function External Development Guide

Chapter 8: CALL_EXTERNAL 145

Arguments Passed By Reference

The machine address of the argument is passed to the called routine. Any changes
made to such avalue by the called routine areimmediately visible to the caller,
because both routines are actually modifying the same memory addresses. Fortran
passes everything by reference, but most Fortran implementations support intrinsic
operators that allow the programmer control over this (sometimes called %L OC and
%VAL, or just LOC and VAL). Consult your compiler documentation for details.

Microsoft Windows Calling Conventions

All operating system/hardware combinations define an inter-routine calling
convention. A calling convention defines the rules used for passing arguments
between routines, and specifies such details as how arguments of different types are
passed (i.e. in registers or on the system stack) and how and when such argumentsare
cleaned up.

A stable and efficient calling convention is critical to the stability of an operating
system, and can affect most aspects of the system:

» Theéefficiency of the entire system depends on the efficiency of the core
calling convention.

» Backwards compatibility, and thus the longevity of binary software written for
the platform depends on the stability of the calling convention.

e Cadling routines from different languages within a single program depends on
all the language compilers adhering to the same calling convention. Even
within the same language, the ability to mix code compiled by different
compilers requires those compilers to adhere to the same conventions. For
example, at the time of this writing, the C++ language standard lacks an
Application Binary Interface (ABI) that can be targeted by all C++ compilers.
Thiscan lead to situationsin which the same compiler must be used to build all
of the code within a given program.

Microsoft Windows is unique among the platforms supported by IDL in that it has
two distinct calling conventions in common use, whereas other systems define a
single convention. On single-convention systems, the calling convention is
unimportant to application programmers, and of concern only to hardware designers
and the authors of compilers, and operating systems. On amultiple convention
system, application programmers sometimes need to be aware of the issue, and
ensure that their code is compiled to use the proper convention and that calls to that
code use the same convention. The Microsoft Calling Conventions are:

External Development Guide The CALL_EXTERNAL Function

146 Chapter 8: CALL_EXTERNAL

STDCALL

STDCALL isthe calling convention used by the mgjority of the Windows
operating system API. InaSTDCALL call, the calling routine places the
arguments in the proper registers and/or stack locations, and the called routine
isresponsible for cleaning them up and unwinding the stack.

CDECL

CDECL isthe caling convention used by C/C++ code by default. This default
can be changed via compiler switches, declspec declarations, or #pragmas.
With CDECL, the caller is responsible for both setup and cleanup of the
arguments. CDECL is able to call functions with variable numbers of
arguments (varargs functions) because the caller knows the actual number of
arguments passed at runtime, whereas STDCALL cannot call such functions.
Thisis because the STDARGS routine cannot know efficiently at compile time
how many arguments it will be passed at runtime in these situations.

The inconvenience of having two distinct and incompatible calling conventionsiis
usually minor, because the header files that define functions for C/C++ programs
include the necessary definitions such that the compiler knows to generate the proper
code to call them and the programmer is not required to be aware of the issue.
However, CALL_EXTERNAL does have a problem: Unlike a C/C++ program, IDL
determines how to call afunction solely by the arguments passed to
CALL_EXTERNAL, and not from a header file. IDL therefore has no way to know
how your external code was compiled. It usesthe STDARG convention by default,
and the CDECL keyword can be used to change the default. CALL_EXTERNAL
thereforerelies on the IDL user to tell it which convention to use. If IDL calls your
code using the correct convention, it will work correctly. If it calls using the wrong
convention, the results are undefined, including memory corruption and possible
crashing of the IDL program.

Warning
The default calling convention for CALL_EXTERNAL isSTDCALL, whereasthe

default convention for the Microsoft C compiler is CDECL. Hence, Windows users
must usually specify the CDECL keyword when calling such code from IDL. Non-
Windows versions of IDL ignore the CDECL keyword, so it is safe to always
includeit in cross platform code.

Here is what happens when external code is called via the wrong calling convention:

» If aSTDARG cal ismade to a CDECL function, the caller places the
arguments in the proper registers/stack locations, and relies on the called

The CALL_EXTERNAL Function External Development Guide

Chapter 8: CALL_EXTERNAL 147

routine to cleanup and unwind the stack. The called routine, however, does not
do these things because it is a CDECL routine. Hence, cleanup does not

happen.

» If aCDECL call ismade to a STDARG function, the caller places the
arguments in the proper register/stack locations. The called routine cleans up
on exit, and then the caller cleans up again.

Either combination is bad, and can corrupt or kill the program. Sometimes this
happens, and sometimes it doesn’t, so the results can be random and mysterious to
programmers who are not aware of the issue.

Note
When the wrong calling convention is used, it is common for the process stack to
become confused. A “smashed stack” visible from the C debugger following a
CALL_EXTERNAL isusually indicative of having used the wrong calling
convention.

Common CALL_EXTERNAL Pitfalls

Following are alist of common errors and mistakes commonly seen when using
CALL_EXTERNAL.

» The number of arguments and their types, as passed to CALL_EXTERNAL,
must be the exact types expected by the externa routine. In particular, itis
common for programmers to forget that the default IDL integer is a 16-bit
value and that most C compilers definethei nt type as being a 32-bit value.
You should be careful to use IDL LONG integers, which are 32-bit, in such
cases. See “Argument Data Types’ on page 143 for additional details.

» Passing datausing the wrong form: Using by-value to pass an argument to a
function expecting it by-reference, or the reverse. See By-Vaue And By-
Reference Arguments” on page 144 for additional details.

* Under Microsoft Windows, using the incorrect calling convention for agiven
external function. See “Microsoft Windows Calling Conventions” on page 145
for additional details.

* Failureto understand that IDL uses IDL_STRING descriptors to represent
strings, and not just a C style NULL terminated string. Passing a string value
by reference passes the address of the IDL_STRING descriptor to the external
code. See Chapter 13, “IDL Internas: String Processing” for additional details.

* Attempting to make IDL data structures use memory allocated by external
code rather than using the proper IDL API for creating such data structures.

External Development Guide The CALL_EXTERNAL Function

148

Chapter 8: CALL_EXTERNAL

For instance, attempting to give an IDL_STRING descriptor adifferent value
by using C malloc() to alocate memory for the string and then storing the
address of that memory inthe IDL_STRING descriptor is not supported, and
can easily crash or corrupt IDL. Although IDL uses malloc()/free() internally
on most platforms, you should be aware that thisis not part of IDL’s public
interface, and that RSI can change this at any time and without notice. Even on
platforms where IDL does use these functions, its use of them is not directly
compatible with similar calls made by external code because IDL allocates
additional memory for bookkeeping that is generally not present in memory
alocations from other sources. See Chapter 13, “IDL Internals: String
Processing” for information on changing the value of an IDL_STRING
descriptor using supported IDL interfaces. See Chapter 8, “Memory Cleanup”
for more on memory alocation and cleanup.

IDL iswritten in the C language, and when IDL starts, any necessary runtime
initialization code required by C programs is automatically executed by the
system before the IDL main() function is called. Hence, calling C code from
IDL usualy does not require additional runtime initialization. However, when
calling external code written in languages other than C, you may find that your
code does not run properly unless you arrange for the necessary runtime
support for that language to run first. Such details are highly system specific,
and you must refer to your system and compiler documentation for details.
Codethat islargely computational rarely encounters thisissue. It is more
common for code that performs Input/Output directly.

Programming errors in the external code. It is easy to make mistakesin
compiled languages that have bad globa consequences for unrelated code
within the same program. For example, awild memory pointer can lead to the
corruption of unrelated data. If you are lucky, such an error will immediately
kill your program, making it easy to locate and fix. Less fortunate is the
situation in which the program dies much later in a seemingly unrelated part of
the program. Finding such problems can be difficult and time consuming.
When IDL crashesfollowing acall to external code, an error in the external
code or in the call to CALL_EXTERNAL isthe cause in the vast majority of
Cases.

Some compilers and operating systems have a convention of adding leading or
trailing underscore characters to the names of functions they compile. These
conventions are platform specific, and asthey are of interest only to system
linker and compiler authors, not generally well documented. Thisis usualy
transparent to the user, but can sometimes be an issue with inter language
function calls. If you find that afunction you expect to call from alibrary isnot
being found by CALL_EXTERNAL, and the obvious checks do not uncover

The CALL_EXTERNAL Function External Development Guide

Chapter 8: CALL_EXTERNAL 149

the error (usually a ssimple misspelling), this might be the cause. Under UNIX,
the nm command can be helpful in diagnosing such problems.

e C++ compilers use atechnique commonly called name munging to encode the
types of method arguments and return values into the name of the routine as
written to their binary object files. Such names often have only a passing
resemblance to the name seen by the C++ programmer in their source code.
IDL can only call C++ code that has C linkage, as discussed in “C++" on
page 23. C linkage code does not use name munging.

» When calling external code written in other languages, there are sometimes
platform and language specific hidden arguments that must be explicitly
supplied. Such arguments are usually provided by the compiler when you work
strictly within the target language, but become visible in inter-language calls.
An example of this can be found in “Hidden Arguments’ on page 168. In this
example, the Fortran compiler provides an extra hidden length argument when
aNULL terminated string is passed to a function.

External Development Guide The CALL_EXTERNAL Function

150 Chapter 8: CALL_EXTERNAL

Passing Parameters

IDL callsroutines within in a shareable library using the IDL portable calling
convention, in which the routine is passed two arguments:

argc
A count of the number of arguments being passed to the routine
argv

An array of argc memory pointers, which are the addresses of the arguments
(by reference) or the actual value of the argument (by value) depending on the
types of arguments passed to CALL_EXTERNAL and the setting of the
VALUE keyword to that function. You should note that while all types of data
can be passed by reference, there are limitations on data types that can be
passed by value, as described in the documentation for “CALL_EXTERNAL”
in the IDL Reference Guide manual.

The CALL_EXTERNAL portable convention is necessary because IDL, like any
program written in a compiled language, cannot generate arbitrary function calls at
runtime. Only callsto interfaces that were known to it when it was compiled are
possible. Naturally, most existing C functions are not written to use this interface.
Calling such functions typically requires IDL users to write glue functions, the sole
purpose of which isto be called by CALL_EXTERNAL with the portable
convention, and then to take the arguments and pass them to the real target function
using the natural interface for that function. The AUTO_GLUE keyword to
CALL_EXTERNAL can be used to generate, compile, and load such glue routines
automatically and on demand, without requiring user intervention. Auto Glueis
described in “Using Auto Glue” on page 152. AUTO_GL UE does not eliminate the
need for, or use of, the portable convention, but it can relieve the IDL user of the
requirement to handleit explicitly. The end result is that calling existing function
interfacesis easier to do, and less error prone.

Routines called by CALL_EXTERNAL with the portable convention are defined
with a prototype similar to the following:

return_type exanple(int argc; void *argv[])

wherer et urn_t ype isone of the datatypeswhich CALL_EXTERNAL canreturn. If
thisreturn_type isnot IDL_LONG, akeyword must be used in the
CALL_EXTERNAL call toindicate the actual type of the result.

Passing Parameters External Development Guide

Chapter 8: CALL_EXTERNAL 151

The parameter ar gc gives the number of arguments passed to the external routine by
CALL_EXTERNAL inthear gv array, whilear gv isan array containing the
arguments. Arguments are passed either by value or by reference. Those passed by
value are copied directly into the ar gv array, with the exception of scalar strings,
which place a pointer to anull-terminated string inar gv[i] . All arrays are passed
by reference. Scalar items passed by reference (the default) place a pointer to the
datuminar gv[i] . Stringsand string arrays passed by reference place a pointer to an
IDL_STRING structureinar gv[i] . Thisstructure is defined as follows:

typedef struct {
| DL_STRING_SLEN T sl en; /* Length of string */
short stype; /* type of string: (0) static, (!0) dynamc */
char *s; /* Addr of string, invalid if slen == 0. */
} IDL_STRI NG,
See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additional details
about passing parameters by value.

It isimportant to note that IDL integer variables correspond to a 16-bit integer (aC
si gned short integer). For example, an integer variable could be defined in an IDL
routine as follows:

IDL> A=5 ;default type of integer, not LONG

The variable could then be passed by referencein aCALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be:

short *a;
a = (short *) argv[O0];

or

| DL_I NT *a;
a = (IDL_INT *) argv[O];

IDL_INT correspondsto a C short (16-bit integer), so either form is correct. The
corresponding type in Fortran would be INTEGER* 2.

External Development Guide Passing Parameters

152 Chapter 8: CALL_EXTERNAL

Using Auto Glue

Usersof CALL_EXTERNAL frequently write small functions with the sole purpose
of matching the CALL_EXTERNAL portable calling convention with its (ar gc,

ar gv) interface to the actual interface presented by some existing function that they
wish to call. Such functions are often called glue functions.

It quickly becomes obvious to anyone who has written afew glue functions that there
isn't much to them, and that producing such functionsis a purely mechanical
operation. As you read the examples in this chapter, you will see many such
functions, and will notice that they are all essentially the same. Further examination
should serve to convince you that IDL aready has all of the information, in the form
of the arguments and keywords specified to the CALL_EXTERNAL function, to
generate such functions without requiring human intervention. Examining the
CALL_EXTERNAL routine'sinterface, we see that:

» the number and types of argumentsto the CALL_EXTERNAL function
provide the same information about the arguments for the target external
function;

» the VALUE keyword, and CALL_EXTERNAL’s built in rules for deciding
whether or not to pass arguments by value or by reference determine how the
arguments should be passed;

» inthe case of Microsoft Windows, the CDECL keyword tellsit which system
calling convention to employ;

* keywordsto CALL_EXTERNAL determine the result type.

Furthermore, other than the actual name of the user function being called, these glue
functions are generic in the sense that they could be used to call any function that
accepted arguments of the same types and produce a result of the same type.

The AUTO_GLUE keyword to CALL_EXTERNAL exploitsthesefactsto allow you
to call functions with natural interfaces, without the need to write, compile, and load
a glue function to do the job. The sole requirement is that your system must havea C
compiler installed that is compatible with the compiler described by the IDL
IMAKE_DLL system variable. Thisis almost alwaysthe caseif you areinterested in
calling external code, since a compiler is necessary to compile such code.

AUTO_GLUE automatically writes the C code for the glue function, uses the
MAKE_DLL procedure to build a sharable library containing it, loads that library,
and then calls the glue function, passing it a pointer to the target function and all of its
arguments. It maintains a cache of glue functions that have been built previously, and
never builds the same glue function more than once. From the user perspective, there

Using Auto Glue External Development Guide

Chapter 8: CALL_EXTERNAL 153

isadlight pause the first time a given glue function is used. In that brief moment,
AUTO_GLUE performs the steps described above, and then makes the call to the
user function. All of this happens transparently to the IDL user — no user interaction
isrequired, and no output is produced by the process. Subsequent calls to the same
glue function happen instantaneoudly, as IDL loads the existing glue function from
theMAKE_DLL cachewithout rebuilding it. In principle, it issimilar to theway IDL
automatically compiles IDL language programs on demand, only with C code instead
of IDL code.

See“CALL_EXTERNAL” inthe IDL Reference Guide manual for additional details
about how AUTO_GLUE works, and the options for controlling its use.

Generating Glue Without Executing It

AUTO_GLUE isthe preferred option for most calls to functions with natural
interfaces, dueto it's smplicity and ease of use. However, you might find yourself in
a situation where you would like your glue functions to be automatically generated,
but wish to simply get the resulting C code so that you can modify it or incorporate it
into alarger library. For example, you might have alarge library of IDL specific
code, and wish to giveit al IDL callable interfaces without requiring the overhead of
AUTO_GLUE for all of them.

The WRITE_WRAPPER keyword to CALL_EXTERNAL can be used to produce
such code without compiling or using the results. See “CALL_EXTERNAL” in the
IDL Reference Guide manual for additional information on this keyword.

External Development Guide Using Auto Glue

154 Chapter 8: CALL_EXTERNAL

Basic C Examples

All of the code for the examples in this section can be found in the

/ ext ernal / cal | _ext er nal / Csubdirectory of the IDL distribution. Please read
the README filein that directory for details on how to run the examples. In many
cases, thefilesin that directory go into more detail, and are more fully commented
than the versions shown here. Also, the examples provide IDL wrapper routines that
perform the necessary CALL_EXTERNAL calls, while the examples shown here use
CALL_EXTERNAL directly in order to explain how itisused. It isworth reading the
contentsof the. ¢ and IDL . pr o filesin that directory in addition to reading the code
shown here.

Example: Passing Parameters by Reference to IDL

Thefollowing routine, foundinsi npl e_vars. c, acceptssevera of IDL'sbasic data
types as arguments. The parameters are passed in by reference and the new squared
values of the numbers are passed back to IDL. Thisisimplemented as afunction with
anatural C interface, and a second glue routine that implementsthe IDL portable
convention, using the one with the natural interface to do the actual work.

The IDL statements necessary to call thesi npl e_var s() function from IDL can be
written:

B=2B & 1=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), 'sinple_vars’, $
b,i,l,f,d, /CDECL)

Note
GET_CALLEXT_EXLI B() isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Using the AUTO_GLUE keyword to CALL_EXTERNAL, you can call the function
with the natural C interface directly:

B=2B & 1=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL(GET_CALLEXT_EXLIB(), ’'sinple_vars_natural’, $
b,i,I,f,d, /CDECL, /AUTO GLUE)

Example: Calling a C Routine to Perform

Basic C Examples External Development Guide

Chapter 8: CALL_EXTERNAL 155

#i ncl ude <stdio. h>
#i nclude "idl _export.h" /* IDL external definitions */

1
2
3
4Qint sinple_vars_natural (char *byte_var, short *short_var,

5 I DL_LONG *l ong_var, float *float_var,
6 doubl e *doubl e_var)

7

8

/* Square each variable. */

9 *byte_var *= *pyte_var;
10 *short _var *= *short _var;
11 *| ong_var *= *| ong_var;
12 *f| oat _var *= *f| oat _var;

*—

13 *doubl e_var *doubl e_var;

15 return 1,
164}

18fint sinple_vars(int argc, void* argv[])

20 /* Insure that the correct nunber of argunents were passed in */
21 if(argc !'= 5) return 0;

23 return sinple_vars_natural ((char *) argv[0], (short *) argv[1],
24 (IDL_LONG *) argv[2], (float *) argv[3],
25 (doubl e *) argv[4]);

Table 8-1: Passing Parameters by Reference to IDL — simple_vars.c
Computation

The following example demonstrates an external function that returns the sum of a
floating point array. It issimilar in function to the TOTAL function in IDL. The code
for thisexampleisfound in the file sum ar ray. c in the IDL distribution. Aswith
the previous example, this function isimplemented by afunction that has a natural C

External Development Guide Basic C Examples

156

Chapter 8: CALL_EXTERNAL

interface, and a second glue function is provided that matches the IDL portable

calling convention to the natural interface:

#i ncl ude <stdio. h>
#i nclude "idl _export.h"

float sumarray_natural (float *fp,
float s = 0.0;

while (n--) s += *fp++;
return(s);

CQOwoo~NoOOaR~AWNE
-~

[N

float sumarray(int argc,

{
}

void *argv[])

return sumarray_natural ((float *) argv[O],

I DL_LONG n)

(IDL_LONG argv[1]);

Table 8-2: Calling a C routine — example.c

The IDL statements necessary to call thesum array() function from IDL can be

written:
X = FI NDGEN(10)
S = CALL_EXTERNAL(GET_CALLEXT_EXLI B(),

X, N_ELEMENTS(X), VALUE=[0, 1] ,

Note

"sumarray’$

/ E_VALUE, /CDECL)

GET_CALLEXT_EXLI B() isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe

path to the library asits result.

Using the AUTO_GLUE keyword, you can call the function with the natural C

interface directly:

X
S

FI NDGEN(10)

/ AUTO_GLUE)

CALL_EXTERNAL(GET_CALLEXT_EXLI B(),
X, N_ELEMENTS(X), VALUE=[0, 1] ,

"sum array_natural’$
| F_VALUE, / CDECL, $

Inthisexample, sum array and sum array_nat ural arethe names of the entry
points for the external functions, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The F_VALUE keyword specifies that the returned valueisa

floating-point number rather than an IDL_LONG.

Basic C Examples

External Development Guide

Chapter 8: CALL_EXTERNAL 157

Wrapper Routines

CALL_EXTERNAL routines are very sensitive to the number and type of the
arguments they receive. Callinga CALL_EXTERNAL routine with the wrong
number of arguments or with arguments of the wrong type can cause IDL to crash.
For thisreason, it isagood practiceto provide an IDL wrapper routine that is used to
make the actual CALL_EXTERNAL call. Thejob of thiswrapper, which is written
in the IDL language, is to ensure that the arguments that are passed to the external
code are always of the correct number and type. The following IDL procedureisthe
wrapper used in the simple_vars() example of the previous section (“Example:
Passing Parameters by Referenceto IDL” on page 154). It can be found in the IDL
distributionin thefilesi npl e_vars. pro.

IDL

©CO~NOUID_WN P

PRO SI MPLE_VARS, b, i, |, f, d, AUTO GLUE=auto_gl ue, DEBUG=debug, $
VERBOSE=ver bose
i f NOT(KEYWORD_SET(debug)) THEN ON_ERROR, 2
; Type checking: Any missing (undefined) argunments will be set
; to a default value. Al arguments will be forced to a scal ar
; of the appropriate type, which may cause errors to be thrown
; if structures are passed in. Local variables are used so that
; the values and types of the user supplied argunents don't change.
b_| = (SIZE(b,/TYPE) EQO) ? 2b : byte(b[0])
i | = (SlzE(i,/TYPE) EQO0) ? 3 fix(i[0])
I_I = (SIZE(I,/TYPE) EQO) ? 4L : long(l[0])
f_ I = (SIzE(f,/TYPE) EQO) ? 5.0 : float(f[0])
d_| = (SIZE(d,/TYPE) EQO) ? 6.0D : doubl e(d[0])
PRINT, "Calling sinple_vars with the follow ng argunents:’
HELP, b I, i_I, [_I, f_I, d_l
func = keyword_set(auto_glue) ? 'sinple_vars_natural’ : 'sinple_vars’
| F (CALL_EXTERNAL(GET_CALLEXT_EXLI| B(VERBOSE=ver bose), func, $
b I, i, I, f_I, dlI, /CDECL, $
AUTO GLUE=aut o_gl ue, VERBCSE=verbose, $
SHOW ALL_QUTPUT=ver bose) EQ 1) then BEG N
PRI NT," After calling sinple_vars:’
HELP, b I, i_I, I_I, f_I, d_l
ENDI F ELSE MESSAGE, ' External call to sinple_vars failed
END

Table 8-3: Wrapper Routine — simple_vars.pro

Theroutinesi npl e_vars. pr o uses the system routine SIZE() to examine the
arguments that are passed in by the user to the si npl e_var s routine. If one of the
argumentsis undefined, adefault value will be used in the call to the external routine.
Otherwise, the argument will be converted to ascalar of the appropriate type.

External Development Guide Wrapper Routines

158 Chapter 8: CALL_EXTERNAL

Note
GET_CALLEXT_EXLI B() isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Wrapper Routines External Development Guide

Chapter 8: CALL_EXTERNAL 159

Passing String Data

IDL represents stringsinternally as IDL_STRING descriptors. For more information
about IDL_STRING, see Chapter 11, “IDL Internals: Variables” and Chapter 13,
“IDL Internas: String Processing”. These descriptors are defined in the C language
as.
typedef struct {
| DL_STRI NG SLEN T sl en;
unsi gned short stype;
char *s;
} I DL_STRI NG,

To pass astring by reference, IDL passes the address of its IDL_STRING descriptor.
To pass astring by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

» Cadled code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

» Thesl en field contains the length of the string without including the NULL
termination that isrequired at the end of all C strings.

* Thestype fildisusedinternally by IDL to keep track of how the memory for
the string was obtained, and should beignored by CALL_EXTERNAL users.

* s isthepointer to the actual C string represented by the descriptor. If the string
isNULL, IDL representsit asaNULL (0) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

* You must use the functions discussed in Chapter 13, “IDL Internas. String
Processing” to allocate the memory for an IDL_STRING. Attempting to do
this directly by allocating dynamic memory and assigning it to the
IDL_STRING descriptor is acommon pitfall, as discussed in “Common
CALL_EXTERNAL Pitfalls’ on page 147.

Returning a String Value

When returning a string value, a function must allocate the memory used to hold it.
On return, IDL will copy this string. You can use a static buffer or dynamic memory,
but do not return the address of an automatic (stack-based) variable.

External Development Guide Passing String Data

160 Chapter 8: CALL_EXTERNAL

Note
IDL will not free dynamically-allocated memory for this use.

Example

The following routine, foundinstri ng_ar ray. ¢, demonstrates how to handle
string variablesin external code. Thisroutine takesa string or array of strings as input
and returns acopy of thelongest string that it received. It isimportant to note that this
routine uses astatic char array asits return value, which avoids the possibility of a
memory leak, but which must be long enough to handl e the longest string required by
the application. Thisisimplemented as a function with anatural C interface, and a
second glue routine that implements the IDL portable convention, using the one with
the natural interface to do the actual work:

Passing String Data External Development Guide

Chapter 8: CALL_EXTERNAL 161

1Q#i ncl ude <stdio. h>
2Q#incl ude <string. h>
3Q§#include "idl _export.h"
a4/ *
50 * IDL_STRING is declared in idl_export.h like this:
6 * typedef struct {
4 B | DL_STRI NG SLEN_T sl en; Length of string, O for null
1 short stype; Type of string, static or dynamc
of * char *s; Addr ess of string
10§ * } IDL_STRING
11§ * However, you should rely on the definition in idl_export.h instead
12Q * of declaring your own string structure.
13Q*/
14
15fchar* string_array_natural (I DL_STRI NG *str_descr, |DL_LONG n)
16 §{
17 /*
18 * DL will make a copy of the string that is returned (if it is
19 * not NULL). One way to avoid a nmenory leak is therefore to return
C 20 * a pointer to a static buffer containing a null termnated string. |DL
21 * will copy the contents of the buffer and drop the reference to our
22 * puffer inmrediately on return.
23 */
24 #def i ne MAX_OUT_LEN 511 /* truncate any string longer than this */
25 static char result[MAX_OUT_LEN+1]; /* leave a space for a '\0" on the
26 | ongest string */
27 int max_i ndex; /* index of |ongest string */
28 int max_sofar; /* length of |ongest string*/
29 int i;
30

31 /* Check the size of the array passed in. n should be > 0.*/
32 if (n<1) return (char *) O;

33 max_i ndex
34 max_sof ar
35 for(i=0; i <n; i++) {

= 0;
= 0;

36 if (str_descr[i].slen > max_sofar) {
37 max_i ndex = i;

38 max_sofar = str_descr[i].slen;

39 }

40 }

Figure 8-1: Handling String Variables in External Code — string_array.c

External Development Guide Passing String Data

162 Chapter 8: CALL_EXTERNAL

414 /*

42 * |f all strings in the array are enpty, the |ongest
43 *will still be a NULL string.

44 */

45 if (str_descr[max_index].s == NULL) return (char *) O;
46

47 /*

48 * Copy the longest string into the buffer, up to MAX OQUT_LEN characters.

49 * Explicitly store a NULL byte in the |ast byte of the buffer, because

50 * strncpy() does not NULL terminate if the string copied is truncated.
*/

52 strncpy(result, str_descr[max_index].s, MAX_OUT_LEN);
C 53 result[sizeof(result)-1] ="'\0";

54 return(result);

55 #undef MAX_OUT_LEN

56 1}

58fchar* string_array(int argc, void* argv[])
59
60 /*

61 * Make sure there are the correct # of argunents.

62 * IDL will convert the NULL into an enpty string ('').

63 */

64 if (argc !'= 2) return (char *) NULL;

65 return string_array_natural ((IDL_STRING *) argv[0], (IDL_LONG argv[1]);
66}

Figure 8-1: (Continued) Handling String Variables in External Code — string_array.c

Passing String Data External Development Guide

Chapter 8: CALL_EXTERNAL 163

Passing Array Data

When you pass an IDL array into a CALL_EXTERNAL routine, that routine gets a
pointer to the first memory location in the array. In order to perform any processing
on the array, an external routine needs more information—such asthe array’s size and
number of dimensions. With CALL_EXTERNAL, you will need to passthis
information explicitly as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needsto know the size of the array at
compile time. In most cases, this means that you will need to treat multi-dimensional
arrays passed in from IDL as one dimensional arrays. However, you can still build
your own indices to access an array asif it had more than one dimension in C. For
example, the IDL array index:

array[x, y]
could be represented in aCALL_EXTERNAL routine as:
array_ptr[x + x_size*y];

The following routine, found in sum 2d_ar r ay. c, calculates the sum of a
subsection of atwo dimensional array. Thisisimplemented as afunction with a
natural C interface, and a second glue routine that implements the IDL portable
convention, using the one with the natural interface to do the actual work:

External Development Guide Passing Array Data

164 Chapter 8: CALL_EXTERNAL

1Q#i ncl ude <stdio. h>

2Q#include "idl _export.h"

3fdoubl e sum 2d_array_natural (double *arr, IDL_LONG x_start, IDL_LONG x_end,
4 | DL_LONG x_size, IDL_LONG y_start,

5 IDL_LONG y_end, |DL_LONG y_size)

6 /* Since we didn't know the dinensions of the array at conpile tinme, we
7 *must treat the input array as if it were a one dinensional vector. */
8

I DL_LONG x,y;
9 doubl e result = 0.0;
10
11 /* Make sure that we don’t go outside the array.strictly speaking, this
12 *is redundant since identical checks are performed in the | DL w apper

13 * routine.IDL_M N() and I DL_MAX() are macros fromidl _export.h */
14 x_start = | DL_MAX(x_start, 0);
15 y_start = IDL_MAX(y_start, 0);
I DL
I DL

16] x_end = _MN(x_end, x_si ze-1);
C 17] y_end = _MN(y_end,y_size-1);
18

19 /* loop through the subsection */
20 for (y = y_start;y <= y_end;y++)

21 for (x = x_start;x <= x_end; x++)

22 result += arr[x + y*x_size]; /* build the 2d index: arr[x,y] */
23 return result;

241}

25

26 fdoubl e sum 2d_array(int argc,void* argv[])

27

{
28 if (argc !'=7) return 0.0;

29 return sum 2d_array_natural ((double *) argv[O0], (IDL_LONG argv[1],
30 (IDL_LONG argv[2], (IDL_LONG argv[3],
31 (IDL_LONG argv[4], (IDL_LONG argv[5],
32 (I DL_LONG) argv[6]);

33}

Table 8-4: Adding the Elements of a 2D IDL Array — sum_2d_array.c
The IDL system routine interface provides much more support for the manipulation

of IDL array variables. See Chapter 20, “Adding System Routines” for more
information.

Passing Array Data External Development Guide

Chapter 8: CALL_EXTERNAL 165

Passing Structures

IDL structure variables are stored in memory in the same layout that C uses. This
makes it possible to pass IDL structure variablesinto CALL_EXTERNAL routines,
aslong asthe layout of the IDL structure is known. To access an IDL structure from
an external routine, you must create a C structure definition that has the exact same
layout as the IDL structure you want to process.

For example, for an IDL structure defined as follows:
s = { ASTRUCTURE, zero: 0B, one: OL, two: 0. 0, three: OD, four: intarr(2)}
the corresponding C structure would look like the following:

typedef struct {
unsi gned char zero;
| DL_LONG one;
fl oat two;
doubl e three;
short four[2];
} ASTRUCTURE;

Then, cast the pointer from ar gv to the structure type, as follows:

ASTRUCTURE* nystructure;
nystructure = (ASTRUCTURE*) argv[O0];

The following routing, found ini ncr _st ruct . c, increments each field of an IDL
structure of type ASTRUCTURE. Thisisimplemented as a function with anatural C
interface, and a second glue routine that implements the IDL portable convention,
using the one with the natural interface to do the actual work:

External Development Guide Passing Structures

166 Chapter 8: CALL_EXTERNAL
1Q#i ncl ude <stdio. h>
2Q#include "idl _export.h"
3
49/
50 * Cdefinition for the structure that this routine accepts. The
6 * corresponding IDL structure definition would look |ike this:
4 B s = {zero: 0B, one: OL,two:0.,three: 0D, four: intarr(2)}
sp*/
9ftypedef struct {
10 unsi gned char zero;
11 | DL_LONG one;
12 float two;
13 doubl e three;
14 short four[2];
15} ASTRUCTURE;
16
17fint incr_struct_natural (ASTRUCTURE *nystructure, |DL_LONG n)
18
c 19 /* for each structure in the array, increment every field */
20 for (; n--; mystructure++) {
21 nmystructure->zer ot++;
22 nmystruct ur e->one++,
23 nmyst ruct ur e- >t wo++,
24 nmystructure->t hree++;
25 nmystruct ure->four[0] ++;
26 nystructure->four[1] ++;
27 }
28
29 return 1;
30}
31fint incr_struct(int argc, void *argv[])
32
33 if (argc !'= 2) return 0;
34 return incr_struct_natural ((ASTRUCTURE*) argv[O0], (IDL_LONG argv[1]);
351}
36

Table 8-5: Accessing an IDL Structure from a C Routine — incr_struct.c

It is not possible to access structures with arbitrary definitions using the
CALL_EXTERNAL interface. The system routine interface, discussed in Chapter
20, “Adding System Routines’, does provide support for determining the layout of a
structure at runtime.

Passing Structures External Development Guide

Chapter 8: CALL_EXTERNAL 167

Fortran Examples

Example: Calling a Fortran Routine Using a C
Interface Routine

Calling Fortran is similar to calling C, with the significant difference that Fortran
code expects all argumentsto be passed by reference and not by value (the C default).
Thismeansthat the addr ess of the argument is passed rather than the argument itself.
Thisissueis discussed in “By-Value And By-Reference Arguments’ on page 144.

A Cinterfaceroutine can easily extract the addresses of the arguments from thear gv
array and pass them to the actual routine which will compute the sum. The arguments
f, n, and s are pointers that are being passed by value. Fortran expects al argumentsto
be passed by reference — that is, it expectsall argumentsto be addresses. If C passes
apointer (an address) by value, Fortran will interpret it correctly as the address of an
argument. The following code segmentsiillustrate this. The exanpl e_c2f . ¢ file
contains the C interface routine, which would be compiled asillustrated above. The
exanpl e. f file contains the Fortran routine that actually sums the array.

In these examples, we assume that the routines are being compiled under Sun Solaris.
The object name of the Fortran subroutine will be sum ar ray1_ to match the output
of the Solaris Fortran compiler. The following are the contents of exanpl e_c2f . ¢
and exanpl e. f:

©CO~NOUID_WN P

#i ncl ude <stdio. h>
void sumarray(int argc, void *argv[])
{
extern void sumarrayl_();/* Fortran routine */
int *n;
float *s, *f;
f = (float *) argv[O]; /* Array pntr */
n=(int *) argv[1]; /* Cet # of elenents */
s = (float *) argv[2]; /* Pass back result a paraneter */
sumarrayl (f, n, s); /* Conmpute sum */

}

Table 8-6: C Wrapper Used to Call Fortran Code (example_c2f.c)

External Development Guide Fortran Examples

168 Chapter 8: CALL_EXTERNAL

1Qc This subroutine is called by SUM ARRAY and has no | DL-specific code.
2fc
3 SUBROUTI NE sunmarrayl(array, n, sum
401 NTEGER*4 n
5QREAL*4 array(n), sum
6
7fsum=0. 0
frr 8fDO i=1,n
9fsum = sum + array(i)
10QPRINT *, sum array(i)
11 § ENDDO
12
13 JRETURN
14 §END

Table 8-7: Fortran Code Called from IDL via C Wrapper (example.f)

This example is compiled and linked in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in the ext ernal / cal | _external / Fortran
subdirectory of the IDL distribution. This directory aso contains a makefile, which
builds this example on UNIX platforms. To call the example program from within
IDL:

; Make an array.

X = FI NDGEN(10)

;A floating result

SUM = 0.0

S = CALL_EXTERNAL(' exanple.so', $
"sumarray', X, N_ELEMENTS(X), sum

In this example, exanpl e. so isthe hame of the sharableimagefile, sum array is
the name of the entry point, and X and N_ELEMENTS(X) are passed to the called routine
as parameters. The returned value is contained in the variable sum

Hidden Arguments

When passing C null-terminated character strings into a Fortran routine, the C
function should also passin the string length. This extra parameter is added to the end
of the Fortran routine call in the C function, but does not explicitly appear in the
Fortran routine.

For example, in C:

char * strl= "IDL';
char * str2="'RSI';
int |enl=3;
int |en2=3;
doubl e data, info;

Fortran Examples External Development Guide

Chapter 8: CALL_EXTERNAL 169

/* Call a Fortran sub-routine naned exanplel */
exanmplel (strl, data, str2, info, lenl, |en2)

In Fortran:

SUBROUTI NE EXAMPLEL(STRL, DATA, STR2, | NFO)
CHARACTER* (*) STR1, STR2
DOUBLE PRECI SI ONDATA, | NFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Calling Fortran is similar to calling C, with the significant difference that Fortran
expects all arguments to be passed by reference. This means that the address of the
argument is passed rather than the argument itself. See “By-Value And By-Reference
Arguments’ on page 144 for more on this subject.

A Fortran interface routine can be written to extract the addresses of the arguments
from the ar gv array and pass them to the actual routine which will compute the sum.
Passing the contents of each ar gv element by value has the same effect as converting
the parameter to a normal Fortran parameter.

This method uses the OpenVMS Extensions to Fortran, %L OC and %VAL. On IBM
AlX, the LOC function is an intrinsic operator. The syntax of the call, which differs
from that used on other platforms, is:

y=l oc(x)

Some Fortran compilers may not support these extensions. If your compiler does not,
use the method discussed in the previous section for calling Fortran with a C interface
routine.

The contents of the file exanpl el. f are shown in the following figure. This
exampleis compiled, linked, and called in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in the ext er nal / f or t r an subdirectory of the IDL
distribution. This directory also contains a makefile, which builds this example on
UNIX platforms.

Note
This example is written to run under a 32-bit operating system. To run the example
under a 64-bit operating system would require modifications; most notably, to
declare ar gv as| NTEGER* 8 rather than | NTEGER* 4.

External Development Guide Fortran Examples

170 Chapter 8: CALL_EXTERNAL
1 SUBROUTI NE SUM ARRAY(argc, argv) !Called by IDL
28I NTECER*4 argc, argv(*) I'Argc and Argv are integers
3
4 = LOC(argc) | Cbtai ns the nunmber of argunments (argc)
5 | Because argc is passed by VALUE.
6
7fc Call subroutine SUM ARRAY1, converting the IDL paraneters
8fc to standard Fortran, passed by reference argunents:
9
10[JCALL SUM ARRAY1(%W/AL(argv(1)), WAL(argv(2)), WAL(argv(3)))
11 §RETURN
12 §END
7 2N e
14Qc This subroutine is called by SUM ARRAY and has no
15Qc I DL specific code.
16§c
17 JSUBROUTI NE SUM ARRAY1(array, n, sum
18I NTEGER*4 n
19 REAL*4 array(n), sum
20
21fsunm=0.0
22fDO i =1, n
23ffsum = sum + array(i)
24 FENDDO
25 RETURN
26 §END

Table 8-8: Fortran Code Called Directly From IDL

To call the example program from within IDL:

X = FINDGEN(10) ; Make an array.

sum= 0.0

S = CALL_EXTERNAL(' exanplel.so', $
"sumarray_', X, N_ELEMENTS(X), sum

In this example, exanpl el. so isthe name of the sharableimagefile, sum array_
isthe name of the entry point, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The returned value is contained in the variable sum

Note
The entry point name generated by the Fortran compiler may be different than that
produced by the C compiler. One of the best waysto find out what name was
generated is to use the UNIX nmutility on the object file. See your system’s man
page for nmfor details.

Fortran Examples External Development Guide

Chapter 9:

Remote Procedure

Calls

This chapter discusses the following topics:

IDL and Remote ProcedureCalls 172
Using IDL asan RPC Server 173
Client Variables 174
Linking to the Client Library 175

External Development Guide

Compatibility with Older IDL Code 177
ThelDL RPC Library 179
RPCExamples 204

171

172 Chapter 9: Remote Procedure Calls

IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routinesisincluded to handle communication between client programs
and the IDL server.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your own
program to berun asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

With the release of IDL version 5.0, IDL's RPC functionality has been completely
revised and an new API created. The new RPC interface mirrors the APl used by
callable IDL. See “Compatibility with Older IDL Code” on page 177 for details.

IDL and Remote Procedure Calls External Development Guide

Chapter 9: Remote Procedure Calls 173

Using IDL as an RPC Server

The IDL RPC Directory

All of thefilesrelated to using IDL's RPC capabilities are found in the r pc
subdirectory of theext er nal subdirectory of themain IDL directory. The main IDL
directory isreferred to here asidldir.

Running IDL in Server Mode

Touse IDL asan RPC server, run IDL in server mode by using thei dl r pc
command. The RPC server can be invoked one of two ways:

idlrpc
or
idl rpc -server=server_nunber

where server_number is the hexadecimal server ID number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If aserver ID number is not supplied, IDL uses the default,
IDL_RPC_DEFAULT _ID, defined in thefileidldir/ ext ernal / rpc/idl _rpc. h.
Thisvalueisoriginally set to 0x2010CAFE.

External Development Guide Using IDL as an RPC Server

174 Chapter 9: Remote Procedure Calls

Client Variables

The IDL RPC client API uses the same data structure as IDL to represent avariable,
namely an IDL_VARIABLE structure. By not using a unique data structure to
represent avariable, theIDL RPC client API can follow aformat that is similar to the
API of Callable IDL.

When avariable is created by the IDL RPC client API (when a variableisreturned
from the IDL_RPCGetM ainVariable function, for example) dynamic memory is
allocated for the variable and for its value. These dynamic variables are similar to
temporary variables which are used in IDL.

The IDL RPC client API provides routines to create, manipulate and delete dynamic
or IDL RPC client temporary variables. These API routines follow the same format
asthe Callable IDL API and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RPC
client program, use the IDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete aclient temporary variable could result
amemory “leak” in the client program.

Client Variables External Development Guide

Chapter 9: Remote Procedure Calls 175

Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:

Include thefilei dl _rpc. h in your application.

Haveacopy of i dl _export . h inthe include path when you compile the
client application.

Link your client application to the IDL client shared object library
(1i bidl _rpc).

If the client library islinked as a shared object, you must set the shared
object search path environment variable so that it includes the directory
that containsthe IDL client library.

The name of this variableis normally LD_LIBRARY _PATH, except on
HP and IBM systems, where the variable names are:

HP: SHLIB_PATH
IBM: LIBPATH

If thisvariableis not set correctly, an error message will be issued by the
system loader when the client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -0 exanpl e $(PRE_FLAGS) exanple.o -lidl _rpc

$(POST_FLAGS)

where PRE_FLAGS and POST_FLAGS are platform dependent. The proper flagsfor
each UNIX operating system supported by IDL are contained in the file
rpc_link.txt,locatedintheinther pc subdirectory of the ext er nal subdirectory of
themain IDL directory.

Example of IDL RPC Client API

To usethe IDL client side API, execute the following sequence of steps:
1. Cadl IDL_RPCInit() to connect to the server

2. Perform actions on the server—get and set variables, run IDL commands, etc.

3. Cal IDL_RPCCleanup() to disconnect from the server.

The code shown in the following figure is an example that can be used to set up a
remote session of IDL using the RPC features. Note that this C program will need to

External Development Guide Linking to the Client Library

176 Chapter 9: Remote Procedure Calls
be linked against the supplied shared library 1 i bi dI _r pc. Thiscodeisincluded in the
idldir/ ext er nal / r pc directory as exanpl e. c.

1Q§#include "idl _rpc.h"

2fint main()

3

4 CLI ENT *pClient;

5 char cndBuf fer[512];

6 int result;

7

8] /* Connect to the server */

9 if((pOlient = IDL_RPCINit(0, (char*)NULL)) == (CLIENT*)NULL){
10 fprintf(stderr, "Can't register with |DL server\n");
11 exit(1);

12
13
C 14Q4/* Start a loop that will read conmmands and then send themto idl */
15 for(;;){
16 printf("RMII DL> ");
17 cmdBuffer[0]="\0";
18 get s(cndBuffer);
19 if(crdBuffer[0] == "\n'" || crmdBuffer[0] == '"\0")
20 br eak;
21 result = | DL_RPCExecuteStr(pCient, cndBuffer);
22 }
23
24Q /* Now di sconnect fromthe server and kill it. */
25 if(!l1DL_RPCCl eanup(pdient, 1))
26 fprintf(stderr, "IDL_RPCC eanup: failed\n");
27 exit(0);
28

Linking to the Client Library

Table 9-1: Remote Execution of IDL via RPC

Compile example.c with the appropriate flags for your platform, as described in
“Linking to the Client Library” on page 175. Once this example is compiled, execute
it using the following commands:

% i dlrpc

Then, in another process:

% exanpl e

External Development Guide

Chapter 9: Remote Procedure Calls 177

Compatibility with Older IDL Code

With the release of IDL 5.0, IDL's Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantages:

« Thenew API mirrorsthe Callable IDL API.

* TheRPC client-side library is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

* The RPC server-side executable, i dl r pc, is built using Callable IDL,
providing an example of how Callable IDL can be used.

» Sourcecodeis provided for both the Server and Client side programs, allowing
you to enhance IDL’s RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. Thislayer is contained in the files
idl _rpc_obsolete.candidl rpc_obsolete. h.

To use the compatibility routines, include thefilel i b_r pc_obsol et e. h in your
application and use the following link statement as a template:

% cc -0 ol d_exanpl e $(PRE_FLAGS) ol d_exanple.o \
idl _rpc_obsolete.o -lidl _rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those described
in “Linking to the Client Library” on page 175.

While the compatibility layer covers most of the old IDL RPC functionality, some of
the more obscure operations have either been modified or are no longer supported.
The features which have changed are as follows:

External Development Guide Compatibility with Older IDL Code

178 Chapter 9: Remote Procedure Calls

e idl_server_interactive: This function is no longer supported.

» get_idl_variable: The following return values are no longer supported:

Value Description
-2 Illegal variable name (for example, “213xyz", “#a’,
“IDEVICE")
-3 Variable not transportable (for example, the variable
isastructure or associated variable)

Table 9-2: get_idl_variable Unsupported Values

e set_idl_timeout: thetv_usec field of the timeval struct isignored.
* idl_set_verbosity(): Thisfunctionisno longer supported.

All other functionality is supported.

Compatibility with Older IDL Code External Development Guide

Chapter 9: Remote Procedure Calls 179

The IDL RPC Library

The IDL RPC library contains severa C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are:

» IDL_RPCCleanup * IDL_RPCSetMainVariable
» IDL_RPCDéetmp » IDL_RPCSetVariable

» IDL_RPCExecuteStr » IDL_RPCStoreScalar

* IDL_RPCGetMainVariable * IDL_RPCStrDelete

* |DL_RPCGettmp * |DL_RPCStrDup

* IDL_RPCGetVariable » IDL_RPCStrEnsurel ength
* IDL_RPCImportArray * IDL_RPCStrStore

* IDL_RPCInit * IDL_RPCTimeout

+ IDL_RPCMakeArray « IDL_RPCVarCopy

* |IDL_RPCOutputCapture * |IDL_RPCVarGetData

* IDL_RPCOutputGetStr » Variable Accessor Macros

External Development Guide The IDL RPC Library

180 Chapter 9: Remote Procedure Calls

IDL_RPCCleanup

Calling Sequence
int | DL_RPCCl eanup(CLIENT *pdient, int iKill)
Description

Use thisfunction to release the resources associated with the given CLIENT structure
or tokill the DL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

IKill
Set iKill to anon-zero value to kill the server when the connection is broken.
Return Value

This function returns 1 on success, or 0 on failure.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 181

IDL_RPCDeltmp

Calling Sequence
voi d | DL_RPCDel t np(| DL_VPTR vTnp)
Description
Use this function to de-allocate all dynamic memory associated withthe IDL_VPTR

that is passed into the function. Once this function returns, any dynamic portion of
vTmp is deallocated and should not be referenced.

Parameters

vimp
The variable that will be de-allocated.
Return Value

None.

External Development Guide The IDL RPC Library

182 Chapter 9: Remote Procedure Calls

IDL_RPCExecuteStr

Calling Sequence

int | DL_RPCExecuteStr(CLIENT *pCient, char * pComrand)
Description

Use this function to send IDL commands to the IDL RPC server. The command is
executed just as if it had been entered from the IDL command line.

Thisfunction cannot be used to send multiple line commands and will return an error
if a“$" isdetected at the end of the command string. It will also return an error if “$”
isthefirst character, since this would spawn an interactive process and hang the IDL
RPC server.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
pCommand

A null-terminated IDL command string.
Return Value

This function returns the following values:
1 — Success.
0 — Invalid command string.

For all ather errors, the value of 'TERROR_STATE.CODE isreturned. This number
could be passed as an argument to the IDL function STRM ESSAGE() to determine
the exact cause of the error.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 183

IDL_RPCGetMainVariable

Calling Sequence
| DL_VPTR | DL_RPCGet Mai nVari abl e(CLI ENT *pdient, char *Nane)
Description

Cdll this function to get the value of an IDL RPC server main level variable
referenced by the name contained in Name. IDL_RPCGetM ainVariable will then
return apointer to an IDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variableto find.
Return Value

On success, this function returns a pointer to an IDL_VARIABL E structure that
contains the value of the desired IDL RPC main level variable. On failure this
function returns NULL.

Note that the returned variable is marked as tempor ary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables” on page 174.

External Development Guide The IDL RPC Library

184 Chapter 9: Remote Procedure Calls

IDL_RPCGettmp

Calling Sequence
| DL_VPTR | DL_RPCGet t np(voi d)
Description
Use thisfunction to create an IDL_VPTR to adynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, passit to
IDL_RPCDédtmp() to free any memory alocated by the variable.
Parameters
None.

Return Value

On success, thisfunction returnsan IDL_VPTR. On failure, it returns NULL.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 185

IDL_RPCGetVariable

Calling Sequence

| DL_VPTR | DL_RPCGCet Vari abl e(CLI ENT *pdient, char *Nane)
Description

Use this function to get a pointer to an IDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced by Name. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variableto find.
Return Value

On success, this function returns a pointer to an IDL_VARIABL E structure that
contains the value of the desired IDL RPC variable. On failure this function returns
NULL.

Note that the returned variable is marked as tempor ary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables” on page 174.

External Development Guide The IDL RPC Library

186

Chapter 9: Remote Procedure Calls

IDL_RPCIimportArray

Calling Sequence

I DL_VPTR I DL_RPCI nport Array(int n_dim IDL_MEMNT dinf],
int type, UCHAR *data, |DL_ARRAY_FREE CB free_cb)

Description

Use this function to create an IDL array variable whose data the server supplies,
rather than having the client API allocate the data space.

Parameters

n_dim
The number of dimensionsin the array.

dim
Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in “ Type
Codes’ on page 208.

data
A pointer to your array data.
free_cb

If non-NULL, free_cb isapointer to afunction that will be called when the IDL RPC
client routines frees the array. This feature gives the caller a sure way to know when
the datais no longer referenced. Use the called function to perform any required
cleanup, such as freeing dynamic memory or releasing shared or mapped memory.

Return Value

AnIDL_VPTR that pointsto an IDL_VARIABLE structure containing areference
to the imported array. This function returns NULL if the operation was unsuccessful.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 187

IDL_RPClInit

Calling Sequence

Client *IDL_RPCInit(long Serverld, char* pHostnane)

Description

Use this function to initialize an IDL RPC client session.

The client program isregistered as aclient of the IDL RPC server. The server that the
client isregistered with depends on the values of the parameters passed to the
function.

Parameters

Serverld

The ID number of the IDL server that the program isto be registered with. If this
valueis 0, the default server ID (0x2010CAFE) is used.

pHostname

Thisisthe name of the machine where the IDL server isrunning. If thisvalueis
NULL or “”, the default, “localhost”, is used.

Return Value
A pointer to the new CLIENT structure isreturned upon successful completion. This

opaque data structure is then later used by the client program to perform operations
with the server. This function returns NULL if the operation was unsuccessful.

External Development Guide The IDL RPC Library

188

Chapter 9: Remote Procedure Calls

IDL_RPCMakeArray

Calling Sequence

char * | DL_RPCVakeArray(int type, int n_dim IDL_MEMNT dinf],
int init, IDL_VPTR *var)

Description

Thisfunction creates an IDL RPC client temporary array variable with a data area of
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in “Type
Codes’ on page 208.

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of thisvalue.

dim
A Carray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init
This parameter specifies the sort of initialization that should be applied to the
resulting array. init must be one of the following:

* IDL_ARR_INI_NOP— Noinitialization is done. The data area of the array
will contain whatever garbage was |eft behind from its previous use.

* IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

Theaddressof an IDL_VPTR containing the address of theresulting IDL RPC client
temporary variable.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 189

Return Value

On success, this function returns a pointer to the data area of the allocated array. The
value returned is the same asis contained in the var->value.arr->data field of the
variable. On failure, it returns NULL.

Aswith variables returned from IDL_RPCGettmp(), the variable allocated via this
function must be de-allocated using IDL_RPCDeltmp() when the variableis no
longer needed.

External Development Guide The IDL RPC Library

190 Chapter 9: Remote Procedure Calls

IDL_RPCOutputCapture

Calling Sequence
i nt | DL_RPCOut put Capture(CLIENT *pdient, int n_lines)
Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server was
started. This function can be used to save this information so that the client program
can request the lines sent to the output buffer.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
n_lines

If thisvalueislessthan or equal to zero, no output lines will be buffered in the IDL
RPC server and output will be sent to the normal output device on the IDL RPC
server. |f the value of this parameter is greater than zero, the specified number of
lineswill be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 191

IDL_RPCOutputGetStr

Calling Sequence

int | DL_RPCOut put Get Str(CLI ENT *pClient, |DL_RPC LINE_S *pLine,
int first)

Description

Use this function to get an output line from the line queue being maintained on the
RPC server. The routine IDL _RPCOutputCapture() must have been caled to
initialize the output queue on the RPC server before thisroutineis called.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
pLine

A pointer toavalid IDL_RPC_LINE_Sstructure. The buf field of this structure will
contain the output string returned from the IDL RPC server and the flagsfield will be
set to one of the following (fromi dl _export. h):

 IDL_TOUT_F_STDERR — Send thetext to stderr rather than stdout, if that
distinction means anything to your output device.

 IDL_TOUT_F _NLPOST — After outputting the text, start a new output line.
On atty, thisis equivaent to sending anew line (‘\ n) character.

first

If first is set equal to anon-zero value, thefirst line is popped from the output buffer
onthe DL RPC server (the output buffer istreated like a stack). If first is set equal to
zero, thelast line is de-queued from the output buffer (the output buffer istreated like
aqueue).

Return value

A truevalue (1) isreturned upon success. A false value (0) isreturned when there are
no more lines available in the output buffer or when an RPC error is detected.

External Development Guide The IDL RPC Library

192 Chapter 9: Remote Procedure Calls

IDL_RPCSetMainVariable

Calling Sequence

i nt | DL_RPCSet Mai nVari abl e(CLI ENT *pdient, char *Nane,
| DL_VPTR pVar)

Description

Usethisroutineto assign avalueto amain level IDL variablein the IDL RPC server
session referred to by pClient. If the variable does not aready exist, anew variable
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
main level variable referenced by Name should be set to. For more information on
creating this variable, see “Client Variables’ on page 174.

Return Value

This function returns 1 on success, or 0 on failure.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 193

IDL_RPCSetVariable

Calling Sequence

int | DL_RPCSet Vari abl e(CLIENT *pCient, char *Nane,
| DL_VPTR pVar)

Description

Use thisroutine to assign avalueto an IDL variablein the IDL RPC server session
referred to by pClient. If the variable does not already exist, a new variable will be
created. Unlike IDL_RPCSetM ainVariable(), this routine sets the variable in the
current IDL program scope.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.

Name

A pointer to the null-terminated name of the variable, which must be in upper-case.

pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
variable referenced by Name should be set to. For more information on creating this
variable, see “Client Variables’ on page 174.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide The IDL RPC Library

194 Chapter 9: Remote Procedure Calls

IDL_RPCStoreScalar

Calling Sequence

voi d | DL_RPCSt or eScal ar (I DL_VPTR dest, int type,
| DL_ALLTYPES *val ue)

Description

Use this function to store a scalar value into an IDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existing IDL_VARIABLE isde-
allocated.

