NOoO Ok~ WDN -

EnSight
Interface Manual

Table of Contents

Overview

User Defined Reader Version 1.0 API
User Defined Reader Version 2.0 API
User Defined Writer API

User Defined Math Functions
EnSight Command Driver

EnSight Python Interpreter

Index

Computational Engineering International, Inc.
2166 N. Salem Street, Suite 101, Apex, NC 27523
USA + 919-363-0883 « 919-363-0833 FAX
http://www.ceintl.com or http://www.ensight.com

© Copyright 1994-2006, Computational Engineering International, Inc. All rights reserved.
Printed in the United States of America.

EN-IM Revision History
EN-IM:8.2-1 August 2006

This document has been reviewed and approved in accordance with Computational Engineering
International, Inc. Documentation Review and Approval Procedures.

Information in this document is subject to change without notice. This document contains proprietary
information of Computational Engineering International, Inc. The contents of this document may not
be disclosed to third parties, copied, or duplicated in any form, in whole or in part, unless permitted by
contract or by written permission of Computational Engineering International, Inc. Computational
Engineering International, Inc. does not warranty the content or accuracy of any foreign translations of
this document not made by itself. The Computational Engineering International, Inc. Software License
Agreement and Contract for Support and Maintenance Service supersede and take precedence over
any information in this document.

EnSight® is a registered trademark of Computational Engineering International, Inc. All registered
trademarks used in this document remain the property of their respective owners.

CEIl's World Wide Web addresses:
http://www.ceintl.com
or
http://www.ensight.com

Restricted Rights Legend

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Unpublished rights reserved under the Copyright Laws of the United States.
Contractor/Manufacturer is Computational Engineering International, Inc., 2166 N. Salem Street, Suite 101,
Apex, NC 27523 USA

Table of Contents

Table of Contents

Overview
User Defined Reader APIS. 0-1
How To Produce A User Defined Reader 0-3
User Defined Writers 0-8
User Defined Math Functions. e 0-8

1 User Defined Reader Version 1.0 API

1.1 Quick Index of Library Routines 1-2
1.2 Order RoutinesareCalled 1-4
1.3 Detailed Specifications 1-6
USERD _bKUP. . .. 1-7
USERD_get block coords by component. 1-9
USERD_get block_iblanking. 1-10
USERD get block scalar values............ 1-11
USERD_get block vector values by component...................... 1-12
USERD_get_changing_geometry status 1-14
USERD get constant value i, 1-15
USERD_get dataset query file inffo 1-16
USERD_get description_lines. 1-17
USERD_get _element_connectivities for part. 1-18
USERD get element ids for part 1-20
USERD _get element label status 1-21
USERD get extra gui defaults 1-22
USERD get extra gui numbers. 1-23
USERD get global_coords. 1-25
USERD get global node ids............ 1-27
USERD get name of reader............. 1-28
USERD _get node label status 1-29
USERD _get num_Xy qQUErES oot e 1-30

EnSight 8 Interface Manual 1

Table of Contents

USERD_get number_of files_in dataset. 1-31
USERD_get number_of global nodes 1-32
USERD_get number_of model_parts 1-33
USERD_get number_of time steps 1-34
USERD _get number of variables.............. 1-35
USERD _get part build_info........ L 1-36
USERD get reader_descCrip. 1-39
USERD get reader release. 1-40
USERD get scalar_values. 1-41
USERD_get solution_times 1-43
USERD get var extract gui defaults 1-44
USERD_get var_extract_ gui_ numbers 1-45
USERD get variable info 1-47
USERD_get variable value at specific. 1-48
USERD _get vector values. 1-50
USERD get xy query data........ 1-52
USERD get xy query info 1-53
USERD_prefer_auto_distribute. 1-54
USERD set extra gui data.......... 1-55
USERD_set filename_button labels 1-56
USERD _set filenames 1-57
USERD set time step 1-58
USERD set var extract gui data................ 1-59
USERD_stop_part_building 1-60

2 User Defined Reader Version 2.0 API

2.1 Quick Index of 2.0 Library Routines 2-2
2.2 Order Routinesare Called 2-5
23 Routine History 2-9
AtVersion 2.00 2-12
At Version 2.0, 2-12
At Version 2.03, 2-13

2 EnSight 8 Interface Manual

Table of Contents

AtVersion 2.04. 2-13
At Version 2.05. 2-13
AtVersion 2.06. 2-14
AtVersion 2.07. 2-14
AtVersion 2.08. e 2-14
2.4 Detailed Specifications 2-16
USERD _bKUpD. . .. 2-17
USERD exit routine 2-19
USERD_get block _coords by component. 2-20
USERD get block iblanking. 2-21
USERD get block ghost flags. 2-22
USERD_get border_availability. 2-23
USERD_get border_elements by type 2-24
USERD_ get changing geometry status 2-26
USERD get constant val........... 2-27
USERD_get dataset query file inffo 2-28
USERD get descrip _lines. e 2-29
USERD get element label status 2-30
USERD get extra gui defaults 2-31
USERD get extra gui numbers. 2-32
USERD_get geom_timeset number........... 2-34
USERD get gold part build info.......... 2-35
USERD get gold variable info 2-41
USERD get ghosts in_block flag 2-43
USERD _get ghosts in model flag........... 2-44
USERD get matf set info 2-45
USERD get matf var_info 2-46
USERD get matsp info....... 2-47
USERD get maxsize info......... 2-48
USERD get model_extents 2-50
USERD get name of reader............ 2-51
USERD get nfaced_conn. i 2-52
USERD_get nfaced _conn_in_buffers.................. 2-55

EnSight 8 Interface Manual 3

Table of Contents

USERD _get nfaced_nodes per face 2-60
USERD get node label status.............. 2-63
USERD _get nsided_conn 2-64
USERD_get nsided _conn_in_buffers. 2-66
USERD get num_of time steps...... 2-70
USERD_get num_Xxy queries i 2-71
USERD_get number_of files in dataset. 2-72
USERD _get number _of material sets 2-73
USERD_get number_of materials. 2-76
USERD_get number_of model parts 2-77
USERD get number of species 2-78
USERD_get number_of timesets 2-79
USERD_get number_of variables.............. 2-80
USERD get part coords i 2-81
USERD_get part_coords_in_buffers 2-82
USERD_get part_element_ids_by type.......... 2-85
USERD_get part_element_ids_by type in buffers...................... 2-87
USERD_get part_elements by type...... 2-91
USERD_get part_elements_by type in_buffers........................ 2-93

USERD get part node ids......... 2-97
USERD_get part node_ids in_buffers 2-98
USERD _get reader_descCrip. 2-101
USERD get reader release. 2-102
USERD _get reader_version. i 2-103
USERD get sol times i 2-104
USERD_get structured reader cinching............................. 2-105
USERD_get timeset _description 2-106
USERD _get uns_failed_params 2-107
USERD get var by component 2-109
USERD_get var_by component_in_buffers 2-112
USERD get var extract gui defaults 2-118
USERD get var extract gui numbers 2-119

USERD_get var value at specific. 2-121
USERD get xy query data......... 2-123

4 EnSight 8 Interface Manual

Table of Contents

USERD get xy query info........ 2-124
USERD load matf data 2-125
USERD_prefer_auto_distribute 2-127
USERD rigidbody_existence. 2-128
USERD rigidbody values 2-129
USERD_set block range and stride 2-131
USERD set extra gui data 2-132
USERD_set filename_button labels. 2-133
USERD_set filenames 2-134
USERD set right side 2-135
USERD set server number i 2-136
USERD_set time set and step........... 2-137
USERD_set var extract gui data................................. 2-138
USERD size matf data 2-139
USERD_stop_part_building. 2-141
2.5 Converting a 1.0 APl Readertoa 2.0 APIREADER 2-142

3 User Defined Writer API

What Information Can Be Provided By The API? 3-1
Example Writers. 3-1
3.1 Directions For Writing Your Own UDW 3-3
Topical List Of User-Defined Writer API Methods 3-4
3.2 Routine Detail Specifications 3-7
USERD writer get name 3-8
USERD _writer_get writer_version 3-9
USERD writer_write_geom 3-10

4 User Defined Math Functions

How the routines are invoked. 4-1
Current Limitation. 4-1
4.1 Detailed Routine Specifications 4-2
USERD get name of mf 4-2

EnSight 8 Interface Manual 5

Table of Contents

USERD get mf version. e 4-3
USERD get nargs e e 4-4
USERD get meta data 4-5
USERD evaluate e 4-6
4.2 Example 4-7

5 EnSight Command Driver

OVEIVIBW . . .o 5-1
5.1 Query Capability 5-4
Alphabetical List of Query Keywords: 5-4
Query Keyword Details 5-5
5.2 Routine Descriptions. 5-30
enscmddriver_connect 5-30
enscmddriver_Sendmesg 5-31
ensCMAAriVer _QUETY oottt 5-32
enscmddriver_disconnect 5-33

6 EnSight Python Interpreter

OVEIVIBW . . o o 6-1
Limitations of the EnSight Python Interface 6-2
6.1 Python EnSight module interface 6-4
EnSight Pythonevents 6-8
6.2 Python EnVe moduleinterface 6-12
The EnVe Movie object. 6-12
The EnVe Image object. 6-15
Additional EnVe API 6-19
Index 1

6 EnSight 8 Interface Manual

Overview

Overview

EnSight has user defined capability for data readers, data writers, and math functions. This capability
allows users to read and write data in custom ways, such as the handling of in-house data formats. There
also exists limited capability to produce custom math functions for the variable calculator.

User Defined Reader APIs

The user defined reader capability included in EnSight can allow otherwise unsupported structured or
unstructured data to be read. The user defined reader capability utilizes dynamic shared libraries
containing routines defined in this document but customized by you, the user, (or some third party). This
capability is available for all our supported architectures.

Two versions of this API are available.

API 1.0

Starting with EnSight Version 6.0, the 1.0 API was made available. It was designed to
be friendly to those producing it, but requires more manipulation internally in EnSight.
It may be a little easier to produce readers using this format (especially if a global
coordinate array is a hallmark of your data format), but it requires more memory and
processing time. It also has been frozen in capability - so it does not contain many of
the newer features.

Underlying Philosophy
API 1.0 deals with:

-> global coordinate array and corresponding
-> global node id array
-> global nodal variables

-> for each part:
-> local element connectivities (grouped by type) & corresponding
->local element ids
-> local elemental variables

The element connectivities, within parts, reference the global coordinate array. If node
ids are provided, the element connectivities have to be in terms of the node ids. If node
ids are not provided, the connectivities are in terms of the (one-based) index number of
each node in the global coordinate array. Thus, node ids are more than labels - they are
a part of the connectivity referencing scheme. Element ids are purely labels.

This API was originally setup to try to make the interface to other codes as
straightforward as possible. Efficiency was not the major consideration.

EnSight must do a fair amount of work to get data provided in the manner described
above into the form that it uses internally. There is mapping that has to be setup and
maintained between the global arrays and the local part arrays so that updating over
time can be accomplished efficiently. There is hashing that is required in order to deal
efficiently with node ids.

All of this leads to a considerable amount of temporary memory and processing, in
order to get a model read into EnSight.

EnSight 8 Interface Manual 0-1

Overview

AP12.0

The current 2.0 API is considerably more efficient, and was designed more with that in
mind. It lends itself closely to the EnSight Gold format.

Underlying Philosophy
API 2.0 deals with:
-> for each part:
-> part coordinates & corresponding
-> part node ids
-> part nodal variables

-> part element connectivities (grouped by type) & corresponding
-> part element ids
-> part elemental variables

API 2.0 requires that the coordinates and corresponding nodal variables be provided
per part. This eliminates the global to local mapping with all its associated temporary
memory and processing time. The connectivity of the elements in each part reference
the node indices of its own (one-based) part coordinate array. The connectivity of the
elements do not reference the nodes according to node ids. Node ids (and element ids)
are purely labels for screen display and for query operations within EnSight. This
eliminates the need for node id hashing as a model is read.

The 2.0 API has been created for those needing more efficiency - both in terms of
memory use and speed. The increased efficiency is possible because data is requested
in a manner which more closely represents the way that EnSight stores and manipulates
information internally. The new API requests size information and allocates the actual
internal structures and arrays accordingly. Pointers to these arrays are passed directly to
you in the routines which gather data, thus eliminating a considerable amount of
temporary memory (and allocation time) that is needed in the 1.0 APIL. Depending on
what you must do to get your data into the form required, the memory savings and the
speed improvement when loading models can be quite significant!

Thus, some of its advantages and new features are:
* Less memory, more efficient, and faster - as indicated above.

* Model extents can be provided directly, such that EnSight need not read all the
coordinate data at load time.

* Tensor and complex variables are supported
* Exit routine provided, for cleanup operations at close of EnSight.
* Geometry and variables can be provided on different time lines (timesets).

* If your data format already provides boundary shell information, you can use it
instead of the “border” representation that EnSight would compute.

* Ghost cells (for both structured and unstructured data) are supported

* User specified node and/or element ids for structured parts are supported
* Material handling is supported

* Nsided and Nfaced elements are supported

* Structured ranges can be specified

* Failed elements is supported

* Material Species is supported

* Rigid Body values can be supplied from the reader.

* Reader can be allowed to deal with block min, max, and stride within itself - instead
of having EnSight deal with it.

0-2

EnSight 8 Interface Manual

Overview

How To Produce A User Defined Reader

1. Write code for all pertinent routines in the library (Unless someone else has done this for you).

This is of course where the work is done by the user. The word “pertinent” is used because depending
on the nature of the data, some of the routines in the library may be dummy or optional routines.

The source code for a dummy_gold library and for various other working or sample libraries is
copied from the installation CD during installation. These will be located in directories under:

$CEI_HOME/ensight82/src/readers

Note: The directory following CEI_ HOME in the path could vary depending on the version of
EnSight installed.

Examples:

Basic dummy_gold routines provide skeleton for a new reader
SCEI_HOME/ensight82/src/readers/dummy gold

Sample library which reads unstructured binary EnSight Gold data (version 2.08 API)
$CEI HOME/ensight82/src/readers/ensight gold

Sample library which reads C binary, 3D, static Plot3D data (version 1.0 API)
SCEI_HOME/ensight82/src/readers/plot3d

You may find it useful to place the source code for the library you create in this readers area as well,
but you are not limited to this location.

The descriptions of each library routine contained in version 1.0 API Detailed Specifications, and
version 2.0 API Detailed Specifications, along with version 1.0 API Order Routines are Called, and
version 2.0 API Order Routines are Called, as well other helps provided in this document, along with
the example libraries, should make it possible for you to produce code for your own data reader.

2. Produce the dynamic shared library.

This is a compiling and loading process which varies according to the type of machine you are on. In
the user-defined-reader source tree we have tried to isolate the machine dependent parts of the build
process using a set of files in the ‘config’ directory. In this directory there is a configuration file for
each platform on which EnSight is supported. Before you can compile the installed readers you
should run the script called ‘init’ in the config directory.

i.e. (for UNIX)

cd config

./init sgi 6.5 n64
cd ..

make

If you are compiling for Windows, there are two options. If you have the Cygwin GNU utilities
installed, you can use GNU make as for Unix. Otherwise, there is a script called makeall.cmd which
will build all of the readers using nmake. The Makefiles in each reader directory will work using
either make or nmake.

i.e. (WIN32 Cygwin) (using nmake)

EnSight 8 Interface Manual 0-3

Overview

cd config cd config

sh init win32 cp win32 config

cd .. cd ..

make mkdir 1lib
makeall.cmd

If you have platform-specific portions of code in your reader, the build system defines a set of flags
which can be used within #ifdef ... #endif regions in your source, as shown in the table below.

Because the readers are now dynamically opened by EnSight, you may have to include dependent
libraries on your link-line to avoid having unresolved symbols. If you are having problems with a
reader, start ensight as “ensight8 -readerdbg” and you will get feedback on any problems
encountered in loading a reader. If there are unresolved symbols, you need to find the library which
contains the missing symbols and link it into your reader by adding it to the example link commands
below.

If you choose to use a different build environment for your reader, you should take care to use
compatible compilation flags to ensure compatibility with the EnSight executables, most notably on
the SGI and HP-UX 11.0 platforms, which should use the following flags:

sgl 6.2 032: -mips2

sgi 6.2 n64: -mips4 -64
sgi 6.5 n32: -mips3

sgi 6.5 n64: -mips4 -64
hp 11.0 32: +DA2.0

hp 11.0 64: +DA2.0W

Machine |OS Flag Shared Library | LD Command used in Makefile

Type Name Produced

sgi -DSGI libuserd-X.so |1d -shared -all -o libuserd-X.so libuserd-X.o

hp -DHP libuserd-X.sl |Id -b -o libuserd-X.sl libuserd-X.o

sun -DSUN libuserd-X.so |1d -G -o libuserd-X.so libuserd-X.o

dec -DDEC libuserd-X.so |Id -shared -all -o libuserd-X.so libuserd-X.o -lc

linux -DLINUX libuserd-X.so |Id -shared -o libuserd-X.so libuserd-X.o -lc

alpha -DALINUX |libuserd-X.so |ld -shared -o libuserd-X.so libuserd-X.o -lc

linux

ibm -DIBM libuserd-X.so |1d -G -o libuserd-X.so libuserd-X.o -bnoentry -becpall -lc

Once you have created your library, you should place it in a directory of your choice or in the
standard reader location:

SCEI_HOME/ensight82/machines/$CEI_ARCH/lib readers

For example, if you created a reader for “mydata”, you should create the reader libuserd-mydata.so
and place the file in your own reader directory (see section 3 below) or in the standard location:

$CEI_HOME/ensight82/machines/$CEI _ARCH/lib readers/libuserd-mydata.so

3. By default EnSight will load all readers found in the directory:

$CEI_HOME/ensight82/machines/$CEI ARCH/lib readers

Files with names “libuserd-X.so” (where X is a name unique to the reader) are assumed to be user-

EnSight 8 Interface Manual

Overview

defined readers.
There are two methods which can be used to supplement the default behavior.

(1) A feature which is useful for site-level or user-level configuration is the optional environment
variable SENSIGHT8 READER. This variable directs EnSight to load all readers in the specified
reader directory (you should probably specify a full path) before loading the built-in readers. If the
same reader exists in both directories (as determined by the name returned by
USERD_get name of reader(), NOT by the filename), the locally configured reader will take
precedence.

(2) A useful feature for end-users is the use of the libuserd-devel reader. EnSight will search for a
reader named libuserd-devel.so (sl for HP or .dll for Windows). This reader can exist anywhere in
the library path (see below) of the user. This is useful for an individual actively developing a reader
because the existence of a libuserd-devel library will take precedence over any other library which
returns the same name from USERD get name of reader().

As an example, a site may install commonly used readers in a common location, and users can set the
ENSIGHTS_READER variable to access them:

setenv ENSIGHT8 READER /usr/local/lib/e8readers

A user working on a new reader may compile the reader and place it in a directory specified by the
library path:
cp libuserd-myreader.so ~/lib/libuserd-devel.so

setenv <librarypath> ~/lib:$<librarypath>

The user is responsible for correctly configuring the library path variable in order to make use of the
libuserd-devel feature. The library environment variables used are:

Machine Type Environment Variable to Set
sgi LD LIBRARY PATH
dec LD LIBRARY PATH
sun LD LIBRARY PATH
linux LD LIBRARY PATH
alpha linux LD LIBRARY PATH

hp SHLIB PATH

ibm SHLIB PATH

As always, EnSight support is available if you need it.

4. Use the udr_checker tool for help in debugging your user-defined reader.

The udr_checker.c routine can be used to debug EnSight User-defined readers. It exists because of
the difficulty of debugging dynamic shared libraries when you don’t have the source for the calling
program (EnSight).

Ifudr_checker.c is compiled and linked with your reader source code (including access to any
libraries needed, and the global extern.h file), it will exercise most options of you reader, giving
feedback as it goes. The resulting executable can be debugged using your favorite debugger. And if
you have memory/bounds checking software (such as purify), you can (and should) run it with this
executable to make sure that you are not overwriting things. Readers that bash memory will cause
problems when run with EnSight!

EnSight 8 Interface Manual 0-5

Overview

0-6

You will note that the Makefile provided with the readers in the EnSight distribution have a
“checker” object. If you do a “make checker” instead of just a “make”, the “checker” executable will
be produced. You may need to modify these makefiles slightly if the locations of your reader files
are different than the normal.

Once the “checker” executable exists, you can run the checker program by simply invoking it:
> checker

And you will be prompted for the type of information that you provide in the EnSight Data Reader
dialog, namely:

The path

filename 1

[filename 2] Only if your reader uses two fields
swapbytes flag

<toggle flags> Only if your reader implements extra GUI
<pulldown flags> one flag value per line

<field contents> one field string per line

There are certain command line options that you can use to control some aspects of the checker
program. One of the more useful is the ability to provide the input just described in a file. This is done
in this fashion:

> checker -p <playfile>
And <playfile> would be a simple ascii file with 3 [Or 4] lines:

line 1: the path
line 2: filename 1
line 3: [filename 2] (if two_fields is TRUE)
line 3 or 4: 0 or 1, for swapbytes (0 is FALSE, 1 is TRUE)
remaining lines 0 or 1 for toggle disable enabled
one line for each toggle
0 - num_pulldown_values for pulldown choice
one line for each pulldown
strings
one line for each field

example playfile for an EnSight Gold reader casefile (entitled cube.play) could look something like
the following: (Note: two_fields is FALSE)

/usr/local/bin/data/ens

cube.case
0

And you would invoke checker as:

> checker -p cube.play

Another example playfile with swapbytes 0, two enabled toggles, three pulldowns with the value 0
chosen and a single field “sample field value” could look something like the following:

/mydirectory/subdir/
myfile
0

1
1
0

EnSight 8 Interface Manual

Overview

0
0
sample field value

Other command line arguments are:

-server_number For checking server number routines. If you use this option, you will be
prompted for the total number of servers and the current server number. These
will then be used in the calls to the server number routines.

-gts # For specifying the geometry timestep to test. The default is step 0.
The # is the (zero based) time step to read for geometry.

-vts # For specifying the variable timestep to test. The default is step 0.
The # is the (zero based) time step to read for variables.

EnSight 8 Interface Manual 0-7

Overview

User Defined Writers

Users can write User Defined Writer API (UDW) to generate arbitrary data files for EnSight parts and
variables. The EnSight server provides a UDW API that can be used to write out the currently selected
parts in the EnSight client part list, as well as the active variables, in a user defined format. The UDW API
includes methods to get, for example, node coordinates, element connectivity, ids, variable values, and
time information. A UDW can call any of the methods as it wishes and create a data file(s) in any format
desired. Additionally, the UDW dialog in the EnSight client has a Parameter field that provides a
mechanism for passing user specified options to the UDW.

User Defined Math Functions

Users can write external variable calculator functions called User Defined Math Functions (UDMF) that
can be dynamically loaded by EnSight. These functions appear in EnSight’s calculator in the general
function list and can be used just as any other calculator function to derive new variables.

0-8 EnSight 8 Interface Manual

1 User Defined Reader Version 1.0 API

This chapter will describe the EnSight User Defined Reader Version 1.0 API. Starting with EnSight
Version 6.0, the 1.0 API has been available. It was designed to be friendly to those producing it (especially
if a global coordinate array is a hallmark of your data format).

It does, however, require more manipulation internally by EnSight, which may require more memory and
processing time. Thus, you may want to also consider the 2.0 API as described in Section 2, User Defined
Reader Version 2.0 API.

If you already have a working 1.0 API reader and are happy with it - there is probably no reason to modify
it to the 2.0 API unless you deal with large models and the memory use and load times are a problem, or
you need any of the additional capabilities that the 2.0 API provides.

If you are producing a new reader, you should consider which will work best for your needs.

Further discussion on the philosophical differences between the two API’s can be found in the Overview
chapter under section, User Defined Reader APIs.

If you wish to convert an existing 1.0 API reader to the 2.0 API, see Section 2.5, Converting a 1.0 API
Reader to a 2.0 API READER.

The process for producing the dynamic shared library is described in the Overview chapter under section,
How To Produce A User Defined Reader.

EnSight 8 Interface Manual 1-1

1.1 Quick Index of Library Routines

1.1 Quick Index of Library Routines

Routine Name Brief Description

Generally Needed for UNSTRUCTURED Data

USERD_get_element_connectivities_for_part part’s element connectivities
USERD_get_element_ids_for_part part’s element ids
USERD_get_global_coords global node coordinates
USERD_get_global_node_ids global node ids
USERD_get_number_of global nodes number of global nodes
USERD_get_scalar_values global scalar variables
USERD_get_vector _values global vector variables

Generally Needed for STRUCTURED (BLOCK) Data

USERD_get block_coords_by component block coordinates
USERD _get block_iblanking block iblanking values
USERD_get block_scalar_values block scalar variables
USERD get block vector values by component | block vector variables

Generally Needed for Either or Both Kinds of Data

USERD_bkup read/write archive routine
USERD_get_changing_geometry_status changing geometry?
USERD_get_constant_value constant variable’s value
USERD_get dataset_query _file_info info about each model file
USERD_get_description_lines file associated descrip lines
USERD_get_element_label_status element labels?
USERD_get name_of reader name of reader for GUI
USERD_get node_label_status node labels?

USERD_get number_of files_in_dataset number of files in model
USERD_get _number_of model_parts number of model parts
USERD_get _number_of time_steps number of time steps

1-2 EnSight 8 Interface Manual

1.1 Quick Index of Library Routines

USERD_get number_of variables

number of variables

USERD_get_part_build_info

part type/descrip etc.

USERD_get reader_descrip

provide GUI more description (optional)

USERD_get_solution_times

solution time values

USERD_get variable_info

variable type/descrip etc.

USERD get variable value at_specific

node’s orelement’s variable
value over time

USERD_set filenames

filenames entered in GUI

USERD_set_time_step

current time step

USERD_stop_part_building

cleanup routine

Optional Routines Added for Later Releases of EnSight

USERD_get_extra_gui_defaults

default values for the extra GUI members

USERD _get_extra_gui_numbers

number of toggles, pulldowns and fields

USERD_get num_xy_queries

number of xy queries

USERD get reader_release

release string of reader

USERD_get _var_extract_gui_defaults

default values for the var_extract members

USERD _get var_extract_gui_numbers

number of toggles, pulldowns and fields

USERD_get xy query_data

gets Xy query xy values

USERD get xy query_info

gets Xy query names, titles, num pairs, etc.

USERD_prefer_auto_distribute

tells whether reader will distribute for SOS

USERD_set_extra_gui_data

returns Extra GUI answers provided by
user

USERD_set_filename_button_labels

sets Get File button text

USERD_set var_extract_gui_data

returns var extract answers provided by
user

EnSight 8 Interface Manual

1-3

1.2 Order Routines are Called

1.2 Order Routines are Called

The various main operations are given basically in the order they will be performed. Within each
operation, the order the routines will be called is given.

Called when library is loaded:

1. Setting name in the gui, and specifying one or two input fields - called when library is loaded.

USERD_get name_ of reader

USERD_get reader descrip (optional)
USERD _prefer_auto_distribute (optional)
USERD set filename button labels (optional)
USERD get extra gui numbers (optional)
USERD get extra gui defaults (optional)
USERD get reader release (optional)

Called once at initial data load when ‘OK’ pressed to load data:

2. Setting filenames and getting time info

USERD set_extra_gui_data (optional)
USERD _set filenames

USERD get number of time steps
USERD get solution times

USERD set time_step

3. Gathering info for part builder

USERD set time_step
USERD_get changing geometry_status

USERD get node label status

USERD get element label status

USERD get number of files in dataset

USERD get dataset query file info

USERD get description_lines (for geometry)
USERD_get number of model parts

USERD get part build info

USERD get number of global nodes

USERD get global coords (for model extents)
USERD get block coords by component (for model extents)

4. Gathering Variable info

USERD get number of variables
USERD_get variable info

5. Part building (per part created)

USERD _set time step

USERD get global coords

USERD get global node ids

USERD get element connectivities_for part

USERD get element ids for part

USERD_get block iblanking

USERD get block coords by component

USERD _stop part building (only once when part builder dialog is closed)

1-4 EnSight 8 Interface Manual

1.2 Order Routines are Called

6. Loading Variables

constants:
USERD _set time step
USERD_get constant value

scalars:
USERD get description_lines
USERD _set time step
USERD_get scalar values
USERD_get block scalar values

vectors:
USERD_get description_lines
USERD _set time_step
USERD_get vector values
USERD get block vector values by component

7. Changing geometry

changing coords only:
USERD set time_step
USERD_get global coords
USERD _get block coords by component

USERD _set time_step
USERD_get number of model parts
USERD_get part build info
USERD_get number of global nodes
USERD_get global coords
USERD get global node ids

USERD get element connectivities for part
USERD_get element ids for part
USERD_get block iblanking

USERD _get block coords by component

8. Node or Element queries over time

USERD_get variable value at specific

EnSight 8 Interface Manual 1-5

1.3 Detailed Specifications

1.3 Detailed Specifications

Include files:
The following header file is required in any file containing these library routines.

#include “global extern.h”
And it references:

#include “global extern proto.h”

Basis of arrays:
Unless explicitly stated otherwise, all arrays are zero based - in true C fashion.

Global variables:

You will generally need to have a few global variables which are shared by the various library routines.
The detailed specifications below have assumed the following are available. (Their names describe their
purpose, and they will be used in helping describe the details of the routines below).

static int Numparts available = 0;
static int Num unstructured parts = 0;
static int Num_ structured blocks

Il
o
~

/* Note: Numparts available = Num unstructured parts + Num structured blocks */

static int Num time steps =
static int Num global nodes =
static int Num variables =
static int Num dataset files =
static int Current time step =

~.

~. N

O O O O
~

~.

Dummy (or stub) Routines:

Those routines marked optional, need not be included in a reader. They are truly optional. All other
routines need to be included, but some can be dummy routines. As an example, if your data format does
not have structured data, then all the routines dealing with structured (block) parts can be dummy routines.

The specifications for each routine in the API will now be given (routines are in alphabetical order):

1-6 EnSight 8 Interface Manual

1.3 USERD_bkup

USERD_bkup

LR R e I N S S N S T S T e S S N SIS S S ST T S S e SRS S T NS T

*

P T S S S S I S S S S R S S

(IN) backup type

Used in the archive process. Save or restore info relating to
your user defined reader.

(IN) archive file = The archive file pointer

Z SAVE ARCHIVE for saving archive
Z REST ARCHIVE for restoring archive

returns: Z OK 1f successful

Z ERR if not successful

Notes:
* Since EnSight’s archive file is saved in binary form, it is

suggested that you also do any writing to it or reading from it
in binary.

You should archive any variables, that will be needed for
future operations, that will not be read or computed again
before they will be needed. These are typically global
variables.

Make sure that the number of bytes that you write on a save and
the number of bytes that you read on a restore are identicall!!

And one last reminder. If any of the variables you save are
allocated arrays, you must do the allocations before restoring
into them.

SPECIAL NOTE FOR WINDOWS ONLY:

Because our current implementation under windows needs to open and close files
from within the reader .dll, a special structure (named USERD globals) needs to
be defined in the global space of your reader. This structure needs to be defined
like: === ===

#ifdef WIN32 (which includes 32 bit and 64 bit windows)
W32EXPORT struct USERD globals {
char arch filename[256];
unsigned long arch fileptr;
} USERD globals;
#endif

This structure will be bound when the reader .dll is loaded and will be used to
store the archive file name and the current offset therein.

Again for windows only, you need to ignore the archive file pointer in the
argument list and instead open and close the arch filename file as well as keep
the arch fileptr offset current in this routine.

So first define the USERD globals structure at the beginning of your reader.

Then, when an archive is saved, the following needs to be done in this routine:

1. open USERD globals.arch filename for appending (within #ifdef WIN32)
2. do your writes
3. close the file (within #ifdef WIN32)

When an archive is restored, do the following in this routine:
1. open USERD globals.arch filename for reading,
and fseek to USERD globals.arch fileptr offset (within #ifdef WIN32)

EnSight 8 Interface Manual 1-7

1.3 USERD_bkup

2. do your reads
3. save the new USERD globals.arch fileptr offset
and close the file

Here is some pseudo code to illustrate:
switch (baskup type) {
case Z_SAVE ARCHIVE:

#ifdef WIN32
archive file =
#endif

#ifdef WIN32
fclose(archive file)
#endif

break;
case Z REST ARCHIVE:

#ifdef WIN32
archive file =
fseek (archive file, USERD globals.arch fileptr,

#endif

#ifdef WIN32
USERD globals.arch fileptr =
fclose(archive file)

fendif

ftell (archive file);

break;

And finally be aware of a current limitation of the
Windows implementation of this routine:

R A T S I S S S T S S S S I N S A S RS S I S S S T S

*

(using ftell),
(within #ifdef WIN32)

fopen (USERD _globals.arch filename,”ab”);

fopen (USERD globals.arch filename,”rb”);
SEEK_SET) ;

* Because the structure uses a long for the file offset, the archive restore
* will not work when the offset to the information written in this routine

* is greater than 2 Gb, on 32 bit windows. On 64 bit windows there is no such
* limitation because the long is 64 bits.
) */

int

USERD bkup (FILE *archive file,
int backup type)

1-8

EnSight 8 Interface Manual

1.3 USERD_get_block_coords_by_component

USERD_get block _coords by component

Get the coordinates of a given block, component at a time

(IN) block number = The block number

(1-based index of part table, namely:
1 ... Numparts_available.

It is NOT the part id label that is
loaded in USERD get part build info)

(IN) which component Z COMPX if x component wanted
= Z COMPY if y component wanted

Z COMPZ if z component wanted

(OUT) coord array = 1D array containing x,y, or z
coordinate component of each node

(Array will have been allocated
i*j*k for the block long)

returns: Z OK 1if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

LR T S I S S S S e S SR A R S S N S S N
1

* Not called unless Num structured blocks is > 0

int

USERD get block coords by component (int block number,
int which component,
float *coord array)

EnSight 8 Interface Manual 1-9

1.3 USERD_get_block_iblanking

USERD_get block_iblanking

Get the iblanking value at each node of a block - If Z IBLANKED
(IN) block number = The block number
(1-based index of part table, namely:
1 ... Numparts_available.

It is NOT the part id label that is
loaded in USERD get part build info)

(OUT) iblank array = 1D array containing iblank wvalue
for each node.

(Array will have been allocated
i*j*k for the block long)

possible values are: Z EXT = exterior (outside)
Z INT = interior (inside)
Z BND = boundary
Z INTBND = internal boundary
Z_SYM = symmetry plane

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

L R I N S R S N N S S S ST S S T S S NS TS S S S T N .

* Not called unless Num structured blocks is > 0 and you have
some iblanked blocks

int

USERD get block iblanking(int block number,

int *iblank array)

1-10 EnSight 8 Interface Manual

1.3 USERD_get_block_scalar_values

USERD_get block_scalar_values

LR T TR T R S S N S S SRS S T SN T N NS S NN S ST S SIS S SN ST T S T S NS S N S S N R R i T e

int

if 7z PER NODE:
Get the values at each node of a block, for a given scalar
variable.

or if Z PER ELEM:
Get the values at each element of a block, for a given scalar
variable.

(IN) block number Since EnSight Version 7.4:
= The block number
(l1-based index of part table, namely:

1 ... Numparts_available.

It is NOT the part id label that is
loaded in USERD get part build info)

Prior to EnSight 7.4:

= The block id label

It is the part id label that was
loaded in USERD get part build info

It is NOT the l-based index of the
part table that is used in geometry routines.

(IN) which scalar The variable “number” to get (1 ... Num variables)
(OUT) scalar array = 1D array containing scalar values
for each node or element.

Array will have been allocated:

if Z PER NODE:
i*j*k for the block long

if 7Z PER ELEM:
(i-1)*(i-1) *(k-1) for the block long

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

*

Not called unless Num structured blocks is > 0,
Num variables is > 0, and there are some scalar type variables

* The per node or per elem classification must be obtainable from the
variable number (a var classify array needs to be retained)

USERD get block scalar values(int block number,

int which scalar,
float *scalar array)

EnSight 8 Interface Manual 1-11

1.3 USERD_get_block_vector_values_by_component

USERD_get block_vector_values by component

if Z PER NODE:
Get the values at each node of a block, for a given vector
variable, one component at a time.

or if Z PER ELEM:
Get the values at each element of a block, for a given vector
variable, one component at a time.

(IN) block number Since EnSight Version 7.4:
= The block number
(l1-based index of part table, namely:

1 ... Numparts_ available.

It is NOT the part id label that is
loaded in USERD get part build info)

Prior to EnSight 7.4:

= The block id label

It is the part id label that was
loaded in USERD get part build info

It is NOT the l-based index of the
part table that is used in geometry routines.

(IN) which component = Z COMPX if x component wanted
= Z COMPY if y component wanted
= Z COMPZ if z component wanted

(OUT) vector array = 1D array containing vector
component value for each node or element.

Array will have been allocated:

if 7Z PER NODE:
i*j*k for the block long

if Z PER ELEM:
(i-1)*(i-1) *(k-1) for the block long

returns: Z OK 1if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

* Not called unless Num structured blocks is > 0,
Num variables is > 0, and there are some vector type variables

* The per node or per elem classification must be obtainable from the
variable number (a var classify array needs to be retained)

LR S S S S N N S S N S e S SRS N N R A e S S S T N S S S S ST S S N S S N S S S NS S NS S N S S T .

(IN) which vector = The variable “number” to get (1 ... Num variables)

1-12 EnSight 8 Interface Manual

1.3 USERD_get_block_vector_values_by_component

int

USERD get block vector values by component (int block number,
int which vector,
int which component,
float *vector array)

EnSight 8 Interface Manual 1-13

1.3 USERD_get_changing_geometry_status

USERD_get changing _geometry status

2 .,

*

* Gets the changing geometry status

*

* returns: 7 STATIC if geometry does not change

* Z CHANGE COORDS if changing coordinates only

* Z CHANGE CONN if changing connectivity

*

* Notes:

* * EnSight does not support changing number of parts, nor changing

* changing number of variables. But the coords and/or the

* connectivity of the parts can change.

K e e */
int

USERD get changing geometry status(void)

1-14 EnSight 8 Interface Manual

1.3 USERD_get_constant_value

USERD_get constant value

LR I R T S N S I

Get the value of a constant at a time step

(IN) which var = Which variable (this 1is the same
implied variable
number used in other
functions.)

(1 ... Num variables)

returns: value of the requested constant variable

Notes:
* This will be based on Current time step

float
USERD get constant value(int which var)

EnSight 8 Interface Manual 1-15

1.3 USERD_get_dataset_query_file_info

USERD_get dataset_query _file_info

LR T R S S S N R I R T e S S N S S S S S S S T SN S N SN T N S S

int

Get the information about files in the dataset. Used for the

dataset query option.

(OUT) gfiles = Structure containing information about each file
of the dataset. The Z QFILES structure is defined
in the global extern.h file

(The structure will have been allocated
Num dataset files long, with 10 description
lines per file).

gfiles[].name
gfiles[].sizeb
gfiles[].timemod
gfiles[].num d lines

gfiles[].f desc[]

The name of the file
(2 MAXFILENP is the dimensioned length
of the name)

The number of bytes in the file
(Typically obtained with a call to the
“stat” system routine)

The time the file was last modified

(Z MAXTIMLEN is the dimesioned length
of this string)

(Typically obtained with a call to the
“stat” system routine)

The number of description lines you
are providing from the file. Max = 10

The description line(s) per file,
gfiles[].num d lines of them
(Z MAXFILENP is the allocated length of
each line)

returns: Z OK 1if successful
Z ERR 1f not successful

Notes:

* If Num dataset files is 0, this routine will not be called.

USERD get dataset query file info(Z QFILES *gfiles)

EnSight 8 Interface Manual

1.3 USERD_get_description_lines

USERD_get description_lines

Get two description lines associated with geometry per time step,
or one description line associated with a variable per time step.

(IN) which type Z GEOM for geometry

Z VARI for variable

(IN) which var = If it is a variable, which one.
(1 ... Num variables)
Ignored if geometry type.

(OUT) linel = The 1lst geometry description line,
or the variable description line.

(OUT) line2 = The 2nd geometry description line
Not used if variable type.

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

* These are the lines EnSight can echo to the screen in

L R R R N S S S S S S N S T S S T N S

annotation mode.

int

USERD get description lines(int which type,
int which var,
char linel[Z BUFL],
char line2[Z BUFL])

EnSight 8 Interface Manual

1.3 USERD_get_element_connectivities_for_part

USERD_get _element_connectivities_for_part

LR S R R S N S S S NS S S S ST S ST NS S S S NS T S S ST SN S T S S S S S N S S N S AR T S R S S N R I

Gets the connectivities for the elements of a part
(IN) part number = The part number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id label that
is loaded in USERD get part build info)

(OUT) conn array = 3D array containing connectivity
of each element of each type.

(Array will have been allocated

Z MAXTYPE by num of elements of
each type by connectivity length
of each type)

ex) If num of elements[Z TRIO3] = 25
num of elements[Z QUAO4] = 100
num of elements[Z HEX08] 30
as obtained in:
USERD get part build info

Then the allocated dimensions available
for this routine will be:
conn_array[Z TRIO03][25][3]
conn_array[Z QUA04][100] [4]
conn array[Z HEX08][30][8]

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* This will be based on Current time step

* Not called unless Num unstructured parts is > 0

The coord array loaded in USERD get global coords is zero-based,
but within EnSight it will become a one-based array.
Thus, coord array[0] will be accessed by node 1 from the conn array,
coord array[l] will be accessed by node 2 from the conn array, etc.
ex) Given a model of two triangles, you should load coord array in
USERD get global coords as follows:

node coordinates

4 - 3 1 coord array[0].xyz[0] = 0.0
I\ | coord array([0].xyz[1] = 0.0
|\ T2 | coord array([0].xyz[2] = 0.0
[\ |
| \ | 2 coord array[l].xyz[0] = 1.0
| \ | coord array[l].xyz[1l] = 0.0
| \ | coord arrayl[l].xyz[2] = 0.0
| A
| T1 \ 3 coord array[2].xyz[0] = 1.0
| \ | coord array([2].xyz[1l] = 1.6

l] - 2 coord array[2].xyz[2] = 0.0

1-18 EnSight 8 Interface Manual

1.3 USERD_get_element_connectivities_for_part

*

* 4 coord array[3].xyz[0] 0.0

* coord array[3].xyz[l] = 1.6

* coord array[3].xyz[2] = 0.0

*

*

* And conn_array here as follows:

*

* Triangle Connectivity

* e e e

* T1 conn_array[Z TRI03][0][0] = 1

* conn_array[Z TRI0O3][0][1] = 2

* conn_array[Z TRI03][0][2] = 4

*

* T2 conn_array[Z TRI03][1][0] = 2

* conn_array[Z TRI0O3][1][1] = 3

* conn_array[Z TRI03][1][2] = 4

*

K e e e ————————————— o —————— */
int

USERD get element connectivities for part (int part number,
int **conn array([Z MAXTYPE])

EnSight 8 Interface Manual 1-19

1.3 USERD_get_element_ids_for_part

USERD _get element _ids_for_part

LR T R S S S N R I R T e S S N S S S S S S S T SN S N SN T N S S

int

Gets the ids for the elements of a part
(IN) part number = The part number

(1-based index of part

table, namely:

1 ... Numparts_available.

It is NOT the part id

label that

is loaded in USERD get part build info)

(OUT) elemid array = 2D array containing id
element of each type.

of each

(Array will have been allocated
Z MAXTYPE by num of elements of

each type)

ex) If num of elements[Z TRIO3] =
num of elements[Z QUAO4] =
num of elements[Z HEX08]

as obtained in:
USERD get part build info

Then the allocated dimensions

for this routine will be:
elemid array[Z TRIO03][25]
elemid array[Z QUA(04][100]
elemid array[Z HEX08] [30]

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* This will be based on Current time step

* Not called unless Num unstructured parts is > 0 and
label status is TRUE

USERD_get element ids for part(int part number,
int *elemid array[Z MAXTYPE])

1-20

25
100
30

available

element

EnSight 8 Interface Manual

1.3 USERD_get_element_label_status

USERD _get element label_status

Answers the question as to whether element labels will be provided.

returns: TRUE if element labels are available
FALSE if no element labels

Notes:
* These are needed in order to do any element querying, or
element labeling on-screen.

For unstructured parts, you can read them from your file if
available, or can assign them, etc. They need to be unique
per part, and are often unique per model.

USERD get element ids for part is used to obtain the ids,
on a part by part basis, if TRUE status is returned here.

For structured parts, EnSight will assign ids if you return a
status of TRUE here. You cannot assign them youself!!

LR I S e N S N S S S S S S S

int
USERD get element label status(void)

EnSight 8 Interface Manual 1-21

1.3 USERD_get_extra_gui_defaults

USERD _get extra_gui_defaults

(OUT)

(OUT)

(0OUT)

(OUT)

(OUT)

(OUT)

(OUT)

(OUT)

L T S S e S S N S T S S N S S N S S N S N I Gl N S T S S S SN S T S S

Notes:
* The library is loaded, this routine is called,
then the library is unloaded.

This routine defines the Titles, status, List choices, strings, etc that
are fed up to the GUI.

toggle Title = title for each toggle
array dimension is
[num toggles] by [Z LEN GUI TITLE STR] long

toggle default status = Setting for each toggle (TRUE or FALSE)
array dimension is [num toggles] long

pulldown Title = title for each pulldown
array dimension is
[num pulldowns] by [Z LEN GUI TITLE STR] long

pulldown number in list = number of items in each pulldown
array dimension is [num pulldowns] long

pulldown default selection = item selection for each pulldown
array dimension is [num pulldowns] long

pulldown item strings = pulldown item strings
array is [num pulldowns] by
[Z MAX _NUM GUI PULL ITEMS] by
[Z LEN GUI_PULL_STR] long

field Title = title for each field
array dimension is
[num fields] by [Z LEN GUI TITLE STR] long

field user string = content of the field
array dimension is
[num fields] by [Z LEN GUI TITLE STR] long

returns: Z OK if successful

Z ERR 1f not successful

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.

_______________________________________ */

int USERD get extra gui defaults(char **toggle Title,

1-22

int *toggle default status,

char **pulldown Title,

int *pulldown number in list,
int *pulldown default selection,
char ***pulldown item strings,
char **field Title,

char **field user string)

EnSight 8 Interface Manual

1.3 USERD_get_extra_gui_numbers

USERD_get extra_gui_numbers

The Enhanced GUI routines are added to allow the user to customize a
portion of the Data Reader dialog to pass in options to their user
defined reader.

This routine defines the numbers of toggles, pulldowns & fields

(OUT) num_Toggles = number of toggles that will be provided
(OUT) num pulldowns = number of pulldowns that will be provided
(OUT) num_ fields = number of fields that will be provided
Notes:

* There are three routines that work together:
USERD get extra gui numbers
USERD get extra gui defaults (this one)
USERD_ set extra gui data

The existence of these routine indicates that
you wish to add customize entries to the
Data Reader dialog.

If you don’t want the extra GUI features,
simply delete these routines, or change their
names to something such as

USERD DISABLED get extra gui defaults

The presence of these routines

will ensure that EnSight will call them and

use their data to modify the Data Reader dialog
with some or all of the following:

toggles, pulldown menu and fields.

The user can then interact with the enhanced
GUI and then send their choices to

USERD_set extra gui data

Therefore if USERD get extra gui numbers
exists then the other two must exist.

If none exist, then the GUI will be unchanged.
Toggle data will return an integer
TRUE if checked

FALSE if unchecked

Pulldown menu will return an integer representing
the menu item selected

Field will return a string Z LEN GUI FIELD STR long.

If all the enhanced GUI features are enabled it
might look something like this

LR T T e N S T S S S S S T S T N S S SN S ST SN SIS S S T N S S N S S N S N S S iR T N N S S N N

EnSight 8 Interface Manual 1-23

1.3 USERD_get_extra_gui_numbers

Lol S S R A RN S S N S S N S T S S T S S S S T S .

[] Title 1
[X] Title 3
[X] Title 2
[X] Title 4

Pulldown Menu ->
Menu Choice 1
Menu Choice 2
Menu Choice 3

Data Field Title 1

Data Field Title 2

The following are defined in the global extern.h
Z MAX NUM GUI PULL ITEMS max num GUI pulldowns
Z LEN GUI PULL STR max length of GUI pulldown string
Z LEN GUI FIELD STR max length of field string
Z LEN GUI TITLE STR max length of title string

The library is loaded, this routine is called,
then the library is unloaded.

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.
g */
void USERD get extra gui numbers (int *num Toggles,
int *num pulldowns,
int *num fields)
1-24 EnSight 8 Interface Manual

1.3 USERD_get_global_coords

USERD_get global _coords

2 ————.—
* Get the global coordinates
*
* (OUT) coord array = 1D array of CRD structures,
* which contains x,y,z coordinates
* of each node.
*
* (Array will have been allocated
* Num global nodes long)
*
* For reference, this structure (which is in global extern) is:
*
* typedef struct ({
* float xyz[3];
* }CRD;
*
*
* returns: Z OK 1if successful
* Z ERR 1f not successful
*
* Notes:
* * This will be based on Current time step
*
* * Not called unless Num unstructured parts is > 0
*
* The coord array is zero-based, but within EnSight it will become
* a one-based array.
* Thus, coord array[0] will be accessed by node 1 from the conn array,
* coord array[l] will be accessed by node 2 from the conn array, etc.
*
* ex) Given a model of two triangles, you should load coord array as
* follows:
*
* node coordinates
* —_———— e —— e ——
* 4 ————————= 3 1 coord array[0].xyz[0] = 0.0
* I\ | coord array[0].xyz[1l] = 0.0
* [\ T2 | coord array([0].xyz[2] = 0.0
* A |
* | \ | 2 coord array([l].xyz[0] = 1.0
* | \ | coord array[l].xyz[1l] = 0.0
* | \ | coord array[l].xyz[2] = 0.0
* ! v
* | Tl \ 3 coord array([2].xyz[0] = 1.0
* | \ coord array([2].xyz[1l] = 1.6
* 1 - 2 coord array[2].xyz[2] = 0.0
*
* 4 coord array[3].xyz[0] = 0.0
* coord array[3].xyz[1l] = 1.6
* coord array[3].xyz[2] = 0.0
*
*
* And conn_array in USERD get element connectivities for part
* as follows:
*
* Triangle Connectivity
* e
* T1 conn_array[Z TRI03][0][0] =1
* conn_array[Z TRI0O3][0][1] = 2
*

conn_array[Z TRI03][0][2] = 4

EnSight 8 Interface Manual

1-25

1.3 USERD_get_global_coords

*

* T2 conn_array[Z TRI0O3][1][0] = 2

* conn_array[Z TRI0O3][1][1] = 3

* conn_array[Z TRI0O3][1][2] = 4

*

K e e e ————————————— o —————— e */
int

USERD get global coords(CRD *coord array)

1-26 EnSight 8 Interface Manual

1.3 USERD_get_global_node_ids

USERD_get global _node_ids

2 .,

*

* Get the global nodeids

*

* (OUT) nodeid array = 1D array containing node ids of

* each node. The ids must be > 0

*

* (Array will have been allocated

* Num global nodes long)

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

* Notes:

* * This will be based on Current time step

*

* * Not called unless Num unstructured parts is > 0 and

* node label status is TRUE

g g g g g g g g g g g g g g */
int

USERD get global node ids (int *nodeid array)

EnSight 8 Interface Manual 1-27

1.3 USERD_get_name_of_reader

USERD_get name_of reader

Gets the name of your user defined reader. The user interface will
ask for this and include it in the available reader list.

(OUT) reader name = the name of the reader (data format)
(max length is Z MAX USERD NAME, which
is 20)
(OUT) *two_ fields = FALSE if only one data field is
required.

TRUE if two data fields required
returns: Z OK 1f successful
Z ERR if not successful

Notes:
* Always called. Provide a name for your custom reader format

* If you don’t want a custom reader to show up in the data dialog
choices, return a name of “No Custom”

LR T R T S TS S N S N S T N SN T N S N

int
USERD get name of reader (char reader name[Z MAX USERD NAME],
int *two fields)

1-28 EnSight 8 Interface Manual

1.3 USERD_get_node_label_status

USERD_get node_label_status

Answers the question as to whether node labels will be provided

returns: TRUE if node labels are available
FALSE if no node labels

Notes:
* These are needed in order to do any node querying, or node
labeling on-screen

For unstructured parts, you can read them from your file if
available, or can assign them, etc. They need to be unique

per part, and are often unique per model. They must also be
positive numbers greater than zero.

USERD get global node ids is used to obtain the ids, if the
status returned here is TRUE.

Also be aware that if you say node labels are available,
the connectivity of elements must be according to these
node ids.

For structured parts, EnSight will assign ids if you return a
status of TRUE here. You cannot assign them yourself!!

L T S T R N S S N ST T S S S S S N S

int
USERD get node label status(void)

EnSight 8 Interface Manual 1-29

1.3 USERD_get_num_xy_queries

USERD _get num_xy _queries

2 ——————.—
* <optional>

K e e

*

* Get the total number of xy queries in the dataset.

*

* returns: the total number of xy queries in the dataset

*

* Notes:

* * You can be as complete as you want about this. If you don’t

* care about xy queries, return a value of 0

* If you only want certain xy queries, you can just include them. But,

* you will need to supply the info and data USERD get xy query info

* and USERD get xy query data for each xy query you include here.

K e e */
int

USERD get num xy queries(void)

1-30 EnSight 8 Interface Manual

1.3 USERD_get_number_of_files_in_dataset

USERD_get number_of files_in_dataset

2 ————.—

*

* Get the total number of files in the dataset. Used for the

* dataset query option.

*

* returns: the total number of files in the dataset

*

* Notes:

* * You can be as complete as you want about this. If you don’t

* care about the dataset query option, return a value of O

* If you only want certain files, you can just include them. But,

* you will need to supply the info in USERD get dataset query file info

* for each file you include here.

*

* * Num dataset files would be set here

K e e e e e o o o o o o e e o o e e o e e o o o e */
int

USERD get number of files in dataset(void)

EnSight 8 Interface Manual 1-31

1.3 USERD_get_number_of_global_nodes

USERD_get number_of global _nodes

Gets the number of global nodes, used for unstructured parts
returns: number of global nodes (>=0 if okay, <0 if problems)

Notes:
* This will be based on Current time step

* For unstructured data:
EnSight wants 1. A global array of nodes
2. Element connectivities by part, which
reference the node numbers of the global
node array.
IMPORTANT :
If you provide node ids, then element connectivities
must be in terms of the node ids. If you do not
provide node ids, then element connectivities must be
in terms of the index into the node array, but shifted
to start at 1

* Not called unless Num unstructured parts is > 0

L T S T R N S S N ST T S S S S S N S

* Num global nodes would be set here

int
USERD get number of global nodes(void)

1-32 EnSight 8 Interface Manual

1.3 USERD_get_number_of_model_parts

USERD _get number_of _model_parts

Gets the total number of unstructured and structured parts
in the model, for which you can supply information.

returns: num parts (>0 if okay, <=0 if probs)

Notes:

* If going to have to read down through the parts in order to
know how many, you may want to build a table of pointers to
the various parts, so can easily get to particular parts in
later processes. If you can simply read the number of parts
at the head of the file, then you would probably not build the
table at this time.

* This routine would set Numparts available, which is equal to
Num unstructured parts + Num structured blocks.

LR I S S e S N S S S S

int
USERD _get number of model parts(void)

EnSight 8 Interface Manual 1-33

1.3 USERD_get_number_of_time_steps

USERD_get number_of _time_steps

2 ——————.—

*

* Get the number of time steps of data available.

*

* returns: number of time steps (>0 if okay, <=0 if problems).

*

* Notes:

* * This should be >= 1 1 indicates a static problem

* >1 indicates a transient problem

*

* * Num time steps would be set here

4 S */
int

USERD_get number of time steps(void)

1-34 EnSight 8 Interface Manual

1.3 USERD_get_number_of_variables

USERD_get number_of variables

2 ————.—

*

* Get the number of variables for which you will be providing info.

*

* returns: number of variables (includes constant, scalar, vector,

* and tensor types)

* >=0 1if okay

* <0 if problem

*

* Notes:

* * Variable numbers, by which references will be made, are implied

* here. If you say there are 3 variables, the variable numbers

* will be 1, 2, and 3.

*

* * Num variables would be set here

K e e e e e o o o o o o e e o o e e o e e o o o e */
int

USERD get number of variables(void)

EnSight 8 Interface Manual 1-35

1.3 USERD_get_part_build_info

USERD _get part_build_info

Gets the info needed for part building process

(OUT) part id = Array containing part ids for
each of the model parts.

IMPORTANT :
Parts ids must be >= 1, because
of the way the GUI uses them

example: If Numparts available = 3 (num _parts in the
USERD get number of model parts
routine)
table index part id
1 13
2 57
3 125

KAK KA A KR AR KA AR A AR AR A AR A AR AR A AR AR AR A AR AR KA kKK

Previous to version 7.4 of EnSight, there is

an inconsistency in the way that parts are
referenced in the arguments to various routines
in this API. This inconsistency doesn’t matter
whenever your parts are 1,2,3,... And thus
most of you have never noticed the problem.

The ids provided here are the numbers by
which the parts will be referred to in the
GUI (if possible). Starting with EnSight
version 7.4, they are treated only as labels
in the GUI.

Starting with EnSight 7.4, all routines which have “part number”,
“block number”, or “which part” as arguments - are expecting the
table index (1,2,3).

Prior to EnSight 7.4, the arguments “part number”, “block number”,
or “which part” refer to:
the table index (1,2,3) for the following routines:
USERD get element connectivities for part
USERD get element ids for part
USERD get block coords by component
USERD get block iblanking

but, to the part id labels (12,57,125) for the following routines:
USERD get scalar values
USERD get vector values
USERD get block scalar values
USERD get block vector values by component

USERD get variable value at specific
KAhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhkhkhkhhkhkhkhkhkhkhA A A A A A A A A AL XA KK

(Array will have been allocated
Numparts available long)

LR S R R S N S S S NS S S S ST S ST NS S S S NS T S S ST SN S T S S S S S N S S N S AR T S R S S N R I

1-36 EnSight 8 Interface Manual

1.3 USERD_get_part_build_info

(OUT) part types = Array containing one of the
following for each model part:

Z_ UNSTRUCTURED or
Z STRUCTURED or
Z IBLANKED

(Array will have been allocated
Numparts available long)

(OUT) part description Array containing a description

for each of the model parts

(Array will have been allocated
Numparts available by Z BUFL long)

(OUT) number of elements = 2D array containing number of
each type of element for each
unstructured model part.

Possible types are:

Z POINT = point

Z BAR02 = 2-noded bar

Z BARO3 = 3-noded bar

Z TRIO3 = 3-noded triangle

Z TRIO6 = 6-noded triangle

Z QUAO4 = 4-noded quadrilateral
Z QUAOS8 = 8-noded quadrilateral
Z TETO04 = 4-noded tetrahedron
Zz TET10 = 10-noded tetrahedron

Z PYRO5 = b5-noded pyramid

Z PYRI13 = 13-noded pyramid

Z PENO6 = 6-noded pentahedron

Z PEN15 = 15-noded pentahedron

Z HEX08 = 8-noded hexahedron

Z HEX20 = 20-noded hexahedron

(Ignored unless Z UNSTRUCTURED type)

(Array will have been allocated
Numparts available by
Z MAXTYPE long)

(OUT) ijk dimensions = 2D array containing ijk dimensions
for each structured model part.

(Ignored if Z UNSTRUCTURED type)

(Array will have been allocated
Numparts available by 3 long)

ijk dimensions[] [0] = I dimension
ijk dimensions[][1] = J dimension
ijk dimensions[][2] = K dimension
(OUT) iblanking options = 2D array containing iblanking

options possible for each
structured model part.

(Ignored unless Z IBLANKED type)

L R S N S S S S S S S N S S SN S IS S S R T A e S N S S S S T S S SN S S N S S S SIS T N S S SRS ST N SN

EnSight 8 Interface Manual 1-37

1.3 USERD_get_part_build_info

*

* (Array will have been allocated

* Numparts available by 6 long)

*

* iblanking options[][Z EXT] = TRUE if external (outside)

* [1[z INT] = TRUE if internal (inside)

* [1[Z BND] = TRUE if boundary

* [][Z INTBND] = TRUE if internal boundary

* [1[Zz_sYM] = TRUE if symmetry surface

*

*

* returns: Z OK 1if successful

* Z ERR 1f not successful

*

* Notes:

* * If you haven’t built a table of pointers to the different parts,

* you might want to do so here as you gather the needed info.

*

* * This will be based on Current time step

K e e e e e o o o o o o o e o o o o e e o e o e e */
int

USERD get part build info(int *part id,

1-38

int *part types,

char *part description([Z BUFL],
int *number of elements[Z MAXTYPE],

int *ijk dimensions[3],

int *iblanking options[6])

EnSight 8 Interface Manual

1.3 USERD_get_reader_descrip

USERD_get reader_descrip

2 ————.—

* <optional>

*

* Gets the description of the reader, so gui can give more info

*

* (OUT) reader descrip = the description of the reader

* (max length is MAXFILENP, which

* is 255)

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

* Notes:

* % OPTIONAL ROUTINE!

K e e o */
int

USERD get reader descrip(char descrip[Z MAXFILENP])

EnSight 8 Interface Manual 1-39

1.3 USERD_get_reader_release

USERD_get reader_release

2 ——————.—
* <optional>

*

* Gets the release string for the reader.

*

* This release string is a free-format string which is for

* informational purposes only. It is often useful to increment

* the release number/letter to indicate a change in the reader.

* The given string will simply be output by the EnSight server

* when the reader is selected.

*

* (OUT) release number = the release number of the reader

* (max length is Z MAX USERD NAME, which

* is 20)

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

* Notes:

* * Called when the reader is selected for use.

e g */
int

USERD get reader release(char version number[Z MAX USERD NAME])

1-40 EnSight 8 Interface Manual

1.3 USERD_get_scalar_values

USERD_get _scalar_values
if Zz PER NODE:
Get the values at each global node for a given scalar variable.
or if 7z PER ELEM:
Get the values at each element of a specific part and type for a

given scalar variable.

(IN) which scalar = The variable “number” to get
(1 ... Num variables)

(IN) which part
if Z PER NODE: Not used
if Z PER ELEM: Since EnSight Version 7.4:
- The part mumber
(l1-based index of part table, namely:
1 ... Numparts_ available.
It is NOT the part id label that

is loaded in USERD get part build info)

Prior to EnSight Version 7.4

= The part id This is the part id label loaded
in USERD get part build info. It is
NOT the part table index.
(IN) which type
if Z PER NODE: Not used

if Z PER ELEM: = The element type

(OUT) scalar array

if Z PER NODE: 1D array containing scalar values

for each node.

(Array will have been allocated
Num global nodes long)

1d array containing scalar values for
each element of a particular part & type.

if Z PER ELEM:

(Array will have been allocated
number of elements[which part] [which type]
long. See USERD get part build info)

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

LR S R R R S N S NS S NS S S S ST S ST NS S S S S T S S T SN S S S S S S S N S S N S AR T S R S S N S I
|

EnSight 8 Interface Manual 1-41

1.3 USERD_get_scalar_values

*

* * Not called unless Num unstructured parts is > 0,

* Num variables is > 0, and you have some scalar type variables

*

* * The per node or per elem classification must be obtainable from the

* variable number (a var classify array needs to be retained)

*

K e e e e e o o o o o o o o o o e o o o o o o o e o e e e e o e e */
int

USERD get scalar values (int which scalar,
int which part,
int which type,
float *scalar array)

1-42 EnSight 8 Interface Manual

1.3 USERD_get_solution_times

USERD_get solution_times

LR I R T S N S I

int

Get the solution times associated with each time step.
(OUT) solution times = 1D array of solution times/time step

(Array will have been allocated
Num time steps long)

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* These must be non-negative and increasing.

USERD get solution times(float *solution times)

EnSight 8 Interface Manual 1-43

1.3 USERD_get_var_extract_gui_defaults

USERD_get var_extract_gui_defaults
<optional>

This routine defines the Titles, status, List choices, strings, etc that
are fed up to the GUI for that after read situation. (It is very similar
to the USERD get extra gui defaults routine, which occurs before the read)

(OUT) toggle Title = title for each toggle
array dimension is
[num toggles] by [Z LEN GUI TITLE STR] long

(OUT) toggle default status = Setting for each toggle (TRUE or FALSE)
array dimension is [num toggles] long

(OUT) pulldown Title = title for each pulldown
array dimension is
[num pulldowns] by [Z LEN GUI TITLE STR] long
(OUT) pulldown number in list = number of items in each pulldown
array dimension is [num pulldowns] long

(OUT) pulldown default selection = item selection for each pulldown
array dimension is [num pulldowns] long

(OUT) pulldown item strings = pulldown item strings
array is [num pulldowns] by
[z MAX NUM GUI PULL ITEMS] by
[Z LEN GUI PULL STR] long

(OUT) field Title = title for each field
array dimension is
[num fields] by [Z LEN GUI TITLE STR] long

(OUT) field user string = content of the field
array dimension is
[num fields] by [Z LEN GUI TITLE STR] long

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* The library is loaded, this routine is called,
then the library is unloaded.

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.
g */

int USERD get var extract gui defaults(char **toggle Title,

int *toggle default status,

char **pulldown Title,

int *pulldown number in list,

int *pulldown default selection,

char ***pulldown item strings,

char **field Title,

char **field user string)

LR S S A N N S S N S S S S S NS S N S N N S N N R A N S S N S S NS S N NS S N

1-44 EnSight 8 Interface Manual

1.3 USERD_get_var_extract_gui_numbers

USERD_get var_extract_gui_numbers
<optional>

The Var Extract GUI routines are added to allow the user to customize a
extraction parameters for variable “after” the file has been read.

These things can be modified and the variables will be updated/refreshed
according to the new parameters.

(It is similar to the USERD get extra gui numbers routine)

This routine defines the numbers of toggles, pulldowns & fields

(OUT) num_Toggles = number of toggles that will be provided
(OUT) num pulldowns = number of pulldowns that will be provided
(OUT) num fields = number of fields that will be provided
Notes:

* There are three routines that work together:
USERD get var extract gui numbers
USERD get var extract gui defaults
USERD_set var extract gui data

The existence of these routine indicates that
you wish to have the Var Extract capability.

If you don’t want the Var Extract GUI features,
simply delete these routines, or change their
names to something such as

USERD DISABLED get var extract gui defaults

The presence of these routines

will ensure that EnSight will call them and

use their data to modify the extraction parameters
with some or all of the following:

toggles, pulldown menu and fields.

The user can then interact with the var extract portion of the
GUI and then send their choices to
USERD_set var extract gui data

Therefore if USERD get var extract gui numbers
exists then the other two must exist.

If none exist, then the GUI will be unchanged.

Toggle data will return an integer
TRUE if checked
FALSE if unchecked

Pulldown menu will return an integer representing
the menu item selected

Field will return a string Z LEN GUI FIELD STR long.

* The following are defined in the global extern.h
Z MAX NUM GUI PULL ITEMS max num GUI pulldowns
Z LEN GUI PULL STR max length of GUI pulldown string
Z LEN GUI FIELD STR max length of field string
Z LEN GUI TITLE STR max length of title string

LR S R R R S N S NS S NS S S S ST S ST NS S S S S T S S T SN S S S S S S S N S S N S AR T S R S S N S I

EnSight 8 Interface Manual 1-45

1.3 USERD_get_var_extract_gui_numbers

* The library is loaded, this routine is called,
then the library is unloaded.

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.

* ok X % kX

void USERD get var extract gui numbers(int *num Toggles,
int *num pulldowns,
int *num fields)

1-46 EnSight 8 Interface Manual

1.3 USERD_get_variable_info

USERD _get variable_info

* Get the variable descriptions, types and filenames
(OUT) var description = Variable descriptions

(Array will have been allocated
Num variables by Z BUFL long)

variable description restrictions:

1. Only first 19 characters used in EnSight.

2. Leading and trailing whitespace will be removed by EnSight.
3. Illegal characters will be replaced by underscores.
4. Thay may not start with a numeric digit.
4. No two variables may have the same description.

L R R S N S

(OUT) var filename = Variable filenames

(Array will have been allocated
Num variables by Z BUFL long)

(OUT) var_ type = Variable type

(Array will have been allocated
Num variables long)

types are: Z CONSTANT
Z SCALAR
Z VECTOR

(OUT) var classify = Variable classification

(Array will have been allocated
Num variables long)

types are: Z PER NODE
Z PER ELEM

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* The implied variable numbers apply, but be aware that the
arrays are zero based.

So for variable 1, will need to provide var description[0]
var filename[O0]
var_ typel[0]
var classify[0]

for variable 2, will need to provide var description[1]
var filename([1]
var typel[l]
var classify[1]

L T T e S S R S S N S S S S T S S S S S N S S S O e e N N S

int

USERD get variable info(char **var description,
char **var filename,
int *var type,
int *var classify)

EnSight 8 Interface Manual

1-47

1.3 USERD_get_variable_value_at_specific

USERD _get variable _value_at_specific

* if 7 PER NODE:

1-48

(l1-based index of part table,

at a particular node in a

at a particular element of
at a particular time.

Num variables)

This is not the id, but is
the index of the global node
(1 based), or the block’s

node list (1 based).

|which node or elem index

This is not the id, but is

the element number index

of the number of element array
(see USERD get part build info),
or the block’s element list

(1 based).

conn_array[which elem type] [0]
conn_array[which elem type] [1]
conn_array[which elem type] [2]

(which node or elem - 1) index

Since EnSight Version 7.4:

namely:

Numparts available.

It is NOT the part id label that
is loaded in USERD get part build info)

* Get the value of a particular variable

* particular part at a particular time.

*

* or if Z PER ELEM:

* Get the value of a particular variable

* a particular type in a particular part

*

* (IN) which var = Which variable (1

*

* (IN) which node or elem

*

* If Z PER NODE:

* = The node number.

*

* list
*

*

* Thus, coord array[1]
* coord array[2]
* coord array|[3]
* \
*

*

*

*

* If z PER ELEM:

* = The element number.

*

*

*

*

*

*

* Thus, for which part:
*

*

*

*

*

*

*

*

* (IN) which part

*

* If 2 PER NODE, or block part:
* = Not used

*

* If Z PER ELEM:

*

ke

* = The part number
*

*

*

* 1

*

*

*

EnSight 8 Interface Manual

1.3 USERD_get_variable_value_at_specific

Prior to EnSight Version 7.4

= The part id This is the part id label loaded
in USERD get part build info. It is
NOT the part table index.

(IN) which elem type

If Z PER NODE, or block part:
= Not used

If Z PER _ELEM:
= The element type. This is the element type index
of the number of element array
(see USERD get part build info)

(IN) time step = Time step to use (0 to Num time steps-1)

(OUT) wvalues

scalar or vector component value(s)

values[0] = scalar or vector[0]
values[1l] = vector[1l]
values[2] = vector[2]

returns: Z OK 1if successful
Z ERR if not successful
Z NOT IMPLEMENTED if not implemented and want to use the slower,
complete update method within EnSight.

Notes:
* This routine is used in node querys over time (or element querys over
time for Z PER ELEM variables). If these operations are not critical

to you, this can be a dummy routine.

* The per node or per elem classification must be obtainable from the
variable number (a var classify array needs to be retained)

EoE I R T R S N N S e S ST S N T N S S S S S S SN T SN S N S S

int

USERD get variable value at specific(int which var,
int which node or elem,
int which part,
int which elem type,
int time step,
float values([3])

EnSight 8 Interface Manual 1-49

1.3 USERD_get_vector_values

USERD_get vector_values

LR S R R S N S S S NS S S S ST S ST NS S S S NS T S S ST SN S T S S S S S N S S N S AR T S R S S N R I

1-50

if 7 PER NODE:

Get the values at each global node for a given vector variable.

or if Z PER ELEM:

Get the values at each element of a specific part and type for a

given vector variable.
(IN) which vector
(IN) which part
if Z PER NODE:

if 7 PER ELEM:

(IN) which type
if 7Z PER NODE:
if 7Z PER ELEM:
(OUT) vector array

if Z PER NODE:

Not used

Since EnSight Version 7.4:

= The part number

(1-based index of part table,

Numparts available.

The variable “number” to get

(1 ... Num variables)

namely:

It is NOT the part id label that
is loaded in USERD get part build info)

Prior to EnSight Version 7.4

= The part id This is the part id label loaded

Not used

= The element type

in USERD get part build info. It is
NOT the part table index.

= 1D array containing vector wvalues
for each node.

(Array will have been allocated

3 by Num global nodes long)

Info stored in this fashion:

vector array[0]
vector_array[l]
vector array[2]

vector array[3]
vector array[4]
vector array[5]

vector array[6]
vector arrayl[7]
vector array[8]
etc.

xcomp
ycomp
zcomp

xcomp
ycomp
zcomp

xcomp
ycomp
zcomp

of
of
of

of
of
of

of
of
of

node
node
node

node
node
node

node
node
node

EnSight 8 Interface Manual

1.3 USERD_get_vector_values

if Z PER ELEM: = 1d array containing vector values for
each element of a particular part and type.

(Array will have been allocated
3 by number of elements[which part] [which type]
long. See USERD get part build info)

Info stored in this fashion:

vector array[0] = xcomp of elem 1 (of part and type)
vector array[l] = ycomp of elem 1 w

vector array[2] = zcomp of elem 1 W

vector array[3] = xcomp of elem 2 "

vector array[4] = ycomp of elem 2 ©

vector array[5] = zcomp of elem 2 w

vector array[6] = xcomp of elem 3 w

vector array[7] = ycomp of elem 3 A

vector array[8] = zcomp of elem 3 "

etc.

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

* Not called unless Num unstructured parts is > 0,
Num variables is > 0, and you have some vector type variables

* The per node or per elem classification must be obtainable from the
variable number (a var classify array needs to be retained)

Lo R S S S S N S T N S S S S e S N S S N S S S S e N ST S .

int

USERD get vector values(int which vector,
int which part,
int which type,
float *vector array)

EnSight 8 Interface Manual 1-51

1.3 USERD_get_xy_query_data

USERD get xy query data

2 ——————————————
* <optional>
*

* Gets the xy values for a particular xy query

*

* (IN) query num query number (zero based)

* (0 to one less than the number of querys
* returned in USERD get num xy queries)

*

* (IN) num vals number of xy pairs in the query

*

* (OUT) xvals array of x values

*

* (0UT) yvals array of y values

*

* returns: Z OK if successful

* Z ERR if a problem

*

* Notes

K e e ‘k/

int USERD get xy query data(

1-52

int query num,
int num vals,
float *xvals,
float *yvals)

EnSight 8 Interface Manual

1.3 USERD_get_xy_query_info

USERD_get xy query_info

2 ————————
* <optional>
*

* Gets name, axis titles, and number of xy pairs for a particular xy query
*

* (IN) query num = query number (zero based)

* (0 to one less than the number of querys

* returned in USERD get num xy queries)

*

* (OUT) query name = Name for the xy query. (80 chars long)

*

* (OUT) query xtitle = Title for x axis (80 chars long)

*

* (OUT) query ytitle = Title for y axis (80 chars long)

*

* (OUT) query num pairs = number of xy pairs

*

* returns: Z OK if successful

* Z ERR if a problem

*

* Notes

K e e e e e e e */

int USERD get xy query info (int query num,
char *query name,
char *query xtitle,
char *query ytitle,
int *query num pairs)

EnSight 8 Interface Manual 1-53

1.3 USERD_prefer_auto_distribute

USERD_prefer_auto_distribute

2 ——————.—
* <optional>
*

* Returns whether the reader will do its own partitioning for SOS

*

* returns: FALSE if prefers to do its own partitioning for SOS

* TRUE if EnSight will be asked to do the partitioning

* if an auto-distribute is specified

*

* Notes

K e e e e e o e e e o */
int

USERD_prefer auto distribute (void) {

1-54 EnSight 8 Interface Manual

1.3 USERD_set_extra_gui_data

USERD _set _extra_gui_data

L R R R N S S S S S S N S T S S T N S

void
USER

<optional>
Receives the toggle, pulldown and field text from enhanced GUI.