Parameters
dest
AnIDL_VPTR tothe IDL_VARIABLE in which the scalar should be stored.

type

The type code for the scalar value. IDL type codes are discussed in “ Type Codes’ on
page 208.

value

The address of an IDL_ALLTY PES union that contains the value to store.
Return Value

None.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 195

IDL_RPCStrDelete

Calling Sequence
voi d | DL_RPCStrDel et e(1 DL_STRING *str, |DL_MEM NT n)
Description

Use this function to delete a string. See the description of IDL_StrDelete() in
“Deleting Strings” on page 281.

External Development Guide The IDL RPC Library

196 Chapter 9: Remote Procedure Calls

IDL_RPCStrDup

Calling Sequence
voi d | DL_RPCSt r Dup(I DL_STRING *str, |DL_MEM NT n)
Description

Use this function to duplicate a string. See the description of IDL_StrDup() in
“Copying Strings’ on page 280.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 197

IDL_RPCStrEnsureLength

Calling Sequence

voi d | DL_RPCSt r EnsureLengt h(1 DL_STRI NG *s, int n)
Description

Use this function to check the length of a string. See the description of
IDL_StrEnsurel ength() in “Obtaining a String of a Given Length” on page 283.

External Development Guide The IDL RPC Library

198 Chapter 9: Remote Procedure Calls

IDL_RPCStrStore

Calling Sequence
void IDL_RPCStrStore(IDL_STRING *s, char *fs)
Description

Use this function to store a string. See description of IDL_Str Store in “ Setting an
IDL_STRING Value” on page 282.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 199

IDL_RPCTimeout

Calling Sequence

int 1 DL_RPCTi meout (1 ong | Ti meQut)
Description

Use thisfunction to set the timeout val ue used when the RPC client makes requests of
the server.

Parameters

ITimeOut

A integer value, in seconds, specifying the timeout value that will be used in RPC
operations.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide The IDL RPC Library

200 Chapter 9: Remote Procedure Calls

IDL_RPCVarCopy

Calling Sequence
voi d | DL_RPCVar Copy(| DL_VPTR src, |DL_VPTR dst)
Description

Use this function to copy the contents of the src variable to the dst variable. Any
dynamic memory associated with dst is de-all ocated before the source datais copied.
This function emulates the callable IDL function I DL _Var Copy().

Parameters

Src

The source variable to be copied. If thisvariable is marked as temporary (returned
from IDL_RPCGettmp(), for example) the dynamic data will be moved rather than
copied to the destination variable.

dst

The destination variable that srcis copied to.
Return Value

None.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 201

IDL_RPCVarGetData

Calling Sequence

voi d | DL_RPCVar Get Data(| DL_VPTR v, |IDL_MEM NT *n, char **pd,
i nt ensure_sinple)

Description

Use this function to obtain a pointer to a variable’s data, and to determine how many
data elements the variable contains.

Parameters

\Y

The variable for which datais desired.

The address of a variable that will contain the number of elementsin v.
pd

The address of avariable that will contain a pointer to v's data, cast to be a pointer to
pointer to char (e.g. (char **) & myptr).

ensure_simple

If TRUE, thisroutine calls the ENSURE_SIM PL E macro on the argument v to
screen out variables of the types it prevents. Otherwise, EXCLUDE_FILE iscalled,
because file variables have no data area to return.

Return Value

On exit, IDL_RPCVarGetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

External Development Guide The IDL RPC Library

202

Chapter 9: Remote Procedure Calls

Variable Accessor Macros

The following macros can be used to get information on IDL RPC variables. These
macros are definedini dl _r pc. h.

All of these macros accept a single argument, v, of typeIDL_VPTR.
IDL_RPCGetArrayData(v)

This macro returns apointer (char*) to the data area of an array block.
IDL_RPCGetArrayDimensions(v)

This macro returns a C array which contains the array dimensions.
IDL_RPCGetArrayNumDims(v)

This macro returns the number of dimensions of the array.
IDL_RPCGetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.
IDL_RPCGetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of acomplex variable.
IDL_RPCGetVarComplexR(v)

This macro returns the real field of acomplex variable.
IDL_RPCGetVarComplexl(v)

This macro returns the imaginary field of a complex variable.
IDL_RPCGetVarDComplex(v)

Thismacro returnsthe val ue (as astruct, not a pointer) of adouble precision, complex
variable.

IDL_RPCGetVarDComplexR(v)
This macro returns the real field of a double-precision complex variable.

IDL_RPCGetVarDComplexl(v)

This macro returns the imaginary field of a double-precision complex variable.

The IDL RPC Library External Development Guide

Chapter 9: Remote Procedure Calls 203

IDL_RPCGetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.
IDL_RPCGetVarFloat(v)

This macro returns the value of a single-precision, floating-point variable.
IDL_RPCGetVarint(v)

This macro returns the value of a 2-byte integer variable.
IDL_RPCGetVarLong(v)

This macro returns the value of a 4-byte integer variable.
IDL_RPCGetVarLong64(v)

This macro returns the value of a 8-byte integer variable.
IDL_RPCVarlsArray(v)

This macro returns non-zero if visan array variable.
IDL_RPCGetVarString(v)

This macro returns the value of a string variable (as a char*).
IDL_RPCGetVarType(v)

This macro returns the type code of the variable. IDL type codes are discussed in
“Type Codes’ on page 208.

IDL_RPCGetVarUint(v)

This macro returns the value of an unsigned 2-byte integer variable.
IDLRPCGetVarULong(v)

This macro returns the value of an unsigned 4-byte integer variable.
IDL_RPCGetVarULong64(v)

This macro returns the value of an unsigned 8-byte integer value.

External Development Guide The IDL RPC Library

204 Chapter 9: Remote Procedure Calls

RPC Examples

A number of examplefilesareincluded inthe RSI _Di rect ory/ external / r pc

directory. A Makef i | e for these examplesisaso included. These short C programs
demonstrate the use of the IDL RPC library.

Source filesfor thei di r pc server program are located in the

RSI _Directory/ external / rpc directory. Note that you do not need to build the
i dl r pc server; it ispre-built and included in the IDL distribution. Thei dl r pc
server source files are provided as examples only.

RPC Examples External Development Guide

Part Il: IDL’s
Internal API

Chapter 10:
IDL Internals:
Types

This chapter describes the following topics:

TypeCodes, 208 IDL_MEMINT and IDL_FILEINT Types 213
Mapping of Basic Types 210

External Development Guide 207

208

Chapter 10: IDL Internals: Types

Type Codes

Type Codes

Every IDL variable has a data type. The possible type codes and their mapping to C
language types are listed in the following table. The undefined type code
(IDL_TYP_UNDEF) will always have the value zero.

Although it is rare, the number of types could change someday. Therefore, you
should always use the symbolic names when referring to any type except
IDL_TYP_UNDEF. Eveninthe case of IDL_TYP_UNDEF, using the symboalic
name will add clarity to your code. Note that al IDL structures are considered to be
of asingletype (IDL_TYP_STRUCT).

Clearly, distinctions must be made between various structures, but such distinctions
are made at a different level. There are afew constants that can be used to make your

code easier to read and less likely to break if/whenthei dl _export . h file

changes. These are:

* |IDL_MAX_TYPE—The value of the largest type.

* IDL_NUM_TYPES—The number of types. Since the types are numbered
starting at zero, IDL_NUM_TYPES s one greater than IDL_MAX_TYPE.

Name Type C Type
IDL_TYP_UNDEF Undefined <None>
IDL_TYP BYTE Unsigned byte UCHAR
IDL_TYP_INT 16-hit integer IDL_INT
IDL_TYP_LONG 32-hit integer IDL_LONG
IDL_TYP_FLOAT Single precision floating | float
IDL_TYP_DOUBLE Double precision floating | double
IDL_TYP_COMPLEX Single precision complex | IDL_COMPLEX
IDL_TYP_STRING String IDL_STRING
IDL_TYP_STRUCT Structure See " Structure Variables’

on page 223

IDL_TYP_DCOMPLEX

Double precision
complex

IDL_DCOMPLEX

Table 10-1: IDL Types and Mapping to C

External Development Guide

Chapter 10: IDL Internals: Types

209

Name Type C Type
IDL_TYP_PTR 32-hit integer IDL_ULONG
IDL_TYP_OBJREF 32-hit integer IDL_ULONG
IDL_TYP_UINT Unsigned 16-bit integer IDL_UINT
IDL_TYP_ULONG Unsigned 32-bit integer IDL_ULONG
IDL_TYP_LONG64 64-bit integer IDL_LONG64
IDL_TYP_ULONG64 Unsigned 64-bit integer | IDL_ULONG64

Table 10-1: (Continued) IDL Types and Mapping to C (Continued)

Type Masks

There are some situationsin which it is necessary to specify typesin the form of abit
mask rather than the usual type codes, for example when a single argument to a
function can represent more than asingletype. For any given type, the bit mask value

can be computed as:

Mask =

2TypeCode

ThelDL_TYP_MASK preprocessor macro is provided to cal culate these masks.
Given atype code, it returns the bit mask. For example, to specify a bit mask for all

the integer types:

| DL_TYP_MASK(1 DL_TYP_BYTE)| | DL_TYP_MASK(| DL_TYP_I NT) |
| DL_TYP_MASK(1 DL_TYP_LONG)

Specifying all the possible types would require along statement similar to the one
above. To avoid having to type so much for this common case, the
IDL_TYP_B_ALL constant is provided.

External Development Guide

Type Codes

210 Chapter 10: IDL Internals: Types

Mapping of Basic Types

Within IDL, the IDL data types are mapped into data types supported by the C
language. Most of the types map directly into C primitives, while
IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX, and IDL_TYP_STRING are
defined as C structures. The mappings are given in the following table. Structures are
built out of the basic types by laying them out in memory in the specified order using
the same alignment rules used by the C compiler for the target machine.
Unsigned Byte Data
UCHAR isdefined to be unsigned charini dl _export. h.
Integer Data
IDL_INT represents the signed 16-bit data type and isdefined in i dI _export . h.
Unsigned Integer Data

IDL_UINT represents the unsigned 16-bit data type and is defined in
i dl _export.h.

Long Integer Data
IDL long integers are defined to be 32-bitsin size. The C long data typeis not correct
on al systems because C compilers for 64-bit architectures usually define long as 64-
bits. Hence, the IDL _L ONG typedef, declared ini dl _export . h isused instead.
Unsigned Long Integer Data

IDL_UL ONG represents the unsigned 32-bit data type and is defined in
i dl _export. h.

64-bit Integer Data

IDL_L ONG64 represents the 64-bit data type and isdefined in i dl _export. h.

Mapping of Basic Types External Development Guide

Chapter 10: IDL Internals: Types 211

Unsigned 64-bit Integer Data

IDL_UL ONGB64 represents the unsigned 64-bit data type and is defined in
i dl _export. h.

Complex Data

TheIDL_TYP_COMPLEX and IDL_TYP_DCOMPLEX datatypes are defined
by the following C declarations:

typedef struct { float r, i; } |DL_COWLEX;
typedef struct { double r, i; } |DL_DCOVLEX;

Thisisthe same mapping used by Fortran compilersto implement their complex data
types, which allows sharing binary data with such programs.

String Data

The IDL_TYP_STRING datatype isimplemented by a string descriptor:

typedef struct {
I DL_STRING SLEN T slen; /* Length of string */
short stype; /* Type of string */
char *s; /* Pointer to string */

} IDL_STRI NG

Thefields of the IDL_STRING struct are defined as follows:
slen

The length of the string, not counting the null termination. For example, the
string “Hello” has5 characters.

stype

If stypeiszero, the string pointed at by s (if any) was not alocated from
dynamic memory, and should not be freed. If non-zero, s points at a string
allocated from dynamic memory, and should be freed before being replaced.
For information on dynamic memory, see “Dynamic Memory” on page 344
and “ Getting Dynamic Memory” on page 238.

If slen is non-zero, sisapointer to anull-terminated string of den characters.
If slen is zero, s should not be used. The use of a string pointer to memory

External Development Guide Mapping of Basic Types

212 Chapter 10: IDL Internals: Types

located outside the IDL_STRING structureitself allows IDL strings to have
dynamically-variable lengths.

Note
Strings are the most complicated basic datatype, and as such, are at the root of more
coding errors than the other types. See “IDL Internals: String Processing” on
page 277.

Mapping of Basic Types External Development Guide

Chapter 10: IDL Internals: Types 213

IDL_MEMINT and IDL_FILEINT Types

Some of the IDL-supported operating systems limit memory and file lengths to a
signed 32-bit integer (approximately 2.3 GB). Some systems have 64-bit memory
capabilities and others allow files longer than 231-1 bytes despite being 32-bit
memory limited. To gracefully handle these differences without using conditional
code, IDL internals use two specid types, IDL_TYP_MEMINT (data type
IDL_MEMINT) and IDL_TYP_FILEINT (datatype IDL_FILEINT) to represent
memory and file length limits.

IDL_MEMINT and IDL_FILEINT are not separate and distinct types; they are
actually mappingsto the IDL types discussed in “Mapping of Basic Types’ on
page 210. Specifically, they will be IDL_LONG for 32-bit quantities, and
IDL_L ONG®64 for 64-hit quantities.

Asan IDL internals programmer, you should not write code that depends on the
actual machine type represented by these abstract types. To ensure that your code
runs properly on al systems, use IDL_MEMINT and IDL_FILEINT in place of more
specific types. These types can be used anywhere that anormal IDL type can be used,
such asin keyword processing. Their systematic use for these purposes will ensure
that your code is correct on any IDL platform.

Programmers should be aware of the IDL_MEMINTScalar() and
IDL_FILEINTScalar() functions, described in “Converting Arguments to C Scalars”
on page 300.

External Development Guide IDL_MEMINT and IDL_FILEINT Types

214 Chapter 10: IDL Internals: Types

IDL_MEMINT and IDL_FILEINT Types External Development Guide

Chapter 11:

IDL Internals:

Variables

This chapter discusses the following topics:

IDL and Internal Variables 216
TheIDL_VARIABLE Structure 217
Scalar Variables 220
Array Variables 221
Structure Variables 223
Heap Variables 228
Temporary Variables 229

Creating an Array from Existing Data.. . . . 236

External Development Guide

Getting DynamicMemory 238
Accessing VariableData. 240
Copying Variables 241
Storing Scalar Values 242
Obtaining the Name of a Variable 244
Looking Up Main Program Variables ... 245
Looking Up Variablesin Current Scope . 246

215

216 Chapter 11: IDL Internals: Variables

IDL and Internal Variables

This chapter describes how variables are created and managed within IDL. While
reading this chapter, you should refer to the following figure to see how each part fits
into the overall structure of an IDL variable.

32-bit Assoc offset

IDL_MEMINT et _len
IDL_MEMINT ar_len
IDL_MEMINT n_dts
Imported Data -t UCHAR *data
UCHAR n dim
UCHAR typel Normsl UCHAR flags
UCHAR flags case short file_unit
IDL_ARRAY_DIM dim
IDL_ALLTYPESvaug <union> IDL_ARRAY_FREE CB free cb
IDL_FILEINT offset
UCHAR c IDL_LONG data_guard
IDL_INT i L>
UINT ui Usually, datafollowed by a
IDL_LONG | trailing dataguard.
IDL_ULONG ul
IDL_LONG64 64 A
IDL_ULONG ul64
float f
double d
IDL_COMPLEX <gruct>
cmp float r
float i
IDL_DCOMPLEX <struct>
demp double r
double i
IDL_STRING <struct>
&r IDL_STRING SLEN|T den
short stypel
char *s

Y

IDL_ARRAY *ar
IDL_HVID hvid

IDL_SREF S <struct>
IDL_ARRAY *ar —p-
IDL_STRUCTURE *sdef —

Y

Structures and object
definitions (opaque)

Figure 11-1: Structure of an IDL variable

IDL and Internal Variables External Development Guide

Chapter 11: IDL Internals: Variables 217

The IDL_VARIABLE Structure

IDL variables are represented by IDL_VARIABLE structures. The definition of
IDL_VARIABLE isasfollows:

typedef struct {
UCHAR type;
UCHAR f I ags;
| DL_ALLTYPES val ue;
} 1 DL_VARI ABLE;

AnIDL_VPTR isapointer to an IDL_VARIABLE structure:
typedef |DL_VARI ABLE *1DL_VPTR,
TheDL_ALLTYPESunion is defined as:

t ypedef union {

UCHAR c; /* Scalar |DL_TYP_BYTE */

IDL_INT i; /* Scalar | DL_TYP_INT */

| DL_UI NT ui; /* Unsigned short integer value */
| DL_LONG | ; /* Scalar | DL_TYP_LONG */

| DL_ULONG ul ; /* Unsigned | ong val ue */

| DL_LONG64 | 64; /* 64-bit integer value */

| DL_ULONG64 ul 64; [/* Unsigned 64-bit integer value */
float f; /* Scalar | DL_TYP_FLQAT */

doubl e d; /* Scal ar |1 DL_TYP_DOUBLE */

| DL_COWPLEX cnp; /* Scal ar | DL_TYP_COVPLEX */
| DL_DCOWPLEX dcnp; /* Scalar |DL_TYP_DCOWLEX */

| DL_STRI NG str; /* Scalar IDL_TYP_STRING */

| DL_ARRAY *arr; /* Pointer to array descriptor */
| DL_SREF s; /* Structure descriptor */

| DL_HVI D hvi d; /* Heap variable identifier */

}1 DL_ALLTYPES;

The basic scalar types are contained directly in this union, while arrays and structures
are represented by the IDL_ARRAY and IDL_SREF structures that are discussed
later in this chapter. The typefield of the IDL_VARIABLE structure contains one of
the type codes discussed in “ Type Codes” on page 208. When avariable isinitially
created, it is given the type code IDL_TYP_UNDEF, indicating that the variable
contains no value.

Theflagsfield isabit mask that specifies information about the variable. Asa
programmer adding code to the IDL system, you will rarely need to set bitsin this
mask. These bits are set by whatever portion of IDL created the variable. You can
check them to make sure the characteristics of the variable fit the requirements of
your routine (see “ Checking Arguments” on page 295). The defined bits in the mask
are:

External Development Guide The IDL_VARIABLE Structure

218

Chapter 11: IDL Internals: Variables

IDL_V_CONST

If thisflag is set, the variableis actually a congtant. This means that storage for the
IDL_VARIABLE resides inside the code section of the user procedure or function
that used it. The IDL compiler generates such IDL_VARIABLEswhen an
expression involving a constant occurs. For example, the IDL statement:

PRINT, 23 * A
causes the compiler to generate a constant for the “23". You must not change the
value of thistype of “variable”.

IDL_V_TEMP

If thisflag is set, the variable is atemporary variable. IDL maintains a pool of
nameless IDL_VARIABL Es that can be checked out and returned as needed. Such
variables are used by the interpreter to temporarily store the results of expressions on
the stack. For example, the statement:

PRINT, 2 * 3
will cause theinterpreter to go through a sequence of events similar to:
1. Push aconstant variable for the 2 on the stack.
2. Push acongtant variable for the 3 on the stack.

3. Allocate atemporary variable, pop the two constants from the stack, perform
the multiplication with the result going into the temporary variable.

4. Push the temporary variable onto the stack.
Call the PRINT system procedure specifying one argument.

6. Removethe argument to PRINT from the stack, and return the temporary
variable.

Temporary variables are a so used inside user procedures and functions. See
“Temporary Variables” on page 229.

IDL_V_ARR

If thisflag is set, the variableis an array, and the value field of the IDL_VARIABLE
points to an array descriptor.

IDL_V _FILE
If thisflag is set, the variableis afile variable, as created by IDL’'s ASSOC function.

The IDL_VARIABLE Structure External Development Guide

Chapter 11: IDL Internals: Variables 219

IDL_V_DYNAMIC

If thisflag is set, the memory used by this IDL_VARIABLE isdynamically
alocated. This bit is set for arrays, structures, and for variables of
IDL_TYP_STRING (because the memory referenced viathe string pointer is
dynamic).

IDL_V_STRUCT

If thisflag is set, the variable is a structure, and the value field of the
IDL_VARIABLE points to the structure descriptor. For implementation reasons, all
structure variables are also arrays, so IDL_V_STRUCT asoimpliesIDL_V_ARR.
Therefore, it isimpossible to have a scalar structure. However, single-element
structure arrays are quite common.

Because structure variables have their type field set to IDL_TYP_STRUCT, the
IDL_V_STRUCT bit isredundant. It exists for efficiency reasons.

External Development Guide The IDL_VARIABLE Structure

Scalar Variables

Chapter 11: IDL Internals: Variables

A scalar IDL_VARIABLE isdistinguished by not havingtheIDL_V_ARR bitsetin
itsflagsfield. A scalar variable must have one of the basic datatypes (IDL structures
are never scalar) shown in Table 11-1. The datafor a scalar variable is stored in the
IDL_VARIABLE itself, using the IDL_AL LTYPES union. The following table
gives the relationship between the data type and the field used.

Scalar Data Type

Field that Stores

Data

IDL_TYP_UNDEF None.
IDL_TYP BYTE vaue.c
IDL_TYP_INT value.i
IDL_TYP_UINT value.ui
IDL_TYP_LONG valuell
IDL_TYP_ULONG value.ul
IDL_TYP_LONG64 valuel64
IDL_TYP_ULONG64 value.ul64
IDL_TYP_FLOAT valuef
IDL_TYP _DOUBLE value.d
IDL_TYP_COMPLEX value.cmp
IDL_TYP_DCOMPLEX value.decmp
IDL_TYP_STRING value.str
IDL_TYP_PTR value.hvid
IDL_TYP_OBJ value.hvid

Table 11-1: Scalar Variable Data Locations

Scalar Variables

External Development Guide

Chapter 11: IDL Internals: Variables 221

Array Variables

Array variableshave the IDL_V_ARR bit of their flags field set, and the value.arr
field pointsto an array descriptor defined by the IDL_ARRAY structure:

typedef |DL_MEM NT | DL_ARRAY DI M | DL_NMAX_ARRAY DI M ;

typedef struct {
I DL_MEM NT elt_len;
I DL_MEM NT arr_| en;
| DL_MEM NT n_elts;
UCHAR *dat a;
UCHAR n_di m
UCHAR f I ags;
short file_unit;
| DL_ARRAY_DI M di m
} 1 DL_ARRAY;

The meaning of the fields of an array descriptor are:
elt_len

Thelength of each array element in bytes (chars). The array descriptor does not keep
track of the types of the array elements, only their lengths. Single elements can get
quite long in the case of structures.

For IDL structures, this value includes any padding necessary to properly align the
data along required boundaries. On agiven platform, IDL creates structures the same
way a C compiler does on that platform. Asaresult, you should not assume that the
size of astructureisthe sum of the sizes of the structure fields, or that the field offsets
are in specific locations.

arr_len

The length of the entire array in bytes. This value could be calculated as (elt_len *
n_elts), but is used so frequently that it is maintained as a separate field in the
IDL_ARRAY struct.

n_elts
The number of elementsin the array.
data

A pointer to the data area for the array. Thisis aregion of dynamically allocated
memory arr_len byteslong. This pointer should be cast to be a pointer of the correct

External Development Guide Array Variables

222 Chapter 11: IDL Internals: Variables

type for the data being manipulated. For example, if the array variable being
processed ispointed at by an IDL_VPTR named v and contains IDL_TYP_INT
data:

| DL_I NT *dat a; /* Declare a pointer variable */
data = (IDL_INT *) v->val ue.arr->dat a;

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of thisvalue.

flags

A bit mask that specifies characteristics of the array. Allowed vaues are:

IDL_A_FILE — Thisflag indicates that the array is afile variable, as created
by the ASSOC function. The variable has an array block to specify the
structure of the variable, but it has no data area. The data field of the
IDL_ARRAY structure does not contain useful information, and should not be
used.

IDL_A_PACKED — If array isan IDL_A_FILE variable and the datatypeis
IDL_TYP_STRUCT, then Input/Output to this struct should use a packed
data layout compatible with WRITEU instead of being a direct mapping onto
the struct (which reflects the C compiler layout of the structure including its
alignment holes).

file_unit

WhentheIDL_A_FILE bitissetintheflagsfield, file_unit containsthe IDL
Logical Unit Number associated with the variable.

dim

An array that contains the dimensions of the IDL variable. There can be up to
IDL_MAX_ARRAY_DIM dimensions. The number of dimensionsin the current
array isgiven by then_dim field.

Array Variables External Development Guide

Chapter 11: IDL Internals: Variables 223

Structure Variables

Structure variables have the type code IDL_TYP_STRUCT. They aso have the
IDL_V_STRUCT bhit setin their flags field. The value.s field of such avariable
contains a structure descriptor defined by the IDL _SREF structure:

typedef struct {

| DL_ARRAY *arr; /* ~ to | DL_ARRAY contai ning data */
voi d *sdef; /* ™ to structure definition */
} | DL_SREF;

Thearr field points at an array block, as described on page 221. It is worth noting
that in the definition of the IDL_ALLTY PESunion (described on page 217), the arr
field isapointer to IDL_ARRAY, whilethe sfield isan IDL_SREF, astructure that
containsa pointer to IDL_ARRAY asitsfirst member.

The resulting definition looks like:

uni on {
| DL_ARRAY arr;
struct {
| DL_ARRAY arr;
voi d *sdef;
}os;
} val ue;
Dueto theway C laysout fields in structs and unions, value.arr will have the same
offset and size within the value union asvalue.s.arr. Therefore, it is possible to
access the array block of a structure variable as var->value.arr rather than the more
correct var->value.s.arr. You should avoid use of this shorthand, however, because it
isnot strictly correct usage and because Research Systems reserves the right to
changethe | DL _SREF definition in away that could cause the memory layout of the
ALLTY PES union to change.

Creating Structures

The actual structure definition is accessed through the sdef field, which isapointer to
an opague IDL structure definition. Although the implementation of structure
definitionsis not public information, they can be created using the
IDL_MakeStruct() function from a structure name and alist of tags:

voi d *1 DL_MakeStruct (char *name, |DL_STRUCT_TAG DEF *t ags)

name

The name of the structure definition, or NULL for anonymous structures.

External Development Guide Structure Variables

224 Chapter 11: IDL Internals: Variables

tags

Anarray of IDL_STRUCT_TAG_DEF elements, one for each tag.

The result from this function can be passed to | DL _ImportArray() or
IDL_ImportNamedArray(), as described on page 236.

IDL_STRUCT_TAG_DEF is defined as:

typedef struct {
char *nane;
| DL_MEM NT *di ms;
voi d *type;
UCHAR f I ags;
} 1 DL_STRUCT_TAG_DEF;

name
Null-terminated uppercase name of the tag.
dims

An array that contains information about the dimensions of the structure. The first
element of thisarray isthe number of dimensions. Following elements contain the
size of each dimension.

type

Either a pointer to another structure definition, or asimple IDL type code cast to void
(eg., (void *) IDL_TYP_BYTE).

flags

A bit mask that specifies additional characteristics of the tag. Allowed values are:

IDL_STD_INHERIT — Type must be IDL_TYP_STRUCT. Thisflag
indicates that the structure is inherited (inlined) instead of making it a sub-
structure as usual .

The following example shows how to define an anonymous structure. Suppose that
you want to create a structure whose definition in the IDL language is:

{TAGL: OL, TAG2: FLTARR(2,3,4), TAG3: STRARR(10)}
It can be created with IDL_M akeStruct() asfollows:

static IDL_MEM NT one = 1;

static IDL_MEM NT tag2_di ns[] {
static IDL_MEM NT tag3_di ns[] {
static | DL_STRUCT_TAG DEF s_tags[] = {

3, 2, 3, 4},
1, 10 };

Structure Variables External Development Guide

Chapter 11: IDL Internals: Variables 225

{ "TAGL", 0, (void *) IDL_TYP_LONG,
{ "TA®", tag2_dims, (void *) IDL_TYP_FLQAT},
{ "TA&", tag3_dinms, (void *) |IDL_TYP_STRI NG},
{0}

i

typedef struct data_struct {
| DL_LONG t agl_dat a;
float tag2_data [4] [3] [2];
| DL_STRING tag_3_data [10];
} DATA_STRUCT;
stati c DATA _STRUCT s_dat a;
void *s;
| DL_VPTR v;

/* Create the structure definition */
s = | DL_MakeStruct (0, s_tags);
/* lInmport the data area s_data into an IDL structure,
note that no data are noved. */
v = IDL_InportArray(1l, &one, |DL_TYP_STRUCT,
(UCHAR *) &s_data, 0, s);

Accessing Structure Tags

Given an opague IDL structure definition, you can determine the offset of the data
and a description of its size and form (scalar, array, etc) for agiven tag.
IDL_StructTagl nfoByName() returns this information given the name of the tag.
IDL_StructTagl nfoByl ndex() does the same thing, given the numeric index of the
tag. They are essentially the sameroutine, although IDL _StructTagl nfoBylndex() is
slightly more efficient:

| DL_MEM NT | DL_Struct Tagl nfoByNanme(| DL_Struct Def Pt r sdef,
char *name, int msg_action,
| DL_VPTR *var)
| DL_MEM NT | DL_Struct Tagl nf oByl ndex(1 DL_Struct Def Ptr sdef,
int index,int nsg_action,
| DL_VPTR *var)

where:
sdef

Structure definition for which offset is needed.
name (IDL_StructTagIinfoByName)

Name of tag for which information is reguired.

External Development Guide Structure Variables

226 Chapter 11: IDL Internals: Variables

index (IDL_StructTaginfoBylndex)
Zero based index of tag for which information is reguired.
msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

var
NULL, or the address of an IDL_VPTR to befilled in with a pointer to the variable
description for the specified field.

On success, these functions return the data offset of the tag. On error, if the resulting
cal to IDL_Message() returnsto the caler, a-1 isreturned. The data offset can be
added to the data pointer of an IDL variable of this structure type to obtain a pointer
to the actual data for that tag.

If thetag is successfully located and the var argument isnon-NULL, the IDL_VPTR
it points at isfilled in with a pointer to an IDL_VARIABLE structure that describes
the type and organization of the tag. It isimportant to understand that this
IDL_VARIABLE does not contain any actual data (or in the case of an array tag, a
valid data pointer). Hence, the data part of the | DL _VARIABLE description should
be ignored.

Determining the Number Of Structure Tags

One often needs to know how many tags a structure definition has in order to make
use of the information supplied by the routines described above. The
IDL_StructNumTags() function returns this information:

int IDL_StructNunTags(!DL_StructDef Ptr sdef)

where:
sdef
Structure definition for which offset is needed.

Determining the Names Of Structures and their Tags

The IDL_StructTagNameByIndex() function returns the name of a specified tag
from a structure definition, and optionally the name of the structure:

char *1DL_Struct TagNaneByl ndex(| DL_Struct Def Ptr sdef, int index,

Structure Variables External Development Guide

Chapter 11: IDL Internals: Variables 227

int nmsg_action, char **struct_nane)

where:
sdef

Structure definition for which name information is needed.
index

Zero based index of tag within the structure.
msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

struct_name

NULL, or the address of a character pointer (char *) to befilled in with a pointer to
the name of the structure. If the structure is anonymous, the string
“ <Anonynmous>" isreturned.

On success, a pointer to the tag name is returned. On error, if the resulting call to
IDL_Message() returnsto the caller, aNULL pointer is returned.

All strings returned by this function must be considered read-only, and must not be
modified by the caler.

External Development Guide Structure Variables

228 Chapter 11: IDL Internals: Variables

Heap Variables

Direct access to pointer and object reference heap variables (typesIDL_TYP_PTR
andIDL_TYP_OBJREF, respectively) isnot allowed. Rather than accessing the heap
variable directly, store the value of the heap variable (an IDL pointer or object
reference) inaregular IDL variable at the IDL user level. Accessthe datain the regular
variable, then store the results back in the heap variable (via the pointer or object
reference) when done.

Note
You can use IDL's TEMPORARY function to avoid making copies of the data.

Heap Variables External Development Guide

Chapter 11: IDL Internals: Variables 229

Temporary Variables

As discussed previously, IDL maintains a pool of hameless variables known as
temporary variables. These variables are used by the interpreter to hold temporary
results from evaluating expressions, and are also used within system procedures and
functions that need temporary workspace. In addition, system functions often obtain
atemporary variable to return the result of their operation to the interpreter.
Temporary variables have the following characteristics:

All temporaries, when initialy allocated, are of type IDL_TYP_UNDEF.
Temporary variables do not have a name associated with them.

Routines that check out temporaries must either check them back in or return
them as the result of the function. Once you return atemporary variable, you
cannot accessit again.

Temporary variables are reclaimed by the interpreter when it is about to exit
after executing a program, so it is not possible to lose them and leak dynamic
memory by allocating them and failing to return them. If the interpreter is
exiting normally and it detects temporaries that have not been returned, it
issues an error message. Such an error message indicates an error in the
implementation of your system routine. If your routine exits by issuing an
IDL_MSG_LONGIMPor IDL_MSG_IO_LONGJIMP error via
IDL_Message() however, allocated temporaries are expected, and are
reclaimed quietly. Hence, your routines need only return temporaries on
normal return, and not beforeissuing errors. See “IDL Internals: Error
Handling” on page 285.

The interpreter uses temporary variables to hold values that are the result of
evaluating expressions. Such temporaries are pushed on the interpreter stack where
they are often passed as arguments to other routines. For example, the IDL statement:

PRI NT, MAX(FI NDGEN(100))

causes the interpreter to perform the following steps:

1.
2.
3.

Push a constant variable with the value 100 onto the stack.
Call the system function FINDGEN, passing it one argument.

FINDGEN returns atemporary variable which is a 100-element vector with
each element set to the value of its index.

The interpreter removes the argumentsto FINDGEN from the stack (the
constant 100) and pushes the resulting temporary variable onto the stack.

External Development Guide Temporary Variables

230 Chapter 11: IDL Internals: Variables

5. The MAX system function is called with a single argument—the temporary
result from FINDGEN.

6. MAX findsthe largest element in its argument (99), placesthat value into a
temporary scalar variable, and returns that temporary variable as its result.

7. Theinterpreter removes the argument to MAX from the stack. Thiswasthe
temporary array from FINDGEN, so it is returned to the pool of temporary
variables. The resulting temporary variable from MAX is then pushed onto the
stack.

8. ThePRINT system procedureis called with a single argument, which isthe
temporary scalar variable from MAX. It prints the value of the variable and
returns.

9. Theinterpreter removes the argument to PRINT from the stack, and returns it
to the pool of temporary variables.

Getting a Temporary Variable

Temporary variables are obtained viathe IDL_Gettmp() function:
| DL_VPTR | DL_Get t np(voi d);

IDL_Gettmp() requires no arguments, and returns an IDL_VPTR to atemporary
variable. This variable must be returned to the pool of temporary variables (with a
cal toIDL_Deltmp()) or be returned as the val ue of a system function before control
returns to the interpreter, or an error will occur.

A number of variantson IDL _Gettmp() exist, as convenience routines for creating
temporary scaar variables of a given type and vaue. In al cases, the valueis
supplied as the sole argument, and the resulting type is indicated by the name of the
routine:

| DL_VPTR I DL_Gettnplnt (I DL_I NT val ue);

| DL_VPTR I DL_Get t npUl nt (1 DL_UI NT val ue) ;

| DL_VPTR | DL_Get t npLong(| DL_LONG val ue);

| DL_VPTR | DL_Get t mpULong(| DL_ULONG val ue) ;

| DL_VPTR | DL_Get t npFI LEI NT(I DL_FI LEI NT val ue);
| DL_VPTR | DL_Get t n(pVEM NT(1 DL_MEM NT val ue) ;

Creating a Temporary Array

Temporary array variables can be obtained viathe IDL_M akeTempArray()
function:

Temporary Variables External Development Guide

Chapter 11: IDL Internals: Variables 231
char *1DL_MakeTenpArray(int type, int n_dim IDL_MEMNT dini],
int init, IDL_VPTR *var)

where:
type

The type code for the resulting array. See “ Type Codes’ on page 208.
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY _DIM defines
the upper limit of thisvalue.

dim

Anarray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init

Specifies the sort of initialization that should be applied to the resulting array. The
init argument must be one of the following:

 IDL_ARR_INI_INDEX — Each element of the array is set to the value of its
index. The INDGEN family of built-in system functionsis implemented using
this feature.

 IDL_ARR_INI_NOP — Noinitiadization is done. The data area of the array
will contain whatever garbage was |eft behind from its previous use.
Experience has shown that IDL_TYP_STRING data should never be | eft
uninitialized due to the risk of dereferencing an invalid string pointer and
crashing IDL. Therefore, IDL_TYP_STRING datais zeroed when
IDL_ARR_INI_NOP is specified.

e IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

The data areaof an array IDL_VARIABLE isaccessible fromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
access the dataarea, IDL_M akeTempArray() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable allocated via | DL _M akeTempArray()

External Development Guide Temporary Variables

232 Chapter 11: IDL Internals: Variables

must be returned to the pool of temporary variables or be returned as the value of a
system function before control returns to the interpreter, or an error will occur.

Creating a Temporary Vector

IDL_MakeTempArray() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempVector () function:

char *1DL_MakeTenpVector(int type, IDL_MEMNT dim int init,
| DL_VPTR *var) where:

type, init, var

These arguments are the same asfor IDL_M akeTempArray().
dim

The number of elementsin the resulting vector.

Creating a Temporary Structure

The IDL_MakeTempStruct() alowsyou to create an IDL structure variable using
memory allocated by IDL, in much the same way that IDL_M akeStruct() and
IDL_ImportArray() alow you to create an IDL structure variable using memory
you provide. Temporary structure variables can be obtained viathe
IDL_MakeTempStruct() function:

char *1 DL_MakeTenpStruct (I DL_StructDefPtr sdef, int n_dim
IDL_MEM NT dinf], IDL_VPTR *var, int zero)

where:
sdef

A pointer to the structure definition.
n_dim

The number of structure dimensions. The constant IDL_MAX_ARRAY_DIM
defines the upper limit of thisvaue.

dim

A Carray of IDL_MAX_ARRAY_DIM elements containing the structure
dimensions. The number of dimensionsin the array is given by the n_dim argument.

Temporary Variables External Development Guide

Chapter 11: IDL Internals: Variables 233

var
The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

The data areaof an array IDL_VARIABLE isaccessible fromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
access the dataarea, IDL_M akeTempStruct() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable allocated via IDL _M akeTempStruct()
must be returned to the pool of temporary variables (with acall to IDL_Deltmp()) or
be returned as the value of a system function before control returns to the interpreter,
or an error will accur.

Zero

Set to TRUE if the data area of the resulting variable should be zeroed, or to FALSE
otherwise. Unless the caller intends to immediately copy avalid result into the
variable, this argument should be set to TRUE to prevent memory corruption.

Creating a Temporary Vector

IDL_MakeTempsStruct() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_MakeTempStr uctVector () function:

char *1 DL_MakeTenpStruct Vector (I DL_StructDefPtr sdef, |IDL_MEM NT dim
I DL_VPTR *var, int zero)

where:
sdef, var, zero

These arguments are the same asfor IDL_M akeTempStruct().
dim

The number of elementsin the resulting vector.

Creating A Temporary Variable Using Another
Variable As A Template
It iscommon to want to create atemporary variable with aform that mimics that of a

variable you already have access to. Often, such atemporary variable has the same
number of elements and dimensions, but may vary in type. It is possible to do this by

External Development Guide Temporary Variables

234

Chapter 11: IDL Internals: Variables

using the basic temporary variable creation routines discussed earlier in this chapter,
but the resulting code will be complex, and this sort of code occurs frequently. The
best way to create such avariableisusing the IDL_VarM akeTempFromTemplate()
function.

IDL_VarMakeTempFromTemplate() creates atemporary variable of the desired
type, using the template_var argument to specify its dimensionality. The address of
thistemporary variableis stored at the address specified by the result_addr
argument. The address of the start of this variable’'s data areais returned as the value
of the function.

char *1 DL_Var MakeTenpFronirenpl ate(| DL_VPTR t enpl ate_var, i nt type,

I DL_Struct Def Ptr sdef,
| DL_VPTR *result_addr,int zero);

where:

template_var

Source variable to take dimensionality from. Thiscan be ascalar or array of any type.

type

The IDL type code for the desired temporary variable.

sdef

NULL, or apointer to a structure definition. This argument isignored if typeis not
IDL_TYP_STRUCT. If typeisIDL_TYP_STRUCT, sdef supplies the structure
definition for the result. It is an error to specify aresult typeof IDL_TYP_STRUCT
without providing avalue for sdef, with one exception: If typeis
IDL_TYP_STRUCT andtemplate_var isavariable of IDL_TYP_STRUCT, and
sdef isNULL, then IDL_VarMakeTempFromTemplate() will use structure
definition of template_var.

result_addr

Address of IDL_VPTR to receive a pointer to the newly alocated temporary
variable.

Zero

TRUE if the resulting variable should be zeroed, and FAL SE to not do this. Variables
of IDL_TYP_STRING, and structure types that contain strings, are always zeroed.

Temporary Variables External Development Guide

Chapter 11: IDL Internals: Variables 235

Freeing A Temporary Variable

Use IDL_Deltmp() to free atemporary variable:
voi d 1 DL_Del t np(1 DL_VPTR p)

wherep isan IDL_VPTR to the temporary variable to be returned. IDL_Deltmp()
frees the dynamic parts of the temporary variable (if any) and then returns the
variable to the pool of available temporaries. Once you have deall ocated atemporary
variable, you may not accessit again. Thereisalso amacro named IDL_DELTMP
which checks its argument to make sure it's atemporary, and if so, calls
IDL_Deltmp() to returniit.

External Development Guide Temporary Variables

236 Chapter 11: IDL Internals: Variables

Creating an Array from Existing Data

There are two functions that allow you to create an IDL array variable whose data
points at data you supply rather than having IDL allocate the data space. The routine
IDL_ImportArray() returns atemporary variable, while
IDL_ImportNamedArray() returns anamed variablein the current execution scope,
creating the new variable if necessary. Your data must already exist in memory. The
data area, which can be quite large, is not copied. These functions simply create
variable and array descriptors that point to the data you supply and return the pointer
to the resulting variable. Their definitions are:

IDL_VPTR I DL_l mportArray(int n_dim IDL_MEM NT din{], int type,
UCHAR *dat a, | DL_ARRAY_FREE_CB free_ch, void *s)

| DL_VPTR | DL_I npor t NanmedArray(char *name, int n_dim
IDL_MEM NT din{], int type, UCHAR *data,
| DL_ARRAY_FREE CB free_ch, void *s)

typedef void (* |DL_ARRAY FREE CB) (UCHAR *);

where:
name
The name of the variable to be created or modified.
n_dim
The number of dimensionsin the array.
dim
Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type
The IDL type code describing the data. See “ Type Codes’ on page 208.
data

A pointer to your array data. Your datawill not be modified unless the user explicitly
modifies elements of the array using subscripts.

Creating an Array from Existing Data External Development Guide

Chapter 11: IDL Internals: Variables 237

Thetemporary variablereturned by IDL _ImportArray() can be used immediately in
an expression, in which case the descriptors are freed immediately. It can aso be
assigned to alonger-lived variable using | DL _Var Copy().

Note
IDL freesonly the memory that it allocates for the descriptors, not the memory that
you supply containing your data. You can arrange to be notified when IDL is
finished with your data by using the free_cb argument, described below.

free_cb

If non-NULL, free_cb isapointer to afunction that will be called when IDL freesthe
array. Thisfeature gives the caller a sure way to know when IDL is no longer
referencing data. Use the called function to perform any required cleanup such as
freeing dynamic memory or releasing shared or mapped memory. The called function
should have no return value and should accept as its argument a (uchar *), whichisa
pointer to the memory to be freed.

If the type of the variableis IDL_TYP_STRUCT, s points to the opague structure
definition, asreturned by IDL_M akeStruct().

External Development Guide Creating an Array from Existing Data

238

Chapter 11: IDL Internals: Variables

Getting Dynamic Memory

Many programs need to get dynamic memory for some temporary calculation. In the
C language, the functions malloc() and free() are used for this purpose, while other
languages have their own facilities. IDL provides its own memory allocation routines
(see “Dynamic Memory” on page 344). Use of such facilities within the IDL
interpreter and the system routines can lead to the |oss of usable dynamic memory.
The following code fragment demonstrates how this can happen.

For example, assume that there is aneed for 100 IDL_L ONG integers:

char *c;

¢ = (char *) 1 DL_MemAl |l oc((unsigned) (sizeof(IDL_LONG * 100)
(char *) 0, IDL_MSG RET);

if (some_error_condition) |IDL_Message(.., |DL_MSG LONGIMP, .);

| DL_MenFree((void *) ¢, (char *) 0, |IDL_MSG RET);

In the normal case, the allocated memory is released exactly asit should be.
However, if an error causes the | DL _M essage() function to be called, execution will
return directly to the interpreter and this code will never have a chance to clean up.
The dynamic memory allocated will therefore leak, and athough it will continue to
occupy space in the IDL processes, will not be used again.

The IDL_GetScratch Function

To solve this problem, use atemporary variable to obtain dynamic memory. Then, if
an error should cause execution to return to the interpreter, the interpreter will reclaim
the temporary variable and no dynamic memory will be lost. This frequently-needed
operation is provided by the IDL _GetScratch() function:

char *1DL_GetScratch(lDL_VPTR *p, IDL_MEM NT n_elts,
| DL_MEM NT elt_size)

where:

The address of an IDL_VPTR that should be set to the address of the temporary
variable alocated.

Getting Dynamic Memory External Development Guide

Chapter 11: IDL Internals: Variables 239

n_elts
The number of elements for which memory should be allocated.
elt_size

The length of each element, in bytes.

Once the need for the temporary memory has passed, it should be returned using the
IDL_Detmp() function. Using these functions, the above example becomes:

char *c;
| DL_VPTR v;

¢ = IDL_GetScratch(&, 100L, (IDL_LONG sizeof (IDL_LONG);
if (sone error condition) |DL_Message(...,MSG LONGIMP, ...);

i DL_Del t np(v);

Using the IDL_GetScratch() and DL _Deltmp() functionsis similar to using
IDLMemAlloc() directly. Infact, IDL uses|DL_MemAlloc() and IDL_MemFre&()
internally to implement array variables. The important differenceisthat dynamic
memory doesn’'t leak when error conditions occur.

To avoid losing dynamic memory, always use the IDL_GetScratch() functionin
preference to other ways of alocating dynamic memory, and use IDL_Deltmp() to
return it.

External Development Guide Getting Dynamic Memory

240

Chapter 11: IDL Internals: Variables

Accessing Variable Data

Often, we are not concerned with the distinction between a scalar and array
variable—all that is desired is a pointer to the data and to know how many elements
there are. IDL_Var GetData() can be used to obtain thisinformation:

void | DL_Var GetData(l DL_VPTR v, IDL_MEM NT *n, char **pd,
int ensure_sinple)

where:

The variable for which datais desired.

The address of avariable that will hold the number of elements.

pd

The address of variable that will hold a pointer to data, cast to be apointer to apointer
to a character (for example (char **) & myptr).

ensure_simple

If TRUE, thisroutine callsthe | DL_ENSURE_SIM PL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, IDL_EXCLUDE_FILE is
called, because file variables have no data area to return.

On exit, IDL_Var GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

Accessing Variable Data External Development Guide

Chapter 11: IDL Internals: Variables 241

Copying Variables

To copy the contents of one variable to another, use the IDL _Var Copy() function:
void | DL_Var Copy(I DL_VPTR src, |DL_VPTR dst)

Arguments src and dst are the source and destination, respectively.

IDL_Var Copy() uses the following rules when copying variables:

» If the destination variable already has a dynamic part, this dynamic part is
rel eased.

* The destination becomes a copy of the source.

* If the sourceisatemporary variable, IDL_Var Copy() does not make a
duplicate of the dynamic part for the destination. Instead, the dynamic part of
the source is given to the destination, and the source variable itself is returned
to the pool of free temporary variables. Thisisthe equivalent of freeing the
temporary variable. Therefore, the variable must not be used any further and
the caller should not explicitly free the variable. This optimization
significantly improves resource utilization and performance because this
special case occurs frequently.

External Development Guide Copying Variables

242 Chapter 11: IDL Internals: Variables

Storing Scalar Values

The IDL_StoreScalar () function setsan IDL_VARIABLE to ascalar vaue:

void I DL_StoreScal ar (1 DL_VPTR dest, int type,
| DL_ALLTYPES *val ue)

where:
dest

AnIDL_VPTR tothe IDL_VARIABLE in which the scalar should be stored.
type

The type code for the scalar value. See “ Type Codes’ on page 208.
value

The address of the IDL_ALLTY PES union that contains the value to store.

If dest isalocation that cannot be stored into (for example, atemporary variable,
constant, and so on), an error isissued and control returns to the interpreter.
Otherwise, any dynamic part of dest is freed and value is stored into it.

The IDL_StoreScalar Zero() function is a specialized variation of
IDL_StoreScalar (). It stores azero scalar value of any specified type into the
specified variable:

void | DL_StoreScal ar Zero(| DL_VPTR dest, int type)

where:
dest
AnIDL_VPTR tothe IDL_VARIABLE in which the scalar zero should be stored.
type
The type code for the scalar zero value. See “ Type Codes’ on page 208.
Using IDL_StoreScalar() to Free Dynamic Resources

In addition to performing its primary function, | DL _StoreScalar () and
IDL_StoreScalar Zero() have two very useful side effects:

Storing Scalar Values External Development Guide

Chapter 11: IDL Internals: Variables 243

1. Storing ascalar valuein avariable causes IDL to free any dynamic memory
currently used by that variable.

2. Theseroutines do the required error checking to make sure the variable allows
anew value to be stored into it before performing the actual storage operation.

Often, a system routine accepts an input argument that will have a new value
assigned to it before the routine returnsto its caler, and the initial value of that
argument is of no interest to the routine. Storing a scalar value into such an argument
at the start of the routine will automatically check it for storability and free
unnecessary dynamic memaory. In one easy operation, the required error checking is
done, and you' ve improved the dynamic memory behavior of the IDL system by
minimizing dynamic memory fragmentation. For example:

| DL_StoreScal ar Zero(&, |DL_TYP_LONG ;
Error handling is discussed further in “IDL Internals: Error Handling” on page 285.

External Development Guide Storing Scalar Values

244 Chapter 11: IDL Internals: Variables

Obtaining the Name of a Variable

The I DL _Var Name() function returns the name of avariable, constant, or expression
given itsaddress. If the item is anamed variable, it must be in the currently active
program unit:

char *1DL_Var Name(| DL_VPTR v)

Obtaining the Name of a Variable External Development Guide

Chapter 11: IDL Internals: Variables 245

Looking Up Main Program Variables

The IDL_GetVarAddr () function returns the address of a main program variable,
given its name:

| DL_VPTR | DL_Get Var Addr (char *nane)
name

Points to the null terminated name of the variable, which must be in upper case.

Thereturn value is NULL if the variable does not exist, otherwise the pointer to the
variable isreturned.

Alternatively, IDL_GetVar Addr 1() will enter a new variable into the symbol table
of the main program if called with the parameter ienter set to TRUE, and the
specified variable name does not already exist. Otherwise, its operation isthe same as
IDL_GetVar Addr (). Notethat new variables cannot be created if auser procedure or
function isactive. IDL_GetVar Addr1() is called as shown following:

| DL_VPTR | DL_Get Var Addr 1(char *nane, int enter)
name
Points to the null-terminated name of the variable, which must be in upper case.
ienter

Set this parameter to TRUE to create the variableif it does not aready exist.

If ienter is TRUE and the specified variable name does not already exist, it will be
added to the symbol table of the main program. If ienter is FALSE,
IDL_GetVar Addr1() isequivalent to I DL_GetVar Addr ().

External Development Guide Looking Up Main Program Variables

246 Chapter 11: IDL Internals: Variables

Looking Up Variables in Current Scope

The IDL_FindNamedVariable() function returns the address of avariable in the
current execution scope given its name:

| DL_VPTR | DL_Fi ndNanmedVari abl e(char *nane, int ienter)
name
Name of the variable to find.
ienter

Set this parameter to TRUE to create the variableif it does not aready exist.

If the variableisfound (or created if ienter is TRUE), its IDL_VPTR isreturned.
Otherwise, NULL isreturned.

Note
Even if ienter is TRUE, thisroutine can return NULL if creating the variable is not
possible due to memory congtraints.

Looking Up Variables in Current Scope External Development Guide

Chapter 12:

IDL Internals:
Keyword Processing

This chapter discusses the following topics:

IDL and Keyword Processing 248
Creating Routines that Accept Keywords . 249
Overview Of IDL Keyword Processing .. 250
ThelDL_KW_ARR_DESC_R Structure . 255

External Development Guide

Keyword Processing Options 256
The KW_RESULT Structure 258
CleaningUpot 262
Keyword Examples 263

247

248 Chapter 12: IDL Internals: Keyword Processing

IDL and Keyword Processing

Keyword arguments are an important IDL language feature. They allow a multitude
of options to be specified to aroutinein astraightforward, easily understood way.
The price of this added power is that it is somewhat more complicated to write a
routine that accepts keywords than one that doesn’t. However, the additional effort is

well worth it.

IDL and Keyword Processing External Development Guide

Chapter 12: IDL Internals: Keyword Processing 249

Creating Routines that Accept Keywords

As described in “Adding System Routines’” on page 361, you must register your
system routine before IDL will recognize it. When registering the routine, you
indicate that it accepts keyword argumentsin one of the following ways:

» Specifying the KEY WORDS option for the routine in the module definition
file of a Dynamically Loadable Module (DLM)

* Setting the KEYWORDS keyword in acall to LINKIMAGE.

* OR-ingthecongtant IDL_SYSFUN_DEF_F_KEYWORDSinto the flags
field of the IDL_SYSFUN_DEF2 gruct passed to IDL_SysRtnAdd()

Routines that accept keywords must perform keyword processing. A routine that does
not allow keyword processing knows that its ar gc argument gives the number of
positional arguments, and ar gv contains only those positional arguments. In contrast,
aroutine that accepts keywords receives an argc that gives the total number of
positional and keyword arguments, and these arguments are delivered in argv mixed
together in an undefined order.

The function IDL_K W ProcessByOffset() is used to process keywords and separate
the positional and keyword arguments. It is passed an array of IDL_KW_PAR
structures that give information about the allowed keywords and their attributes. The
keyword data resulting from this processis stored in a user defined KW _RESULT
structure. Finally, the IDL_KW_FREE macro is used to clean up.

M ore information about these routines and structures can be found in the following
sections.

External Development Guide Creating Routines that Accept Keywords

250 Chapter 12: IDL Internals: Keyword Processing

Overview Of IDL Keyword Processing

IDL keyword processing can seem confusing at first glance, due to the interrel ated
data structures involved. However, as the examples that follow in this chapter will
show, the concepts involved are relatively straightforward once you have seen and
understood a concrete example such as “Keyword Examples’ on page 263.

Following is a skeleton of a system routine that accepts keyword arguments. These
elements must be present in any such system routine:

voi d keyword_sysrtn_skel eton(int argc, |IDL_VPTR *argv, char *argk)
{

typedef struct {

| DL_KW RESULT_FI RST_FI ELD; /* Must be first entry in struct */

/* Variables specific to your keywords go here */
} KW RESULT;
static | DL_KW PAR kw pars[] = {

/*

* Keyword definitions for the keywords you accept go here,

* one definition per keyword. The keyword definitions refer

* to fields within the KWRESULT type defined above.

*/

{ NuLL } /* List nust be NULL term nated */

b
KW RESULT kw;, /* Variable which will hold the keyword val ues */

(void) | DL_KWProcessByOffset(argc, argv, argk, kw pars,
(IDL_VPTR *) 0, 1, &kw);

/* The body of your routine */

| DL_KW FREE;
}

IDL keyword processing is made up of the following data structures and steps:
A NULL terminated array of IDL_KW_PAR structures must be present. Each

entry in this array describes the keyword processing required for asingle
keyword.

» If akeyword represents an input-only, by-value array, the IDL_KW_PAR
structure that describesit points at an auxiliary IDL_KW_ARR_DESC_R
structure that supplies the additional array specific information.

» Thesystem routine must declare alocal type definition named KW_RESULT,
and a variable of this type named kw. The KW_RESULT type contains all of

Overview Of IDL Keyword Processing External Development Guide

Chapter 12: IDL Internals: Keyword Processing 251

the data fields that will be set as a result of processing the keywords described
by the IDL_KW_PAR and IDL_KW_ARR_DESC_R structures described
above. ThelDL_KW_PAR and IDL_KW_ARR_DESC_R structuresrefer to
thefields of the KW_RESULT structure by their offset from the beginning of
the structure. The IDL_KW_OFFSETOR() macro is used to compute this
offset.

* Thesystem routine callsthe IDL _KW ProcessByOffset() function, passing it
the address of the IDL_KW _PAR array, and the KW_RESULT variable
(kw).

» After IDL_KWProcessByOffset() is called, the KW_RESULT structure
(kw) contains the results, which can be accessed freely by the system routine.

» Beforereturning, the system routine must invokethe IDL_KW_FREE macro.
This macro ensures that any dynamic memory used by
IDL_KWProcessByOffset() is properly released.

e System routines are not required to, and generally do not, call
IDL_KW_FREE before throwing errors using | DL _M essage() with the
IDL_MSG_LONGJIMPorIDL_MSG_IO_LONGJIMP action codes. In
these cases, the IDL interpreter automatically knows to release the resources
used by keyword processing on your behalf.

All of these data structures and routines are discussed in detail in the sections that
follow.

External Development Guide Overview Of IDL Keyword Processing

252 Chapter 12: IDL Internals: Keyword Processing

The IDL_KW_PAR Structure

TheIDL_KW_PAR struct provides the basic specification for keyword processing.
The IDL_KWProcessByOffset() function is passed a null-terminated array of these
structures. IDL_KW_PAR structures specify which keywords a routine accepts, the
attributes required of them, and the kinds of processing that should be done to them.
IDL_KW_PAR structures must be defined in lexical order according to the value of
the keyword field.

The definition of IDL_KW _PAR is:

typedef struct {
char *keywor d;
UCHAR type;
unsi gned short mask;
unsi gned short flags;
int *specified,
char *val ue;

} 1 DL_KW PAR;

where:
keyword

A pointer to a null-terminated string. Thisis the name of the keyword, and must be
entirely upper case. The array of IDL_KW _PAR structures passed to
IDL_KWProcessByOffset() must be lexically sorted by the strings pointed to by this
field. Thefina element in the array is signified by setting the keyword field to NULL
((char *) 0).

type

IDL_KWProcessByOffset() automatically converts the keywords to the IDL type
specified by the type field. Specify O (IDL_TYPE_UNDEF) in cases where
ID_KW_VIN or IDL_KW_OUT are specified in the flags field.

mask

The enable mask. Thisfield is ANDed with the mask argument to
IDL_KWProcessByOffset() and if the result is non-zero, the keyword is accepted. If
the result is 0, the keyword is ignored. This ability allows you to share an array of
IDL_KW_PAR structures between severa routines, and enable or disable the
keywords used by each one.

The IDL_KW_PAR Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 253

Asan example of this, the IDL graphics and plotting routines have alarge number of
keywordsin common. In addition, each routine has afew keywords that are unique to
it. Keywords are implemented using a single shared array of IDL_KW _PAR with
appropriate values of the mask field. Thistechnique dramatically reduces the amount
of datathat would otherwise be required by graphics keyword processing, and makes
IDL easier to maintain.

flags

Thisfield specifies special processing instructions. It is a bit mask made by ORing
the following values:

IDL_KW_ARRAY — Set this hit to specify that the keyword must be an
array. Otherwise, ascalar isrequired. If IDL_KW_ARRAY is specified, the
value field must point at an associated IDL_KW_ARR_DESC_R structure.

IDL_KW_OUT — Set thishit to indicate that the keyword specifies an output
parameter, passed by reference. Expressions and constants are excluded. In
other words, the routineis going to change the val ue of the keyword argument,
as opposed to the more usual case of simply reading it. The address of the
IDL_VARIABLE will be placed in auser supplied field of type IDL_VPTR
inthe KW_RESULT structure (kw). The offset of thisfield in the
KW_RESULT structure is specified by the value field (discussed bel ow).
IDL_KW_OUT implies that no type checking or processing will be
performed on the keyword—it is up to the routine to perform the same sort of
type checking normally carried out for plain positional arguments.

A standard approachto find outif an IDL_KW_OUT parameter ispresentina
call toasystem routineisto specify IDL_TYP_UNDEF (0) for the type field
and IDL_KW_OUT |IDL_KW_ZERO for flags. TheIDL_VPTR
referenced by the value field will either contain NULL, or a pointer to the
IDL_VARIABLE.

IDL_KW_VIN — Set thisbit to indicate that the keyword parameter is an
input parameter (expressions and/or constants are valid) passed by reference.
Theaddress of the IDL_VARIABLE or expression is stored in a user-supplied
field of the KW_RESULT structure (kw) referenced by the value field, as
with IDL_KW_OUT. IDL_KW_VIN implies that no type checking or
processing will be performed on the keyword—it is up to the routine to
perform the same sort of type checking normally carried out for plain
positional arguments.

IDL_KW_ZERO — Set thisbit in order to zero the C variable pointed to by
the value field before parsing the keywords. This means that the object pointed

External Development Guide The IDL_KW_PAR Structure

254

Chapter 12: IDL Internals: Keyword Processing

to by value will always be zero unlessit was specified by the user. Use this
technique to create keywords that have Boolean (on or off) meanings.

e« IDL_KW_VALUE — If thishit is set and the specified keyword is present
and non-zero, the low 12 bits of thisfield (flags) will be bitwise ORed with the
IDL_L ONG field of the KW_RESULT structure referenced by thevalue
field. Note that thisimpliesthe IDL_TYP_L ONG type code, and is
incompatible with the IDL_KW_ARRAY, IDL_KW _VIN, and
IDL_KW_OUT flags.

specified

NULL, or the offset of the user supplied field within the KW_RESULT structure
(kw) of aCint variable that will be set to TRUE (non-zero) or FALSE (0) based on
whether the routine was called with the keyword present. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset. Setting this
field to NULL (O) indicates that thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield is the offset of the user supplied field in
the KW_RESULT structure (kw) into which the keyword value will be copied. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset.

In the case of aread-only array, value is the memory address of an
IDL_KW_ARR_DESC_R, structure, whichisdiscussedin“The
IDL_KW_ARR_DESC_R Structure” on page 255.

Inthe case of an input (IDL_KW_VIN) or output (IDL_KW _OUT) variable, this
field should contain the offset to the IDL_VPTR field within the user supplied
KW_RESULT that will befilled by IDL_K W ProcessByOffset() with the address
of the keyword argument. The IDL_KW_OFFSETOF() macro should be used to
calculate the offset.

The IDL_KW_PAR Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 255

The IDL_KW_ARR_DESC_R Structure

When a keyword is specified to be aread-only array (i.e., the IDL_KW_ARRAY
flag is set), the value field of the IDL_KW _PAR struct should be set to point to an
IDL_KW_ARR_DESC_R structure. This structure is defined as:

typedef struct {

char *data;

| DL_MEM NT nm n;

| DL_MEM NT nnax;

| DL_MEM NT n_of f set;
} I DL_KWARR DESC R

where:
data

The offset of the field within the user supplied KW_RESULT structure, of the C
array to receive the data. This offset is computed using the IDL_KW_OFSETOF()
macro. This array must be of the C type specified by the type field of the
IDL_KW_PAR struct. For example, IDL_TYP_LONG mapsintoaCIDL_LONG.
There must be nmax elements in the array.

nmin

The minimum number of elements allowed.
nmax

The maximum number of elements allowed.

n_offset

The offset of the field within the user defined KW _RESULT structure into which
IDL_KWProcessByOffset() will store the number of elements actually stored into
the array field. This offset is computed using the IDL_KW_OFSETOF() macro.

External Development Guide The IDL_KW_ARR_DESC_R Structure

256 Chapter 12: IDL Internals: Keyword Processing

Keyword Processing Options

The following cases occur in keyword processing:
Scalar Input-Only

For scalar, input-only keywords, the user never seesthe IDL_VARIABLE passed as
the keyword argument. Instead, the value of the IDL_VARIABLE isconverted to the
type specified by the type field of the IDL_KW_PAR struct and is placed into the
field of the user specified KW_RESULT structure, the offset of which is given by
the value field. This offset is calculated using the IDL_KW_OFFSETOF() macro.

Array Input-Only

Array input-only keywords work similarly to the scalar case, except that the value
field contains the address of an IDL_KW_ARR_DESC_R struct that supplies the
added information required to convert the passed array elementsto the specified type
and place them into aC array for easy access. The array datais copied into a array
within the user supplied KW_RESULT structure. The data field of the
IDL_KW_ARR_DESC_R struct supplies the offset of the array field within the
KW_RESULT structure. This offset is calculated using the
IDL_KW_OFFSETOF() macro.

As part of this process, the number of array elements passed is checked to be within
the range specified in the IDL_KW_ARR_DESC_R struct, and if no error results,
the number is stored into a field of the user supplied KW _RESULT struct. The
n_offset field of theIDL_KW_ARR_DESC_R struct supplies the offset of this
“number of elements” field within the KW _RESULT structure. This offset is
calculated using the IDL_KW_OFFSETOF() macro.

It is worth noting that input-only array keywords don’t pass information about the

number of dimensions or their sizes, only the total number of elements. Therefore,
they are treated as 1-dimensional vectors. For more flexibility, use an Input/Output
keyword instead.

Input/Output

Thiscase occursif the IDL_KW_VIN or IDL_KW_OUT flagissetin the
IDL_KW_PAR struct. In this case, the value field contains the offset of the
IDL_VPTR field (computed with the IDL_KW_OFFSETOF() macro) in the user
defined KW_RESULT struct into which the actual keyword argument is copied. In
this case, you must do all error checking and type conversion yourself, just like with

Keyword Processing Options External Development Guide

Chapter 12: IDL Internals: Keyword Processing 257

positional arguments. Thisis certainly the most flexible method. However, the other
two cases are much easier to use, and are suitable for the vast majority of keywords.

External Development Guide Keyword Processing Options

258 Chapter 12: IDL Internals: Keyword Processing

The KW_RESULT Structure

Each system routine that processes keywords is required to define astructure variable
into which IDL_KWProcessByOffset() will store al the results of keyword
processing. This variable must follow the following rules:

» Thename of the structure type must be defined as KW _RESULT. This
requirement exists so that the IDL_KW_OFFSETOF() macro can properly
doits work.

» Thefirg field withinany KW_RESULT structure must be defined using the
IDL_KW_RESULT_FIRST_FIELD macro. The contents of thisfirst field
are private, and should not be examined. It contains the information required
by IDL to properly track its resource use.

» Thename of the KW_RESULT variable must be kw. This requirement exists
so that the IDL_KW_FREE macro can properly do its work.

Hence, al system routines that process keywords will contain statements similar to
the following:
typedef struct {
| DL_KW RESULT_FI RST_FI ELD; /* Must be first entry in struct */

/* Additional user specified fields */
} KW RESULT;

KW RESULT kw,

All fieldswithinthe KW _RESULT structure after the required first field can have
arbitrary user selected names. The types of these fields are dictated by the
IDL_KW_PAR and IDL_KW_ARR_DESC_R structures that refer to them.

The KW_RESULT Structure External Development Guide

Chapter 12: IDL Internals: Keyword Processing 259

Processing Keywords

The IDL_KWProcessByOffset() function is used to process keywords.
IDL_KWProcessByOffset() performs the following actions on behalf of the calling
system routine:

» Verify that the keywords passed to the routine are all allowed by the routine.
» Carry out the type checking and conversions required for each keyword.

* Find the positiona (non-keyword) arguments that are scattered among the
keyword argumentsin argv and copy them in order into the plain_args array.

* Return the number of plain arguments copied into plain_args.
IDL_KWProcessByOffset() has the form:

int | DL_KWProcessByOffset(int argc, |IDL_VPTR *argv, char *argk,
| DL_KW PAR *kw | ist,
I DL_VPTR pl ain_args[], int mask,
voi d * base)

where:
argc

The number of arguments passed to the caller. Thisisthe first parameter to all system
routines.

argv

The array of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisisthe third
parameter to al system routines that accept keyword arguments.

kw_list

Anarray of IDL_KW_PAR structures (see “Overview Of IDL Keyword Processing”
on page 250) that specifies the acceptable keywords for thisroutine. This array is
terminated by setting the keyword field of the final struct to NULL ((char *) 0).

External Development Guide Processing Keywords

260 Chapter 12: IDL Internals: Keyword Processing

plain_args

NULL, or anarray of IDL_VPTR into which the IDL_VPTRs of the positional
arguments will be copied. This array must have enough elementsto hold the
maximum possible number of positional arguments, as defined in
IDL_SYSFUN_DEF2. See “Registering Routines” on page 386.

Note
IDL_KWProcessByOffset() sorts the plain arguments into the front of the input
argv argument. Hence, plain_argsis often not necessary, and can be set to NULL.

mask

Mask enable. This variable is ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

base

Address of the user supplied KW_RESULT structure, which must be named kw.
Speeding Keyword Processing

As mentioned above, the kw_list argument to | DL_K W ProcessByOffset() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fiel ds (those fiel ds specified, and value fields
with IDL_KW_ZERO set), can become significant, especially when more than a
few keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN as the first keyword array
element. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL_KWProcessByOffset() into amore efficient form the first
timeit isused. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL_KWPAR kw pars[] = {
{ "DOUBLE", IDL_TYP_DOUBLE, 1, O,
| DL_KW OFFSETOF(d_t here), |DL_KW OFFSET_OF(d) },
{ "FLQAT", I|DL_TYP_FLOAT, 1,!DL_KW ZERO, O, | DL_KW OFFSET_OF(f) },
{ NULL }
i

Processing Keywords External Development Guide

Chapter 12: IDL Internals: Keyword Processing 261

To use fast scanning, it would be written as:

static IDL_KWPAR kw pars[] = {
| DL_KW FAST_SCAN,
{ "DOUBLE', IDL_TYP_DOUBLE, 1, O,
| DL_KW OFFSET_OF(d_t here), |DL_KW OFFSETOF(d) },

{"FLOAT", IDL_TYP_FLOAT, 1, |DL_KWZERO, 0, |DL_KW OFFSETOF(f) },
{ NULL }

b

External Development Guide Processing Keywords

262 Chapter 12: IDL Internals: Keyword Processing
Cleaning Up

All normal exit paths from your system routine are required to call the
IDL_KW_FREE macro prior to returning. This macro must be called exactly once
for every call to IDL_KWProcessByOffset(). You must therefore structure your
code so that IDL_KW_FREE executes before any return statement. Many functions
to not use an explicit return statement, relying on the implicit return that occurs when
execution comes to the end of the function. In such acase, IDL_KW_FREE must be
the last statement in the function.

Cleaning Up External Development Guide

Chapter 12: IDL Internals: Keyword Processing 263
Keyword Examples

The following C function implements KEY WORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for a routine. It
prints the values of its keywords, changes the value of READWRITE to 42 if itis

present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

External Development Guide Keyword Examples

Chapter 12: IDL Internals: Keyword Processing

Note
The following code is designed to demonstrate keyword processing in asimple,
uncluttered example. In actual code, you would not use the printf mechanism used

on lines 42-53.

| DL_VPTR *argv,

char *argk)

Mist be first entry in structure */

{ I DL_KW OFFSETOF(arr _dat a),

| DL_KW OFFSETOF(arr_n) };

3, 10,

DL_KW ARRAY,
CHARA(arr_d) 1},

DL_KW OFFSETOF(d) },
| DL_KW ZERO, 0, |DL_KW OFFSETOF(f) },

| DL_KW ZERQ | DL_KW VALUE| 15, 0,

1, 1DL_KW OUT| | DL_KW ZEROQ,

DL_KW OFFSETOF(s) },

1jvoid keyword_deno(int argc,

2{

3 typedef struct {

4 | DL_KW RESULT_FI RST_FI ELD; /*
5 | DL_LONG | ;

6 float f;

7 doubl e d;

8 int d_there;

9 | DL_STRI NG s;
10 int s_there;
11 | DL_LONG arr_data[10];
12 int arr_there;
13 | DL_MEM NT arr_n;
14 | DL_VPTR var;
150 } KWRESULT;
16] static IDL_KWARR DESC R arr_d
17

¢ 18

19 static | DL_KW PAR kw _pars[] = {
20 | DL_KW FAST_SCAN,
21 { "ARRAY", IDL_TYP_LONG 1, |
22 | DL_KW OFFSETOF(arr _t here),
23 { "DOUBLE", |DL_TYP_DOUBLE, 1, O,
24 | DL_KW OFFSETOF(d_t here), |
25 { "FLOAT", IDL_TYP_FLOAT, 1,
26 { "LONG', IDL_TYP_LONG 1,
27 | DL_KW OFFSETOR(1) 1},
28 { "READWRI TE", | DL_TYP_UNDEF,
29 0, | DL_KW OFFSETOF(var) },
30 { "STRING', TYP_STRING 1, O,
31 | DL_KW OFFSETOF(s_t here), |
32 { NULL }
33+
34

Figure 12-1: Keyword processing example.

Keyword Examples

External Development Guide

Chapter 12: IDL Internals: Keyword Processing 265

35] KWRESULT kw,

36 int i;

37 | DL_ALLTYPES newal ;

38

39 (void) | DL_KWpProcessByOffset(argc, argv, argk, kw pars,
40 (IDL_VPTR *) 0, 1, &kw);

41

42 printf("LONG <%spresent>\n", kw !l ? "": "not ");

43 printf("FLOAT: %\n", kwf);

44 printf("DOUBLE: <%spresent>\n", kw. d_there ? "": "not ");
45 printf("STRING %s\n",

46 kw.s_there ? I DL_STRI NG_STR(&Kkw.s) : "<not present>");

47 printf("ARRAY: ");
48 if (kw. arr_there)

49 for (i =0; i < kwarr_n; i++)

50 printf(" %", kw arr_data[i]);
C

51 el se

52 printf("<not present>");
53 printf("\n");

54
550 printf("READWRI TE: ");

56 if (kwvar) {

57 IDL_Print (1, &w var, (char *) 0);

58 newal .| = 42;

59 I DL_St oreScal ar (kw. var, TYP_LONG, &newal);
60 } else {

61 printf("<not present>");

62 }

63 printf("\n");
64

65] | DL_KW FREE;
66 1}

Figure 12-1: (Continued) Keyword processing example.

Executing this routine from the IDL command line, by entering:
KEYWORD_DEMO
gives the output:

LONG <not present>
FLOAT: 0. 000000

DOUBLE: <not present>
STRING <not present>
ARRAY: <not present>
READWRI TE: <not present>

External Development Guide Keyword Examples

266

Chapter 12: IDL Internals: Keyword Processing

Executing it again with keywords specified:

A = 56
KEYWORD DEMD, /LONG, FLOAT=2, DOUBLE=34, $

STRI NG="hel | 0", ARRAY=FI NDGEN(10), READWRI TE=A
PRI NT, 'Final Value of A: ', A

gives the output:

LONG <present >

FLOAT: 2.000000

DOUBLE: <present >

STRING hello

ARRAY: 0123456789
READVRI TE: 56

Final Value of A 42

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

3-15

Every system routine that processes keywords must defineaKW_RESULT structure
type. All output from keyword processing is stored in the fields of this structure.The
first field in the KW_RESULT structure must always be
IDL_KW_RESULT_FIRST_FIELD. The remaining fields are dictated by the
keywords defined in kw_par s below, starting on line 19. The fields with named
ending in _thereare used for the specified field of the IDL_KW_PAR structs, and
must be type int. The types of the other fields must match their definitions in the
relevant IDL_KW_PAR and IDL_KW_ARR_DESC_R structs.

16-17

The ARRAY keyword, defined on line 21, isaread-only array, and requires thisarray
description. Note that the data field specifies the location of the arr_data array
within KW_RESULT where the array contents should be copied, and the n_offset
field specifies the location of the arr_n field where the number of elements actually
seen isto be written. Both of these are specified as offsetsinto KW_RESULT, using
theDL_KW_OFFSET () macro to compute this. The minimum number of elements
allowed is 3, the maximumis 10.

The start of the keyword definition array. Notice that all of the keywords are ordered
lexically (ASCII) and that thereisaNULL entry at the end (line 32). Also, al of the
mask fields are set to 1, asis the mask argument to IDL_K W ProcessByOffset() on

Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing 267

line 39. Thismeansthat all of the keywordsin thelist are to be considered valid in
thisroutine.

20

Thisroutine is requesting fast keyword processing. You can learn more about this
option in “ Speeding Keyword Processing” on page 260.

21-22

ARRAY isaread-only array. Itsvaluefield istherefore the actual address (and not an
offset into KW_RESULT) of theIDL_KW_ARR_DESC_R struct that completes

the array definition. This program wants to know explicitly if ARRAY was specified,
so the specified field is set to the offset within KW_RESULT of thearr_therefield.

23-24

DOUBLE isascalar keyword of IDL_TYP_DOUBLE. It uses the variable
kw.d_thereto know if the keyword is present. Both the specified and value fields are
specified as offsetsinto KW_RESULT.

25

FLOAT isan IDL_TYP_FLOAT scaar keyword. It does not use the specified field
of the IDL_KW _PAR struct to get notification of whether the keyword is present, so
that field is set to 0. Instead, it usesthe IDL_KW_ZERO flag to make sure that the
variable kw.f is always zeroed. If the keyword is present, the value will be written
into kw.f, otherwise it will remain 0. The important point is that the routine can’t tell
the difference between the keyword being absent, or being present with a user-
supplied value of zero. If thisdistinction doesn’t matter, such aswhen the keyword is
to serve as an on/off toggle, use this method. If it does matter, use the specified field
as demonstrated with the DOUBLE keyword, above.

26-27

LONG isascaar keyword of IDL_TYP_LONG. It setstheIDL_KW_ZERO flag
to get the variable kw.| zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable kw.l.

28-29

The IDL_KW _OUT flag indicates that the routine wantsthe IDL_VPTR for
READWRITE if it is present. Since IDL_KW_ZERO isaso set, the variable

External Development Guide Keyword Examples

268

Chapter 12: IDL Internals: Keyword Processing

kw.var will be zero unless the keyword is present. The specification of
IDL_TYP_UNDEF hereindicates that there is no type conversion or processing
appliedto IDL_KW_OUT keywords.

30-31

The STRING keyword demonstrates scalar string keywords.
32

All IDL_KW_PAR arrays must be terminated with aNULL entry.
35

Every system routine that processes keywords must declare a variable named kw, of
type KW_RESULT. Thisvariable should be a C stack based local variable (C auto
class).

37

The IDL_StoreScalar () function used on line 59 requires the scalar value to be
provided inan IDL_ALLTY PES struct.

39-40

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from I DL _K W ProcessByOffset() is
discarded. Thefinal argument is the address of the KW_RESULT variable (kw) into
which the results will be written.

42
The kw.| variable will be 0 if LONG isnot present, and 1 if it is.
43

The kw.f variable will always have some usable value, but if it is zero there isno way
to know if the keyword was actually specified or not.

44-46

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “ Accessing IDL_STRING Values’ on page 279.

Keyword Examples External Development Guide

Chapter 12: IDL Internals: Keyword Processing 269

47-53

Accessingthe ARRAY keywordissimple. Thekw.arr_therevariable indicatesif the
keyword is present, and kw.arr_n gives the number of elements.

55-63

Sincethe READWRITE keyword isaccessed viatheargument'sI DL _VPTR, we use
theIDL_Print() function to print its value. This has the same effect as using the user-
level PRINT procedure when running IDL. See “Output of IDL Variables’ on

page 333. Then, we changeitsvalue to 42 using I DL _StoreScalar ().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_Print()) in your own code.

65

Normal exit from any routine that calls IDL _KW ProcessByOffset() must be
preceded by acall to IDL_KW_FREE. This macro releases any dynamic resources
that were allocated by keyword processing.

External Development Guide Keyword Examples

270 Chapter 12: IDL Internals: Keyword Processing

The Pre-IDL 5.5 Keyword API

Versions of IDL prior to IDL 5.5 used a different, but similar, keyword processing
API to that found in the current versions. The remainder of this chapter provides
information of interest to programmers maintaining older system routines that were
written to that API.

Note
Research System recommends that all new code be written using the new keyword
processing API. The older API continues to be supported for backwards
compatibility, and there is no urgent reason to convert code that uses it. However,
the effort of converting old code to the new API isminimal, and can be beneficial.

Background

If you have system routines that were written for use with versions of IDL older than
IDL 5.5, your code uses an older keyword processing API, described in “Processing
Keywords With IDL_KWGetParams()” on page 468, that including the following
obsolete elements:

* IDL_KWGetParams()
« IDL_KW_ARR_DESC
« IDL_KWCleanup(), IDL_KW_MARK, IDL_KW_CLEAN

Thisold API served for many years, but it had some unfortunate features that made it
hard to use correctly:

* Therulesfor when and how to use IDL_KWCleanup() were difficult to
remember. The programmer had to decide whether or not to call it based on the
types of the keywords being processed. If you didn’t call it when you should,
memory would be |eaked.

* Inorder to ensure correctness, many programmers would resort to always
calling IDL_KW Cleanup() whether it was is needed or not. Thisis
inefficient, but otherwise fine.

* Theuseof IDL_KWCleanup() is based on aworst case assumption that the
keywords that require cleaning will actually be invoked by the IDL user. This
is often not the case, and is therefore inefficient.

* Imagine an existing system routine that does not need to use
IDL_KWZCleanup(), and therefore is coded not to useit. If a new keyword

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 271

should later be added to that routine, and that new keyword should require the
use of IDL_KWCleanup(), it is very likely that the programmer adding this
new keyword will fail to recognize that issue. This leads to memory leaking
from aformerly correct routine.

» If afuture version of IDL should get a new datatype that requires cleaning,
that will change the rules for when IDL_KW Cleanup() needs to be called.
Existing code may need to be examined to fix this situation.

» Theold keyword API is not reentrant, because it requires static variable
addresses to be embedded in the keyword list. This has always been a problem
for recursively callable routines (e.g. WIDGET_CONTROL, which can cause
an IDL procedure callback to execute, which can in turn call
WIDGET_CONTROL again). In the past, we have carefully coded these
complex routines to avoid problems, but the large amount of code required is
difficult to write and verify. The proper solution is a reentrant keyword API
that uses offsets to variables within astructure, instead of actual statically
scoped variable addresses. Thisiswhat the current API provides.

Advantages Of The IDL 5.5 API

In contrast, keyword processing, in IDL 5.5 and later is built around the
IDL_KWProcessByOffset() function, has the following advantages:

» Theold API remainsin place with full functionality. Hence, you are not
required to update your old code (There are benefits to such updating,
however).

* A transitional API, build around the IDL _KW ProcessByAddr () function,
exists to help ease updating your code. See “The Transitional API” on
page 273 for details. The transitional API is a halfway measure designed to
solve the worst problems of the old API while requiring the minimum amount
of change.

» Thenew API, and the transitional API both eliminate the confusing
IDL_KWCleanup() routine and its requirement to KW_MARK before, and
KW _CLEAN after keyword processing based on the types of the keywords.
Instead, the keyword processing APl keeps track of the need to cleanup itself,
and handles this efficiently. The user is freed from guesswork about how and
when to do the required cleanup.

» Keyword cleanup will only happen if the keyword module determinesthat it is
necessary asit processes the actua keywords used. Thisis more efficient, and

External Development Guide The Pre-IDL 5.5 Keyword API

272

Chapter 12: IDL Internals: Keyword Processing

it can be easily extended within IDL if a new datatype isadded to the IDL
system, without requiring any change to your code.

The internal data structures used to maintaining keyword state are now
dynamically allocated, and do not have the static limits that the old
implementation did.

The new API is ableto process keywords using a re-entrant keyword
description. Results are written to stack based (C auto) variables rather than
statically defined variables. This can be used to greatly simplify the
implementation of recursive system routines, and has been used extensively
for that purpose within IDL.

Differences And Similarities Between APIs

The current IDL keyword processing APl was designed to minimize the changes
necessary to convert existing older code. The differences and similarities between
these APIs are summarized below:

Thebasic IDL_KW _PAR data structure is unchanged between the two.
However, in the old AP, the specified, and valuefields are addresses to
statically alocated C variablesor IDL_KW_ARR_DESC structures. In the
new API, specified isaways an offset into a user defined KW_RESULT
structure. The value field is an offset into KW_RESULT when it is used to
refer to data. It is an address when used to refer to an
IDL_KW_ARR_DESC_R structure.

Theold APl usesthe IDL_KW_ARR_DESC structure to define
IDL_KW_ARRAY read-only arrays. The new API usesthe very similar
IDL_KW_ARR_DESC_R structure. Thisis necessary because
IDL_KW_ARR_DESC isnot reentrant (the number of array elementsused is
written into the struct), while IDL_KW_ARR_DESC_R causes them to be
written into afield in the KW_RESULT variable instead.

The new API requires all keyword variables to be contained in asingle
KW_RESULT structure, while the old API alowed them to be independent
variables. Thisisimportant to the offset-based scheme used in the new API, as
well as having the nice side effect of improving the organization and
readability of most code.

The old APl uses IDL_KW GetParams() to process keywords. The new API
uses IDL_KW ProcessByOffset().

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 273

* Theold APl usesIDL_KWCleanup() to free resources. Therulesfor using it
are complicated and lead to latent coding errors. The new APl uses the
IDL_KW_FREE macro, and has asimple consistent rule for use.

Converting Existing Code To The New API

To convert code that uses the old APl to the new version:

» Defineatypedef for astruct named KW_RESULT, containing the keyword
variables. Make thefirst field be the predefined
IDL_KW_RESULT_FIRST_FIELD.

* Modify your keyword definition list so that the specified and value fields of
each IDL_KW_PAR struct contain offsets instead of addressesin all cases
except when the value field references an IDL_KW_ARR_DESC struct. To
dothis, usethe IDL_KW_OFFSETOF() macro.

* Anyreferencetoan IDL_KW_ARR_DESC structure for an
IDL_KW_ARRAY keyword must be converted to an
IDL_KW_ARR_DESC_R struct.

* Replacethecall to IDL_KWGetParams() with acall to
IDL_KWProcessByOffset().

* Removeany IDL_KWCleanup(IDL_KW_MARK) calls.

* Replaceany IDL_KWCleanup(IDL_KW_CLEAN) calls with the
IDL_KW_FREE macro. Check to ensure that all exit paths from your
function other than via DL _M essage() include a call to this macro.

The Transitional API

Research Systems recommends that your convert your code to the reentrant keyword
API based around the IDL _KW ProcessByOffset() and IDL_KWFreg() functions.
Thisisamost always a straightforward operation, and the resulting code has all of
the advantages discussed in “ Advantages Of The IDL 5.5 API” on page 271.
However, there is another aternative that may be useful is some situations. A third
keyword API, built around the IDL_KW ProcessByAddr () function exists that
provides the benefits of eliminating the confusing IDL_K W Cleanup() function,
while not requiring the use of static non-reentrant separate variables to change. The
transitional APl isahalfway measure designed to solve the worst problems of the old
API while requiring the minimum amount of change to your code:

int | DL_KWProcessByAddr (int argc, |IDL_VPTR *argv, char *ar gk,
| DL_KW PAR *kw_list, |IDL_VPTR *plain_args,

External Development Guide The Pre-IDL 5.5 Keyword API

274 Chapter 12: IDL Internals: Keyword Processing

int mask, int *free_required)

voi d | DL_KWFree(voi d)

where:
argc, argv, argk, plain_args, mask

These arguments are the same as those required by I DL _KW ProcessByOffset()
kw_list

Anarray of IDL_KW _PAR structures, in the absolute address form required by the
old IDL_KWGetParams() keyword API (the specified and value fields use address
to static C variables).

free_required

The address of an integer to be filled in by IDL_KWProcessByAddr (). If set to
TRUE, the caller must call IDL_KWFreg() prior to exit from the routine.

Example: Converting From The Old Keyword API

To illustrate the use of the old keyword API, the transitional API, and the new
reentrant API, this section provides an extremely simple example, written three
times, once with each API.

Another useful comparison isto compare the example “ Keyword Examples’ on
page 263 with its original version written with the old API which can befound in
“Keyword Examples’ on page 472.

Old API

| DL_VPTR | DL_soneroutine(int argc, |IDL_VPTR *argv, char *argk)
{
static | DL_VPTR count _var;
static | DL_LONG debug;
static | DL_STRI NG nane;
static | DL_KW PAR kw pars[] = {
{ "COUNT", 0,1,!DL_KWOUT|IDL_KW ZERQ, 0, | DL_CHARA(count _var)},
{ "DEBUG', IDL_TYP_LONG 1, |DL_KWZERO O0,|DL_CHARA(debug) },
{ "NAME', IDL_TYP_STRING 1, IDL_KWZERO, 0, |DL_CHARA(nane) },
{ NULL }
b
I DL_VPTR resul t;

| DL_KWO eanup(| DL_KW MARK) ;

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 12: IDL Internals: Keyword Processing 275

argc = | DL_KWGet Parans(argc, argv, ar gk, kw_pars, (1 DL_VPTR *)0, 1);

/* Your code goes here. Keyword val ues are available in the
* static variables.*/

/* d eanup keywords before |eaving */
| DL_KWC eanup(| DL_KW CLEAN) ;
return(result);

}
Transitional API

Thetransitional API provides the benefits of simplified and straightforward cleanup,
but does not require you to alter your IDL_KW_PAR array or gather the keyword
variables into a common structure. The resulting codeis very similar to the old API.

| DL_VPTR | DL_soneroutine(int argc, |IDL_VPTR *argv, char *argk)
{
static | DL_VPTR count _var;
static | DL_LONG debug;
static | DL_STRI NG nane;
static | DL_KW PAR kw pars[] = {
{"COUNT", 0, 1, |DL_KW OUT|!DL_KW ZERO,
0, | DL_KW ADDROF(count _var) },
{ DEBUG I DL_TYP_LONG, 1, | DL_KW ZERO, 0, | DL_KW ADDROF(debug) },
{ ", IDL_TYP_STRING 1, | DL_KW ZERQ, 0, | DL_KW ADDROF(nane) },
{ NULL }
i

int kw_ free;
| DL_VPTR resul t;

argc = | DL_KWProcessByAddr (argc, argv, argk, kw_ pars,
(IDL_VPTR *) 0, 1, &w free);

/* Your code goes here. Keyword val ues are available in the
* static variables.*/

/* d eanup keywords before |eaving */
if (kw_free) IDL_KWree();

return(result);

}

New Reentrant API
I DL_VPTR | DL_soneroutine(int argc, |IDL_VPTR *argv, char *argk)

{
typedef struct {

External Development Guide The Pre-IDL 5.5 Keyword API

276 Chapter 12: IDL Internals: Keyword Processing

| DL_KW RESULT_FI RST_FI ELD; /* Must be first entry in struct */
| DL_VPTR count _var;
| DL_LONG debug;
| DL_STRI NG nane;
} KW RESULT;
static | DL_KW PAR kw _pars[] = {
{ "COUNT", 0, 1, IDL_KWOUT | |IDL_KW ZERQ,
0, | DL_KW OFFSETOF(count_var) 1},
{ "DEBUG', IDL_TYP_LONG 1, |DL_KW ZERQ
0, | DL_KW OFFSETOF(debug) 1},
{ "NAME', IDL_TYP_STRING 1, |DL_KW ZERQ,
0, |1 DL_KW OFFSETOF(nane) 1},
{ NULL }
b

KW RESULT kw;
| DL_VPTR resul t;

argc = | DL_KWProcessByOf f set (argc, argv, argk, kw pars,
(IDL_VPTR *) 0, 1, &kw);

/* Your code goes here. Keyword val ues are available in the
* kw struct.*/

/* d eanup keywords before leaving if necessary */
| DL_KW FREE;

return(result);

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 13:

IDL Internals:
String Processing

This chapter discusses the following topics:

String Processingand IDL 278 DeletingStrings ... i 281
Accessing IDL_STRING Values 279 Settingan IDL_STRING Vaue 282
CopyingStrings oo o i 280 Obtaining a String of a Given Length ... 283

External Development Guide 277

278 Chapter 13: IDL Internals: String Processing

String Processing and IDL

A number of functions exist to simplify the processing of IDL_STRING descriptors.
By using these functionsinstead of doing your own string management, you can
eliminate a common source of errors.

String Processing and IDL External Development Guide

Chapter 13: IDL Internals: String Processing 279

Accessing IDL_STRING Values

Itisimportant to realize that the sfield of an IDL_STRING struct does not contain a
valid string pointer in the case of anull string (i.e., when slen is zero). A common
error that can cause IDL to crash isillustrated by the following code fragment:

void print_str(lIDL_STRING *s)
{

printf("9%", s->s);

}

The problem with this code isthat it fails to consider the case where the argument s
describes a null string. The proper way to write this code is as follows:

void print str(lIDL_STRING *s)

{
printf("%", |DL_STRING STR(S));

}

Themacro IDL_STRING_STR takes as itsargument apointer toan IDL_STRING
struct. If the string is null, it returns a pointer to a zero length null-terminated string,
otherwise it returns the string pointer from the struct. Consistent use of this macro
will avoid the most common sort of error involving strings.

It is common for IDL system routines to accept arguments that provide names. Such
arguments must be scalar strings, or string arrays that contain a single element. To
properly process such an argument, it is necessary to screen out non-string types or
multi-element arrays, locate the string descriptor, and use the IDL_STRING_STR()
macro to extract a usable NULL terminated C string from it. The
IDL_VarGetString() is used for this purpose. It encapsulates al of the error
checking, and always returns a pointer to aNULL terminated C string, throwing the
proper IDL_MSG_L ONGJM P error viathe IDL_M essage() function when thisis
not possible:

char *1DL_VarGet String(lDL_VPTR v)

where

Variabl e fromwhich string value is desired.

External Development Guide Accessing IDL_STRING Values

280 Chapter 13: IDL Internals: String Processing

Copying Strings

It isoften necessary to copy one string to another. Assume, for example, that there are
two string descriptors s_src and s_dst, and that s_dst contains garbage. It would
almost suffice to simply copy the contents of s srcinto s_dst. The reason thisis not
quite correct is that both descriptors would then contain a pointer to the same string.
This aliasing can cause some strange effects, or even cause IDL to crash if one of the
two descriptors is freed and the string from the other is accessed.

IDL _StrDup() takes care of this problem by allocating memory for a second copy of
the string, and replacing the string pointer in the descriptor with a pointer to the fresh
copy. Naturally, if the string descriptor isfor anull string, nothing is done.

void IDL_StrDup(IDL_STRI NG *str, |DL_MEM NT n)
where:
Str

Pointer to one or more IDL_STRING descriptors which need their strings
duplicated.

The number of descriptors.
The proper way to copy astring is:

s_dst = s_src; /* Copy the descriptor */
| DL_StrDup(&s_dst, 1L); /* Duplicate the string */

Copying Strings External Development Guide

Chapter 13: IDL Internals: String Processing 281

Deleting Strings

Beforean IDL_STRING can be discarded or re-used, it isimportant to release any
dynamic memory it might be using. The IDL _Str Delete() function should be used to
delete strings:

void IDL_StrDel ete(l DL_STRI NG *str, |DL_MEM NT n)

where:
Str

Pointer to one or more IDL_STRING descriptors which need their contents freed.

The number of descriptors.

IDL_StrDelete() deletes all dynamic memory used by the IDL_STRINGSs. The
descriptors contain garbage once this has been done, and their contents should not be
used.

The IDL_Deltmp() function automatically calls I DL_Str Delete() when returning
temporary variables of type IDL_TYP_STRING, so it isnot necessary or desirable
tocall IDL_StrDelete() explicitly in this case.

External Development Guide Deleting Strings

282 Chapter 13: IDL Internals: String Processing

Setting an IDL_STRING Value

The IDL_StrStore() function should be used to store a null-terminated C string into
an IDL_STRING descriptor:

void IDL_StrStore(IDL_STRING *s, char *fs)

where:

Pointer to an IDL_STRING descriptor. This descriptor is assumed to contain
garbage, so call IDL_StrDelete() onit first if thisis not the case.

fs

Pointer to the null-terminated string to be copied into s.

IDL_StrStore() isuseful for placing astring valueinto an IDL_STRING. This
IDL_STRING does not need to be acomponent of a VARIABL E, which makes this
function very flexible.

One often needs atemporary, scalar VARIABLE of type IDL_TYP_STRING with
agiven vaue. The function IDL_StrToSTRING() fills this need:

I DL_VPTR | DL_Str ToSTRI N& char *s)

where:

Pointer to the null-terminated string to be copied into the resulting temporary
variable.

Setting an IDL_STRING Value External Development Guide

Chapter 13: IDL Internals: String Processing 283

Obtaining a String of a Given Length

Sometimes you need to make sure that the string in an IDL_STRING descriptor has
aspecific length. The IDL_StrEnsurelL ength() function can be used in this case:

void I DL_StrEnsureLength(I DL_STRING *s, int n)

where:
A pointer to the IDL _STRING that will have its length checked.

The number of characters the string must be able to contain, not including the
terminating null character.

If the IDL_STRING passed already has enough room for the specified number of
characters, it is not re-allocated. Otherwise, the existing string is freed and a new
string of sufficient length is allocated. In either case, the slen field of the
IDL_STRING will be set to the requested length.

If anew dynamic string is allocated, it will contain garbage values because
IDL_StrEnsureL ength() only allocates memory of the specified size, it does not
copy avaueinto it. Therefore, the calling routine must copy anull-terminated string
into the new dynamic string.

External Development Guide Obtaining a String of a Given Length

284 Chapter 13: IDL Internals: String Processing

Obtaining a String of a Given Length External Development Guide

Chapter 14:

IDL Internals:
Error Handling

This chapter discusses the following topics:

MessageBlocksl 286 Looking Up A Message Code by Name .. 294
Issuing Error Messages 288 Checking Arguments 295
Looking Up A Message Code by Name .. 294

External Development Guide 285

286 Chapter 14: IDL Internals: Error Handling

Message Blocks

IDL maintains messages in opague data structures known as Message Blocks. A
message block contains al the messages for alogically related area.

When IDL starts, there is only one defined block named IDL_MBLK_CORE,
containing all messages defined by the core IDL product. Typically, dynamically
loadable modules (DL M) each define amessage block for their error messages when
they are loaded (See “Dynamically Loadable Modules’ on page 398 for adescription
of DLMs).

There are often two versions of IDL message module functions. Those with names
that end in FromBlock require an explicit message block. The versions that do not
end in FromBlock usethe IDL_MBLK_CORE message block.

To define a message block, you must supply an array of IDL_M SG_DEF structures:

typedef struct {
char *nane;
char *format;
} 1 DL_MSG _DEF;

where:
name

A string giving the name of the message. We suggest that you adopt a consistent
unique prefix for all your error codes. All message codes defined by Research
Systems start with the prefix IDL_M _. You should not use this prefix when naming
your blocks in order to avoid unnecessary name collisions.

format

A format string, in printf(3) format. Thereis one extension to the printf formatting
codes: If the first two letters of the format are“%N”, then IDL will substitute the
name of the currently executing IDL procedure or function (if any) followed by a
colon and a space when this message is issued. For example:

I DL> print, undefined_var
% PRI NT: Variable is undefined: UNDEFI NED_ VAR

The IDL_M essageDefineBlock() function is used to define a new message block:

| DL_MSG_BLOCK | DL_MessageDefi neBl ock
(char *block_nanme, int n, |DL_MSG DEF *defs)

The argumentsto | DL _M essageDefineBlock () are as follows:

Message Blocks External Development Guide

Chapter 14: IDL Internals: Error Handling 287

block_name

Name of the message block. This can be any string, but it will be case folded to upper
case. We suggest asingle word be used. It isimportant to pick names that are unlikely
to be used by any other application. All blocks defined by Research Systems start
with the prefix IDL_MBLK _. You should not use this prefix when naming your
blocks in order to avoid unnecessary confusion.

of message definitions pointed at by defs.
defs

An array of message definition structs, each one supplying the name and format
string for a message in printf(3) format. The memory used for this array, including
the strings it points at, must be in permanently alocated read-only storage. IDL does
not copy this memory, but smply usesit in place.

If possible, the new message block is defined and an opaque pointer to it is returned.
This pointer must be supplied to subsequent calls to the “FromBlock” message
module functions to identify the message block a given error is being issued from. If
itisnot possible to define the message block, this function returns NULL.

The message functions require amessage block pointer and the negative index of the
specific message to be issued. Hence, message codes start and zero and grow
negatively. For mnemonic convenience, it is standard practice to define preprocessor
macros to represent the error codes.

Example: Defining A Message Block

The following code defines a message block named TESTMODULE that contains
two messages:

static IDL_MSG DEF nsg_arr[] =
{
#define M_.TM_I NPRO O
{ "M.TM.INPRO', "UNThis is froma | oadabl e nodul e procedure.”
I
#define M TM I NFUN -1
{ "M_TM.I NFUN', "ONThis is froma | oadabl e nodul e function."
I
i

nsg_bl ock = | DL_MessageDefi neBl ock(" Test nodul e",

sizeof (msg_arr)/si zeof (neg_arr[0]),
neg_arr);

External Development Guide Message Blocks

288 Chapter 14: IDL Internals: Error Handling

Issuing Error Messages

Errors are reported using one of the following functions:
* |IDL_Message()
* |IDL_MessageFromBlock()
» |IDL_MessageSyscode()
* |IDL_MessageSyscodeFromBlock()

These functions are patterned after the standard C library printf() function. They are
really the same function, differing in which message block the error isissued from
(the FromBlock versions allow you to specify the block) and their reporting of
system errors that might accompany IDL errors (the Syscode versions allow you to
specify a system error). IDL documentation often refersto IDL_M essage(). This
should be understood to be a generic reference to any of these four functions.

voi d | DL_Message(i nt code, int action, ...)
voi d | DL_MessageFronBl ock(| DL_MSG BLOCK bl ock, i nt code,
int action, ...)
voi d | DL_MessageSyscode(int code, |DL_MSG SYSCODE T syscode_type,
int syscode, int action, ...)
voi d | DL_MessageSyscodeFr onBl ock(| DL_MSG BLOCK bl ock, int code,
| DL_MSG_SYSCODE_T syscode_type,
int syscode, int action, ...)

The arguments to are as follows:
block

Pointer to the IDL message block from which the error should be issued. If block isa
NULL pointer, the default IDL coreblock (IDL_MBLK_CORE) isused.

code

Thisisthe error code associated with the error message to be issued. There are two
error codesin the default IDL coreblock (IDL_MBLK_CORE) that are available to
programmers adding system routinesto IDL. The use of these codes is described
below. See“IDL_M_GENERIC” on page 292 and “IDL_M_NAMED_GENERIC”"
on page 292.

Note
For any significant development involving an IDL system routine, Research
Systems recommends your code be packaged as a Dynamically L oadable Module

Issuing Error Messages External Development Guide

Chapter 14: IDL Internals: Error Handling 289

(DLM), and that your DLM define a message block to contain its errors instead of
using the GENERIC core block messages.

syscode_type

IDL_Message() awaysissues a single-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
compl ete picture of what went wrong. For example, the IDL view of the
problem might be “ Unable to open file,” while the underlying system reason
for the error is “no such directory.” The IDL_M essageSyscode() functions
allow you to include the relevant system error code, and have it incorporated
into the IDL message on a second line of output. There are several different
types of system error code that can be specified. The syscode_type argument
isused to tell IDL_M essageSyscode() which type of system error is present:

IDL_MSG_SYSCODE_NONE — Indicates that there is no system error. In this case,
the syscode argument isignored, and | DL _M essageSyscode() is functionally
equivalent to IDL_M essage().

IDL_MSG_SYSCODE_ERRNO — The UNIX operating system uses a system
provided global variable named errno for communicating system level errors.
Whenever acall to a system function fails, it returns avalue of -1, and puts an
error code into errno that specifies the reason for the failure. Other functions,
such as those provided by the standard C library, do not set errno. The system
documentation (man pages) describes which functions do and do not set errno,
and the rules for interpreting its value.

The C programming language and UNIX operating system share acommon
heritage, as C was originally created by its authors as an implementation
language for UNIX. Since then, C has found broad acceptance on non-UNIX
platforms, bringing along with standard POSIX libraries that provide
functionality commonly expected by C programs. Hence, although errnoisa
UNIX concept, non-UNIX C implementations generally provideit asa
convenience. Hence, IDL supportsIDL_M SG_SY SCODE_ERRNO on all
platforms.

You should specify IDL_M SG_SY SCODE_ERRNO only if you are calling
IDL_M essageSyscode() asthe result of afailed function that is documented to
set errno on your target platform. Otherwise, errno might contain an unrelated
garbage value resulting in an incorrect error message. When specifying
IDL_MSG_SYSCODE_ERRNO, you should supply the current value of
errno as the syscode argument to | DL_M essageSyscode().

External Development Guide Issuing Error Messages

290 Chapter 14: IDL Internals: Error Handling

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically does not set it. On this operating
system, specifying IDL_MSG_SY SCODE_ERRNO may have no effect.

IDL_MSG_SYSCODE_WIN (Microsoft Windows Only) — Microsoft Windows
system error codes. The value suppled to the syscode argument to
IDL _M essageSyscode() should be a system error code, as returned by the
Windows GetL astError () system function.

IDL_MSG_SYSCODE_WINSOCK (Microsoft Windows Only) — Microsoft
Windows winsock error codes. The value suppled to the syscode argument to
IDL _M essageSyscode() should be a system error code, as returned by the
Windows W SAGetL astError () system function

syscode

Value of the system error code that should be reported. Thisargument isignored if its
valueiszero (0), or if syscode_typeis|DL_M SG_SYSCODE_NONE. Otherwise,
itisinterpreted asan error code of thetype given by syscode_type, and the text of the
specified system error will be output along with the IDL message on a separate
second line.

action

IDL_Message() can take a number of different actions after issuing the error
message. The action to take is specified by the action argument:

IDL_MSG_RET

Use thisargument to make | DL_M essage() return to the caller after issuing the
error message. In this case, the calling routine can either continue or return to
the interpreter asit seesfit.

IDL_MSG_INFO

Use this argument to issue a message that is not an error, but is simply
informational in nature. The message is output and | DL _M essage() returnsto
the caller. Normally, IDL_M essage() sets the values of IDL's
IERROR_STATE system variables, but not in this case.

IDL_MSG_EXIT

Use this argument to cause the IDL process to exit after the message is issued.
This code should never be used in asystem function or procedure—it is
intended for use in other sections of the system.

Issuing Error Messages External Development Guide

Chapter 14: IDL Internals: Error Handling 291

IDL_MSG_LONGJIMP

Use this argument to cause | DL _M essage() to exit directly back to the
interpreter after issuing the message. In this case, IDL_M essage() does not
returntoitscaler. It isan error to use this action code in code not called by the
IDL interpreter since the resulting call to longjmp() will beinvalid.

IDL_MSG_IO_LONGJIMP

Thisaction codeisexactly like IDL_MSG_LONGJIMP, except that it is
issued in response to an input/output error. This code isonly used by the I/0
module. User written system routines should use the existing 1/0 routines, so
they do not need to use this action.

In addition, the following modifier codes can be ORed into the action code.
They modify the normal behavior of IDL_M essage():

IDL_MSG_ATTR_NOPRINT

Suppress the printing of the error message, but do everything elsein the
normal way.

IDL_MSG_ATTR_MORE

Use paging in the style of the UNIX more command to display the output.
This option exists primarily for use by the IDL compiler, and is unlikely to be
of interest to authors of system routines.

IDL_MSG_ATTR_NOPREFIX

Normally, IDL_M essage() prefixes the output message with the string
contained in IDL’s!'M SG_PREFI X system variable.
IDL_MSG_ATTR_NOPREFIX suppresses this prefix string.

IDL_MSG_ATTR_QUIET

If the IDL_MSG_INFO action has been specified and this bit mask has been
included, and the IDL user has IDL's !QUIET system variable,
IDL_Message() returns without issuing a message.

IDL_MSG_ATTR_NOTRACE

Set this code to inhibit the traceback portion of the error message.
IDL_MSG_ATTR_BELL

Set this code to ring the bell when the message is output.

External Development Guide Issuing Error Messages

292 Chapter 14: IDL Internals: Error Handling

The message format string (specified by the code argument) specifies aformat
string to be used for the error message. This format string is exactly like those
used by the standard C library printf() function. Any arguments following
action are taken to be arguments for this format string.

Error Codes

As mentioned above, Research Systems has reserved two error codes for use by
writers of system routines. They are:

IDL_M_GENERIC

This message code simply specifiesaformat string of “%s". The first argument after
action istaken to be a null-terminated string that is substituted into the format string.
For example, the C statement:

| DL_Message(! DL_M GENERI C, | DL_MSG LONGIMP, "Error! Help!")
causes IDL to abort the current routine and issue the message:
% Error! Hel p!

IDL_M_NAMED_GENERIC

This message code is exactly like the one above, except that it prints the name of the
system routinein front of the error string. For example, assuming that the name of the
routineisMY_PROC, the C statement:

| DL_Message(| DL_M NAMED GENERI C, | DL_NSG_LONGINP,
"Error! Help!")

causes IDL to interrupt the current routine and issue the message:
% MY PRCC: Error! Hel p!

Choosing an Error Code

Note
For any significant development involving an IDL system routine, Research
Systems recommends your code be packaged as a Dynamically L oadable Module
(DLM), and that your DLM define a message block to contain its errors instead of
using the GENERIC messages described here.

Issuing Error Messages External Development Guide

Chapter 14: IDL Internals: Error Handling 293

The choice of which code to use depends on the context in which the message is
issued, but IDL_M_NAMED_GENERIC isusually preferred.

If you wish to include arguments into your message string, you should use the
sprintf() function from the C standard library to format a string into a temporary

buffer, and then supply the buffer as the argument to IDL_M essage(). For example,
executing the code:

char buf[128];

int unit = 23;

sprintf(buf, "Help! Error number %d.", unit);

| DL_Message(| DL_M GENERI C, | DL_MSG LONGIMP, buf);
interrupts the current routine and issues the message:

% Hel p! Error nunmber 23.

External Development Guide Issuing Error Messages

294 Chapter 14: IDL Internals: Error Handling

Looking Up A Message Code by Name

Given amessage block pointer and the name of a message from that block, the
IDL_M essageNameToCode() function returns the message code that corresponds to
it. Thisisespecially useful for dynamically loadable modules that need to throw
errors from the IDL core block. The actual error codes are subject to change between
IDL releases, so looking them up thisway at run-time allows a given DLM to work
with different IDL versions.

int 1 DL_MessageNameToCode(l DL_MSG BLOCK bl ock, char *nane)
where:

block

Message block name should be translated against, or NULL to use the default core
IDL block.

name

The message name for which the codeis desired. Name is case sensitive, and should
usually be specified as uppercase.

IDL_MessageNameToCode () returns the message code, or O if it is not found.

Looking Up A Message Code by Name External Development Guide

Chapter 14: IDL Internals: Error Handling 295

Checking Arguments

IDL alows a user to provide any number of arguments, of any type, to system
functions and procedures. IDL checks for avalid number of arguments, but the
routine itself must check the validity of types. Thistask consists of examining the
argv argument to the routine checking the type and flags field of each argument for
suitability. The IDL_StoreScalar () function (see “ Storing Scalar Values’ on

page 242) can be very useful in checking write-only arguments.

A number of macros exist in order to simplify testing of variable attributes. All of
these macros accept a single argument—the VPTR to the argument in question. The
macros check for a desired condition and use the IDL _M essage() function with the
IDL_MSG_L ONGJM P action to return to the interpreter if an argument type
doesn’'t agree. Some of these macros overlap, and some are contradictory. You should
select the smallest set that covers your requirements for each argument. For an
example that uses one of these macros, see “Example: A Complete Numerical
Routine Example (FZ_ROOTS2)” on page 368.

IDL_EXCLUDE_UNDEF

The argument must not be of type IDL_TYP_UNDEF. This condition is usually
imposed if the argument isintended to provide some input information to the routine.

IDL_EXCLUDE_CONST

The argument must not be a constant. This condition should be specified if your
routine intends to change the value of the argument.

IDL_EXCLUDE_EXPR

The argument must not be a constant or atemporary variable (i.e., the argument must
be a named variable). Specify this condition if you intend to return avauein the
argument. Returning avalue in atemporary variable is pointless because the
interpreter will remove it from the stack as soon as the routine completes, causing it
to be freed for re-use.

TheIDL_VarCopy() and IDL_StoreScalar () functions automatically check their
destination and issue an error if it isan expression. Therefore, if you are using one of
these functions to write the new value into the argument variable, you do not need to
perform this check first.