(IN) toggle values TRUE = toggle checked
FALSE = toggle unchecked
Is num Toggles long, as set in
USERD _get extra gui numbers

(IN) pulldown value from 0 to number of pulldown values
Is num pulldowns long, as set in
USERD get extra gui numbers

(IN) field text any text
“\0’ if inactivated or nothing entered
Is num fields by Z LEN GUI FIELD STR, as set in
USERD get extra gui numbers

Notes:

This routine is called when the library is permanently
loaded to the EnSight session, so define your globals
in this and later routines.

It’s up to you to change your reader behavior according to
user entries!

D set extra gui data(int *toggle,
int *pulldown,
char **field text)

EnSight 8 Interface Manual 1-55

1.3 USERD_set_filename_button_labels

USERD_set filename_button_labels

2 ——————.—

* <optional>

*

* Returns the labels that the EnSight GUI will place on the buttons

* in the Data Reader/Open dialog for Geometry and Results

*

* (OUT) filename label 1 = Label for the first button

* (z_MAX USERD NAME long)

* (generally the geom file)

*

* (OUT) filename label 2 = Label for the second button

* (Z_MAX_USERD NAME long)

* (generally the results file)

* Not needed (so can be null) if two fields

* is FALSE in USERD get name of reader

*

* Notes

K e e e e */
void

USERD_set filename button labels(char filename label 1[Z MAX USERD NAME],
char filename label 2([Z MAX USERD NAME])

1-56 EnSight 8 Interface Manual

USERD_set filenames

(IN) filename 1

(IN) filename 2

(IN) the path

(IN) swapbytes

returns: Z OK if
Z ERR if

Notes:

Lol S SR R N S S S S NS S S N S NS NN S S SN S IS N S R i R I

int

1.3 USERD_set_filenames

Receives the geometry and second text field entered in the data
dialog. The user written code will have to store and use these
as needed. The user written code must manage its own files!!

the filename entered into the geometry
field of the data dialog.

The usage of this string depends on
‘two fields’ in USERD get name of reader.

If two fields is FALSE then it’s empty.

If two fields is TRUE, this is the
manditory results file entered
into the result field of the data dialog.

the path info from the data dialog.

Note: filename 1 and filename 2 have already
had the path prepended to them. This
is provided in case it is needed for
filenames contained in one of the files

= TRUE if should swap bytes

FALSE normally

successful
not successful

* Since you must manage everything from the input that is entered in
these data dialog fields, this is an important routine!

* Since you manage these files, they can be whatever. Perhaps
you will use only one, and have references to everything else
you need within it, like EnSight6 does.

USERD set filenames(char filename 1[],
char param 2[],
char the path[],
int swapbytes)

EnSight 8 Interface Manual

1-57

1.3 USERD_set_time_step

USERD _set time_step

2 ——————.—

*

* Set the current time step. All functions that need time, and

* that do not explicitly pass it in, will use this time step if

* needed.

*

* (IN) time step - The current time step (0 to Num time steps-1)

*

* Note:

* * Current time step would be set here

*

* * This routine is called from the server exit rout with a -1

* argument. This is the chance to clean up anything that

* should be cleaned up upon exit. Like temporary files....

K e e */
void

USERD_set time step(int time step)

1-58 EnSight 8 Interface Manual

1.3 USERD_set_var_extract_gui_data

USERD_set var_extract_gui_data

L R R R N S S S S S S N S T S S T N S

void
USER

<optional>
Receives the toggle, pulldown and field text from var extract input.

(IN) toggle values TRUE = toggle checked
FALSE = toggle unchecked
Is num Toggles long, as set in
USERD get var extract gui numbers

(IN) pulldown value from 0 to number of pulldown values
Is num pulldowns long, as set in
USERD get var extract gui numbers

(IN) field text any text
“\0’ if inactivated or nothing entered
Is num fields by Z LEN GUI FIELD STR, as set in
USERD get var extract gui numbers

Notes:

This routine is called when the library is permanently
loaded to the EnSight session, so define your globals
in this and later routines.

It’s up to you to change your reader behavior according to
user entries!

D set var extract gui data(int *toggle,
int *pulldown,
char **field text)

EnSight 8 Interface Manual 1-59

1.3 USERD_stop_part_building

USERD _stop_part_building

2 ——————.—
*
* This routine called when the part building dialog is closed. It is
* provided in case you desire to release memory, etc. that was only needed
* during the part building process.
S */

void

USERD_stop part building(void)

1-60 EnSight 8 Interface Manual

2 User Defined Reader Version 2.0 API

This chapter will describe the EnSight User Defined Reader Version 2.0 API. It was designed to be
considerably more efficient than the 1.0 API and has a number of new features that later versions of
EnSight can take advantage of.

If you are producing a new reader, or considering upgrading an existing version 1.0 API reader, please see
the discussion on the philosophical differences between the two API’s in the Overview chapter under
section, User Defined Reader APIs.

If you wish to convert an existing 1.0 API reader to the 2.0 API, see Section 2.5, Converting a 1.0 API
Reader to a 2.0 API READER.

The process for producing the dynamic shared library is described in the Overview chapter under section,
How To Produce A User Defined Reader.

EnSight 8 Interface Manual

21

2.1 Quick Index of 2.0 Library Routines

2-2

2.1 Quick Index of 2.0 Library Routines

Routine Name

Routine Description

Generally Needed for UNSTRUCTURED data

USERD _get part _coords

Part’s node coordinates

USERD get part coords_in_buffers

Part’s node coordinates in buffers.
(For unstructured autodistrib for SOS)

USERD get part elements by type

Part’s element connectivities

USERD _get part elements by type in_ buffers

Part’s element connectivities in buffers.
(For unstructured autodistrib for SOS)

Generally Needed for BLOCK data

USERD_get block coords by component

Block node coordinates

USERD get block ghost flags

Block ghost cell flags

USERD_get block iblanking

Block iblanking values

USERD _set _block range and stride

Sets the min, max, and stride ofablock
(if doing structured cinching)

USERD get ghosts in block flag

Block ghost cell existence?

Generally needed for either or both kinds of data

USERD_bkup

Archive routine

USERD _exit routine

Cleanup upon exit routine

USERD _get border availability

Part border provided?

USERD get border elements by type

Part border conn & parent info

USERD get changing geometry status

Changing geometry?

USERD _get constant val

Constant variable’s value

USERD get dataset query file info

Info about each model file

USERD get descrip lines

File associated descrip lines

USERD _get element label status

Element labels?

USERD get extra gui_defaults

Gets the default values for the extra GUI members

USERD_ get extra gui numbers

Gets the number of toggles, pulldowns and fields

USERD_get geom_timeset number

Timeset # to use for geom

USERD get gold part build info

Gets the info needed for part building process

USERD get gold variable info

Variable type/descrip etc

USERD_get ghosts in_model flag

Model contains ghost cells?

USERD get matf set info

Gets the material set indices and names

USERD get matf var info

Gets the material indices and descriptions

USERD_get matsp_info

Gets material species id, descriptions, etc.

USERD get maxsize info

Part/block allocation maximums

USERD_get model extents

Provide model bounding extents

USERD get name of reader

Name of reader for GUI

EnSight 8 Interface Manual

2.1 Quick Index of 2.0 Library Routines

USERD get nfaced conn

Gets the element connectivities for nfaced
elements (utilizes the number of nodes per face
obtained in USERD get nfaced nodes per face)

USERD_get nfaced conn_in_buffers

Gets the element connectivities for nfaced
elements in buffers. (For unstructured autodistrib
for SOS)

USERD _get nfaced nodes per face

Gets the number of nodes per face for nfaced
elements (utilizes the number of faces per element
obtained in USERD _get part elements by_type)

USERD get node label status

Node labels?

USERD _get nsided conn

Gets the element connectivities for nsided
elements. (utilizes the number of nodes per
element obtained in

USERD get part elements by type)

USERD _get nsided conn_in_buffers

Gets the element connectivities for nsided
elements in buffers. (For unstructured autodistrib
for SOS)

USERD get num_of time_steps

Number of time steps

USERD_get num_xy_queries

Number of xy queries

USERD _get number of files in dataset

Number of files in model

USERD get number of material sets

Number of material sets

USERD_get number of materials

Number of materials

USERD get number of model parts

Number of model parts

USERD get number of species

Number of species

USERD_get number of timesets

Number of timesets

USERD get number of variables

Number of variables

USERD get part element ids by type

Part’s element ids

USERD _get part element ids by type in buffers

Part’s element ids in buffers (For unstructured
autodistrib for SOS)

USERD get part node ids

Part’s node ids

USERD get part node ids_in_buffers

Part’s node ids in buffers (For unstructured
autodistrib for SOS)

USERD _get reader descrip

Provide GUI more description

USERD get reader release

Release string of reader

USERD get reader version

Provide reader version number

USERD get sol times

Solution time values

USERD get structured reader cinching

Tells if the reader will do structured cinching

USERD get timeset description

Description of timeset

USERD_get uns_failed params

Gets variable and thresholds/criteria for failure

USERD get var by component

Part or block variable values

USERD get var by component in_buffers

Part or block variable values in buffers (For
unstructured autodistrib for SOS)

USERD get var extract gui defaults

Gets the default values for the var_extract
members

USERD get var extract gui numbers

Gets the number of toggles, pulldowns and fields

EnSight 8 Interface Manual

2-3

2.1 Quick Index of 2.0 Library Routines

2-4

USERD get var value at specific

Node’s or element’s variable value over time

USERD get xy query data

Gets xy query xy values

USERD _get xy query_info

Gets Xy query names, titles, num pairs, etc.

USERD load matf data

Gets the material ids list, mixed-material ids list, or
mixed-material values list

USERD _prefer_auto_distribute

Tells whether reader will distribute for SOS

USERD rigidbody_existence

Returns whether rigid body transformation data
exists for the model.

USERD rigidbody_values

Returns the euler and location values for a given
part

USERD _set extra gui_data

Returns the Extra GUI answers provided by the
user

USERD _set_filename button_labels

Sets Get File button text

USERD set_filenames

Filenames entered in GUI

USERD _set right side

Informs the reader when the time set is for the right
side of a time span during variable interpolation
between time steps.

USERD _set_server_number

Server which of how many

USERD set time set and step

Current timeset and time step

USERD _set var extract gui_data

Returns the variable extract answers provided by
the user

USERD size matf data

Gets the length of either the material ids list,
mixed-material ids list, or mixed-material values
list

USERD stop part building

Cleanup after part build routine

EnSight 8 Interface Manual

2.2 Order Routines are Called

2.2 Order Routines are Called

It is often helpful in the development of your reader to know what order the routines will be called. The
various main operations are given basically in the order they will be performed. Within each operation, the
order the routines will be called is given.

1. Setting name in the gui, and specifying one or two input fields

USERD_get name_ of reader

USERD get reader descrip (optional)
USERD _prefer_auto_distribute (optional)
USERD set filename button labels (optional)
USERD get extra gui numbers (optional)
USERD get extra gui defaults (optional)
USERD get reader release (optional)

2. Getting the reader version (also distinguishes between API’s)

USERD _get reader version
3. Setting filenames and getting timeset and time info
USERD set extra gui data (optional if reader has USERD get extra gui_defaults routine)

USERD get structured reader cinching

USERD set_server number

USERD set extra gui data (optional)
USERD _set filenames

USERD get number of timesets

USERD get geom timeset number

for each timeset:

USERD get timeset description
USERD_get num_of time steps
USERD get sol times

USERD set time set and step
4. Gathering info for part builder

USERD set time set and_step

USERD get changing geometry status

USERD rigidbody_existence

USERD get node label status

USERD get element label status

USERD_get number of files in_dataset

USERD get dataset query file info

USERD get descrip lines (for geometry)

USERD get number of model parts

USERD get gold part build info

USERD_get ghosts_in_model flag

USERD_get maxsize info

USERD get ghosts_in_block flag (if any ghost cells in model)

USERD get model extents -- or -- (for model extents)
USERD get part coords -- and/or --
<USERD set block range and stride> (if doing structured reader cinching)

EnSight 8 Interface Manual 2-5

2.2 Order Routines are Called

USERD get block coords by component
USERD get uns_failed params

5. Gathering Variable info

USERD_ get number of variables
USERD get gold variable info

6. Part building (per part created)

Both unstructured and structured:
USERD set time set and step

If unstructured part:
USERD get part coords -- or --

USERD get part coords_in_buffers (optional)
USERD rigidbody values (optional)
USERD get part node ids -- or --

USERD get part node ids in buffers (optional)

USERD get part _element ids by type -- or --
USERD get part element ids by type in buffers (optional)

USERD get part elements by type -- or --
USERD get part elements by type in buffers (optional)
If any nsided elements:
USERD get nsided conn --or --
USERD get nsided conn_in_buffers (optional)
If any nfaced elements:

USERD get nfaced nodes per face
USERD get nfaced conn -- or --
USERD_get nfaced conn_in_buffers (optional)

else if structured part:
USERD_get block iblanking

<USERD _set block range and_stride> (If doing structured reader cinching)

USERD get block coords by component

USERD rigidbody values (optional)

USERD get block ghost flags (If ghost cells in part)

USERD get part node ids (If node ids given)

USERD_get part element ids_ by type (If element ids given)

both again:

USERD _get border availability (If border representation is selected)
USERD_get border elements by type (If border representation is selected)

USERD _stop part_building (only once when part builder dialog is closed)

7. Loading Variables

constants:

USERD set time set and_step
USERD get constant val

scalars/vectors/tensors:

2-6 EnSight 8 Interface Manual

2.2 Order Routines are Called

USERD get descrip_lines

USERD set time set and step

USERD set right side (optional)

<USERD _set block range and stride> (If doing structured reader cinching)
USERD get var by component -- or --

USERD get var by component in buffers (optional)

8. Changing geometry

changing coords only (per part):

USERD set time set and step

USERD get descrip_lines

USERD get part coords -- or --

USERD get part coords in_buffers (optional)

<USERD set block range and stride> (If doing structured reader cinching)
USERD get block coords by component

changing connectivity (per part):
Both unstructured and structured:
USERD set time set and_step
USERD get descrip_lines
USERD get number of model parts
USERD get gold part build info
USERD_get ghosts_in_model flag

If unstructured part:

USERD get model extents --or --
USERD _get part coords
USERD get part coords -- or --

USERD_get part coords in buffers (optional)
USERD rigidbody values (optional)
USERD get part node ids -- or --

USERD get part node ids in buffers (optional)

USERD get part _element ids by type -- or --
USERD get part _element ids by type in buffers (optional)

USERD get part elements by type -- or --
USERD get part _elements by type in_ buffers (optional)

If any nsided elements:

USERD get nsided conn -- or --
USERD get nsided conn_in_buffers (optional)

If any nfaced elements:

USERD get nfaced nodes per face
USERD get nfaced conn -- or --

USERD get nfaced conn in buffers (optional)

else if structured part:

USERD get model extents -- or --
USERD_get part coords
USERD_get block iblanking
<USERD set block range and stride> (If doing structured reader cinching)

EnSight 8 Interface Manual 2-7

2.2 Order Routines are Called

USERD get block coords by component

USERD rigidbody values (optional)

USERD get block ghost flags (If ghost cells in part)

USERD get part node ids (If node ids given)

USERD get part element ids by type (If element ids given)

both again:

USERD_get border availability (If border representation is selected)
USERD_get border elements by type (If border representation is selected)

9. Node or Element queries over time

USERD get var value at specific

10. To see if materials in the model
USERD_get number of material sets
USERD get matf set info
If any material sets in the model (calls these once per material set):
USERD get number of materials
USERD_get matf var info
For each element type of each part containing material ids, calls:
USERD size matf data
USERD load matf data
If there are any elements with mixed materials, when a domain or interface is created, calls
these again per part:
USERD size matf data
USERD load matf data
11. To modify the variable extraction parameters and have the variables update accordingly.

USERD get var extract gui numbers
USERD get var extract gui defaults
USERD set var extract gui data

2-8 EnSight 8 Interface Manual

2.3 Routine History

2.3 Routine History

The following table is an alphabetical listing of the routines in the API. It indicates at which version the
routines appeared (or were modified). Additionally it indicates which routines are optional (OPT).

Routine Name 1? 212022 (22|22

T o olo|o|o|o]o]o

0 (1|3 |4 |5|6]|7 |8

USERD_bkup X[X X[X[X[|X|X|X
USERD exit routine X[XXX [X[|X|X|X
USERD_get block coords by component XXX | X[X[|X]|X|X
USERD get block iblanking X[X X[X[X[|X|X|X
USERD_get block ghost flags XXX | XXX |X
USERD get border availability XXX | X[X[|X]|X|X
USERD _get border elements by _type X[X X[X[X[|X|X|X
USERD get changing geometry_status XXX X[X[|X]|X|X
USERD _get constant val XX XX | XXX |X
USERD get dataset query_file info X[X X[X[X[|X|X|X
USERD_get descrip_lines XXX | X[X[|X]|X|X
USERD get element label status XTI X[X[X[|X|X|X
USERD_get extra_gui_defaults XXX | X[X[|X]|X|X
USERD get extra_gui numbers X[XX X[X[|X|X|X
USERD_get geom_timeset number X[X X[X[X[X|X|X
USERD_get gold part build info X123 X[X[|X]|X|X
USERD_get gold variable info XXX | X[X[|X]|X[|X
USERD_get ghosts_in_block flag XXX [X|X|X|X
USERD get ghosts_in_model flag X X[X[X[X[|X]|X
USERD_get matf set info XX | X|X]|X|X
USERD_get matf var info XX | X|X|X|X
USERD get matsp_info XXX |X
USERD_get maxsize_info X121 X X[X[|X]|X|X
USERD get model extents XXX [X[X[|X]|X
USERD_get name of reader XX XX | XXX |X
USERD get nfaced conn XX | X|X|X|X

EnSight 8 Interface Manual 2-9

2.3 Routine History

2-10

USERD get nfaced conn_in_buffers

USERD_get nfaced nodes per face

USERD_get node label status

USERD_get nsided conn

USERD get nsided conn_in buffers

USERD get num_of time_steps

USERD get num xy queries

USERD get number of files in dataset

USERD get number of material sets

USERD_ get number of materials

USERD_get number of model parts

T I Il e
T e I e

USERD get number of species

USERD_get number of timesets

>~
>~

USERD_get number of variables

>~
>

USERD get part_coords

ST T B T B e Bl

M| X R >R X X <R

M| X R R X X <)

USERD get part coords in buffers

USERD get part_element ids by type

USERD_get part element ids by type in buffers

USERD_get part_elements by type

USERD_ get part elements by type in buffers

USERD_get part node ids

USERD_get part node_ids_in_buffers

USERD_get reader descrip

USERD get reader release

USERD_get reader version

USERD_get sol times

e I B

T I el
T I e e
T I e e

B I A e

USERD get_structured reader cinching

USERD_get timeset description

e

USERD_get uns_failed params

o

USERD get var by component

(\)

T I T e e e el e e

T I T e e e el e e

USERD get var by component in_buffers

USERD get var extract gui defaults

>~
>~

USERD_get var extract gui_numbers

>~
T T I e B e e e e I e B T T B I I B e I B T B B o T B T TS R B e o B (e

EnSight 8 Interface Manual

2.3 Routine History

USERD get var value at specific X[X X[X[X|X|X

USERD_get xy query data

USERD get xy query_info X

USERD load matf data XX [|X|X

USERD prefer_auto_distribute X

USERD rigidbody_existence X

USERD rigidbody_values

USERD set block range and stride

XX R)

USERD set extra_gui_data X[X[XXX |X

USERD _set_filename button_labels X

USERD set_filenames XXX |X

USERD set right side X

USERD _set server number X[XXX

USERD set time set and_step XXX | X

USERD set var_extract gui data X

USERD _size matf data X | X

T T I B B e e T e B (e I B
T T T e BB B e e e e e I B I Il e e

R R R R
T I BT e e I e

USERD _stop part_building X | X

Footnotes:

| Modifications due to user specified ids for structured blocks

2 Additional valid ghost element types available

(U]

Modifications for specification of structured ranges

4 Added yaw, pitch, roll

EnSight 8 Interface Manual 2-11

2.3 At Version 2.00

At Version 2.00
These routines existed in the original 2.00 version.

USERD_bkup

USERD _exit_routine

USERD get block coords by component
USERD_get block iblanking

USERD get border availability

USERD get border elements by type

USERD_get changing geometry_status
USERD get constant val
USERD get dataset query file info
USERD get descrip_lines

USERD get element label status

USERD get extra gui defaults <optional>
USERD get extra gui numbers <optional>
USERD get geom timeset number
USERD get gold part build info
USERD get gold variable info

USERD_get maxsize info
USERD get model extents
USERD get name of reader

USERD get node label status
USERD get num of time steps
USERD get number of files in dataset

USERD get number of model parts
USERD_ get number of timesets
USERD_get number of variables

USERD get part coords

USERD get part element ids by type

USERD get part elements by type

USERD get part node ids

USERD get reader descrip <optional>
USERD_get reader release <optional>
USERD get reader version

USERD get sol times

USERD get timeset description

USERD get var by component
USERD_get var value at specific

USERD _set extra gui data <optional>
USERD _set filenames

USERD set server number

USERD set time set and step

USERD stop part building

At Version 2.01

ADDED for Ghost Cell support:
USERD_get block ghost flags
USERD get ghosts in_block flag
USERD get ghosts in model flag

2-12 EnSight 8 Interface Manual

MODIFIED for user specified ids for structured blocks:

USERD_ get element label status
USERD_get node label status
USERD _get part elements_by_type
USERD get part node ids

MODIFIED for Ghost Cell support:
USERD get gold part build info
USERD_ get maxsize info
USERD get part element ids by type
USERD _get part_elements_by_type
USERD _get var by component

At Version 2.03

2.3 At Version 2.03

ADDED to handle material sets:
USERD get matf set info
USERD_get matf var info
USERD_get number of material sets
USERD_ get number of materials
USERD load matf data
USERD _size matf data

ADDED to handle nsided and nfaced elements:
USERD_ get nfaced conn
USERD get nfaced nodes per face
USERD_get nsided conn

MODIFIED so structured ranges can be specified:
USERD get gold part build info

At Version 2.04

ADDED to handle failed elements:

(Can implement to specify to EnSight, which variable is the failed element variable and what the

conditions of failure are)

USERD get uns_failed params

At Version 2.05

ADDED to handle material species:
USERD_ get matsp info
USERD_get number of species

ADDED to handle variable extraction after a read:

(This is similar to Extra GUI options, but will modify the variable extraction options after the

initial read - and update the variables accordingly)

USERD_get var extract gui defaults <optional>
USERD get var extract gui numbers <optional>
USERD set var extract gui data <optional>

EnSight 8 Interface Manual

2-13

2.3 At Version 2.06

ADDED to obtain rigid body values:
(If you can provide euler parameters for rigid body motion of parts, you should implement
these routines)

USERD rigidbody_existence
USERD rigidbody values

ADDED to let reader know when on right side of a time interval for var values:
(When the current time is between 2 given time steps - requiring interpolation of variable
values - EnSight asks for the left then the right side values. For most readers, you never need
to know this. But, if you must do some efficient interpolation within the reader itself because
of differing timelines - this can be useful information)

USERD set right side <optional>

At Version 2.06

ADDED to allow structured readers to deal with min, max, and stride in reader:

(To keep from having to send the entire non-strided block to EnSight - and having it then
limit the processing - you can implement this routine, and deal with the limiting and striding
within the reader itself. Allowing for lower memory requirements.)

USERD_get structured reader cinching
USERD set block range and stride

At Version 2.07
ADDED to allow specification of whether the reader will auto distribute within itself for SOS:

(If your reader can (and will) partition based on which server of the total number of severs -
you will want to provide this routine)

USERD prefer auto_distribute <optional>

ADDED to allow readers to specify their own label for Set button in EnSight:
USERD _set filename button_labels <optional>

At Version 2.08
ADDED for efficient unstructured autodistribute capability:

(If you want to be able to use the unstructured autodistribute capability for SOS processing,
in EnSight 8.2 or later, you should implement these routines):

Note: These five routines are for normal elements. If any of them are implemented, they all
must be implemented.
USERD get part coords in_buffers <optional>
USERD get part element ids by type in buffers <optional>
USERD get part elements by type in buffers <optional>
USERD get part node ids_in_buffers <optional>
USERD get var by component in_buffers <optional>

This one routine for nsided elements.
USERD get nsided conn_in_buffers <optional>

This one optional routine for nfaced elements
USERD get nfaced conn in_buffers <optional>

Unstructured Auto Distribute is a capability requiring Server of Servers (SOS) that will
partition an unstructured model for you automatically across a set of servers.

2-14 EnSight 8 Interface Manual

2.3 At Version 2.08

If you do not implement the routines listed above (and described below) in your reader,
EnSight can still perform this operation but will require much more memory on each
server to read in the data (somewhat like each server having to read the whole model).
You will however, get the execution advantage of having your model partitioned across
multiple servers.

If you do implement these routines in your reader (in a proper manner), you should be
able to not only get the execution advantages, but also memory usage on each server
which is proportional to the subset that it is assigned to deal with.

Note that the optional routines are functionally quite similar to the following functions.
And thus their implementation should not be too difficult to add to any existing reader
that has already implemented these:

USERD _get part coords

USERD get part node ids

USERD get part elements by type

USERD get part element ids by type

USERD_get var by component

USERD get nsided conn

USERD get nfaced conn

ADDED for providing xy plot data out of a reader:

(If your data format provides plot/query xy data, you can implement these routines to have
that data be available to EnSight’s plotter)

USERD_get num_xy_queries <optional>
USERD get xy query data <optional>
USERD get xy query info <optional>

MODIFIED for allowing yaw, pitch, roll:

(In addition to the specification of euler parameters and translations, and initial translational
offsets, this routine was modified to allow for initial yaw, pitch, roll transformations as well.)

USERD rigidbody_values

EnSight 8 Interface Manual 2-15

2.4 Detailed Specifications

2.4 Detailed Specifications

Include files:
The following header file is required in any file containing these library routines.

#include “global extern.h”
And it references:

#include “global extern proto.h”

Special Note:
Make sure you use the proper define in the global extern.h header file, namely:

#define USERD_API 208
Also, make sure the api version in the USERD_get reader version routine is set to the desired version.
Basis of arrays:
Unless explicitly stated otherwise, all arrays are zero based - in true C fashion.

Global variables:

You will generally need to have a few global variables which are shared by the various library routines.
The detailed specifications below have assumed the following are available. (Their names describe their
purpose, and they will be used in helping describe the details of the routines below).

static int Numparts available = 0;
static int Num unstructured parts = 0;
static int Num structured blocks = 0;

/* Note: Numparts available = Num unstructured parts + Num structured blocks */

static int Num timesets =1;
static int Current timeset =1;
static int Geom timeset number = 1;
static int Num time steps[Z MAXSETS] = 1;
static int Current time step = 0;
static int Num variables = 0;
static int Num dataset files = 0;
static int Server Number =1;
static int Tot Servers = 1;

Dummy (or stub) Routines:

Those routines marked optional, need not be included in a reader. They are truly optional. All other
routines for a given version number need to be included, but can often be dummy routines - depending on
what is returned for other related routines. As an example, if you always return that borders are not
available in USERD get border availability, then the USERD get border elements by type routine can
be a dummy routine - because it will never be called.

The specifications for each routine in the API will now be given (routines are in alphabetical order):

2-16 EnSight 8 Interface Manual

2.4 USERD_bkup

Used in the archive process. Save or restore info relating to
your user defined reader.

(IN) archive file = The archive file pointer

(IN) Dbackup type = Z SAVE ARCHIVE for saving archive
Z REST ARCHIVE for restoring archive

returns: Z OK if successful
Z ERR 1f not successful

Notes:

* Since EnSight’s archive file is saved in binary form, it is
suggested that you also do any writing to it or reading from it
in binary.

* You should archive any variables, that will be needed for
future operations, that will not be read or computed again
before they will be needed. These are typically global
variables.

* Make sure that the number of bytes that you write on a save and
the number of bytes that you read on a restore are identicall!!

* And one last reminder. If any of the variables you save are
allocated arrays, you must do the allocations before restoring
into them.

* SPECIAL NOTE FOR WINDOWS ONLY:
Because our current implementation under windows needs to open and close files
from within the reader .dll, a special structure (named USERD globals) needs to
be defined in the global space of your reader. This structure needs to be defined
like: —=mm——= ===

#ifdef WIN32 (which includes 32 bit and 64 bit windows)
W32EXPORT struct USERD globals {
char arch filename[256];
unsigned long arch fileptr;
} USERD globals;
fendif

This structure will be bound when the reader .dll is loaded and will be used to
store the archive file name and the current offset therein.

Again for windows only, you need to ignore the archive file pointer in the
argument list and instead open and close the arch filename file as well as keep
the arch fileptr offset current in this routine.

So first define the USERD globals structure at the beginning of your reader.

Then, when an archive is saved, the following needs to be done in this routine:

1. open USERD globals.arch filename for appending (within #ifdef WIN32)
2. do your writes
3. close the file (within #ifdef WIN32)

EE I R . S . R N R S S A A S . R S S S I S T T S . S S S S I T T R

When an archive is restored, do the following in this routine:

EnSight 8 Interface Manual 2-17

2.4 USERD_bkup

*
[

open USERD globals.arch filename for reading,
and fseek to USERD globals.arch fileptr offset (within #ifdef WIN32)
2. do your reads
3. save the new USERD globals.arch fileptr offset (using ftell),
and close the file (within #ifdef WIN32)

Here is some pseudo code to illustrate:

switch (baskup type) {
case Z SAVE ARCHIVE:

#ifdef WIN32
archive file = fopen (USERD globals.arch filename,”ab”);
#endif

fifdef WIN32
fclose (archive file)
#endif

break;
case Z REST ARCHIVE:

#ifdef WIN32
archive file = fopen(USERD globals.arch filename,”rb”);
fseek(archive file, USERD globals.arch fileptr, SEEK SET);
#endif

#ifdef WIN32
USERD globals.arch fileptr = ftell (archive file);
fclose (archive file)

#endif

break;

And finally be aware of a current limitation of the
Windows implementation of this routine:

E I T T S I I T S I S e S S S R I S S T T A

*

* Because the structure uses a long for the file offset, the archive restore
* will not work when the offset to the information written in this routine

* is greater than 2 Gb, on 32 bit windows. On 64 bit windows there is no such
* limitation because the long is 64 bits.

K e e e e e o o o o o o e o o o e o o e o e e */

int

USERD_bkup (FILE *archive file,
int backup_ type)

2-18 EnSight 8 Interface Manual

2.4 USERD_exit_routine

* Called when EnSight is exited for USERD, can be used to
clean up temporary files, etc. It is often simply a dummy.

*

void
USERD exit routine(void)

EnSight 8 Interface Manual 2-19

2.4 USERD_get_block_coords_by_component

USERD_get block_coords_by component
* (version 2.00 and later)
Get the coordinates of a given block, component at a time
(IN) block number = The block number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(IN) which component Z COMPX if x component wanted
Z COMPY if y component wanted

= 7Z COMPZ if z component wanted

1D array containing x,y, or z
coordinate component of each node

(OUT) coord array
(Array will have been allocated
i*j*k for the block long)

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

Lol S S AR RN S S S S S N S S S S T S S S S ST T S

* Only called for structured “block” parts

int

USERD get block coords by component (int block number,
int which component,
float *coord array)

2-20 EnSight 8 Interface Manual

2.4 USERD_get_block_iblanking

Get the iblanking value at each node of a block - If Z IBLANKED
(IN) block number = The block number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(OUT) iblank array = 1D array containing iblank wvalue
for each node.

(Array will have been allocated
i*j*k for the block long)

possible values are: Z_EXT = exterior (outside)
Z INT = interior (inside)
Z_BND = boundary
Z INTBND = internal boundary
Z SYM = symmetry plane

returns: Z OK 1if successful
Z ERR if not successful

Notes:
* This will be based on Current time step

* Not called unless Num structured blocks is > 0 and you have
some iblanked blocks

LR S SR T T N S S N S S S S S S S T S S N S S N S

* Only called for structured “block” parts
int

USERD get block iblanking(int block number,
int *iblank array)

EnSight 8 Interface Manual 2-21

2.4 USERD_get_block_ghost_flags

Get the ghost flags value at each element of a block containg ghost cells.
(IN) block number = The block number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(OUT) ghost flags = 1D array containing ghost flag value
for each block cell.

(Array will have been allocated
(i-1)*(3-1) *(k-1) for the block long)

possible values are: 0 = non-ghost cell (normal cell)
>0 = ghost cell

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step

* Only called for structured “block” parts that have some ghost cells
as indicated by the USERD get ghost in block flag. The model must
of course also have been indicated to have some ghost cells in the
USERD get ghost in model flag routine.

* It is sufficient to set the value to be 1 to flag as a ghost cell,
but the value can be any non-zero value, so you could use it to
indicate which block or which server (for Server-of-server use) the
cell is actually in.

ECRE T S S S S S N S N S S N S S N S S R S S S N IS S N NS S S

int
USERD get block ghost flags(int block number,
int *ghost flags)

2-22 EnSight 8 Interface Manual

2.4 USERD_get_border_availability

Finds out if border elements are provided by the reader for the
desired part, or will need to be computed internally by EnSight.

(IN) part number = The part number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(OUT) number of elements = 2D array containing number of
each type of border element in
the part.

Possible types are:

L T A S N S S N e S N S I S S e S N S

Z POINT = point
Z BAR02 = 2-noded bar
Z BARO3 = 3-noded bar
Z TRIO3 = 3-noded triangle
Z TRIOG6 = ©6-noded triangle
Z _QUAO4 = 4-noded quadrilateral
Z QUAOS8 = 8-noded quadrilateral
Returns:
b ——
* Z OK 1if border elements will be provided by the reader.
* (number of elements array will be loaded and
* USERD _get border elements by type will be called)
*
* Z ERR if border elements are not available - thus EnSight must compute.
* (USERD_get border elements by type will not be called)
*
*
* Notes
* e ——
* * Only called if border representation is used.
*
* * Will be based on Current time step
*
K e e e e e o o o o o o o o o o o e o o o o e e */
int

USERD_get border availability(int part number,
int number of elements[Z MAXTYPE])

EnSight 8 Interface Manual 2-23

2.4 USERD_get_border_elements_by_type

Provides border element connectivity and parent information.

(IN) part number = The part number

(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(IN) element type = One of the following (See global extern.h)
Z POINT node point element

Z BAR02 node bar

Z BARO3 node bar

Z TRIO3 node triangle

Z TRIOG6 node triangle

Z _QUAO4 node quad

Z QUAOS8 node quad

0 P> oY W W N

(OUT) conn array = 2D array containing connectivity
of each border element of the type.

(Array will have been allocated
num of elements of the type by
connectivity length of the type)

If number of elements[Z TRIO3] = 25
number of elements[Z QUAO4] = 100
number of elements[Z QUA08] = 30

as obtained in:

USERD get border availability

Then the allocated dimensions available
for this routine will be:
conn_array[25] [3] when called with Z TRIO03

conn_array[100] [4] when called with Z QUAO4
conn_array[30] [8] when called with Z QUAOS8
(OUT) parent element type = 1D array containing element type of the
parent element (the one that the border

element is a face/edge of).

(Array will have been allocated
num of elements of the type long)

(OUT) parent element num = 1D array containing element number of the
parent element (the one that the border
element is a face/edge of).

(Array will have been allocated
num of elements of the type long)

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N
(0]
k]

2-24 EnSight 8 Interface Manual

2.4 USERD_get_border_elements_by_type

Z OK 1if successful
Z ERR if not successful

* Only called if USERD get border availability returned Z OK

*
*
* * Will be based on Current time step
*

int
USERD get border elements by type(int part number,
int element type,
int **conn array,
short *parent element type,
int *parent element num)

EnSight 8 Interface Manual 2-25

2.4 USERD_get_changing_geometry_status

2 ————

USERD_get _changing_geometry status

* (version 2.00 and later)

K e e

*

* Gets the changing geometry status

*

* returns: Z STATIC if geometry does not change

* Z CHANGE COORDS if changing coordinates only

* Z CHANGE CONN if changing connectivity

*

* Notes:

* * EnSight does not support changing number of parts. But the

* coords and/or the connectivity of the parts can change. Note that

* a part is allowed to be empty (number of nodes and elements equal

* to zero).

K e e e e e o o o o o o o e o o o o e o e o e e e e e e o e o e e * /
int

USERD get changing geometry status(void)

2-26 EnSight 8 Interface Manual

2.4 USERD_get_constant_val

The variable number (1 to Num variables)

TRUE if want imaginary data value.
FALSE if want real data value.

*

* Get the value of a constant at a time step
*

* (IN) which var =

*

* (IN) imag data =

*

*

* returns: value of the requested constant variable
*

* Notes:

* * This will be based on Current time step

K e e e ——
float

USERD get constant val (int which var,
int imag data)

EnSight 8 Interface Manual

2-27

2.4 USERD_get_dataset_query_file_info

Get the information about files in the dataset. Used for the
dataset query option within EnSight.

(OUT) gfiles = Structure containing information about each file
of the dataset. The Z QFILES structure is defined
in the global extern.h file

(The structure will have been allocated

num dataset files long, with 10 description
lines per file).

(See USERD get number of files in dataset)

The name of the file
(Z MAXFILENP is the dimensioned length
of the name)

gfiles[].name

gfiles[].sizeb = The number of bytes in the file
(Typically obtained with a call to the
“stat” system routine)

gfiles[].timemod = The time the file was last modified
(Z MAXTIMLEN is the dimesioned length
of this string)
(Typically obtained with a call to the
“stat” system routine)

gfiles[].num d lines = The number of description lines you
are providing from the file. Max = 10

gfiles[].f desc][] = The description line(s) per file,
gfiles[].num d lines of them
(Z MAXFILENP is the allocated length of
each line)

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* If num dataset files is 0, this routine will not be called.
(See USERD get number of files in dataset)

L R N N S S N S S N S S S I R S S N S N S SR T S .

int
USERD get dataset query file info(Z QFILES *gfiles)

2-28 EnSight 8 Interface Manual

2.4 USERD_get_descrip_lines

Get two description lines associated with geometry per time step,
or one description line associated with a variable per time step.

(IN) which type

Z GEOM for geometry
Z VARI for variable

(IN) which var = If it is a variable, which one. (1 to Num variables)
Ignored if geometry type.