External Development Guide Checking Arguments

296 Chapter 14: IDL Internals: Error Handling

IDL_EXCLUDE_FILE

The argument cannot be afile variable (as returned by the IDL ASSOC) function.
Most system routines exclude file variables—they are handled by a small set of
existing routines. This check isalso handled by theIDL_ENSURE_SIMPLE
macro, which also excludes structure variables.

IDL_EXCLUDE_STRUCT

The argument cannot be a structure.
IDL_EXCLUDE_COMPLEX

The argument cannot be IDL_TYP_COMPLEX.
IDL_EXCLUDE_STRING

The argument cannot be IDL_TYP_STRING.
IDL_EXCLUDE_SCALAR

The argument cannot be a scalar.
IDL_ENSURE_ARRAY

The argument must be an array.
IDL_ENSURE_OBJREF

The argument must be an object reference heap variable.
IDL_ENSURE_PTR

The argument must be a pointer heap variable.
IDL_ENSURE_SCALAR

The argument must be a scalar.
IDL_ENSURE_STRING

The argument must be IDL_TYP_STRING.
IDL_ENSURE_SIMPLE

The argument cannot be afile variable, a structure variable, a pointer heap variable,

or an object reference heap variable.

Checking Arguments External Development Guide

Chapter 14: IDL Internals: Error Handling 297

IDL_ENSURE_STRUCTURE

The argument must be IDL_TYP_STRUCT.

External Development Guide Checking Arguments

298 Chapter 14: IDL Internals: Error Handling

Checking Arguments External Development Guide

Chapter 15:

IDL Internals:
Type Conversion

This chapter discusses the following topics:

Converting Argumentsto C Scalars 300 Converting to Specific Types 302
Genera TypeConversion 301

External Development Guide 299

300 Chapter 15: IDL Internals: Type Conversion

Converting Arguments to C Scalars

The routines described in this section convert the value of their IDL_VARIABLE
argument to the C scalar type indicated by their name. IDL_MEMINT Scalar () and
IDL_FILEINT Scalar () exist for processing memory and file sizes without the need
to know their actual types, as discussed in “IDL_MEMINT and IDL_FILEINT
Types’ on page 213.The converted value is returned as the function value. The
functions are defined as:

I DL_LONG | DL_LongScal ar (1 DL_VPTR p)

| DL_ULONG | DL_ULongScal ar (1 DL_VPTR v)

| DL_LONGG4 | DL_Long64Scal ar (1 DL_VPTR v)

| DL_ULONG64 | DL_ULong64Scal ar (| DL_VPTR v)
doubl e |1 DL_Doubl eScal ar (I DL_VPTR p)

| DL_MEM NT | DL_MEM NTScal ar (| DL_VPTR p)

| DL_FI LEI NT | DL_FI LEI NTScal ar (1 DL_VPTR p)

If these functions are unable to perform the conversion (e.g., the argument is afile
variable, an array, etc.), they issue adescriptive error and jump back to the interpreter.
By using these functions, you avoid having to do any of the type checking described
in “Checking Arguments’ on page 295.

For example, the following IDL system function (named PRINT_LONG) printsthe
value of itsfirst argument, converted to an IDL_L ONG 32-hit integer:

I DL_VPTR print_long(int argc, IDL_VPTR argv[], char *argk)

{
printf("%\n", 1DL_LongScal ar(argv[0]));

}
Executing it as.
PRI NT_LONG, 23D
gives the output:
23
as expected, while the statement:
PRI NT_LONG, FI NDGEN(10)
causes the error:

% PRI NT_LONG. Expression nust be a scalar in this context:
<FLOAT Array(10)>
% Execution halted at $MAIN$.

because it is not possible to convert an array (the result of FINDGEN) to a scalar.

Converting Arguments to C Scalars External Development Guide

Chapter 15: IDL Internals: Type Conversion 301

General Type Conversion

The IDL_BasicTypeConversion() function provides general purpose type

conversion:
| DL_VPTR | DL_Basi cTypeConversi on(int argc, |DL_VPTR argv[]
int type)
where:
argc

The number of IDL_VPTRs contained in argv.
argv
An array of pointersto VARIABL E arguments.

type
The desired type code of the result. See “Type Codes’ on page 208.

If argcisl, thisfunction returns a pointer to atemporary VARIABL E containing the
value of argv[0] converted to the type specified by the type argument. If the variable
is already of the correct type, the variable itself is returned.

If argv isgreater than 1, argv[1] istaken to be an offset into the variable specified by
argv[0], and following arguments are taken as the dimensions to be used for the
result. In this case, enough bytes are copied (starting from the offset) to satisfy the
requirements of the dimensions given. This second form does not work for variables
of type string, so an error isissued in that case. RSI recommends ensuring that
variables of appropriate type are used with this function.

The IDL BYTE and STRING system routines (implemented by the IDL_CvtBytg()
and IDL_CuvtString() functions, described below) treat conversions between
variables of type byte and string in aspecia way. IDL_BasicTypeConver sion() does
not handle this special case. Instead, it smply performs a straightforward type
conversion between those types.

External Development Guide General Type Conversion

302 Chapter 15: IDL Internals: Type Conversion

Converting to Specific Types

A series of functions exist to convert VARIABL Esto specific types:

I DL_VPTR I DL_Cvt Byte(int argc, IDL_VPTR argv[])

I DL_VPTR I DL_Cvt Bytscl (int argc, IDL_VPTR argv[], char *argk)
IDL_VPTR I DL_Cvt Fi x(int argc, IDL_VPTR argv[])

IDL_VPTR IDL_CvtU nt (int argc, IDL_VPTR argv[])

I DL_VPTR I DL_Cvt Lng(int argc, IDL_VPTR argv[])

I DL_VPTR I DL_Cvt ULng(i nt argc, IDL_VPTR argv[])

| DL_VPTR | DL_Cvt Lng64(int argc, IDL_VPTR argv[])

I DL_VPTR | DL_Cvt ULng64(i nt argc, IDL_VPTR argv[])

IDL_VPTR IDL_CvtFIt(int argc, IDL_VPTR argv[])

I DL_VPTR I DL_Cvt Dbl (int argc, IDL_VPTR argv[])

| DL_VPTR | DL_Cvt Conpl ex(int argc, |IDL_VPTR argv[])

| DL_VPTR | DL_Cvt DConpl ex(int argc, |IDL_VPTR argv[])

IDL_VPTR I DL_Cvt String(int argc, IDL_VPTR argv[], char *argk)

When calling these functions, you should set the argk argument to NULL.

These functions are the direct implementations of the IDL commands BY TE,
BYTSCL, FIX, UINT, LONG, ULONG, LONG64, ULONG64, FLOAT, DOUBLE,
COMPLEX, DCOMPLEX, and STRING. See the description of these functionsin
the IDL Reference Guide for details on their arguments and calling sequences.

The behavior of these functionsisthe sameas|DL_BasicTypeConversion() except
when converting between bytes and strings. Calling I DL_CvtByte() with asingle
argument of string type causes each string to be converted to a byte vector of the
same length as the string. Each array element is the character code of the
corresponding character in the string. Calling IDL_CvtString() with asingle
argument of IDL_TY P_BY TE has the opposite effect.

Converting to Specific Types External Development Guide

Chapter 16:

IDL Internals:
UNIX Signals

This chapter discusses the following topics:

IDLandSignalscoiit.
SignalHandlers
Establishinga Signal Handler

External Development Guide

304 Removing a Signal Handler

307 UNIX Signal Masks

303

304 Chapter 16: IDL Internals: UNIX Signals

IDL and Signals

Signals pose one of the more difficult challenges faced by the UNIX programmer.
Although seemingly simple, they are atough portability problem because there are
severd variants, and their semantics are subtle, inconvenient, and easily confused.
These issues are only magnified when signals are used in a program like IDL that
employs multiple threads. IDL has always done whatever is necessary with signalsin
order to get its job done, but its signal assumptions can also affect user written code
linked to it.

Note
This discussion refers primarily to UNIX IDL. Microsoft Windows uses different
mechanisms to solve the problems solved by signals under UNIX.

Thefollowingisabrief list of problemsand contradictionsinherent in UNIX signals.
For a more complete description, see Chapter 10 of External Programming in the
UNIX Environment by W. Richard Stevens.

» POSIX signals (sigaction) promise to unify and simplify signals, but not all
platforms support them fully.

* You can only have one signal handler function registered for each signal. This
means that if one part of a program uses asignal, the rest of the program must
leave that signal alone.

* Inorder to meet the needs of programs originally developed under different
UNIX systems (AT& T System V, BSD, Posix), most UNIX implementations
provide more than one package of signal functions. Typically, a given program
isrestricted to one of these libraries. If aprogrammer links codeinto IDL that
chooses alibrary or signal options different from that used by IDL itself,
unexpected results may occur.

» The number and exact semantics of some signals differ in different versions.
» Detailsof signal blocking differ.

* Some System V implementations of signals are unreliable, meaning that
signal's can occur in a process and be missed.

* Some older System V systems reset the handling action to SIG_DFL before
calling the handler. This opens a window in time where two signalsin arow
can cause the process to be killed. Also, the signal handler must re-establish
itself every timeit is called.

IDL and Signals External Development Guide

Chapter 16: IDL Internals: UNIX Signals 305

On most platforms, if asigna is generated more than once whileit is blocked,
the second and subsequent occurrences are lost. In other words, most UNIX
implementations do not queue signals.

These are among the reasons that most libraries avoid signals, and leave their use to

the end programmer. IDL, however, must use signals to function properly. In order to
allow usersto link their codeinto IDL while using signals, IDL providesasignal API
built on top of the signal mechanism supported by the target platform. The IDL signal
API hasthe following attributes:

It disallowsuse of SIGTRAP and SIGFPE. These signalsarereserved to IDL.

It disallows use of SIGALRM. Most usesfor SIGALRM are provided by the
IDL timer API.

It works with all other signals, including those IDL doesn’t currently use, so
the interface won’t change over time.

It allows multiple signal handlers for each signal, so IDL and other code can
use the same signal simultaneously.

It unifies the signal interface by supplying a stable consistent interface with
known behavior to the underlying system signal mechanism.

It keeps IDL in charge of which signal package is used and how.

Thisis not a perfect solution, it is acompromise between the needs of IDL and
programmers wishing to link code with it. Usually, the IDL signal abstraction is
sufficient, but it does have the following limitations:

The calling program must not attempt to catch SIGTRAP or SIGFPE, either

directly or through library routines that use these signals to achieve their ends.
Furthermore, the IDL signal abstraction does not allow the caller to catch these
signals, so your program must leave exception handling to IDL.

The caller loses control over signal package choice and some minor signal
abilities.

Having multiple signal handler routines for a given signal opensthe possibility
that one handler might do something that causes problems for the others (like
change the signal mask, or longijmp()). To minimize such problems, user code
linked into IDL must not call the actual system signal routines, and must not
longjmp() out of signal handlers—atactic that is usually allowed, but which
would seriously damage IDL’s signal state.

Since there may be more than one signal handler registered for a given signal,
the signal dispositionsof SIG_IGN and SIG_DFL are not directly available to

External Development Guide IDL and Signals

306 Chapter 16: IDL Internals: UNIX Signals
the caller asthey would be if you were allowed to use the system signal
facilities directly.

If you find that these restrictions are too limiting for your application, chances are

your code is hot compatible with IDL and should be executed in a separate process.

We then encourage you to consider running IDL in a separate process and to use an

interprocess communi cation mechanism such as RPC.

IDL and Signals External Development Guide

Chapter 16: IDL Internals: UNIX Signals 307

Signal Handlers

IDL signal handler functions are defined as:
t ypedef void (* IDL_Si gnal Handl er _t) (int signo);

When a signal is delivered to the process, al registered signal handlers are called.
si gno isthe integer number of the signal delivered, as defined by the C language
header file si gnal . h (foundin/ usr/i ncl ude/ si gnal . h on most UNIX
systems). si gno can be used by asignal handler registered for more than one signa
to tell which signal called it.

External Development Guide Signal Handlers

308 Chapter 16: IDL Internals: UNIX Signals

Establishing a Signal Handler

Toregister asignal handler, usethe IDL _SignalRegister () function:

int IDL_Signal Register(int signo, |IDL_Signal Handl er _t func,
int msg_action)

where:
signo

The numeric value of the signal to register for, as defined in si gnal . h.
func

The signal handler to be called when the signal specified by si gno israised.
msg_action

Oneof the IDL_MSG_* action codes for IDL_Message(). If thereisan error in
registering the signal handler, this action codeis passed to IDL_M essage() to direct
itsrecovery action. Notethat it isincorrect to use any of the message codes that cause
IDL_Message() tolongjmp() back to the IDL interpreter if your codeisrunningina
context where the IDL interpreter is not active—specifically as part of using Callable
IDL.

If f unc is successfully registered for si gno, thisroutine returns TRUE. Otherwise,
FALSE isreturned and IDL_Message() is called with msg_act i on to control its
behavior. Note that there are values of nsg_act i on that result in this routine not
returning on error. Multiple registration of the same function is allowed, but has no
additional effect—the handler will only be called once.

Establishing a Signal Handler External Development Guide

Chapter 16: IDL Internals: UNIX Signals 309

Removing a Signal Handler

To remove asignal handler, use the IDL_SignalUnregister () function:

export int |IDL_Signal Unregister(int signo, |IDL_Signal Handl er_t func,
int msg_action)

where:
signo

The signal to unregister.
func

The handler to be unregistered.
msg_action

One of the IDL_M SG_* action codes for IDL_M essage(). If thereis an error in
removing the signal handler, thisaction codeis passedto IDL_M essage() to direct its
recovery action.

Once DL _SignalUnregister () has been called, func is unregistered and will no
longer be caled if the signal israised. IDL_SignalUnregister () returns TRUE for
success, FAL SE for failure. Requests to unregister a function that has not been
previously registered are ignored.

External Development Guide Removing a Signal Handler

310 Chapter 16: IDL Internals: UNIX Signals

UNIX Signal Masks

UNIX processes contain a signal mask that defines which signals can be delivered
and which are blocked from delivery at any given time. When a signal arrives, the
UNIX kernel checksthe signal mask: If the signal isin the process mask, it is
delivered, otherwise it is noted as undeliverable and nothing further is done until the
signal mask changes. Sets of signals are represented within IDL with the opague type
IDL_SignalSet_t. UNIX IDL provides severa functions that manipulate signal sets
to change the process mask and allow/disallow delivery of signals.

IDL_SignalSetinit()

IDL _Signal Setlnit() initializes asignal set to be empty, and optionally setsit to
contain one signal.

void IDL_Signal Setlnit(lIDL_Signal Set_t *set, int signo)

where:
set

The signal set to be emptied/initialized.
signo

If non-zero, asignal to be added to the new set. Thisis provided as a convenience for
the large number of cases where a set contains only onesignal. Use
IDL_Signal SetAdd() to add additional signalsto a set.

IDL_SignalSetAdd()

IDL _Signal SetAdd() adds the specified signal to the specified signal set:
voi d | DL_Si gnal Set Add(| DL_Si gnal Set _t *set, int signo)

where:
set

The signal set to be added to. The signa set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be added to the signal set.

UNIX Signal Masks External Development Guide

Chapter 16: IDL Internals: UNIX Signals 311

IDL_SignalSetDel()

IDL_Signal SetDel() deletes the specified signal from asignal set:
voi d | DL_Signal Set Del (1 DL_Si gnal Set _t *set, int signo)

where:
set

The signal set to delete from. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be removed from the signal set.

IDL_SignalSetlsMember()

IDL _Signal Setl sM ember () testsa signal set for the presence of a specified signal,
returning TRUE if the signal is present and FAL SE otherwise:

int | DL_Signal SetlsMenmber (1 DL_Signal Set _t *set, int signo)

where:
set

The signal set to test. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be removed from the signal set.

IDL_SignalMaskGet()

IDL_SignalM askGet() setsasignal set to contain the signals from the current
process signal mask:

voi d | DL_Si gnal MaskGet (I DL_Si gnal Set _t *set)

where:
set

The signal set in which the current process signal mask will be stored.

External Development Guide UNIX Signal Masks

312 Chapter 16: IDL Internals: UNIX Signals

IDL_SignalMaskSet()
IDL_SignalM ask Set() setsthe current process signal mask to contain the signals
specified in asigna mask:

voi d | DL_Signal MaskSet (I DL_Si gnal Set _t *set,
| DL_Si gnal Set _t *omask)

where:

set
The signal set from which the current process signal mask will be set.

omask

If omask isnon-NULL, the unmodified process signal mask isstored in it. Thisis
useful for restoring the mask later using IDL _SignalM ask Set ().

There are some signalsthat cannot be blocked. Thislimitation is silently enforced by
the operating system.

IDL_SignalMaskBlock()

IDL_SignalM askBlock() adds signals to the current process signal mask:

voi d | DL_Si gnal MaskBl ock(1DL_Si gnal Set _t *set,
| DL_Signal Set _t *oset)

where:

set
The signal set containing the signals that will be added to the current process signal
mask.

oset

If oset isnon-NULL, theunmodified process signal mask is stored init. Thisisuseful
for restoring the mask later using I DL _SignalM ask Set().

There are some signalsthat cannot be blocked. Thislimitation is silently enforced by
the operating system.

UNIX Signal Masks External Development Guide

Chapter 16: IDL Internals: UNIX Signals 313

IDL_SignalBlock()

IDL_SignalBlock() doesthe same thing as DL _SignalM ask Block() except it
accepts asingle signal number instead of requiring a mask to be built:

voi d | DL_Si gnal Bl ock(i nt signo, |IDL_Signal Set_t *oset)
where:
signo
The signal to be blocked.

There are some signalsthat cannot be blocked. This limitation is silently enforced by
the operating system.

IDL_SignalSuspend()

IDL_Signal Suspend() replaces the process signal mask with the onesin set and then
suspends the process until asignal is delivered. On return, the original process signal
mask is restored:

voi d | DL_Si gnal Suspend(| DL_Si gnal Set _t *set)

where:
set

The signal set containing the signals that will be added to the current process signal
mask.

External Development Guide UNIX Signal Masks

314 Chapter 16: IDL Internals: UNIX Signals

UNIX Signal Masks External Development Guide

Chapter 17:

IDL Internals: Files and

Input/Output

This chapter discusses the following topics:

IDL and Input/Output Files 316
FileInformation 318
OpeningFiles............. 322
ClosingFiles 324
Preventing FileClosing 325
Checking FileStatus 326

External Development Guide

Allocating and Freeing File Units 328
Detecting Endof File 330
Flushing Buffered Data 331
Reading a Single Character 332
Output of IDL Variables 333
Addingtothe Journal File 334

315

316 Chapter 17: IDL Internals: Files and Input/Output

IDL and Input/Qutput Files

IDL provides extensive Input/Output facilities at the user level. Internally, it uses
native Input/Output facilities (UNIX system calls or Win32 system API) in addition
to the standard C library stream package (stdio). The choice of which facilities to use
are made based on the target platform and the requested features for the file.

Most external code linked with IDL (CALL_EXTERNAL, system routines, etc.)
should not do Input/Output directly, for the following reasons:

e Part of theIDL philosophy isthat Input/Output is handled by dedicated 1/0
facilities provided by IDL, and that computational code should accept data
from IDL variables and return results in the same way. This gives the user of
your code the freedom and flexibility to save their datain any of the many
forms supported by IDL’s core 1/O facilities, and frees you from writing
complex and error prone input/output code.

e Using IDL’s Input/Output facilities frees you from having to code around
platform specific differencesin I/O behavior.

* Input/Output from languages other than C often require runtime library
support code to run at program startup before your code and successfully
perform 1/0O. For example, Fortran Input/Output may depend on a Fortran
runtime subsystem having been initialized. DL, as a C program, does not
perform initiaization of such libraries for other languages. If you know
enough about your Fortran system, you can often supply the missing
initialization call, but such workarounds are usually not well documented, and
are inherently platform specific.

For the reasons above, only minimal 1/0 abilities are available from IDL's internals,
and only for files that explicitly use the standard C stdio library. Therefore, if your
application must directly perform I/O to afile managed by IDL, it is necessary to use
the standard C library streampackage (stdio) by specifyingthe IDL_F_STDIOflag to
IDL_FileOpen(). Most of the routines associated with the standard C library 1/0
package can be used in the norma manner. Note, however, that the C library routines
listed in the following table should not be used; use the I DL-specific functions
instead:

IDL and Input/Output Files External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 317

C Library Function IDL Function
fclose() IDL_FileClose()
fdopen() IDL_FileOpen()
feof() IDL_FileEOF()
fflush() IDL_FileFlushUnit()
fopen() IDL_FileOpen()
freopen() IDL_FileOpen()

Table 17-1: Disallowed C Library Routines and Their IDL Counterparts

Note
In order to access afile opened using IDL_FileOpen() in this manner, you must
ensure that it is stdio compatible by specifying IDL_F_STDIO as part of the
extra_flags argument to IDL_FileOpen(). Failure to do this will cause your code to
fail to execute as expected.

External Development Guide IDL and Input/Output Files

318 Chapter 17: IDL Internals: Files and Input/Output

File Information

IDL maintains afiletablein which it keeps afile descriptor for each file opened with
IDL_FileOpen(). Thistableisindexed by thefile Logical Unit Number, or LUN.
These are the same LUNs IDL users use.

The IDL_FileStat() function is used to get information about afile.
IDL_FileStat()

void IDL_FileStat(int unit, |DL_FILE STAT *stat_bl k)
unit

Thelogical unit number (LUN) of the file unit to be checked. This function should
only be caled on file units that are known to be open.

stat_blk

A pointer to an IDL_FILE_STAT struct to befilled in with information about the file.
Theinformation returned isvalid only aslong as the file remains open. You must not
access thefields of an IDL_FILE_STAT once thefileit refers to has been closed.
This struct has the definition:

typedef struct {
char *nane;
short access;
| DL_SFI LE_FLAGS T fl ags;
FILE *fptr;
} | DL_FI LE_STAT;

The fields of this struct are listed below:

name

A pointer to a null-terminated string containing the name the file was opened with.

File Information External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 319

access

A bit mask describing the access allowed to the file. The allowed bit values are listed
in the following table:

Bit Value Description
IDL_OPEN_R Thefileis open for input.
IDL_OPEN_W Thefileis open for output.

IDL_OPEN_TRUNC | Thefile was truncated when it was opened. Thisimplies
that IDL_OPEN_W is aso set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain the file (the file is open for appending).

Table 17-2: Bit values for the access field
flags

A bit mask that gives special information about the file. The defined bits arelisted in
the following table:

Bit Value Description
IDL_F _ISATTY Thefileisaterminal.
IDL_F ISAGUI Thefileisa Graphical User Interface.
IDL_F NOCLOSE The CLOSE command will refuse to closethe
file.
IDL_F MORE If thefileisaterminal, output is sent through a

pager similar to the UNIX mor e command.
Details on this pager are not included in this
document, and it is therefore not available for

general use.

IDL_F XDR Thefileisread/written using XDR (eXternal
Data Representation).

IDL_F DEL_ON_CLOSE The filewill be deleted when it is closed.

Table 17-3: Bit values for the flags field

External Development Guide File Information

320

Chapter 17: IDL Internals: Files and Input/Output

Bit Value

Description

IDL_F SR

Thefileisa SAVE/RESTORE file.

IDL_F_SWAP_ENDIAN

The file has opposite byte order than that of
the current system.

IDL_F_VAX_FLOAT

Binary float and double arein VAX F and D
format.

IDL_F_COMPRESS

Thefileisin compressed gzip format. If
IDL_F SRisset (thefileisa
SAVE/RESTORE file), the file contains zlib
compressed data.

IDL_F_UNIX_F77

Thefileisread/written in the format used by
the UNIX Fortran (f77) compiler for
unformatted binary data.

IDL_F_UNIX_PIPE

Thefileisabi-directiona data path
connecting IDL to a child process created by
the SPAWN procedure.

IDL_F_UNIX_RAWIO

(formerly called
IDL_F_UNIX_NOSTDIO)

No application level buffering will be
performed for the file and all data transfers
will go directly to the operating system for
processing (e.g. read() and write() system
calls under UNIX, Win32 API for MS
Windows). Note that setting this bit does not
guarantee that data will be written to thefile
immediately, because the operating system
may buffer the data. Thisbit value was
formerly called IDL_F_UNIX_NOSTDIO.
IDL_F_UNIX_RAWIO isthe preferred form,
but both names are supported.

IDL_F_UNIX_SPECIAL

Thefileisa UNIX device specia file, most
likely apipe. Thisdiffersfrom
IDL_F_UNIX_PIPE because it applies to any
file, not only those opened with the SPAWN
procedure.

Table 17-3: (Continued) Bit values for the flags field (Continued)

File Information

External Development Guide

Chapter 17: IDL Internals: Files and Input/Output

321

Bit Value

Description

IDL_F_STDIO

Use the C standard 1/O library (stdio) to
perform 1/O on thisfile instead of any other
native OS API that might be otherwise used.
People intending to access IDL filesviatheir
own code should specify thisflag if they
intend to access the file from their external
code as a stdio stream.

IDL_F_SOCKET

Fileisan internet TCP/IP socket.

Table 17-3: (Continued) Bit values for the flags field (Continued)

fptr

The stdio stream file pointer to the file. This field can be used with standard library
functions to perform 1/O. Thisfield is always valid, although you shouldn’t use it if
thefileisan XDR file. You can check for this by looking for the IDL_F_XDR bitin

the flagsfield.

If the fileis not opened withthe IDL_F_STDIO flag, fptr may be returned as an
unusable NULL pointer, reflecting the fact that IDL is not using stdio to perform I/O
onthefile. If accessto avaid fptr isimportant to your application, you should be
sureto specify IDL_F_STDIO to the extra_flags argument to IDL _FileOpen, or
use the STDIO keyword to OPEN if opening the file from the IDL user level.

In addition to the requirement to set the IDL_F_STDI O flag, you should be aware
that IDL buffers 1/O at alayer above the stdio package. If your code does 1/O directly
to afile that is also being written to from the IDL user level, the IDL buffer may
cause data to be written to thefile in a different order than you expect. There are
several approaches you can take to prevent this:

» Tel IDL not to buffer, by opening the file from the IDL user level and
specifying avalue of -1 to the BUFSIZE keyword.

» Disable stdio buffering by calling the stdio setbuf() function.

» Ensure that you flush IDL’s buffer before you do any Input/Output, as
discussed in “Flushing Buffered Data’ on page 331.

External Development Guide

File Information

322 Chapter 17: IDL Internals: Files and Input/Output
Opening Files
Files are opened using the IDL_FileOpen() function.

IDL_FileOpen()

int IDL_FileQpen(int argc, |IDL_VPTR *argv, char *argk,
int access_node, |IDL_SFILE FLAGS T extra_fl ags,
int longjnp_safe, int neg_attr)
argc
The number of argumentsin argv. This value should always be 2.
argv

The argumentsto IDL_File_Open(). argv[0] should be a scalar integer va ue giving
the file unit number (LUN) to be opened. argv[1] isascalar string giving the file
name.

argk
Keywords. Set thisargument to NULL.
access_mode

A bit mask that specifies the accessto be alowed to the file being opened. The
allowed hit values are listed in the following table:

Bit Value Description
IDL_OPEN_R Thefileis open for input.
IDL_OPEN_W Thefileis open for output.

IDL_OPEN_TRUNC | Thefile was truncated when it was opened. Thisimplies
that IDL_OPEN_W isalso set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain the file (the file is open for appending).

Table 17-4: Bit Values for the access_mode Argument

Opening Files External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 323

It isimportant that conflicting bits not be set together (for example, do not specify
IDL_OPEN_TRUNC | IDL_OPEN_APND). Also, one or both of
IDL_OPEN_READ and IDL_OPEN_WRITE must always be specified.

extra_flags

Used to specify additional file attributes using the flags defined in the description of
the flags field of the IDL_FILE_STAT struct (see “File Information” on page 318).
Note that some flags are set by IDL based on the actual attributes of the opened file
(eg. IDL_F_ISTTY) and that it makes no sense to set such flagsin this mask.

If you intend to use the opened file as a C standard 1/0O (stdio) stream file, you must
specify theIDL_F_STDI O flag when calling IDL _FileOpen(). Otherwise, IDL may
choose not to use stdio.

longjmp_safe

If set to TRUE, IDL_FileOpen() isbeing called in a context where an
IDL_MSG_LONGJIMP IDL_Message action code is okay. If set to FALSE, the
routinewon’t| ongj mp() .

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise. Of course, if longjmp_safeis TRUE, the usual course isto jump back to
the IDL interpreter, in which case the routine won't return.

msg_attr

A zero (0), or any combination of the IDL_MSG_ATTR_ flags, used to fine tune the
error handling specified by thel ongj np_saf e argument. Note that you must not
specify any of thebase IDL_MSG_ codes, but only the attributes. The base code (e.g.
IDL_MSG_LONGJIMP) is determined by the value of | ongj np_saf e. For a
discussion of the IDL_MSG_ATTR_ flags, see “Issuing Error Messages” on

page 288.

Special File Units

There are three files that are always open. The three units are:
e IDL_STDIN_UNIT — Unit O (zero) isthe standard input for the IDL process.
e IDL_STDOUT_UNIT — Unit -1 isthe standard output.
e IDL_STDERR_UNIT — Unit -2 isthe standard error.

Note
The constant IDL_NON_UNIT always has avaluethat is not avalid file unit.

External Development Guide Opening Files

324 Chapter 17: IDL Internals: Files and Input/Output

Closing Files

Files are closed using the IDL_FileClose() function.

IDL_FileClose()
void IDL_FileC ose(int argc, IDL_VPTR *argv, char *argk)
argc
The number of argumentsin argv.
argv

The arguments to the close function. These should be scalar integer values giving the
Logical Unit Numbers of the file units to close.

argk

Keywords. Set thisargument to NULL.

Closing Files External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 325

Preventing File Closing

UsetheIDL_FileSetClose() function to prevent files from closing. It does this by
setting or clearing the IDL_F_NOCLOSE hit in the flags field of the internal file
descriptor maintained by IDL for the file (see “File Information” on page 318). This
feature is used primarily in graphics drivers for printers. For example, the PostScript
driver uses this feature to prevent the user from closing the plot datafile prematurely.

When IDL exits, it only closes open files that do not have the IDL_F_NOCL OSE bit
set. Fileswith close inhibited are simply left aone. Often, you will want to declare an
exit handler which takes care of closing such files.

IDL_FileSetClose()
void IDL_FileSetd ose(int unit, int allow)
unit

The Logical Unit Number (LUN) of thefile in question. The file must be open for
this function to have effect.

allow

Set thisfield to TRUE if users are allowed to close the file. Set to FALSE if users
should be prevented from closing the file.

External Development Guide Preventing File Closing

326 Chapter 17: IDL Internals: Files and Input/Output

Checking File Status

System routines that deal with files must verify that the files have the proper
attributes for the intended operation. Use the function IDL_FileEnsureStatus() for
this.

IDL_FileEnsureStatus()

int IDL_FileEnsureStatus(int action, int unit, int flags)
action

If the file unit does not satisfy the requirements of the flags argument,
IDL_FileEnsureStatus() will issue an error using the IDL_Message() function (see
“lssuing Error Messages” on page 288). This action is the action argument to
IDL_Message() and should be IDL_MSG_RET, IDL_MSG_LONGJIMP, or
IDL_MSG_IO_LONGIMP.

unit
The Logical Unit Number of the file to be checked.
flags

IDL_FileEnsureStatus() always checksto make sure unitisavalid logical file unit. In
addition, flagsis a bit mask specifying the file attributes that should be checked. The
possible bit values are listed in the following table:

Bit Value Description

IDL_EFS USER Thefile must be auser unit. This meansthat thefile
is not one of the three specia files, stdin, stdout, or
stderr.

IDL_EFS IDL_OPEN The file unit must be open.

IDL_EFS CLOSED The file unit must be closed.

IDL_EFS READ The file unit must be open for input.

IDL_EFS WRITE The file unit must be open for output.

IDL_EFS NOTTY The file unit cannot be a tty.

Table 17-5: Bit Values for the flags Argument

Checking File Status External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 327

Bit Value Description
IDL_EFS NOGUI The file unit cannot be a Graphical User Interface.
IDL_EFS _NOPIPE The file unit cannot be a pipe.
IDL_EFS NOXDR The file unit cannot be a XDR file.
IDL_EFS ASSOC The file unit can be ASSOC’ ed. Thisimplies

IDL_EFS USER, IDL_EFS_OPEN,
IDL_EFS _NOTTY, IDL_EFS NOPIPE,
IDL_EFS NOXDR, IDL_EFS_NOCOMPRESS,
and IDL_EFS_NOSOCKET.

IDL_EFS NOT_RAWIO The file was not opened with the

(formerly called IDL_F_UNIX_RAWIO attribute. Thisbit was
IDL_EFS NOT_NOSTDIO | formerly called IDL_F_NOTSTDIO.
) IDL_EFS NOT_RAWIOQ isthe preferred form, but

both names are accepted.

IDL_EFS NOCOMPRESS | Thefile unit cannot have been opened for
compressed input/output (IDL_F_COM PRESS).

IDL_EFS STDIO The file must be using the C stdio package
(IDL_F_STDIO).

IDL_EFS NOSOCKET Thefile unit cannot be asocket (IDL_F_SOCKET).

Table 17-5: (Continued) Bit Values for the flags Argument (Continued)

Note
Some of these values are contradictory. The caller must select a consistent set.

If thefile unit meetsthe desired conditions, IDL_FileEnsureStatus() returns TRUE. If
it does not meet the conditions, and action was IDL_MSG_RET, then it returns
FALSE.

External Development Guide Checking File Status

328 Chapter 17: IDL Internals: Files and Input/Output

Allocating and Freeing File Units

System routines must allocate and deallocate file unitsin order to avoid conflicts.
When writing IDL procedures, the GET_LUN and FREE_LUN procedures are used.
When writing system-level routines, you can access the same routines by calling
IDL_FileGetUnit() and IDL_FileFreeUnit().

Use IDL_FileGetUnit() to alocate file units:
IDL_FileGetUnit()

void IDL_FileGetUnit(int argc, |DL_VPTR *argv)
argc
argc should always be 1.
argv

argv[0] containsan IDL_VPTR to the IDL_VARIABLE that will befilled in with the
resulting unit number.

Use IDL_FileFreeUnit() to freefile units:
IDL_FileFreeUnit()

void IDL_Fil eFreeUnit(int argc, |DL_VPTR *argv)
argc
argc gives the number of elementsin argv.
argv
argv should contain scalar integer values giving the Logical Unit Numbers of thefile
units to be returned.

Read the description of GET_LUN and FREE_LUN in the IDL Reference Guide for
additional details about these functions. The following code fragment demonstrates
how these functions might be used to open and close afile named j unk. dat :

| DL_VPTR argv][2];

| DL_VARI ABLE uni t;

| DL_VARI ABLE nare;

Allocating and Freeing File Units External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 329

/* Allocate a file unit. */
argv[0] = &unit;

unit.type = IDL_TYP LONG
unit.flags = 0;
IDL_FileGetUnit(1l, argv);

/* Set up the file nanme */

nanme.type = |DL_TYP STRI NG

name. fl ags = | DL_V_CONST;

name. val ue. str.s = "junk.dat";

name. val ue. str.slen = sizeof ("junk.dat") - 1;
name. val ue. str.stype = 0;

argv[1] = &nane;

I DL_FileOpen(2, argv, (char *) 0, IDL_OPEN_R, 0, 1);

/* Performany required actions. */

/* Free the file unit. This will also close the file. */
IDL_Fil eFreeUnit (1, argv);

External Development Guide Allocating and Freeing File Units

330 Chapter 17: IDL Internals: Files and Input/Output
Detecting End of File

IDL_FileEOF()

The IDL_FileEOF() function returns TRUE if the file specified by the Logica Unit
Number unit is at EOF, and FAL SE otherwise:

int |DL_FileEOF(int unit)
unit

The Logical Unit Number (LUN) of thefile in question.

Detecting End of File External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 331
Flushing Buffered Data

IDL_FileFlushUnit()

File data might be buffered in system memory in order to boost input/output
performance. The IDL_FileFlushUnit() function forces any buffered data for the file
specified by the Logical Unit Number unit to be written out:

int IDL_FileFlushUnit(int unit)
unit

The Logical Unit Number (LUN) of thefile in question.

External Development Guide Flushing Buffered Data

332 Chapter 17: IDL Internals: Files and Input/Output
Reading a Single Character
IDL_GetKbrd()

The IDL_GetKbrd() function returns the character code of the next available
character from IDL_STDIN_UNIT:

int | DL_GetKbrd(int should_wait)

should_wait

Set thisargument to TRUE if IDL_GetKbrd() should wait for akey to be struck,
FALSE otherwise.

If should_wait is FAL SE and no input characters are waiting in the input stream,
IDL_GetKbrd() returns NULL. Otherwise, it waitsuntil akey isstruck (if necessary)
and then returnsits ASCII value. Thisfunction will generate an error and return to the
interpreter if IDL_STDIN_UNIT isnot aterminal.

Reading a Single Character External Development Guide

Chapter 17: IDL Internals: Files and Input/Output 333

Output of IDL Variables

IDL_Print() and IDL_PrintF()

The IDL_Print() and IDL_PrintF() functions output the value of IDL_VARIABLEs.
IDL_Print() simply outputsto IDL_STDOUT_UNIT, while IDL_PrintF() outputs to

aspecified unit:

void IDL_Print(int argc, IDL_VPTR *argv, char *argk)
void IDL_PrintF(int argc, IDL_VPTR *argv, char *argk)

argc
The number of arguments to argv.
argv
IDL_VPTRsof the IDL_VARIABLESsto be output.
argk

Keywords. Set thisargument to NULL ((char *) 0).

These functions are theimplementation of the built-in IDL system procedures PRINT
and PRINTF. See “PRINT/PRINTF” in the IDL Reference Guide manual for
information on the available arguments and the order in which you must specify
them.

External Development Guide Output of IDL Variables

334 Chapter 17: IDL Internals: Files and Input/Output

Adding to the Journal File

IDL_Logit()

The IDL_L ogit() function can be used to add lines of output to the journal log file:
void IDL_Logit(char *s)

A pointer to aNULL terminated string to be added to the journal log file.

If ajournal log fileis currently open, this function writesthe specified string to it on a
new line. If nojournal fileisopen, IDL_Logit() returns quietly. The only way to open
or closethejournal fileisviathe user-system-level JOURNAL procedure.

Adding to the Journal File External Development Guide

Chapter 18:

IDL Internals:
Timers

This chapter discusses the following topics:

IDLand Timerscoovvunn.. 336 Canceling Asynchronous Timer Requests 339
Making Timer Requests 337 BlockingUNIX Timers 340

External Development Guide 335

336 Chapter 18: IDL Internals: Timers

IDL and Timers

The details of how timers work varies widely between operating systems and
between variants of the same operating system (different “flavors” of UNIX, for
example). IDL’s timer module is intended to provide a stable interface to the rest of
IDL, and to isolate the non-portable code in one place.

Under UNIX, IDL’s timer module performs a more important function. UNIX
processes contain asingle timer that must be shared by the code in the process. When
the timer fires, it raises the SIGALRM signal which must be caught and handled by
the process. The IDL timer routines transparently multiplex this single timer to
provide multiple virtual timers.

Under UNIX, IDL provides both blocking and non-blocking timers. Blocking timers
put the calling process to sleep until they go off. Non-blocking timers are delivered
asynchronously when they fire.

Under Microsoft Windows, only the blocking form of timer requests are supported.

IDL and Timers External Development Guide

Chapter 18: IDL Internals: Timers 337

Making Timer Requests

The IDL_Timer Set() function registers atimer request. IDL timer requests are one-
shot timers. If you wish to have atimer go off repeatedly, your callback function must
make a hew request each time it is called to set up the next timer.

void I DL_TimerSet (length, callback, fromcallback, context)

where:
length

The length of time to delay before issuing the alarm, in microseconds. You
should be aware that other activity on the system, overhead incurred in
managing the timers, and non-realtime attributes of the operating system can
cause the actual duration of the timer to be longer than requested.

callback

Under UNIX, if callback isnon-NULL, the timer request is queued and
IDL_Timer Set() returnsimmediately. When the alarm is due, the function
pointed at by callback is called. If callback isNULL (and not
from_callback), the request is queued and IDL_Timer Set() blocks until the
requested time expires.

Warning
When called, the callback function will be running in signal scope, meaning that it
has been called from a signal handler running asynchronously from the rest of the
program. There are significant restrictions on what code running in signal scopeis
allowed to do. Most common C library functions (such as printf()) are disallowed.
Consult abook on UNIX programming or your system documentation for details.

Under Windows, callback should alwaysbe NULL. IDL_Timer Set() does not
support non-blocking timers on these platforms.

from_callback

Set this argument to TRUE if thisinvocation is from acallback function
previously set up viaacall to IDL_Timer Set(). Set thisargument to FAL SE if
thisisthe first invocation. In other words, this argument should only be TRUE
if you call IDL_Timer Set() from within atimer callback.

External Development Guide Making Timer Requests

338 Chapter 18: IDL Internals: Timers

context

Thisargument is a pointer to avariable of typeIDL_TIMER_CONTEXT, an
opaque IDL datatype that uniquely identifies atimer request. If thisisatop
level request (if from_callback is FALSE), the context pointed at will be
assigned a unigque value that identifies the request.

If this request is coming from within a timer callback in order to make another
reguest on the same timer, the context pointed at should contain the value from
the previous request.

If context isNULL, no context value is returned.

Note

Itis an error to queue more than one request using the same callback. The results
are undefined.

For the timer module to perform adequately, the time request must be large compared
to the run-time of the called function. Re-queuing an extremely short request
repeatedly will cause any other requests to starve.

Making Timer Requests External Development Guide

Chapter 18: IDL Internals: Timers 339

Canceling Asynchronous Timer Requests

Under UNIX, IDL_TimerCancel() can be used to cancel atimer request that has not
yet been delivered:

voi d | DL_Ti mer Cancel (cont ext)

where:
context

A timer request context returned by a previous call to IDL _Timer Set().

External Development Guide Canceling Asynchronous Timer Requests

340 Chapter 18: IDL Internals: Timers

Blocking UNIX Timers

Under UNIX operating systems, the delivery of signals such as SIGALRM (used to
manage timers) can cause system calls to be interrupted. In such cases, the system
call returnsastatusof -1 and the global errnovariableisset tothevalue EINTR. Itis
the caller’s responsibility to check for this result and restart the system call when it
occurs.

It is easy enough to handle this case when you make system calls directly, but
sometimes the problem surfacesin libraries (even those provided by the system, such
asl i bc) that are not properly coded against this possibility because the author
assumed that no interrupts would occur. Thereis very little that the end user can do
about such libraries except take steps that prevent signals from being raised during
these critical sections.

If the IDL timer module is being used to deliver asynchronous events, it isinevitable
that the delivery of SIGALRM will interfere with this sort of library code. The
IDL_TimerBlock() function is available under UNIX to suspend the delivery of the
timer signal. This can be used to provide awindow in which no timer will fire. This
routine should always be called in pairs, so the timer doesn't get turned off
permanently. It isimportant to be sureal ongj mp() (such as caused by calling
IDL_Message() with theIDL_M SG_L ONGJM P action code) doesn’t happen in
the critical region. In addition, this function is not re-entrant.

The effect of blocking timer delivery isthat the UNIX SIGALRM signal is masked
to prevent delivery. If the timer fires during this window of time, the signal will not
be delivered until timers are unblocked. At that time, the timer module resumes
managing the single real UNIX timer. In the meantime, timer requests are arbitrarily
delayed from being queued and processed. Clearly, excessive blocking of the timer
can lead to poor timer performance and should only be performed when necessary
and on the smallest possible critical section of code. Of course, the act of blocking
and unblocking signals requires a context switch into the UNIX kernel and back,
making them relatively computationally expensive operations. It istherefore better to
block alonger section of code rather than block and unblock around every critical
library call.

It has been our experience that some UNIX platforms have more problem with this
issue than others. You should let experience guide you in deciding when to block
signals and when to let them go. Input/Output to device specia files under HP-UX
and SGI IRIX are known to be especialy vulnerable.

voi d | DL_Ti nmer Bl ock(st op)

where:

Blocking UNIX Timers External Development Guide

Chapter 18: IDL Internals: Timers 341

stop

TRUE if the timer should be suspended, FAL SE to restart it.

External Development Guide Blocking UNIX Timers

342 Chapter 18: IDL Internals: Timers

Blocking UNIX Timers External Development Guide

Chapter 19:

IDL Internals:
Miscellaneous

Information

This chapter discusses the following topics:

DynamicMemory 344
ExitHandlers, 347
Userinterrupts, 348
Functionsfor Returning System Variables 349
Terminal Information 350

External Development Guide

Ensuring UNIX TTY State 352
Type Information 353
User Information 355
Congantsccvvinnnn.. 356
Macrosc i 357

343

344 Chapter 19: IDL Internals: Miscellaneous Information

Dynamic Memory

IDL provides access to the dynamic memory allocation routines it uses internally.
Usethese routines rather than system-provided routines such as malloc()/free() when
possible.

Warning
The memory pointers returned by the IDL memory allocation routines discussed in
this chapter do not necessarily correspond directly to malloc()/free() cals, or to any
other system memory allocation package. You must be careful not to mix memory
allocation packages. Memory allocated via agiven API can only be freed by the
corresponding free call provided by that API. For example, memory allocated by an
IDL memory allocation routine can only be freed by the IDL IDL_MemFreg()
function. Memory allocated by malloc() can only be freed by free().

Failure to follow this rule can lead to memory corruption, including possible
crashing of the IDL program.

Please note that code called via CALL_EXTERNAL, or as a system routine
(LINKIMAGE, Dynamically L oadable Modules) should not use the IDL dynamic
memory routines. Instead, use IDL_GetScratch() (see “ Getting Dynamic Memory”
on page 238) which prevents memory from being lost under error conditions.

Warning
Our experience shows that in situations where IDL_GetScratch() is appropriate,
use of any other memory allocation mechanism should raise awarning flag to the
programmer that something iswrong in their code. Rarely if ever isadirect call to
malloc()/free() reasonable in such a situation — even if it appears to work
correctly, you will have to work harder to provide the error handling functionality
that IDL _GetScratch() provides automatically, or your code will leak memory in
such situations.

IDL_MemAlloc()

IDL_MemAlloc() is used to allocate dynamic memory.
void *I DL_MenAl | oc(I DL_MEM NT n, char *err_str, int action)

where:

Dynamic Memory External Development Guide

Chapter 19: IDL Internals: Miscellaneous Information 345

n

The number of bytesto allocate.

err_str

NULL, or anull terminated text string describing the memory being allocated.
action

An action parameter to be passed to IDL_Message() if IDL_MemAlloc() isunable
to allocate the desired memory and err_str isnon-NULL.

IDL_MemAlloc() attempts to alocate the desired amount of memory. If the
requested amount is alocated, a pointer to the memory is returned. The memory is
aligned strictly enough to be suitable for any object.

If the attempt to allocate memory failsand err_str isnon-NULL, IDL_Message() is
called as:

| DL_Message(! DL_M CNTGETMEM action, err_str)

If IDL_M essage() returns, or if err_str isNULL and IDL_Message() is not called,
IDL_MemAlloc() returnsa NULL pointer indicating its failure.

IDL_MemFree()

Memory allocated via | DL_MemAlloc() should only be returned via
IDL_MemFree():

voi d | DL_MenFree(REG STER void *m char *err_str, int action)

m

A pointer to memory previously alocated vial DL _MemAlloc().
err_str

NULL, or anull terminated text string describing the memory being freed.
action

An action parameter to be passed to I DL_Message() if unable to free memory and
err_str isnon-NULL.

IDL_MemFreg() attempts to free the specified memory. If the attempt to free
memory failsand err_str isnon-NULL, IDL_Message() iscalled as:

External Development Guide Dynamic Memory

346 Chapter 19: IDL Internals: Miscellaneous Information

| DL_Message(| DL_M CNTFREMEM action, err_str)
The following actions have undefined conseguences, and should not be done:
* Returning memory allocated from a source other than IDL_MemAlloc().
» Freeing the same allocation more than once.

» Dereferencing memory onceit has been freed.
IDL_MemAllocPerm()

Another memory allocation routine, IDL_MemAllocPer m(), existsto allocate
dynamic memory that will not be returned for reuse. IDL_M emAllocPerm()
allocates memory in moderately large units and carves out pieces of these blocksto
satisfy its requests. Use of this routine can help minimize the effects of memory
fragmentation.

voi d *1 DL_MenmAl | ocPerm(I DL_MEM NT n, char *err_str, int action)

IDL_MemAllocPer m() takes the same arguments as | DL _M emAlloc(), differing
only in that the memory allocated will not be freed until the process exits. Do not
attempt to free memory alocated by IDL_MemAllocPerm(). The results of such an
action are undefined.

Dynamic Memory External Development Guide

Chapter 19: IDL Internals: Miscellaneous Information 347

Exit Handlers

IDL maintainsalist of exit handler functions that it calls as part of its shutdown
operations. These handlers perform actions such as closing files, wrapping up
graphics output, and restoring the user environment to itsinitial state. Exit handlers
accept no arguments and return no value.

A typical declaration would be:

voi d nmy_exit_handl er (voi d)

{
/* d eanup Code Here */

}
IDL_EXxitRegister()

Toregister an exit handler, use the IDL _EXxitRegister () function:
voi d | DL_Exi t Regi ster (1 DL_EXI T_HANDLER FUNC)

where IDL_EXIT_HANDLER_FUNC is defined as:
typedef void(* | DL_EXI T_HANDLER FUNC) (voi d);

proc

IDL will call proc just beforeit exits.

The order in which exit handlers are called is undefined, and you should not depend
on any particular ordering. If you have several exit handlers and the order in which
they are called is important, you should register a single handler that calls all the
othersin the required order.

Note
Under some operating systems, it is possible that the IDL process will diein an
abnormal way that prevents the calling of the exit handlers. For example, under
UNIX, receiving some signals (possibly viathe kill(1) command) will cause the
processto dieimmediately. IDL always calls exit handlers when possible, so thisis
rarely asignificant problem.

External Development Guide Exit Handlers

348 Chapter 19: IDL Internals: Miscellaneous Information

User Interrupts

IDL catches certain operating system signals including SIGINT, which occurs when
the user types the interrupt character (usually Control-C). When the interpreter
detects the interrupt character, it sets an internal flag which causes execution of the
program to stop at the next sequence statement. The interpreter clears thisvariable
every timeit isinvoked, and checks to seeif it has been set before it executes each
statement. This means that when the user presses the interrupt character, the current
statement must compl ete before the interpreter checks the value of the variable and
halts execution.

Typica statements do not take long to complete, so this delay is not noticeable.
However, some system routines take along time to complete, and the user can be
fooled by the long delay into thinking that IDL isignoring the interrupt. While the
occasional long delay can be annoying, this method of handling interrupts isthe only
way to maintain acceptabl e performance in the usual case where no interrupt is
pending. Therefore, it isthe responsibility of system routines that take along timeto
complete to check the value of thisinternal variable and to clean up and return if
SIGINT isseen. IDL's Input/Output and FFT routines, among others, do this.

IDL_BailOut()

The IDL_BailOut() function is used to sense or set the state of IDL’s internal
interrupt flag. It returns TRUE if the keyboard interrupt character has been typed,
otherwise FAL SE.

int |DL_Bail Qut(int stop)

where:
stop

Set to FAL SE to sense the state of the keyboard interrupt flag without changing its
value. Set to TRUE to set the keyboard interrupt flag.

User Interrupts External Development Guide

Chapter 19: IDL Internals: Miscellaneous Information 349

Functions for Returning System Variables

The following functions return the values of certain system variables. Note that these
values should be considered READ-ONLY.

IDL_STRING *IDL_SysvVersionArch(void)

This function returns a pointer to the 'VERSION.ARCH system variable.
IDL_STRING *IDL_SysvVersionOS(void)

This function returns a pointer to the 'VERSION.OS system variable.
IDL_STRING *IDL_SysvVersionOSFamily(void)

This function returns a pointer to the 'VERSION.OS_FAMILY system variable.
IDL_STRING *IDL_SysvVersionRelease(void)

This function returns a pointer to the 'VERSION.RELEASE system variable.
IDL_STRING *IDL_SysvDirFunc(void)

This function returns a pointer to the !DIR system variable.
IDL_STRING *IDL_SysVErrStringFunc(void)

This function returns a pointer to the 'ERROR_STATE.M SG system variable.
IDL_STRING *IDL_SysvSyserrStringFunc(void)

This function returns a pointer to |ERROR_STATE.SYS _MSG system variable.
IDL_LONG IDL_SysvErrorCodeValue(void)

This function returns the value of the 'ERROR_STATE system variable.
IDL_LONG IDL_SysvOrderValue(void)

This function returns the value of the 'ORDER system variable.

For more information on IDL system variables, see Appendix J, “System Variables”
in the IDL Reference Guide manual.

External Development Guide Functions for Returning System Variables

350 Chapter 19: IDL Internals: Miscellaneous Information

Terminal Information

The global variable IDL_FileTerm isastructure of type IDL_TERMINFO:
typedef struct {

char *nane; /* Name OF Term nal Type */
char is_tty; /* True if stdinis a termnal */
int |ines; /* Lines on screen */
i nt col ums; /* Wdth of output */
} | DL_TERM NFO;

Note
Under operating systems that do not support the concept of aterminal (Microsoft
Windows) the name and is_tty fields are not present.

IDL_FileTerm isinitialized when IDL isstarted. Few, if any, user routines will need
thisinformation, because user routines should not do their own I/O. User routines
that must do their own 1/0 should use this variable instead of making assumptions
about the output device.

Note
Under Microsoft Windows, the IDL_FileTerm is not accessible outside of the IDL

sharable library, and cannot be directly accessed by user code. Instead, use the
functions described in the following section.

Functions for Returning IDL_FileTerm Variable
Values

The following functions can be used to return values from the IDL _FileTerm
variable. They return the same information contained in the global variable, but in a
functiona form. Thisisthe preferred way to access the IDL _FileTerm information,
asit will work on any platform.

char *IDL_FileTermName(void)

This function returns the value of IDL _FileTerm.name. Thisfunction isonly
available under UNIX.

int IDL_FileTermlIsTty(void)

This function returns the value of IDL _FileTerm.is_tty. Thisfunctionisonly
available under UNIX.

Terminal Information External Development Guide

Chapter 19: IDL Internals: Miscellaneous Information 351

int IDL_FileTermLines(void)
Thisfunction returns the value of IDL_FileTerm.lines.
int IDL_FileTermColumns(void)

This function returns the value of IDL_FileTerm.columns.

External Development Guide Terminal Information

352 Chapter 19: IDL Internals: Miscellaneous Information

Ensuring UNIX TTY State

Under some UNIX operating systems, IDL keeps the users terminal in araw mode,
required to implement command line editing. On these platforms, externally linked
code that performs output to the terminal will find that the output does not appear as
expected. A usua symptom of thisisthat newline characters ("\n’) do not move the
cursor to the left margin of the screen, and commands such as more(1) (perhaps
started viathe C runtime library system() function) do not control the screen

properly.
Thisisnot anissuefor IDL routines such as SPAWN that start sub-programs, because
they are written to be aware of thisissue and to ensurethe TTY isin the correct state

before they do their work. Externally linked code can call the IDL_TTY Reset()
function to do the same thing:

voi d I DL_TTYReset (voi d)

Thisfunction is available under all operating systems. On systems where such an
operation is not needed, it isastub. On platformsthat requirethe TTY to be managed
in thisway, this operation ensures that the terminal is returned to its standard
configuration.

Ensuring UNIX TTY State External Development Guide

Chapter 19: IDL Internals: Miscellaneous Information 353

Type Information

The following read-only global variables provide information about IDL data.

Note
Under Microsoft Windows, these global variables are not avail able; use the
functions listed below to retrieve the values contained in the global variables.

IDL_OutputFormat

An array of pointers to character strings. | DL _OutputFor mat isindexed by type
code, and specifies the default output formats for the different data types (see “ Type
Codes’ on page 208). The default formats are used by the PRINT and STRING built-
in routines as well as for type conversions.

IDL_OutputFormatLen

An array of integers. IDL_OutputFormatL en gives the length in characters of the
corresponding elements of IDL_OutputFormat.

IDL_TypeSize

An array of long integers. IDL_TypeSizeisindexed by type code, and gives the size
of the data object used to represent each type.

IDL_TypeName

An array of pointers to character strings. |DL_TypeName isindexed by type code,
and gives a descriptive string for each type.