(IN) imag data = TRUE if want imaginary data file.
FALSE if want real data file.

(OUT) linel = The 1lst geometry description line,
or the variable description line.

(OUT) line2 = The 2nd geometry description line
Not used if variable type.

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* This will be based on Current time step

* These are the lines EnSight can echo to the screen in
annotation mode.

LR R S A N S S S S S N S S S T R

int
USERD_get descrip lines(int which type,
int which var,
int imag data,
char linel[Z BUFL],
char line2[Z BUFL])

EnSight 8 Interface Manual 2-29

2.4 USERD_get_element_label_status

USERD_get _element_label_status

(version 2.00 and later)
(Modified at 2.01 as indicated below)

*

*

Answers the question as to whether element labels will be provided.

returns: TRUE if element labels will be provided
FALSE if element labels will NOT be provided

Notes:
* These are needed in order to do any element querying, or

element labeling on-screen within EnSight.

* Will call USERD get part element ids by type for each type of
of each part if this routine returns TRUE.

* Prior to API 2.01:

For unstructured parts, you can read them from your file if
available, or can assign them, etc. They need to be unique
per part, and are often unique per model.

API 1.0:
USERD get element ids for part is used to obtain the ids,
on a part by part basis, if TRUE status is returned here.

API 2.0:
USERD get part element ids by type is used to obtain the ids,
on an element type by part basis, if TRUE status i1s returned here.

For structured parts, EnSight will assign ids if you return a
status of TRUE here. You cannot assign them youself!!

* Starting at API 2.01:

For both unstructured and structured parts, you can read them
from your file if available, or can assign them, etc. They need
to be unique per part, and are often unique per model (especially
if you are dealing with a decomposed dataset) .

USERD get part element ids by type is used to obtain the ids,
on an element type by part basis, if TRUE status is returned here.

LR R S SR N S N NS S N S ST N D S N ST T S S NS S S N S S S S T T

int
USERD get element label status(void)

2-30 EnSight 8 Interface Manual

2.4 USERD_get_extra_gui_defaults

* <optional> (version 2.00 and later)

This routine defines the Titles, status, List choices, strings, etc that
are fed up to the GUI.

(OUT) toggle Title = title for each toggle
array dimension is
[num toggles] by [Z LEN GUI TITLE STR] long

(OUT) toggle default status = Setting for each toggle (TRUE or FALSE)
array dimension is [num toggles] long

(OUT) pulldown Title = title for each pulldown
array dimension is
[num pulldowns] by [Z LEN GUI TITLE STR] long

(OUT) pulldown number in list = number of items in each pulldown
array dimension is [num pulldowns] long

(OUT) pulldown default selection = item selection for each pulldown
array dimension is [num pulldowns] long

(OUT) pulldown item strings = pulldown item strings
array is [num pulldowns] by
[z MAX NUM GUI PULL ITEMS] by
[Z LEN GUI PULL STR] long

(OUT) field Title = title for each field
array dimension is
[num fields] by [Z LEN GUI TITLE STR] long

(OUT) field user string = content of the field
array dimension is
[num fields] by [Z LEN GUI TITLE STR] long

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* The library is loaded, this routine is called,
then the library is unloaded.

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.
g */

int USERD get extra gui defaults(char **toggle Title,

int *toggle default status,

char **pulldown Title,

int *pulldown number in list,

int *pulldown default selection,

char ***pulldown item strings,

char **field Title,

char **field user string)

L T S e S S N S T S S S S S N S S R S S e S N S S N S T S S S SN S T SN

EnSight 8 Interface Manual 2-31

2.4 USERD_get_extra_gui_numbers

2-32

USERD _get extra_gui_numbers

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

<optional> (version 2.00 and later)

* There are three routines that work together:

USERD get extra gui numbers
USERD get extra gui defaults (this one)
USERD_ set extra gui data

The existence of these routine indicates that
you wish to add customize entries to the
Data Reader dialog.

If you don’t want the extra GUI features,
simply delete these routines, or change their
names to something such as

USERD DISABLED get extra gui defaults

The presence of these routines

will ensure that EnSight will call them and

use their data to modify the Data Reader dialog
with some or all of the following:

toggles, pulldown menu and fields.

The user can then interact with the enhanced
GUI and then send their choices to
USERD_set extra gui data

Therefore if USERD get extra gui numbers
exists then the other two must exist.

If none exist, then the GUI will be unchanged.
Toggle data will return an integer
TRUE if checked

FALSE if unchecked

Pulldown menu will return an integer representing
the menu item selected

Field will return a string Z LEN GUI FIELD STR long.

If all the enhanced GUI features are enabled it
might look something like this

The Enhanced GUI routines are added to allow the user to customize a
portion of the Data Reader dialog to pass in options to their user
defined reader.

This routine defines the numbers of toggles, pulldowns & fields

(OUT) num_Toggles = number of toggles that will be provided
(OUT) num pulldowns = number of pulldowns that will be provided
(OUT) num fields = number of fields that will be provided
Notes:

EnSight 8 Interface Manual

2.4 USERD_get_extra_gui_numbers

[] Title 1
[X] Title 3
[X] Title 2
[X] Title 4

Pulldown Menu ->
Menu Choice 1
Menu Choice 2
Menu Choice 3

Data Field Title 1

Data Field Title 2

* The following are defined in the global extern.h
Z MAX NUM GUI PULL ITEMS max num GUI pulldowns
Z LEN GUI PULL STR max length of GUI pulldown string
Z LEN GUI FIELD STR max length of field string
Z LEN GUI TITLE STR max length of title string

* The library is loaded, this routine is called,
then the library is unloaded.

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.

Lol S S R A S RN S S N S T N S S S S T SN S S SIS ST S .

void USERD get extra gui numbers (int *num Toggles,
int *num pulldowns,
int *num fields)

EnSight 8 Interface Manual 2-33

2.4 USERD_get_geom_timeset_number

2 ————

USERD get geom timeset_number

* (version 2.00 and later)

K e e

*

* Gets the timeset number to be used for geometry

*

* It must be in the valid range of timeset numbers

* For example, If USERD get number of timesets

* returns 2, the valid timeset number’s

* would be 1 and 2.

*

* Returns:

* e —

* Geom timeset number = The timeset number that will be used for geometry.

* For example, if USERD get number of timesets

* returns 2, the valid timeset numbers would be

* 1 or 2.

*

* Notes:

* * Tf your model is static, which you indicated by returning a zero

* in USERD get number of timesets, you can return a zero here as well.

K e e e e e o o o o o o o o e o o o e o o o o o e e e e o o e * /
int

USERD get geom timeset number (void)

2-34 EnSight 8 Interface Manual

2.4 USERD_get_gold_part_build_info

USERD_get _gold_part_build_info
* (version 2.00 and later)
* (Modified at 2.01 as indicated below)
(Modified at 2.03 as indicated below)

*

*

Gets the info needed for part building process

(OUT) part id = Array containing the external part
ids for each of the model parts.

IMPORTANT :
External Part ids must be >= 1 because
of the way they are used in the GUI

R e S S b S b I S R S Sh b Sh b b Sb b b 2b e S b b Sh b I 2b S dh b S db b S b S 4

The ids provided here are the numbers by
which the parts will be referred to in the
GUI (if possible). They are basically
labels as far as you are concerned.

Note: The part numbers you pass to routines which receive a
part number or block number or which part as and argument
are the l-based table index of the parts!

example: If Numparts available = 3

Table index part id

|

| These are placed in:
| part id[0] = 13

| part id[1] 57
|

|

|

part id[2] 125
for GUI labeling purposes.

These implied table indices are the part number,
block number, or which part numbers that you would
pass to routines like:

USERD get part coords(int part number, ...

USERD get part node ids (int part number, ...

USERD get part elements by type(int part number, ...
USERD get part element ids by type(int part number, ...
USERD_get block coords by component (int block number, ...
USERD _get block iblanking(int block number, ...

USERD get block ghost flags(int block number, ...

USERD get ghosts in block flag(int block number)

USERD get border availability(int part number, ...

USERD get border elements by type(int part number, ...
USERD get var by component (int which variable,

int which part, ...

USERD get var value at specific(int which var,

int which node or elem,

int which part,...
KAKKAA KA A KNI A A A A A AR A A A AR A A A AR A A A A A A A A A Ak hA Ak K,k

L T S e S S S N S . S S SR T e S N S S N S S N S S N ST N SN T N SR S N S S S ST N N IS S R T N S S S S N
>
>

EnSight 8 Interface Manual 2-35

2.4 USERD_get_gold_part_build_info

(Array will have been allocated
Numparts available long)

(OUT) part types = Array containing one of the
following for each model part:

Z UNSTRUCTURED or
Z STRUCTURED or
Z TIBLANKED

(Array will have been allocated
Numparts available long)

(OUT) part description Array containing a description

for each of the model parts

(Array will have been allocated
Numparts available by Z BUFL
long)

(OUT) number of nodes Number of unstructured nodes in the part
(Array will have been allocated
Numparts available long)

(OUT) number of elements = 2D array containing number of
each type of element for each
unstructured model part.

Possible types are:

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

Z POINT = point

Z BAR0O2 = 2-noded bar

Z BARO3 = 3-noded bar

Z TRIO3 = 3-noded triangle

Z TRIO06 = ©6-noded triangle

Z QUAO4 = 4-noded quadrilateral

Z QUAOS8 = 8-noded quadrilateral

Z TETO04 = 4-noded tetrahedron

Z TET10 = 10-noded tetrahedron

Z PYRO5 = b5-noded pyramid

Z PYR13 = 13-noded pyramid

Z PENO6 = 6-noded pentahedron

Z_ PEN15 = 15-noded pentahedron

Z HEX08 = 8-noded hexahedron

Z HEXZ20 = 20-noded hexahedron
Starting at API 2.03 Z NSIDED = nsided polygon
Starting at API 2.03 Z NFACED = nfaced polyhedron
Starting at API 2.01:

Z G _POINT ghost node point element

Z G BARO0Z 2 node ghost bar

Z G BARO3 3 node ghost bar

Z G TRIO3 3 node ghost triangle

Z G TRIO6 6 node ghost triangle

Z G QUAO4 4 node ghost quad

Z G QUAO8 8 node ghost quad

Z G TETO04 4 node ghost tetrahedron

Z G TET10 10 node ghost tetrahedron

2-36 EnSight 8 Interface Manual

Starting at API 2.03
Starting at API 2.03

(OUT) ijk dimensions

Prior to version 2.03:

L R N S S S S S S S N S T S S S S S T e e S N S S S S T S S SN S S N NS S S S T S S S SRS NS SN S

EnSight 8 Interface Manual

2.4 USERD_get_gold_part_build_info

G _PYRO5 5 node ghost pyramid
G_PYRI13 13 node ghost pyramid
G _PENO6 6 node ghost pentahedron
G _PENI1S5 15 node ghost pentahedron
~ G _HEXO0S8 8 node ghost hexahedron
~G_HEX20 20 node ghost hexahedron
G NSIDED ghost nsided polygon
G NFACED ghost nfaced polyhedron

(Ignored unless 7z UNSTRUCTURED type)

Starting at version 2.03:

(Array will have been allocated
Numparts available by
Z MAXTYPE long)

2D array containing ijk dimension info
for structured blocks

For Z UNSTRUCTURED - is ignored

For Z STRUCTURED or Z IBLANKED

(Array will have been allocated
Numparts available by 3 long)

ijk dimensions[][0] = I dimension
ijk dimensions[][1] = J dimension
ijk dimensions[][2] = K dimension

(Array will have been allocated
Numparts available by 9 long)

There are two ways to do this:

The simple one, without ranges.

This is good for all structured models
that will NOT be used in EnSight’s
Server of Servers

Simply provide the ijk dimensions in the
first three slots and place a -1 in

the 4th slot. (The remaining slots will
be ignored).

Thus,

ijk dimensions[] [0
ijk dimensions[][1
ijk dimensions[][2
ijk dimensions[][3

= I dimension of block
= J dimension of block
= K dimension of block

]
]
]
] = -1

2-37

2.4 USERD_get_gold_part_build_info

2-38

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

example: (Model has one part,

a simple 2D block)

(J planes)
4* _______ K — *
| | | ijk dimension[0][0] = 3
| | | ijk dimension[0][1] = 4
| | | ijk dimension[0][2] = 1
3* _______ Ko e e *
| | | ijk dimension[0][4] = -1
| | |
! | |
2* _______ Ko — *
! | |
! | |
! | |
l* _______ K — *
1 2 3 (I planes)

2. Using ranges.

This one can be used anytime,

but MUST

be used if EnSight’s Server of Servers

is to be used!

The first 3 slots contain the ijk dimension
(of which this may be
a portion). The last 6 slots contain the

ijk min and max ranges within the complete.

of the complete block

Thus,

ijk dimensions[][0] = I dimension of complete block
ijk dimensions[][1] = J dimension of complete block
ijk dimensions[] [2] = K dimension of complete block
ijk dimensions[][3] = Imin of portion (l-based)

ijk dimensions[][4] = Imax of portion (l-based)

ijk dimensions[][5] = Jmin of portion (l-based)

ijk dimensions[][6] = Jmax of portion (l-based)

ijk dimensions[][7] = Kmin of portion (l-based)

ijk dimensions[] [8] = Kmax of portion (l-based)

examplel: (Model has one part,

a simple 2D block,
and want whole thing)

(J planes)

4 Ko — — K — *
| | | ijk dimension[0][0] = 3
| | | ijk dimension[0][1] = 4
| | | ijk dimension[0][2] = 1

3 K — K e *
| | | ijk dimension[0][3] =1
| | | ijk dimension[0][4] = 3
| | | ijk dimension[0][5] = 1

2 Femm———— e m e * ijk dimension[0][6] = 4
| | ijk dimension[0][7] = 1
| | ijk dimension[0][8] = 1
| |

Nk — — —

3 (I planes)

EnSight 8 Interface Manual

L R N S S S S S S S N S T S S S S S T e e S N S S S S T S S SN S S N NS S S S T S S S SRS NS SN S

example?2

(J planes)

(Want to have the block represented

2.4 USERD_get_gold_part_build_info

in two portions - 2 parts)

top portion

ijk dimension[0] [0]
ijk dimension[0] [1]
ijk dimension[0] [2]

ijk dimension[0] [3]
ijk dimension[0] [4]
ijk dimension[0] [5]
ijk dimension[0] [6]
ijk dimension[0] [7]
ijk dimension[0] [8]

(I planes)

bottom portion

ijk dimension[1][0]
ijk dimension[2][1]
ijk dimension[3][2]

ijk dimension[1] [3]
ijk dimension[1] [4]
ijk dimension[1][5]
ijk dimension[1][6]
ijk dimension[1][7]
ijk dimension[1][8]

(I planes)

And note that if you were partioning this block for

EnSight’s Server of Servers,

instead of two.
ranges in the last

(OUT) iblanking options

iblanking options

(11
(1
(1
(10
(10

EnSight 8 Interface Manual

6 slots.

you would only have one part,
Each SOS server would return its appropriate
The first 3 slots would remain constant.

= 2D array containing iblanking
options possible for each
structured model part.

(Ignored unless Z IBLANKED type)

(Array will have been allocated
Numparts available by 6 long)

7 EXT]
7 TINT]
7 _BND]
7 _TNTBND]
7_SYM]

TRUE
TRUE
TRUE
TRUE
TRUE

if
if
if
if
if

external (outside)
internal (inside)
boundary

internal boundary
symmetry surface

o W

R s W W e

=

=R W W

2-39

2.4 USERD_get_gold_part_build_info

* returns: Z OK 1f successful

* Z ERR if not successful

*

* Notes:

* * If you haven’t built a table of pointers to the different parts,

* you might want to do so here as you gather the needed info.

*

* * This will be based on Current time step

K e e e e e o o o o o o e o o o e o o o e o e e e e e e o e o */
int

USERD get gold part build info(int *part id,
int *part types,
char *part description[Z BUFL],
int *number of nodes,
int *number of elements[Z MAXTYPE],
int *ijk dimensions[9],
int *iblanking options[6])

2-40 EnSight 8 Interface Manual

2.4 USERD_get_gold_variable_info

2 ————
USERD _get gold_variable_info

* (version 2.00 and later)
K e e o
*

* Get the variable descriptions, types and filenames

*

* (OUT) var_ description = Variable descriptions

*

* (Array will have been allocated
* Num variables by Z BUFL long)

*

* variable description restrictions:

K e

* 1. Only first 19 characters used in EnSight prior to EnSight 8.2
* Starting at EnSight 8.2, 49 characters will be used.
* 2. Leading and trailing whitespace will be removed by EnSight.
* 3. Illegal characters will be replaced by underscores.
* 4. They may not start with a numeric digit.

* 5. No two variables may have the same description.

*

* (OUT) var filename = Variable real filenames

*

* (Array will have been allocated
* Num variables by Z BUFL long)

*

* (OUT) var type = Variable type

*

* (Array will have been allocated
* Num variables long)

*

* types are: 7Z CONSTANT

* Z_SCALAR

* Z_VECTOR

* Z_ TENSOR

* Z_ TENSORO

*

* (OUT) var classify = Variable classification

*

* (Array will have been allocated
* Num variables long)

*

* types are: Z PER NODE

* Z PER ELEM

*

* (OUT) var complex = TRUE if complex, FALSE otherwise
*

* (Array will have been allocated
* Num variables long)

*

* (OUT) var_ ifilename = Variable imaginary filenames (if complex)
*

* (Array will have been allocated
* Num variables by Z BUFL long)

*

* (OUT) var_ freq = complex frequency (if complex)

*

* (Array will have been allocated
* Num variables long)

*

*

EnSight 8 Interface Manual 2-41

2.4 USERD_get_gold_variable_info

2-42

L S SR R N S N S S N S S S NS S SN S T N S S S S S NS T N S N S i

int

USERD get gold variable info(char **var description,
char **var filename,
int *var type,
int *var classify,
int *var complex,
char **var ifilename,
float *var freq,
int *var contran,
int *var timeset)

(OUT) var contran

(OUT) var timeset

returns: Z OK

if successful

For example:

TRUE if constant changes per time step
FALSE if constant truly same at all time steps

(Array will have been allocated

Num variables long)

Timeset the variable will use

(For static models,

set it to 1)

(Array will have been allocated

Num variables long)

the valid

(1 based).

If USERD get number of timesets
returns 2,

timeset number’s would be 1 or 2.

Z ERR 1f not successful

Notes:

* The implied variable numbers apply, but be aware that the

arrays are zero based.
So for variable 1,

for variable 2,

will need to provide

will need to provide

var description[0]

var filename[O0]
var_ type[0]

var classify[0]
var complex[0]
var ifilename[0]
var freq[0]

var contran[0]
var timeset[0]

var description([1]

var filename[1]
var typel[l]

var classify[1]
var complex[1]
var ifilename([1]
var freq[l]

var_ contran[1]
var timeset[1]

EnSight 8 Interface Manual

2.4 USERD_get_ghosts_in_block_flag

2 —————
USERD _get ghosts_in_block_flag
* (version 2.01 and later)
K e e o
*
* Gets whether ghost cells present in block or not
*
* (IN) block number = The block part number
*
* (l1-based index of part table, namely:
*
* 1 ... Numparts_ available.
*
* It is NOT the part id that
* is loaded in USERD get gold part build info)
*
* returns: TRUE 1if any ghost cells in this structured part
* FALSE if no ghost cells in this structured part
*
* Notes:
* * This will be based on Current time step
*
* * Intended for structured parts only, value will be ignored for
* unstructured parts
S * /
int

USERD_get ghosts in block flag(int block number)

EnSight 8 Interface Manual 2-43

2.4 USERD_get_ghosts_in_model_flag

2 ————
USERD_get _ghosts_in_model_flag

* (version 2.01 and later)

K e e e —————————————— o —————— e

*

* Answers the gquestion as to whether any ghost cells in the model.

*

* returns: TRUE if any ghost cells in the model

* FALSE if no ghost cells in the model

*

* Notes

K e e e e e o o o o o o o o o o e o o o o o o o e o e e e e o e e * /
int

USERD_get ghosts in model flag(void)

2-44 EnSight 8 Interface Manual

2.4 USERD_get_matf_set_info

2 ————

USERD _get _matf _set_info

* (version 2.03 and later)

K e e

*

* Get the material set ids and names

*

* (OUT) mat set ids = 1D material set ids array

*

* (Array will have been allocated

* Num material sets long)

*

* (OUT) mat set name = 2D material set name array

*

* (Array will have been allocated

* Num material sets by Z BUFL long)

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

* Notes:

* * Will not be called if Num material sets is zero

* * See USERD get number of material sets header for explanatory example

g * /
int

USERD get matf set info(int *mat set ids,
char **mat set name)

EnSight 8 Interface Manual 2-45

2.4 USERD_get_matf_var_info

Get the material ids and descriptions for the material set

(IN) set index the material set index (zero based)
(OUT) mat ids[set index] = 1D materials ids array

(Array will have been allocated
Num materials long)

(OUT) mat desc[set index] = 2D material descriptions array

(Array will have been allocated
Num materials by Z BUFL long)

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* See USERD get number of material sets header for explanatory example

* Will not be called if Num material sets is zero, or
Num materials[set index] is zero

R S e S N S S N S S SN S S SN T N .

int

USERD get matf var info(int set index,
int *mat ids,
char **mat desc)

2-46 EnSight 8 Interface Manual

returns:

Notes:

LR R R S R S e T S S N ST N S S N S T S NS S S S S SN

int

2.4 USERD_get_matsp_info

Get the material species ids, descriptions, count per material,
and concatonated lists of species per material for the material set

(IN) set index = Material set index (zero based)

(OUT) sp_ids[set index] = 1D material species ids array

(Array will have been allocated
Num_ species long)

(OUT) sp_desc[set index] = 2D material species descriptions array

(Array will have been allocated
Num species by Z BUFL long)

(OUT) sp_per mat cnt[set index] = 1D species per material count array

(Array will have been allocated
Num materials long)

(OUT) sp_per mat lis[set index] = 1D concatonated lists of species

per material array

(Array will have been allocated
Num materials*Num species long)

Z OK 1f successful
Z ERR 1f not successful

* See USERD get number of material sets header for explanatory example

* Will not be called if Num material sets is zero, or
Num materials[set index] is zero

___ */
USERD get matsp info (int set index,

int *sp_ids,

char **sp desc,

int *sp per mat cnt,

int *sp per mat 1lis)

EnSight 8 Interface Manual 2-47

2.4 USERD_get_maxsize_info

(version 2.00 and later)
(Modified at 2.01 as decribed below)

*

*

Gets maximum part sizes for efficient memory allocation.

Transient models (especially those that increase in size) can cause
reallocations, at time step changes, to keep chewing up more and
more memory. The way to avoid this is to know what the maximum
size of such memory will be, and allocate for this maximum initially.

Accordingly, if you choose to provide this information (it is optional),
EnSight will take advantage of it.

(OUT) max number of nodes = Maximum number of unstructured nodes
that will be in the part (over all time).

(Array will have been allocated
Numparts available long)

(OUT) max number of elements = 2D array containing maximum number of
each type of element for each
unstructured model part (over all time).

Possible types are:

L T T e N N S N S T S NS S SN S T S S N IS T N N S S AR e S N S S S S e S ST N SN S N SRS S S S S S D L .

Z POINT = point

Z BAR02 = 2-noded bar

Z BARO3 = 3-noded bar

Z TRIO3 = 3-noded triangle

Z TRI06 = o6-noded triangle

Z QUAO4 = 4-noded quadrilateral

Z QUAOS8 = 8-noded quadrilateral

Z TET04 = 4-noded tetrahedron

Z TET10 = 10-noded tetrahedron

Z PYRO5 = b5-noded pyramid

Z PYRI13 = 13-noded pyramid

Z PENO6 = 6-noded pentahedron

Z_ PEN15 = 15-noded pentahedron

Z HEX08 = 8-noded hexahedron

Z HEX20 = 20-noded hexahedron
Starting at API 2.01:

Z G _POINT ghost node point element

Z G BARO2 2 node ghost bar

Z G BARO3 3 node ghost bar

Z G TRIO3 3 node ghost triangle

Z G TRIO6 6 node ghost triangle

Z G QUAO4 4 node ghost quad

Z G QUAOS 8 node ghost quad

Z G TETO04 4 node ghost tetrahedron

Z G TET10 10 node ghost tetrahedron

Z G PYRO5 5 node ghost pyramid

Z G PYR13 13 node ghost pyramid

Z G _PENO6 6 node ghost pentahedron

Z G PEN15 15 node ghost pentahedron

Z G HEXO08 8 node ghost hexahedron

Z G HEX20 20 node ghost hexahedron

2-48 EnSight 8 Interface Manual

2.4 USERD_get_maxsize_info

(Ignored unless Z UNSTRUCTURED type)

(Array will have been allocated
Numparts available by
Z MAXTYPE long)

(OUT) max ijk dimensions = 2D array containing maximum ijk dimensions
for each structured model part (over_all_time).

(Ignored if Z UNSTRUCTURED type)

(Array will have been allocated
Numparts available by 3 long)

max ijk dimensions[][0] = maximum I dimension
max ijk dimensions[][1] = maximum J dimension
max ijk dimensions[][2] = maximum K dimension

returns: Z OK 1if supplying maximum data
Z ERR if not supplying maximum data, or some error occurred
while trying to obtain it.

Notes:

* You need to have first called USERD get number of model parts and
USERD get gold part build info, so Numparts available is known and
so EnSight will know what the type is (Z UNSTRUCTURED, Z STRUCTURED,
or 7Z IBLANKED) of each part.

* This will NOT be based on Current time step - it is to be the maximum
values over all time!!

* This information is optional. If you return Z ERR, Ensight will still
process things fine, reallocating as needed, etc. However, for
large transient models you will likely use considerably more memory
and take more processing time for the memory reallocations. So, if it
is possible to provide this information “up front”, it is recommended
to do so.

LI S O T A S S S S S ST SN S S N S S S S S NS S N S O G .

int

USERD get maxsize info(int *max number of nodes,
int *max number of elements[Z MAXTYPE],
int *max ijk dimensions[3])

EnSight 8 Interface Manual 2-49

2.4 USERD_get_model_extents

2 ——
USERD_get model extents
* (version 2.00 and later)
g
*
* Gets the model bounding box extents. If this routine supplys them
* EnSight will not have to spend time doing so. If this routine
* returns Z ERR, EnSight will have to take the time to touch all the
* nodes and gather the extent info.
*
* (OUT) extents[0] = min x
* [1] = max x
* [2] = min y
* [3] = max y
* [4] = min z
* [5] = max z
*
* returns: Z ERR if no extents given (EnSight will read all coords and
* calculate)
* Z OK if extents given
*
* Notes:
* * This will be based on Current time step
K e e e e e e o e o o o e o o e o o o e e e e o e o o e * /
int

USERD get model extents(float extents[6])

2-50 EnSight 8 Interface Manual

L S SR e e N S N S N S T SN S T N SRS N S

int

2.4 USERD_get_name_of_reader

Gets the name of your user defined reader. The user interface will
ask for this and include it in the available reader list.

(OUT) reader name = the name of the reader (data format)
(max length is Z MAX USERD NAME, which
is 20)

(OUT) *two fields = FALSE if only one data field is required

in the data dialog of EnSight.
TRUE if two data fields required

-1 if one field (Geom) required
and one field (Param) is optional
Param field can contain any text
for example a file name, modifiers,
etc. that can be used to modify the
reader’s behavior.

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* Always called. Provide a name for your custom reader format

USERD get name of reader (char reader name[Z MAX USERD NAME],

int *two fields)

EnSight 8 Interface Manual 2-51

2.4 USERD_get_nfaced_conn

2 ————
USERD _get nfaced conn
* (version 2.03 and later)
K e e
*
* Gets the array containing the connectivity of nsided faces of
* nfaced elements
*
* (IN) part number = The part number
*
* (l1-based index of part table, namely:
*
* 1 ... Numparts available.
*
* It is NOT the part id that is
* loaded in USERD get gold part build info)
*
* (OUT) nfaced conn _array = 1D array of nsided face connectivies of
* nfaced elements
*
* (int array will have been allocated
* long enough to hold all the nsided
* face connectivities. Which is the sum of
* all the nodes per face values in
* the nfaced npf array of
* USERD get nfaced nodes per face)
*
* Providing nfaced information to Ensight:
*
* 1. In USERD get gold part build info, provide the number of nfaced
* polyhedral elements in the part.
*
* 2. In USERD get part elements by type, provide (in the conn array),
* the number of faces per nfaced element. (as if connectivity
* length of an nfaced element is one)
*
* 3. In this routine, provide the streamed number of nodes per face
* for each of the faces of the nfaced elements.
*
*
* Simple example: 11 10 12
* R it - +
* 2 nfaced elements: /| I\ /|
* (1 7-faced /o N/
* 1 5-sided) /| | +9 |
* /o A
* /7 8/ I |
* Hommmm - /0
* \ I'5 | 14] |6
* | R] it r P
* Y N1
* \ / | \N1/3
* I/ | +
* |/ I
* /1 12/
* - +/
*
*
*
*
*

2-52 EnSight 8 Interface Manual

1. In USERD get gold part build info:
number of elements[Z NFACED]
2. In USERD get part elements by type
length of conn array will be:
for element type of Z NFACED:
conn_array[0] [0] = 7
conn_array[1][0] = 5
Sum 12 <———-
3. In USERD get faced nodes per face:
length of nfaced npf array will
nfaced npf arrayl[0] =5 (5-noded
nfaced npf array[1] =5 (5-noded
nfaced npf arrayl[2] =4 (4-noded
nfaced npf array([3] =4 (4-noded
nfaced npf arrayl[4] =4 (4-noded
nfaced npf arrayl[5] =4 (4-noded
nfaced npf arrayl[6] =4 (4-noded
nfaced npf arrayl[7] = 3 (3-noded
nfaced npf arrayl[8] = 3 (3-noded
nfaced npf array[9] =4 (4-noded
nfaced npf array[10] = 4 (4-noded
nfaced npf array[ll] = 4 (4-noded
Sum 48 Lmm———=
4. In this function:

length of the nfaced conn array

nsided conn_array[0] (conn of
nsided conn array([1l]
nsided conn array([2]
nsided conn array[3]

[

nsided conn array[4]

= = 0 0 J
= O

nsided conn_array([5] (conn of
nsided conn _array[6]
nsided conn array([7]
nsided conn array[8]
[

nsided conn array[9]

N Wb 01

nsided conn_array of
nsided conn_array
nsided conn_array

nsided conn array

(conn

~ 0 N

nsided conn_array (conn of
nsided conn_array
nsided conn_array

nsided conn_array

e

fis

nsided conn array[18] (conn of

nsided conn array[19]

L R N S S S S S S S N S ST SN S S S S S T S e S N S S S S N S S S S S N SN S S SIS T S S S S ST S N

EnSight 8 Interface Manual

2.4 USERD_get_nfaced_conn

= 2
/1N
|
2 X
(for the 7-faced element)
(for the 5-faced element)

top face of 7-faced element)

bot face of 7-faced element)

front face of 7-faced element)

left face of 7-faced element)

back face of 7-faced element)

right front face of 7-faced element)
right back face of 7-faced element)

top face of 5-faced element)

bot face of 5-faced element)

back face of 5-faced element)

right face of 5-faced element)

left front face of 5-faced element)

5-noded top face of 7-faced elem)

5-noded bot face of 7-faced elem)

4-noded front face of 7-faced elem)

4-noded left face of 7-faced elem)

4-noded back face of 7-faced elem)

2-53

2.4 USERD_get_nfaced_conn

2-54

* nsided conn array[20] 11

* nsided conn array[21] 10

*

* nsided conn array[22] 2 (conn of 4-noded right front face of 7-faced)
* nsided conn array[23] 3

* nsided conn array[24] 9

* nsided conn _array[25] 8

*

* nsided conn_array[26] 3 (conn of 4-noded right back face of 7-faced)
* nsided conn array[27] 4

* nsided conn array[28] 10

* nsided conn array[29] 9

*

* nsided conn_array[30] 9 (conn of 3-noded top face of 5-faced elem)
* nsided conn_array[32] 12

* nsided conn array[32] 10

*

* nsided conn array[33] 3 (conn of 3-noded bot face of 5-faced elem)
* nsided conn array[34] 4

* nsided conn_array[35] 6

*

* nsided conn array[36] 6 (conn of 4-noded back face of 5-faced elem)
* nsided conn array[37] 4

* nsided conn array[38] 10

* nsided conn array[39] 12

*

* nsided conn_array[40] 3 (conn of 4-noded right face of 5-faced elem)
* nsided conn array[41] 6

* nsided conn array[42] 12

* nsided conn array[43]

*

* nsided conn array[44] 4 (conn of 4-noded left front face of 5-faced)
* nsided conn _array[45] 3

* nsided conn array[46] 9

* nsided conn array([47] 10

*

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

* Notes:

* * Will not be called unless there are some nfaced elements in the

* the part
g */

int

USERD get nfaced conn(int part number,

int *nfaced conn array)

EnSight 8 Interface Manual

2.4 USERD_get_nfaced_conn_in_buffers

USERD_get nfaced_conn_in_buffers

* <optional> (version 2.08 and later)

Gets three arrays containing the number of faces per element,
number of nodes per face, and connectivity per face of nfaced
elements in buffers

This is one of several optional routines than can be added into any
API 2.* reader to be used by the Unstructured Auto Distribute capability
in EnSight 8.2 and later.

Unstructured Auto Distribute is a capability requiring Server of Servers
(SOS) that will partition an unstructured model for you automatically
across a set of servers.

If you do not implement this routine (and the other in buffers routines)

in your reader, EnSight can still perform this operation but will require
much more memory on each server to read in the data (somewhat like each
server having to read the whole model). You will however, get the execution
advantage of having your model partitioned across multiple servers.

If you do implement this routine (and the other in buffers routines) in
your reader (in a proper manner), you should be able to not only get the
execution advantages, but also memory usage on each server which is
proportional to the subset that it is assigned to deal with.

Note that this optional routine is functionally quite similar

to the USERD get nfaced conn routine. And thus its implementation should
not be too difficult to add to any existing reader that has already
implemented the USERD get nfaced conn routine.

(IN) part number = The part number
(l-based index of part table, namely:

1 ... Numparts available.

It is NOT the part id that
is loaded in USERD get gold part build info)

(IN) first = TRUE if first invocation of a buffered set.
Will be FALSE for all subsequent invocations
of the set. This is so you can open files,
get to the correct starting spot,
initialize, etc.

(IN) e beg = Zero based, first element number
of the buffered set

(IN) e end = Zero based, last element number
of the buffered set

Thus, for first five elements of a type:

e beg = 0
e end = 4
total number = (e end - e beg) + 1 = (4 - 0) + 1 =25

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual 2-55

2.4 USERD_get_nfaced_conn_in_buffers

2-56

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

for second five elements of a type, would be:

e beg = 5
e end = 9
total number = (e end - e beg) + 1 = (9 - 5) + 1 =25

for all elements of the type of a part, would be:

n beg = 0
n _end = num elements of type - 1
(IN) buffer size = The size of the num nodes per elem array buffer.

Namely: num nodes per elem array[buffer size]

(OUT) nfaced fpe array = 1D buffer array of the number of faces per nfaced
element.

(int array will have been allocated
buffer size long)

(OUT) nfaced npf array = 1D buffer array of the number of nodes per face
for nfaced elements.

(int array will have been allocated long
enough to hold a buffer’s size of values)

(OUT) nfaced conn _array = 1D array of nsided face connectivies of
nfaced elements

(int array will have been allocated
long enough to hold a buffer’s worth of values)

Providing nfaced information to Ensight:

NOTE: for other nfaced operations you need these first two, but we
don’t actually use them in this routine.

1. In USERD get gold part build info, provide the number of nfaced
polyhedral elements in the part.

2. In USERD get part elements by type, provide (in the conn_array),
the number of faces per nfaced element. (as if connectivity
length of an nfaced element is one)

We do use the following:

3. In this routine, provide the corresponding number of faces per nfaced
element, streamed number of nodes per face, and streamed face
connectivities for each of the faces of the nfaced elements in the
bufferred portion.

EnSight 8 Interface Manual

* Simple example: 11 10 12
* Fomm———— +——— +

* 2 nfaced elements: /| '\ /|

* (1 7-faced /| N/

* 1 5-sided) /] I +9 |

* / | /1
* /7 | 8 / | |

* tommm 0
* \ IS5 14 1 16
* \ el R Sl Bt o

* \ / | N/
* \ / | \I1/3
* I/ | +

* v | /

* /1 12/

* e +/

*

* Note, don’t really use these first two here
*

* 1. In USERD get gold part build info:

* number of elements[Z NFACED] = 2
*

* /1N
* |
* 2. In USERD get part elements by type:

* length of conn array will be: 2 X
* for element type of Z NFACED:

* conn_arrayl[0][0] = 7

* conn array[1][0] = 5

* ==

* Sum 12

*

*

* But for our simple example,

* so that we have multiple invocations.
* 3. In this routine:

*

* first invocation:

* first = TRUE

* e beg =0

* e end = 1

* buffer size =1

* nfaced fpe arrayl[1l] load it:
*

* nfaced npf arraylat least 7] load it:
*

*

*

*

*

*

*

* nsided conn arraylat least 30] load it:
*

*

*

*

*

*

*

*

EnSight 8 Interface Manual

2.4 USERD_get_nfaced_conn_in_buffers

(for the 7-faced element)
(for the 5-faced element)

(See USERD get nfaced conn)

lets assume that that our buffer is just 1

nfaced fpe arrayl[0]

nfaced npf arrayl[0]
nfaced npf arrayl[1]
nfaced npf arrayl[2]
nfaced npf array[3]
nfaced npf arrayl[4]
nfaced npf array[5]
nfaced npf arrayl[6]

nsided conn array([0]
nsided conn array[1l]
nsided conn array([2]
nsided conn_array([3]
nsided conn array([4]

nsided conn array([5]
nsided conn array[6]
nsided conn _array([7]

SO DD s 01 Ol

2-57

2.4 USERD_get_nfaced_conn_in_buffers

* nsided conn array[8] = 3
* nsided conn_array[9] = 2
*

* nsided conn array[10] =1
* nsided conn array[ll] = 2
* nsided conn _array[12] = 8
* nsided conn array[13] = 7
*

* nsided conn array[l14] = 5
* nsided conn array[15] =1
* nsided conn array[l6] = 7
* nsided conn array([17] = 11
*

* nsided conn array[18] 4
* nsided conn array[19] = 5
* nsided conn array[20] = 11
* nsided conn array([21] = 10
*

* nsided conn _array[22] = 2
* nsided conn array[23] = 3
* nsided conn array[24] = 9
* nsided conn array[25] = 8
*

* nsided conn array[26] = 3
* nsided conn array[27] = 4
* nsided conn_array[28] = 10
* nsided conn array[29] = 9
* *num returned = 1;

* return (0)

*

* second invocation:

* first = FALSE

* e beg =0

* e end =1

* buffer size =1

* nfaced fpe arrayl[1l] load it: nfaced fpe array[0] = 5

*

* nfaced npf arraylat least 7] load it: nfaced npf array[0] = 3

* nfaced npf arrayl[l] = 3

* nfaced npf arrayl[2] = 4

* nfaced npf arrayl[3] = 4

* nfaced npf array([4] = 4

*

* nsided conn _array[at least 18] load it: nsided conn array[0] = 9
* nsided conn_array[l] = 12
* nsided conn array[2] = 10
*

* nsided conn array[3] = 3
* nsided conn array[4] = 4
* nsided conn_array[5] = 6
*

* nsided conn_array[6] = 6
* nsided conn array[7] = 4
* nsided conn array[8] = 10
* nsided conn array[9] = 12
*

* nsided conn array[10] 3
* nsided conn array[ll] = 6
* nsided conn array[12] = 12
* nsided conn array[13] = 9
*

2-58 EnSight 8 Interface Manual

*
*
*
*
* *num returned
* return (1)
*
* returns 0 1if got some,
* 1 if got some,
* -1 if an error
*
* Notes:
*
*
*
* the part
*
int

to do

USERD get nfaced conn in buffers (int

EnSight 8 Interface Manual

int
int
int
int
int
int
int
int

* This will be based on Current time step

part number,

2.4 USERD_get_nfaced_conn_in_buffers

nsided conn array[l4
nsided conn_array[15
nsided conn array[1l6
nsided conn array[17

]
]
]
]

* Will not be called unless there are some nfaced elements in the

*nfaced fpe array,
*nfaced npf array,
*nfaced conn array,

first,

e beg,

e end,

buffer size,
*num_ returned)

R o W

2-59

2.4 USERD_get_nfaced_nodes_per_face

2 ————
USERD _get nfaced _nodes per face
* (version 2.03 and later)
K e e
*
* Gets the array containing the number of nodes per face for each face
* of the nfaced elements.
*
* (IN) part number = The part number
*
* (1-based index of part table, namely:
*
* 1 ... Numparts available.
*
* It is NOT the part id that
* is loaded in USERD get gold part build info)
*
* (OUT) nfaced npf array = 1D array of nodes per face for all
* faces of nfaced elements
*
* (int array will have been allocated
* long enough to hold all the nodes per
* face values. Which is the sum of
* all the number of faces per element values in
* the conn array of
* USERD get part elements by type)
*
* Providing nfaced information to Ensight:
*
* 1. In USERD get gold part build info, provide the number of nfaced
* polyhedral elements in the part.
*
* 2. In USERD get part elements by type, provide (in the conn array),
* the number of faces per nfaced element. (as if connectivity
* length of an nfaced element is one)
*
* 3. In this routine, provide the streamed number of nodes per face
* for each of the faces of the nfaced elements.
*
*
* Simple example: 11 10 12
* - - +
* 2 nfaced elements: /| I\ /|
* (1 7-faced /o N/
* 1 5-sided) /| | +9 |
* /o A
* /7 8/ I |
* Hommmm - /0
* \ I'5 14 1 16
* | el ah T
* Y N1
* \ / | \N1/3
* I/ | +
* |/ I
* /1 12/
* - +/
*
*
*
*
*

2-60 EnSight 8 Interface Manual

nsided conn_array[0] (conn of
nsided conn array([1l]
nsided conn array([2]
nsided conn array[3]

[

nsided conn array[4]

= = 0 0 J
= O

nsided conn_array([5] (conn of
nsided conn _array[6]
nsided conn array([7]
nsided conn array[8]
[

nsided conn array[9]

N Wb 01

nsided conn_array of
nsided conn_array
nsided conn_array

nsided conn array

(conn

~ 0 N

nsided conn_array (conn of
nsided conn_array
nsided conn_array

nsided conn_array

e

fis

nsided conn array[18] (conn of

nsided conn array[19]

L R N S S S S S S S N S ST SN S S S S S T S e S N S S S S N S S S S S N SN S S SIS T S S S S ST S N

EnSight 8 Interface Manual

2.4 USERD_get_nfaced_nodes_per_face

1. In USERD get gold part build info:
number of elements[Z NFACED] = 2
/1N
|
2. In USERD get part elements by type:
length of conn array will be: 2 x 1
for element type of Z NFACED:
conn_array[0] [0] = 7 (for the 7-faced element)
conn_array[1][0] = 5 (for the 5-faced element)
Sum 12 <mmmmm———= +
\
3. In this routine: |
length of nfaced npf array will be: 12
nfaced npf arrayl[0] =5 (5-noded top face of 7-faced element)
nfaced npf array[1] =5 (5-noded bot face of 7-faced element)
nfaced npf arrayl[2] =4 (4-noded front face of 7-faced element)
nfaced npf array([3] =4 (4-noded left face of 7-faced element)
nfaced npf arrayl[4] =4 (4-noded back face of 7-faced element)
nfaced npf array[5] = 4 (4-noded right front face of 7-faced element)
nfaced npf array[6] = 4 (4-noded right back face of 7-faced element)
nfaced npf array[7] = 3 (3-noded top face of 5-faced element)
nfaced npf arrayl[8] = 3 (3-noded bot face of 5-faced element)
nfaced npf array[9] =4 (4-noded back face of 5-faced element)
nfaced npf array[10] = 4 (4-noded right face of 5-faced element)
nfaced npf array[ll] = 4 (4-noded left front face of 5-faced element)
Sum 48 mmmmm +
|
4. In USERD get nfaced conn: |
length of the nfaced conn array will be: 48

5-noded top face of 7-faced elem)

5-noded bot face of 7-faced elem)

4-noded front face of 7-faced elem)

4-noded left face of 7-faced elem)

4-noded back face of 7-faced elem)

2-61

2.4 USERD_get_nfaced_nodes_per_face

2-62

L S SR R N S N S S N S S S NS S SN S T N S S S S S NS T N S N S i

int
USERD get nfaced nodes per face(int part number,
int *nfaced npf array)

nsided conn array[20] 11
nsided conn array[21] 10
nsided conn array[22] 2 (conn of 4-noded right front face of 7-faced)
nsided conn array[23] 3
nsided conn array[24] 9
nsided conn _array[25] 8
nsided conn array[26] = 3 (conn of 4-noded right back face of 7-faced)
nsided conn array[27] 4
nsided conn array[28] 10
nsided conn array[29] 9
nsided conn _array[30] = 9 (conn of 3-noded top face of 5-faced elem)
nsided conn_array[32] 12
nsided conn array[32] 10
nsided conn array([33] = 3 (conn of 3-noded bot face of 5-faced elem)
nsided conn array[34] 4
nsided conn_array[35] 6
nsided conn array[36] = 6 (conn of 4-noded back face of 5-faced elem)
nsided conn array[37] 4
nsided conn array[38] 10
nsided conn array[39] 12
nsided conn _array[40] = 3 (conn of 4-noded right face of 5-faced elem)
nsided conn array[41] [
nsided conn array[42] 12
nsided conn array[43]
nsided conn array[44] 4 (conn of 4-noded left front face of 5-faced)
nsided conn _array[45] 3
nsided conn array[46] 9
nsided conn array([47] 10

returns: Z OK 1f successful

Z ERR if not successful
Notes:
* Will not be called unless there are some nfaced elements in the
the part

EnSight 8 Interface Manual

2.4 USERD_get_node_label_status

USERD _get node_label status

(version 2.00 and later)
(Modified at 2.01 as described below)

*

*

Answers the question as to whether node labels will be provided.

returns: TRUE if node labels will be provided
FALSE if node labels will NOT be provided

Notes:
* These are needed in order to do any node querying, or node

labeling on-screen

* Will call USERD get part node ids for each part if this routine
returns TRUE.

* Prior to API 2.01:

For unstructured parts, you can read them from your file if
available, or can assign them, etc. They need to be unique

per part, and are often unique per model. They must also be
positive numbers greater than zero.

USERD get part node ids is used to obtain the ids, if the
status returned here is TRUE.

(Unlike API 1.0, where the connectivity of elements had to be
according to the node ids - API 2.0’'s element connectivities

are not affected either way by the status here.)

For structured parts, EnSight will assign ids if you return a
status of TRUE here. You cannot assign them yourself!!

* Starting at API 2.01:

For both unstructured and structured parts, you can read them
from your file if available, or can assign them, etc. They need
to be unique per part, and are often unique per model. They must
also be positive numbers greater than zero.

USERD get part node ids is used to obtain the ids, if the
status returned here is TRUE.

LR R S SR N S N NS S N S ST N D S N ST T S S NS S S N S S S S T T

int
USERD get node label status(void)

EnSight 8 Interface Manual 2-63

2.4 USERD_get_nsided_conn

Gets the array containing the connectivity of nsided elements
(IN) part number = The part number
(l-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that
is loaded in USERD get gold part build info)

(OUT) nsided conn_array = 1D array of nsided connectivies

(int array will have been allocated
long enough to hold all the nsided
connectivities. Which is the sum of
all the nodes per element values in
the conn array of

USERD get part elements by type)

Providing nsided information to Ensight:

1. In USERD get gold part build info, provide the number of nsided
elements in the part.

2. In USERD get part elements by type, provide (in the conn array),
the number of nodes per nsided element. (as if connectivity
length of an nsided element is one)

3. In this routine, provide the streamed connectivities for each of the
nsided elements.

Simple example: 5 6
fom +

3 nsided elements: /| \

(1 4-sided /| \

1 3-sided /| \

1 7-sided) / | \ 7
/3 | 4 +
- + |
\ | |
\ | |8
\ | +
\ | /
\ | /
\ | /
1 |2 /9
fo——— fomm - +

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

2-64 EnSight 8 Interface Manual

2.4 USERD_get_nsided_conn

1. In USERD get gold part build info:
number of elements[Z NSIDED] = 3
/1N
|

2. In USERD get part elements by type:
length of conn array will be: 3 x 1

for element type of Z NSIDED:

conn_array[0][0] = 4 (for the 4-sided element)
conn array[1][0] = 3 (for the 3-sided element)
conn_array[2][0] = 7 (for the 7-sided element)
Sum ===
14 Lmmm e ——— +

3. In this routine: |
length of nsided conn array will be: 14

01 =
1] =
2] =
3] =

nsided conn_array (connectivity of 4-sided element)
nsided conn_array
nsided conn array

nsided conn array

w N

w

nsided conn array([4] =
nsided conn _array([5]
nsided conn array[6] =

(connectivity of 3-sided element)

g

nsided conn arrayl| (connectivity of 7-sided element)
nsided conn array[8
nsided conn_array[9
nsided conn_ array([l
nsided conn_array([l
nsided conn array|[l

[1

nsided conn array

I
S0 oy oo N

returns: Z OK 1if successful
Z ERR if not successful

Notes:
* Will not be called unless there are some nsided elements in the
the part

L S T R S S R I I S SR T S S S N S IS S S NN S S N S S N S N N S R .

int
USERD get nsided conn(int part number,
int *nsided conn array)

EnSight 8 Interface Manual 2-65

2.4 USERD_get_nsided_conn_in_buffers

USERD_get nsided_conn_in_buffers

* <optional> (version 2.08 or later)
Gets the two arrays containing the connectivity information
of nsided elements in buffers

This is one of several optional routines than can be added into any
API 2.* reader to be used by the Unstructured Auto Distribute
capability in EnSight 8.2 and later.

Unstructured Auto Distribute is a capability requiring Server of Servers
(SOS) that will partition an unstructured model for you automatically
across a set of servers.

If you do not implement this routine

in your reader, EnSight can still per
much more memory on each server to re
server having to read the whole model
advantage of having your model partit

If you do implement this routine (and
your reader (in a proper manner), you
execution advantages, but also memory
proportional to the subset that it is

(and the other in buffers routines)
form this operation but will require
ad in the data (somewhat like each

). You will however, get the execution
ioned across multiple servers.

the other in buffers routines) in
should be able to not only get the
usage on each server which is
assigned to deal with.

Note that this optional routine is functionally quite similar

to the USERD get nsided conn routine. And thus its implementation should
not be too difficult to add to any existing reader that has already
implemented the USERD get nsided conn routine.

(IN)

part number = The part number

(l-based index of part table, namely:

1 ... Numparts available.

It is NOT the part id that
is loaded in USERD get gold part build info)

TRUE if first invocation of a buffered set.
Will be FALSE for all subsequent invocations
of the set. This is so you can open files,
get to the correct starting spot,
initialize, etc.

(IN) first =

(IN) Zero based, first element number

of the buffered set

e beg =

(IN) Zero based, last element number

of the buffered set

e end =

Thus, for first five elements of a type:
e beg =0
e end = 4

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

total number = (e end - e beg) + 1 = (4 - 0) +1 =25
for second five elements of a type, would be:

e beg = 5

e end = 9

total number = (e end - e beg) + 1 = (9 - 5) + 1 =25

2-66 EnSight 8 Interface Manual

2.4 USERD_get_nsided_conn_in_buffers

for all elements of the type of a part, would be:

n beg = 0
n _end = num elements of type - 1
(IN) buffer size = The size of the num nodes per elem array buffer.

Namely: num nodes per elem array[buffer size]

(OUT) num nodes per elem array = 1D buffer array of the number of nodes
per nsided element.

(OUT) nsided conn array = 1D buffer array of nsided connectivies

(int array will have been allocated
long enough to hold all the nsided
connectivities in the buffered chunk)

(OUT) *num returned = The number of elements whose connectivities
are returned in the buffer. This will
normally be equal to buffer size except for
that last buffer - which could be less than
a full buffer.

Providing nsided information to Ensight:

NOTE: for other nsided operations you need these first two, but we
don’t actually use them in this routine.

1. In USERD get gold part build info, provide the number of nsided
elements in the part.

2. In USERD get part elements by type, provide (in the conn_array),
the number of nodes per nsided element. (as if connectivity
length of an nsided element is one)

We do use the following:

3. In this routine, provide the corresponding num nodes per element and
streamed connectivities for each of the nsided elements in this
buffered portion.

Simple example: 5 6
fom +

3 nsided elements: /| \

(1 4-sided /| \

1 3-sided /| \

1 7-sided) / | \ 7
/3 | 4 +
- + |
\ | |
\ | |8
\ | +
\ | /
\ | /
\ | /
[1 |2 /9
fo——— fomm - +

L R T N S S S S S S S N S NS SN N I I S S G e S S S S N S S SN S T S IS S S S N S S N S N S S S S

EnSight 8 Interface Manual 2-67

2.4 USERD_get_nsided_conn_in_buffers

2-68

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

NOTE, don’t really use these first two here

1. In USERD get gold part build info:
number of elements[Z NSIDED]

=3
/1N
|

2. In USERD get part elements by type:

length of conn array will be:

for element type of Z NSIDED:

conn_array[0] [0] = 4
conn_array[1l][0] = 3
conn_arrayl[2][0] = 7

Sum ===

14

3 x1

(for the 4-sided element)
(for the 3-sided element)
(for the 7-sided element)

But for our example, lets assume that that our buffer is just 2

3. In this routine:

first invocation:
first = TRUE

e beg =0
e end = 2
buffer size = 2

num nodes per elem array[2]

nsided conn arrayl[at least 7]

*num_returned = 2
return (0)

second invocation:
first = FALSE

e beg =0
e end = 2
buffer size = 2

num nodes per elem array[Z2]

nsided conn_arrayl[at least 7]

*num returned = 1
return (1)

load it:

load it:

load it:

num nodes per elem array[0]
num nodes per elem array[1l]

0]
1]
2]
3]

nsided conn_array
nsided conn_array
nsided conn array
nsided conn array

nsided conn array (4]
nsided conn_array([5]
nsided conn array[6]

return this (indicates more to

load it:

num nodes per elem array[0]

nsided conn _array[0]
nsided conn array([1]
nsided conn array([2]
nsided conn array[3]
nsided conn array([4]
nsided conn array([5]
nsided conn array[6]

return this (indicates no more

EnSight 8 Interface Manual

(See USERD get nsided conn)

Il
w

I
w N

Il
S 01 oy o N

to do)

2.4 USERD_get_nsided_conn_in_buffers

returns 0 1if got some, more to do
1 if got some, done
-1 if an error

* This will be based on Current time step

*

*

*

*

* Notes:
*

*

* * Will not be called unless there are some nsided elements in the
* the part

int

USERD get nsided conn in buffers(int part number,

int *num nodes per elem array,

int *nsided conn_array,

int first,

int e beg,

int e end,

int buffer size,

int *num returned)

EnSight 8 Interface Manual 2-69

2.4 USERD_get_num_of_time_steps

2 ————
USERD _get num_of _time_steps
* (version 2.00 and later)
K e e
*
* Get the number of time steps of data available for desired timeset.
*
* (IN) timeset number = the timeset number (1 based)
*
* For example: If USERD get number of timesets
* returns 2, the valid
* timeset number’s would be 1 and 2.
*
* returns: number of time steps (>0 if okay, <=0 if problems).
*
* Notes:
* * This should be >= 1 1 indicates a static timeset
* >1 indicates a transient problem
*
K e e * /
int

USERD get num of time steps(int timeset number)

2-70 EnSight 8 Interface Manual

2.4 USERD_get_num_xy_queries

USERD _get num_xy_queries

* <optional> (version 2.08 and later)
Get the total number of xy queries in the dataset.
returns: the total number of xy queries in the dataset
* You can be as complete as you want about this. If you don’t
care about xy queries, return a value of 0
If you only want certain xy queries, you can just include them. But,

you will need to supply the info and data USERD get xy query info

*
*
*
*
*
* Notes:
*
*
*
*
* and USERD get xy query data for each xy query you include here.

USERD get num xy queries(void)

EnSight 8 Interface Manual 2-71

2.4 USERD_get_number_of_files_in_dataset

2 ————

USERD _get number_of files_in_dataset

* (version 2.00 and later)

K e e

*

* Get the total number of files in the dataset. Used for the

* dataset query option.

*

* returns: the total number of files in the dataset

*

* Notes:

* * You can be as complete as you want about this. If you don’t

* care about the dataset query option, return a value of 0

* If you only want certain files, you can just include them. But,

* you will need to supply the info in USERD get dataset query file info

* for each file you include here.

*

* * Num dataset files would be set here

S */
int

USERD _get number of files in dataset(void)

2-72 EnSight 8 Interface Manual

2.4 USERD_get_number_of_material_sets

Get the number of material sets in the model

returns: Num material sets = number of material sets

(Zero would indicate that you have no materials
to deal with in the model)

or

-1 if an error condition
Notes:

* You may want to keep this as a global for use in other routines.

E R i
NOTE: For EnSight 7.6, only one material set is supported within EnSight
Thus the only valid returns here are:
0 (no materials)
1 (for the one material set allowed)
or -1 (if an error)

If the casefile has more than this, this reader will read them,
but EnSight will issue an error message and choke on them!
FHHHHHE A AR AR A R R A

A very simple explanatory example, to use as a reference for the materials routines:

Given a 2D mesh composed of 9 quad (Z QUAO4) elements, with two materials.
Most of the model is material 1, but the top left corner is material 9 -

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Dbasically as shown:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

	/	
Mat 9 /		
	/	
	/	
e7 / e8	e9	
/		
/		
/o		
____/___ ________ Ko e — *		
/		
o/		
/	Mat 1	
/		
ed	e5	e6
e2

I |
| |
| |
| el e3 |
| |
| |
I |

EnSight 8 Interface Manual 2-73

2.4 USERD_get_number_of_material_sets

Thus, in this routine,
Num material sets

1

mat set ids([0] 1

mat set name[0]

would need to set:

Num materials([0] = 2
For simplicity, the ids
USERD get matf var info

mat ids[0] =1

mat ids[1] = 9

mat desc[0] = “mat 1”

mat desc[2] = “mat 9”7

The per element materia

material ids:

ids 1ist[0] =1 (ma
ids list[1l] =1 (
ids_list[2] =1 (
ids 1list[3] = -1 (ne
ids list([5] =1 (ma
ids 1list[5] =1 (
ids 1list[5] = -5 (ne
ids list[5] = -9 (
ids list[5] =1 (ma

In USERD get matf set info,
“Material Set 17

In USERD get number of materials,

set:

set:

(or whatever name desired)

input would be set index and

0,

and descriptions that would be returned in
could be:

(or whatever desired)

1 ids list would need to be:

terial id 1, for elem el)
w e2)
A e3)
g. of index into mixed-material id list, for elem e4)
terial id 1, for elem eb)
W eob)
g. of index into mixed-material id list, for elem e7)
w e8)
terial id 1, for elem e9)

Finally we need the mixed material ids list and the mixed materials
values list, which would need to be:

mixed-material ids:

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

2-74

==> 1 ids list[0] = 2 (the -1 in the material variable points here,
2 indicates that two materials are present)
2 ids list[1l] = 1 (1st material is 1)
3 ids 1list[2] = 9 (2nd material is 9)
4 ids 1ist[3] = -1 (negative of index into mixed-material val list)
==> 5 ids list[4] = 2 (the -5 in the material variable points here,
2 indicates that two materials are present)
6 ids list[5] = 1 (1st material is 1)
7 ids_1list[6] = 9 (2nd material is 9)
8 ids 1list[7] = -3 (negative of index into mixed-material val list)
==> 9 ids list[8] = 2 etc.
10 ids_1list[9] = 1
11 ids_1list[10] = 9
12 ids_1list[11] = -5

mixed-material values:

==> 1 val 1ist[0] = 0.875 (the -1 in the mixed-material ids list points
here, and this is the value for material 1)
2 val 1list[1l] = 0.125 (the value for material 9)
==> 3 val 1list[2] = 0.125 (the -3 in the mixed-materials ids list points
here)
4 val 1list[3] = 0.875

EnSight 8 Interface Manual

2.4 USERD_get_number_of_material_sets

==> 5 val 1list[4] = 0.875 (the -5 in the mixed-materials ids_list points
here)
6 val 1list[5] = 0.125

So, USERD size matf data would need to return

matf size = 8, when called with set id =1
part_ id =1
wtyp = Z QUAO4
mat_type = Z MAT INDEX
matf size = 12, when called with set id =1
part id =1

mat type = Z MIX INDEX

= 6, when called with set id =1
part _id =1
mat type = Z MIX VALUE

And, USERD load matf data would need to return:
the int array ids list as shown above when called with:

set id =1
part id =1
wtyp = Z QUAO4

mat type = Z MAT INDEX (indicating id list).

the int array ids list as shown above when called with:
set id =1
part id =1
mat type = Z MIX INDEX (indicating id list).

the float array val list as shown above when called with:
set id =1
part id 1
mat type = Z MIX VALUE (indicating val list).

L I S S SR R N S S S S S ST N S S N SIS T S S T S T S S

int
USERD get number of material sets(void)

EnSight 8 Interface Manual 2-75

2.4 USERD_get_number_of_materials

2 ————
USERD _get number_of _materials
* (version 2.03 and later)
K e e
*
* Get the number of materials in the material set
*
* (IN) set index = the material set index (zero based)
*
* returns: Num materials[set index] = number of materials in set
* (Zero would indicate that you have
* no materials to deal with in the
* material set)
* or
*
* -1 if an error condition
*
* Notes:
* * See USERD get number of material sets header for explanatory example
* * Will not be called if Num material sets is zero
* % You may want to keep this as a global for use in other routines.
K e e * /
int

USERD get number of materials(int set index)

2-76 EnSight 8 Interface Manual

2.4 USERD_get_number_of_model_parts

Gets the total number of unstructured and structured parts
in the model, for which you can supply information.

This value is typically called: Numparts available

returns: Numparts available (>0 if okay, <=0 if probs)
Notes:
* IMPORTANT!! The part or block numbers that get passed to various

routines in this API, will be the one-based table index
of these parts.

For example, if you have three parts, the part or block
numbers of these parts will be: 1,2,3

* If going to have to read down through the parts in order to
know how many, you may want to build a table of pointers to
the various parts, so can easily get to particular parts in
later processes. If you can simply read the number of parts
at the head of the file, then you would probably not build the
table at this time.

L R S S N S S N S I R i S

int
USERD get number of model parts(void)

EnSight 8 Interface Manual 2-77

2.4 USERD_get_number_of_species

2 ————
USERD_get number_of _species
* (version 2.05 and later)
K e e
*
* Get the number of material species in the material set
*
* (IN) set index = the material set index (zero based)
*
* returns: Num species[set index] = number of material species in set
* (Zero would indicate that you have
* no materials to deal with in the
* material set)
* or
*
* -1 if an error condition
*
* Notes:
* * See USERD get number of material sets header for explanatory example
* * Will not be called if Num material sets is zero
* % You may want to keep this as a global for use in other routines.
K e e * /
int

USERD get number of species(int set index)

2-78 EnSight 8 Interface Manual

L T S e S S N S T S S S S S N S S R S S e S N S S N S T S S S SN S T SN

int

Gets the n
returns:
If you hav
return a v
If you hav
For exampl
Geometr

static
static

transie

static

transie

2.4 USERD_get_number_of_timesets

umber of timesets used in the model.

e a static model, both geometry and variables, you should
alue of zero.

etc.

NOTE: ALL

Vari
othe

example:

This

e a transient model, then you should return one or more.
e:
% Variables No. of timesets
static 0
transient, all using same timeset 1
nt transient, all using same timeset as geom 1
transient, using 3 different timesets 3
nt transient, using 3 different timesets and
none of them the same as the
geometry timeset 4
GEOMETRY MUST USE THE SAME TIMESET!!! You will have to provide

the timeset number to use
for geometry in:
USERD _get geom timeset number

ables can use the same timeset as the geometry, or can use
r timesets. More than one variable can use the same timeset.

changing geometry at 5 steps, 0.0, 1.0, 2.0, 3.0, 4.0
variable 1 provided at these same five steps

variable 2 provided at 3 steps, 0.5, 1.25, 3.33

routine should return a value of 2, because only

two different timesets are needed. Timeset 1 would be for the

geome
be fo

try and variable 1 (they both use it). Timeset 2 would
r variable 2, which needs its own in this case.

USERD_get number of timesets(void)

EnSight 8 Interface Manual 2-79

2.4 USERD_get_number_of_variables

2 ————
USERD_get number_of variables
* (version 2.00 and later)
K e e e —————————————— o —————— e
*
* Get the number of variables (includes constant, scalar,
* vector and tensor types), for which you will be providing info.
*
* returns: number of variables (includes constant, scalar, vector,
* and tensor types)
* >=0 if okay
* <0 if problem
*
* Notes:
* Ak hkhkhkhkhkhhkhhhkhkr kb hhhkhkrhkhkr kb hhhkhkr kb kb dhhkhkdkhkhrhkhhkhkhkdhkhkhrhkhkhkhk ok hkhkhhkxkx
* * Variable numbers, by which references will be made, are implied
* here. If you say there are 3 variables, the variable numbers
* will be 1, 2, and 3.
* Ak hkhkhkhkhkhhkhhhkhkhrhkhhkhkhhkhkrhkhkrhkhhkhkhhkhkrhkhhkhkhhkhkhkhkhkhbhkhhkhkhkhkhkhkhkrhkhkhkhkhhkhkhxkx
*
* * Num variables would be set here
K e e e ————————————— o ————— e */
int

USERD get number of variables(void)

2-80 EnSight 8 Interface Manual

2.4 USERD_get_part_coords

Get the coordinates for an unstructured part.
(IN) part number = The part number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(OUT) coord array = 2D float array which contains
X,y,z coordinates of each node.

(IMPORTANT: the second dimension of of this array is l-based!!!)

(Array will have been allocated
3 by (number of nodes + 1) for the part
long - see USERD get gold part build info)

ex) If number of nodes = 100
as obtained in:
USERD get gold part build info

Then the allocated dimensions of the
pointer sent to this routine will be:
coord array[3][101]

Ignore the coord array([0][0]
coord array[1l][0]
coord array[2][0] locations and start
the node coordinates at:
coord array[0] [1]
coord array[1][1]
coord array([2][1]

coord array[0] [2]
coord array[1][2]
coord array[2][2]

etc.

returns: Z OK 1f successful
Z ERR if not successful

Notes:

* This will be based on Current time step

* Not called unless Num unstructured parts is > 0

* Not called unless number of nodes for the part > 0

L T T T S S N S T N NS e S ST SN S S N SN T S S S NS S S A T e S N S S N S S S S R N N

int
USERD get part coords(int part number,
float **coord array)

EnSight 8 Interface Manual 2-81

2.4 USERD_get_part_coords_in_buffers

USERD _get part _coords_in_buffers

* <optional> (version 2.08 and later)
Get the coordinates for an unstructured part in buffers.

This is one of several optional routines than can be added into any
API 2.* reader to be used by the Unstructured Auto Distribute
capability in EnSight 8.2 and later.

Unstructured Auto Distribute is a capability requiring Server of Servers
(SOS) that will partition an unstructured model for you automatically
across a set of servers.

If you do not implement this routine (and the other in buffers routines)

in your reader, EnSight can still perform this operation but will require
much more memory on each server to read in the data (somewhat like each
server having to read the whole model). You will however, get the execution
advantage of having your model partitioned across multiple servers.

If you do implement this routine (and the other in buffers routines) in
your reader (in a proper manner), you should be able to not only get the
execution advantages, but also memory usage on each server which is
proportional to the subset that it is assigned to deal with.

Note that this optional routine is functionally quite similar

to the USERD get part coords routine. And thus its implementation should
not be too difficult to add to any existing reader that has already
implemented the USERD get part coords routine.

(IN) part number = The part number
(l1-based index of part table, namely:
1 ... Numparts_ available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(IN) first = TRUE if first invocation of a buffered set.
Will be FALSE for all subsequent invocations
of the set. This is so you can open files,
get to the correct starting spot,
initialize, etc.

(IN) n beg = Zero based, first node index
of the buffered set

(IN) n_end = Zero based, last node index
of the buffered set

Thus, for first five nodes:

n beg = 0
n end = 4
total number = (n end - n beg) + 1 = (4 - 0) +1 =25

for second five nodes, would be:

n beg = 5
n end = 9
total number = (n_end - n beg) + 1 = (9 - 5) + 1 =25

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

2-82 EnSight 8 Interface Manual

(IN) buffer size

(OUT) coord array

(IMPORTANT:

(IMPORTANT:

Example, if we had

first invocation:
first = TRUE

n beg = 0
n _end = 644
buffer size = 2

coord array[3] [
*num_returned =
return (0)

second invocation
first = FALSE
n beg = 0
n end = 644
buffer size = 2
coord array[3][
*num_returned =
return (0)

third invocation:
first = FALSE
n beg 0
n _end = 644
buffer size = 2
coord array[3] [
*num_returned =
return (0)

fourth invocation
first = FALSE
n beg = 0
n end = 644
buffer size = 2
coord array[3][
*num_returned =
return (1)

(ouT) *num retur

L R N S S S S S S S N S ST SN S S S S S T S e S N S S S S N S S S S S N SN S S SIS T S S S S ST S N

EnSight 8 Interface Manual

2.4 USERD_get_part_coords_in_buffers

for all nodes of a part, would be:
n beg = 0
n_end num nodes - 1

The size of the buffer.
Namely: coord array[3] [buffer size]

2D float buffer array which is set up to
hold x,y,z coordinates of nodes.

the second dimension of of this array is O-based!!!)
in the sister routine (USERD get part coords) - which
does not use buffers. This array is l-based.

So pay attention.)

(Array will have been allocated
3 by buffer size long

a part with 645 nodes and the buffer size was set to 200

Will be TRUE the first time!

00
200] fill with values for nodes 1 - 200 (zero-based)
200 set this

return this (indicates more to do)

: which occurs because we returned a 0 last time
will now be FALSE

00
200] fill with values for nodes 201 - 400 (zero-based)
200 set this
return this (indicates more to do)
which occurs because we returned a 0 last time
will still be FALSE
00
200] fill with values for nodes 401 - 600 (zero-based)
200 set this

return this (indicates more to do)

: which occurs because we returned a 0 last time
will still be FALSE

00
200] fill with values for nodes 601 - 645 (zero-based)
45 set this
return this (indicates done!)
ned = The number of nodes whose coordinates are returned

in the buffer. This will normally be equal to
buffer size except for that last buffer -
which could be less than a full buffer.

2-83

2.4 USERD_get_part_coords_in_buffers

*

* returns 0 if got some, more to do

* 1 if got some, done

* -1 if an error

*

* Notes:

* * This will be based on Current time step

*

* * Not called unless number of nodes for the part > 0

*

* * Again, make sure each buffer is zero based. For our example above:

*

* Invocation:

* 1 2 3 4

5
* coord array[0] [0] x for node 1 node 201 node 401 node 601
* coord array[1l][0] y for W w W A

* coord array[2][0] z for W W W A

*

* coord array[0] [1] x for node 2 node 202 node 402 node 602
* coord array[1l][1] y for w w w W

* coord arrayl[2][1] z for W W W w

*

*

*

* coord array[0][199] x for node 200 node 400 node 600 node 645
* coord array[1][199] vy for W W W W

* coord array[2][199] z for W W W w

g g g g g g g g g g g */

int

USERD get part coords in buffers(int part number,
float **coord array,
int first,
int n beg,
int n_end,
int buffer size,
int *num returned)

2-84 EnSight 8 Interface Manual

USERD _get part_element_ids_by type

*

*

*

Prior to API 2.01:

unstructured part.

Starting at API 2.01:

unstructured or structured part.

EnSight 8 Interface Manual

2.4 USERD_get_part_element_ids_by_type

(version 2.00 and later)

(IN) part number = The part number

Gets the ids for the elements of a particular type for an

Gets the ids for the elements of a particular type for an

(1-based index of part table,

Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(Modified at 2.01 as described below)
(Modified at 2.03 as described below)

namely:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* (IN) element type = One of the following (See global extern.h)
* Z POINT node point element

* Z BAR02 2 node bar

* Z BARO3 3 node bar

* Z TRIO3 3 node triangle

* Z TRIO6 6 node triangle

* Z _QUAO4 4 node quad

* Z QUAOS8 8 node quad

* Z TET04 4 node tetrahedron

* Z TET10 10 node tetrahedron

* Z_ PYROS5 5 node pyramid

* Z PYR13 13 node pyramid

* Z _PENO6 6 node pentahedron

* Z PEN15 15 node pentahedron

* Z HEX08 8 node hexahedron

* 7 HEXZ20 20 node hexahedron

* Starting at API 2.03 Z NSIDED nsided polygon

* Starting at API 2.03 Z NFACED nfaced polyhedron

*

* Starting at API 2.01:

*

* Z_ G POINT ghost node point element
* Z G BAROZ 2 node ghost bar

* Z G BARO3 3 node ghost bar

* Z G _TRIO3 3 node ghost triangle

* Z G TRIO6 6 node ghost triangle

* Z G _QUAO4 4 node ghost quad

* Z G QUAOS8 8 node ghost quad

* Z G TET04 4 node ghost tetrahedron
* Z G TET10 10 node ghost tetrahedron
* Z G _PYRO5 5 node ghost pyramid

* Z G PYR13 13 node ghost pyramid

* Z G _PENO6 6 node ghost pentahedron
* Z G PEN15 15 node ghost pentahedron

2-85

2.4 USERD_get_part_element_ids_by_type

Z_ G _HEXO08 8 node ghost hexahedron

Z G _HEX20 20 node ghost hexahedron
Starting at API 2.03 7Z G NSIDED ghost nsided polygon
Starting at API 2.03 7Z G NFACED ghost nfaced polyhedron
(OUT) elemid array = 1D array containing id of each

element of the type.

(Array will have been allocated
number of elements of type long)

ex) If number of elements[Z TRIO3] 25
number of elements([Z QUAO4] = 100
number of elements[Z HEX08] 30
as obtained in:
USERD get gold part build info

Then the allocated dimensions available
for this routine will be:

elemid array[25] when called with Z TRIO3
elemid array[100] when called with Z QUAO4
elemif array[30] when called with Z HEXO08

returns: Z OK 1if successful
Z ERR if not successful

Notes:
* This will be based on Current time step

Prior to API 2.01:

* Not called unless Num unstructured parts is > 0 and element
label status is TRUE

Starting at API 2.01:

* Not called unless element label status is TRUE in
USERD get element label status

L T S A S S S S N S R A N S S N S S N S S S S S R S R

int

USERD get part element ids by type(int part number,
int element type,
int *elemid array)

2-86 EnSight 8 Interface Manual

2.4 USERD_get_part_element_ids_by_type_in_buffers

USERD get part_element_ids_by type_in_buffers

* <optional> (version 2.08 and later)

Gets the ids for the elements of a particular type
in an unstructured part in buffers

This is one of several optional routines than can be added into any
API 2.* reader to be used by the Unstructured Auto Distribute
capability in EnSight 8.2 and later.

Unstructured Auto Distribute is a capability requiring Server of Servers
(SOS) that will partition an unstructured model for you automatically
across a set of servers.

If you do not implement this routine (and the other in buffers routines)
in your reader, EnSight can still perform this operation but will
require much more memory on each server to read in the data (somewhat
like each server having to read the whole model). You will however, get
the execution advantage of having your model partitioned across multiple
servers.

If you do implement this routine (and the other in buffers routines)

in your reader (in a proper manner), you should be able to not only get
the execution advantages, but also memory usage on each server which is
proportional to the subset that it is assigned to deal with.