Functions for Returning Data Type Variable Values

The following functions can be used to return the values contained in the global
variables described above, but in afunctional form.

char *IDL_OutputFormatFunc(int type)

Given an IDL type code, this function returns the default output format for that type.
Thisis equivalent to accessing the IDL _OutputFormat array.

External Development Guide Type Information

354 Chapter 19: IDL Internals: Miscellaneous Information

int IDL_OutputFormatLenFunc(int type)

Given an IDL type code, thisfunction returns the default output format length for that
type. Thisis equivalent to accessing the DL _OutputFormatL en array.

int IDL_TypeSizeFunc(int type)

Given an IDL type code, this function returns the size of the data object used to
represent that type. Thisis equivalent to accessing the IDL_TypeSize array.

char *IDL_TypeNameFunc(int type)

Given an IDL type code, this function returns the name of the type as anull
terminated character string. This is equivalent to accessing the IDL_TypeName

array.

Type Information External Development Guide

Chapter 19: IDL Internals: Miscellaneous Information 355

User Information

Usethel DL _GetUserInfo() function to get information about the current session.
Thisisthe sort of information that can be used in the header of files produced by
graphics drivers. It isused, for example, by the PostScript driver:

void | DL_Get User I nfo(l DL_USER | NFO *user _i nf 0)
wherethe IDL_USER_INFO struct is defined as:
typedef struct {

char *| ognane; /* User’s |login name */

char *honedir; /* User’'s home directory */

char *pid; /* The process ID */

char host[64]; /* Machi ne name */

char wd[| DL_MAXPATH+1] ; /* Working Directory */
char date[25]; /* Current System Time */

} 1 DL_USER | NFO

External Development Guide User Information

356 Chapter 19: IDL Internals: Miscellaneous Information

Constants

Preprocessor constants defined in thei dl _export . h file should be used in
preference to hardwired values. To accommodate the needs of various operating
systems, some of these constants have different values in different versions of IDL.
Those constants that are not discussed elsewhere in this book are listed below.

IDL_TRUE

A more readable alternative to the constant 1.
IDL_FALSE

A more readable alternative to the constant 0.
IDL_REGISTER

Some C compilers are good at allocating registers, and using the C register
declaration can cause efficiency to suffer. On the other hand, some C compilerswon’t
put any variablesinto registers unless register definitions are used. Our solution isto
use IDL_REGISTER to declare variables we feel should be placed into registers.
For machines that we feel have agood register allocation scheme, we define
IDL_REGISTER to be anull macro. For lesser compilers, it isdefined to be the C
regi ster keyword.

IDL_MAX_ ARRAY_DIM
The maximum number of dimensions an array can have.

IDL_MAXIDLEN

The maximum number of characters IDL allows in an identifier (variable names,
program names, and so on).

IDL_MAXPATH

The maximum number of characters allowed in afilepath.

Constants External Development Guide

Chapter 19: IDL Internals: Miscellaneous Information 357

Macros

The macros definedini dl _export . h handle recurring small jobs. Those macros
not discussed elsewhere in this book are covered here.

IDL_ABS(x)

IDL_ABS() acceptsasingle argument of any numeric C type, and returnsits absolute
value. IDL_ABS() evauatesits argument more than once, so be careful to avoid
unwanted side effects, and for efficiency do not call it with a complex expression.

IDL_CARRAY_ELTS(arr)

This macro encapsul ates a common C language idiom for determining the number of
elementsin astatically defined array without requiring the programmer to provide a
constant or otherwise hardwire the length. It’'s use improves the robustness of code
that uses it by automatically adapting to any change in the definition of the array
without requiring additional programmer effort. This macro corresponds directly to
the C expression:

sizeof (arr)/sizeof (arr[0])

The C compiler evaluates this expression at compile time, so there is no additional
runtime cost for using this macro instead of a hardwired constant.

IDL_CHAR(ptr)

IDL_CHAR() castsits argument to be apointer to char. It is used to convert an
existing pointer into ageneric pointer to amemory location.

IDL_CHARA (addr)

IDL_CHARA() takes the address of its argument and castsit to be a pointer to char.
It is used to get a generic pointer to amemory location.

IDL_MIN(x,y) and IDL_MAX(x,y)

The arguments can be of any numeric C type aslong asthey are compatible with each
other. IDL_MIN() and IDL_MAX() return the smaller and larger of their two
arguments, respectively. These macros evaluate their arguments more than once, so
be careful to avoid unwanted side effects, and for efficiency do not call them with a
complex expression.

External Development Guide Macros

358

Macros

Chapter 19: IDL Internals: Miscellaneous Information

IDL_ROUND_UP(x, m)

IDL_ROUND_UP() returns the value of x rounded up modulo m. m must be a
power of 2. Thismacro is useful for extending data regions out to a specified
alignment.

IDL_TRUE and IDL_FALSE

When performing logical expression evaluation the C programming language, in
which IDL iswritten, treats zero (0) as False, and non-zero as True, and when
returning the result of such an expression, uses 1 for True and O for False.
IDL_TRUE isdefined asthe constant 1, and IDL _FAL SE is defined as the constant
0. These constants are used internally by IDL.

External Development Guide

Part Ill: Techniques
That Use IDL’s
Internal APl

Chapter 20:

Adding System

Routines

This chapter discusses the following topics:

IDL and System Routines 362
The System Routine Interface 363
Example: HelloWorld 364

Example: Doing aLittle More (MULT2) . 365

Example: A Complete Numerical Routine
Example(FZ_ROOTS2) 368

External Development Guide

Example: An Example Using Routine Design
Iteration (RSUM) 376

Registering Routines 386
Enabling and Disabling System Routines 389

LINKIMAGE 396
Dynamically Loadable Modules 398
361

362

Chapter 20: Adding System Routines

IDL and System Routines

An IDL system routineisan IDL procedure or function that is written in a compiled
language with an IDL specific interface, and linked into IDL, instead of being written
inthe IDL languageitself.The best way to create an IDL system routineisto compile
and link the routine into a sharable library and then to add the routine to IDL at
runtime using either the LINKIMAGE procedure or by making your routines part of
aDynamically Loadable Module (DLM).

Note
Research Systems recommends the use of Dynamically L oadable Modules rather
than LINKIMAGE whenever possible. The small additional effort is more than
compensated for by the superior integration into IDL.

This chapter explains how to write a system routine, including several examples, and
discusses the various options for adding such routinesto IDL.

IDL and System Routines External Development Guide

Chapter 20: Adding System Routines 363

The System Routine Interface

All IDL system routines must supply the same calling interface to the system,
differing only in that system functions must return an IDL_VPTR to the
IDL_VARIABLE that contains the result while system procedures do not return
anything. Typica system routine definitions are:

I DL_VPTR ny_function(int argc, IDL_VPTR argv[], char *argk)
void ny_procedure(int argc, IDL_VPTR argv[], char *argk)

System routines that do not accept keywords are called with two arguments:
argc

The number of elementsin argv.
argv

Anarray of IDL_VPTRs. These point tothe | DL _VARIABL Eswhich comprise the
arguments to the function.

System routines that accept keywords are called with an additional third argument:
argk

The keywords which were present when the routine was called. argk is an opaque

object—the called routineis not intended to understand its contents. ar gk is provided

to the function IDL_K WPr ocessByOffset(), which processes the keywordsin a

standard way. For more information on keywords, see “IDL Internas: Keyword
Processing” on page 247.

External Development Guide The System Routine Interface

364 Chapter 20: Adding System Routines

Example: Hello World

Thanks to the definitive text on the C language (K ernighan and Ritchie, The C
Programming Language, Prentice Hall, NJ, Second Edition, 1988), the “Hello
World” program is often used as an example of atrivial program. Our version of this
program is a system function that returns a scalar string containing the text “Hello
World!”:

#i ncl ude <stdi o. h>
#i nclude "idl_export.h"

I DL_VPTR hel l o_world(int argc, IDL_VPTR argv[])

{
return(I DL_Str ToSTRING "Hello World!"));

}

Thisis about as simpleas an IDL system routine can be. The function
IDL_StrToSTRING(), returns atemporary variable which contains a scalar string.
Since thisis exactly what iswanted, hello_world() simply returns the variable.

After compiling thisfunction into a sharable object (named, for example, hello_exe),
we can link it into IDL with the following LINKIMAGE call:

LI NKI MAGE, ' HELLO WORLD' , 'hello_exe', 1, 'hello world', $
MAX_ARGS=0, M N_ARGS=0

We can now issue the IDL command:
PRI NT, HELLO WORLD()

In response, IDL writes to the screen:
Hel l o Worl d!

Example: Hello World External Development Guide

Chapter 20: Adding System Routines

Example: Doing a Little More (MULT?2)

The system function shown in the following figure does alittle more than the

365

previous one, though not by much. It expects a single argument, which must be an
array. It returns a single-precision, floating-point array that contains the values from

the argument multiplied by two.

#i ncl ude <stdio. h>
#i nclude "idl _export.h"

IDL_VPTR nmult2(int argc, |IDL_VPTR argv[])

| DL_VPTR dst, src;
float *src_d, *dst_d;
int n;

9 src = dst = argv[O0];

11 I DL_ENSURE_SI MPLE(src);
12 | DL_ENSURE_ARRAY(src) ;

13
14 if (src->type != | DL_TYP_FLOAT)
C 15 src = dst = IDL_CvtFlIt(1, argv);
16
17 src_d = dst_d = (float *) src->val ue. arr->dat a;
18
19 if (!(src->flags & | DL_V_TEMP))
20 dst_d = (float *)
21 | DL_MakeTenpArray(| DL_TYP_FLQOAT, src->val ue. arr->n_di m
22 src->val ue. arr->di m
23 I DL_ARR | NI _NOP, &dst);
24
25 for (n = src->value.arr->n_elts; n--;)
26 *dst_d++ = 2.0 * *src_d++;
27
28 return(dst);
291}
Table 20-1: mult2.c
Each lineis numbered to make discussion easier. These numbers are not part of the
actual program. Each line of thisroutineis discussed below:
1-2
Include the required header files.
4

Every system routine takes the same two or three arguments. argc is the number of
arguments, argv is an array of arguments. This routine does not accept keywords, so

argk isnot present.

External Development Guide Example: Doing a Little More (MULT2)

366 Chapter 20: Adding System Routines

dst will become a pointer to the resulting variable's descriptor. src points at the input
variable whichisfound in argv[0].

src_d and dst_d will point to the source and destination data areas.

n will contain the number of elementsin src.
10

Assume, for now, that the input variable will serve as both the source and destination.
Thiswill only betrueif the parameter is atemporary floating-point array.

11-12

Screen out any input that is not of abasic type, and only allow arrays. A better
version of this routine would handle scalar input also, but we want to keep the
example simple.

14

If theinput isnot of IDL_TYP_FL OAT, wecall thel DL _CvtFIt() function to create
afloating-point copy of the argument (see “Converting to Specific Types” on
page 302 for information about converting types).

Note that the routine could also be written, more efficiently, with aC switch
statement which would handle each of the eight possible data types, eliminating
conversion of the input parameter. This would be morein the spirit of the IDL
language, where system routines work with all possible data types and sizes, but is
outside the scope of this example.

17

Here, we initialize the pointers to the source and destination data areas from the array
block structure pointed to by the input variable descriptor.

19-23

If the input variable is not atemporary variable, we cannot change its value and
return it as the function result. Instead, we allocate a new temporary floating point
array into which the result will be placed. Notice how the number of dimensions and

Example: Doing a Little More (MULT2) External Development Guide

Chapter 20: Adding System Routines 367

their sizes are taken from the source variable array block. See “Array Variables’ on
page 221 and “ Temporary Variables’” on page 229.

25

Loop over each element of the arrays.
26

Do the multiplication for each element.

28

Return the temporary variable containing the result.
Testing the Example

Once we have compiled the function and linked it into IDL (possibly using
LINKIMAGE), we can use the built-in IDL function INDGEN to test the new
function, which we name MULT2. INDGEN returns an array of values with each
element set to the value of its array index. Therefore, the statement:

PRI NT, | NDGEN(5)
prints the following on the screen:
01234
To test our new function we use INDGEN to provide an input argument:
PRI NT, MJULT2(| NDGEN(5))
Theresult, as expected, is:
0.00000 2.00000 4.00000 6.00000 8.00000

External Development Guide Example: Doing a Little More (MULT2)

368 Chapter 20: Adding System Routines

Example: A Complete Numerical Routine
Example (FZ ROOTS2)

Thefollowing isacompleteimplementation of the IDL system function FZ_ROOTS,
used to find the roots of an m-degree complex polynomial, using Laguerre’'s method.
The result is an m-element complex vector. We call this version FZ_ROOTS2 to
avoid a name clash with the real routine. FZ_ROOTS2 has an additional keyword,
TC_INPUT, that is not present in the real routine.

FZ_ROOTS2 usesthe routine zr oots(), described in section 9.5 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press:

voi d zroots(fconmplex a[], int m fconplex roots[], int polish)
Quoting from the referenced book:

Given the degree m and the m+1 complex coefficients a[0..m] of the polynomial

im_ a(i)x' , thisroutine successively calls| aguer and finds all m complex rootsin
root_sfl..m] . Theboolean variablepol i sh should beinput astrue (1) if polishing (also
by Laguerre’s method) is desired, false (0) if the roots will be subsequently polished
by other means.

FZ_ROOTS2 will support both single and double precision complex values as well
as give the caler control over the error tolerance, which is hard wired into the
Numerical Recipescode asaC preprocessor constant named EPS. In order to support
these requirements, we have copied the zroots() function given in the book and
altered it to support both data types and make EPS a user specified parameter, giving
two functions:

void zroots_f(fconplex a[], int m fconplex roots[], int polish,
float eps);
voi d zroots_d(dconplex a[], int m dconplex roots[], int polish,

doubl e eps);

Note that fcomplex and dcomplex are Numerical Recipes defined types that happen
to have the same definition asthe IDL types IDL_COMPLEX and
IDL_DCOMPLEX, aconvenient fact that eliminates some type conversion issues.

The definition of FZ_ROOTS2 from the IDL user perspectiveis:
Calling Sequence

Result = FZ_ROOTS2(C)

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 20: Adding System Routines 369

Arguments

C

A vector of length m+1 containing the coefficients of the polynomial, in ascending
order.

Keywords

DOUBLE

FZ_ROOTS2 normally usesthe type of C to determine the type of the computation. If
DOUBLE is specified, it overrides this default. Setting DOUBLE to a non-zero value
causes the computation type and the result to be double precision complex. Setting it

to zero forces single precision complex.
EPS

The desired fractional accuracy. The default valueis 2.0 x 10°.
NO_ POLISH

Set this keyword to suppress the usual polishing of the roots by L aguerre’s method.

TC_INPUT

If present, TC_INPUT specifies anamed variable that will be assigned the input
value C, with its type converted to the type of the result.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

370 Chapter 20: Adding System Routines
Example
The following figure gives the code for fzroots2.c,. Thisis ANSI C code that
implements FZ_ROOTS2. The line numbers are not part of the code and are present
to make the discussion easier to follow. Each line of thisroutine is discussed below.
1Q#i ncl ude <stdio. h>
2Q#incl ude <stdarg. h>
3Q#include "idl _export.h"
4Q#i ncl ude <nr/nr. h>
5
6! DL_VPTR fzroots2(int argc, |IDL_VPTR *argv, char *argk)
U i
8 typedef struct {
9 | DL_KW RESULT_FI RST_FIELD; /* Must be first entry in this structure */
10 int force_type;
11 | DL_LONG do_doubl e;
12 doubl e eps;
13 | DL_LONG no_pol i sh;
14 I DL_VPTR tc_i nput;
150 } KWRESULT;
16 static I DL_KW PAR kw_pars[] = {
17 {"DOUBLE", IDL_TYP_LONG 1, O,
18 | DL_KW OFFSETOF(force_type), |DL_KW OFFSETOF(do_doubl e) },
19 { "EPS", IDL_TYP_DOUBLE, 1, 0, 0, |DL_KW OFFSETOF(eps) },
20 { "NO_PCLISH', IDL_TYP_LONG 1, |DL_KW ZERQ,
21 0, | DL_KW OFFSETOF(no_polish) },
22 { "TC_INPUT", 0, 1, |DL_KWOUT|IDL_KW ZERQ,
23 0, | DL_KW OFFSETOF(tc_input) },
c 24 { NULL }
258 1
26
27 KW RESULT kw,
28 | DL_VPTR resul t;
29] IDL_VPTR c_raw,
30] IDL_VPTR c_tc;
31 I DL_MEM NT m
32 voi d *out dat a;
33] IDL_ARRAY DI M dim
34 int rtype;
35 static | DL_ALLTYPES zero;
36
37 kw. eps = 2. Oe- 6;
38 (void) | DL_KWProcessByOffset(argc, argv, argk, kw pars, & _raw, 1, &w);
39
40 | DL_ENSURE_ARRAY(C_raw);
41] | DL_ENSURE_SI MPLE(c_raw);
42 if (c_raw>value.arr->n_dim!= 1)
43] 1 DL_Message(|DL_M NAVED GENERI C, | DL_MSG_LONGIMP,
44 "l nput argunent nust be a columm vector.");
45 m = c_raw >val ue. arr->din{0];
46 if (--m<=0)
47 I DL_Message(| DL_M NAMED GENERI C, | DL_NMSG LONGIMP,
48 "I nput array does not have enough el enents");

Table 20-2: fzroots2.c

Example: A Complete Numerical Routine Example (FZ_ROOTS2)

External Development Guide

Chapter 20: Adding System Routines 371

49 if (kw tc_input)

50 I DL_StoreScal ar (kw.tc_input, IDL_TYP_LONG &zero);

51

52 if (kw force_type) {

53 rtype = kw. do_double ? | DL_TYP_DCOWPLEX : |DL_TYP_COWPLEX;
54 } else {

55 rtype = ((c_raw >type == | DL_TYP_DOUBLE)

56 || (c_raw>type == | DL_TYP_DCOWPLEX))

57 ? | DL_TYP_DCOWPLEX : | DL_TYP_COVPLEX;

58

}
59 dinf0] = m
60 outdata = (void *)

61 | DL_MakeTenpArray(rtype, 1, di m | DL_ARR_I NI _NOP, & esul t);
62
63 if (c_raw>type == rtype) {
64 c_tc = c_raw,
C 65 } else {
66 c_tc = | DL_Basi cTypeConversion(1l, &_raw, rtype);
67 }
68
69 if (rtype == | DL_TYP_COWPLEX) {
70 zroots_f((fcomplex *) c_tc->value.arr->data, m
71 ((fconplex *)outdata)-1,!kw no_polish,(float) kw eps);
72 } else {
73 zroots_d((dconplex *) c_tc->val ue.arr->data, m
74 ((dconplex *) outdata) - 1, !kw no_polish, kw eps);
75 }
76

77 if (kwtc_input) |IDL_VarCopy(c_tc, kw. tc_input);
78 else if (c_raw!= c_tc) IDL_Deltnp(c_tc);

80 | DL_KW FREE;
81 return result;

Table 20-2: (Continued) fzroots2.c

nr . h isthe header file provided with Numerical Recipesin C code.

FZROOTS2 has the usual three standard arguments.
10

kw.force_type will be TRUE if the user specifies the DOUBLE keyword. In this
case, the value of the DOUBLE keyword will determine the result type without
regard for the type of the input argument.

If the user specifies DOUBLE, a zero value forces a single precision complex result
and non-zero forces double precision complex.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

372

Chapter 20: Adding System Routines

12

The value of the EPS keyword.
13

The value of the NO_POLISH keyword.
14

The vaue of the TC_INPUT keyword.
16

This array defines the keywords accepted by FZ_ROOTS2.
17

Since setting DOUBLE to 0 has a different meaning than not specifying the keyword
at al, kw.force_typeis used to detect the fact that the keyword is set independent of
itsvaue.

19

The EPS keyword allows the user to specify the kw.eps tolerance parameter. kw.eps
is specified as double precision to avoid losing accuracy for double precision
computations—it will be converted to single precision if necessary. The default value
for this keyword is non-zero, so no zeroing is specified here. If the user includes the
EPS keyword, the value will be placed in kw.eps, otherwise kw.eps will not be
changed.

20

This keyword lets the user suppress the usual polishing performed by zroots(). Since
specifying avalue of 0 is equivalent to not specifying the keyword at all,
IDL_KW_ZERO isused to initialize the variable.

22

If present, TC_INPUT isan output keyword that will have the type converted value
of the input argument stored in it. By specifying IDL_KW_OUT and
IDL_KW_ZERO, we ensure that TC_INPUT is either zero or a pointer to avalid
IDL variable.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 20: Adding System Routines 373

27

The results of keyword processing will all be written to this variable by
IDL_KWProcessByOffset().

28

This variable will receive the function result.
29

The input argument prior to any type conversion.
30

The type converted input variable. If the input variable is already of the correct type,
thiswill be the same as ¢c_raw, otherwise it will be different.

31
The value of mto be passed to zr oots().
32

Pointer to the data area of the result variable. We declareit as(voi d *) sothatit can
point to data of any type.

33

Used to specify dimensions of theresult. Thiswill always be a vector of m elements.
34

IDL type code for result variable.
35

Used by IDL _StoreScalar () to type check the TC_INPUT keyword. It isdeclared as
static to ensureit isinitialized to zero.

37

Set the default EPS value before doing keyword processing. If the user specifies EPS,
the supplied value will override this. Otherwise, this value will still be in kw.epsand
will be passed to zroots() unaltered.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

374

Chapter 20: Adding System Routines

38
Perform keyword processing.
40-41

Ensure that the input argument is an array, and is one of the basic types (not afile
variable or structure).

42-44

The input variable must be a vector, and therefore should have only asingle
dimension.

45-48

Ensure that the input variable islong enough for m to be non-zero. mis one less than
the number of elementsin the input vector, so thisis equivalent to saying that the
input must have at least 2 elements.

49

If the TC_INPUT keyword was present, use | DL _StoreScalar () to make sure the
named variable specified can receive the converted input value. A nice side effect of
this operation is that any dynamic memory currently being used by this variable will
be freed now instead of |ater after we have allocated other dynamic memory. This
freed memory might be immediately reusable if it is large enough, which would
reduce memory fragmentation and lower overall memory requirements.

52

If the user specified the DOUBLE keyword, it is used to control the resulting type,
otherwise the input argument typeis used to decide.

53

The DOUBLE keyword was specified. If it is non-zero, use
IDL_TYP_DCOMPLEX, otherwise IDL_TYP_COMPLEX.

55-57

Use the input type to decide the result type. If theinputisIDL_TYP_DOUBLE or
IDL_TYP DCOMPLEX, uselDL_TYP_DCOMPLEX, otherwise
IDL_TYP_COMPLEX.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 20: Adding System Routines 375

59-61
Create the output variable that will be passed back as the result of FZ_ROOTS2.
63-67

If necessary, convert the input argument to the result type. Thisis done after creation
of the output variable because it islikely to have ashort lifetime. If it does get freed at
the end of thisroutine, it won’t cause memory fragmentation by leaving aholein the
process virtual memory.

69
The version of zrootg() to call depends on the data type of the result.
70-71

Single precision complex. Note that the outdata pointer is decremented by one
element. This compensatesfor the fact that the Numerical Recipe routinewill index it
from [1..m] rather than [0..m-1] asis the usual C convention. Also, kw.epsis cast to
single precision.

73-74
Double precision complex case.
77

If the user specified the TC_INPUT keyword, copy the type converted input into the
keyword variable. Since Var Copy() freesits source variable if it is atemporary
variable, we are relieved of the usual responsibility to call IDL_Deltmp() if c_tc
contains atemporary variable created on line 66.

78

The user didn’t specify the TC_INPUT keyword. In this case, if we alocated c_tc on
line 66, we must free it before returning.

80
Free any resources allocated by keyword processing.
81

Return the result.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS2)

376 Chapter 20: Adding System Routines

Example: An Example Using Routine Design
lteration (RSUM)

We now show how a simple routine can be developed in stages. RSUM is afunction
that returns the running sum of the valuesin its single input argument. We will
present three versions of this routine, each one of which represents an improvement
in functionality and flexibility.

All three versions use the function IDL_M akeTempFromTemplate(), described in
“Creating A Temporary Variable Using Another Variable As A Template” on

page 233. Theresult of RSUM aways has the same genera shape and dimensions as
the input argument. |DL_M akeTempFromTemplate() encapsul ates the task of
creating atemporary variable of the desired type and shape using the input argument
asatemplate.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 20: Adding System Routines 377

Running Sum (Example 1)

The first example of RSUM isvery simple. Here is asimple “Reference Manua”
style description of it:

RSUM1

Compute arunning sum on the array input. The result is a floating point array of the
same dimensions.

Calling Sequence
Result = RSUM 1(Array)
Arguments

Array

Array for which arunning sum will be computed.

Thisisaminimal design that lacks some important characteristics that IDL
system routines usually embody:

* |t doesnot handle scalar input.

* Thetype of theinput isinflexible. IDL routines usually try to handle any
input type and do whatever type conversions are necessary.

» Theresult typeisalways single precision floating point. IDL routines
usua ly perform computationsin the type of the input arguments and return
avalue of the same type.

We will improve on this design in our subsequent attempts. The code to implement
RSUM1 is shown in the following figure. The line numbers are not part of the code

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

378 Chapter 20: Adding System Routines

and are present to make the discussion easier to follow. Each line of thisroutineis
discussed below:

IDL_VPTR I DL_rsunil(int argc, |DL_VPTR argv[])

1

2{

3] IDL_VPTR v;

4 I DL_VPTR r;

5 float *f_src;
6 float *f_dst;
7
8

| DL_MEM NT n;

9
10 v = argv[0];
11 if (v->type != I DL_TYP_FLOAT)
12 | DL_Message(| DL_M NAMED GENERI C, | DL_MSG_LONGIMP,

C 13 "argunent nust be float");

14 | DL_ENSURE_ARRAY(V) ;
15 | DL_EXCLUDE_FI LE(V);
16
17 f_dst = (float *)
18 | DL_Var MakeTenpFr onTenpl at e(v, | DL_TYP_FLOAT,
19 (IDL_StructDefPtr) 0, &, FALSE);

20 f_src = (float *) v->value. arr->data;

21 n = v->value.arr->n_elts - 1;

22 *f_dst++ = *f_src++;/* First elenent */

23 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;

25 return r;

Table 20-3: Code for IDL_rsum1()

The standard signature for an IDL system function that does not accept keywords.

Thisvariable is used to access the input argument in a convenient way.

ThisIDL_VPTR will be used to return the result.
5-6

As the running sum is computed, f_src will point at theinput dataand f_dst will
point at the output data.

The number of elementsin the input.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 20: Adding System Routines 379

10
Obtain the input variable pointer from argv[0].
11

If the input is not single precision floating point, throw an error and quit. Thisis
overly rigid. Real IDL routines would attempt to either type convert the input or do
the computation in the input type.

14
Thisversion can only handle arrays. If the user passes a scalar, it throws an error.
15

This routine cannot handle ASSOC file variables. Most IDL routines exclude such
variables as they do not contain any data to work with. ASSOC variable data usually
comes into a routine as the result of an expression that yields a temporary variable
(e.g. TMP = RSUM MY_ASSOC VAR(2))).

17

Create a single precision floating point temporary variable of the same size as the
input variable and get a pointer to its data area.

20

Get apointer to the data area of the input variable. At this point we know thisvariable
is always afloating point array.

21

The number of data elementsin the input.
22-23

The running sum computation.
25

Return the result.

Running Sum (Example 2)

In our second example of RSUM, we improve on version 1 in severa ways:

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

380 Chapter 20: Adding System Routines

* RSUMZ2 accepts scalar input.

» If theinput isnot of floating type, we type convert it instead of throwing an
error.

» If theinput isatemporary variable of the correct type, we will do the running
sum computation in place and return the input as our result variabl e rather than
creating an extra temporary. This optimization reduces memory use, and can
have positive effects on dynamic memory fragmentation.

Asaways, thefirst step in writing a system routine is to write a simple description of
its interface and intended behavior:

RSUM2

Compute arunning sum on the input. The result is a floating point variable with the
same structure.

Calling Sequence
Result = RSUM 2(Input)
Arguments

Input

Scalar or array data of any numeric type for which arunning sum will be
computed.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 20: Adding System Routines 381

The following is the code for RSUM2:

1

2{

3] IDL_VPTR v;

4 I DL_VPTR r;

5 float *f_src;
6 float *f_dst;
7] IDL_MEMNT n;
8

10 v = | DL_Basi cTypeConversion(1l, argv, |DL_TYP_FLOAT);
11 /* | DL_Basi cTypeConversion calls | DL_ENSURE_SI MPLE, so
12 skip it here. */

13 | DL_Var Get Dat a(v, &n, (char **) &f _src, FALSE);

14
C 15 /* Get a result var, reusing the input if possible */
16 if (v->flags & V_.TEMP) {
17 r = v;
18 f_dst = f_src;
19 } else {
20 f_dst = (float *)
21 | DL_Var MakeTenpFrontTenpl at e(v, | DL_TYP_FLOAT,
22 (IDL_StructDefPtr) 0, &, FALSE);
23 }
24
25 *f_dst++ = *f_src++;/* First element */
26 n--;
27 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;
28
29 return r;
30K}

I DL_VPTR I DL_rsun®(int argc, IDL_VPTR argv[])

Table 20-4: Code for IDL_rsum2().

Discussion of the code for the improvementsintroduced in this version follow:

10

If the input has the wrong type, obtain one of the right type. If it was already of the
correct type, IDL_BasicTypeConversion() will simply return the input value
without allocating atemporary variable. Hence, no explicit check for that is required.
Also, if theinput argument cannot be converted to the desired type (e.g. itisa
structure or file variable) IDL_BasicTypeConversion() will throw an error. Hence,
we know that the result from this function will be what we want without requiring
any further checking.

13

IDL _Var GetData() isamore elegant way to obtain a pointer to variable data along
with a count of elements. A further benefit isthat it automatically handles scalar

variables which

External Development Guide

removes the restriction from RSUM 1.

Example: An Example Using Routine Design Iteration (RSUM)

382

Chapter 20: Adding System Routines

15-23

If theinput variableis atemporary, we will do the computation in place and return the
input. Otherwise, we create a temporary variable of the desired type to be the result.

Note that if IDL_BasicTypeConversion() returned a pointer to anything other than
the passed in value of argv[0], that value will be atemporary variable which will then
be turned into the function result by this code. Hence, we never free the value from
IDL_BasicTypeConversion().

Running Sum (Example 3)

RSUM2 isabig improvement over RSUM 1, but it still suffers from the fact that all
computation is done in asingle datatype. A real IDL system routine always tries to
perform computations in the most significant type presented by its arguments. In a
single argument case like RSUM, that would mean doing computations in the input
data type whatever that might be. Our final version, RSUMS3, resolves this
shortcoming.

RSUM3

Compute arunning sum on the input. The result is a variable with the same type and
structure as the input.

Calling Sequence

Result = RSUM 3(Input)

Arguments

Input

Scalar or array data of any numeric type for which arunning sum will be
computed.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 20: Adding System Routines

383

The code for RSUM 3 is given in the following figure. Discussion of the code for the
improvements introduced in this version follow:

1fcx_public IDL_VPTR IDL_rsunB(int argc, IDL_VPTR argv[])
21{
3 IDL_VPTR v, r;
4 uni on {
5 char *sc; /* Standard char */
6 UCHAR *c; /* 1 DL_TYP_BYTE */
7 I DL_I NT *i; /* IDL_TYP_INT */
8 I DL_UINT *ui; /* IDL_TYP_UINT */
9 I DL_LONG *1; /* | DL_TYP_LONG */
10 I DL_ULONG *ul ; /* | DL_TYP_ULONG */
11 | DL_LONG64 *| 64; /* | DL_TYP_LONG64 */
12 | DL_ULONG64 *ul 64; /* | DL_TYP_ULONG64 */
13 float *f; /* | DL_TYP_FLOAT */
14 doubl e *d; /* 1 DL_TYP_DOUBLE */
15 | DL_COMPLEX *cnp; /* 1 DL_TYP_COWPLEX */
16 | DL_DCOMPLEX *dcnp; /* 1 DL_TYP_DCOWPLEX */
17§} src, dst;
18 I DL_LONG n;
19
20
21fv = argv[O];
22fif (v->type == IDL_TYP_STRI NG
23 v = | DL_Basi cTypeConversion(1l, argv, |DL_TYP_FLOAT);
2441 DL_Var Get Data(v, &n, &(src.sc), TRUE);
C 25Qn--; /* First is a special case */
26
274/ * Get a result var, reusing the input if possible */
28Qif (v->flags & IDL_V_TEMP) {
29 r =v;
30 dst = src;
31} else {
32 dst.sc = | DL_Var MakeTenpFroniTenpl ate(v, v->type,
(IDL_StructDefPre) 0, &, FALSE);
33}
34
35 #def i ne DOCASE(type, field) \
36case type: for (*dst.field++ = *src.field++; n--;dst.field++)\
37 *dst.field = *(dst.field - 1) + *src.field++; break
38
39 j#def i ne DOCASE_CMP(type, field) case type: \
40ffor (*dst.field++ = *src.field++; n--; \
41 dst.field++, src.field++) { \
42 dst.field-> = (dst.field - 1)->r + src.field->r; \
43 dst.field-> = (dst.field - 1)-> + src.field->i; } \
44 Qbr eak
45
46 switch (v->type) {
47 DOCASE(| DL_TYP_BYTE, c);
48 DOCASE(| DL_TYP_INT, i);

External Development Guide

Table 20-5: Code for IDL_rsum3.

Example: An Example Using Routine Design Iteration (RSUM)

384 Chapter 20: Adding System Routines

79 DOCASE(TDL_TYP_LONG, 1)

50 DOCASE(| DL_TYP_FLOAT, f);

51 DOCASE(| DL_TYP_DOUBLE, d);

52 DOCASE_CMP(| DL_TYP_COMPLEX, cnp);
53 DOCASE_CMP(| DL_TYP_DCOMPLEX, dcnp)
54 DOCASE(| DL_TYP_UI NT, ui);

55 DOCASE(| DL_TYP_ULONG, ul);

56 DOCASE(| DL_TYP_LONG64, | 64);

C 57 DOCASE(| DL_TYP_ULONGS4, ul 64);
58 defaul t: | DL_Message(|DL_M NAVED GENERI C, | DL_MSG LONGIMP,
59 "unexpected type");
60 }

61 j#undef DOCASE

62 j#undef DOCASE_CMP
63
64 freturn r;
654}

Table 20-5: (Continued) Code for IDL_rsuma3.
17

f_srcandf_dst are no longer pointersto float. They are now the IDL_ALLPTR
type, which can point to data of any IDL type. To reflect this changein scope, the
leading f_ prefix has been dropped.

22-23

Strings are the only input type that now require conversion. The other types can either
support the computation, or are not convertable to atype that can.

36-38

The code for the running sum computation islogically the same for all non-complex
datatypes, differing only inthe IDL_ALLPTR field that is used for each type.

Using a macro for this means that the expression is only typed in once, and the C
compiler automaticaly fillsin the different parts for each datatype. Thisisless error
prone than entering the expression manually for each type, and leads to more
readable code. Thisisone of the rare cases where a macro makes things morereliable
and readable.

39-44

A macro for the 2 complex types.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 20: Adding System Routines 385

46-60

A switch statement that uses the macros defined above to perform the running sum on
all possible types. Note the default case, which traps attempts to compute a running
sum on structures.

61-62

Don't allow the macros used in the above switch statement to remain defined beyond
the scope of this function.

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

386 Chapter 20: Adding System Routines
Registering Routines

The IDL_SysRtnAdd() function adds system routines to IDL’s internal tables of
system functions and procedures. As a programmer, you will need to call this
function directly if you arelinking aversion of DL to which you are adding routines,
although thisisvery rare and not considered to be agood practice for maintainability
reasons. More commonly, you use I DL _SysRtnAdd() in the IDL_L oad() function
of a Dynamically Loadable Module (DLM). DLMs are discussed in “Dynamically

L oadable Modules” on page 398.

Note
LINKIMAGE or DLMs are the preferred way to add system routinesto IDL
because they do not require building a separate IDL program. Of the two, Research
Systems recommends the use of DLMs whenever possible. These mechanisms are
discussed in the following sections of this chapter.

Syntax

int | DL_SysRtnAdd(I|DL_SYSFUN DEF2 *defs, int is_function, int cnt)
It returns True if it succeeds in adding the routine or False in the event of an error.

Arguments

defs

An array of IDL_SY SFUN_DEF?2 structures, one per routine to be declared.
Thisarray must be defined with the C language static storage class because
IDL keeps pointers to it. defs must be sorted by routine name in ascending
lexical order.

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SY SFUN_DEF2 structures contained in the defs array.

Registering Routines External Development Guide

Chapter 20: Adding System Routines 387

The definition of IDL_SYSFUN_DEF2is:
typedef | DL_VARI ABLE *(* | DL_SYSTRN_GENERI O) ();

typedef struct {
| DL_SYSRTN_GENERI C funct _addr;
char *nane;
unsi gned short arg_min;
unsi gned short arg_nax;
int flags
voi d *extra;
} 1 DL_SYSFUN_DEF2;

IDL_VARIABLE structures are described in “The IDL_VARIABLE
Structure” on page 217.

funct_addr
Address of the function implementing the system routine.
name

The name by which the routine is to be invoked from within IDL. This should
be a pointer to a null terminated string. The name should be capitalized. If the
routine is an object method, the name should be fully qualified, which means
that it should include the class name at the beginning followed by two
consecutive colons, followed by the method name (e.g. CLASS: : METHOD).

arg_min
The minimum number of arguments allowed for the routine.
arg_max

The maximum number of arguments allowed for the routine. If the routine
does not place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

flags

A bitmask that provides additional information about the routine. Itsvalue can
be any combination of the following values (bitwise OR-ed together to specify
more than one at atime) or zero if no options are necessary:

External Development Guide Registering Routines

388 Chapter 20: Adding System Routines

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning messageif thisroutineis called and
IWARN.OBS_ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.
IDL_SYSFUN_DEF_F_METHOD

This routine is an object method.
extra

Reserved to Research Systems, Inc. The caller should set thisto 0.
Example

The following example shows how to register a system routine linked directly with
IDL. For simplicity, everything is placed in asinglefile. Normally, you would
modularize things to allow easier code maintenance.

#i ncl ude <stdi o. h>
#i nclude "idl_export.h"

voi d prox1(int argc, IDL_VPTR argv[])
{

printf("prox1l %\n", IDL_LongScal ar(argv[0]));
}

mai n(int argc, char *argv[])
{
static | DL_SYSFUN_DEF2 new pros[] = {
{ (1 DL_SYSRTN_GENERI C) prox1, "PROX1", 1, 1, 0, 0}
b

if (!IDL_SysRtnAdd(new_pros, |IDL_FALSE, 1))
| DL_Message(| DL_M GENERI C, | DL_MSG RET,
"Error addi ng systemroutine");
return | DL_Mai n(0, argc, argv);
}

This adds a system procedure named PROX 1 which accepts a single argument. It
converts this argument to a scalar longword integer and prints it.

Registering Routines External Development Guide

Chapter 20: Adding System Routines 389

Enabling and Disabling System Routines

The following IDL internal functions allow the enabling and/or disabling of IDL
system routines. Disabled routines throw an error when called from IDL code instead
of performing their usual functions.

These routines are primarily of interest to authors of Runtime or Callable IDL
applications.

External Development Guide Enabling and Disabling System Routines

390 Chapter 20: Adding System Routines

Enabling Routines

The IDL_SysRtnEnable() function is used to enable and/or disable system routines.

Syntax

void I DL_SysRt nEnabl e(int is_function, |IDL_STRI NG *nanes,
IDL_MEM NT n, int option,
| DL_SYSRTN_GENERI C di sf cn)

Arguments

is_function
Set to TRUE if functions are being manipulated, FAL SE for procedures.
names

NULL, or an array of names of routines.

n
The number of namesin names.

option
One of the values from the following table which specify what this routine
should do.

Bit Description
IDL_SRE_ENABLE Enable specified routines.
IDL_SRE_ENABLE_EXCLUSIVE Enable specified routines and disable all

others.
IDL_SRE_DISABLE Disable specified routines.
IDL_SRE_DISABLE_EXCLUSIVE | Disable specified routines and enable all
others.

Table 20-6: Values for option Argument

Enabling and Disabling System Routines External Development Guide

Chapter 20: Adding System Routines 391

disfcn

NULL, or address of an IDL system routine to be called by the IDL interpreter
for these disabled routines. If thisargument is not provided, a default routineis
used.

Result

All routines are enabled/disabled as specified. If a non-existent routineis specified, it
isquietly ignored. Attempts to enable routines disabled for licensing reasons are also
quietly ignored.

Note
Theroutines CALL_FUNCTION, CALL_METHOD (function and procedure),
CALL_PROCEDURE, and EXECUTE are not real system routines, but are
actually special casesthat result in different IDL pcode. For this reason, they cannot
be disabled. However, anything they can call can be disabled, so thisisnot aserious
drawback.

External Development Guide Enabling and Disabling System Routines

392 Chapter 20: Adding System Routines

Obtaining Enabled/Disabled Routine Names

The IDL_SysRtnGetEnabledNames() function can be used to obtain the names of
all system routines which are currently enabled or disabled, either due to licensing

reasons (i.e., some routines are disabled in IDL demo mode) or due to acall to
IDL_SysRtnEnable().

Syntax

voi d | DL_SysRt nGet Enabl edNanes(int is_function,

I DL_STRING *str, int
enabl ed)

Arguments

is_function

Set to TRUE if alist of functionsis desired, FALSE for alist of procedures.
str

Points to a buffer of IDL_STRING descriptorsto fill in. The caller must call
IDL_SysRtnNumEnabled() to determine how many such routines exist, and
this buffer must be large enough to hold that number.

enabled

Set to TRUE to receive names of enabled routines, FAL SE to receive names of
disabled ones.

Result

The memory supplied viastr isfilled in with the desired names.

Enabling and Disabling System Routines External Development Guide

Chapter 20: Adding System Routines 393

Obtaining the Number of Enabled/Disabled Routines
The DL _SysRtnGetEnabledNames() function requires you to supply a buffer large
enough to hold all of the namesto be returned. IDL _SysRtnNumEnabled() can be
called to obtain the number of such routines, allowing you to properly size the buffer.

Syntax
| DL_MEM NT | DL_SysRt nNurmEnabl ed(int is_function, int enabled)

Arguments

is_function
Set to TRUE if the number of functionsis desired, FAL SE for procedures.
enabled

Set to TRUE to receive number of enabled routines, FAL SE to receive number
of disabled ones.

Result

Returns the requested count.

External Development Guide Enabling and Disabling System Routines

394 Chapter 20: Adding System Routines

Obtaining the Real Function Pointer
The IDL_SysRtnGetRealPtr () routine returns the pointer to the actual internal IDL
function that implements the system function or procedure of the specified name.

This routine can be used to interpose your own code in between IDL and the actual
routine. This processis sometimes called hooking in other systems. To implement
such ahook function, you must use the | DL _SysRtnEnable() function to register the
interposed routine, whichinturn uses IDL _SysRtnGetReal Ptr () to obtain the actual
IDLfunction pointer for the routine.

Syntax

| DL_SYSRTN GENERI C I DL_SysRtnGet Real Ptr(int is_function,
char *nane)

Arguments

is_function

Set to TRUE if functions are being manipulated, FAL SE for procedures.

name

The name of function or procedure for which the real function pointer is
required.

Result

If the specified routine...
» existsand is not disabled, it's function pointer is returned.
» doesnot exist, aNULL pointer is returned.
» has been disabled by the user, its actua function pointer is returned.

» hasbeen disabled for licensing reasons, the real function pointer does not exist,
and the pointer to its stub is returned.

Note
Thisroutine can causean IDL_MSG_LONGJIMP message to be issued if the
function comes from aDLM and the DLM load fails due to memory allocation
errors. Therefore, it must not be called unlessthe IDL interpreter is active. The
prime intent for this routine isto call it from the stub routine of a disabled function
when the interpreter invokes the associated system routine.

Enabling and Disabling System Routines External Development Guide

Chapter 20: Adding System Routines 395

Obtaining the IDL Name of the Current System
Routine

To get the IDL name for the currently executing system routine, use the
IDL_SysRtnGetCurrentName().

Syntax

char *IDL_SysRt nGet Current Nane(voi d)

This function returns a pointer to the name of the currently executing system
routine. If thereis no currently executing system routine, aNULL (0O) pointer

isreturned.
This routine will never return NULL if called from within a system routine.

External Development Guide Enabling and Disabling System Routines

396

Chapter 20: Adding System Routines

LINKIMAGE

LINKIMAGE

The IDL user level LINKIMAGE procedure makes the functionality of the
IDL_SysRtnAdd() function available to IDL programs. It allows IDL programsto
merge routines written in other languages with IDL at run-time. Each call to
LINKIMAGE defines anew system procedure or function by specifying theroutine's
name, the name of the file containing the code, and the entry point name. The name
of your routine is added to IDL’sinternal system routine table, making it availablein
the same manner as any other IDL built-in routine.

LINKIMAGE isthe easiest way to add your system routinesto IDL. It does not
require linking a separate version of the IDL program with your code the way adirect
cal to IDL_SysRtnAdd() does, and it does not require writing the extra code
required for a Dynamically Loadable Module (DLM). It is therefore commonly used
for simple applications, and for testing during the devel opment of a system routine.

If you are developing alarger application, or if you intend to redistribute your work,
you should package your routines as Dynamically Loadable Modules, which are
much easier for end-users to install and use than LINKIMAGE calls. You will find
that the small additional programming effort is more than repaid from the time saved
providing support for your code to your users.

If your IDL application relies on code written in languages other than IDL and linked
into IDL using the LINKIMAGE procedure, you must make sure that the routines
declared with LINKIMAGE are linked into IDL before any code that callsthem is
restored. In practice, the best way to do thisisto make the callsto LINKIMAGE in
your MAIN procedure, and include the code that uses the linked routinesin a
secondary . SAV file. In this case your MAIN procedure may look something like
this.

PRO mai n

; Link the external code.
LI NKI MAGE, 'link_function', 'newdl!|"’

; Restore code that uses |inked code.
RESTORE, 'secondary. sav'

; Run your application.
nyapp

END

External Development Guide

Chapter 20: Adding System Routines 397

In this scenario, the IDL code that callsthe LINK_FUNCTION routine (the routine
linked into IDL in the LINKIMAGE call) is contained in the secondary . SAV file
' secondary. sav'.

Note
When creating your secondary . SAV file, you will need to issue the LINKIMAGE
command before calling the SAVE procedureto link your routineinto IDL after you
have exited and restarted. The RESOLVE_ALL routine does not resolve routines
linked to IDL with the LINKIMAGE procedure.

Dynamically L oadable Modules do not have thisissue, and are the best way to
avoid the problem.

External Development Guide LINKIMAGE

398 Chapter 20: Adding System Routines

Dynamically Loadable Modules

LINKIMAGE can be used to make IDL load your system routines in asimple and
efficient manner. However, it quickly becomes inconvenient if you are adding more
than afew routines. Furthermore, the limitation that the LINKIMAGE call must
happen before any code that callsit is compiled makes it difficult to use and
complicates the process of redistributing your routines to others. IDL offersan
alternative method of packaging your system routines, called Dynamically Loadable
Modules (DLMs), that address these and other problems.

ThelDL_SY SFUN_DEF2 gtructure, which is described in “ Registering Routines’ on
page 386, contains all the information required by IDL for it to be able to compile
callsto agiven system routine and call it:

» A routine signature (Name, minimum and maximum number of arguments, if
the routine accepts keywords).

» A pointer to acompiled language function (usually C) that suppliesthe
standard IDL system routine interface (argc, argv, argk) and which implements
the desired operation.

IDL does not require the actual code that implements the function until the routine is
called: It is able to compile other routines and statements that reference it based only
on its signature.

DLMs exploit this fact to load system routines on an “as needed” basis. The routines
inaDLM arenot |loaded by IDL unless the user calls one of them. A DLM consists of
two files:

1. A module description file (human readable text) that IDL reads when it starts
running. Thisfiletells IDL the signature for all system routines contained in
the loadable module.

2. A sharablelibrary that implements the actual system routines. Thislibrary must
be coded to present a specific IDL mandated interface (described below) that
allows IDL to automatically load it when necessary without user intervention.

DLMs are apowerful way to extend IDL’s built in system routines. This form of
packaging offers many advantages:

e UnlikeLINKIMAGE, IDL automatically discovers DLMswhen it starts up
without any user intervention. This makes them easy to install — you simply
copy the two filesinto a directory on your system where IDL will look for
them.

Dynamically Loadable Modules External Development Guide

Chapter 20: Adding System Routines 399

* DLM routineswork exactly like standard built in routines, and are
indistinguishable from them. There is no need for the user to load them (for
example, using LINKIMAGE) before compiling code that references them.

* Astheamount of code added to IDL grows, using sharablelibrariesin thisway
prevents name collisions in unrelated compiled code from fooling the linker
into linking the wrong code together. DLM s thus act as a firewall between
unrelated code. For example, there are instances where unrelated routines both
use a common third party library, but they require different versions of this
library. A specific exampleisthat the HDF support in IDL requiresits own
version of the NetCDF library. The NetCDF support uses a different
incompatible version of thislibrary with the same names. Use of DLMsalows
each module to link with its own private copy of such code.

» Since DLMs are separate from the IDL program, they can be built and
distributed on their own schedule independent of IDL releases.

e System routines packaged as DLMs are effectively indistinguishable from
routines built into IDL by Research Systems.

Use of sharablelibrariesin this manner has ample precedent in the computer industry.
M ost modern operating systems use loadable kernel modulesto keep the kernel small
while the functionality grows. The same technique is used in user programsin the
form of sharable libraries, which allows unrelated programs to share code and
memory space (e.g. asingle copy of the C runtime library is used by all running
programs on a given system).

How DLMs Work

IDL manages DLMs in the following manner:

1. WhenIDL starts, it looksin the current working directory for module
definition (.dim) files. It reads any file found and adds the routines and
structure definitions thus defined to its internal routine and structure lookup
tables as “stubs’. In the system routine dispatch table, stubs are entries that
inform IDL of the routines existence, but which lack an actual compiled
function to cal. They contain sufficient information for IDL to properly
compile calls to the routines, but not to actually call them. Similarly, stub
entries in the structure definition table alow IDL to know that the DLM
supplies the structure definition, but the actual definition is not present.

After the current working directory, IDL searches !DLM_PATH for .dim files

and adds them to the table in the same manner. The default value of
IDLM_PATH isthedirectory in the IDL distribution where the binary

External Development Guide Dynamically Loadable Modules

400

Chapter 20: Adding System Routines

executables are kept. This default can be changed by defining the
IDL_DLM_PATH environment variable (similarly to the way the IDL_PATH
environment variable works with 'PATH). This process happens once at
startup, and never again. This means that IDL’s knowledge of loadable
modules is static and unchangeabl e once the session is underway. Thisis very
different from the way !PATH works, and reflects the static nature of built

in routines. Theformat of .dim filesis discussed in “The Module Description
File” on page 400.

2. ThelDL session then continuesin the usual fashion until acall to aroutine
from aloadable module occurs. At that time, the IDL interpreter notices the
fact that the routine is a stub, and loads the sharable library for the loadable
module that supplies the routine. It then looks up and calls a function named
IDL _L oad(), whichisrequired to exist, from the library. It'sjob isto replace
the stubs from that modul e with real entries (by using IDL_SysRtnAdd()) and
otherwise prepare the module for use.

3. Oncethe moduleisloaded, the interpreter looks up the routine that caused the
load one more time. If it is still a stub then the module has failed to load
properly and an error isissued. Normally, afull routine entry is found and the
interpreter successfully callsthe routine.

4. At thispoint the moduleisfully loaded, and cannot be distinguished from a
compiled in part of IDL. A moduleisonly loaded once, and additional callsto
any routine, or access to any structure definition, from the module are made
immediately and without requiring any additional loading.

The Module Description File

Themodule description fileisasimpletext filethat isread by IDL when it starts. The
information in thisfile tells IDL everything it needs to know about the routines
supplied by aloadable module. With thisinformation, IDL can compile callsto these
routines and otherwise behave asif it contains the actual routine. The loadable
module itself remains unloaded until a call to one of its routinesis made, or until the
user forces the module to load by calling the IDL DLM_LOAD procedure.

Empty lines are allowed in .dim files. Comments are indicated using the # character.
All text from a# to the end of the lineisignored by IDL and is for the user’s benefit
only.

All other lines start with a keyword indicating the type of information being
conveyed, possibly followed by arguments. The syntax of each line depends on the
keyword. Possible lines are:

Dynamically Loadable Modules External Development Guide

Chapter 20: Adding System Routines 401

MODULE Name

Gives the name of the DLM. This should always be the first non-comment linein a
.dIm file.There can only be one MODULE line.

MODULE JPEG
DESCRIPTION DescriptiveText

Supplies a short one line description of the purpose of the module. Thisinformation
isdisplayed by HELP/DLM. Thislineis optional.

DESCRIPTION IDL JPEG support
VERSION VersionString

Suppliesaversion string that can be used by the IDL user to determine which version
of the module will be used. IDL does not interpret this string, it only displaysit as
part of the HEL P/DLM output. Thislineis optional.

VERSION 6a
BUILD_DATE DateString

If present, IDL will display thisinformation as part of the output from HELP/DLM.
IDL does not parse this string to determine the date, it is simply for the users benefit.
Thislineisoptional.

BUILD_DATE JAN 8 1998
SOURCE SourceString

A short one line description of the person or organization that is supplying the
module. Thislineis optional.

SOURCE Research Systems, Inc.
CHECKSUM CheckSumValue

Thisdirectiveisused by RSI to sign the authenticity of the DLMs supplied with IDL
releases. It is not required for user-written DLMs.

STRUCTURE StructureName

There should be one STRUCTURE linein the DLM file for every named structure
definition supplied by the loadable module. If you refer to such a structure before the

External Development Guide Dynamically Loadable Modules

402

Chapter 20: Adding System Routines

DLM isloaded, IDL usesthisinformation to cause the DLM to load. The IDL _Init()
function for the DLM will define the structure.

FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]
PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]

There should be one FUNCTION or PROCEDURE linein the DLM filefor every
IDL routine supplied by the loadable module. These lines give IDL the information it
needs to compile calls to these routines before the module is loaded.

RtnName
The IDL user level name for the routine.
MinArgs

The minimum number of arguments accepted by this routine. If not supplied, Ois
assumed.

MaxArgs

The maximum number of arguments accepted by this routine. If not supplied, Ois
assumed.

Options
Zero or more of the following:
OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is set.

KEYWORDS

This routine accepts keywords as well as plain arguments.
PROCEDURE READ JPEG 1 3 KEYWORDS

The IDL_Load() function

Every loadable module sharable library must export a single symbol called

IDL_L oad(). Thisfunction is called when IDL loads the module, and is expected to
do all the work required to load real definitions for the routines supplied by the
function and prepare the module for use. This always requires at least one call to

Dynamically Loadable Modules External Development Guide

Chapter 20: Adding System Routines 403

IDL_SysRtnAdd(). It usually also requiresacall to IDL_M essageDefineBlock() if
the modul e defines any messages. Any other initialization needed would also go here:

int 1DL_Load(void)

This function takes no arguments. It is expected to return True (non-zero) if it was
successful, and False (0) if some initiaization step failed.

DLM Example

This example creates aloadable module named TESTMODULE. TESTMODULE
provides 2 routines:

TESTFUN

A function that issues a message indicating that it was called, and then returns the
string “TESTFUN” This function accepts between 0 and IDL_MAXPARAMS
arguments, but it does not use them for anything.

TESTPRO

A procedure that issues a message indicating that it was called. This procedure
accepts between 0 and IDL_MAX_ARRAY _DIM arguments, but it does not use
them for anything.

The intent of this example is to show the support code required to writeaDLM for a
completely trivial application. This framework can be easily adapted to real modules
by replacing TESTFUN and TESTPRO with other routines.

Thefirst step is to create the module definition file for TESTMODULE, named
testmodule.dIm:

MODULE t est modul e

DESCRI PTI ON Test code for | oadabl e nodul es
VERSI ON 1.0

SOURCE Research Systens, Inc.

BU LD _DATE JAN 8 1998

FUNCTI ON TESTFUN O | DL_MAXPARAMS
PROCEDURE TESTPRO 0 | DL_MAX_ARRAY_DI M

The next step isto write the code for the sharable library. The contents of
testmodule.c is shown in the following figure. Commentsin the code explain what
each step is doing.