Note that this optional routine is functionally quite similar

to the USERD get part element ids by type routine. And thus its
implementation should not be too difficult to add to any existing reader
that has already implemented the USERD get part element ids by type

routine.
(IN) part number = The part number
(l1-based index of part table, namely:
1 ... Numparts available.
It is NOT the part id that is
loaded in USERD get gold part build info)
(IN) element type = One of the following (See global extern.h)
Z POINT node point element
Z BAR02 2 node bar
Z BARO3 3 node bar
Z TRIO3 3 node triangle
Z TRIO06 6 node triangle
Z QUAO4 4 node quad
Z QUAOS8 8 node quad
Z TET04 4 node tetrahedron
Z TET10 10 node tetrahedron
Z_ PYRO5 5 node pyramid
Z PYR13 13 node pyramid
Z PENO6 6 node pentahedron
Z PEN15 15 node pentahedron
Z HEX08 8 node hexahedron
Z HEX20 20 node hexahedron

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual 2-87

2.4 USERD_get_part_element_ids_by_type_in_buffers

Starting at API 2.01:

Z G POINT ghost node point element

Z G BAROZ2 2 node ghost bar

Z G BARO3 3 node ghost bar

Z G _TRIO3 3 node ghost triangle

Z G TRIO6 6 node ghost triangle

Z G QUAO4 4 node ghost quad

Z G QUAOS8 8 node ghost quad

Z G TET04 4 node ghost tetrahedron

Z G TET10 10 node ghost tetrahedron

Z G _PYRO5 5 node ghost pyramid

Z G PYR13 13 node ghost pyramid

Z G _PENO6 6 node ghost pentahedron

Z G _PEN15 15 node ghost pentahedron

7Z G HEX08 8 node ghost hexahedron

Z G HEXZ20 20 node ghost hexahedron

Z NSIDED n node ghost nsided polygon

Z NFACED n face ghost nfaced polyhedron
Starting at API 2.02:

Z NSIDED node nsided polygon

n
Z NFACED n face nfaced polyhedron

Z G NSIDED n node ghost nsided polygon

Z G _NFACED n face ghost nfaced polyhedron

(IN) first = TRUE 1f first invocation of a buffered set.
Will be FALSE for all subsequent invocations
of the set. This is so you can open files,
get to the correct starting spot,
initialize, etc.

(IN) e beg = Zero based, first element number
of the buffered set

(IN) e end = Zero based, last element number
of the buffered set

Thus, for first five elements of a type:

e beg = 0

e end = 4

total number = (e end - e beg) + 1 = (4 - 0) + 1 =25
for second five elements of a type, would be:

e beg = 5

e end = 9

total number = (e end - e beg) + 1 = (9 - 5) +1 =25

for all elements of the type of a part, would be:
n beg = 0
n _end = num elements of type - 1

The size of the buffer.
Namely: elemid array[buffer size]

(IN) buffer size

(OUT) elemid array 1D buffer array which is set up to hold ids

of elements of the type.

(Array will have been allocated
buffer size long)

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

2-88 EnSight 8 Interface Manual

L R N S S S S S S S N S ST SN S S S S S T S e S N S S S S N S S S S S N SN S S SIS T S S S S ST S N

* Example, (if 158 quad elements,

(get all 158 quad4 ids in one
element type = 7z QUAO4

first = TRUE

e beg =0

e end = 157
buffer size = 20
elemeid array[20
*num returned =
return (1)

* Example, (if 158 quad elements,

first invocation:

element type = 7z QUAO4

first = TRUE

e beg =0

e end = 157
buffer size =
elemid array([7
*num_ returned
return (0)

7
5

5
]

second invocation:

element type = Z QUAO4

first = TRUE

e beg =0

e end = 157
buffer size = 75
elemid array[75]
*num returned =
return (0)

third invocation:

element type = Z QUAO4

first = TRUE

e beg =0

e end = 157
buffer size = 75
elemid array[75]
*num_returned =
return (1)

(OUT) *num returned

returns 0 1if got some,
1 if got some,
-1 1if an error

Notes:
* This will be based on

* Again, make sure each
For our example using

EnSight 8 Interface Manual

0
0]
158

75

75

8

more
done

2.4 USERD_get_part_element_ids_by_type_in_buffers

and buffer size is 200)

invocation)

Will be TRUE the first time!

(zero based, first element index)
(zero based, last element index)

Use first 158 locations of the array
set this

return this (indicates no more to do)

and buffer size is 75)

Will be TRUE the first time!

load in ids for elements 1 - 75
set this
return this (indicates more to do)

Will be TRUE the first time!

load in ids for elements 76 - 150
set this
return this (indicates more to do)

Will be TRUE the first time!

load in ids for elements 151 - 158
set this
return this (indicates no more to do)

The number of elements whose ids are returned
in the buffer. This will normally be equal

to buffer size except for that last buffer

- which could be less than a full buffer.

Current time step

buffer is zero based.
buffers above:

2-89

2.4 USERD_get_part_element_ids_by_type_in_buffers

2-90

*
*
*
* elemid array[0] elem id
*
* elemid array([1l] elem id
*
*
*
* elemid array[74] elem id
*
int

for quad 1

for quad 2

for quad 75

USERD get part element ids by type in buffers (int

int
int
int
int
int
int
int

Invocation:

quad 76

quad 77

quad 150

part number,
element type,
*elemid array,
first,

e beg,

e end,

buffer size,
*num_ returned)

EnSight 8 Interface Manual

USERD get part_elements_by type

*

*

*

EnSight 8 Interface Manual

2.4 USERD_get_part_elements_by_type

(version 2.00 and later)

(Modified at 2.01 as described below)
(Modified at 2.03 as described below)

*

* Gets the connectivities for the elements of a particular type

* in an unstructured part

*

* (IN) part number = The part number

*

* (1-based index of part table, namely:
*

* 1 ... Numparts_ available.

*

* It is NOT the part id that is

* loaded in USERD get gold part build info)
*

* (IN) element type = One of the following (See global extern.h)
* Z POINT node point element

* Z BAR02 2 node bar

* Z BARO3 3 node bar

* Z TRIO3 3 node triangle

* Z TRIO06 6 node triangle

* Z QUAO4 4 node quad

* Z QUAOS8 8 node quad

* Z TETO04 4 node tetrahedron

* Z TET10 10 node tetrahedron

* Z_ PYRO5 5 node pyramid

* Z PYR13 13 node pyramid

* Z PENO6 6 node pentahedron

* Z PEN15 15 node pentahedron

* Z HEX08 8 node hexahedron

* Z HEX20 20 node hexahedron

* Starting at API 2.03 Z NSIDED nsided polygon

* Starting at API 2.03 7Z NFACED nfaced polyhedron

*

* Starting at API 2.01:

*

* Z G _POINT ghost node point element
* Z G BARO02 2 node ghost bar

* Z G BARO3 3 node ghost bar

* Z G TRIO3 3 node ghost triangle

* Z G TRIO6 6 node ghost triangle

* Z G _QUA04 4 node ghost quad

* Z G _QUAOS8 8 node ghost quad

* Z G TET04 4 node ghost tetrahedron
* Z G TET10 10 node ghost tetrahedron
* Z G _PYRO5 5 node ghost pyramid

* Z G PYRI13 13 node ghost pyramid

* Z_ G _PENOG6 6 node ghost pentahedron
* Z G _PEN15 15 node ghost pentahedron
* Z G _HEXO08 8 node ghost hexahedron
* 7Z G HEX20 20 node ghost hexahedron
* Starting at API 2.03 7Z G NSIDED ghost nsided polygon

* Starting at API 2.03 Z G NFACED ghost nfaced polyhedron

*

*

*

*

2-91

2.4 USERD_get_part_elements_by_type

(OUT) conn_array = 2D array containing connectivity
of each element of the type.

(Array will have been allocated
number of elements of

the type by connectivity length
of the type)

ex) If number of elements([Z TRIO3] = 25
number of elements([Z QUAO4] = 100
number of elements[Z HEXO08] 30
as obtained in:
USERD get gold part build info

Then the allocated dimensions available
for this routine will be:
conn array[25] [3] when called with Z TRIO3

conn_array[100] [4] when called with Z QUAO4
conn_array[30] [8] when called with Z HEXO08

returns: Z OK if successful
Z ERR 1f not successful

Notes:
* This will be based on Current time step
* Not called unless Num unstructured parts is > 0

ECRE T R S S I S N S S S N A T N R

int

USERD get part elements by type (int part number,
int element type,
int **conn_array)

2-92 EnSight 8 Interface Manual

2.4 USERD_get_part_elements_by_type_in_buffers

USERD_get part_elements_by type_in_buffers

* <optional> (Version 2.08 and later)

Gets the connectivities for the elements of a particular type
in an unstructured part in buffers

This is one of several optional routines than can be added into any
API 2.* reader to be used by the Unstructured Auto Distribute
capability in EnSight 8.2 and later.

Unstructured Auto Distribute is a capability requiring Server of Servers
(SOS) that will partition an unstructured model for you automatically
across a set of servers.

If you do not implement this routine (and the other in buffers routines)

in your reader, EnSight can still perform this operation but will require
much more memory on each server to read in the data (somewhat like each
server having to read the whole model). You will however, get the execution
advantage of having your model partitioned across multiple servers.

If you do implement this routine (and the other in buffers routines) in
your reader (in a proper manner), you should be able to not only get the
execution advantages, but also memory usage on each server which is
proportional to the subset that it is assigned to deal with.

Note that this optional routine is functionally quite similar
to the USERD get part elements by type routine. And thus its
implementation should not be too difficult to add to any existing reader
that has already implemented the USERD get part elements by type routine.
(IN) part number = The part number

(l1-based index of part table, namely:

1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(IN) element type = One of the following (See global extern.h)
Z POINT node point element
Z BAR02 2 node bar
Z BARO3 3 node bar
Z TRIO3 3 node triangle
Z _TRIO6 6 node triangle
Z_QUAO4 4 node quad
Z QUAOS8 8 node quad
Z TETO04 4 node tetrahedron
Z TET10 10 node tetrahedron
Z_ PYRO5 5 node pyramid
Z PYR13 13 node pyramid
Z PENO6 6 node pentahedron
7Z PEN15 15 node pentahedron
Z HEX08 8 node hexahedron
Z HEXZ20 20 node hexahedron

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual 2-93

2.4 USERD_get_part_elements_by_type_in_buffers

Starting at API 2.01:

Z G POINT ghost node point element

Z G BAROZ2 2 node ghost bar

Z G BARO3 3 node ghost bar

Z G _TRIO3 3 node ghost triangle

Z G TRIO6 6 node ghost triangle

Z G QUAO4 4 node ghost quad

Z G QUAOS8 8 node ghost quad

Z G TET04 4 node ghost tetrahedron

Z G TET10 10 node ghost tetrahedron

Z G _PYRO5 5 node ghost pyramid

Z G PYR13 13 node ghost pyramid

Z G _PENO6 6 node ghost pentahedron

Z G _PEN15 15 node ghost pentahedron

7Z G HEX08 8 node ghost hexahedron

Z G HEXZ20 20 node ghost hexahedron

Z NSIDED n node ghost nsided polygon

Z NFACED n face ghost nfaced polyhedron
Starting at API 2.02:

Z NSIDED node nsided polygon

n
Z NFACED n face nfaced polyhedron

Z G NSIDED n node ghost nsided polygon

Z G _NFACED n face ghost nfaced polyhedron

(IN) first = TRUE 1f first invocation of a buffered set.
Will be FALSE for all subsequent invocations
of the set. This is so you can open files,
get to the correct starting spot,
initialize, etc.
(IN) e beg = Zero based, first element number of the buffered set

(IN) e end = Zero based, last element number of the buffered set

Thus, for first five elements of a type:

e beg =0

e end = 4

total number = (e end - e beg) + 1 = (4 - 0) +1 =25
for second five elements of a type, would be:

e beg = 5

e end = 9

total number = (e end - e beg) + 1 = (9 - 5) + 1 =25

for all elements of the type of a part, would be:

n beg = 0
n _end = num elements of type - 1
(IN) buffer size = The size of the buffer.

Namely: conn_array[buffer size] [element size]

(OUT) conn_array = 2D buffer array which is set up to hold
connectivity of elements of the type.

(Array will have been allocated
buffer size of the type by connectivity length
of the type)

P S A e T S N I R T R S N I S S T S S S R S S I S S . S I N I T T S T S S

2-94 EnSight 8 Interface Manual

2.4 USERD_get_part_elements_by_type_in_buffers

ex) The allocated dimensions available
for this routine will be:

conn_arraylbuffer size] [3] when called with Z TRIO3
conn_array[buffer size] [4] when called with Z QUAO4
conn_array[buffer size][8] when called with Z HEXO08
etc.

* Example, (if 158 quad elements, and buffer size is 200)

(get all 158 quad4s in one invocation)
element type = Z QUAO4

first = TRUE Will be TRUE the first time!

e beg =0 (zero based, first element index)

e end = 157 (zero based, last element index)

buffer size = 200

conn_array[200] [4] Use first 158 locations of the array

*num_returned = 158 set this

return (1) return this (indicates no more to do)
* Example, (if 158 quad elements, and buffer size is 75)

first invocation:
element type = Z QUAO4

first = TRUE Will be TRUE the first time!

e beg =0

e end = 157

buffer size = 75

conn_array[75] [4] load in conn for elements 1 - 75

*num_returned = 75 set this

return (0) return this (indicates more to do)
second invocation:

element type = 7z QUAO4

first = TRUE Will be TRUE the first time!

e beg =0

e end = 157

buffer size = 75

conn_arrayl[75] [4] load in conn for elements 76 - 150

*num_returned = 75 set this

return (0) return this (indicates more to do)
third invocation:

element type = 7z QUAO4

first = TRUE Will be TRUE the first time!

e beg =0

e end = 157

buffer size = 75

conn_array[75] [4] load in conn for elements 151 - 158

*num_returned = 8 set this

return (1) return this (indicates no more to do)

(OUT) *num_returned = The number of elements whose connectivities

are returned in the buffer. This will
normally be equal to buffer size except for
that last buffer - which could be less than
a full buffer.

L R T N S S S S S S S N S NS SN N I I S S G e S S S S N S S SN S T S IS S S S N S S N S N S S S S

EnSight 8 Interface Manual

2.4 USERD_get_part_elements_by_type_in_buffers

* returns 0 1if got some, more to do
* 1 if got some, done
* -1 if an error
*
* Notes:
* * This will be based on Current time step
*
* * Again, make sure each buffer is zero based.
* For our example using buffers above:
*
* Invocation:
* 1 2 3
ko L e e
* conn_array[0] [0] node 1 in conn for quad 1 quad 76 quad 151
* conn_arrayl[0] [1] node 2 in conn for quad 1 quad 76 quad 151
* conn_arrayl[0] [2] node 3 in conn for quad 1 quad 76 quad 151
* conn arrayl[0] [3] node 4 in conn for quad 1 quad 76 quad 151
*
* conn_arrayl[1][0] node 1 in conn for quad 2 quad 77 quad 152
* conn_arrayl[1l][1] node 2 in conn for quad 2 quad 77 quad 152
* conn_arrayl[1l][2] node 3 in conn for quad 2 quad 77 quad 152
* conn_arrayl[1l] [3] node 4 in conn for quad 2 quad 77 quad 152
*
*
*
* conn_array[74][0] node 1 in conn for quad 75 quad 150 quad 158
* conn_arrayl[74][1] node 2 in conn for quad 75 quad 150 quad 158
* conn_arrayl[74][2] node 3 in conn for quad 75 quad 150 quad 158
* conn array[74][3] node 4 in conn for quad 75 quad 150 quad 158
K e e */
int
USERD get part elements by type in buffers (int part number,

int element type,

int **conn array,

int first,

int e beg,

int e _end,

int buffer size,

int *num returned)

2-96 EnSight 8 Interface Manual

2.4 USERD_get_part_node_ids

USERD_get part_node_ids

(Version 2.00 and later)
(Modified at 2.01 as described below)

Prior to API 2.01:

*

*

Get the node ids of an unstructured part.

Starting at API 2.01:

Get the node ids of an unstructured or structured part.
(IN) part number = The part number
(l1-based index of part table, name
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part bui

(OUT) nodeid array = 1D array containing node ids of
each node in the part.

(IMPORTANT: this array is l-based!!!)

(Array will have been allocated

ex) If number of nodes = 100
as obtained in:
USERD get gold part build info

Then the allocated dimensions of the

pointer sent to this routine will be:
nodeid array[101]

the node ids at:
nodeid array([1l]
nodeid array[2]
etc.
returns: Z OK 1f successful

Z ERR if not successful

Notes:
* This will be based on Current time step

* Not called unless number of nodes for the part is > 0 and

* The ids are purely labels, used when displaying or querying node
However, any node id < 0 will never be displayed

L I A N S S S N S S S S S N S R i e S N S S N SRS T S IS S S S T S T N S T S S S N NS S S S

int
USERD get part node ids (int part number,
int *nodeid array)

EnSight 8 Interface Manual

ly:

1d info)

(number of nodes + 1) for the part long
see USERD get gold part build info)

Ignore the nodeid array[0] location and start

node label status is TRUE, as returned from USERD get node label status

ids.

2-97

2.4 USERD_get_part_node_ids_in_buffers

USERD_get part_node_ids_in_buffers

* <optional> (Version 2.08 an later)

Get the node ids for an unstructured part in buffers.

This is one of several optional routines than can be added into any
API 2.* reader to be used by the Unstructured Auto Distribute
capability in EnSight 8.2 and later.

Unstructured Auto Distribute is a capability requiring Server of Servers
(SOS) that will partition an unstructured model for you automatically
across a set of servers.

If you do not implement this routine (and the other in buffers routines)

in your reader, EnSight can still perform this operation but will require
much more memory on each server to read in the data (somewhat like each
server having to read the whole model). You will however, get the execution
advantage of having your model partitioned across multiple servers.

If you do implement this routine (and the other in buffers routines)

in your reader (in a proper manner), you should be able to not only get
the execution advantages, but also memory usage on each server which is
proportional to the subset that it is assigned to deal with.

Note that this optional routine is functionally quite similar
to the USERD get part node ids routine. And thus its implementation should
not be too difficult to add to any existing reader that has already
implemented the USERD get part node ids routine.
(IN) part number = The part number

(l-based index of part table, namely:

1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(IN) first = TRUE if first invocation of a buffered set.
Will be FALSE for all subsequent invocations
of the set. This is so you can open files, get to
the correct starting spot, initialize, etc.

(IN) n beg = Zero based, first node index
of the buffered set

(IN) n_end = Zero based, last node index
of the buffered set

Thus, for first five nodes:

n beg = 0
n end = 4
total number = (n end - n beg) + 1 = (4 - 0) +1 =25

for second five nodes, would be:

n beg = 5
n end = 9
total number = (n_end - n beg) + 1 = (9 - 5) + 1 =25

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

2-98 EnSight 8 Interface Manual

2.4 USERD_get_part_node_ids_in_buffers

for all nodes of a part, would be:
n beg = 0
n _end = num nodes - 1

(IN) buffer size = The size of the buffer.
Namely: nodeid array[buffer size]

(OUT) nodeid array 1D buffer array which is set up to hold

node ids of nodes
(IMPORTANT: this array is O-based!!!)

(IMPORTANT: in the sister routine (USERD get part node ids) - which
does not use buffers. This array is l-based.
So pay attention.)

(Array will have been allocated
buffer size long)

Example, if we had a part with 645 nodes and the buffer size was set to 200

first invocation:
first = TRUE Will be TRUE the first time!
n beg = 0
n _end = 644
buffer size = 200

nodeid array[200] fill with values for nodes 1 - 200 (zero-based)
*num_returned = 200 set this
return (0) return this (indicates more to do)

second invocation: which occurs because we returned a 0 last time
first = FALSE will now be FALSE
n beg = 0

n end = 644
buffer size = 200

nodeid array[200] fill with values for nodes 201 - 400 (zero-based)
*num_returned = 200 set this
return (0) return this (indicates more to do)

third invocation: which occurs because we returned a 0 last time
first = FALSE will still be FALSE
n beg = 0

n _end = 644
buffer size = 200

nodeid array[200] fill with values for nodes 401 - 600 (zero-based)
*num_returned = 200 set this
return (0) return this (indicates more to do)

fourth invocation: which occurs because we returned a 0 last time
first = FALSE will still be FALSE
n beg = 0

n end = 644
buffer size = 200

nodeid array[200] fill with values for nodes 601 - 645 (zero-based)
*num_returned = 45 set this
return (1) return this (indicates done!)

(OUT) *num_returned = The number of nodes whose ids are returned

in the buffer. This will normally be equal
to buffer size except for that last buffer
- which could be less than a full buffer.

L R T N N S S S S S S S N S ST SN S S S S S S G e S S e S N S S S S N S IS S S S N S S N S A e N

EnSight 8 Interface Manual 2-99

2.4 USERD_get_part_node_ids_in_buffers

2-100

returns 0 1if got some, more to do
1 if got some, done
-1 1if an error

Notes:

L T A T S N S T IS e S SRS S S T

* This will be based on Current time step

* Not called unless number of nodes for the part > 0

Invocation:

1 2 3
nodeid array[0] id for node 1 node 201 node 401
nodeid array[1] id for node 2 node 202 node 402

nodeid array[199] id for node 200 node 400 node 600

* Again, make sure each buffer is zero based. For our example above:

node 645

g g g g g g g g g g g g */
int
USERD get part node ids in buffers(int part number,
int *nodeid array,
int first,
int n beg,
int n_end,
int buffer size,

int

*num_returned)

EnSight 8 Interface Manual

2.4 USERD_get_reader_descrip

2 —————

USERD _get reader_descrip

* <optional> (Version 2.00 and later)

K e e e ————————————— o ——————

*

* Gets the description of the reader, so gui can give more info

*

* (OUT) reader descrip = the description of the reader

* (max length is MAXFILENP, which

* is 255)

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

K e e e * /
int

USERD get reader descrip(char descrip[Z MAXFILENP])

EnSight 8 Interface Manual 2-101

2.4 USERD_get_reader_release

2 ————

USERD _get reader _release

* <optional> (Version 2.00 and later)
K e e
*

* Gets the release string for the reader.

*

* This release string is a free-format string which is for

* informational purposes only. It is often useful to increment

* the release number/letter to indicate a change in the reader.

* The given string will simply be output by the EnSight server

* when the reader is selected.

*

* (OUT) release number = the release number of the reader

* (max length is Z MAX USERD NAME, which

* is 20)

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

* Notes:

* * Called when the reader is selected for use.

K e e e e e o o o o o o o o e o o o e o o o o o e e e e o o e * /
int

USERD get reader release(char version number[Z MAX USERD NAME])

2-102 EnSight 8 Interface Manual

2.4 USERD_get_reader_version

2 —————
USERD _get reader_version
* (Version 2.00 and later)
K e e o
*
* Gets the API version number of the user defined reader
*
* The functions that EnSight will call depends on this API
* version. See the README files for more information.
*
* (OUT) version_number = the version number of the reader
* (max length is Z MAX USERD NAME, which
* is 20)
*
* returns: Z OK 1if successful
* Z ERR 1f not successful
*
* Notes:
* * Always called.
*
* * This needs to be “2.000” or greater. Otherwise EnSight will assume
* this reader is API 1.0 instead of 2.0
K e e e e e o o o o o o o o o o o o o o e o e e e e o e o e o * /
int

USERD get reader version(char version number[Z MAX USERD NAME])

EnSight 8 Interface Manual 2-103

2.4 USERD_get_sol_times

2 ————
USERD_get _sol_times
* (Version 2.00 and later)
K e e
*
* Get the solution times associated with each time step for desired timeset.
*
* (IN) timeset number = the timeset number (1 based)
*
* For example: If USERD get number of timesets
* returns 2, the valid
* timeset number’s would be 1 and 2.
*
* (OUT) solution times = 1D array of solution times per time step
*
* (Array will have been allocated
* Num time steps[timeset number] long)
*
* returns: Z OK 1if successful
* Z ERR 1f not successful
*
* Notes:
* * These must be non-negative and increasing.
K e e e e e e o e o o o e o o e o o o e e e e o e o o e * /

int

USERD get sol times(int timeset number,
float *solution times)

2-104 EnSight 8 Interface Manual

2.4 USERD_get_structured_reader_cinching

USERD_get _structured_reader_cinching

* (Version 2.06 and later)

Gets whether this reader will do structured cinching for block data
This means that it will handle the min, max, and step values for a
given block and return the coordinate components or variable components
in their “cinched” state when partial extraction or striding is used.
This is as opposed to returning the entire component (ignoring min, max
and stride) and letting Ensight pick out the values actually used.

returns: Z OK if the reader will handle the
min, max, and stride and return
the cinched values only.

Z UNDEF or Z ERR if will return entire component
and rely on EnSight to cinch.

Notes:
Unless you can actually pull out the desired min, max, and stride
without using a full component of memory, don’t enable this feature.

L T R S N S N N S S S S L S

int
USERD get structured reader cinching(void)

EnSight 8 Interface Manual 2-105

2.4 USERD_get_timeset_description

2 ————
USERD_get timeset _description
* (Version 2.00 and later)
K e e
*
* Get the description to associate with the desired timeset.
*
* (IN) timeset number = the timeset number
*
* For example: If USERD get number of timesets
* returns 2, the valid
* timeset number’s would be 1 and 2.
*
* (OUT) timeset description = timeset description string
*
*
* returns: Z OK 1if successful
* Z ERR if not successful
*
* Notes:
* * A string of NULLs is valid for timeset description
K e e * /
int

USERD get timeset description(int timeset number,
char timeset description[Z BUFL])

2-106 EnSight 8 Interface Manual

2.4 USERD_get_uns_failed_params

Provides the failure variable and and failure criteria for failed elements

(OUT) fail var name = Variable name to be used for failure.
Must be a per-elem scalar!

(OUT) threshold vall = 1lst number for failure comparison
Always used in the determination.
If threshold operatorl is 7z ELE FAILED EQUAL,
then only this threshold value is used.

(OUT) threshold val2 = 2nd number for failure comparison
Will be used if threshold operatorl is not
set to Z ELE FAILED EQUAL and
logic criteria2 is set to
7z ELE FAILED LOGIC AND or
Zz ELE FAILED LOGIC OR

(OUT) threshold operatorl = 1st threshold operator
Z ELE FAILED GREATER - greater than
Z ELE FAILED LESS - less than
7z ELE FAILED EQUAL - equal
Z ELE FAILED NOT EQUAL - not equal

Sets the logic for use of threshold vall

(OUT) threshold operator2 = 2nd threshold operator
Z ELE FATILED GREATER - greater than
Z ELE FAILED LESS - less than
7z ELE FAILED EQUAL - equal
Z ELE FAILED NOT EQUAL - not equal

Used if logic criteriaZ2 is set to
7 ELE FAILED LOGIC AND or
7 ELE _FAILED LOGIC OR
Sets the loginc for use of threshold val2

(OUT) logic criteria2 = Determines if using second criteria and if it
is an and or or condition
7z ELE_FAILED LOGIC NONE
7z ELE_FATILED LOGIC AND
Zz ELE FAILED LOGIC OR

returns: TRUE 1if failed elements should be used
FALSE if not using failed elements

Notes:

Example 1:
If variable “failure” is an element scalar that has values which
are either 0.0 (for not-failed) or 1.0 (for failed), then:
fail var name = “failure”
threshold vall =1.0
threshold operatorl = Z ELE FAILED EQUAL
rest is ignored

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual 2-107

2.4 USERD_get_uns_failed_params

* Example 2:

* If variable “Stress” is an element scalar, and failure occurs
* when the stress exceeds 3000.0

* fail var name = “Stress”

* threshold vall = 3000.0

* threshold operatorl = 7z ELE FAILED GREATER

* logic_criteria2 = Z ELE FAILED LOGIC NONE

*

* Example 3:

* If variable “Stress” is an element scalar, and failure occurs
* when the value is less than -500, or greater than 400

* fail var name = “Stress”

* threshold vall = -500.0

* threshold operatorl = Z ELE FAILED LESS

* threshold val2 = 400.0

* threshold operator2 = Z ELE FAILED GREATER

* logic criteria2 = Z ELE FAILED LOGIC OR

K e e e */

int USERD get uns failed params (char *fail var name,
float *threshold vall,
float *threshold valZ2,
int *threshold operatorl,
int *threshold operator2,
int *logic criteria2)

2-108 EnSight 8 Interface Manual

2.4 USERD_get_var_by_component

USERD _get var_by component
* (Version 2.00 and later)
(Modified at 2.01 as described below)

*

*

Gets the values of a variable component. Both unstructured and structured
parts use this routine.

if Z PER NODE:
Get the component value at each node for a given variable in the part.

or if Z PER ELEM:
Get the component value at each element of a specific part and type for
a given variable.

(IN) which variable = The variable number (1 to Num variables)

(IN) which part Since EnSight Version 7.4

= The part number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

Prior to EnSight Version 7.4
= The part id This is the part id label
loaded in
USERD get gold part build info.
It is NOT the part table index.

(IN) var type = 72 SCALAR
Z_VECTOR
Z_ TENSOR (symmetric tensor)
Z _TENSOR9 (asymmetric tensor)

(IN) which type

L T T e N N S N S T S NS S SN S T S S N IS T N N S S AR e S N S S S S e S ST N SN S N SRS S S S S S D L .

if Z PER NODE: Not used

if Z PER ELEM: = The element type
Z POINT node point element
Z BAR0O2 2 node bar
7Z BARO3 3 node bar
Z TRIO3 3 node triangle
Z TRIO6 6 node triangle
Z _QUAO4 4 node quad
Z QUAOS8 8 node quad
Z _TET04 4 node tetrahedron
Z TET10 10 node tetrahedron
Z PYROS 5 node pyramid
Z PYR13 13 node pyramid
Z_ PENO6 6 node pentahedron
Z PEN15 15 node pentahedron
Z HEXO08 8 node hexahedron
7 HEX20 20 node hexahedron

EnSight 8 Interface Manual 2-109

2.4 USERD_get_var_by_component

2-110

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

Starting at API

2.01:

(IN) imag data

(IN) component

(OUT) var_ array

* L O

* ok X % o

G_POINT ghost node point element
G _BARO2 2 node ghost bar

G 3 node ghost bar

G 3 node ghost triangle

G 6 node ghost triangle

G 4 node ghost quad

G 8 node ghost quad

G TETO04 4 node ghost tetrahedron
G TET10 10 node ghost tetrahedron
G 5 node ghost pyramid

G 3 node ghost pyramid

G 6 node ghost pentahedron
G_PENI15 15 node ghost pentahedron
G HEXO08 8 node ghost hexahedron
G _HEX20 20 node ghost hexahedron

U
(29
Py
o
w
-

TRUE if imag component
FALSE if real component
The component: (0 if Z SCALAR)
0 2 if Z VECTOR)
0 -5 if Z TENSOR)
0 8 if Z TENSORY)

6 Symmetric Indicies, 0:5 *

____________________________ *
[11 12 13 | | 0 34 | ~*
| | | \

T = | 22 23 | = | 15 |
| | | | *
| 33 | | 2 1 %

9 General Indicies, 0:8 *

____________________________ *
| 11 12 13 | | 012 | *
| | | | *

T= 1212223 1] =1]3451]*
| | | | *
| 31 32 33 | | 678 | *

if 7 PER NODE:

Info

stored in this

var_array[0]
var_array([1l]
var_arrayl[2]
var array|[3]
etc.

1D array containing variable component value
for each node.

(Array will have been allocated
(number of nodes+l) long)

fashion:
not used
var component for node 1 of part
var component for node 2 of part
var component for node 3 of part

EnSight 8 Interface Manual

2.4 USERD_get_var_by_component

if Z PER ELEM: = 1d array containing variable component value
for each element of particular part & type.

(Array will have been allocated
(number of elements([which part] [which type] + 1)
long. See USERD get gold part build info)

Info stored in this fashion:

var _array[l] = var component for elem 1 (of part and type)
var_array[Z] = var component for elem 2 w
var array[3] = var conponent for elem 3 W

etc.

returns: Z OK 1f successful
Z ERR if not successful

or: Z UNDEF if this variable is not defined on this part. In which
case you need not load anything into the var array.

Notes:
* This will be based on Current time step

* Not called unless Num variables is > 0

* The per node or per elem classification must be obtainable from the
variable number (a var classify array needs to be retained)

* If the variable is not defined for this part, simply return with a
value of Z UNDEF. EnSight will treat the variable as undefined for
this part.

L S T N S N S N S T N S S N S T SN S S S S S S T

USERD get var by component (int which variable,
int which part,
int var type,
int which type,
int imag data,
int component,
float *var array)

EnSight 8 Interface Manual 2-111

2.4 USERD_get_var_by_component_in_buffers

USERD_get var_by component_in_buffers

* <optional> (Version 2.08 and later)

if 7Z PER NODE:
Get the component value at each node for a given variable in the part
in buffers.

or if Z PER ELEM:
Get the component value at each element of a specific part and type for
a given variable in buffers.

This is one of several optional routines than can be added into any
API 2.* reader to be used by the Unstructured Auto Distribute
capability in EnSight 8.2 and later.

Unstructured Auto Distribute is a capability requiring Server of Servers
(SOS) that will partition an unstructured model for you automatically
across a set of servers.

If you do not implement this routine (and the other in buffers routines)

in your reader, EnSight can still perform this operation but will require
much more memory on each server to read in the data (somewhat like each
server having to read the whole model). You will however, get the execution
advantage of having your model partitioned across multiple servers.

If you do implement this routine (and the other in buffers routines) in
your reader (in a proper manner), you should be able to not only get the
execution advantages, but also memory usage on each server which is
proportional to the subset that it is assigned to deal with.

Note that this optional routine is functionally quite similar

to the USERD get var by component routine. And thus its implementation
should not be too difficult to add to any existing reader that has already
implemented the USERD get var by component routine.

(IN) which variable The variable number (1 to Num variables)

(IN) which part Since EnSight Version 7.4

= The part number
(1-based index of part table, namely:
1 ... Numparts_available.

It is NOT the part id that is
loaded in USERD get gold part build info)

Prior to EnSight Version 7.4
= The part id This is the part id label
loaded in
USERD get gold part build inf\o.
It is NOT the part table index.

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

(IN) var_ type = Z SCALAR
Z VECTOR
Z TENSOR (symmetric tensor)
Z_ TENSORY (asymmetric tensor)

2-112 EnSight 8 Interface Manual

2.4 USERD_get_var_by component_in_buffers

(IN) which type

if 7Z PER NODE: Not used
if Z PER ELEM: = The element type
Z POINT node point element
Z BARO2 2 node bar
Z BARO3 3 node bar
Z TRIO3 3 node triangle
Z TRIO6 6 node triangle
Z QUAO4 4 node quad
Z QUAOS8 8 node quad
Z TET04 4 node tetrahedron
Z TET10 10 node tetrahedron
Z PYROS 5 node pyramid
Z PYR13 13 node pyramid
Z PENO6 6 node pentahedron
Z PEN15 15 node pentahedron
Z HEX08 8 node hexahedron
Z HEX20 20 node hexahedron
Z G _POINT ghost node point element
Z G BAROZ 2 node ghost bar
Z G BARO3 3 node ghost bar
Z G TRIO3 3 node ghost triangle
Z G TRIO6 6 node ghost triangle
Z G QUAO4 4 node ghost quad
Z G QUAOS8 8 node ghost quad
Z G TET04 4 node ghost tetrahedron
Z G _TET10 10 node ghost tetrahedron
Z G _PYRO5 5 node ghost pyramid
Z G PYR13 13 node ghost pyramid
Z G PENOG6 6 node ghost pentahedron
Z G PEN15 15 node ghost pentahedron
Z G HEX08 8 node ghost hexahedron
Z_G_HEX20 20 node ghost hexahedron

Z NSIDED n node nsided polygon

Z NFACED n face nfaced polyhedron

Z G NSIDED n node ghost nsided polygon

Z G NFACED n face ghost nfaced polyhedron

(IN) imag data = TRUE if imag component
FALSE if real component

L R N S S S S S S S N S T SN S IS S S ST e S S S S N S S S SN T S S SN S S N NS S N SIS T N S S SRS T T N N

(IN) component = The component: (0 if Z SCALAR)
(0 - 2 if Z VECTOR)
(0 - 5 if 7z TENSOR)
(0 - 8 if Z TENSOR9)
* 6 Symmetric Indicies, 0:5 *
K e *
* | 11 12 13 | | 0 34 | *
| | | \
T = | 22 23 | = | 15 |

EnSight 8 Interface Manual 2-113

2.4 USERD_get_var_by_component_in_buffers

2-114

L R T N S S S S S S S N S NS SN S I S S T e S S S S N S S S NS N S S SN S S N NS S S SIS T S IS S SRS ST T SN

* | I | *
* | 331 2 |
* 9 General Indicies, 0:8 *
K e *
* [11 12 13 | [01 2 |
* | | | \
* T =] 21 2223 | =] 345 | *
* | | | | >
* | 31 32 33 | | 6 78 | *
(IN) ne beg
if Z PER NODE: = Zero based, 1lst node index of the buffered set
if Z PER ELEM: = Zero based, 1lst element index of the buffered set
(IN) ne end
if Z PER NODE: = Zero based, last node index of the buffered set
if Z PER ELEM: = Zero based, last element index of the buffered set
Thus, for first five elements or nodes:
e beg =0
e end = 4
total number = (e end - e beg) + 1 = (4 - 0) +1 =25
for second five elements or nodes, would be:
e beg = 5
e end = 9
total number = (e end - e beg) + 1 = (9 - 5) + 1 =25
for all elements or nodes of a part, would be:
n beg = 0
n _end = num elements or nodes - 1
(IN) first = TRUE if first invocation of a buffered set.
Will be FALSE for all subsequent invocations
of the set. This is so you can open files,
get to the correct starting spot,
initialize, etc.
(IN) buffer size = The size of the buffer.
Namely: var arrayl[buffer size]

(IN) leftside = TRUE if current time is at a timestep or
when getting the left side of a time
span that encloses the current time.

= FALSE when getting the right side of a time
span that encloses the current time.

Timeline:

stepl step2 step3
| === ——————— | ———— | ——————- requires no interpolation
~ get values at step2
current time (leftside = TRUE)
Timeline:
stepl step2 step3

current time

requires interpolation
get values at stepl (leftside =
and get values at step2 (leftside

TRUE)
FALSE)

EnSight 8 Interface Manual

2.4 USERD_get_var_by component_in_buffers

Note that it would generally be easier for this routine if EnSight got all
of the left side, then all of the right side, and then did its
interpolation. But, in the spirit of doing things in buffers (to save
memory) 1t gets a left side buffer (and the corresponding right side

buffer and interpolates these), if needed, before going to the next
buffer of the set. Thus, you need to be able to handle that
situation.

Note also that EnSight will have called the routine to change the current
time step between the two invocations when interpolation is required.
And Ensight does the interpolating. This variable is provided so
that you can deal with two different files or pointers between the
corresponding invocations for the two times

(OUT) var array

(IMPORTANT: this array is O-based for both Z PER NODE and Z PER ELEM!!!

if Z PER NODE: = 1D buffer array set up to hold a variable
component value for nodes.

if Z PER ELEM: = 1D buffer array set up to hold a variable
component value for elements.

(Array will have been allocated
buffer size long)

Info stored in this fashion:

var_array[0] = var component for node or element 1 of part
var_array[l] = var component for node or element 2 of part
var array[2] = var component for node or element 3 of part
etc.

* Example, (if 158 quad elements with a real Z PER ELEM scalar,
current time is between steps, and buffer size is 75)

first invocation: (for left side of time span)
var type = Z SCALAR
which type = 7 PER ELEM
imag data = FALSE

component = 0

ne beg = 0

ne end = 157

first = TRUE Will be TRUE the first time!

buffer size = 75

leftside = TRUE <==

var_array[75] load in scalar value for elements 1 - 75

*num_returned = 75 set this

return (0) return this (indicates more to do)
second invocation: (for right side of time span)

var type = Z SCALAR
which type = 7 PER _ELEM
imag data = FALSE
component 0

L R N S S S S S S S N S T SN S IS S S ST e S S S S N S S S SN T S S SN S S N NS S N SIS T N S S SRS T T N N

EnSight 8 Interface Manual 2-115

2.4 USERD_get_var_by_component_in_buffers

ne beg = 0
ne end = 157
first = TRUE

buffer size = 75
leftside = FALSE
var array[75]

*num returned = 75
return (0)

L I S e I N S

*

third invocation:
var type = Z SCALAR
which type = Z PER _ELEM
imag data = FALSE
component = 0
ne beg = 0
ne end = 157
first = FALSE
buffer size = 75
leftside = TRUE
var_array[75]

*num_ returned = 75
return (0)

fourth invocation:
var type = Z SCALAR
which type = Z PER ELEM
imag data = FALSE
component = 0
ne beg = 0
ne end = 157
first = FALSE
buffer size = 75
leftside = FALSE
var array[75]

*num returned = 75
return (0)

L S SR N S N S S N S S N SRS T S S S S S S SN T N S N

*

fifth invocation:
var_ type = Z SCALAR
which type = Z PER _ELEM
imag data = FALSE
component = 0
ne beg = 0
ne end = 157
first = FALSE
buffer size = 75
leftside = TRUE
var array[75]

*num_returned = 8
return (1)

sixth invocation:
var type = Z SCALAR
which type = Z PER ELEM
imag data = FALSE

L R N N N S N S S S S

2-116

Note: Will still be TRUE (because is

right side)
<==
load in scalar value for elements 1 - 75
set this

return this (indicates more to do)

(for left side of time span)

Will be FALSE now

<==
load in scalar value for
elements 76 - 150
set this
return this (indicates more to do)

(for right side of time span)

<==
load in scalar value for
elements 76 - 150
set this
return this (indicates more to do)

(for left side of time span)

Will still be FALSE

<==
load in scalar value
for elements 151 - 158
set this
return this (indicates no more to do)

(for right side of time span)

EnSight 8 Interface Manual

2.4 USERD_get_var_by component_in_buffers

component = 0

ne beg = 0

ne end = 157
first = FALSE
buffer size = 75

leftside = FALSE <==
var_array[75] load in scalar value
for elements 151 - 158
*num_returned = 8 set this
return(1l) return this (indicates no more to do)
(OUT) *num returned = The number of nodes or elements whose variable values

are returned in the buffer. This will normally be
equal to buffer size except for that last buffer -
which could be less than a full buffer

returns 0 1if got some, more to do
if got some, done

-1 if an error

Notes:
* This will be based on Current time step

* Again, make sure each buffer is zero based.
For our example using buffers above:

Invocation:

var_array[0] quad 1L quad 1R quad 76L gquad 76R quad 151L gquad 151R

var_array[l] quad 2L quad 2R quad 77L gquad 77R quad 152L quad 152R

var_array[74] quad 75L quad 75R quad 150L quad 150R quad 158L gquad 158R

Where: L indicates left time step
R indicates right time step

L T S N S S N S S S S T S S S S S T S N N S T S S S S N SRS N

int

USERD get var by component in buffers (int which variable,
int which part,
int var type,
int which type,
int imag data,
int component,
float *var array,
int first,
int ne beg,
int ne end,
int buffer size,
int leftside,
int *num returned)

EnSight 8 Interface Manual 2-117

2.4 USERD_get_var_extract_gui_defaults

USERD _ get var_extract_gui_defaults

* <optional> (version 2.05 and later)

This routine defines the Titles, status, List choices, strings, etc that
are fed up to the GUI for that after read situation. (It is very similar
to the USERD get extra gui defaults routine, which occurs before the read)

(OUT) toggle Title = title for each toggle
array dimension is

[num toggles] by [Z LEN GUI TITLE STR] long

(OUT) toggle default status = Setting for each toggle (TRUE or FALSE)
array dimension is [num toggles] long

(OUT) pulldown Title

title for each pulldown
array dimension is
[num pulldowns] by [Z LEN GUI TITLE STR] long

(OUT) pulldown number in list = number of items in each pulldown
array dimension is [num pulldowns] long

(OUT) pulldown default selection = item selection for each pulldown
array dimension is [num pulldowns] long

(OUT) pulldown item strings pulldown item strings
array is [num pulldowns] by
[Z MAX NUM GUI PULL ITEMS] by

[z LEN GUI PULL STR] long

(OUT) field Title title for each field
array dimension is

[num fields] by [Z LEN GUI TITLE STR] long

content of the field
array dimension is
[num fields] by [Z LEN GUI TITLE STR] long

(OUT) field user string

returns: Z OK 1f successful
Z ERR if not successful

Notes:
* The library is loaded, this routine is called,
then the library is unloaded.

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.
K e ——————————————— */
int USERD get var extract gui defaults(char **toggle Title,
int *toggle default status,
char **pulldown Title,
int *pulldown number in list,
int *pulldown default selection,
char ***pulldown item strings,
char **field Title,
char **field user string)

LR S S R S S N S T N S e SRS S N S S . SN T S IS S NS S T S T N S T N S S S S

2-118 EnSight 8 Interface Manual

2.4 USERD_get_var_extract_gui_numbers

USERD get var_extract _gui_numbers

* <optional> (version 2.05 and later)

The Var Extract GUI routines are added to allow the user to customize a
extraction parameters for variable “after” the file has been read.

These things can be modified and the variables will be updated/refreshed
according to the new parameters.

(It is similar to the USERD get extra gui numbers routine)

This routine defines the numbers of toggles, pulldowns & fields

(OUT) num_Toggles = number of toggles that will be provided
(OUT) num pulldowns = number of pulldowns that will be provided
(OUT) num fields = number of fields that will be provided
Notes:

* There are three routines that work together:
USERD get var extract gui numbers
USERD get var extract gui defaults
USERD_set var extract gui data

The existence of these routine indicates that
you wish to have the Var Extract capability.

If you don’t want the Var Extract GUI features,
simply delete these routines, or change their
names to something such as

USERD DISABLED get var extract gui defaults

The presence of these routines

will ensure that EnSight will call them and

use their data to modify the extraction parameters
with some or all of the following:

toggles, pulldown menu and fields.

The user can then interact with the var extract portion of the
GUI and then send their choices to
USERD_set var extract gui data

Therefore if USERD get var extract gui numbers
exists then the other two must exist.

If none exist, then the GUI will be unchanged.

Toggle data will return an integer
TRUE if checked
FALSE if unchecked

Pulldown menu will return an integer representing
the menu item selected

Field will return a string Z LEN GUI FIELD STR long.

* The following are defined in the global extern.h
Z MAX NUM GUI PULL ITEMS max num GUI pulldowns
Z LEN GUI PULL STR max length of GUI pulldown string
Z LEN GUI FIELD STR max length of field string
Z LEN GUI TITLE STR max length of title string

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual 2-119

2.4 USERD_get_var_extract_gui_numbers

* The library is loaded, this routine is called,
then the library is unloaded.

* Do not define globals in this routine as when the library is unloaded,
you’ll lose them.

* ok X % kX

void USERD get var extract gui numbers(int *num Toggles,
int *num pulldowns,
int *num fields)

2-120 EnSight 8 Interface Manual

if 7 PER NODE:
Get the value of a particular variable
particular part at a particular time.

or if Z PER ELEM:
Get the value of a particular variable

a particular type in a particular part

(IN) which var = Which variable (1 to

(IN) which node or elem

If Z PER NODE:
= The node number.

Thus,

If Z PER ELEM:

Thus,

(IN) which part

= The part

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual

= The element number.

(l1-based index of part table,

2.4 USERD_get_var_value_at_specific

at a particular node in a

at a particular element of
at a particular time.

Num variables)

This is not the id, but is

the index of the node

list (1 based), or the block’s
node list (1 based).

coord array([1l]
coord array[Z2]
coord array|[3]

|which node or elem index

This is not the id, but is
the element number index
of the number of element array

(see USERD get gold part build info),

or the block’s element list
(1 based).

for which part:

conn_array[which elem type] [0]
conn_array[which elem type] [1]
conn_array[which elem type] [2]

|
(which node or elem - 1) index

Since EnSight Version 7.4

number
namely:

Numparts available.

It is NOT the part id that
is loaded in USERD get gold part build info)

2-121

2.4 USERD_get_var_value_at_specific

Prior to EnSight Version 7.4

= The part id This is the part id label
loaded in
USERD get gold part build info.
It is NOT the part table index.

(IN) which elem type

If Z PER NODE, or block part:
= Not used

If Z PER ELEM:
= The element type. This is the element type index
of the number of element array
(see USERD get gold part build info)

(IN) time step = Time step to use (0 to Num time steps[the proper var timeset])

(IN) imag data = TRUE if want imaginary data file.
FALSE if want real data file.

(OUT) wvalues = scalar or vector component value (s)
values[0] = scalar or vector[0]
values[1l] = vector[1l]
values[2] = vector[2]

returns: Z OK 1if successful
Z ERR 1f not successful
Z NOT IMPLEMENTED if not implemented and want to use the slower,
complete update method within EnSight.

Notes:

* This routine is used in node querys over time (or element querys over
time for Z PER ELEM variables). If these operations are not critical
to you, this can be a dummy routine.

* The per node or per elem classification must be obtainable from the
variable number (a var classify array needs to be retained)

* The time step given is for the proper variable timeset. Thus, it
must be obtainable from the variable number also.

P S S S I . S . T S S A I . S R N S . S S S S

int

USERD get var value at specific(int which var,
int which node or elem,
int which part,
int which elem type,
int time step,
float values[3],
int imag data)

2-122 EnSight 8 Interface Manual

2.4 USERD_get_xy_query_data

2 —————.—

USERD get xy query_data

* <optional> (Version 2.08 and later)
K e e e =

*

* Gets the xy values for a particular xy query

*

* (IN) query num = gquery number (zero based)

* (0 to one less than the number of querys

* returned in USERD get num xy queries)

*

* (IN) num vals = number of xy pairs in the query

*

* (OUT) =xvals = array of x values, dimensioned to num vals (0 based)
*

* (OUT) yvals = array of y values, dimensioned to num vals (0 based)
*

* returns: Z OK if successful

* Z ERR if a problem

*

* Notes

K e e * /

int USERD get xy query data(
int query num,
int num vals,
float *xvals,
float *yvals)

EnSight 8 Interface Manual 2-123

2.4 USERD_get_xy_query_info

2-124

* <optional> (Version 2.08 and later)
g
*

* Gets name, axis titles, and number of xy pairs for a particular xy query
*

* (IN) query num = query number (zero based)

* (0 to one less than the number of querys

* returned in USERD get num xy queries)

*

* (OUT) query name = Name for the xy query. long)

*

* (OUT) query xtitle = Title for x axis long)

*

* (OUT) query ytitle = Title for y axis long)

*

* (OUT) query num pairs = number of xy pairs

*

* returns: Z OK 1if successful

* Z ERR if a problem

*

*

int USERD get xy query info(int query num,
char *query name,
char *query xtitle,
char *query ytitle,

int *query num pairs)

EnSight 8 Interface Manual

(IN) set index
(IN) part id

(IN) wtyp

(IN) mat type

(OUT) ids_list

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual

Get the material id list,
mixed-material values list for the given material set and part (and
element type if material id 1list)

mixed-material id list, or

the material set index

(zero based

the part number desired

the element

7 _POINT
7 _BARO2
7 BARO3
Z TRIO3
Z TRIO6
Z_QUA04
Z _QUAOS
Zz_TET04
Z_TET10
Z_PYRO5
Z PYR13
Z PENO6
7 _PEN15
Z HEX08
7 _HEX20
Z NSIDED
Z_NFACED

NN NNNNNNDNDNDNDNDNDMNDNNN

Z MAT_ INDEX
Z MIX_ INDEX
7 MIX VALUE
7 SPE_VALUE

If mat type

the appropriate size,
USERD size matf data for mat type Z MAT INDEX)

type

node point element

=
O W U1 OB O oy WwwN

=

=
[colN@)]

20

node
node
node
node
node
node
node
node
node
node
node
node
node
node

bar

bar
triangle
triangle
quad

quad
tetrahedron
tetrahedron
pyramid
pyramid
pentahedron
pentahedron
hexahedron
hexahedron

nsided polygon
nfaced polyhedron

ghost node point

2.4 USERD_load_matf_data

)

(used for Z MAT INDEX only)

element

=
O W U1 OB O oy WwwdN

[

=
[colN@)]

20

node
node
node
node
node
node
node
node
node
node
node
node
node
node

ghost
ghost
ghost
ghost
ghost
ghost
ghost
ghost
ghost
ghost
ghost
ghost
ghost
ghost

bar

bar
triangle
triangle
quad

quad
tetrahedron
tetrahedron
pyramid
pyramid
pentahedron
pentahedron
hexahedron
hexahedron

ghost nsided polygon
ghost nfaced polyhedron

material ids list
mixed-material ids list
mixed-material values list

material species values list

is Z MAT INDEX:

1D material id 1list
(Int array will have been allocated

as returned in

2-125

2.4 USERD_load_matf_data

If mat type is Z MIX INDEX:
1D mixed-material id list
(Int array will have been allocated
the appropriate size, as returned in
USERD_size matf data for mat type Z2 MIX INDEX)

(OUT) val list = 1D mixed-materials values list
(only used if mat type is Z MIX VALUE)

(Float array will have been allocated
the appropriate size, as returned in
USERD size matf data for mat type Z MIX VALUE)

returns: Z OK 1if successful
Z ERR 1f not successful

Notes:
* See USERD get number of material sets header for explanatory example
* Will not be called if Num material sets is zero,

or Num materials[set index] is zero,

or the appropriate size from USERD size matf data is zero

L S SR T e R S S S S SN S S SN S N .

int

USERD load matf data(int set index,
int part id,
int wtyp,
int mat type,
int *ids list,
float *val list)

2-126 EnSight 8 Interface Manual

2.4 USERD_prefer_auto_distribute

USERD _prefer_auto_distribute

* <optional> (Version 2.07 and later)

Returns whether the reader will do its own partitioning for SOS

returns: FALSE if prefers to do its own partitioning for SOS
TRUE 1if EnSight will be asked to do the partitioning
if an auto-distribute is specified

% o ok X % ok X

int
USERD prefer auto distribute(void)

EnSight 8 Interface Manual 2-127

2.4 USERD_rigidbody_existence

2 ————
USERD _rigidbody _existence
* (Version 2.05 and later)
K e e
*
* Gets the existence of rigid body values or not in the model
*
* returns: Z OK if rigid body values exist for the model
* Z UNDEF if no rigid body values exist
* Z_ ERR if an error
*
* Notes:
* * This will be based on Current time step
K e e * /
int

USERD rigidbody existence(void)

2-128 EnSight 8 Interface Manual

*

*

(OUT) wvalues

(IN) part number

2.4 USERD_rigidbody_values

(Version 2.05 and later)
(Modified at 2.08 as described below)

Gets the rigid body wvalues for each part

= The part number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

values[0] = IX (x location)
values[1l] = IY (y location)
values[2] = IZ (z location)
values[3] = EO (e0 euler value)
values[4] = El1 (el euler value)
values|[5] = E2 (e2 euler value)
values[6] = E3 (e3 euler value)

The next 3 are for an optional cg offset. If none
is needed or desired (namely the first 7 values
above contain all that is needed), then these
should be set to 0.0

values|[7] = xoff (initial cg x offset)
values[8] = yoff (initial cg y offset)
values[9] = zO0ff (initial cg z offset)

Starting at Version 2.08

returns: Z OK

7 _ERR

L T T e N N S N S T S NS S SN S T S S N IS T N N S S AR e S N S S S S e S ST N SN S N SRS S S S S S D L .

EnSight 8 Interface Manual

The next 4 values are for and optional initial yaw,
pitch, roll operation. This is useful to get parts
from one standard layout to a different standard
layout.

(example, flex body parts computed in an axis system
different than that of rigid body parts manipulation)
If not needed or desired, set these to 0.0

values[10] = rot order (order the roations are applied

0.0 = no rotations

1.0 = xyz order

2.0 = xzy order

3.0 = yxz order

4.0 = yzx order

5.0 = zxy order

6.0 = zyx order)
values[11l] = xrot (initial x rotation - degrees)
values[1l2] = yrot (initial y rotation - degrees)
values[13] = zrot (initial z rotation - degrees)

if rigid body wvalues sent for this part
Z UNDEF if no rigid body values exist for this part
if an error

2-129

2.4 USERD_rigidbody_values

* Notes:

* * This will be based on Current time step

* * It will not be called unless USERD rigidbody existence indicates

* that there are some values in the model by returning 7 OK.

* * Order that transformations will be applied is:

* 1. The yaw,pitch,roll rotations, if present

* (values[11l] through values[13]

* in the order specified in rot order, values[10])

* 2. The cg offsets, if present (values[7] through values[9])

* 3. The euler parameter rotations (values[3] through values[6])

* 4. The translations (values[0] through values[2])

*

K e e e —————————————— o —————— */
int

USERD rigidbody values(int part number,
float values[14]) /* Prior to Version 2.08,
float values[10] */

2-130 EnSight 8 Interface Manual

2.4 USERD_set_block_range_and_stride

Sets the min, max, and step values in each of the i, j, and k, directions
for the given part.

(IN) part number = The part number
(l1-based index of part table, namely:
1 ... Numparts available.

It is NOT the part id that is
loaded in USERD get gold part build info)

(IN) mini = min i1 plane desired (zero based)
maxi = max 1 plane desired (zero based)
stepi = i stride
minj = min j plane desired (zero based)
max’j = max j plane desired (zero based)
stepj = j stride
mink = min k plane desired (zero based)
maxk = max k plane desired (zero based)
stepk = k stride

returns: Z OK if no problems

Z_ ERR if an error

Notes:

* It will not be called unless USERD get structured reader cinching
indicates that this reader does structured cinching by returning
a Z OK.

* It will actually be called before each geom component and before
each part variable - so if you are storing things locally, you should
make this routine be able to quickly check whether anything needs
updated or not.

* If the stride (step) does not hit right on the max, the last element
in each direction will be shortened appropriately.
For example, if a block had 0 to 12 in the i direction,
and the user specified min = 1
max = 8
step = 3

Namely, the coarser cell boundaries in this direction would be
at 1, 4, 7, and 8

LR S T S N S S N S SR T S S NN S S N S T N SIS T S S T S S S S T N S S N S S S S S S S .

int

USERD_set block range and stride(int part number,
int mini, int maxi, int stepi,
int minj, int maxj, int stepj,
int mink, int maxk, int stepk)

EnSight 8 Interface Manual 2-131

2.4 USERD_set_extra_gui_data

* <optional> (Version 2.00 and later)

Receives the toggle, pulldown and field text from enhanced GUI.

(IN) toggle values TRUE = toggle checked
FALSE = toggle unchecked
Is num Toggles long, as set in
USERD _get extra gui numbers

(IN) pulldown value from 0 to number of pulldown values
Is num pulldowns long, as set in
USERD get extra gui numbers

(IN) field text any text
“\0’ if inactivated or nothing entered
Is num fields by Z LEN GUI FIELD STR, as set in
USERD get extra gui numbers

Notes:

This routine is called when the library is permanently
loaded to the EnSight session, so define your globals
in this and later routines.

It’s up to you to change your reader behavior according to
user entries!

L S SR e e N S N S N S T SN S T N SRS N S

void

USERD set extra gui data(int *toggle,
int *pulldown,
char **field text)

2-132 EnSight 8 Interface Manual

2.4 USERD_set_filename_button_labels

2 —————
USERD_set_filename_button_labels
* <optional> (Version 2.07 and later)
K e e e ————————————— o ——————
*
* Returns the labels that the EnSight GUI will place on the buttons
* in the Data Reader/Open dialog for Geometry and Results
*
* (OUT) filename label 1 = Label for the first button
* (Z_MAX USERD NAME long)
* (generally the geom file)
*
* (OUT) filename label 2 = Label for the second button
* (Z_MAX USERD NAME long)
* (generally the results file)
* Not needed (so can be null) if two fields
* is FALSE in USERD get name of reader
*
* Notes
K e e e */
void

USERD_set filename button labels(char filename label 1[Z MAX USERD NAME],
char filename label 2[Z MAX USERD NAME])

EnSight 8 Interface Manual 2-133

2.4 USERD_set_filenames

Receives the geometry and result filenames entered in the data
dialog. The user written code will have to store and use these
as needed. The user written code must manage its own files!!

(IN) filename 1 the filename entered into the geometry

field of the data dialog.

the filename entered into the result
field of the data dialog.
(If the two fields flag in USERD get name of reader
is FALSE, this will be null string)

(IN) filename 2

If two fields is TRUE, this is the
mandatory results file entered
into the result field of the data dialog.

If two fields is -1, then this contains
optional text (filenames, modifiers, etc.)
that can be parsed and used to modify
reader

(IN) the path the path info from the data dialog.

Note: filename 1 and filename 2 have already
had the path prepended to them. This
is provided in case it is needed for

filenames contained in one of the files

(IN) swapbytes TRUE if should swap bytes when reading data.

= FALSE normally

returns: Z OK 1if successful
Z ERR 1f not successful

Notes:
* Since you must manage everything from the input that is entered in
these data dialog fields, this is an important routine!

* Since you manage these files, they can be whatever. Perhaps
you will use only one, and have references to everything else
you need within it, like EnSight’s case file does.

L R I T S N S e S T S S S N S S S N R T I S S N S S N NS S N S

int

USERD set filenames(char filename 1[],
char filename 2[],
char the path[],
int swapbytes)

2-134 EnSight 8 Interface Manual

2.4 USERD_set_right_side

2 —————
USERD_set _right_side
* <optional> (Version 2.05 and later)
K e e o
*
* Informs the reader that the time currently set is the right side of a time
* span used for variable interpolation between time steps
*
* Notes:
* * Applies to Current time step
*
* * This is called just before USERD get var by component
*
* * This information is only needed if your reader must do its own
* interpolation along a variable timeline. This can occur when rigidbody
* information has its own timeline, which is sent to EnSight as the
* controlling time line, but the variables have a different timeline
* known only to the reader.
S * /
void

USERD set right side(void)

EnSight 8 Interface Manual 2-135

2.4 USERD_set_server_number

2 ————
USERD _set _server_number
* (Version 2.00 and later)
K e e
*
* Receives the server number of how many total servers.
*
* (IN) cur serv = the current server.
*
* (IN) tot servs = the total number of servers.
*
* Notes:
* * Only useful if your user defined reader is being used with EnSight’s
* Server-of-Server capability. And even then, it may or may not be
* something that you can take advantage of. If your data is already
* partitioned in some manner, such that you can access the proper
* portions using this information.
*
* For all non-SOS uses, this will simply be 1 of 1
*
* * Really just a dummy for this reader - we don’t need to use it.
K e e * /
void

USERD_set server number (int cur_ serv,
int tot servs)

2-136 EnSight 8 Interface Manual

2.4 USERD_set_time_set_and_step

2 —————
USERD _set time_set_and_step
* (Version 2.00 and later)
K e e o
*
* Set the current time step in the desired timeset. All functions that
* need time, and that do not explicitly pass it in, will use the timeset
* and step set by this routine, if needed.
*
* (IN) timeset number = the timeset number (1 based).
*
* For example: If USERD get number of timesets
* returns 2, the valid timeset number’s
* would be 1 and 2.
*
* (IN) time step - The current time step (0 to Num time steps[timeset number])
*
* Notes:
* * Current time step and Current timeset would be set here
K e e
void

USERD set time set and step(int timeset number,
int time step)

EnSight 8 Interface Manual

2-137

2.4 USERD_set_var_extract_gui_data

* <optional> (Version 2.05 and later)

Receives the toggle, pulldown and field text from var extract input.

(IN) toggle values TRUE = toggle checked
FALSE = toggle unchecked
Is num Toggles long, as set in
USERD get var extract gui numbers

(IN) pulldown value from 0 to number of pulldown values
Is num pulldowns long, as set in
USERD get var extract gui numbers

(IN) field text any text
“\0’ if inactivated or nothing entered
Is num fields by Z LEN GUI FIELD STR, as set in
USERD get var extract gui numbers

Notes:

This routine is called when the library is permanently
loaded to the EnSight session, so define your globals
in this and later routines.

It’s up to you to change your reader behavior according to
user entries!

L S SR e e N S N S N S T SN S T N SRS N S

void

USERD set var extract gui data(int *toggle,
int *pulldown,
char **field text)

2-138 EnSight 8 Interface Manual

(IN) set index
(IN) part id

(IN) wtyp

(IN) mat type

(OUT) matf size

L T T R e N S T N S S S S ST NS T N S ST SN S ST S S S S T N S T N S S N R T e . N I S S S S N

EnSight 8 Interface Manual

2.4 USERD_size_matf_data

Get the length of the material id list, mixed-material id 1list, or
mixed-material values list for the given material set and part (and
element type if material id list)

the material set index (zero based)

the part number desired

the element type (used for 7z MAT INDEX only)

Z POINT node point element
Z BAR02 2 node bar
Z BARO3 3 node bar
Z TRIO3 3 node triangle
Z TRIO06 6 node triangle
Z QUAO4 4 node quad
Z QUAOS8 8 node quad
Z TET04 4 node tetrahedron
Z TET10 10 node tetrahedron
Z PYROS 5 node pyramid
Z PYRI13 13 node pyramid
Z PENQO6 6 node pentahedron
Z PEN15 15 node pentahedron
Z HEX08 8 node hexahedron
Z HEX20 20 node hexahedron
Z NSIDED nsided polygon
Z NFACED nfaced polyhedron
Z G _POINT ghost node point element
Z G BARO02 2 node ghost bar
Z G BARO3 3 node ghost bar
Z G TRIO3 3 node ghost triangle
Z G TRIO6 6 node ghost triangle
Z G QUAO4 4 node ghost quad
Z G QUAOS 8 node ghost quad
Z G TETO04 4 node ghost tetrahedron
Z G TET10 10 node ghost tetrahedron
Z G PYRO5 5 node ghost pyramid
Z G PYR13 13 node ghost pyramid
Z G PENO6 6 node ghost pentahedron
Z G PEN15 15 node ghost pentahedron
Z G HEXO08 8 node ghost hexahedron
Z G HEX20 20 node ghost hexahedron
Z G NSIDED ghost nsided polygon
Z G NFACED ghost nfaced polyhedron
Z MAT INDEX for material ids list

Z MIX_ INDEX
7 MIX VALUE
Z SPE_VALUE

mixed-material ids list
mixed-material values list
material species values

the length of the material
mixed-material id list, or
mixed-material values list
for the given material set
(and element type if 7z MAT

id 1list, or

and part number
~ INDEX)

2-139

2.4 USERD_size_matf_data

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

* Notes:

* * See USERD get number of material sets header for explanatory example

* * Will not be called if Num material sets is zero, or

* Num materials[set index] is zero

K e e ———————————————_—_——_——————_——_——— */
int

USERD size matf data(int set index,
int part id,
int wtyp,
int mat type,
int *matf size)

2-140 EnSight 8 Interface Manual

2.4 USERD_stop_part_building

* Called when part builder is closed for USERD, can be used to clean
* up memory, etc that was only needed during the part building process.

void
USERD stop part building(void)

EnSight 8 Interface Manual 2-141

2.5 Converting a 1.0 API Reader to a 2.0 API READER

2.5 Converting a 1.0 APl Reader to a 2.0 APl READER

If you have an existing 1.0 API Reader and you desire to convert it to a 2.0 API reader, to take advantage of
new capabilities, or the improved efficiency, the following may be helpful.

First the Good News!

The following routines were identical in both API’s at the time that the 2.0 API was produced.

USERD_bkup

USERD get block coords by component

USERD_get block iblanking

USERD_get changing geometry status

USERD get dataset query file info
USERD _get element label status
USERD_get name of reader
USERD get node label status

USERD_get number of files in_dataset
USERD_get number of model parts

USERD get number of variables
USERD _set_filenames
USERD _stop part building

Second, pretty Good News!

The following routines have minor changes, namely a slight name change and the addition of arguments
related to complex data, constant type, or self contained parts vs global coords.

(Note, the name changes are needed so both API's can exist together)

The arguments must be added, but depending on your situation, many might simply be place holders.

A) Changes related to imaginary flag for complex data

If you don’t deal with complex variables, simply add this flag to your argument list and ignore its value.

API 1.0

API2.0

USERD get constant value
(

int which var

)

USERD get constant val
(

int which var,

int imag data

)

USERD get description lines
(

int which type,

int which var,

char linel[Z BUFL],
char line2[Z BUFL]

USERD get descrip lines
(
int which type,
int which var,
int imag data,
char linel[Z BUFL],
char line2[Z BUFL]

2-142

EnSight 8 Interface Manual

2.5 Converting a 1.0 AP| Reader to a 2.0 API READER

USERD get variable value at specific USERD get var value at specific

((

int which var, int which var,

int which node or elem, int which node or elem,
int which part, int which part,

int which elem type, int which elem type,
int time dtep, int time dtep,

float values|[3] float values|[3],

int imag data

B) Changes related to complex data info, and constant type (and some of the multiple timeset
support).

If you don’t deal with complex variables, simply add the arguments for var complex, var_ifilename, and
var_freq and assign var_complex to be FALSE.

The argument var_contran needs to be added, and set appropriately if you have constant variables, to indicate
if the constant variable is fixed for all time or varies over time.

The argument var_timeset needs to be added, and set appropriately.

API 1.0 API2.0
USERD get variable info USERD get gold variable info
((
char **var description, char **var description,
char **var filename, char **var filename,
int *var type, int *var type,
int *var classify int *var classify,

int *var complex,
char **var ifilename,
float *var freq,
int *var contran,
int *var timeset

C) Changes related to self contained part coordinates.

The number_of nodes argument needs to be added and set for each part. This one is critical for you to do.

API 1.0 API12.0
USERD get part build info USERD get gold part build info
((
int *part id, int *part id,
int *part types, int *part types,
char *part description[Z BUFL], char *part description[Z BUFL],
int *number of nodes,
int *number of elements[Z MAXTYPE], int *number of elements[Z MAXTYPE],
int *ijk dimensions[3], int *ijk dimensions[9],
int *iblanking options[6] int *iblanking options[6]
))

EnSight 8 Interface Manual 2-143

2.5 Converting a 1.0 API Reader to a 2.0 API READER

2-144

three new routines in the next section.

D) Changes related to multiple timeset support.

The timeset number argument needs to be added for the following three routines.

The multiple timeset support also includes the change in B) above for USERD _get gold variable info and the

API 1.0

API 2.0

USERD get number of time steps
(

void

)

USERD get num of time steps
(
int timeset number

)

USERD get solution times
(

float *solution times

)

USERD get sol times

(
int timeset number,
float *solution times

)

USERD set time step
(

int time step

}

USERD set time set and step
(

int timeset number,

int time step

)

Third, deleted and new routines. (Here is where the work lies)

Several old routines are gone. You will have to create the new routines that replace them. I think you will
find in most cases that your old routines will form the basis of the new routines, and that it isn’t too

difficult to provide the information in the new way.

See Detailed Specifications in this chapter for the needed information on these new routines.

API'1.0

API2.0

These routines:

USERD get block scalar values

USERD get block vector values by component
USERD_get scalar values
USERD get vector values

replaced by the single routine:
USERD get var by component

These global coordinate routines:
USERD get global coords
USERD get global node ids

USERD _get number of global nodes

replaced by part coord routines:
USERD get part_coords
USERD get part node_ids

These par connectivity routines:
USERD get element connectivities for part
USERD get element ids for part

replaced by part by type routines:
USERD get part elements by type
USERD get part element ids by type

(Can be a dummy) ->
(Can be a dummy) ->
(Required) ->

These are new routines:
USERD _exit_routine
USERD get model extents
USERD get reader version

EnSight 8 Interface Manual

2.5 Converting a 1.0 AP| Reader to a 2.0 API READER

(Required) ->
(Required) ->
(Required) ->

multiple timeset related:

USERD get number of timesets

USERD get timeset description

USERD get geom timeset number

(Required) ->
(Can be a dummy) ->

border provided by the reader option:
USERD_get border availability
USERD get border elements by type

(Can be a dummy) ->

transient model allocation efficiency:
USERD get maxsize info

(Can be a dummy) ->

possible use with Server-of-Servers:
USERD set_server number

Required routines added after version 2.00 (Many can
be dummy routines, depending on features needed):
USERD get block ghost flags

USERD get ghosts in block flag
USERD get ghosts in_model flag
USERD get matf set info
USERD get matf var info

USERD get number of material sets
USERD_get number_of materials
USERD load matf data
USERD size matf data

USERD_get nfaced conn
USERD_get nfaced nodes per face
USERD_get nsided conn

USERD_get uns_failed params
USERD_ get matsp info

USERD _ get number of species
USERD rigidbody existence

USERD rigidbody values

USERD get structured reader cinching
USERD set block range and stride

Also note the various optional routines which can be in
the 2.0 API. See the Routine History for an easy
identification of these routines

EnSight 8 Interface Manual

2-145

2.5 Converting a 1.0 API Reader to a 2.0 API READER

2-146 EnSight 8 Interface Manual

What Information Can Be Provided By The API?

3 User Defined Writer API

Users can write User-Defined Writers (UDW) to generate arbitrary data files for EnSight parts and
variables. The EnSight server provides a UDW API that can be used to query the currently selected
parts in the EnSight client part list. The UDW API includes methods to get, for example, node
coordinates, element connectivity, ids, variable values, and time information. A UDW can call any of
the methods as it wishes and create a data file(s) in any format desired. Additionally, the UDW dialog in
the EnSight client has a Parameter field that provides a mechanism for passing user specified options to
the UDW.

What Information Can Be Provided By The API?

Which parts are available to the UDW? All parts currently selected in the Main Parts List (except those
indicated below)

Where are the available parts located? On the EnSight server

Which parts are unavailable to the UDW? | Any client-based parts:
contours

vector arrows
particle traces
profiles

Example Writers

Several example User-Defined Writers (including source code, Makefile, and shared library) are
included to demonstrate this capability. The easiest way to get started is to copy the whole directory of a
simple writer, such as the Flatfile writer, then change it’s name, modify the Makefile, set the
environment variable ENsIGHT8 UDW, and make it. Once you have it made, start EnSight with the
following option:

ensight8 -writerdbg

to verify that your writer is loading properly. Once loading properly, use print statements to aid in
debugging. Alternatively, attach a debugger to the ensight8.server at run time and set breakpoints within
the methods of the UDW.

The Flatfile UDW is designed to demonstrate the output of selected part nodal data (coordinates & IDs)
as well as active variable values (scalar and/or vector only) in a comma delimited format easily
imported into other applications. If any of the keywords ‘ANSYS’ or ‘force’ or ‘body’ is entered into
the Parameter field of the EnSight client UDW dialog, then the Flatfile UDW will output an ANSY'S
body force file.

The HDF 5.0 UDW is designed to write out selected parts and their corresponding active variables
using the HDF 5.0 API which is compatible with the EnSight HDF User-Defined Reader. The HDF
writer ignores the Parameter field. The HDF 5.0 writer illustrates most of the routines available to
retrieve data from EnSight.

The Case (Gold) Lite UDW is provided to demonstrate how to exercise most of the API and output a
subset of the Case (Gold) format. Complex numbers and the custom Gold format are not supported in
this writer. The Case (Gold) writer ignores the Parameter field. While the writer is not provided as a
prebuilt library, the source code and Makefile are provided.

The STL UDW is provided to write out the border geometry in the form of triangular 2D elements for

EnSight 8 Interface Manual 3-1

Example Writers

3-2

the selected part(s) at the beginning timestep. The end time and the step time are ignored. The STL
format does not support multiple parts in a single binary file, but does support multiple parts in a single
ASCII file. Therefore, if multiple parts are selected and ascii is checked, the STL writer outputs an ascii
file with the border of each of the parts. If multiple parts are selected and binary is checked, the STL
writer outputs a binary file containing a single border of the multiple parts. The STL writer ignores the
Parameter field.

EnSight 8 Interface Manual

3.1 Directions For Writing Your Own UDW

3.1 Directions For Writing Your Own UDW

1. Create a directory where your writer will be located, for example
SCEI_HOME/ensight82/src/writers/mywriter/
2. Several example writers are provided which have source code and a Makefile.
For example, look at the flatfile format, an ASCII comma delimited writer.
cd $CEI HOME/ensight82/src/writers/flatfile
Notice that there are several files in this directory.
a. libuserd write.c - The writer code

b. Makefile - makefile
c. README - specific directions for using this writer

3. Copy these files into your directory:
$CEI_HOME/ensight82/src/writers/mywriter/

a. The Makefile should be used to compile and link a shared library.
Edit the Makefile so that it names the shared library properly.

b. Edit the C file.

i. USERD writer get name - give the writer a name. Ignore the other returned variable.

ii. USERD writer get writer version - give the writer a version so you can use version control in
the future revisions

iii. USERD writer write geom - The UDW routine called by EnSight. What you do in here is up
to you; but basically you can open a file for writing, call a bunch of methods (listed below) to
get the data of interest, write data into a file, and return an error status code to EnSight.