External Development Guide Dynamically Loadable Modules

404 Chapter 20: Adding System Routines

1Q#i ncl ude <stdio. h>

2Q#include "idl _export.h"

3

44/ * Define nessage codes and their corresponding printf(3) format

5 * strings. Note that message codes start at zero and each one is

6] * one less that the previous one. Codes nust be nonotonic and

7 * contiguous. */

8fstatic | DL_MSG DEF nsg_arr[] = {

9f#define M TM I NPRO 0

10 { "M.TM.INPRO', "ONThis is froma | oadabl e nodul e procedure.” },
11 f#define M TM. | NFUN -1

12 { "M.TM.I NFUN", "UNThis is froma | oadabl e nodul e function.” },
130}

14

15/ * The load function fills in this nessage bl ock handle with the

16 * opaque handle to the message bl ock used for this nodule. The other
179 * routines can then use it to throw errors fromthis bl ock. */
18fstatic | DL_MSG BLOCK nsg_bl ock;

20Q/* Inplenmentation of the TESTPRO | DL procedure */
21fstatic void testpro(int argc, |DL_VPTR *argv)
22f{ | DL_MessageFronBl ock(nmsg_bl ock, M TM INPRO, |DL_MSG RET); }

248/ * Inplenmentation of the TESTFUN | DL function */
25fstatic IDL_VPTR testfun(int argc, |DL_VPTR *argv)

{
27 | DL_MessageFronBl ock(nsg_bl ock, M TM I NFUN, |DL_MSG RET);
C 28 return | DL_StrToSTRI NG " TESTFUN") ;
291}
31fint 1 DL_Load(void)

33 /* These tables contain information on the functions and procedures
34 * that make up the TESTMODULE DLM The information contained in these

35 * tables nust be identical to that contained in testnodule.dl m
36 */

37 static | DL_SYSFUN_DEF2 function_addr[] = {

38 { testfun, "TESTFUN', O, |DL_MAXPARAMS, 0, 0},

39}

40 st at

ic I DL_SYSFUN DEF2 procedure_addr[] = {
41 {

DL_SYSTRN_GENERI C) testpro, "TESTPRO', 0, |DL_MAX ARRAY DIM 0, 0},
421},
43
44 /* Create a nessage bl ock to hold our nmessages. Save its handl e where
45 * the other routines can access it. */
46 if (!(msg_block = | DL_MessageDefi neBl ock(" Test nodul e”,
47 | DL_CARRAY_ELTS(nsg_arr),
48 nmsg_arr))) return | DL_FALSE;
49
50 /* Register our routine. The routines nust be specified exactly the sanme
51 * as in testrmodule.dlm */
52 return | DL_SysRt nAdd(function_addr, TRUE,
53 | DL_CARRAY_ELTS(functi on_addr))
54 && 1 DL_SysRt nAdd(procedur e_addr, FALSE,
55 | DL_CARRAY_ELTS(procedure_addr));
56 8}

Table 20-7: testmodule.c

Dynamically Loadable Modules External Development Guide

Chapter 20: Adding System Routines 405

If building aDLM for Microsoft Windows, alinker definition file (testmodule.def) is
also needed. All of thesefiles, along with the commands required to build the module
can be found in the dim subdirectory of the external directory of the IDL distribution.

Once the loadable module is built, you can cause IDL to find it by doing one of the

following:
* Moveto the directory containing the .dim and sharable library for the
module.
» Definethe IDL_DLM_PATH environment variable to include the
directory.

Running IDL to demonstrate the resulting module:

| DL> HELP, /DLM 't est nodul €’

** TESTMODULE - Test code for | oadabl e nodul es (not |oaded)
Version:1.0,Build Date: JAN 8 1998, Source: Resear chSystens, Inc.
Pat h: /hone/ user/t estnodul e/ ext ernal / t est nodul e. so

IDL> testpro

% Loaded DLM TESTMODULE.

% TESTPRO. This is froma | oadabl e nodul e procedure.

| DL> HELP, /DLM 't est nodul €’

** TESTMODULE - Test code for | oadabl e nodul es (| oaded)
Version:1.0,Build Date: JAN 8 1998, Source: Resear chSystens, Inc.
Pat h: /hone/ user/t estnodul e/ ext ernal / t est nodul e. so

IDL> print, testfun()

% TESTFUN: This is froma | oadabl e nodul e functi on.

TESTFUN

Theinitial HEL P output shows that the modul e starts out unloaded. The call to
TESTPRO causes the module to be loaded. AsIDL loads the module, it prints an
announcement of the fact (similar to the way it announces the .pro filesit
automatically compiles to satisfy callsto user routines). Once the module is loaded,
subsequent calls to HEL P show that it is present. Calls to routines from this module
do not cause the modul e to be reloaded (as evidenced by the fact that calling
TESTFUN did not cause an announcement message to be issued).

External Development Guide Dynamically Loadable Modules

406 Chapter 20: Adding System Routines

Dynamically Loadable Modules External Development Guide

Chapter 21:

Callable IDL

This chapter discusses the following topics:

Caling IDL asa Subroutine 408
When is Callable IDL Appropriate? 409
Licensing Issues and Callable IDL 412
UsingCalableIDL 413

Initidlization 415
Diverting IDL Output

External Development Guide

Executing IDL Statements 421
Runtime IDL and Embedded IDL 422
Cleanup........ ... i, 423
Issues and Examples: UNIX 424

I ssues and Examples: Microsoft Windows 439

407

408 Chapter 21: Callable IDL

Calling IDL as a Subroutine

IDL can be called as a subroutine from other programs. This capability isreferred to
as Callable IDL to distinguish it from the more common case of calling your code
from IDL (aswith CALL_EXTERNAL or as a system routine (LINKIMAGE,
Dynamically Loadable Module)).

How Callable IDL is Implemented

IDL isbuilt in asharableform that allows other programsto call IDL asasubroutine.
The specific details of how IDL is packaged depend on the platform:

* IDL for UNIX hasasmall driver program linked to a sharable object library
that contains the actual IDL program.

» IDL for Windows consists of adriver program that implements the user
interface (known as the IDE) linked to a dynamic-link library (DLL) that
contains the actual IDL program.

Inall cases, it ispossibleto link the sharable portion of IDL into your own programs.
Note that Callable IDL is not a separate copy of IDL that implements alibrary
version of IDL. It isin fact the same code, being used in adifferent context.

Calling IDL as a Subroutine External Development Guide

Chapter 21: Callable IDL 409

When is Callable IDL Appropriate?

Although Callable IDL isvery powerful and convenient, it is not always the best
method of communication between IDL and other programs. There are usually easier
approaches that will solve a given problem. See “ Supported | nter-Language
Communication Techniquesin IDL” on page 13 for alternatives.

IDL will not integrate with all programs. Understanding the issues described in this
section will help you decide when Callable IDL is and is not appropriate.

Technical Issues Relating to Callable IDL

IDL makes computing easier by raising the level at which IDL users interface with
the computer. It is natural to think that calling IDL from other programswill have the
same effect, and under the correct circumstancesthisistrue. However, using Callable
IDL isnot as easy as using IDL. Programmers who wish to use Callable IDL need to
possess the skills described in “ Skills Required to Combine External Code with IDL”
on page 22.

Be aware that the same things that make IDL powerful at the user level can make it
difficult to include in other programs. As an interactive, interpreted language, IDL is
adecidedly non-trivial object to add to a process. Unlike a simple mathematical
subroutine, IDL includes a compiler, alanguage interpreter, and related code that the
caller must work around. As an interactive program, IDL must control the process to
a high degree, which can conflict with the caller’s wishes. The following (certainly
incomplete) list summarizes some of the issues that must be dealt with.

UNIX IDL Signal API

IDL uses UNIX signals to manage many of its features, including exception
handling, user interrupts, and child processes. The exact signals used and the manner
in which they are used can change from IDL release to rel ease as necessary. Although
the IDL signal API (describedin“IDL Internals: UNIX Signals’ on page 303) allows
you to use signals in an IDL-compatible way, the resulting constraints may require
changes to your code.

IDL Timer API

IDL’s use of the process timer requires you to use the IDL timer API instead of the
standard system routines. This restriction may require changes to some programs.
Under UNIX, the timer module can interrupt system calls. Timers are discussed in
“IDL Internals: Timers’ on page 335.

External Development Guide When is Callable IDL Appropriate?

410 Chapter 21: Callable IDL

GUI Considerations

Most applications will call IDL and display IDL graphicsin an IDL window.
However, programmers may want to write applications in which they create the
graphical user interface (GUI) and then have IDL draw graphics into windows that
IDL did not create. It is not always possible for IDL to draw into windows that it did
not create for the reasons described below:

X Windows

The DL X Windows graphicsdriver can draw in windowsit did not create aslong as
the window is compatible with the IDL display connection (see Appendix G “IDL
Graphics Devices’ in the IDL Reference Guide manual for details). However, the
design of IDL’s X Windows driver requires that it open its own display connection
and run its own event loop. If your program cannot support a separate display
connection, or if dividing time between two event loopsis not acceptable, consider
the following options:

* RunIDL in aseparate process and use interprocess communication (possibly
Remote Procedure Calls, to control it.

* If you chooseto use Callable IDL, use the IDL Widget stub interface,
described in “Adding External Widgetsto IDL” on page 449, to obtain the IDL
display connection, and create your GUI using that connection rather than
creating your own. The IDL event loop will dispatch your events along with
IDL’s, creating awell-integrated system.

Microsoft Windows

At thistime, the IDL for Windows graphics driver does not have the ability to draw
into windows that were not created by IDL. However, the ActiveX control described
in Chapter 6, “The IDLDrawWidget ActiveX Control”, can do this.

Program Size Considerations

On systems that support preemptive multitasking, asingle huge program is apoor use
of system capabilities. Such programsinevitably end up implementing primitive task-
scheduling mechanisms better left to the operating system.

Troubleshooting

Troubleshooting and debugging applications that call IDL can be very difficult. With
standard IDL, malfunctionsin the program are clearly the fault of Research Systems,
and given areproducible bug report, we attempt to fix them promptly. A program that
combines IDL with other code makes it difficult to unambiguously determine where

When is Callable IDL Appropriate? External Development Guide

Chapter 21: Callable IDL 411

the problem lies. The level of support Research Systems can provide in such
troubleshooting is minimal. The programmer is responsible for locating the source of
the difficulty. If the problem isin IDL, asimple program demonstrating the problem
must be provided before we can address the issue.

Threading

IDL uses threads to implement its thread pool functionality, which is used to speed
numerical computation on multi-CPU hardware. Despitethis, it is essentially asingle
threaded program, and is not designed to be called from different threads of a
threaded application. Attempting to use IDL from any thread other than the main
thread is unsupported, and may cause unpredictabl e results.

Inter-language Calling Conventions

IDL iswritten in standard ANSI C. Calling it from other languages is possible, but it
is the programmer’s responsibility to understand the inter-language calling
conventions of the target machine and compiler.

Appropriate Applications of Callable IDL

Callable IDL ismost appropriate in the following situations:

» CadlableIDL isclearly the correct choice when the resulting programisto be a
front-end that creates a different interface for IDL. For example, you might
wish to turn IDL into an RPC server that uses an RPC protocol not directly
supported by IDL, or use IDL asamodule in adistributed system.

+ CadlableIDL isappropriateif either the calling program or IDL handles all
graphics, including the Graphical User Interface, without the involvement of
the other. Intermediate situations are possible, but more difficult. In particular,
beware of attempts to have two event/message loops.

» CadlableIDL isappropriate when the calling program makes little or no use of
signals, timers, or exception handling, or is able to operate within the
constraintsimposed by IDL.

External Development Guide When is Callable IDL Appropriate?

412 Chapter 21: Callable IDL

Licensing Issues and Callable IDL

If you intend to distribute an application that calls IDL, note that each copy of your
application must have access to a properly licensed copy of the IDL library. For
availability of aruntime version of IDL, contact Research Systems or your IDL

distributor.

Licensing Issues and Callable IDL External Development Guide

Chapter 21: Callable IDL 413

Using Callable IDL

The process of using Callable IDL has three stages: initialization, IDL use, and
cleanup. Between the initialization and the cleanup, your program contains a
complete active IDL session, just asif a user were typing commands at an | DL>
prompt. In addition to the usual IDL abilities, you canimport data from your program
and cause IDL to seeit asan IDL variable. IDL can use such datain computations as
if it had created the variable itself. In addition, you can obtain pointersto data
currently held by IDL variables and access the results of IDL computations from your
program.

Note
The functions documented in this chapter should only be used when calling IDL
from other programs—their usein code called by IDL viaCALL_EXTERNAL or a
system routine (LINKIMAGE, Dynamically Loadable Module) is not supported
and is certain to corrupt and/or crash the IDL process.

Before calling IDL to execute instructions, you must initialize it. Under UNIX, you
do thisby calling IDL_I nit(). Under Microsoft Windows, you call IDL_Win32Init()
instead. This is aone-time operation, and must occur before calling any other IDL
function. see “Initialization” on page 415 for complete information on this topic.
OnceIDL isinitialized, you can:

1. SendIDL commandsto IDL for execution. Commands are sent as strings,
using the same syntax as interactive IDL. Note that there is not a separate C
language function for every IDL command—any valid IDL command can be
executed as IDL statements. This approach alows us to keep the callable IDL
API small and ssmple while allowing full accessto IDL's abilities. Thisis
explained in “Executing IDL Statements” on page 421.

2. Cdl any of the severa routines that interact with IDL through other means to
perform operations such as:

* Importing datainto IDL. (See “Creating an Array from Existing Data” on
page 236.)

» Accessingdatawithin IDL. (See*Looking Up Variablesin Current Scope”
on page 246.)

» Changing itemsin the process, such as signal handling or timers. (See
“IDL Internals: UNIX Signals’ on page 303, or “IDL Internals: Timers’
on page 335.)

External Development Guide Using Callable IDL

414 Chapter 21: Callable IDL

* Redirecting IDL output to your own function for processing. See
“Diverting IDL Output” on page 419.

The above list is not complete, but is representative of the possibilities afforded by
CalableIDL.
Cleanup

After all IDL useis complete, but before the program exits, you must call
IDL_Cleanup() to allow IDL to shutdown gracefully and clean up after itself. Once
this has been done, you are not allowed to call IDL again from this process. See
“Cleanup” on page 423.

Using Callable IDL External Development Guide

Chapter 21: Callable IDL 415

Initialization

IDL for UNIX usesthe IDL _Init() function (described below) to prepare Callable
IDL for use. IDL for Microsoft Windows uses IDL _Win32Init(), described in
“Initialization: Microsoft Windows” on page 417.

Initialization: UNIX

IDL for UNIX usesthe I DL_Init() function prepares Callable IDL for use. This must
be thefirst IDL routine called.

Note
Microsoft Windows applications should not call IDL_Init(). Instead, use
IDL_Win32Init(), described in “Initialization: Microsoft Windows” on page 417.

int IDL_Init(int options, int *argc, char *argv[]);

where:
options
A bitmask used to specify initialization options. The allowed bit values are:

IDL_INIT_EMBEDDED

Setting this bit causes IDL to initialize to run applications from a Save/Restore file
that contains an embedded license. IDL_RuntimeExec() is then used to run the
application(s). Notethat IDL_Execute() and I DL _ExecuteStr () are disabled when
IDL isinitialized with this option.

IDL_INIT_GUI

Setting this bit causes IDL to use the IDL Development Environment (IDLDE) GUI
rather than using the standard tty based interface. This option isignored under
Microsoft Windows.

IDL_INIT_GUI_AUTO

Setting this bit causes IDL to try to use the IDL Development Environment (IDLDE)
GUI. If that fails, IDL usesthe standard tty interface. This option isignored under
Microsoft Windows.

External Development Guide Initialization

416 Chapter 21: Callable IDL

IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

IDL_INIT_NOLICALIAS

Our FLEXIm floating licence policy isto alias all IDL sessions that share the same
user/system/display to the samelicense. If IDL_INIT_NOLICALIAS s set, thisIDL
session will force a unique license to be checked out. In this case, we alow the user
to change the DISPLAY environment variable. Thisis useful for RPC servers that
don’t know where their output will need to go before invocation.

IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)

Indicatesto IDL that it is going to be used in a background mode by some other
program, and that IDL will not be in control of the user’s input command processing.

One effect of thisisthat XMANAGER will realize that the active command line
functionality for processing widget eventsis not available, and XMANAGER wiill
block to manage events when it is called rather than return immediately.

Normally under UNIX, if IDL seesthat stdin and stdout are ttys, it putsthe tty into
raw mode and uses termcap/terminfo to handle command line editing. When using
callable IDL in a background process that isn’t doing input/output to the tty, the
termcap initialization can cause the process to block (because of job control from the
shell) with a message like “ Stopped (tty output) idl”. Setting this option prevents all
tty edit functions and disables the calls to termcap. 1/0 to the tty is then done with a
simple fgets()/printf(). If the IDL_INIT_GUI bit is set, this option isignored.

For historical reasons, this option used to becalled IDL_INIT_NOTTYEDIT. Use
of that nameis still supported.

IDL_INIT_QUIET

Setting this bit suppresses the display of the startup announcement and message of
the day.

IDL_INIT_RUNTIME

Setting this bit causes IDL to check out aruntime license instead of the normal
license. IDL_RuntimeExec() isthen used to run an IDL application restored from a
Save/Restorefile.

Initialization External Development Guide

Chapter 21: Callable IDL 417

argc
As passed by the operating system to main().
argv

As passed by the operating system to main().

IDL_Init() returns TRUE if theinitialization is successful, and FAL SE for failure.
Arguments not directly intended for IDL are removed from argv and argc is
decremented to match.

Initialization: Microsoft Windows

Under Microsoft Windows, the DL _Win32Init() function preparesthe IDL DLL for
use. IDL_Win32Init() must be called before any other function except
IDL_ToutPush().

Note
Windows applications should not call IDL _Init(), described in the previous section.

IDL_Win32Init() callsIDL_Init() on your behalf at the appropriate time.

int IDL_Wn32Init(int iOpts, void *hinstExe, void *hwndExe,
voi d *hAccel);

where:

IOpts
A bitmask used to specify initialization options. The allowed bit values are:
IDL_INIT_RUNTIME

Setting this bit causes IDL to check out aruntime license instead of the normal
license. IDL_RuntimeExec() isthen used to run an IDL application restored from a
Save/Restorefile.

IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

hinstExe
HINSTANCE from the application that will be calling IDL.

External Development Guide Initialization

418 Chapter 21: Callable IDL

hwndExe
HWND for the application’s main window.

hAccel

Reserved. This argument should always be NULL.

IDL_Win32Init() returns TRUE if the initialization is successful, and FAL SE for
failure.

Initialization External Development Guide

Chapter 21: Callable IDL 419

Diverting IDL Output

When using atty-based interface (available only on UNIX platforms), IDL sendsits
output to the screen for the user to see. When using a GUI-based interface (any
platform), the output goes to the IDL log window. The default output function is
automatically installed by IDL at startup. To divert IDL output to afunction of your
own design, use IDL_ToutPush() and IDL_ToutPop() to change the output function
caled by IDL.

Internally, IDL maintains a stack of output functions, and provides two functions
(IDL_ToutPush() and IDL_ToutPop()) to manage them. The most recently pushed
output function is called to output each line of text. Output functions of your own
design should have the following type definition:

typedef void (* IDL_TOUT_QUTF)(int flags, char *buf, int n);
The arguments to an output function are:

flags

A bitmask of flag values that specify how the text should be output. The alowed bit
values are:

IDL_TOUT_F_STDERR

Send the text to stderr rather than stdout, if that distinction means anything to your
output device.

IDL_TOUT_F_NLPOST

After outputting the text, start a new output line. On atty, thisis equivalent to sending
anewline (" \ n') character.

buf

The text to be output. There may or may not be aNULL termination, so the character
count provided by n must be used to move only the specified number of characters.

The number of charactersin buf to be output.

External Development Guide Diverting IDL Output

420 Chapter 21: Callable IDL

IDL_ToutPush()

Use IDL_ToutPush() to push anew output function onto the stack. The most
recently pushed function is the one used by IDL for output.

void | DL_Tout Push(1 DL_TOUT_OUTF outf);
IDL_ToutPop()

IDL _ToutPop() removes the most recently pushed output function. The removed
function pointer is returned.

| DL_TOUT_OUTF | DL_Tout Pop(voi d);

Warning

Do not pop an output function you did not push. It is an error to attempt to remove
the last remaining function.

Diverting IDL Output External Development Guide

Chapter 21: Callable IDL 421

Executing IDL Statements

There aretwo functionsthat allow you to execute | DL statements. | DL _ExecuteStr ()
executes a single command, while IDL_Execute() takes an array of commands and
executes them in order. In both cases, the commands are null terminated strings—just
asthey would be typed by an IDL user at the | DL> prompt. It isimportant to realize
that the full abilities of IDL are available at this point. Typically, the commands you
issue will run IDL programs of varying complexity, including support routines
written in IDL from the IDL Library (found viathe IDL 'PATH system variable).
This ability to “download” complicated programsinto IDL and then run them viaa
simple command can be very powerful.

IDL_Execute()

IDL _Execute() executes the command strings in the order given. It returnsthe value
of lERROR_STATE.CODE after the final command has executed. If the value of
IERROR_STATE.CODE is heeded for an intermediate command, you should use
IDL_ExecuteStr () instead of | DL_Execute().

int | DL_Execute(int argc, char *argv[]);
argc
The number of commands contained in argv.
argv

An array of pointers to NULL-terminated strings containing IDL statements to
execute.

IDL_ExecuteStr()

I DL _ExecuteStr () returns the value of the 'ERROR_STATE.CODE system variable
after the command has executed.
int |DL_ExecuteStr(char *cnd);
cmd
A NULL-terminated string containing an IDL statement to execute.

External Development Guide Executing IDL Statements

422 Chapter 21: Callable IDL

Runtime IDL and Embedded IDL

If you distribute programs that call IDL with a runtime license or an embedded
license, use IDL_RuntimeExec(). After initidization IDL_RuntimeExec() can be
used to run self-contained IDL applications from a Save/Restore file.

IDL _RuntimeExec() restores the file, then attemptsto call an IDL procedure hamed
MAIN. If no MAIN procedureisfound, the function attemptsto call aprocedure with
the same name as the restored Savefile. (That is, if the Save fileis named

mypr og. sav, | DL_RuntimeExec() looks for a procedure named ny pr og.)

IDL_RuntimeExec() returns TRUE if the operation succeeded and the MAIN
procedure or the named procedure were called. Note that the returned status does not
indicate whether the actual IDL code ran successfully.

int IDL_RuntimeExec(char *file);

where:
file

The complete path specification to the Save file to be restored, in the native syntax of
the platform in use.

Runtime IDL and Embedded IDL External Development Guide

Chapter 21: Callable IDL 423

Cleanup

After your programis finished using IDL (typically just beforeit exits) it should call
IDL_Cleanup() to alow IDL to shut down gracefully. IDL_Cleanup() returns a
status value that can be passed to Exit().

int 1DL_Cl eanup(int just_cleanup);

where:
just_cleanup

If TRUE, IDL_Cleanup() does al the process shutdown tasks, but doesn’t actually
exit the process. If FALSE (the usual), the process exits.

Microsoft Windows applications should place thiscall in their Main WndProc to be
caled as aresult of the WM _CL OSE message.

swi tch(msg) {
case WM CLCSE:

| DL_Cl eanup(TRUE) ;
any additional processing

External Development Guide Cleanup

424

Chapter 21: Callable IDL

Issues and Examples: UNIX

Interactive IDL

Under UNIX, IDL_Main() implements IDL as seen by the interactive user. In the
interactive version of IDL as shipped by Research Systems, the actual main()
function simply decodes its arguments to determine which optionsto specify and then
callsIDL_Main() to do therest. IDL_Main() cals exit() and does not return to its

cdler.

where:

int IDL_Main(int init_options, int argc, char *argv[]);

init_options

The options argument to be passed to I DL _| nit().

argc, argv

From main(). Arguments that correspond to options specified viatheinit_options
argument should be removed and converted to init_options flags prior to calling this
routine.

Compiling Programs That Call IDL

A complete discussion of the issues that arise when compiling and linking C
programs is beyond the scope of this manual. Thefollowing isa brief list of basic
concepts to consider when building programs that call IDL.

Compilers for some languages add underscores at the beginning or end of user
defined names. To check the naming convention employed by your compiler,
use the UNIX nn(1) command to list the symbols exported from an object
file.

If you use only one language, naming details are handled transparently by the
compiler, linker, and debugger. If you use more than one language, problems
can arise if the different compilers use different naming conventions. For
example, the Fortran compiler might add an underscore to the end of each
name, while the C compiler does not. To call a Fortran routine from C, you
must then include this underscore in your code (to cal the function my_code,
you would refer to it asmy_code_). Note that you may also need to set a
compiler flag to make case significant.

Issues and Examples: UNIX External Development Guide

Chapter 21: Callable IDL 425

To determine whether your compilers use compatible naming conventions,
consult your compiler documentation or experiment with small test programs
using the compilers and the nmcommand.

Every program starts execution at aknown routine. In the C language, this
routineis explicitly named main(). In Fortran, execution begins with the
implicit main program. If you are using Callable IDL, you must provide a
main() function for your program.

When linking a C program, use the cc command instead of the | d command.
cc calsl d to perform the link operation, and when necessary adds a directive
tol d that causes the C runtime library to be used.

If you don’t use cc to link your program (if you are using | d directly or are
using a Fortran compiler, for example) and you get “ unsatisfied symbol” errors
for symbols that are in the standard C library, try including the runtime library
explicitly in your link command. Usually, adding the string - | ¢ to the end of
the command is al that is necessary.

Under Hewlett-Packard’s HP-UX operating system, if you use| d directly you
may aso need to include the PA1. 1 math library in order to locate
mathematicsroutines at runtime. Add theflag- L/ I i b/ pal. 1 prior to-1 mon
the link lineto link with the PA1. 1 math libraries.

See “Compilation And Linking Details” on page 30 for advice on how to
compile and link programswith the IDL libraries under various operating
systems.

Example: Calling IDL From C

The program in the following figure(cal | t est . ¢, found inthecal | abl e
subdirectory of the ext er nal subdirectory of the IDL distribution) demonstrates
how to import data from a C program into IDL, execute IDL statements, and obtain
datafrom IDL variables. It performs the following actions:

1.

Create an array of 10 floating point valueswith each element set to the value of
itsindex. Thisis equivaent to the IDL command FINDGEN(10).

Initialize Calable IDL.
Import the floating point array into IDL as avariable named TMP.
Have IDL print the value of TMP.

External Development Guide Issues and Examples: UNIX

426

Chapter 21: Callable IDL

Execute a short sequence of IDL statements from astring array:

tnp2 = total (tnp)
print,"IDL total is ',tnp2

plot, tnp
Set TMP to zero, causing IDL to release the pointer to the floating point array.

Obtain a pointer to the data contained in TMP2. From examining the IDL
statements executed to this point, we know that TM P2 is a scalar floating point
value.

From our C program, print the value of the IDL TMP2 variable.

Execute a small widget program. Pressing the button allows the program to
end:

a
b

wi dget _base()

wi dget _button(a, val ue='Press Wen Done', xsi ze=300,
ysi ze=200)

wi dget _control, /realize, a

dunmmy = wi dget _event (a)

wi dget _control, /destroy, a

See “Compilation and Linking Statements” on page 438 for details on
compiling and linking this program.

Each line is numbered to make discussion easier. The line numbers are not part
of the actual program.

Issues and Examples: UNIX External Development Guide

Chapter 21: Callable IDL 427

#i ncl ude <stdio. h>
#i nclude "idl _export.h"

static void free_cal | back(UCHAR *addr)

printf("IDL rel eased(%)\n", addr);

9fint main(int argc, char **argv)

10
11 float f[10];
12 int i;

13 I DL_VPTR v;
14] I DL_MEM NT di nf | DL_MAX_ARRAY_DI M ;
15 static char *cnds[] = { "tnmp2 = total (tm)",

16 "print,’IDL total is ',tnp2", "plot,tnmp" };
17 static char *cmds2[] = { "a = widget_base()",
18 "b = wi dget _button(a, value="Press When Done’, xsize=300, ysize=200)",
19 "w dget_control,/realize, a",
20 "dummy = wi dget_event(a)",
C 21 "w dget _control,/destroy, a" };
22
23

24 for (i=0; i < 10; i++) f[i] = (float) i;
25 if (IDL_Init(0, &argc, argv)) {

26 din{0] = 10;

27 printf (" ARRAY ADDRESS(%i)\n", f);

28 if (v=IDL_I nportNanmedArray("TMP", 1, dim |DL_TYP_FLOAT,
29 (UCHAR *) f, free_callback, (void *) 0)) {
30 (void) |IDL_ExecuteStr("print, tm");

31 (void) |DL_Execute(sizeof(cnds)/sizeof (char *), cmds);
32 (void) |IDL_ExecuteStr("print, 'Free the user nenory’'");
33 (void) IDL_ExecuteStr("tnp = 0");

34 if (v = IDL_Fi ndNamedVari abl e("tnp2", |DL_FALSE))

35 printf("Programtotal is %\n", v->value.f);

36 (void) |DL_Execute(sizeof (cnmds2)/sizeof (char *), cnds2);
37 I DL_Cl eanup(| DL_FALSE) ; /* Don't return */

38 }

39 }

40

41Q return 1;

a2h

Table 21-1: Calling IDL from C on UNIX

Following is commentary on this program, by line number:
24

C equivalent to IDL command “F = FINDGEN(10)”
25

Initialize IDL

External Development Guide Issues and Examples: UNIX

428

Chapter 21: Callable IDL

26-29

Import C array F into IDL asaFLTARR vector named TM P with 10 elements. Note
use of the callback argument free_callback. Thisfunction will be called when IDL is
finished with the array F, giving us a chance to properly clean up at that time.

30
Have IDL print the value of TMP.
31

Execute the commands contained in the C string array cmds defined on lines 15-16.
These commands create anew IDL variable named TM P2 containing the sum of the
elements of TMP, print its value, and plot the vector.

32-33

Set TMP to anew value. Thiswill cause IDL to release the user supplied memory
from lines 26-29 and call free_callback.

34-35

From C, get areference to the IDL variable TM P2 and print its value. This should
agree with the value printed by IDL on line 31. It isimportant to realize that the
pointer to the variable or anything it points at can only be used until the next call to
execute an IDL statement. After that, the pointer and the contents of the referenced
IDL_VARIABLE may becomeinvalid as aresult of IDL’s execution.

36

Run the simple IDL widget program contained in the array C string array cmds2
defined on lines 17-21.

37

Shut down IDL. The IDL_FAL SE argument instructs | DL _Cleanup() to exit the
process, so this call should not return.

41

Thisline should never be reached. If it is, return the UNIX failing status.

Issues and Examples: UNIX External Development Guide

Chapter 21: Callable IDL 429

Example: Calling an IDL Math Function

This example demonstrates how to write asimple C wrapper function that allows
caling IDL commands simply from another language. We implement a function
named call_idl_fft() that callsthe IDL FFT function operating on dataimported from
our C program. It returns TRUE on success, FAL SE for failure:

int call_idl _fft(lDL_COVMPLEX *data, int n, int direction);

data

A pointer to alinear array of complex datato be processed.

The number of data points contained in the array data.
dir
The direction of the FFT transform to take. Specify -1 for aforward transform, 1 for

the reverse

The program is shown in the following figure. Each line is numbered to make
discussion easier. These numbers are not part of the actual program. Following is
commentary on the above program, by line number:

External Development Guide Issues and Examples: UNIX

430 Chapter 21: Callable IDL

#i ncl ude <stdio. h>
#i nclude "idl _export.h"

t
int r;
| DL_MEM NT di nf | DL_MAX_ARRAY DI M ;
9 char buf[64];

1
2
3
4
5fint call_idl _fft(IDL_COWLEX *data, |IDL_MEM NT n, int dir)
6
7
8

11 dinfo] = n;
12§ if (1DL_I nport NamedArray(" TMP_FFT_DATA", 1, dim

13 I DL_TYP_COWPLEX, (UCHAR *) data, 0, 0)) {
14 (void) | DL_ExecuteStr("MESSAGE, /RESET");
15 sprintf (buf," TMP_FFT_DATA=FFT(TMP_FFT_DATA, / OVERWRI TE) "
16 ,dir);
17 r = 11 DL_ExecuteStr(buf);
18 (void) |DL_ExecuteStr (" TMP_FFT_DATA=0");
19 } else {
20 r = FALSE;
21 }
C 22
23 return r;
244}
25
26fmai n(int argc, char **argv)
27

{
28 J#defi ne NUM_PNTS 10
29 | DL_COWPLEX dat a[NUM_PNTS] ;
30 int i;

32 for (i = 0; i < NUMPNTS, i++) data[i].r = data[i].i = 1i;
33 if (IDL_Init(0, &rgc, argv)) {

34 call _idl _fft(data, NUMPNTS, -1);

35 call _idl _fft(data, NUMPNTS, 1);

36 for (i = 0; i < NUMPNTS; i++)

37 printf("(%, %)\n", data[i].r, data[i].i);
38 I DL_Cl eanup(| DL_FALSE) ;

39 }

40

41 return 1;

4214}

Table 21-2: call_idl_fft()

The variable r holds the result from the function.

dim isused to import the datainto IDL as an array.

Issues and Examples: UNIX External Development Guide

Chapter 21: Callable IDL 431

9
A temporary buffer to format the IDL FFT command.
11-13

Import datainto IDL asthevariable TMP_FFT_DATA. Wedon't set up a
free_callback because we will explicitly force IDL to release the pointer after the
call to FFT.

14

Set the [ERROR_STATE system variable back to the “ success’ state so previous
errors don’t confuse our results.

15-16

Format an FFT command to IDL into buf. Note the use of the OVERWRITE
keyword. Thistellsthe IDL FFT function to place the results into the input variable
rather than creating a separate output variable. Hence, the results end up in our data
array without the need to obtain a pointer to the results and copy them out.

17

Have IDL execute the FFT statement. | DL _ExecuteStr () returns the val ue of
IERROR_STATE.CODE, which should be zero for success and non-zero in case of
error. Hence, negating the result of IDL _ExecuteStr() yields the status value we
require for the result of this function.

18

Set TMP_FFT_DATA to O within IDL. This causes IDL to release the data pointer
imported previously.

20
If the call to IDL_ImportNamedArray() fails, we must report failure.
26

In order to test the call_idI_fft() function, this main program callsit twice. Taking
numerical error into account the end result should be equal to the original data.

32

Set the real and imaginary part of each element to the index va ue.

External Development Guide Issues and Examples: UNIX

432 Chapter 21: Callable IDL

33

Initialize Calable IDL.
34

Cdl call_idl_fft() to perform aforward transform.
35

Cadl call_idl_fft() to perform areverse transform.
36-37

Print the results.
38

Shut down IDL and exit the process.
41

Thisline should never be reached. If it is, return the UNIX failing status.
Example: Calling IDL from Fortran

The program shown in the following figure (CALLTEST, found in the cal | abl e
subdirectory of the ext er nal subdirectory of the IDL distribution) demonstrates
how to import data from a Fortran program into IDL, execute IDL statements, and
obtain data from IDL variables. See “Compilation and Linking Statements” on

page 438 for details on compiling and linking this program. The source code for this
file can befound inthefilecal | t est . f, located in thecal | abl e subdirectory of
the ext er nal subdirectory of the IDL distribution.

Each lineis numbered to make discussion easier. The line numbers are not part of the
actual program:

Issues and Examples: UNIX External Development Guide

Chapter 21: Callable IDL 433

[[e e
2jC Routine to print a floating point value froman IDL variabl e.
3
4Q SUBROUTI NE PRI NT_FLOAT(VPTR)
5
6fQC Declare a Fortran Record type that has a conpatible formw th
74C the IDL C struct |DL_VARIABLE for a floating point val ue.
8jC Note this structure contains a union which is the size of
9jC the largest data type. This structure has been padded to
10§C support the union. Fortran records are not part of
11C F77, but nost conpilers have this option.
12
13 STRUCTURE /| DL_VARI ABLE/
14 CHARACTER*1 TYPE
15 CHARACTER*1 FLAGS
16 I NTEGER*4 PAD !'Pad for largest data type
17 REAL*4 VALUE_F
18] END STRUCTURE
19
20 RECORD /| DL_VARI ABLE/ VPTR
21
22 WRITE(*, 10) VPTR VALUE_F
23 10 FORMAT(' Programtotal is: ', F6.2)
24
frr 25 RETURN
26
27§ END
28
At] (O R

30QC This function will be called when IDL is finished with the
31§C array F.

33 SUBROUTI NE FREE_CALLBACK(ADDR)
35 I NTEGER*4 ADDR

37 VIRl TE(*, 20) LOC(ADDR)
38] 20 FORMAT (' I DL Rel eased:’, [12)

40 RETURN

L O e e
A5§C This program denonstrates how to inport data froma Fortran
46JC programinto IDL, execute IDL statenents and obtain data

47§C from I DL vari abl es.

Table 21-3: Calling IDL from Fortran On UNIX

External Development Guide Issues and Examples: UNIX

434 Chapter 21: Callable IDL

49 PROGRAM CALLTEST
50
51fC Sone Fortran conpilers require external defs. for IDL routines:
52 EXTERNAL IDL_Init !'$pragma C(IDL_Init)
53 EXTERNAL | DL_Cl eanup ! $pragnma C(I DL_Cl eanup)
54 EXTERNAL | DL_Execute ! $pragma C(| DL_Execute)
55 EXTERNAL | DL_ExecuteStr ! $pragma C(| DL_ExecuteStr)
56 EXTERNAL | DL_I nport NanedArray ! $pragma C(| DL_I nport NamedArr ay)
57 EXTERNAL | DL_Fi ndNanmedVari abl e ! $pragma C(| DL_Fi ndNanmedVar i abl e)
58
59Q0C Define arguments for IDL_Init routine
60 | NTEGER*4 ARGC
61 | NTEGER* 4 ARGV(1)
62 DATA ARGC, ARGV(1) /2 * 0/
63
64Q§C Define IDL Definitions for |DL_|nportNanmedArray
65
66 PARAMVETER (1 DL_MAX_ARRAY_DI M = 8)
67 PARAMVETER (1 DL_TYP_FLOAT = 4)
68
69 REAL*4 F(10)
70 I NTEGER*4 DI M | DL_NMAX_ARRAY_DI M
71 DATA DI M /10, 7*0/
72 I NTEGER*4 FUNC_PTR I Address of function
f77 73 | NTEGER*4 VAR PTR | Address of IDL variable
74 EXTERNAL FREE_CALLBACK ! Decl are ext routine for use as arg
75
76 PARAMETER (MAXLEN=80)
77 PARAMETER (N=10)
78
79Q0C Define commands to be executed by |DL
80
81 CHARACTER* (MAXLEN) CMDS(3)
82 DATA CMDS /"tnp2 = total (tnmp)",
83 & "print, 'IDL total is ', tnp2",
84 & "plot, tnmp"/
85 | NTEGER* 4 CMD_ARGV(10)
86
87QC Define wi dget commands to be executed by |DL
88
89 CHARACTER* (MAXLEN) W DGET_CMDS(5)
90 DATA WDGET_CMDS /"a = w dget_base()",
91 & "b = wi dget _button(a, val = Press \Wen Done’, xs=300, ys=200)",
92 & "wi dget_control, /realize, a",
93 & "dummy = wi dget_event(a)",
94 & "w dget_control, /destroy, a"/
95
96 | NTEGER*4 | STAT
97

Table 21-3: (Continued) Calling IDL from Fortran On UNIX

Issues and Examples: UNIX External Development Guide

Chapter 21:

Callable IDL

435

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
fr7 124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

C Null Term nate command strings and store the address
C for each command string in CMD_ARGVY

Dol =1, 3
CVDS(|) (MAXLEN: MAXLEN) = CHAR(0)
CVMD_ARGV(1) = LOC(CMDS(1))
ENDDO
C Initialize floating point array, equivalent to |DL FI NDGEN(10)
DOl =1, N
F(I') = FLOAT(I-1)
ENDDO
C Print address of F

VRI TE(*, 30) LOC(F)
30 FORMAT(’ ARRAY ADDRESS:’, 112)

C Initialize Callable |IDL
I STAT = IDL_Init(%/AL(0), ARGC, ARGV(1))
I'F (I STAT . EQ 1) THEN
C Inport the floating point array into IDL as a variable named TMP

CALL | DL_I nport NamedArray(’ TMP' // CHAR(0), %/AL(1), DIM
& o/AL(| DL_TYP_FLOAT), F, FREE_CALLBACK, %/AL(0))

C Have IDL print the value of tnp
CALL | DL_ExecuteStr(’print, tnp’'//CHAR(O))

C Execute a short sequence of IDL statenents froma string array
CALL | DL_Execut e(%/AL(3), CMD_ARGV)

C Set tnmp to zero, causing IDL to release the pointer to the
C floating point array.

CALL | DL_ExecuteStr('tnp = 0'//CHAR(O0))

C Obtain the address of the IDL variable containing the
C the floating point data

VAR PTR = | DL_Fi ndNanedVari abl e(’ t np2’ / / CHAR(0), %/AL(0))

C Call a Fortran routine to print the value of the IDL tnp2 variable
CALL PRI NT_FLOAT(%/AL(VAR _PTR))

External Development Guide

Table 21-3: (Continued) Calling IDL from Fortran On UNIX

Issues and Examples: UNIX

436 Chapter 21: Callable IDL

150 Nul | Term nate command strings and store the address

151 for each command string in CMD_ARGVY

152

153 DOI =1, 5

154 W DGET_CMDS(|) (MAXLEN: MAXLEN) = CHAR(0)

155 CMD_ARGV(1) = LOC(W DGET_CMDS(1))

156 ENDDO

157

158 Execute a small w dget program Pressing the button all ows
f77 159 the programto end

160

161 CALL | DL_Execut e(WAL(5), CMD_ARGY)

162

163 Shut down | DL

164 CALL | DL_Cl eanup(%/AL(0))
165
166 ENDI F
167
168] END
Table 21-3: (Continued) Calling IDL from Fortran On UNIX
1-27

In order to print variablesreturned from IDL, we must define a Fortran structure type
for IDL_VARIABLE. This subroutine creates the IDL _VARIABLE structure and
defines away to print the floating-point value returned in the an IDL variable.

14-17

Define a Fortran structure equivalent to the floating-point portion of the C
IDL_VARIABLE structure. Since we know our value is a floating-point number,
only the floating-point portion of the structure isimplemented. The structureis
padded for the largest data type contained in the union. With some Fortran compilers,
the combination of UNION and M AP can be used to implement the ALLTYPES
union portion of the IDL_VARIABLE structure.

29-42

This subroutine is called when IDL rel eases the user-supplied memory.

44-164

Thisisthe main Fortran program.

51-57

Issues and Examples: UNIX

External definitionsfor IDL internal routines. These definitions may not be necessary
with some Fortran compilers.

External Development Guide

Chapter 21: Callable IDL 437

59-62
Define the argc and argv arguments required by I DL _I nit().
66-67

Define constants equivalent to C IDL constants for the maximum array dimensions
and type float.

69-77

Define parameters necessary for IDL_I mportNamedArray().
79-85

Define an array of IDL commands to be executed.
87-96

Define an array of IDL widget commands to be executed.
98-104

Null-terminate each of the command strings and store the address of each command
to passto IDL.

106-110

Initialize the floating-point array. Thisis the Fortran equivalent to the IDL command
F=FI NDGEN(10) .

117-121
Initialize IDL.
125-126

Import the Fortran array F in the IDL as a 10-element FLTARR vector named TMP.
Note the use of the callback argument FREE_CAL L BACK (), which will be called
when IDL isfinished with the array F, giving us a chance to clean up at that time.

134

Execute the commands contained in the character array CM DS defined on lines 71-
77. The address for each command is stored in the corresponding array element of
CMD_ARGV.

External Development Guide Issues and Examples: UNIX

438 Chapter 21: Callable IDL

139

Set the TM P variable to anew value. This causes IDL to release the user-supplied
memory and call FREE_CAL L BACKY().

144
Get areferenceto the IDL variable TM P2.
147

Call theroutine PRINT _FL OAT to print the value of TM P2. This should agree with
the value printed by line 130. Note that the address of the IDL variable TM P2, and its
contents, can only be used until the next call to execute an IDL statement, since IDL
may change the value of the referenced IDL_VARIABLE.

150-161

Execute the commands contained in the character array WIDGET_CM DS defined
on lines 79-88.

163-168

Shut down IDL. The 0 argument instructs IDL_CL EANUP() to exit the process, so
this call should not return.

Compilation and Linking Statements

Compilation and linking procedures used when calling IDL on aUNIX system are
described inthefilecal | t est _uni x. t xt inthecal | abl e subdirectory of the
ext er nal subdirectory of themain IDL directory. Note that different UNIX systems
have different compilation and link statements. Note also that the name of the entry
point in the object may be different than that shown here, because compilers may add
leading or trailing underscores to the name of the source routine.

Note
The Makef i | e in the architecture-specific subdirectory of the bi n subdirectory of
the IDL distribution contains amake rule for building the cal | t est application.

Issues and Examples: UNIX External Development Guide

Chapter 21: Callable IDL 439

Issues and Examples: Microsoft Windows

Building an Application that Calls IDL

To build your 32-bit, Win32 application that calls IDL, you must take the following
steps:
1. Usea#includeline to include the declarations fromi dl _export. h into your

source code. Thisincludefileisfound in the ext er nal /i ncl ude
subdirectory of the IDL distribution.

2. Compileyour application.
Link your application with | DL32. LI B.

4. Placel DL32. DLL in adirectory with your application. Seether eadne. t xt
filelocated inthe RSI - di rect or y/ ext er nal / cal | abl e for more
information.

Example: A Simple Application

The following program demonstrates how to display message text sent from IDL,
execute DL statements entered by auser, and how to obtain datafrom IDL variables.
It performs the following actions:

1. CreatesaMain window with four client controls; a scrolling edit control to
display text messages from IDL, asingle line edit control to allow a user to
enter an IDL command, a Send button to send the user command to IDL, and a
Quit button to exit the application.

2. Registersacallback function to handle text messages sent by IDL to the
application.

3. Initializes Callable IDL.
4. Cadl IDL_Cleanup() when we receive the WM _CL OSE message.

Each lineis numbered to make discussion easier. These numbers are not part of the
actual program. The source code for this program can be found in thefile si npl e. c,
located in the cal | abl e subdirectory of the ext er nal subdirectory of the IDL
distribution. See the source code for details of the program not printed here.

External Development Guide Issues and Examples: Microsoft Windows

440 Chapter 21: Callable IDL

1 T
2 * sinple.c Source code for sanple IDL callable application

3 *

4 * Copyright (c) 1992-1995, Research Systens Inc.

9 K o e m e m e m ==
*/

10 #include <wi ndows. h>
11 #i nclude <wi ndowsx. h>
12 #i nclude <ctl 3d. h>

13 #i nclude <string. h>

14 #include <stdio. h>

15 #i nclude "sinple.h"

16 #include "idl _export.h"

R B R e LT
19 * WnMin

20 *

21 * This is the required entry point for all w ndows
applications.

22 *

23 * RETURNS: TRUE i f successful

P e e e T */
25 int WNAPI W nMai n(H NSTANCE hl nst ance, HI NSTANCE

hl nst ancePr ev,

26 LPSTR | pszCmmdl i ne, int nCnmdShow)

27 {

28 HWND hwnd;

29 MG nsg;

30

31 /! Register the main w ndow cl ass.

32 if (!RegisterWnCl ass(hlnstance)) {

33 return(0);

34 }

35

36

37

38 /] Create and display the nain w ndow.
39 if ((hwnd = | nitMinWndow(hlnstance)) == NULL) ({
40 return(0);

41 }

42 Mai nhwhd = hwnd;

43

44 /'l Register our output function with |DL.
45 | DL_Tout Push(Qut Func) ;

46

47 /1 Initialize IDL

48 if ('IDL_Wn32Init(0, hlnstance, hwnd, NULL))
49 ret ur n(FALSE) ;

50

Issues and Examples: Microsoft Windows External Development Guide

Chapter 21: Callable IDL 441

51 /1 Main message | oop.

52 whil e (Get Message(&rsg, NULL, 0, 0)) {

53 Transl| at eMessage(&rsQ) ;

54 Di spat chMessage(&r8Q) ;

55 }

56

57 return(nsg. wPar am ;

58 }

59

O B e
61 * Regi sterWnCl ass

62 *

63 * To create a Main window (TLB in I DL speak). You nust first
64 * register the class for that w ndow

65 *

66 * RETURNS: TRUE i f successful

A e R LR */
68 BOOL Regi st er WnCl ass(H NSTANCE hl nst)

69 {

70 WADCLASS we;

71

72 we. styl e = CS_HREDRAW | CS_VREDRAW

73 we. | pf nWhdPr oc = Mai nWAdPr oc;

74 we. cbC sExtra = 0;

75 we. cbWhdExt ra = 0;

76 we. hl nst ance = hl nst;

77 we. hl con = NULL;

78 we. hCur sor = LoadCursor (NULL, | DC_ARROW ;

79 we. hbr Backgr ound = (HBRUSH) (COLOR_BTNFACE + 1);

80 we. | pszMenuName = NULL;

81 we. | pszd assNane = "Sinple";

82

83 if (!Registerdass(&nc)) {

84 r et ur n(FALSE) ;

85 }

86

87 return(TRUE);

88 }

89

L e e R
91 * 1nitMai nW ndow

92 *

93 * This is where our Main window is created and displ ayed

94 *

95 * RETURNS: Handl e to wi ndow

L e LR */
97 HWND | ni t Mai nW ndow(Hl NSTANCE hl nst)

98 {

99 HAND hwnd;

External Development Guide Issues and Examples: Microsoft Windows

442

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

Issues and Examples: Microsoft Windows

* 0% X 2k 3k X X F

Chapter 21: Callable IDL

CREATESTRUCT CS;

hwnd = Creat eW ndow(" Si npl e",
"Cal | able I DL Sanple Application",
WS _DLGFRAME | WS_SYSMENU | WS_M NI M ZEBOX |
CW _USEDEFAULT,
0,
600,
480,
NULL,
NULL,
hl nst
&cs);

WS_VI SI BLE,

if (hwnd) {
ShowwW ndow(hwnd, SW SHOWNORNAL) ;
Updat eW ndow(hwnd) ;

}

ret ur n(hwnd) ;
Mai nWhdPr oc

The wi ndow procedure (event handler) for our nmain w ndow.

Al nessages (events) sent to our app are routed through
her e
RETURNS: Depends of nessage.

LRESLLT WNARL Mai nWidPr oc(HARD hwnd, U NT uMsg, VIPARAM wPar am LPARAM | Par an)

static int nDi spl ayable = 0;

switch (uMsg) {
//When our app is first created, we are sent this message.
//We take this opportunity to create our child controls and
//place themin their desired | ocations on the w ndow.
case WM CREATE:
if (!Qeatedntrol s(((LPAREATESTRUCT) | Par am) - >hl nst ance, hwnd)) {
return(0);
}
i f (!Layout Control s(hwnd)) {
return(0);
}
nO spl ayabl e = Get Char act er Hei ght (Get D gl tenfhwnd, | DE GOMMMNCLAG)) ;
break;

External Development Guide

Chapter 21: Callable IDL 443

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

case WM _DESTROY:
Post Qui t Message(1);
br eak;

//BEach time a button or nenu itemis selected, we get this nessage
case WM COMVAND:
OnCommand(hwnd, LOWNORD(wPar am), wParam | Paranj;
return(FALSE) ;

/1 This is a message we send ourselves to indicate the need to
//display a text nessage in our |og w ndow.
case | DL_OUTPUT:
Qut put Message(wParam | Param nDi spl ayabl e);
return(FALSE);

case WM CLCSE:
| DL_d eanup(TRUE) ;
return(FALSE);

defaul t:
br eak;

}

ret ur n(Def W ndowPr oc(hwnd, uMsg, wParam | Param));
}
| % o o e e e e e e e e e e e e e e e eeee oo
* OnConmmand
* This is the message handle for our WM COVWAND nessages
* RETURNS: FALSE

BOOL OnConmand(VWD hwid, U NT ul d, WPARAM wPar am LPARAM | Par an)
{

swi tch(ul d){
case | DB_SENDCOMVAND: {
LPSTR | pCommand;
LPSTR | pQut ;

| pCommand = G obal Al l ocPtr(GHND, 256);
| pQut = d obal Al'l ocPtr(GHND, 256);
i f(!l pConmmuand)

ret ur n(FALSE) ;

External Development Guide Issues and Examples: Microsoft Windows

444

198
199

Chapter 21: Callable IDL

/* First we get the string that is in the input w ndow */

Get DI gl t enText (hWhd, | DE_COMVANDLI NE, | pConmand,

255) ;

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Issues and Examples: Microsoft Windows

/* and then clear the wi ndow */

Set DI gl t enfext (hwhd, | DE_COMVANDLI NE, "");

I strepy(lpQut, "\r\nSent to IDL: ");
I strcat(lpQut, | pComrand);

/* Send the string to our "log" w ndow */

Qut Func(I DL_TOUT_F_NLPOST, |pQut, strlen(lpCut));

/* then send the string to IDL */
| DL_Execut eStr (| pCommand) ;

/* Now clean up */
G obal FreePtr (I pConmand) ;
G obal FreePtr (I pQut);

}
br eak;
}
return(FALSE) ;
}
| % o e e e e e e e e e e e eeeeea o
* Qut Func
* This is the output function that receives nessages froml| DL
* and displays them for the user
* RETURNS: NONE

voi d Qut Func(l ong flags, char *buf, |ong n)

{
static fShowMain = FALSE

/* |If there is a nessage, post it to our MAIN w ndow */

if (n){

SendMessage (Mai nhwiad, | DL_OUTPUT, 0, (LPARAM buf);
}
/* If we need to post a new |line nessage... */

if (flags & | DL_TOUT_F_NLPOST){

SendMessage (Mai nhWid, | DL_QUTPUT, O, (LPARAV) (LPSTR)"\r\n\0");

}

/* This nessage gets sent to the |l og window to have it scroll
and di splay the | ast nessage at the bottom of the wi ndow

External Development Guide

Chapter 21: Callable IDL

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

External Development Guide

{

L I S I I N

445

Wth this, the user will always see the last screen full of
nessages sent

*/

SendMessage (Mai nhwhd, | DL_OUTPUT, (WPARAM TRUE,

(LPARAM) (LPSTR) "\ 0") ;

return,;

Qut put Message

Here we do the actual display of the text to our |og w ndow
RETURNS: not hi ng
__ * |

voi d Qut put Message(WPARAM wPar am LPARAM | Param int nDi spl ayabl e)

LRESULT | Ret;

LONG | Bufflen, I NumLines, |FirstView,

/* Turn off the READONLY bit
| Ret SendMessage(hwndLog,
| Ret SendMessage(hwndLog,

and postpone redraw */
EM SETREADONLY, FALSE, OL);
WV SETREDRAW FALSE, OL);

/* Get the length of the text
| Buf fl en SendMessage (hwndLog, WM GETTEXTLENGTH, 0, OL);
I NumLi nes = SendMessage (hwndLog, EM GETLI NECOUNT, 0, OL);
| FirstView = SendMessage (hwndLog, EM GETFI RSTV SI BLELINE, 0, OL);

in the | og wi ndow/

| Ret = SendMessage (hwndLog, EM SETSEL, |Bufflen, |Bufflen);
/* If we are adding text, wParamwill be 0 */
f (! wParam
| Ret = SendMessage (hwndLog, EM REPLACESEL, 0, | Param;
el se{
if (I Nuniines > (IFirstView + nDi spl ayable)) {
i nt i Li neLen = 0;
i nt i Char ;
i nt i Lines = 0;
| Nunii nes--;

whi | e(!iLineLen) {
i Char = SendMessage(hwndLog, EM LI NEI NDEX,
(WPARAM | NumLi nes, OL);

i Li neLen = SendMessage(hwndLog, EM LI NELENGTH,
i Char, OL);
i f(!iLineLen)
| NunLi nes- -;

Issues and Examples: Microsoft Windows

446

Chapter 21: Callable IDL

295 i Lines = | NunLines-(lIFirstView + (nDi splayable - 1));
296 iLines = iLines >= 0 ? iLines : O;

297 SendMessage (hwndLog, EM LINESCRCLL, 0, (LPARAM)i Lines);
298 }

299 }

300

301 /* Set the window to redraw and reset the READONLY bit */

302 | Ret = SendMessage(hwndLog, WM SETREDRAW TRUE, OL);
303 | Ret = SendMessage(hwndLog, EM SETREADONLY, TRUE, OL);
304

305 return;

306 }

The following is a commentary on the program, by line number:
16

i dl _export. h containsthe IDL_ function prototypes, IDL specific structures, and
IDL constants.

45

Cadl IDL _ToutPush() with the address of the output function (OutFunc) asit's only
argument. Thiswill register OutFunc asa callback for IDL. IDL will call OQutFunc
when it needs to display text.

48

Initiadlize IDL with the handle to the main window and the HINSTANCE of the
application.

52
Start the windows message |oop.
131-176

Thisisthe Main window procedure. It will handle any messages that are sent to the
main window. Thisincludes WM _COM M AND messages that occur as a result of
user interaction with the client controls. In addition, it handles a user defined message
called IDL_OUTPUT (the name doesn’t matter but thisis a clue asto its purpose).

158

When the user presses either the “Send” or “Quit” buttons, route the message to the
OnCommand function.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 21: Callable IDL 447

164

When we receivean IDL_OUTPUT message, call the function that displaystextin
the scrolling window (OutputM essage. See line 263).

168

When we receive the WM _CL OSE message, call IDL_Cleanup() to unlink IDL
from our application.

185-220

OnCommand handlesthe WM _COM M AND messages generated when the user
clicks on the application’s buttons.

199

Get the IDL command that the user has entered in the single line edit control and
store it in a buffer.

202
Clear the text in the edit control.

208

Cdl theIDL_TOUT _ function to display the command sent to IDL in the output
window.

211
Cadl IDL_ExecuteStr () with the IDL command retrieved in line 199.
230-253

OutFunc isthe callback registered with IDL to handle text messages IDL sends to
our application. In addition it will handle text from IDL routines that display
information, such as PRINT.

263-306

OutputM essage handles displaying the text to the output window. Since this window
isamulti-line edit control, we have created it as a read-only window. See the source
code for additional information on handling this situation.

External Development Guide Issues and Examples: Microsoft Windows

448 Chapter 21: Callable IDL

280
OutputM essage appends new messages to the existing text in the control.
281-299

When the text has been displayed, OutputM essage scrolls the window to display the
last line of text in the bottom of the window.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 22:
Adding External
Widgets to IDL

This chapter discusses the following topics:

IDL and External Widgets 450 Functionsfor Use with Stub Widgets 454

WIDGET_STUB 451 Interna Callback Functions 457

WIDGET_CONTROL/WIDGET_STUB . 452 UNIX WIDGET_STUB Example:
WIDGET_ARROWB 459

External Development Guide 449

450

Chapter 22: Adding External Widgets to IDL

IDL and External Widgets

This chapter describes an IDL widget type not documented in the IDL Reference
Guide, called the stub widget. It also describes a small set of internal functions to
mani pulate stub widgets. Stub widgets allow CALL_EXTERNAL, LINKIMAGE,
DLM, and Callable IDL users to add their own widgetsto IDL widget hierarchies.

This feature depends on your system providing the window system libraries used by
IDL (particularly the Motif libraries under UNIX) as sharable libraries. It will not
work with versions of IDL that statically link against the window system libraries.
This can be an issue under Linux, but one that we expect to eventually disappear as
Linux distributions start shipping Open Motif as a standard part of the systems.

The next two sections describe IDL's WIDGET_STUB function and changes to
WIDGET_CONTROL when used with WIDGET_STUB. “Functions for Use with
Stub Widgets” on page 454 describes support functions that can be called from your
external code to manipulate stub widgets. “Internal Callback Functions’ on page 457
describes how to make stub widgets generate IDL widget events. Finaly, “UNIX
WIDGET_STUB Example: WIDGET_ARROWB” on page 459 illustrates the use of
stub widgets with an external program.

Note
Although WIDGET_STUB can be used under Microsoft Windows, thisfeature is
primarily of interest with UNIX IDL. Under Windows, Research Systems
recommends the use of the WIDGET_ACTIVEX functionality, which allows you
to use ActiveX controls with IDL without requiring external programming.

IDL and External Widgets External Development Guide

Chapter 22: Adding External Widgets to IDL 451

WIDGET_STUB

The WIDGET_STUB function creates a widget record that contains no actual
underlying widgets. Stub widgets are place holders for integrating external widget
typesinto IDL. Events from those widgets can then be processed in a manner
consistent with the rest of the IDL widget system.

First, the programmer calls WIDGET_STUB to create the widget, and then uses
CALL_EXTERNAL to call additional custom code to handle the rest. A number of
internal functions are provided to manipulate widgets from this custom code. See
“Functions for Use with Stub Widgets’ on page 454.

The returned value of thisfunction is the widget 1D of the newly-created stub widget.
Calling Sequence

Result = WIDGET_STUB(Parent)
Arguments

Parent

The widget 1D of the parent widget. Stub widgets can only have bases or other stub
widgets as their parents.

Keywords

The following keywords are accepted by WIDGET_STUB and work the same as for
other widget creation functions:

EVENT_FUNC SCR_XSIZE
EVENT_PRO SCR_YSIZE
FUNC_GET_VALUE UVALUE
GROUP_LEADER XOFFSET
KILL_NOTIFY XSIZE
NO_COPY YOFFSET
PRO_SET_VALUE YSIZE

External Development Guide WIDGET_STUB

452 Chapter 22: Adding External Widgets to IDL

WIDGET_CONTROL/WIDGET_STUB

The WIDGET_CONTROL procedure has some differences and limitations when
used with WIDGET_STUB that are not documented in the IDL Reference Guide.
These differences are described bel ow.

Keywords

Only the most general keywords are allowed with WIDGET_CONTROL when used
with stub widgets. All other keywords areignored. Here is alist of those keywords
that behave identically with all widgets including stub widgets:

BAD_ID PRO_SET_VALUE
CLEAR_EVENTS RESET
EVENT_FUNC SET_UVALUE
EVENT_PRO SHOW
FUNC_GET_VALUE TIMER
GET_UVALUE TLB_GET_OFFSET
GROUP_LEADER TLB_GET_SIZE

HOURGLASS TLB_SET_TITLE
ICONIFY TLB_SET_XOFFSET
KILL_NOTIFY TLB_SET_YOFFSET
MANAGED XOFFSET
NO_COPY YOFFSET

The following keywords a so work with stub widgets, but require additional

commentary:

DESTROY

When awidget hierarchy containing stub widgetsis destroyed, the following steps

are taken:

» Thelower-level code that deals with the system toolkit destroys any real
widgets currently used by the stub widgets.

* All IDL widget records are added to the freelist for re-use.

WIDGET_CONTROL/WIDGET_STUB

External Development Guide

Chapter 22: Adding External Widgets to IDL 453

* Any requested KILL_NOTIFY callbacks are called.

You should register KILL_NOTIFY callbacks on the topmost stub widget in each
widget subtree. Remember that the actual widgets are gone before the callbacks are
issued, so don't attempt to access them. However, the callback provides an
opportunity to clean up any related resources used by the widget.

MAP, REALIZE, and SENSITIVE

These keywords cause the toolkit-specific, lower layer of the IDL widgets
implementation to be called. In the process of satisfying the specified request, any
real widgets used by the stub widgets will be processed, along with the ones created
by the non-stub widgets, in the usual way. Any additional processing must be
provided via CALL_EXTERNAL.

XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

These keywords inform IDL how large the stub widget is expected to be. This
information is necessary for IDL to calculate sizes and off sets of the surrounding
widgets.

IDL triesto do something reasonable with these requests but, without knowledge of
the actual widget being manipulated, it is possible that the results will not be
satisfactory. In such cases, the IDL_Widget StubSet SizeFunc() function can be used
to specify aroutine that IDL can call to perform the necessary sizing for your stub
widget.

External Development Guide WIDGET_CONTROL/WIDGET_STUB

454 Chapter 22: Adding External Widgets to IDL

Functions for Use with Stub Widgets

The following functions present a highly simplified interface to the stub widget class
that gives the user enough accessto IDL widget internals to make the stub widget
work while hiding the details of the actual implementation.

IDL_WidgetStubLock()
Syntax:

voi d | DL_W dget St ubLock(int set);
IDL event processing occurs asynchronoudly, so any code that manipul ates widgets
must execute in a protected region. This function is used to create such aregion. Any

code that manipulates widgets must be surrounded by two callsto
IDL_WidgetStubL ock() asfollows:

| DL_W dget St ubLock(TRUE) ;
/* Do your wi dget stuff */
| DL_W dget St ubLock(FALSE) ;

IDL_WidgetStubLookup()
Syntax:

char *1 DL_W dget St ubLookup(I DL_ULONG i d);
When IDL creates awidget, it returns an integer value to the caler of the widget
creation function. Internally, however, IDL widgets are represented by a pointer to
memory. The IDL_WidgetStubL ookup() function is used to translate the user-level

integer value to this memory pointer. All the other internal routines use the memory
pointer to reference the widget.

Id istheinteger returned at the user level. Your call to CALL_EXTERNAL should
pass this integer to your C-level codefor use with IDL_WidgetStubL ookup() which
translates the integer to the pointer.

If the specified id does not represent avalid IDL widget, thisfunction returns NULL.
This situation can occur if awidget waskilled but its integer handleis still lingering
somewhere.

IDL_WidgetlssueStubEvent()
Syntax:

voi d | DL_W dget | ssueSt ubEvent (char *rec, LONG val ue);

Functions for Use with Stub Widgets External Development Guide

Chapter 22: Adding External Widgets to IDL 455

Given ahandle to the IDL widget, obtained via | DL_WidgetStubL ookup(), this
function queuesan IDL WIDGET_STUB_EVENT. Such an event is a structure that
contains the three standard fields (1D, TOP, and HANDLER) as well as an additional
field named VALUE that contains the specified value.

VALUE can provide away to access additional information about the widget,
possibly by providing amemory address to the information.

IDL_WidgetSetStublds()
Syntax:

voi d | DL_W dget Set St ubl ds(char *rec, unsigned long t_id,
unsigned long b_id);
IDL widgets are built out of one or more actual widgets. Every IDL widget carries
two pointers that are used to locate the top and bottom real widget for agiven IDL
widget. This function allows you to set these top and bottom pointersin the stub
widget for later use.

Sincethe actual pointer type differs from toolKkit to toolkit, this function declarest_id
(the top real widget) and b_id (the bottom real widget) as unsigned long, an integer
data type large enough to safely contain any pointer. Use a C cast operator to handle
the difference.

After calling WIDGET_STUB to create an IDL stub widget, you will need to use
CALL_EXTERNAL to call additional code that creates the real widgets that
represent the stub. Having done that, use IDL_Widget Set Stubl ds() to save the top
and bottom widget pointers.

IDL_WidgetGetStublds()
Syntax:

voi d | DL_W dget Get St ubl ds(char *rec, unsigned long *t_id,
unsigned long *b_id);

This function returns the top (t_id) and bottom (b_id) rea widget pointers for any
specified widget (not just stub widgets). When using these values for non-stub
widgets, itisthe caller’sresponsibility to avoid damaging the IDL-created widgetsin
any way.

IDL_WidgetStubSetSizeFunc()
Syntax:

External Development Guide Functions for Use with Stub Widgets

456 Chapter 22: Adding External Widgets to IDL

voi d | DL_W dget St ubSet Si zeFunc(char *rec,
| DL_W DGET_STUB_SET_SI ZE_FUNC f unc)

typedef void (* | DL_W DGET_STUB_SET_SI ZE_FUNC) ;
(IDL_ULONG id, int width, int height);

When IDL needs to set the size of a stub widget, it attempts to set the size of the
bottom real widget to the necessary dimensions. Often, this is the desired behavior,
but cases can arise whereit would be better to handle sizing differently. In such cases,

use | DL_WidgetStubSetSizeFunc() to register afunction that IDL will call to do the
actua sizing.

Functions for Use with Stub Widgets External Development Guide

Chapter 22: Adding External Widgets to IDL 457

Internal Callback Functions

Real widget toolkits (upon which IDL widgets are built) are event driven. C language
programs register interest in specific events by providing callback functions that are
called when that event occurs. All but the most basic of widgets are capable of
generating events.

In order for IDL stub widgetsto generate IDL events, you must use
CALL_EXTERNAL to invoke code that sets up real widget event callbacks for the
events you are interested in. This setup can be done as part of creating the real
widgets after theinitial call to WIDGET_STUB. These callbacks then call
IDL_Widgetl ssueStubEvent() toissue the IDL event.

Your C-language widget toolkit callback functions should be patterned after the
following template. Note that the arguments and return type will depend on the
widget toolkit used, and so cannot be shown here:

stub_wi dget _cal | ()
{
char *idl_wi dget;
| DL_W dget St ubLock(TRUE) ;
/* Get the IDL user-level identifier for this w dget */
if (idl_w dget = | DL_Wdget StubLookup(id)) {
/* Do whatever work is required */

/* Optionally, issue an IDL event */
| DL_W dget | ssueSt ubEvent (i dl _wi dget, val ue)

}
| DL_W dget St ubLock(FALSE) ;

}
Commentary on the Example Shown Above

Note that IDL_WidgetStubL ock() is used to protect the critical section where
widgets are being manipul ated.

Somehow, the callback must be able to find the user-level integer returned by
WIDGET_STUB when the stub widget was created in IDL. Usually, thisisdonein
one of two ways:

» When registering the callback, it is sometimes possible to specify a vaue that
will be passed to the callback without interpretation. For example, the X
windows XtAddCallback() function takes an argument named client_data.
Thisvalue is passed to the callback and can be used to supply the user-level
identifier.

External Development Guide Internal Callback Functions

458 Chapter 22: Adding External Widgets to IDL

» Some widget toolkits have a set of attributes that they carry along with each
widget. Under the X windows Xt toolkit, these attributes are called resources.
Xt widgets usually have aresource capable of holding a single integer or
memory address. This resource can be used to supply the user level identifier.

IDL_WidgetStubL ookup() is used to translate the user level widget identifier into a
memory pointer. I this function returns NULL, no further event processing is done
since it would be afatal error to issue an IDL event for a non-existent widget.

The event isissued vial DL_Widgetl ssueStubEvent(). This step is not required.
Many of the IDL widget types process real widget events via callbacks that do not
alwaysresult in an IDL widget event being sent.

Internal Callback Functions External Development Guide

Chapter 22: Adding External Widgets to IDL 459

UNIX WIDGET_STUB Example:
WIDGET_ARROWB

Thefollowing example addsthe Motif ArrowButton widget to UNIX IDL intheform
of an IDL program named wi dget _ar r owb. pr o.

The primary user interface to our arrow button widget isthe WIDGET_ARROWB
function. It presents an interface much like any of the built in WIDGET _ functions
provided by IDL. WIDGET_ARROWAB usesthe MAKE_DLL procedure, and the
AUTO_GLUE keyword to CALL_EXTERNAL to automatically build and load the
C code required for this widget. This building and loading processis transparent to
the IDL user, requiring only that you have a C compiler installed on your system. All
the user has to do to use an arrow button widget isto call WIDGET_ARROWB

The WIDGET_ARROWRB widget acts like a normal pushbutton. Events are sent
when the button is pressed (VALUE=1) and released (VALUE=0). If the
USE_OWN_SIZE keyword is set to zero, IDL performsits default sizing on the stub
widget. A non-zero value causes a special routine provided by the
WIDGET_ARROWB implementation to be registered to handle such sizing.

All of the code used in this example, including al code shown here, isavailablein the
external/widstub directory of the IDL distribution. To run it, execute the following
statements from IDL:

PUSHD, FI LEPATH('’', SUBDI RECTORY=['external’, ' wi dstub’'])
W DGET_ARROMB_TEST
POPD

When running WIDGET_ARROWB_TEST, you can specify the VERBOSE
keyword, in which case, it will show you the compilation and linking stepsiit takes to
build the sharable library from the C code. The use of pushd and popd are due to the
fact that your IDL search path (PATH) is unlikely to have the directory containing
these examplesin it. PUSHD changes your working directory to the location where
these files are found, and POPD regtoresit to its original location afterwards.

The IDL Program for WIDGET_ARROWB

The following text isthe IDL program for WIDGET_ARROWSAB. It is found in the
file named W DGET_ARROWB. PRO
function W DGET_ARROWB, parent, use_own_size, UWALUE=uvalue, $
VERBOSE=ver bose, _EXTRA=extra

Uses W DGET_STUB, and a sharable library containing
; the necessary C support code, to provide the |IDL user

External Development Guide UNIX WIDGET_STUB Example: WIDGET _ARROWB

460

Chapter 22: Adding External Widgets to IDL

; with a Motif Arrow Button widget. The interface is consistent
; with that presented by the built in IDL w dgets.

; If the sharable library does not exist, it is built using

. MAKE_DLL.

common W DGET_ARROWB_BLK, shlib

: Build sharable lib if first call or |ib doesn't exist
build_lib = n_el ements(shlib) eq O
if (not build_lib) then build_lib = not FILE_TEST(shlib, /READ)
if (build_lib) then begin
; Location of the widget_arrowb files fromIDL distribution
arrowb_di r =FI LEPATH(' ', SUBDI RECTORY=[' external ', wi dstub’])

Use MAKE DLL to build the wi dget_arrowb sharable library
in the ! MAKE_DLL. COVPI LE_DI RECTORY directory.

; Normal |y, you woul dn’t use VERBCSE, or SHOW ALL_OUTPUT

; once your work is debugged, but as a |l earning exercize it

; can be useful to see all the underlying work that gets

; done. If the user specified VERBOSE, then use those

; keywords to show what MAKE DLL is doing.

MAKE_DLL, ' wi dget _arrowb’, 'widget_arrow’, $
DLL_PATH=shlib, INPUT_DI R=arrowb_dir, $
VERBOSE=ver bose, SHON ALL_OUTPUT=ver bose

endi f

; Use a stub widget along with the C code in the library to

create an arrow button wi dget. The use of the AUTO GLUE

; keyword sinplifies the call to the sharable library by

elimnating the need to use the CALL_EXTERNAL portable

; calling convention.

| _par ent =LONG par ent)

| _use_own_size = $

(n_el enent s(use_own_size) eq 0) ? OL: LONG use_own_si ze)
result = WDCET_STUB(parent, _extra=extra)
if (n_elements(uvalue) ne 0) then $
W DGET_CONTROL, result, set_uval ue=uval ue

JUNK = CALL_EXTERNAL(shlib, 'w dget_arrow’,|_parent,result,$

| _use_own_si ze, value=[1, 1, 1], /AUTO _GLUE)

RETURN, result

end

UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Chapter 22: Adding External Widgets to IDL 461

The C Program for widget_arrowb.c

The C language code invoked by the call to CALL_EXTERNAL in the above IDL
codeiscontained in afile named wi dget _ar r owb. ¢ Thisfile can be found in the
wi dst ub subdirectory of theext er nal subdirectory of the IDL distribution. The
contents of thisfile are shown below:

/*

* widget_arrowb.c - This file contains C code to be called from
* UNIX IDL via CALL_EXTERNAL. It uses the IDL stub w dget to add
* a Motif ArrowButton to an IDL created w dget hierarchy. The

* button issues a WDGET_STUB_EVENT every time the button is

* rel eased.

*

* While this code is Motif-centric, the principles apply across *
platforns and coul d be adapted to M crosoft W ndows.

*/

#i ncl ude <stdi o. h>

#i ncl ude <X11/ keysym h> /* Keysyns for text w dget events */
#incl ude <X11/Intrinsic. h>
#i ncl ude <X11/ Stri ngDefs. h>
#i ncl ude <X11/ Shel | . h>
#i ncl ude <Xm ArrowB. h>
#i nclude "idl_export.h"

| * ARGSUSED* /
static void arrowb_CB(Wdget w, caddr_t client_data,
caddr _t cal |l _data)

{

char *rec;
XmAr r owBut t onCal | backStruct *abcs;

| DL_W dget St ubLock(TRUE) ;
if (rec = | DL_W dget St ubLookup((unsigned long) client_data)) ({
abcs = (XmArrowButtonCal | backStruct *) call_data;
| DL_W dget | ssueSt ubEvent (rec, abcs->reason == XnCR_ARM;
}
| DL_W dget St ubLock(FALSE) ;
}

static void arrowb_size_func(IDL_ULONG stub, int w dth,
i nt height)
{
char *stub_rec;
unsigned long t_id, b_id;
char buf[128];

External Development Guide UNIX WIDGET_STUB Example: WIDGET _ARROWB

462 Chapter 22: Adding External Widgets to IDL

| DL_W dget St ubLock(TRUE) ;
if (stub_rec = | DL_W dget St ubLookup(stub)) {
| DL_W dget Get St ubl ds(stub_rec, & _id, & _id);
sprintf(buf, "Setting WDCET % to wi dth % and hei ght %"
stub, w dth, height);
| DL_Message(| DL_M NAMED_GENERI C, | DL_MSG | NFO, buf);
Xt VaSet Val ues((W dget) b_id, Xm\width, width, Xmi\height,
hei ght, NULL);
}

| DL_W dget St ubLock(FALSE) ;

}

int widget_arrowb(lDL_LONG parent, |DL_LONG stub, |DL_LONG
use_own_si ze_func)

{

W dget parent_w;

W dget stub_w;

char *parent_rec;

char *stub_rec;

unsigned long t_id, b_id,

| DL_W dget St ubLock(TRUE) ;
if ((parent_rec = | DL_W dget St ubLookup(parent))
&& (stub_rec = | DL_W dget St ubLookup(stub))) {

/* Bottom wi dget of parent is parent to arrow button */

| DL_W dget Get St ubl ds(parent _rec, & _id, &b_id);

parent _w = (Wdget) b_id;

stub_w = Xt VaCr eat eManagedW dget ("arrowb",

XmAr r owBut t onW dget d ass,
parent _w, NULL);
| DL_W dget Set St ubl ds(stub_rec, (unsigned |ong) stub_w,
(unsi gned | ong) stub_w);
Xt AddCal | back(st ub_w, XmNar nCal | back,
(Xt Cal | backProc) arrowb_CB, (XtPointer) stub);
Xt AddCal | back(st ub_w, XnmiNdi sar nCal | back,
(Xt Cal | backProc) arrowb_CB, (XtPointer) stub);
i f (use_own_size_func)
| DL_W dget St ubSet Si zeFunc(stub_rec, arrowb_size_func);

}
| DL_W dget St ubLock(FALSE) ;
return stub;

}

UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Chapter 22: Adding External Widgets to IDL 463

An IDL Program to Test the External Widget

Shown below isan IDL widget program to test the ARROWB widget. This program
isfoundin the filewidget_arrowb_test.pro in the IDL distribution:

pro wi dget _arrowb_test_event, ev
wi dget _control, get_uvalue=val, ev.id
if (val eq 0) then begin
wi dget _control, /destroy, ev.top
endif el se begin
HELP, /STRUCT, ev
if (ev.value eq 1) then begin
wi dget _control, val, set_val ue=" New | abel string’
tnp = wi dget _i nfo(ev.id,/ GEOVETRY)
wi dget _control, xsize=tnp.xsize+25, $
ysi ze=t np. ysi ze+25, ev.id
endi f
endel se
end

pro wi dget _arrowb_t est, VERBOSE=verbose
a = widget _base(/COLUWN)
b = widget_button(a, value="Done’, uval ue = 0)
| abel =wi dget _| abel (a, val ue=" A | abel ")
arrow_w = wi dget _arrowb(a, 0, xsize=100, ysize=100, $
uval ue=l abel, verbose=verbose)
arrow_w = wi dget _arrowb(a, 1, xsize=100, ysize=50, $
uval ue=l abel, verbose=verbose)
wi dget _control,/real, a
xmanager, W DGET_ARROWB_TEST', a, /NO_BLOCK
end

External Development Guide UNIX WIDGET_STUB Example: WIDGET _ARROWB

464 Chapter 22: Adding External Widgets to IDL

UNIX WIDGET_STUB Example: WIDGET_ARROWB External Development Guide

Appendix A:

Obsolete Internal
Interfaces

This chapter discusses the following topics:

Interfaces Obsoleted in IDL 5.5
Interfaces Obsoleted in IDL 5.6

Simplified Routine Invocation

........ 479

External Development Guide

465

466 Appendix A: Obsolete Internal Interfaces

Interfaces Obsoleted in IDL 5.5

Thefollowing areas changed in IDL 5.5, requiring the introduction of new interfaces,
and causing some old interfaces to become obsolete. These old interfacesremain in
IDL and can be used by user code. However, new code should not use them, and old
code might benefit from migration as part of normal maintenance:

* ThelDL_Message() IDL_MSG_ATTR_SY Sattribute has been retired,
in favor of the more general | DL_M essageSyscode() function.

* ThelDL_MessageErrno() and IDL_M essageErrnoFromBlock()
functions have been retired in favor of the IDL_M essageSyscode() and
IDL _M essageSyscodeFromBlock() functions, which are more general.

* |IDL'skeyword API has been redesigned to be easier to use and
understand, and to be reentrant.

IDL_MSG_ATTR_SYS

Note
IDL_MSG_ATTR_SY Sisoneof the possible attribute values that can be included
in the action argument to the IDL _M essage() function. Its purpose was to cause
IDL_Message() to report the system error currently contained in the process errno
global variable. This functionality is now available in a more general and useful
form viathe IDL_M essageSyscode() and IDL _M essageSyscodeFromBlock()
functions, documented in “Issuing Error Messages’ on page 288

IDL_MSG_ATTR_SYS

I[IDL _M essage() always issues a single-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
compl ete picture of what went wrong. For example, the IDL view of the
problem might be “ Unable to open file”, while the underlying system reason
for the error is*no such directory”.

The UNIX system provides aglobal variable named errno for communicating
such system level errors. Whenever acall to asystem function fails, it returns a
1, and puts an error code into errno that specifies the reason for the failure.
Other functions, such as those provided by the standard C library, do not set
errno. These functions do set errno.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 467

Specifying | DL_MSG_ATTR_SYStellsIDL_M essage() to check errno, and
if it is non-null, to issue a second line containing the text of the system error
message.

Specify IDL_MSG_ATTR_SYSonly if you arecaling IDL_M essage() as
the result of afailed UNIX system call. Otherwise, errno might contain an
unrelated garbage value resulting in an incorrect error message.

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically do not set it. On these operating
systems, it is possible to specify IDL_MSG_ATTR_SYS, but it has no effect.

Specifying errno Explicitly: IDL_MessageErrno()

Note
The|DL_MessageErrno() and IDL_M essageErrnoFromBlock() functions allow
you to throw an error message that includes the system error from the UNIX/POSI X
errno global variable. These functions have been replaced by
IDL_MessageSyscode() and | DL _M essageSyscodeFromBlock() which in
addition to being able to throw UNIX/Paosix errors, can aso throw other types of
system error.

There are times when specifying the IDL_M SG_ATTR_SY S modifier code in the
action argument to I DL _M essage() isinadequate. This situation usually occurs when
your code attempts to perform some cleanup operation when an operating system call
fails before calling IDL_M essage() and this cleanup code might ater the value of
errno. In such cases, it is preferable to use the IDL_M essageErrno() or
IDL_MessageErrnoFromBlock() functions to issue the message:

voi d | DL_MessageErrno(int code, int errno, int action, .)

voi d | DL_MessageEr rnoFronBl ock(|1 DL_MSG BLOCK bl ock, int code, int
errno, int action, ...)

These function differsfrom IDL _M essage() in two ways:

1. Thereisan additional argument used to specify the value of errno. See the
discussion of errnoin“IDL_MSG_ATTR_SY S’ on page 466 for additional
information about errno and its use.

2. ThelDL_MSG_ATTR_SY S modifier code for the action argument is
ignored.-

External Development Guide Interfaces Obsoleted in IDL 5.5

468 Appendix A: Obsolete Internal Interfaces

Processing Keywords With IDL_KWGetParams()

Note
Previous versions of IDL used akeyword APl based around the
IDL_KWGetParams() and IDL_KW Cleanup() functions. This APl was
confusing to use (It was difficult to know when IDL_K W Cleanup() was supposed
to be called), and was not reentrant (requiring extensive and error prone code in
some IDL system routines) . The new API, using IDL_KW ProcessByOffset() and
IDL_KW_FREE, solve these problems and result in easier to write and maintain
code.

To enable rapid conversion from the old API to the new, the new API uses most of
the same data structures as the old (with the notable exception of
IDL_KW_ARR_DESC, which isreplaced by IDL_KW_ARR_DESC_R).

This section reproduces those parts of the documentation of the original API that
differ from the current API, which is described in Chapter 12, “IDL Internals:
Keyword Processing”

The IDL_KW_PAR Structure

Note
IDL_KW_PAR isused with the old keyword API in largely the same manner as
the current API, as described in “Overview Of IDL Keyword Processing” on
page 250. The main difference is that the contents of the specified and valuefields
are the addresses of static variables, rather than offsetsintoaKW_RESULT
structure as with the new API.

specified

The address of a C int variable that will be set to TRUE (non-zero) or FALSE (0)
based on whether the routine was called with the keyword present. Thisfield should
be set to NULL ((int *) 0) if thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield is apointer to a C variable of the
correct type (IDL_LONG, IDL_ULONG, IDL_LONG64, IDL_ULONG#64, float,
double, or IDL_STRING).

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 469

In the case of aread-only array, value isapointer toan IDL_KW_ARR_DESC,
which isdiscussed in “The IDL_KW_ARR_DESC Structure” on page 469. In the
case of an output variable (i.e., the IDL_KW_OUT flag is set), thisfield should
point to an IDL_VPTR that will befilled by IDL_KWGetParams() with the
address of the keyword argument.

The IDL_KW_ARR_DESC Structure

Note
The IDL_KW_ARR_DESC structure was superseded by
IDL_KW_ARR_DESC_R inthe current API. The reason for this changeis that
then field of IDL_KW_ARR_DESC is modified by the call to
IDL_KWGetParams(), requiring the IDL_KW_ARR_DESC structureto be
defined in static memory, and rendering it non-reentrant.

When a keyword is specified to be aread-only array (i.e., the IDL_KW_ARRAY
flag is set), the value field of the IDL_KW _PAR struct should be set to point to an
IDL_KW_ARR_DESC structure. This structure is defined as:

typedef struct {
char *dat a;
| DL_MEM NT nm n;
| DL_MEM NT nnax;
| DL_MEM NT n;

} 1 DL_KW ARR _DESC,

where:

data

The address of a C array to receive the data. Thisarray must be of the C type mapped
into by the typefield of theIDL_KW _PAR struct. For example, IDL_TYP_LONG
mapsinto aC IDL_L ONG. There must be nmax elements in the array.

nmin
The minimum number of elements allowed.
nmax

The maximum number of e ements allowed.

External Development Guide Interfaces Obsoleted in IDL 5.5

470 Appendix A: Obsolete Internal Interfaces

The number of elements actually present. Unlike the other fields, this field is set by
IDL_KWGetParams().

Processing Keywords

The IDL_KWGetParams() function is used to process keywords.

IDL_KWGetParams() performs the following actions on behalf of the calling
system routine:

» Verify that the keywords passed to the routine are all alowed by the routine.
» Carry out the type checking and conversions required for each keyword.

» Find the positional (non-keyword) arguments that are scattered among the
keyword argumentsin argv and copy them in order into the plain_args array.

* Return the number of plain arguments copied into plain_args.
IDL_KWGetParams() has the form:

int | DL_KWGet Parans(int argc, |DL_VPTR *argv, char *argk,

| DL_KW PAR *kw_l ist, IDL_VPTR plain_args[], int nask)
where:
argc
The number of arguments passed to the caller. Thisisthe first parameter to all system
routines.
argv

The array of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisisthe third
parameter to al system routines that accept keyword arguments.

kw_list

An array of IDL_KW_PAR structures (see“ Overview Of IDL Keyword Processing”
on page 250, and “The IDL_KW_PAR Structure” on page 468) that specifiesthe
acceptable keywordsfor thisroutine. This array is terminated by setting the keyword
field of the final struct to NULL ((char *) 0).

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 471

plain_args

Anarray of IDL_VPTR intowhichthel DL_VPTRsof the positional argumentswill
be copied. This array must have enough elements to hold the maximum possible
number of positional arguments, as defined in IDL_SYSFUN_DEF2. See
“Registering Routines’ on page 386.

mask

Mask enable. This variable is ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_KWGetParams() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fiel ds (those fiel ds specified, and value fields
with IDL_KW_ZERO set), can become significant, especially when more than afew
keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN as the first keyword array
element. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL_KWGetParams() into a more efficient form the first time
it isused. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL_KWPAR kw pars[] = {

{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) },
{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KWZERO, 0, CHARA(f) },
{ NULL }

b

To use fast scanning, it would be written as:

static IDL_KWPAR kw pars[] = {

| DL_KW FAST_SCAN,

{ "DOUBLE', IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) },
{"FLOAT", IDL_TYP_FLOAT, 1, IDL_KWZERO, 0, CHARA(f) },
{ NULL }

b

External Development Guide Interfaces Obsoleted in IDL 5.5

472 Appendix A: Obsolete Internal Interfaces

Cleaning Up

The IDL_KWCleanup() function is necessary if the keywords allowed by a system
routine include any input-only keywords of type IDL_TYP_STRING, or if the
IDL_KW_VIN flag is used by any of the keyword IDL_KW _PAR structures. Such
keywords can cause keyword processing to allocate temporary variables that must be
cleaned up after they’ ve outlived their usefulness. Call IDL_K W Cleanup() as
follows:

voi d | DL_KWCl eanup(i nt fcn)

where fcn specifies the operation to be performed, and must be one of the following
values:

IDL_KW_MARK

Mark the stack by placing the statement:
| DL_KWC eanup(| DL_KW MARK) ;

abovethecadll to IDL_KWGetParams(). In addition, you will need to make acall
with IDL_KW_CLEAN at the end.

IDL_KW_CLEAN

Clean up from the last call to IDL_KW GetParams() by placing theline:
| DL_KWCI eanup(| DL_KW CLEAN) ;
just above the return statement.

Keyword Examples

The following C function implements KEY WORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for a routine. It
prints the values of its keywords, changes the value of READWRITE to 42 if itis
present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A:

Obsolete Internal Interfaces 473

Note
The following code is designed to demonstrate keyword processing in asimple,
uncluttered example. In actual code, you would not use the printf mechanism used
on lines 35-39.

©O© 00 NO O~ WN -

10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29

#i ncl ude <stdio. h>
#i ncl ude <idl _export.h>

void keyword_denmo(int argc, |IDL_VPTR *argv, char *argk)
{
int i;
| DL_ALLTYPES newal ;

static int d_there, s_there, arr_there;
static | DL_LONG I ;

static float f;

static double d;

static I DL_STRI NG s;

static IDL_LONG arr_data[10];

static | DL_KW ARRAY_DESC arr_d = {(char *) arr_data, 3, 10, 0};
static I DL_VPTR var;

static | DL_KW PAR kw_pars[] = { | DL_KW FAST_SCAN,

{ "ARRAY", IDL_TYP_LONG 1, |DL_KWARRAY, &arr_there,
| DL_CHARA(arr_d) 1},

{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &_there, |DL_CHARA(d) },

{ "FLOAT", IDL_TYP_FLQAT, 1, IDL_KWZERO, 0, IDL_CHARA(f) },

{ "LONG', IDL_TYP_LONG 1, IDL_KW ZERQ | DL_KW VALUE| 15, O,
| DL_CHARA(I) 1},

{ "READWRI TE", |DL_TYP_UNDEF, 1, |DL_KW OUT|IDL_KW ZERQ,
0, | DL_CHARA(var) 1},

{ "STRING', TYP_STRING, 1, 0, &s_there, |DL_CHARA(sS) },

{ NULL }

External Development Guide Interfaces Obsoleted in IDL 5.5

474 Appendix A: Obsolete Internal Interfaces
30
31jI DL_KWCO eanup(| DL_KW NARK) ;
32
33f(void) | DL_KWGetParans(argc, argv, argk, kw pars, NULL, 1);
34
35fprintf("LONG <%present>\n", | ? "": "not ");
36fprintf("FLOAT: %\n", f);
37fprintf("DOUBLE: <%present>\n", d_there ? "": "not ");
38printf("STRING %s\n", s_there ? | DL_STRI NG_STR(&s) "<not present>");
39printf("ARRAY: ");
40Qi f (arr_there)
41 for (i =0; i < arr_d.n; i++)
42 printf(" %", arr_datalil]);
43 el se
C 44 printf("<not present>");
45Qprintf("\n");
46
47 printf (" READWRI TE: ") ;
48Qi f (var) {
49 IDL_Print(1, &var, (char *) 0);
50 newal .| = 42;
51 I DL_St oreScal ar (var, TYP_LONG &newal);
52} else {
53 printf("<not present>");
541}
55fprintf("\n");
56
571 DL_KWC eanup(| DL_KW CLEAN) ;
581}

Interfaces Obsoleted in IDL 5.5

Executing this routine from the IDL command line, by entering:
KEYWORD_DEMO
gives the output:

LONG <not present>
FLOAT: 0. 000000

DOUBLE: <not present>
STRING <not present>
ARRAY: <not present>
READWRI TE: <not present>

Executing it again with keywords specified:

A = 56
KEYWORD_DEMD, /LONG FLOAT=2, DOUBLE=34, $
STRI NG="hel | 0", ARRAY=FI NDGEN(10), READWRI TE=A

External Development Guide

Appendix A: Obsolete Internal Interfaces 475

PRI NT, 'Final Value of A: ', A
gives the output:

LONG <present >

FLOAT: 2.000000

DOUBLE: <present >

STRING hello

ARRAY: 0123456789
READVRI TE: 56

Final Value of A 42

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

The DL _StoreScalar () function used on line 51 requires the scalar to be provided in
anIDL_ALLTYPES struct.

These variables are used to determine if a given keyword is present. Note that al the
keyword-related variables are declared static. Thisis necessary so that the C compiler
can build the IDL_KW_PAR structure at compile time.

10-13

C variablesto receive the scalar read-only keyword values.
14

C array to be used for the ARRAY read-only array keyword.
15

The array descriptor used for ARRAY. arr_data is the address where the array
contents should be copied. The minimum number of elements allowed is 3, the
maximum is 10. The value set in the last field (0) is not important, because the
keyword processing routine never readsits value. Instead, it puts the number of
elements actually seen there.

16

The READWRITE keyword usesthe IDL_KW _OUT flag, so the routine receives an
IDL_VPTR instead of a processed value.

External Development Guide Interfaces Obsoleted in IDL 5.5

476 Appendix A: Obsolete Internal Interfaces

18

The keyword definition array. Notice that al of the keywords are ordered lexically
(ASCII) and that thereisa NULL entry at the end (line 28). Also, all of the mask
fieldsareset to 1, asisthe mask argument to IDL_KW GetParams() on line 33. This
means that all of the keywordsin the list are to be considered valid in this routine.

ThelDL_KW_FAST_SCAN macro is used to define the first keyword array element,
speeding the processing of along IDL_KW_PAR list.

19-20

ARRAY is defined to be aread-only array keyword of IDL_TYP_LONG. The
arr_therevariable will be set to non-zero if the keyword is present. In that case, the
array contents will be placed in the variable arr_data and the number of elements
will be placed into arr_d.n.

21

DOUBLE isascdar keyword of IDL_TYP_DOUBLE. It usesthe variabled_there
to know if the keyword is present.

22

FLOAT isan IDL_TYP_FLOAT scaar keyword. It does not use the specified field
of the IDL_KW_PAR struct to get notification of whether the keyword is present.
Instead, it usesthe IDL_KW _ZERO flag to make sure that the variable f is always
zeroed. If the keyword is present, the value will be written into f, otherwise it will
remain 0. The important point is that the routine can't tell the difference between the
keyword being absent, or being present with a user-supplied value of zero. If this
distinction doesn’t matter, such as when the keyword is to serve as an on/off toggle,
use this method. If it does matter, use the specified field as demonstrated with the
DOUBLE keyword, above.

23 -24

LONG isascaar keyword of IDL_TYP_LONG. It setstheIDL_KW_ZERO flag
to get the variable | zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable .

25— 26

The IDL_KW_OUT flag indicates that the routine wants getsthe IDL_VPTR for
READWRITE if it ispresent. Since IDL_KW_ZERO isalso set, the variable var
will be zero unless the keyword is present. The specification of IDL_TYP_UNDEF

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 477
here indicates that there is no type conversion or processing applied to
IDL_KW_OUT keywords.

27
This keyword isincluded here to force the need for IDL_KWCleanup() on line 58.
28
Every array of IDL_KW_PAR structs must end with aNULL entry.
31
Mark the stack in preparation for the IDL_KW Cleanup() call on line 58.
33

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_KWGetParams() is discarded.

35
Thel variable will be 0 if LONG is not present, and 1 if it is.
36

Thef variable will always have some usable value, but if it is zero thereis no way to
know if the keyword was actually specified or not.

37-38

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “ Accessing IDL_STRING Values’ on page 279.

39-45

Accessing the ARRAY keyword issimple. The arr_there variable indicates if the
keyword is present, and arr_d.n gives the number of elements.

47 — 55

Sincethe READWRITE keyword isaccessed viatheargument'sI DL _VPTR, we use
theIDL_Print() function to print its value. This has the same effect as using the user-
level PRINT procedure when running IDL. See “Output of IDL Variables’ on

page 333. Then, we changeitsvalue to 42 using DL _StoreScalar ().

External Development Guide Interfaces Obsoleted in IDL 5.5

478 Appendix A: Obsolete Internal Interfaces

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_PRINT()) in your own code.

57

Theuse of IDL_KWCleanup() is necessitated by the existence of the STRING
keyword, whichisof IDL_TYP_STRING.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 479

Interfaces Obsoleted in IDL 5.6

Changes were required to implement the ability to enable and disable IDL system
routines from runtime and callable IDL. Rather than ater the IDL_SY SFUN_DEF
structure, and the IDL_AddSystemRouting() function in an incompatible way, a new
structure (IDL_SY SFUN_DEF2) and new function (IDL_SysRtnAdd()) have been
created to accomplish the new tasks, and the old structure and function have been
obsoleted.

Note
The interfaces described in this section are considered functionally obsolete
although they continue to be supported by Research Systems. This sectionis
supplied to help those maintaining older code. New code should be written using
the information found in “Registering Routines’ on page 386.

Registering Routines

The IDL_AddSystemRouting() function adds system routinesto IDL’sinterna
tables of system functions and procedures. As a programmer, you will need to call
this function directly if you are linking a version of IDL to which you are adding
routines, although thisis very rare and not considered to be a good practice for
maintainability reasons. More commonly, you use IDL_AddSystemRouting() in the
IDL_L oad() function of a Dynamically Loadable Module (DLM).

Note
LINKIMAGE or DLMs are the preferred way to add system routinesto IDL
because they do not require building a separate IDL program. These mechanisms
are discussed in the following sections of this chapter.

int | DL_AddSystenRouti ne(l DL_SYSFUN_DEF *defs, int is_function,
int cnt);

It returns True if it succeeds in adding the routine or Falsein the event of an error:

defs
An array of IDL_SY SFUN_DEF structures, one per routine to be declared. This

array must be defined with the C language static storage class because IDL keeps
pointersto it. defs must be sorted by routine namein ascending lexical order.

External Development Guide Interfaces Obsoleted in IDL 5.6

480 Appendix A: Obsolete Internal Interfaces

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SY SFUN_DEF structures contained in the defs array.
The definition of IDL_SYSFUN_DEF is:
t ypedef |DL_VARI ABLE *(* |DL_FUN_RET)();

typedef struct {
| DL_FUN_RET funct_addr;
char *nane;
UCHAR ar g_m n;
UCHAR ar g_nmax;
UCHAR f | ags
} 1 DL_SYSFUN_DEF;

IDL_VARIABLE structures are described in “ The IDL_VARIABLE Structure’ on
page 217.

funct_addr

Address of the function implementing the system routine.

name

The name by which the routine is to be invoked from within IDL. This should be a
pointer to anull terminated string. The name should be capitalized. If the routineisan
object method, the name should be fully qualified, which meansthat it should include
the class name at the beginning followed by two consecutive colons, followed by the
method name (e.g. CLASS: : METHOD).

arg_min
The minimum number of arguments allowed for the routine.
arg_max

The maximum number of arguments allowed for the routine. If the routine does not
place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

Interfaces Obsoleted in IDL 5.6 External Development Guide

Appendix A: Obsolete Internal Interfaces 481

flags

A bitmask that provides additional information about the routine. Its value can be any

combination of the following values (bitwise OR’ d together to specify more than one
at atime) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS_ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.

External Development Guide Interfaces Obsoleted in IDL 5.6

482 Appendix A: Obsolete Internal Interfaces

Simplified Routine Invocation

Note
The functions and techniques described in this section are no longer widely used,
and are considered functionally obsolete although they continue to be supported by
Research Systems. This section is supplied to help those maintaining older code.
New code should be written using the information found in Chapter 20, “ Adding
System Routines”.

A great deal of thework involved in writing IDL system routines involves checking
positional arguments, screening out illegal combinations of type and structure, and
converting them to desired type. The function IDL _EzCall() provides a simplified
way to handle thistask. It processesan array of IDL_EZ_ ARG structs which
describe the processing to be applied to each positional argument.

The DL _EzCall() function is similar to the facility provided for keyword arguments
by IDL_KWGetParams():

void |IDL_EzCall (int argc, |IDL_VPTR argv[],
IDL_EZ ARG arg_struct[]);

where:
argc

The number of positional arguments present.
argv

An array of pointers to the positional arguments.

arg_struct

Anarray of IDL_EZ_ ARG structures defining the desired characteristics for each
possible argument. Note that this array must have a definition for every possible
parameter whether that argument is present in the current call or not. The order of the
IDL_EZ_ARG dgructuresisthe same as the order in which the arguments are
specified inthecall. (See “The IDL_EZ ARG struct” on page 483.)

There are some things you need to be aware of when using IDL_EzCall():

* |IDL_EzCall() automatically excludesfile variables (such as those created
by the ASSOC function) so you don't have to take any specia action to
screen such variables out.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 483

Note

Every call to IDL_EzCall() must have a matching call to
IDL_EzCallCleanup() before execution returns to the interpreter.

IDL_EzCall() does not handle keyword arguments. If the calling routine
allows keyword arguments, it must do its own keyword processing using
IDL_KWGetParams() (see“IDL Internals: Keyword Processing” on
page 247) and pass an argv containing only positional argumentsto
IDL_EzCall().

If you mark avariable as being write-only, you shouldn’t count on
anything useful being in the uargv or value fields. Thisimpliesthat itis
not agood ideato setthe IDL_EZ POST_WRITEBACK fieldinthe
post field. Instead, you will have to allocate a new temporary variable,
place the desired value into it, and use the I DL _Var Copy() function to
write its value back into the original argv entry yourself.

IDL_EZ POST_WRITEBACK isonly useful when the accessfield is set to
IDL_EZ_ACCESS RW.

The IDL_EZ ARG struct

ThelDL_EZ_ ARG struct has the following definition:

typedef struct {
short al | owed_di ns;
short al |l owed_types;
short access;
short convert;
short pre;
short post;
| DL_VPTR t o_del et e;
| DL_VPTR uar gv;
| DL_ALLTYPES val ue;
} IDL_EZ ARG,

where:

allowed_dims

A bit mask that specifies the allowed dimensions. Bit 0 means scalar, bit 1 means
one-dimensional, etc. The IDL_EZ_DIM_MASK macro can be used to specify
certain bits. It accepts a single argument that specifies the number of dimensions that
are accepted, and returns the bit value that represents that number. For example, to
specify that the argument can be scalar or have 2 dimensions:

External Development Guide Simplified Routine Invocation

484 Appendix A: Obsolete Internal Interfaces

| DL_EZ DI M MASK(0) | |DL_EZ DI M MASK(2)

In addition, the following constants are defined to simplify the writing of common
cases:

IDL_EZ_DIM_ARRAY
Allow all but scalar.

IDL_EZ_DIM_ANY
Allow anything.

allowed_types

Thisisabit mask defining the allowed data types for the argument. To convert type
codes to the appropriate bits, use the formula:

BitMask = 2'YPecode

or usethe IDL_TYP_MASK macro (see “ Type Masks’ on page 209).

Note
If you specify avalue for the convert field, its a good idea to specify
IDL_TYP B _ALL orIDL_TYP_B_SIMPLE here. The type conversion will
catch any problems and your routine will be more flexible.

access

A bitmask that describes the type of access to be allowed to the argument. The
following constants should be OR’ d together to set the proper vaue:

IDL_EZ_ACCESS_R
The vaue of the argument is used by the system routine.
IDL_EZ_ACCESS_W

The value of the argument is changed by the system routine. This meansthat it
must be a named variable (as opposed to a constant or expression).

IDL_EZ_ACCESS_RW
Thisisequivalentto IDL_EZ_ACCESS R |IDL_EZ_ACCESS_W.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 485

convert

The type code for the type to which the argument will be converted. A value of
IDL_TYP_UNDEF means that no conversion will be applied.

pre
A bitmask that specifies special purpose processing that should be performed on the
variable by IDL_EzCall(). These bits are specified with the following constants:
IDL_EZ_PRE_SQMATRIX
The argument must be a square matrix.
IDL_EZ_PRE_TRANSPOSE

Transpose the argument.

Note

This processing occurs after any type conversions specified by convert, and isonly
doneif the accessfield hasthe IDL_EZ_ACCESS R bit set.

post

A bit mask that specifies specia purpose processing that should be performed on the

variable by IDL _EzCallCleanup(). These bits are specified with the following
constants:

IDL_EZ_POST_WRITEBACK

Transfer the contents of the uargv field back to the actual argument.
IDL_EZ_POST_TRANSPOSE

Transpose uargyv prior to transferring its contents back to the actual argument.

Note

This processing occurs only when the accessfield hasthe IDL_EZ_ACCESS W
bit set. If IDL_EZ POST_WRITEBACK isnot present, none of the other actions
are considered, since that would imply wasted effort.

to_delete

Do not make use of thisfield. Thisfield isreserved for use by the EZ module. If
IDL_EzCall() alocated atemporary variable to satisfy the conversion requirements

External Development Guide Simplified Routine Invocation

486 Appendix A: Obsolete Internal Interfaces

given by the convert field, the IDL_VPTR to that temporary is saved here for use by
IDL_EzCallCleanup().

uargv

After calling IDL_EzCall(), uargv contains apointer to the IDL_VARIABLE
which is the argument. Thisisthe IDL_VPTR that your routine should use.
Depending on the required type conversions, it might be the actual argument, or a
temporary variable containing a converted version of the original. This field won't
contain anything useful if theIDL_EZ ACCESS R bit is not set in the accessfield.

value

Thisisacopy of the valuefield of the IDL_VARIABL E pointed at by uargv. For
scalar variables, it contains the value, for arraysit points at the array block. Thisfield
is here to make reading read-only variables faster. Note that thisis only a copy from
uargv, and changing it will not cause the actual value field in uargv to be updated.

Cleaning Up

Every call to IDL_EzCall() must be bracketed by acall to IDL_EzCallCleanup():

void I DL_EzCal | Cl eanup(int argc, IDL_VPTR argv[],
IDL_EZ ARG arg_struct[]);

The arguments are exactly the same as those passed to | DL _EzCall().
Example— using IDL_EzCall()

The following function skeleton shows how to use the simplified interface to handle
argument processing for an older version of the built-in SVD (Singular Value
Decomposition) function. SV D accepts the following positional arguments (in order):

A
An mby nmatrix (input, required).
W

An n-element vector (output, required).

U

An n by mmatrix (output, optional)

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 487

Vv

An nby n matrix (output, optional)

Each lineis numbered to make discussion easier. These numbers are not part of the
actual program.

1 void nr_svdcnp(int argc, IDL_VPTR argv[])

{

25
26
27 }

static IDL_EZ ARG arg_struct[] = {
{ IDL_EZ DIM MASK(2), IDL_TYP_B SIMPLE, |DL_EZ ACCESS R,
IDL_TYP_FLOAT, 0, 0}, /* A */
{ IDL_EZ_DIMANY, IDL_TYP B ALL,
IDL_EZ_ACCESS_ W 0, 0, 0}, /* w*/
{ IDL_EZ_DIM ANY, IDL_TYP B ALL,
IDL_EZ_ACCESS_ W 0, O, 0}, /* U*/
{ IDL_EZ_ DIM ANY, IDL_TYP B ALL,
IDL_EZ_ACCESS W 0, 0, 0} /* V */
b

IDL_EzCal | (argc, argv, arg_struct);

/* Do the SVD cal cul ation and prepare tenporary
vari ables to be returned as w, U, and V */

I DL_EzCal | Cl eanup(argc, argv, arg_struct);

Those features of this procedure that are interesting in terms of plain argument
processing are, by line number:

7-8

The settings of the variousfields of the IDL_EZ_ARG struct for the first positional
argument (A) specifies:

allowed_dims

The argument must be 2-dimensional.

External Development Guide Simplified Routine Invocation

488 Appendix A: Obsolete Internal Interfaces

allowed_types

It can have any simple type. Types and type codes are discussed in “IDL Internals:
Types’ on page 207.

access
The routine will examine the argument’s value, but will not attempt to change it.
convert
The argument should be converted to IDL_TYP_FL OAT if necessary.
pre
No pre-processing is required.
post

No post-processing is required.

Theremaining fields are all set by IDL_EzCall() in response to the above.
9-14

Arguments two through four are allowed to have any number of dimensions and are
allowed any type. This is because the routine does not intend to examine them, only
to change them. For the same reason, azero (IDL_TYP_UNDEF) is specified for the
convert field indicating that no type conversion is desired. No pre or post-processing
is specified.

17

Process the positional arguments.
26

Clean up.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 489

Obsolete Error Handling API

The following variables can be accessed only on UNIX. These variables have been
superseded by the functions listed in “ Functions for Returning System Variables” on
page 349, which are available on all platforms. In al cases, these variables should be
considered READ-ONLY:.

IDL System Variable Internal Variable Type
IDIR IDL_SysvDir IDL_STRING
IVERSION.ARCH IDL_SysvVersion.arch IDL_STRING
IVERSION.OS IDL_SysvVersion.os IDL_STRING
IVERSION.OS FAMILY | IDL_SysvVersion.os family | IDL_STRING
IVERSION.RELEASE IDL_SysvVersion.release IDL_STRING
IERR IDL_SysvErrCode IDL_LONG
IERROR IDL_SysvErrorCode IDL_LONG
IORDER IDL_SysvOrder IDL_LONG

Table A-1: IDL System Variables Available to User Programs

In addition, the following function has been superseded by the
IDL_SysvErrorCodeValue() function:

IDL_LONG IDL_SysvErrCodeValue(void)

This function returns the value of | ERR.

External Development Guide Obsolete Error Handling API

490 Appendix A: Obsolete Internal Interfaces

Obsolete Error Handling API External Development Guide

Index

Symbols

IDIR system variable, 349

IDLM_PATH, 399

IERROR_STATE system variable, 290, 349

IERROR_STATE.CODE system variable, 421

IERROR_STATE.MSG system variable, 349

IERROR_STATE.SYS_MSG system variable,
349

IORDER system variable, 349

IVERSION. ARCH system variable, 349

IVERSION.OS system variable, 349

IVERSION.OS FAMILY system variable,
349

IVERSION.REL EA SE system variable, 349

External Development Guide

A

absolute value, 357
accessfield, 319, 484
access_mode argument, 322
Accessing Structure Tags, 225
Accessing Variable Data, 240
action argument, 290, 326, 345
ActiveX controls

classID, 73

destroying, 82

example IDL code, 83, 86

IDLcomActiveX object references, 76

inserting into IDL widget hierarchy, 42, 74

method calls, 76
naming scheme, 73
overview, 40
program ID, 73

491

492

properties, 78

registering, 72

see also IDL DrawWidget

skillsrequired, 44

usnginIDL, 72

widget events, 79

WIDGET_ACTIVEX, 42
adding

system routines, 386
adding code to IDL

overview, 21

skillsrequired, 22

system routines, 362
Adding To The Journa File, 334
Allocating and Freeing File Units, 328
allow argument, 325
allowed _dimsfield, 483
allowed_typesfield, 484
anonymous structures, 223, 224
ANSI C, 22

Appropriate Applications of Callable IDL, 411

arg_max field, 387, 480
arg_min field, 387, 480
arg_struct argument, 482
argc argument, 249, 259, 322, 324, 328, 328,
333, 363, 417, 421, 424, 470, 482
argk argument, 259, 322, 324, 333, 363, 470
arguments
checking, 295
keyword see keywords
argv argument, 249, 259, 295, 322, 324, 328,
328, 333, 363, 417, 421, 424, 470, 482
arr_lenfield, 221
array variables, 221
arrays
passing with CALL_EXTERNAL, 163
arrays, creating from existing data, 236
ASSOC function, 218, 222

Index

associated input/output, 218, 222
AUTO_GLUE, 152

B

BackColor, 129

Baseld, 133

BaseName, 129

bell, ringing with error messages, 291
blocking timers, 336

Blocking UNIX Timers, 340

buf argument, 419

buffered data, flushing, 331

C

C
ANSI, 22

CALL_EXTERNAL function
AUTO_GLUE, 142, 152
C examples, 154
calling aC routine, 154
common errors, 147
compared to UNIX child process, 141
compilation and linking, 141
datatypes, 143
Fortran examples, 167
glue functions, 142, 152
input/output, 143
memory cleanup, 143
Microsoft calling conventions, 145
overview, 16, 140
passing array data, 163
passing structures, 165
portable calling convention, 150
string data, 159
wrapper routines, 157

External Development Guide

Callable IDL

appropriate uses, 411

cleanup, 414, 423

compiling and linking C programs, 424
diverting IDL output, 419

example programs, 425, 429, 432
executing IDL statements, 421
implementation, 408

interactive IDL sessions, 424
inter-language calling conventions, 411

licensing issues, 412, 416
overview, 18

program size considerations, 410

threading, 411
troubleshooting, 410
using, 413

using the Windows graphics driver, 410

when to use, 409
callback argument, 337
callbacks, timer, 337

Cdling A Simple Mathematical Function, 429
calling convention for CALL_EXTERNAL

function, 150
calltest program listing
C, 425
Fortran, 432

Canceling Asynchronous Timer Requests, 339
characters, reading from the keyboard, 332

checking arguments, 295
Checking File Status, 326
child processes

under UNIX, 35
Cleaning Up, 486
Cleanup, 423
client process, 172
Client Variables, 174
Closing Files, 324
cmd argument, 421
cnt argument, 386, 480
code argument, 288

External Development Guide

COM objects
class 1D, 48
creating | DL coml Dispatch objects, 52
data type mapping, 65
datatypes, 54
definition, 40
destroying, 64
example IDL code, 67
exposing as | DL.comlDispatch objects,
inlDL, 46
method calls, 53
Microsoft Object Viewer, 50
optional method arguments, 54
overview, 40
program 1D, 49
properties, 61
see also ActiveX
see also IDLcomlDispatch objects
skillsrequired, 44
communicating with a child process, 35
Compatibility with older IDL code, 177
Compilation and Link Statements, 438

493

42

Compiling and Linking Programs that Call

IDL, 424
complex data types, 211
Constants, 356
context argument, 338, 339
convert field, 485
copying strings, 280
copying variables, 241
Creating an array from existing data, 236
creating arrays from existing data, 236

Creating Routines that Accept Keywords,

creating structures, 223

D

data argument, 236
datafield, 221, 255, 469
data types

default output formats, 353

249

Index

494

data types see types

default output formats for data types, 353

definitions, external, 28, 28

defs argument, 386, 479

deleting strings, 281

dest argument, 242

Detecting End Of File, 330

devicefiles, special, 320

dim argument, 231, 232, 236

dimfield, 222

dimsfield, 224

Diverting IDL Output, 419

DL_Load(), 402

DoButtonPress, 127

DoButtonRelease, 127

DoExpose, 127

DoMotion, 128

Drawld, 133

DrawWidgetName, 130

dynamic memory, 238, 344
freed when deleting strings, 281
freeing, 243
IDL_MemAlloc(), 344
IDL_MemAllocPerm(), 346
IDL_MemFree(), 345

E

elt_lenfield, 221
elt_size argument, 239
ensure_simple argument, 240
ensuring length of,, 283
err_str argument, 345
errno global variable
setting, 467
system level errors, 289, 466
errors
checking arguments, 295
issuing, 288
message format string, 292
ringing bell with error message, 291

Index

setting errno explicitly, 467
suppressing error message, 291
suppressing message prefix, 291
suppressing traceback portion of message,
291
system, 466
system variables, 290
Establishing A Signal Handler, 308
events
see widget events
examples
C examplesfor CALL_EXTERNAL, 154
calling a simple math function, 429
Fortran examplesfor CALL_EXTERNAL,
167
Hello World for IDL, 364
including ActiveX controls, 83, 86
simple system routine, 365
using callable IDL from C, 425
using callable IDL from Fortran, 432
using COM objects, 67
using IDL_EzCadll(), 486
using WIDGET_STUB, 457, 459
ExecuteStr, 98
Executing IDL Statements, 421
exit handlers
IDL_ExitRegister(), 347
export.h seeidl_export.h
external definitions, 28
external programs, accessing (SPAWN), 13
extra_flags argument, 323

E

fcn argument, 472

file access
IDL_FILE_STAT struct, 319
mode, 322

file argument, 422

file attributes, 326

file descriptor, 318

External Development Guide

fileinformation
IDL_FILE_STAT struct, 318
file status, checking, 326
file_unit field, 222
files
always open, 323
closing, 324
detecting file end, 330
ensuring proper attributes, 326
journal, 334
opening with IDL_FileOpen(), 322
preventing closure, 325
flags argument, 326, 419
flagsfield, 217, 222, 253, 319
FLEXIm floating licence policy, 416
Flushing Buffered Data, 331
Form_L oad
VisualBasic, 97
Fortran
binary data, unformatted, 320
caling
using Fortran interface routine, 169
child processes, 38
compiler, 424
complex data types, 211
external functions, calling, 140
passing parameters, 23
fptr field, 321
freg() function, 238
free_cb argument, 237
from_callback argument, 337
fsargument, 282
func argument, 308, 309
funct_addr field, 387, 480
FZ_ROOTS example, 368

G

Getting Dynamic Memory, 238, 238
getting file information, 318
GraphicsLevel, 130

External Development Guide

495

H

heap variables, 228

Hello World Example, 364

HELP,/DLM, 401, 405

How Callable IDL isImplemented on Different
Platforms, 408

hwnd, 133

/

IDL organization, 26

IDL output, diverting, 419

IDL portable calling convention, 150
IDL RPC Client APl Example, 175
IDL RPC variable accessor macros, 202
IDL signal API, 305

IDL statements, executing, 421

IDL timer module, 336

IDL, organization of, 26
IDL_A_FILE bit value, 222
IDL_ABS() macro, 357
IDL_ALLTYPESunion, 217, 220
IDL_ARR_INI_INDEX bit value, 231
IDL_ARR_INI_NOP bit value, 231
IDL_ARR_INI_ZERO bit value, 231
IDL_ARRAY dtructure, 217
IDL_BailOut() function, 348
IDL_BasicTypeConversion() function, 301
IDL_CHAR() macro, 357
IDL_CHARA() macro, 357
IDL_Cleanup() function, 414, 423
IDL_CvtByte function, 302
IDL_CvtBytscl function, 302
IDL_CvtComplex function, 302
IDL_CvtDbl function, 302
IDL_CvtDComplex function, 302
IDL_CvtFix function, 302
IDL_CvtFIt function, 302
IDL_CvtLng function, 302
IDL_CvtString function, 302

Index

496

IDL_Deltmp() function, 235, 239
IDL_DLM_PATH, 400, 405
IDL_EFS_ASSOC bhit value, 327
IDL_EFS_CLOSED bit value, 326
IDL_EFS_IDL_OPEN bit value, 326
IDL_EFS_NOGUI bit value, 327
IDL_EFS_NOPIPE bit value, 327
IDL_EFS _NOT_NOSTDIO bit value, 327
IDL_EFS _NOTTY bit value, 326
IDL_EFS _NOXDR bit value, 327
IDL_EFS_READ hit value, 326
IDL_EFS_USER bit value, 326

IDL_EFS WRITE bit value, 326
IDL_ENSURE_ARRAY macro, 296
IDL_ENSURE_OBJREF macro, 296
IDL_ENSURE_PTR macro, 296
IDL_ENSURE_SCALAR macro, 296
IDL_ENSURE_SIMPLE macro, 296
IDL_ENSURE_STRING macro, 296
IDL_ENSURE_STRUCTURE macro, 297
IDL_EXCLUDE_COMPLEX macro, 296
IDL_EXCLUDE_CONST macro, 295
IDL_EXCLUDE_EXPR macro, 295
IDL_EXCLUDE_FILE macro, 296
IDL_EXCLUDE_SCALAR macro, 296
IDL_EXCLUDE_STRING macro, 296
IDL_EXCLUDE_STRUCT macro, 296
IDL_EXCLUDE_UNDEF macro, 295
IDL_Execute() function, 421
IDL_ExecuteStr() function, 421
IDL_ExitRegister() function, 347
idl_export.h file, 28

IDL_EZ_ACCESS_R bit value, 484
IDL_EZ_ACCESS_RW bhit value, 484
IDL_EZ_ACCESS_W bit value, 484
IDL_EZ_ ARG struct, 483

IDL_EZ _DIM_ANY bit value, 484
IDL_EZ DIM_ARRAY bhit value, 484
IDL_EZ POST_TRANSPOSE bit value, 485
IDL_EZ_POST_WRITEBACK hit value, 485
IDL_EZ_PRE_SQMATRIX bit value, 485

Index

IDL_EZ_PRE_TRANSPOSE bhit value, 485
IDL_EzCall() function, 482
IDL_EzCallCleanup() function, 486
IDL_F_COMPRESS hit value, 320
IDL_F_DEL_ON_CLOSE bit value, 319
IDL_F_ISAGUI bit value, 319
IDL_F_ISATTY bit value, 319
IDL_F_MORE bit value, 319
IDL_F_NOCLOSE bit value, 319
IDL_F_SR hit value, 320
IDL_F_STDIO bit value, 321
IDL_F_SWAP_ENDIAN bit value, 320
IDL_F_UNIX_F77 bit value, 320
IDL_F_UNIX_NOSTDIO bit value, 320
IDL_F_UNIX_PIPE bit value, 320
IDL_F_UNIX_SPECIAL bit value, 320
IDL_F_VAX_FLOAT bit value, 320
IDL_F_XDR bit value, 319
IDL_FAL SE preprocessor constant, 356
IDL_FILE_STAT struct, 318
IDL_FileClose() function, 324
IDL_FileEnsureStatus() function, 326
IDL_FileEOF() function, 330
IDL_FileFlushUnit() function, 331
IDL_FileFreeUnit() function, 328
IDL_FileGetUnit() function, 328
IDL_FileOpen() function, 322
IDL_FileSetClose() function, 325
IDL_FileStat() function, 318
IDL_FileTerm global variable, 350
IDL_FileTermColumns function, 351
IDL_FileTermlsTty function, 350
IDL_FileTermLines function, 351
IDL_FileTermName function, 350
IDL_FindNamedVariable() function, 246
IDL_GetKbrd() function, 332
IDL_GetScratch function, 238
IDL_Gettmp() function, 230
IDL_GetUserInfo() function, 355
IDL_GetVarAddr() function, 245
IDL_GetVarAddrl() function, 245

External Development Guide

IDL_ImportArray() function, 224, 236
IDL_ImportNamedArray() function, 224, 236
IDL_Init() function, 413, 415
IDL_INIT_BACKGROUND, 416
IDL_INIT_EMBEDDED hit value, 415
IDL_INIT_GUI bit value, 415
IDL_INIT_GUI_AUTO bit value, 415
IDL_INIT_NOLICALIAS bit value, 416
IDL_INIT_NOTTYEDIT hit value, 416
IDL_KW_ARR_DESC structure, 255, 469
IDL_KW_ARRAY bit value, 253
IDL_KW_CLEAN hit value, 472
IDL_KW_FAST_SCAN macro, 260, 471
IDL_KW_MARK bit value, 472
IDL_KW_OUT bit value, 253
IDL_KW_PAR structure, 249, 252
IDL_KW_VALUE bit value, 254
IDL_KW_VIN bit value, 253
IDL_KW_ZERO bhit value, 253
IDL_KWCleanup() function, 249, 472
IDL_KWGetParams() function, 249, 259, 470
IDL_Load(), 386, 479
IDL_Logit() function, 334
IDL_LONG type definition, 210
IDL_LONG®4, 210
IDL_M_GENERIC message string, 292
IDL_M_NAMED_GENERIC message code,
292
IDL_Main() function, 424
IDL_MakeStruct() function, 223
IDL_MakeTempArray function, 230
IDL_MakeTempStruct() function, 232
IDL_MAX() macro, 357
IDL_MAX_ARRAY _DIM preprocessor con-
stant, 356
IDL_MAX_TY PE constant, 208
IDL_MAXIDLEN preprocessor constant, 356
IDL_MAXPATH preprocessor constant, 356
IDL_MBLK_CORE, 286
IDL_MemAlloc() function, 344
IDL_MemAllocPerm() function, 346

External Development Guide

497

IDL_MemFree() function, 345
IDL_Message() function, 288, 308
IDL_MessageDefineBlock(), 286, 403
IDL_MessageErrno() function, 467
IDL_MessageNameToCode(), 294
IDL_MIN() macro, 357
IDL_MSG_ATTR_BELL bit value, 291
IDL_MSG_ATTR_MORE bit value, 291
IDL_MSG_ATTR_NOPREFIX bit value, 291
IDL_MSG_ATTR_NOPRINT bit value, 291
IDL_MSG_ATTR_NOTRACE bit value, 291
IDL_MSG_ATTR_QUIET bit value, 291
IDL_MSG_ATTR_SYSbit value, 292
IDL_MSG_DEF, 286

IDL_MSG_EXIT bit value, 290
IDL_MSG_INFO bit value, 290
IDL_MSG_IO_LONGJIMP bit value, 291
IDL_MSG_LONGJIMP bit value, 291
IDL_MSG_RET bit value, 290
IDL_NUM_TY PES constant, 208
IDL_OPEN_APND bit value, 319, 322
IDL_OPEN_R bit value, 319, 322
IDL_OPEN_TRUNC bhit value, 319, 322
IDL_OPEN_W bit value, 319, 322
IDL_OutputFormat global variable, 353
IDL_OutputFormatFunc function, 353
IDL_OutputFormatL en global variable, 353
IDL_OutputFormatL enFunc function, 354
IDL_Print() function, 333

IDL_PrintF() function, 333
IDL_REGISTER preprocessor constant, 356
IDL_ROUND_UP() macro, 358
IDL_RPCCleanup, 180

IDL_RPCDeltmp, 181
IDL_RPCExecuteStr, 182
IDL_RPCGetArrayData, 202
IDL_RPCGetArrayNumbDims, 202
IDL_RPCGetArrrayDimensions, 202
IDL_RPCGetMainVariable, 183
IDL_RPCGettmp, 184
IDL_RPCGetVarByte, 202

Index

498

IDL_RPCGetVarComplex, 202
IDL_RPCGetVarComplexl, 202
IDL_RPCGetVarComplexR, 202
IDL_RPCGetVarDComplex, 202
IDL_RPCGetVarDComplex|, 202
IDL_RPCGetVarDComplexR, 202
IDL_RPCGetVarDouble, 203
IDL_RPCGetVarFloat, 203
IDL_RPCGetVariable, 185
IDL_RPCGetVarlnt, 203
IDL_RPCGetVarLong, 203
IDL_RPCGetVarLong64, 203
IDL_RPCGetVarString, 203
IDL_RPCGetVarType, 203
IDL_RPCGetVarUInt, 203
IDL_RPCGetVarULong64, 203
IDL_RPClImportArray, 186
IDL_RPCInit, 187
IDL_RPCMakeArray, 188
IDL_RPCOutputCapture, 190
IDL_RPCOutputGetStr, 191
IDL_RPCSetMainVariable, 192
IDL_RPCSetVariable, 193
IDL_RPCStoreScalar, 194
IDL_RPCStrDelete, 195
IDL_RPCStrDup, 196
IDL_RPCStrEnsurel ength, 197
IDL_RPCStrStore, 198
IDL_RPCTimeout, 199
IDL_RPCVarCopy, 200
IDL_RPCVarGetData, 201
IDL_RPCVarlsArray, 203
IDL_RuntimeExec() function, 422
IDL_SignalBlock() function, 313
IDL_SignalMaskBlock() function, 312
IDL_SignalMaskGet() function, 311
IDL_SignalMaskSet() function, 312
IDL_SignalRegister() function, 308
IDL_SignalSetAdd() function, 310
IDL_SignalSetDel() function, 311
IDL_Signal Setlnit() function, 310

Index

IDL_Signal SetlsMember() function, 311
IDL_Signal Suspend() function, 313
IDL_SignalUnregister() function, 309
IDL_SREF structure, 217, 223
IDL_STDERR_UNIT file unit, 323
IDL_STDIN_UNIT file unit, 323
IDL_STDOUT_UNIT file unit, 323
IDL_StoreScalar() function, 242, 295
IDL_StoreScalarZero(), 242
IDL_StrDelete() function, 281
IDL_StrDup() function, 280
IDL_StrEnsurelength() function, 283
IDL_STRING struct, 211
IDL_STRING structure, 278
IDL_STRING_STR macro, 279
IDL_StrStore() function, 282
IDL_StrToSTRING() function, 282
IDL_STRUCT_TAG_DEF type definition,
224
IDL_StructNumTags(), 226
IDL_StructTaglnfoBylndex() function, 225
IDL_StructTaglnfoByName() function, 225
IDL_StructTagNameBylIndex function, 226
IDL_SYSFUN_DEF, 386, 480
IDL_SYSFUN_DEF struct, 480
IDL_SYSFUN_DEF_F_KEYWORDS, 249
IDL_SYSFUN_DEF2 struct, 249, 386
IDL_SysRtnAdd function, 249, 386
IDL_SysvDir variable, 489
IDL_SysvDirFunc function, 349
IDL_SysvErrCode variable, 489
IDL_SysvErrCodeValue function, 489
IDL_SysvErrorCode variable, 489
IDL_SysvErrorCodeValue function, 349
IDL_SysvErrStringFunc function, 349
IDL_SysVersionArch function, 349
IDL_SysVersionOS function, 349
IDL_SysVersionOSFamily function, 349
IDL_SysVersionRelease function, 349
IDL_SysvOrder variable, 489
IDL_SysvOrderVaue function, 349

External Development Guide

IDL_SysvSyserrStringFunc function, 349
IDL_SysvVersion.arch variable, 489
IDL_SysvVersion.os variable, 489
IDL_SysvVersion.os_family variable, 489
IDL_SysvVersion.release variable, 489
IDL_TERMINFO struct, 350
IDL_TIMER_CONTEXT variable, 338
IDL_TimerBlock() function, 340
IDL_TimerCancel() function, 339
IDL_TimerSet() function, 337
IDL_TOUT_F_NLPOST bit value, 419
IDL_TOUT_F_STDERR bit value, 419
IDL_ToutPop() function, 420
IDL_ToutPush() function, 420

IDL_TRUE preprocessor constant, 356
IDL_TTY Reset function, 352
IDL_TYP_B_ALL constant, 209
IDL_TYP_BYTE type code, 208
IDL_TYP_COMPLEX type code, 208, 211
IDL_TYP_DCOMPLEX type code, 208, 211
IDL_TYP_DOUBLE type code, 208
IDL_TYP_FLOAT type code, 208
IDL_TYP_INT type code, 208
IDL_TYP_LONG type code, 208
IDL_TYP_LONGS64 type code, 209
IDL_TYP_MASK preprocessor macro, 209
IDL_TYP_OBJREF type code, 209
IDL_TYP_PTR type code, 209
IDL_TYP_STRING type code, 208, 211
IDL_TYP_STRUCT type code, 208, 223
IDL_TYP_UINT type code, 209
IDL_TYP_ULONG type code, 209
IDL_TYP_ULONG#64 type code, 209
IDL_TYP_UNDEF, 208
IDL_TYP_UNDEF type code, 208

External Development Guide

499

IDL_TypeName global variable, 353
IDL_TypeNameFunc function, 354
IDL_TypeSize global variable, 353
IDL_TypeSizeFunc function, 354
IDL_ULONG, 210
IDL_ULONGS#64, 211
IDL_USER_INFO struct, 355
IDL_V_ARR bit value, 218
IDL_V_CONST bit value, 218
IDL_V_DYNAMIC bit value, 219
IDL_V_FILE bit value, 218
IDL_V_STRUCT bit value, 219, 223
IDL_V_TEMP bit value, 218
IDL_VarCopy() function, 241
IDL_VarGetData() function, 240
IDL_VARIABLE structure, 217
IDL_VarName() function, 244
IDL_VPTR, 27, 217
IDL_WidgetGetStublds() function, 455, 455
IDL_WidgetlssueStubEvent() function, 454
IDL_WidgetSetStublds() function, 455, 455
IDL_WidgetStubL ock() function, 454
IDL_WidgetStubL ookup() function, 454
IDL_WidgetStubSetSizeFunc() function, 455,
456

IDL_Win32Init() function, 413, 417
IDLcomActiveX object

see ActiveX controls
IDLcomlDispatch objects

creating, 52

destroying, 64

method calls, 53

naming scheme, 48

overview, 42, 46

Index

500

IDLDrawWidget ActiveX control
auto event properties, 135
compiling IDL code, 101
creating, 98
creating an interface and handling events, 94
do methods (runtime only), 127
drawing the interface, 95
events, 137
initializing IDL, 97, 101
integrating object graphics, 110
major features, 92
methods, 117
modifying IDL library code, 108
overview, 40
properties, 129
read only properties, 133
register for events, 123
sharing grid control array, 111
specifying IDL path, 96
using, 43
IdIPath, 131
IdIPath property, 97
IDLRPCGetVarULong, 203
ienter argument, 245, 246
information on open files
IDL_FILE_STAT struct, 318
init argument, 231
init_options argument, 424
inter-language calling conventions, 23
Inter-language Communication Techniques
Supported by IDL, 13
Internal Callback Functions (widget stub), 457
Internal Functions for Use with Stub Widgets,
454
interpreted languages, 26
interpreter stack, 27
interrupt flag, internal, 348
is_function argument, 386, 480

Index

J

journal file, adding to, 334
just_cleanup argument, 423

K

keyword field, 252
KEYWORD_DEMO procedure, 263, 472
keywords

array, 253, 256

Boolean, 253

creating, 249

examples, 263, 472

input, 253

input/output, 256

output, 253

overview, 248

processing, 259, 470

processing options, 256

read-only, 255, 469

scalar, 256

speeding processing of, 260, 471
kw_list argument, 259, 470

L

length argument, 337
licensing, 416
Licensing Issues, 412
linking
C programs with Callable IDL, 424
external codeinto IDL, 30
linking details, 30
Linking to the Client Library, 175
logical unit numbers, 222
LONG, IDLDrawWidget parameters, 123
long integer data type, 210
longjmp() function, 291
longjmp_safe argument, 323
LUNs seelogical unit numbers

External Development Guide

501

M @,
Macros, 357 object properties (COM objects), 61
main program variables, 245 Object Viewer, 50
looking up, 245 obtaining names of variables, 244
MAKE_DLL procedure, 142 OLE/COM Object Viewer, 50, 50, 56, 73
Makefilefile, 30 omask argument, 312
Making A Timer Request, 337 OnButtonPress, 135
malloc() function, 238 OnButtonRelease, 135
mapping of basic types, 210 OnDblClick, 135
mask argument, 260, 471 OnExpose, 136
mask field, 252 Onlnit, 136
maximum, 357 OnMotion, 136
memory OnViewScrolled, 137
alocating, 344 opening files
alocating permanent, 346 IDL_FileOpen(), 322
freeing, 345 options argument, 415
message block, 286 organization, 26
message format string, 292 oset argument, 312
method calls Output of IDL Variables, 333
ActiveX controls, 76 Overview, 11
COM objects, 53
Microsoft Object Viewer, 50 p
minimum, 357
more command, 291 p argument, 235, 238
msg_action argument, 308, 309 parameters, passing mechanism, 150
pd argument, 240
N plai n_args argument, 260, 471
post field, 485
n argument, 240, 280, 281, 283, 345, 419 prefield, 485
nfield, 255, 470 preprocessor constants, 356
n_dim argument, 231, 232, 236 Preventing File Closing, 325
n_dim field, 222 printf() function, 288
n_eltsargument, 239 printing IDL variables, 333
n_eltsfield, 221 printing, VisualBasic, 107
name argument, 223, 236, 245, 245, 246 proc argument, 347
name field, 224, 318, 387, 480 procedure calls, remote, 172
names of variables, 244 Program Size Considerations, 410
nmax field, 255, 469 properties
nmin field, 255, 469 ActiveX controls, 78

COM objects, 61

External Development Guide Index

502

R

Reading a Character, 332

recommended reading, 31, 31

registering exit handlers, 347

registering routines using IDL_SysRtnAdd(),
377

Remote Procedure Calls, 15, 172

example code, 204

Removing A Signal Handler, 309

Retain, 132

returning address in current execution scope
from name, 246

ringing bell with error messages, 291

rounding values, 358

RPC Examples, 204

RPC server, using IDL as, 173

RPCs see Remote Procedure Calls

Running IDL in Server Mode, 173

Runtime IDL and Embedded IDL, 422

S

s argument, 237, 282, 282, 283, 334
sfield, 211
scalar values
storing, 242
scalar variables, 220
Scroll, 133
sdef argument, 232
sdef field, 223
server |D number, 173
server process, 172
set argument, 310, 310, 311, 311, 311, 312,
312, 313
SetNamedArray, 124
SetNamedData, 125
SetOutputWnd, 125
SetOutputWnd method, 98
should_wait argument, 332
shutting down IDL, 347

Index

SIG_DFL, 304, 305

SIG_IGN, 305

SIGALRM, 305, 340

SIGFPE, 305

SIGINT, 348

signal handlers
establishing, 308
removing, 309

sighal masks
IDL_SignalBlock(), 313
IDL_SignalMaskBlock(), 312
IDL_SignalMaskGet(), 311
IDL_SignalMaskSet(), 312
IDL_SignalSetAdd(), 310
IDL_SignalSetDel(), 311
IDL_Signal SetInit(), 310
IDL_Signal SetlsMember(), 311
IDL_Signal Suspend(), 313
overview, 310

signals, 304
IDL API, 305
IDL limitations, 305
problems, 304

sigho argument, 308, 309, 310, 310, 311, 311,

313

SIGTRAP, 305

Simplified Routine Invocation, 482

Skills Required to Add Codeto IDL, 22

denfield, 211

SPAWN, 35

Specia File Units, 323

specified field, 254, 468

stack, interpreter, 27

standard error, 323

standard input, 323

standard output, 323

stat_blk argument, 318

stdio buffering, 320

stop argument, 341, 348

storing scalar values, 242

str argument, 280, 281

External Development Guide

string data type, 211
strings, 283
accessing, 279
copying, 280
deleting, 281
passing with CALL_EXTERNAL, 159
processing, 278
setting value of,, 282
Structure
creating temporary, 232
structure variables, 223
structures, 223
anonymous, 223, 224
creating, 223
passing with CALL_EXTERNAL, 165
stub widgets
internal functions, 454
overview, 450
WIDGET_STUB function, 451
stypefield, 211
symbol table, 245
system routines
adding, 386
examples, 364, 365, 486
interface, 363
invocation, 482
overview, 362
system variables
functions for returning, 349

T

tags argument, 224
Temporary array
getting, 230

External Development Guide

Temporary variable

freeing, 235

getting, 230
temporary variables, 229
Terminal Information, 350
The IDL RPC directory, 173
TheDL_EZ_ARG struct, 483
timers, 336

blocking, 336, 340

calbacks, 337

cancelling requests, 339

IDL_TimerBlock(), 340

IDL_TimerCancel(), 339

IDL_TimerSet(), 337
to_deletefield, 485
type argument, 231, 236, 242
type codes, 208
typefield, 224, 252
Type Information, 353
types

complex, 211

long integer, 210

mapping of, 210

string, 211

type codes, 208

type masks, 209

unsigned byte, 210

U

uargv field, 486
UCHAR type definition, 210
unit argument, 318, 325, 326, 330, 331
UNIX Signal Masks, 310
unsigned byte data type, 210
User Information, 355
User Interrupts, 348
Using Callable IDL
from C, 425
from Fortran, 432
overview, 413

503

Index

504

%4

v argument, 240
value argument, 242
value field, 254, 468, 486
value.arr field, 221
value.c field, 220
value.cmp field, 220
value.d field, 220
value.dcmp field, 220
value.f field, 220
value.i field, 220
valuell field, 220
value.l64 field, 220
value.sfield, 223
value.str field, 220
value.ui field, 220
value.ul field, 220
value.ul64 field, 220
var argument, 231, 233
Variable Name

obtaining, 244
VariableExists, 126
variables, 246

array, 221

copying, 241

in current scope, looking up, 246

obtaining names of,, 244

returning address in main program from

name, 245
scalar, 220

setting to scalar values, 242

structure, 223

system, 349

temporary, 229
VBCopyPrint

copying and printing IDL graphics, 104

VBPaint

handling eventswithin VB, 112

VBSharelD, 111
Visible, 132
VisuaBasic, printing, 107

Index

w

When isit Appropriate to Add Codeto IDL?,
21
When isit Appropriate to use Callable IDL?,
409
widget events
ActiveX controls, 79
WIDGET_ACTIVEX, 42
WIDGET_STUB
examples, 457, 459
function, 451, 451
interface, 410, 450
WIDGET_CONTROL keywords, 452
widgets
adding custom to IDL, 450
internal functions, 454
WIDGET_ACTIVEX, 42
WIDGET_CONTROL, 452
WIDGET_STUB, 451
wrapper routines
CALL_EXTERNAL, 157

X

XLoadCT functionality using VB, 108
Xoffset, 133

Xsize, 132

Xviewport, 133

Y

Y offset, 134
Ysize, 132
Y viewport, 134

V4

zero argument, 233

External Development Guide

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL DataMiner Guide
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit User's Guide

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	External Development Guide: Contents
	Overview
	About this Manual
	Part I: Techniques That Do Not Use IDL’s Internal API
	Part II: IDL’s Internal API
	Part III: Techniques That Use IDL’s Internal API

	Supported Inter-Language Communication Techniques in IDL
	Translate into IDL
	Advantages
	Disadvantages
	Recommendation

	SPAWN
	Advantages
	Disadvantages
	Recommendation

	Microsoft COM and ActiveX
	Advantages
	Disadvantages
	Recommendation

	UNIX Remote Procedure Calls (RPCs)
	Advantages
	Disadvantages
	Recommendation

	CALL_EXTERNAL
	Advantages
	Disadvantages
	Recommendation

	IDL System Routine (LINKIMAGE, DLMs)
	Advantages
	Disadvantages
	Recommendation

	Callable IDL
	Advantages
	Disadvantages
	Recommendation

	Dynamic Linking Terminology and Concepts
	CALL_EXTERNAL
	LINKIMAGE and Dynamically Loadable Modules (DLMs)
	Callable IDL
	Remote Procedure Calls (RPCs)

	When is it Appropriate to Combine External Code with IDL?
	Skills Required to Combine External Code with IDL
	Microsoft COM
	Microsoft ActiveX
	UNIX RPC
	ANSI C
	System C Compiler, Linker, and Libraries
	Inter-language Calling Conventions (C++, Fortran, …)
	C++
	Fortran

	Operating System Features And Conventions
	Microsoft Windows
	UNIX

	IDL Organization
	The Interpreter Stack

	External Definitions
	Interpreting Logical Boolean Values
	Compilation And Linking Details
	Recommended Reading
	The C Language
	Microsoft Windows
	UNIX
	X Windows

	Part I: Techniques That Do Not Use IDL’s Internal API
	Using SPAWN and UNIX Pipes
	Example: Communicating with a Child Process Under UNIX

	Overview: COM and ActiveX in IDL
	COM Objects and IDL
	What are COM Objects?
	Why Use COM Objects with IDL?

	Using COM Objects with IDL
	Exposing a COM Object as an IDL Object
	Including an ActiveX Control in an IDL Widget Hierarchy
	Using the IDLDrawWidget ActiveX Control

	Skills Required to use COM Objects
	If You Are Using COM Objects
	If You Are Using ActiveX Controls
	If You Are Using the IDLDrawWidget ActiveX Control
	If You Are Creating Your Own COM Object

	Using COM Objects in IDL
	Using COM Objects in IDL
	Object Creation
	Method Calls and Property Management
	Object Destruction
	Registering COM Components on a Windows Machine

	IDLcomIDispatch Object Naming Scheme
	Class Identifiers
	Program Identifiers
	Finding COM Class and Program IDs

	Creating IDLcomIDispatch Objects
	Method Calls on IDLcomIDispatch Objects
	Function vs. Procedure Methods
	What Happens When a Method Call is Made?
	Data Type Conversions
	Optional Arguments
	Argument Order
	Default Argument Values
	Argument Skipping

	Finding Object Methods
	Displaying Interface Information using the Object Viewer
	Displaying Interface Information using the IDL HELP Procedure

	Managing COM Object Properties
	Setting Properties
	Getting Properties

	References to Other COM Objects
	Destroying IDLcomIDispatch Objects
	COM-IDL Data Type Mapping
	Note on the COM CY Data Type

	Example: RSIDemoComponent

	Using ActiveX Controls in IDL
	Using ActiveX Controls in IDL
	Registering COM Components on a Windows Machine

	ActiveX Control Naming Scheme
	Finding COM Class and Program IDs

	Creating ActiveX Controls
	Method Calls on ActiveX Controls
	Retrieving the Object Reference

	Managing ActiveX Control Properties
	ActiveX Widget Events
	Using the ActiveX Widget Event Structure
	Dynamic Elements in the ActiveX Event Structure

	Destroying ActiveX Controls
	Example: Calendar Control
	Example: Spreadsheet Control

	The IDLDrawWidget ActiveX Control
	Overview
	A Note about Versions of the IDL ActiveX Control
	Why Are New Versions of the Control Created?
	What Must You Change to Take Advantage of a New Control?
	What About Previous ActiveX Controls?

	Creating an Interface and Handling Events
	Drawing the Interface
	Specifying the IDL Path and Graphics Level
	Initializing IDL
	Creating the Draw Widget
	Directing IDL Output to a Text Box
	Responding to Events and Issuing IDL Commands
	Cleaning Up and Exiting

	Working with IDL Procedures
	Creating the Interface
	Initializing IDL
	Compiling the IDL Code
	Dispatching Button Events to IDL
	Cleaning Up and Exiting

	Advanced Examples
	Copying and Printing IDL Graphics
	Opening the VBCopyPrint project
	Running the VBCopyPrint Example
	Copying IDL Graphic to the clipboard
	Printing the IDL Graphic using IDL Object Graphics
	Executing IDL user routines with Visual Basic
	Printing the IDL Graphic Using Visual Basic

	XLoadCT Functionality Using Visual Basic
	XPalette Functionality Using Visual Basic
	Integrating Object Graphics Using Visual Basic
	Sharing a Grid Control Array with IDL
	This example illustrates the following concepts:

	Handling Events within Visual Basic
	Distributing Your ActiveX Application

	IDLDrawWidget Control Reference
	IDLDrawWidget
	Methods
	CopyNamedArray
	Parameters
	Returns
	Remarks

	CopyWindow
	Parameters
	Returns

	CreateDrawWidget
	Parameters
	Returns

	DestroyDrawWidget
	Parameters
	Returns

	DoExit
	Parameters
	Returns
	Remarks

	ExecuteStr
	Parameters
	Returns
	Remarks

	GetNamedData
	Parameters
	Returns
	Remarks

	InitIDL
	Parameters
	Returns

	InitIDLEx
	Parameters
	Returns

	Print
	Parameters
	Returns

	RegisterForEvents
	Parameters
	Returns

	SetNamedArray
	Parameters
	Returns
	Remarks

	SetNamedData
	Parameters
	Returns

	SetOutputWnd
	Parameters
	Returns

	VariableExists
	Parameters
	Returns

	Do Methods (Runtime Only)
	DoButtonPress
	Parameters
	Returns

	DoButtonRelease
	Parameters
	Returns

	DoExpose
	Parameters
	Returns

	DoMotion
	Parameters
	Returns

	Properties
	BackColor
	BaseName
	BufferId
	DrawWidgetName
	Enabled
	GraphicsLevel (Runtime/Design time)
	IdlPath
	Renderer
	Retain (Runtime/Design time)
	Visible (Runtime/Design time)
	Xsize (Design time)
	Ysize (Design time)

	Read Only Properties
	BaseId (Runtime)
	DrawId (Runtime)
	hWnd (Runtime)
	LastIdlError (Runtime)
	Scroll
	Xoffset
	Xviewport
	Yoffset
	Yviewport

	Auto Event Properties
	OnButtonPress
	OnButtonRelease
	OnDblClick
	OnExpose
	OnInit
	OnMotion

	Events
	OnViewScrolled

	CALL_EXTERNAL
	The CALL_EXTERNAL Function
	Example Code in the IDL Distribution
	CALL_EXTERNAL Compared To UNIX Child Process
	Compilation and Linking Of External Code
	AUTO_GLUE
	Input and Output
	Memory Cleanup
	Memory Access
	Argument Data Types
	Mapping IDL Data Types To External Language Types
	By-Value And By-Reference Arguments
	Arguments Passed By Value
	Arguments Passed By Reference

	Microsoft Windows Calling Conventions
	STDCALL
	CDECL

	Common CALL_EXTERNAL Pitfalls

	Passing Parameters
	argc
	argv

	Using Auto Glue
	Generating Glue Without Executing It

	Basic C Examples
	Example: Passing Parameters by Reference to IDL
	Example: Calling a C Routine to Perform Computation

	Wrapper Routines
	Passing String Data
	Returning a String Value
	Example

	Passing Array Data
	Passing Structures
	Fortran Examples
	Example: Calling a Fortran Routine Using a C Interface Routine
	Hidden Arguments

	Example: Calling a Fortran Routine Using a Fortran Interface Routine

	Remote Procedure Calls
	IDL and Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode

	Client Variables
	Linking to the Client Library
	Example of IDL RPC Client API

	Compatibility with Older IDL Code
	The IDL RPC Library
	pClient
	iKill
	Return Value
	Description
	Parameters
	vTmp
	Return Value
	pClient
	pCommand
	Return Value
	pClient
	Name
	Return Value

	Parameters
	pClient
	Name
	Return Value
	n_dim
	dim
	type
	data
	free_cb

	Description
	ServerId
	pHostname
	type
	n_dim
	dim
	init
	var
	pClient
	n_lines
	pClient
	pLine
	first
	pClient
	Name
	pVar
	pClient
	Name
	pVar
	dest
	type
	value
	lTimeOut
	src
	dst
	v
	n
	pd
	ensure_simple
	IDL_RPCGetArrayData(v)
	IDL_RPCGetArrayDimensions(v)
	IDL_RPCGetArrayNumDims(v)
	IDL_RPCGetVarByte(v)
	IDL_RPCGetVarComplex(v)
	IDL_RPCGetVarComplexR(v)
	IDL_RPCGetVarComplexI(v)
	IDL_RPCGetVarDComplex(v)
	IDL_RPCGetVarDComplexR(v)
	IDL_RPCGetVarDComplexI(v)
	IDL_RPCGetVarDouble(v)
	IDL_RPCGetVarFloat(v)
	IDL_RPCGetVarInt(v)
	IDL_RPCGetVarLong(v)
	IDL_RPCGetVarLong64(v)
	IDL_RPCVarIsArray(v)
	IDL_RPCGetVarString(v)
	IDL_RPCGetVarType(v)
	IDL_RPCGetVarUInt(v)
	IDLRPCGetVarULong(v)
	IDL_RPCGetVarULong64(v)

	RPC Examples

	Part II: IDL’s Internal API
	IDL Internals: Types
	Type Codes
	Type Masks

	Mapping of Basic Types
	Unsigned Byte Data
	Integer Data
	Unsigned Integer Data
	Long Integer Data
	Unsigned Long Integer Data
	64-bit Integer Data
	Unsigned 64-bit Integer Data
	Complex Data
	String Data
	slen
	stype
	s

	IDL_MEMINT and IDL_FILEINT Types

	IDL Internals: Variables
	IDL and Internal Variables
	The IDL_VARIABLE Structure
	IDL_V_CONST
	IDL_V_TEMP
	IDL_V_ARR
	IDL_V_FILE
	IDL_V_DYNAMIC
	IDL_V_STRUCT

	Scalar Variables
	Array Variables
	elt_len
	arr_len
	n_elts
	data
	n_dim
	flags
	file_unit
	dim

	Structure Variables
	Creating Structures
	name
	tags
	name
	dims
	type
	flags

	Accessing Structure Tags
	sdef
	name (IDL_StructTagInfoByName)
	index (IDL_StructTagInfoByIndex)
	msg_action
	var

	Determining the Number Of Structure Tags
	sdef

	Determining the Names Of Structures and their Tags
	sdef
	index
	msg_action
	struct_name

	Heap Variables
	Temporary Variables
	Getting a Temporary Variable
	Creating a Temporary Array
	type
	n_dim
	dim
	init
	var
	Creating a Temporary Vector
	type, init, var
	dim

	Creating a Temporary Structure
	sdef
	n_dim
	dim
	var
	zero

	Creating a Temporary Vector
	sdef, var, zero
	dim

	Creating A Temporary Variable Using Another Variable As A Template
	template_var
	type
	sdef
	result_addr
	zero

	Freeing A Temporary Variable

	Creating an Array from Existing Data
	name
	n_dim
	dim
	type
	data
	free_cb
	s

	Getting Dynamic Memory
	The IDL_GetScratch Function
	p
	n_elts
	elt_size

	Accessing Variable Data
	v
	n
	pd
	ensure_simple

	Copying Variables
	Storing Scalar Values
	dest
	type
	value
	dest
	type
	Using IDL_StoreScalar() to Free Dynamic Resources

	Obtaining the Name of a Variable
	Looking Up Main Program Variables
	name
	name
	ienter

	Looking Up Variables in Current Scope
	name
	ienter

	IDL Internals: Keyword Processing
	IDL and Keyword Processing
	Creating Routines that Accept Keywords
	Overview Of IDL Keyword Processing
	The IDL_KW_PAR Structure
	keyword
	type
	mask
	flags
	specified
	value

	The IDL_KW_ARR_DESC_R Structure
	data
	nmin
	nmax
	n_offset

	Keyword Processing Options
	Scalar Input-Only
	Array Input-Only
	Input/Output

	The KW_RESULT Structure
	Processing Keywords
	argc
	argv
	argk
	kw_list
	plain_args
	mask
	base
	Speeding Keyword Processing

	Cleaning Up
	Keyword Examples
	3-15
	16-17
	19
	20
	21-22
	23-24
	25
	26-27
	28-29
	30-31
	32
	35
	37
	39-40
	42
	43
	44-46
	47-53
	55-63
	65

	The Pre-IDL 5.5 Keyword API
	Background
	Advantages Of The IDL 5.5 API
	Differences And Similarities Between APIs
	Converting Existing Code To The New API
	The Transitional API
	argc, argv, argk, plain_args, mask
	kw_list
	free_required

	Example: Converting From The Old Keyword API
	Old API
	Transitional API
	New Reentrant API

	IDL Internals: String Processing
	String Processing and IDL
	Accessing IDL_STRING Values
	v

	Copying Strings
	str
	n

	Deleting Strings
	str
	n

	Setting an IDL_STRING Value
	s
	fs
	s

	Obtaining a String of a Given Length
	s
	n

	IDL Internals: Error Handling
	Message Blocks
	name
	format
	block_name
	n
	defs
	Example: Defining A Message Block

	Issuing Error Messages
	block
	code
	syscode_type
	syscode
	action
	IDL_MSG_RET
	IDL_MSG_INFO
	IDL_MSG_EXIT
	IDL_MSG_LONGJMP
	IDL_MSG_IO_LONGJMP
	IDL_MSG_ATTR_NOPRINT
	IDL_MSG_ATTR_MORE
	IDL_MSG_ATTR_NOPREFIX
	IDL_MSG_ATTR_QUIET
	IDL_MSG_ATTR_NOTRACE
	IDL_MSG_ATTR_BELL
	...

	Error Codes
	IDL_M_GENERIC
	IDL_M_NAMED_GENERIC

	Choosing an Error Code

	Looking Up A Message Code by Name
	block
	name

	Checking Arguments
	IDL_EXCLUDE_UNDEF
	IDL_EXCLUDE_CONST
	IDL_EXCLUDE_EXPR
	IDL_EXCLUDE_FILE
	IDL_EXCLUDE_STRUCT
	IDL_EXCLUDE_COMPLEX
	IDL_EXCLUDE_STRING
	IDL_EXCLUDE_SCALAR
	IDL_ENSURE_ARRAY
	IDL_ENSURE_OBJREF
	IDL_ENSURE_PTR
	IDL_ENSURE_SCALAR
	IDL_ENSURE_STRING
	IDL_ENSURE_SIMPLE
	IDL_ENSURE_STRUCTURE

	IDL Internals: Type Conversion
	Converting Arguments to C Scalars
	General Type Conversion
	argc
	argv
	type

	Converting to Specific Types

	IDL Internals: UNIX Signals
	IDL and Signals
	Signal Handlers
	Establishing a Signal Handler
	signo
	func
	msg_action

	Removing a Signal Handler
	signo
	func
	msg_action

	UNIX Signal Masks
	IDL_SignalSetInit()
	set
	signo

	IDL_SignalSetAdd()
	set
	signo

	IDL_SignalSetDel()
	set
	signo

	IDL_SignalSetIsMember()
	set
	signo

	IDL_SignalMaskGet()
	set

	IDL_SignalMaskSet()
	set
	omask

	IDL_SignalMaskBlock()
	set
	oset

	IDL_SignalBlock()
	signo

	IDL_SignalSuspend()
	set

	IDL Internals: Files and Input/Output
	IDL and Input/Output Files
	File Information
	IDL_FileStat()
	unit
	stat_blk
	name
	access
	flags
	fptr

	Opening Files
	IDL_FileOpen()
	argc
	argv
	argk
	access_mode
	extra_flags
	longjmp_safe
	msg_attr

	Special File Units

	Closing Files
	IDL_FileClose()
	argc
	argv
	argk

	Preventing File Closing
	IDL_FileSetClose()
	unit
	allow

	Checking File Status
	IDL_FileEnsureStatus()
	action
	unit
	flags

	Allocating and Freeing File Units
	IDL_FileGetUnit()
	argc
	argv

	IDL_FileFreeUnit()
	argc
	argv

	Detecting End of File
	IDL_FileEOF()
	unit

	Flushing Buffered Data
	IDL_FileFlushUnit()
	unit

	Reading a Single Character
	IDL_GetKbrd()
	should_wait

	Output of IDL Variables
	IDL_Print() and IDL_PrintF()
	argc
	argv
	argk

	Adding to the Journal File
	IDL_Logit()
	s

	IDL Internals: Timers
	IDL and Timers
	Making Timer Requests
	length
	callback
	from_callback
	context

	Canceling Asynchronous Timer Requests
	context

	Blocking UNIX Timers
	stop

	IDL Internals: Miscellaneous Information
	Dynamic Memory
	IDL_MemAlloc()
	n
	err_str
	action

	IDL_MemFree()
	m
	err_str
	action

	IDL_MemAllocPerm()

	Exit Handlers
	IDL_ExitRegister()
	proc

	User Interrupts
	IDL_BailOut()
	stop

	Functions for Returning System Variables
	IDL_STRING *IDL_SysvVersionArch(void)
	IDL_STRING *IDL_SysvVersionOS(void)
	IDL_STRING *IDL_SysvVersionOSFamily(void)
	IDL_STRING *IDL_SysvVersionRelease(void)
	IDL_STRING *IDL_SysvDirFunc(void)
	IDL_STRING *IDL_SysvErrStringFunc(void)
	IDL_STRING *IDL_SysvSyserrStringFunc(void)
	IDL_LONG IDL_SysvErrorCodeValue(void)
	IDL_LONG IDL_SysvOrderValue(void)

	Terminal Information
	Functions for Returning IDL_FileTerm Variable Values
	char *IDL_FileTermName(void)
	int IDL_FileTermIsTty(void)
	int IDL_FileTermLines(void)
	int IDL_FileTermColumns(void)

	Ensuring UNIX TTY State
	Type Information
	IDL_OutputFormat
	IDL_OutputFormatLen
	IDL_TypeSize
	IDL_TypeName
	Functions for Returning Data Type Variable Values
	char *IDL_OutputFormatFunc(int type)
	int IDL_OutputFormatLenFunc(int type)
	int IDL_TypeSizeFunc(int type)
	char *IDL_TypeNameFunc(int type)

	User Information
	Constants
	IDL_TRUE
	IDL_FALSE
	IDL_REGISTER
	IDL_MAX_ARRAY_DIM
	IDL_MAXIDLEN
	IDL_MAXPATH

	Macros
	IDL_ABS(x)
	IDL_CARRAY_ELTS(arr)
	IDL_CHAR(ptr)
	IDL_CHARA(addr)
	IDL_MIN(x,y) and IDL_MAX(x,y)
	IDL_ROUND_UP(x, m)
	IDL_TRUE and IDL_FALSE

	Part III: Techniques That Use IDL’s Internal API
	Adding System Routines
	IDL and System Routines
	The System Routine Interface
	argc
	argv
	argk

	Example: Hello World
	Example: Doing a Little More (MULT2)
	1-2
	4
	6
	7
	8
	10
	11-12
	14
	17
	19-23
	25
	26
	28
	Testing the Example

	Example: A Complete Numerical Routine Example (FZ_ROOTS2)
	Calling Sequence
	Arguments
	C

	Keywords
	DOUBLE
	EPS
	NO_POLISH
	TC_INPUT

	Example
	4
	6
	10
	12
	13
	14
	16
	17
	19
	20
	22
	27
	28
	29
	30
	31
	32
	33
	34
	35
	37
	38
	40-41
	42-44
	45-48
	49
	52
	53
	55-57
	59-61
	63-67
	69
	70-71
	73-74
	77
	78
	80
	81

	Example: An Example Using Routine Design Iteration (RSUM)
	RSUM1
	Calling Sequence
	Arguments
	Array

	1
	3
	4
	5–6
	7
	10
	11
	14
	15
	17
	20
	21
	22-23
	25

	Running Sum (Example 2)
	RSUM2
	Calling Sequence
	Arguments
	Input

	10
	13
	15–23

	Running Sum (Example 3)
	RSUM3
	Calling Sequence
	Arguments
	Input

	17
	22-23
	36-38
	39-44
	46-60
	61-62

	Registering Routines
	defs
	is_function
	cnt
	funct_addr
	name
	arg_min
	arg_max
	flags
	IDL_SYSFUN_DEF_F_OBSOLETE
	IDL_SYSFUN_DEF_F_KEYWORDS
	IDL_SYSFUN_DEF_F_METHOD
	extra
	Example

	Enabling and Disabling System Routines
	is_function
	names
	n
	option
	disfcn
	is_function
	str
	enabled
	is_function
	enabled
	is_function
	name

	LINKIMAGE
	Dynamically Loadable Modules
	How DLMs Work
	The Module Description File
	MODULE Name
	DESCRIPTION DescriptiveText
	VERSION VersionString
	BUILD_DATE DateString
	SOURCE SourceString
	CHECKSUM CheckSumValue
	STRUCTURE StructureName
	FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]
	PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]
	RtnName
	MinArgs
	MaxArgs
	Options
	OBSOLETE
	KEYWORDS

	The IDL_Load() function
	DLM Example
	TESTFUN
	TESTPRO

	Callable IDL
	Calling IDL as a Subroutine
	When is Callable IDL Appropriate?
	Technical Issues Relating to Callable IDL
	UNIX IDL Signal API
	IDL Timer API
	GUI Considerations
	X Windows
	Microsoft Windows
	Program Size Considerations
	Troubleshooting
	Threading
	Inter-language Calling Conventions

	Appropriate Applications of Callable IDL

	Licensing Issues and Callable IDL
	Using Callable IDL
	Cleanup

	Initialization
	Initialization: UNIX
	options
	IDL_INIT_EMBEDDED
	IDL_INIT_GUI
	IDL_INIT_GUI_AUTO
	IDL_INIT_LMQUEUE
	IDL_INIT_NOLICALIAS
	IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)
	IDL_INIT_QUIET
	IDL_INIT_RUNTIME

	argc
	argv
	Initialization: Microsoft Windows
	iOpts
	IDL_INIT_RUNTIME
	IDL_INIT_LMQUEUE

	hinstExe
	hwndExe
	hAccel

	Diverting IDL Output
	flags
	IDL_TOUT_F_STDERR
	IDL_TOUT_F_NLPOST

	buf
	n
	IDL_ToutPush()
	IDL_ToutPop()

	Executing IDL Statements
	IDL_Execute()
	argc
	argv
	IDL_ExecuteStr()
	cmd

	Runtime IDL and Embedded IDL
	file

	Cleanup
	just_cleanup

	Issues and Examples: UNIX
	Interactive IDL
	init_options
	argc, argv

	Compiling Programs That Call IDL
	Example: Calling IDL From C
	24
	25
	26–29
	30
	31
	32–33
	34–35
	36
	37
	41

	Example: Calling an IDL Math Function
	data
	n
	dir
	7
	8
	9
	11–13
	14
	15–16
	17
	18
	20
	26
	32
	33
	34
	35
	36–37
	38
	41

	Example: Calling IDL from Fortran
	1-27
	14-17
	29-42
	44-164
	51-57
	59-62
	66-67
	69-77
	79-85
	87-96
	98-104
	106-110
	117-121
	125-126
	134
	139
	144
	147
	150-161
	163-168

	Compilation and Linking Statements

	Issues and Examples: Microsoft Windows
	Building an Application that Calls IDL
	Example: A Simple Application
	16
	45
	48
	52
	131-176
	158
	164
	168
	185-220
	199
	202
	208
	211
	230-253
	263-306
	280
	281-299

	Adding External Widgets to IDL
	IDL and External Widgets
	WIDGET_STUB
	Calling Sequence
	Arguments
	Parent

	Keywords

	WIDGET_CONTROL/WIDGET_STUB
	Keywords
	DESTROY
	MAP, REALIZE, and SENSITIVE
	XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

	Functions for Use with Stub Widgets
	IDL_WidgetStubLock()
	IDL_WidgetStubLookup()
	IDL_WidgetIssueStubEvent()
	IDL_WidgetSetStubIds()
	IDL_WidgetGetStubIds()
	IDL_WidgetStubSetSizeFunc()

	Internal Callback Functions
	Commentary on the Example Shown Above

	UNIX WIDGET_STUB Example: WIDGET_ARROWB
	The IDL Program for WIDGET_ARROWB
	The C Program for widget_arrowb.c
	An IDL Program to Test the External Widget

	Obsolete Internal Interfaces
	Interfaces Obsoleted in IDL 5.5
	IDL_MSG_ATTR_SYS
	IDL_MSG_ATTR_SYS

	Specifying errno Explicitly: IDL_MessageErrno()
	Processing Keywords With IDL_KWGetParams()
	The IDL_KW_PAR Structure
	specified
	value
	data
	nmin
	nmax
	n
	argc
	argv
	argk
	kw_list
	plain_args
	mask
	IDL_KW_MARK
	IDL_KW_CLEAN
	7
	9
	10 – 13
	14
	15
	16
	18
	19 – 20
	21
	22
	23 – 24
	25 – 26
	27
	28
	31
	33
	35
	36
	37 – 38
	39– 45
	47 – 55
	57

	Interfaces Obsoleted in IDL 5.6
	Registering Routines
	defs
	is_function
	cnt
	funct_addr
	name
	arg_min
	arg_max
	flags
	IDL_SYSFUN_DEF_F_OBSOLETE
	IDL_SYSFUN_DEF_F_KEYWORDS

	Simplified Routine Invocation
	argc
	argv
	arg_struct
	The IDL_EZ_ARG struct
	allowed_dims
	IDL_EZ_DIM_ARRAY
	IDL_EZ_DIM_ANY

	allowed_types
	access
	IDL_EZ_ACCESS_R
	IDL_EZ_ACCESS_W
	IDL_EZ_ACCESS_RW

	convert
	pre
	IDL_EZ_PRE_SQMATRIX
	IDL_EZ_PRE_TRANSPOSE

	post
	IDL_EZ_POST_WRITEBACK
	IDL_EZ_POST_TRANSPOSE

	to_delete
	uargv
	value

	Cleaning Up
	Example— using IDL_EzCall()
	A
	w
	U
	V
	7-8
	allowed_dims
	allowed_types
	access
	convert
	pre
	post
	…
	9-14
	17
	26

	Obsolete Error Handling API
	IDL_LONG IDL_SysvErrCodeValue(void)

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