This method has the following arguments:

a. char full fname[Z MAXFILENP] - (IN) file name requested by the user from the GUI

b. int lis_parts[Z MAXPART] -(IN) list of parts selected by the user in EnSight
c. int num_parts -(IN) number of selected parts
d. int do_binary -(IN) TRUE if writing binary file
FALSE if writing ascii file
e. float max_fsize mb -(IN) maximum file size value for this machine
f. int combined -(IN) TRUE if user requests single file output
FALSE if user allows multiple file output
g. float *timestep vals -(IN) array of time step values
h. int ntime_steps -(IN) number of time steps

i. char text_inputf UDW_STRSIZE] - (IN) string entered from GUI by user can be used to
input commands to modify writer behavior

j. int *error_flag - (OUT) Return from writer
Z ERR if a problem

Z _EN_ERR_NONE if no problem
c. Edit the README file

Since each writer can operate however it wishes, document any constraints, expectations,
limitations, user specified parameters, etc. here. Given this is likely the only documentation
available for the writer, give enough details about it for both end-users and future maintainers.

EnSight 8 Interface Manual 3-3

3.1 Topical List Of User-Defined Writer API Methods

d. Set the UDW environment variable:
setenv ENSIGHT8 UDW S$SCEI HOME/ensight82/src/writers/mywriter/
EnSight will first look in $ENsIGHTS UDw and load the writer library. Next, EnSight will then

look in $CEI_HOME/ensight82/machines/$CEI_ARCH/1lib writers/. If duplicate writers are
found, they will only be loaded once.

e. Make your library and fix all compile errors.

f. Run the EnSight using a manual connection and specify the command line option -writerdbg to the
server to verify that it is loading the UDW correctly at runtime:

ensight8.server -writerdbg

g. Compile in UDW debug output to track the progress of runtime loading of the writer and proper
operation.

Topical List Of User-Defined Writer API Methods

The following is a topical list of the User-defined Writer API methods along with a brief description of
each. These methods should be called from within the UDW’s USERD writer write geom() method to
retrieve data from EnSight.

GENERAL INFO
USERD _writer part_verify a. Good part if at least one part > 0
b. Is at least one part created geometry?
(Not discrete and not model part)
c. Do I need to write model geometry?
(not discrete particle type)
d. Do I need to write measured geometry?
(discrete particle type)
USERD _get undef ptr Checks each element type for any undefined
variable values
USERD get num_time_steps Return the time-set num steps index based on
var_index and meas_data
USERD _writer_get variable transient Returns variable static (0) or transient (1)
USERD _writer_get var_type TRUE if model vars = static && measured vars =
constant
VARIABLE INFO
USERD _writer_get undef val Echoes the EnSight undefined value
USERD writer get exist active Does var exist and is it active?
USERD_writer get variable info Gets variable descriptors source, complex, type,
descrip, vref, freq, parent
USERD _writer_get per elem node Gets per element or per node flags, any undefined
flag
USERD writer get number of variables Returns number of variables
USERD _writer get measured vector var val Returns vector of measured variable values
USERD writer get part variable status T or F, does part have variable(s)?
USERD_writer get static_const_value A variable’s current constant value
USERD _writer get component vector var val Returns vector of variable value

3-4 EnSight 8 Interface Manual

3.1 Topical List Of User-Defined Writer APl Methods

PART INFO

USERD _writer_get part_info

Gets part_type, num elems, descrip, struct_flag

USERD _writer get part struct unstruct

Returns either structured or unstructured

USERD writer get changing measured geometry flag

Measured geom change status

USERD writer get changing model geometry flag

Coord, connect change status

USERD _writer get structured data

Gets values assoc w/ struct data part_ijk num,
iblank nf, ghost flag, cell type

USERD _writer get structured data ijk

Gets values assoc w/ struct data part_ijk_num,
iblank nf, ghost flag, cell type

USERD _writer_get structured cell type

Gets only the cell type for structured data

NODAL INFO

USERD _writer get node label status

Does MODEL have node labels?

USERD _writer get part node label status

Does PART have node labels? (T or F)

USERD_writer_get part_coords

Gets part x, y, & z coordinates in 2d format

USERD _writer get part coords vector

Gets part x, y, & z coordinates in vector format

USERD _writer get part node id

Gets part node ids

ELEMENT INFO

USERD _writer get element label status

Does MODEL have element labels?

USERD _writer get part element label status

Does PART have element labels? (T or F)

USERD _writer get part elem id

Returns array of element id’s

USERD _writer_get part elem id per type

Returns array of element id’s per elem type

USERD _writer get eletype string

Get the string describing that element type

USERD writer get element connectivities_for part

Elem connectivity vector

USERD writer_get element connectivities_for part simple

Elem connectivity by elem type

USERD get Nfaced size

Total vector length, index of first connectivity
val, max conn size, total # faces

USERD get Nfaced vector

Gets vector of connectivity data

TIME

USERD _writer_validate time_step

Validates the current Ensight time step for
multiple scales

USERD _writer get original time

Gets client time which is the original time.

USERD _writer set current time

Sets the time

OTHER

USERD _get titles

Gets the two model title description lines

USERD writer get ensight release

Get Ensight release letter as string

USERD _writer_get ensight version

Get Ensight version number as string

USERD_writer whatis machine byte order

Current machine is big- or little-endian

EnSight 8 Interface Manual

3-5

3.1 Topical List Of User-Defined Writer APl Methods

SIZING

USERD _writer get var max_sect vals Loop thru parts & find max # variables of node or
elem type

USERD get modl geo max node_size Loop thru parts & find max # of nodes

USERD_get modl geo max conn_size Loop thru parts and find max connectivity size

USERD _get current model extents Either assign or compute model ranges

SPECIALIZED

USERD _writer get part coords per elem Gets part coordinates fro TRI & QUA elems

USERD _writer_get part coords_per elem_ border Gets part border coords for TRI & QUA

USERD run_border Calls create_border and finds boundary of part

3-6 EnSight 8 Interface Manual

3.2 Routine Detail Specifications

Include files:

The following header file is required in any file containing these library routines.

#include “../extern/global extern w.h”
And for windows, the following is referenced from within:

#include “global extern w dispatch.h”

Global Define:
The following should be defined in your writer code.

#define USERD WRITER GLOBALS

EnSight 8 Interface Manual

3.2 Routine Detail Specifications

3-7

3.2 USERD_writer_get_name

2 R E—————— */
USERD writer _get name
2 E———— */
/* */
/* Gets the name of the writer, so gui can list as a writer */
/* */
/* (OUT) writer name = the name of the writer (data format) */
/* (max length is Z MAX USERD NAME, which */
/* is 20) */
/* */
/* (OUT) *two_fields = FALSE if only one data field is */
/* required. */
/* TRUE if two data fields required */
/* */
/* returns: Z OK if successful */
/* Z ERR if not successful */
/* */
/* Notes: *)
/* * Always called. Provide a name for your custom writer format */
/* */
/* * If you don’t want a custom writer to show up in the data dialog */
/* choices, return a name of “No Custom” */
2 ———— */
int

USERD writer get name (char writer name[Z MAX USERD NAME],
int *two fields)

3-8 EnSight 8 Interface Manual

3.2 USERD_writer_get_writer_version

Gets the release string for the writer.

This release string is a free-format string.

It is used for version control and backwards compatibility.
It is useful to increment

the release number/letter to indicate a change in the writer.
The given string will simply be output by the EnSight server
when the writer is selected.

(OUT) release number = the release number of the writer
(max length is Z MAX USERD NAME, which
is 20)

returns: Z OK 1f successful
Z ERR if not successful

Notes:
Called when the writer is selected for use.
called by USERD writer routines

PR T R S S S S T S N N S S N .

int
USERD writer get writer version(char version number[Z MAX USERD NAME])

EnSight 8 Interface Manual 3-9

3.2 USERD_writer_write_geom

*
* Write user specified data for selected parts and active variables.
*
* (IN) char full fname[Z MAXFILENP] = file name requested by the user from the GUI
* (IN) int lis parts[Z MAXPART] = list of parts selected by the user in EnSight
* (IN) int num parts = number of selected parts
* (IN) int do binary = TRUE 1if writing binary file
* FALSE if writing ascii file
* (IN) float max fsize mb = maximum file size value for this machine
* (IN) int combined = TRUE if user requests single file output
* FALSE if user allows multiple file output
* (IN) float *timestep vals = array of time step values
* (IN) int ntime steps = number of time steps
* (IN) char text input[UDW STRSIZE] = string entered from GUI by user can be used to
* input commands to modify writer behavior
* (OUT) int *error flag = Return from writer
* Z ERR 1f a problem
* Z EN ERR NONE if no problem
K e e e ——————————————— o ————— e */
void

USERD writer write geom(char full fname[Z MAXFILENP],
int lis parts[Z MAXPART],
int num parts,
int do binary,
float max fsize mb,
int combined,
float *timestep vals,
int ntime steps,/
char text input[UDW STRSIZE],
int *error flag)

3-10 EnSight 8 Interface Manual

How the routines are invoked

4 User Defined Math Functions

Users can write external variable calculator functions called User Defined Math Functions (UDMF) that
can be dynamically loaded by EnSight. These functions appear in EnSight’s calculator in the general
function list and can be used just as any other calculator function to derive new variables.

Several examples of UDMFs can be found in the directory $CEI_HOME/ensight82/src/math functions/.
Please see these examples if you wish to create your own UDMFs.

When the EnSight server starts it will look in the following subdirectories for UDMF dynamic shared
libraries:

./libudmf-devel.so (.sl) (.dll)
$ENSIGHT8 UDMF/libudmf-*.so (.sl) (.d1l)
$CEI HOME/ensight82/machines/$ENSIGHT8 ARCH/lib udmf/libudmf-*.so (.sl) (.dll)

Depending on the server platform, the dynamic shared library must have the correct suffix for that platform
(e.g. .so, .sl, .dll).

How the routines are invoked

Currently, when a UDMEF is used in the EnSight calculator, it is invoked for each node in the specified
part(s) if all the variables operated on for the specified part(s) are node centered. If all of the variables are
element centered, then the UDMEF is invoked for each element in the part(s). If the variables are a mix of
node and element centered values, then the node centered values are automatically converted to element
centered values and then the UDMEF is invoked for each element using element centered variables.

Arguments and the return type for the UDMF can be either scalar or vector EnSight variables or constants.

Current Limitation

At this time, only variable quantities and constants can be passed into UDMFSs. There is no mechanism for
passing in either part geometry, neighboring variables, or other information.

EnSight 8 Interface Manual 4-1

4.1 Detailed Routine Specifications

4-2

4.1 Detailed Routine Specifications

Include files:
The following header file is required in any file containing these library routines.

#include “/udmf_extern.h”

*

* Gets the name of the math function, so gui can list as a calculator

* function.

*

* (OUT) mf name = the name of the math function

* (max length is UDMFSNAME, which is 64)

*

* returns: Z OK if successful

* Z ERR if not successful

*

K e e e e e o o o o o o o o o o o o o */
int

USERD get name of mf (char mf name [UDMESNAME])

EnSight 8 Interface Manual

4.1 USERD_get_mf_version

*

* Gets the version number of the user defined math function supported API

*

* (OUT) version number = the version number of the math function

* (max length is UDMFSNAME, which is 64)

*

* returns: Z OK 1f successful

* Z ERR if not successful

*

* Notes:

* * vyersion needs to be “1.000”.

K e e e */
int

USERD get mf version(char version number [UDMFSNAME]) {

strcpy (version number, “1.0007);
return (Z OK) ;

EnSight 8 Interface Manual 4-3

4.1 USERD_get_nargs

Gets the number of arguments needed by the function.
(OUT) nArgs = the number of arguments

returns: Z OK if successful
Z ERR 1f not successful

% ok ok X % kX

int
USERD get nargs(int *nArgs) {

*nArgs = 2;
return (Z OK) ;

4-4 EnSight 8 Interface Manual

4.1 USERD_get_meta_data

*

* Get the function descriptions, argument types, and return type.

*

* (OUT) listDescription = description shown in general function column
* (OUT) funcDescription = description shown in feedback window

* (OUT) argTypes = data types of arguments passed into USERD evaluate
* (OUT) returnType = data type returned by function USERD evaluate

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

K e e e */
int

USERD get meta data(char listDescription[UDMFLNAME],
char funcDescription[UDMFLNAME],
int *argTypes, int *returnType) {
strcpy(listDescription, “add2 (part, scalar, scalar)”);

strcpy (funcDescription, “add2(any part(s), scalar, scalar)”);

argTypes|[0] UDMF'SCL;
argTypes[1l] = UDMFSCL;

*returnType = UDMFSCL;

return (Z OK) ;

EnSight 8 Interface Manual

4-5

4.1 USERD_evaluate

*

* Evaluate the function.

*

* (OUT) args = pointers to arguments

* (OUT) undefined = boolean; true if return value is undefined.

* (OUT) wvalue = returned value

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

K e e e */
int

USERD evaluate(void *args[], void *value, int *undefined) {

float *result;
float *argl, *arg2;

result = value;
argl args[0];
arg2 = args|[l];

*result = *argl + *arg2;
*undefined = 0;

return(Z OK) ;

4-6 EnSight 8 Interface Manual

4.2 Example

4.2 Example

The following example simply adds two scalars. Other examples can be found in subdirectories of
$CEI HOME/ensight82/src/math functions/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef WIN32
#include <unistd.h>

#endif
#include “../extern/udmf extern.h”
2 ——

* USERD get name of mf

S

*

* Gets the name of the math function, so gui can list as a calculator

* function.

*

* (OUT) mf name = the name of the math function

* (max length is UDMFSNAME, which is 64)

*

* returns: Z OK 1if successful

* Z ERR 1f not successful

*

K e e e e e o o o o o o o o o o o e e e o o e e e e e e o o e e */
int

USERD get name of mf (char mf name [UDMFSNAME]) {
memset (mf name,’\0’, UDMFSNAME) ;
strcpy (mf name, “addTwoScalars”);
return (Z OK) ;

2 ———.—
* USERD get mf version
K e e e
*
* Gets the version number of the user defined math function supported API
*
* (OUT) version number = the version number of the math function
* (max length is UDMFSNAME, which is 64)
*
* returns: Z OK 1if successful
* Z ERR if not successful
*
* Notes:
* * vyersion needs to be “1.000”.
S */
int

USERD get mf version(char version number [UDMFSNAME]) {

strcpy (version number, “1.0007);
return (Z OK) ;

EnSight 8 Interface Manual 4-7

4.2 Example

* USERD get nargs

*

* Gets the number of arguments needed by the function.

*

* (OUT) nArgs = the number of arguments

*

* returns: Z OK 1if successful

* Z ERR if not successful

*

K e e */
int

USERD get nargs(int *nArgs) {

*nArgs = 2;
return(Z_OK) ;

2 ————
* USERD get meta data
K e e e e e o o o o o o o o o o o o o e o e e o e o e e e e e o e o o e
*
* Get the function descriptions, argument types, and return type.
*
* (OUT) listDescription = description shown in general function column
* (OUT) funcDescription = description shown in feedback window
* (OUT) argTypes = data types of arguments passed into USERD evaluate
* (OUT) returnType = data type returned by function USERD evaluate
*
* returns: Z OK 1if successful
* Z ERR 1f not successful
*
K e e e e e o o o o o o o o o o o o e e o e e o e e e e o o o o e . */
int

USERD_get meta data(char listDescription[UDMFLNAME],
char funcDescription[UDMFLNAME],
int *argTypes, int *returnType) {
strcpy(listDescription, “add2(part, scalar, scalar)”);

strcpy (funcDescription, “add2 (any part(s), scalar, scalar)”);

argTypes|[0] UDMFSCL;
argTypes[1l] = UDMFSCL;

*returnType = UDMFSCL;

return (Z OK) ;

*

Evaluate the function.

(OUT) args = pointers to arguments
(OUT) undefined = boolean; true if return value i1s undefined.
(OUT) wvalue = returned value

Lo T R

returns: Z OK 1f successful

4-8 EnSight 8 Interface Manual

4.2 Example

* Z ERR 1f not successful

int
USERD evaluate(void *args[], void *value, int *undefined) {

float *result;
float *argl, *arg2;

result = value;
argl args[0];
arg2 = args[l];

*result = *argl + *arg2;
*undefined = 0;

return (Z OK) ;

EnSight 8 Interface Manual 4-9

4.2 Example

4-10 EnSight 8 Interface Manual

Overview

5 EnSight Command Driver

Overview

This document provides information about a communication mechanism which can be used to drive
EnSight from an external program using EnSight’s command language. The logical steps involved in this
process are:

1. Compile your external program with the enscmddriver comm library.

2. Start EnSight and have it listen for the connection from the external program.

3. Start the external program and issue the connect command within that program.

4. Send commands to EnSight using the enscmddriver sendmesg routine.

5. Shutdown Ensight.

More detail will now be provided for each of these steps.

Step 1:

Compile your external program with the enscmddriver.a library. This library is provided in the
EnSight distribution, under the src/cmddriver directory. Directions for compiling are contained in the
README file contained in that directory. Also provided therein is a sample external program (entitled
enscmddriver.c) which is used to show how to compile, as well as for examples of how to utilize the
following routines within your external driver:

enscmddriver connect To establish the connection with EnSight

enscmddriver sendmesg To send command language to EnSight

enscmddriver _query To query information from EnSight (limited)

enscmddriver _disconnect To disconnect and leave EnSight running (not commonly used)
Step 2:

Start EnSight and have it listen for the connection from the external program. Normally this will be
done from your external program and will thus use batch mode to start EnSight.

In batch mode:
ensight8 -X -batch -externalcmds

While not the norm, it is possible to have EnSight start listening for the connection from an interactive
session.

Interactively (from the command dialog in EnSight):

test: acceptcmddriver

Ensight will listen on Port 1104 for the connection from the external program. If a different port is desired,
you can use the command line option “-externalcmdport #” when starting EnSight. Replace the # with
a legitimate (>1024) port number. Then be sure to use the specified socket in the enscmddriver connect
call within your external program.

EnSight 8 Interface Manual 5-1

Overview

5-2

Step 3:
Once EnSight is listening, start the external program and issue the connect command within that program.

For the provided enscmddriver sample, this is done as follows:
enscmddriver HOSTNAME

Where, HosTNAME is the name of the machine running EnSight. Note, the sample enscmddriver program calls
the enscmddriver connect routine to establish the connection.

Step 4:

Send commands to EnSight using the enscmddriver_sendmesg routine. The commands that you send to
EnSight using this routine are the same commands that EnSight produces when users are manipulating a model
with the EnSight Graphical User Interface. All of these commands are described in the Command Reference
Manual within EnSight.

Note that the enscmddriver sendmesg routine returns an ok or ERROR indicating its success or not.

It is possible to play entire command files that are accessible from the machine where the EnSight client is
running. You can send a “play:” command to specify the name of the command file to use. Commands that are
played using a file (play:) will execute faster than sending individual commands. The following is a command
file (amiread.enc) that reads and colors the ami data set that is shipped with EnSight.

VERSION 7.52
data: binary files are big endian
data: format case
data: path /usr/local/CEI/ensight82/data/ami
data: geometry ami.case
data: read
data partbuild: begin
part: select default
part: modify begin
part: elt representation not loaded
part: modify end
data partbuild: data type unstructured
data partbuild: select begin
1
data partbuild: select end
data partbuild: description
data partbuild: create
part: select default
part: modify begin
part: elt representation 3D border 2D full
part: modify end
data partbuild: data type unstructured
data partbuild: select begin
2
data partbuild: select end
data partbuild: description
data partbuild: create
data partbuild: end
variables: activate pressure
part: select all
part: modify begin
part: colorby palette pressure
part: modify end
Your external program could send the command “play: amiread.enc” to Ensight using the

enscmddriver sendmesg routine. Ensight would play the command file, which would read in the model and
color it by pressure, etc. It would then return and allow the external program to continue to issue other
commands, such as would create images, produce VRML, create flipbook or keyframe animation sequences,
etc.

Additionally, the enscmddriver query routine can be used to obtain some limited information back from
EnSight. The current possibilities for this option will be described in the query section below.

EnSight 8 Interface Manual

Overview

Step 5:

Shutdown Ensight. If you did the normal, and started ensight in batch mode - you close the
communication and get Ensight to stop by sending an exit command with the enscmddriver sendmesg
routine.

If you happen to be running EnSight interactively, rather than the normal batch mode, and you desire to
close the connection, but leave EnSight running - you can use the enscmddriver disconnect routine.

Example

Assuming that you were able to successfully compile our sample external program, enscmddriver, and
that your machine name was “speedy”, you could do the following:

Start Ensight in batch mode (on your machine named “speedy”):

> ensight8 -X -batch -externalcmds &

Start the enscmddriver sample routine:

> enscmddriver speedy

Issue the following commands as prompted by the enscmddriver program:

What would you like to do?
play: amiread.enc

What would you like to do?
view: hidden surface ON
What would you like to do?
savegeom: format vrml

What would you like to do?
savegeom: binary OFF

What would you like to do?
savegeom: save geometric entities /tmp/ami
What would you like to do?
exit

Which would read in the ami model using the amiread.enc command file, then turn shading on, then save a
vrml file in /tmp. It would then close the communication and cause EnSight to exit.

You will of course be using your own external program, so the actual use of the enscmddriver connect,
and enscmddriver sendmesg routines will be of interest to you. You can see them being used in the
enscmddriver.c file. The routine arguments are described in detail in the Routine Descriptions section
below.

EnSight 8 Interface Manual 5-3

5.1 Query Capability

5.1 Query Capability

The Ensight external command driver as first implemented with EnSight version 6.2.4, was purely a one-way
interface. Namely, the external program could send command language to EnSight, but could not receive any
type of information back (except for the error flag concerning success or failure of the command). Starting with
EnSight 7.6, the capability to query EnSight for certain data has been added. While initially the scope of
implemented queries is small, the implementation is general enough that future desirable queries should be
casily added. Currently you can query for various transformation and viewport information.

The enscmddriver query routine is driven by keywords. According to the keyword, the needed input
parameters are defined, as well as the returned results.

Note: In the descriptions of the transformation matrices below, the components of a 4 x 4 matrix are:

all al2 al3 al4
a2l a22 a23 a24
a3l a32 a33 a34

\
\
\
| a4l ad42 ad43 a44

Alphabetical List of Query Keywords:

ARROW_COUNT

PART DISPLAY ATTRIBUTES

TRANSFORMATION COMPOSITE MATRIX

ARROW DISPLAY ATTRIBUTES

PART ELEMENT PICKEDBYWINXY

TRANSFORMATION LOOKAT POSITION

ARROW SELECTED OBJECTS

PART ELEMENT PICKEDBYWORLDXYZ

TRANSFORMATION LOOKFROM POSITION

DIAL COUNT

PART NODE PICKEDBYWINXY

TRANSFORMATION PERANG

DIAL DISPLAY ATTRIBUTES

PART NODE PICKEDBYWORLDXYZ

TRANSFORMATION PROJ MATRIX

DIAL SELECTED OBJECTS

PART OBJECTS

TRANSFORMATION ROTATE MATRIX

FLIPBOOK INFORMATION

PART PICKED

TRANSFORMATION SCALE MATRIX

FLIPBOOK LOADED

PART SELECTED OBJECTS

TRANSFORMATION TRANSLATE MATRIX

FLIPBOOK RUNNING

PLOT COUNT

TRANSFORMATION ZCLIP LOCATIONS

FRAME COUNT

PLOT DISPLAY ATTRIBUTES

VARIABLE INFORMATION

FRAME LOCATION

PLOT PICKED

VARIABLE OBJECTS

GAUGE COUNT

QUERY COUNT

VIEW MODE

GAUGE DISPLAY ATTRIBUTES

QUERY DISPLAY ATTRIBUTES

VIEWPORT COUNT

GAUGE SELECTED OBJECTS

QUERY PICKED

VIEWPORT DISPLAY ATTRIBUTES

LEGEND_COUNT

QUERY PROBE ATTRIBUTES

VIEWPORT LOCATION

LEGEND_ DISPLAY ATTRIBUTES

QUERY PROBE_OUTPUT

VIEWPORT PICKED

LEGEND_ SELECTED OBJECTS

SHAPE COUNT

VIEWPORT SIZE

LINE COUNT

SHAPE DISPLAY ATTRIBUTES

WINDOW DEPTH VALUES

LINE DISPLAY ATTRIBUTES

SHAPE SELECTED OBJECTS

WINDOW MOUSECURRENT INFO

LINE SELECTED OBJECTS

TEXT COUNT

WINDOW MOUSELASTPRESS INFO

LOGO_COUNT

TEXT DISPLAY ATTRIBUTES

WINDOW RGBA VALUES

LOGO DISPLAY ATTRIBUTES

TEXT DISPLAY TEXT

WINDOW SIZE

LOGO_SELECTED OBJECTS

TEXT SELECTED OBJECTS

MESSAGES

TRANSFORMATION CENTER OF

EnSight 8 Interface Manual

Query Keyword Details

5.1 Query Keyword Details

Description

Keyword:
ARROW_COUNT

example command> query ARROW COUNT

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
ARROW_DISPLAY ATTRIBUTES

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
ARROW_SELECTED_OBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
DIAL_ COUNT

example command> query DIAL COUNT

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

EnSight 8 Interface Manual

5-5

5.1 Query Keyword Details

Description

Keyword:

DIAL DISPLAY ATTRIBUTES

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
DIAL SELECTED_OBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
FLIPBOOK INFORMATION

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
FLIPBOOK_ LOADED

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

EnSight 8 Interface Manual

5.1 Query Keyword Details

Description

Keyword:
FLIPBOOK_RUNNING

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Number of Frames

Keyword:
FRAME_COUNT

example command> query FRAME COUNT

Input:
param cnt = 0

Return Values:

On Success -> (1)
ret int cnt
ret int array([0]

number of frames

On Failure -> (-1)
ret error buf contains the error message string

Frame Location

Keyword:
FRAME LOCATION

example command> query FRAME LOCATION 1

Input:
param cnt =1
param array[0] = frame’s id

Return Values:
On Success -> (1)

ret float cnt =12

ret float arrayl[0] = x origin
ret float array[l] = y origin
ret float array[2] = z origin
ret float array[3] = x vector u
ret float arrayl[4] = X vector v
ret float array[5] = x vector w
ret float array[6] = y vector u
ret float arrayl[7] = y vector v
ret float array[8] = y vector w
ret float array[9] = z vector u
ret float array[10] = z vector v
ret float array[ll] = z vector w

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual

5-7

5.1 Query Keyword Details

5-8

Description

Keyword:
GAUGE_COUNT

example command> query GAUGE COUNT

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
GAUGE_DISPLAY ATTRIBUTES

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
GAUGE_SELECTED_OBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Number of legend annotations

Keyword:
LEGEND_COUNT

example command> query LEGEND COUNT

Input:
param cnt =0

Return Values:

On Success -> (1)
ret int cnt
ret int array([0]

number of legend annotations

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual

5.1 Query Keyword Details

Legend’s display attributes

Keyword:
LEGEND_DISPLAY ATTRIBUTES

example command> query LEGEND DISPLAY ATTRIBUTES 1

Input:
param cnt =1
param array[0] = legend’s id (O-based)

Return Values:
On Success -> (1)
ret char cnt = number of attributes + 2
ret char array[0] = legend description, format, and attribute commands with values
desc NULL format NULL commandl NULL command2 NULL

lastcommand NULL

On Failure -> (-1)
ret error buf contains the error message string

Description

Keyword:
LEGEND_SELECTED_OBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Number of line annotations

Keyword:
LINE_COUNT

example command> query LINE COUNT

Input:
param cnt =0

Return Values:

On Success -> (1)
ret int cnt
ret int array([0]

number of line annotations

On Failure -> (-1)

ret error buf contains the error message string

EnSight 8 Interface Manual

5-9

5.1 Query Keyword Details

5-10

Lines’s display attributes

Keyword:
LINE_DISPLAY ATTRIBUTES

example command> query LINE DISPLAY ATTRIBUTES 1

Input:
param cnt =1
param array[0] = line’s id (O-based)

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

number of attributes

On Failure -> (-1)
ret error buf contains the error message string

attribute commands with values
commandl NULL command2 NULL

lastcommand NULL

Description

Keyword:
LINE_SELECTED_OBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Number of logo annotations

Keyword:
LOGO_COUNT

example command> query LOGO_ COUNT

Input:
param_cnt =0

Return Values:

On Success -> (1)
ret int cnt
ret int array([0]

number of logo annotations

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual

5.1 Query Keyword Details

Logo’s display attributes

Keyword:
LOGO_DISPLAY ATTRIBUTES

example command> query LOGO DISPLAY ATTRIBUTES 1

Input:
param cnt =1
param array[0] = logo’s id (O-based)

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

number of attributes
attribute commands with values
commandl NULL command?2 NULL ... lastcommand NULL

On Failure -> (-1)
ret error buf contains the error message string

Description

Keyword:
LOGO_SELECTED_OBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Message Window contents

Keyword:
MESSAGES

example command> query MESSAGES

Input:
param_cnt =0

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

message window contents

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual 5-11

5.1 Query Keyword Details

Part’s display attributes

Keyword:
PART DISPLAY ATTRIBUTES

example command> query PART DISPLAY ATTRIBUTES 1

Input:
param cnt =1
param array[0] = part’s id as returned from “query PART OBJECTS”

Return Values:

On Success -> (1)
ret char cnt
ret char arrayl[n]

number of attributes
attribute commands with values

On Failure -> (-1)
ret error buf contains the error message string

commandl NULL command?2 NULL ... lastcommand NULL

Description

Keyword:
PART ELEMENT PICKEDBYWINXY

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
PART ELEMENT PICKEDBYWORLDXYZ

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
PART NODE_PICKEDBYWINXY

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

5-12

EnSight 8 Interface Manual

5.1 Query Keyword Details

Description

Keyword:
PART NODE_PICKEDBYWORLDXYZ

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Part general existence information

Keyword:
PART_OBJECTS

example command> query PART OBJECTS

Input:
param array cnt = 0

Return Values:

On Success -> (1)
ret int cnt

number of parts + 1

ret int array([0]
ret int array[1l]
ret int array([2]
ret _int array([3]

number of parts
ID for part 1
ID for part 2
ID for part 3

ret int array[number of parts] = ID for last part

ret charstr cnt = number of parts

ret char str = name of partl NULL name of part2 NULL
On Failure -> (-1)

ret error buf contains the error message string

name of lastpart NULL

Description

Keyword:
PART PICKED

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

EnSight 8 Interface Manual

5-13

5.1 Query Keyword Details

Part selection information

Keyword:
PART SELECTED_OBJECTS

example command> query PART SELECTED OBJECTS

Input:
param array cnt = 0

Return Values:

On Success -> (1)
ret int cnt

number of selected parts + 1

ret int array[0]
ret int array([l]
ret int array([2]
ret int array[3]

number of selected parts
ID for part 1
ID for part 2
ID for part 3

ret int array[number of parts] = ID for last selected part

ret charstr cnt = number of selected parts

ret char str = name of partl NULL name of part2 NULL ... name of lastpart NULL
On Failure -> (-1)

ret error buf contains the error message string

Number of plotters

Keyword:
PLOT_COUNT

example command> query PLOT COUNT

Input:
param_cnt =0

Return Values:
On Success -> (1)
ret int cnt
ret int array[0]

1
number of plotters

On Failure -> (-1)
ret error buf contains the error message string

Plotter’s display attributes

Keyword:
PLOT_DISPLAY ATTRIBUTES

example command> query PLOT DISPLAY ATTRIBUTES 1

Input:
param cnt =1
param array[0] = plotter’s id (O-based)

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

number of attributes + 6

plotter description NULL plotter title NULL

x axis title NULL y axis title NULL

x axls format string NULL y axis format string NULL
attribute commands with values separated by NULLs

On Failure -> (-1)
ret error buf contains the error message string

5-14 EnSight 8 Interface Manual

5.1 Query Keyword Details

Description

Keyword:
PLOT_PICKED

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Number of queries

Keyword:
QUERY_COUNT

example command> query QUERY COUNT

Input:
param cnt =0

Return Values:

On Success -> (1)
ret int cnt
ret int array([0]

number of queries

On Failure -> (-1)
ret error buf contains the error message string

Query’s display attributes

Keyword:
QUERY DISPLAY ATTRIBUTES

example command> query QUERY DISPLAY ATTRIBUTES 1

Input:
param cnt =1
param _array[0] = query’s id (0O-based)

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

number of attributes + 1
query description NULL attribute commands
with values separated by NULLs

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual

5-15

5.1 Query Keyword Details

Description

Keyword:
QUERY_ PICKED

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Query’s display attributes

Keyword:
QUERY_ PROBE_ATTRIBUTES

example command> query
Input:

Return Values:

On Failure -> (-1)

Query Probe’s output

Keyword:
QUERY_PROBE_OUTPUT

example command> query QUERY PROBE OUTPUT

Input:
param cnt =2

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

1
query probe output

On Failure -> (-1)
ret error buf contains the error message string

Description

Keyword:
SHAPE COUNT

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

5-16

EnSight 8 Interface Manual

5.1 Query Keyword Details

Description

Keyword:
SHAPE _DISPLAY ATTRIBUTES

example command> query
Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
SHAPE SELECTED_OBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Number of text annotations

Keyword:
TEXT_COUNT

example command> query TEXT COUNT

Input:
param cnt =0

Return Values:

On Success -> (1)
ret int cnt
ret int array[0]

1
number of text annotations

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual 5-17

5.1 Query Keyword Details

Text’s display attributes

Keyword:
TEXT DISPLAY ATTRIBUTES

example command> query TEXT DISPLAY ATTRIBUTES 1

Input:
param cnt =1
param array[0] = text’s id (O-based)

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

number of attributes
attribute commands with values
commandl NULL command2 NULL

On Failure -> (-1)
ret error buf contains the error message string

lastcommand NULL

Text’s display text

Keyword:
TEXT DISPLAY TEXT

example command> query TEXT DISPLAY TEXT 1

Input:
param cnt =1
param array[0] = text’s id (O-based)

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

1
text annotation’s text

On Failure -> (-1)
ret error buf contains the error message string

Description

Keyword:
TEXT_SELECTED_QBJECTS

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

5-18

EnSight 8 Interface Manual

5.1 Query Keyword Details

The Center of Transformation

Keyword:
TRANSFORMATION CENTER OF

example command> query TRANSFORMATION CENTER OF 1

Input:

param _array cnt
param_array[0]

1
Viewport number for the desired viewport (zero based)

Return Values:

On Success -> (1)
ret float cnt
ret float array[0]
ret float arrayl[l]
ret float array([2]

coordinate of center of transformation
coordinate of center of transformation
coordinate of center of transformation

i
NAX W

On Failure -> (-1)
ret error buf contains the error message string

The Composite Transformation matrix - A combination of the look at/look from transform and the
global transformation matrix.
Keyword:
TRANSFORMATION_COMPOSITE_MATRIX

example command> query TRANSFORMATION COMPOSITE MATRIX 1

Input:
param array cnt
param array[0]

1
Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret float cnt =16 (4 x 4 matrix)

ret float array[0] = all ret float array[8] = a3l
ret float array[l] = al2 ret float array[9] = a32
ret float array[2] = al2 ret float array[l10] = a32
ret float array[3] = al4 ret float array[ll] = a34
ret float array[4] = a2l ret float array[l2] = a4l
ret float array[5] = a22 ret float array[l3] = a4d2
ret float array[6] = a22 ret float array[l4] = a42
ret float arrayl[7] = a24 ret float arrayl[15] = a4d4

On Failure -> (-1)
ret error buf contains the error message string

The Lookat Position

Keyword:
TRANSFORMATION LOOKAT POSITION

example command> query TRANSFORMATION LOOKAT POSITION 1

Input:

param array cnt
param_array[0]

1
Viewport number for the desired viewport (zero based)

Return Values:

On Success -> (1)
ret float cnt = 3
ret float arrayl[O0
ret float array[l
ret float array(2

x coordinate of lookat point
y coordinate of lookat point
z coordinate of lookat point

]
]
]

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual 5-19

5.1 Query Keyword Details

The Lookfrom Position

Keyword:

TRANSFORMATION_ LOOKFROM POSITION

example command> query TRANSFORMATION LOOKFROM POSITION 1

Input:

param _array cnt
param_array[0]

1

Return Values:

On Success -> (1)
ret float cnt
ret float array[0]
ret float arrayl[l]
ret float array([2]

o
NAX W

On Failure -> (-1)
ret error buf contains

Viewport number for the desired viewport

coordinate of lookfrom point
coordinate of lookfrom point
coordinate of lookfrom point

the error message string

(zero based)

Perspective angle

Keyword:
TRANSFORMATION PERANG

example command> query TRANSFORMATION PERANG O

Input:
param cnt =1
param array[0] = viewport number

Return Values:

On Success -> (1)
ret float cnt =

ret float array([0] =

On Failure -> (-1)
ret error buf contains

perang

the error message string

5-20

EnSight 8 Interface Manual

5.1 Query Keyword Details

Projection matrix

Keyword:
TRANSFORMATION PROJ MATRIX

example command> query TRANSFORMATION PROJ MATRIX O
Input:

param cnt =1
param array[0] viewport number

Return Values:

On Success -> (1)
ret float cnt =16 (4 x 4 matrix)

ret float array[0] = all
ret float array([l] = al2
ret float array([2] = al3
ret float array[3] = ald
ret float array([4] = a2l
ret float array[5] = a22
ret float array([6] = a23
ret float array([7] = a24
ret float array([8] = a3l
ret float array([9] = a32
ret float array([10] = a33
ret float array[ll] = a34
ret float array[1l2] = a4l
ret float array[1l3] = a42
ret float array([14] = a43
ret float arrayl[1l5] = a44

On Failure -> (-1)
ret error buf contains the error message string

| all al2 al3 al4d
| a2l a22 a23 az4
| a3l a32 a33 a34
| a4l ad2 a43 a4l

where the matrix components are

EnSight 8 Interface Manual

5-21

5.1 Query Keyword Details

5-22

The Rotate Transformation matrix

Keyword:

TRANSFORMATION_ ROTATE_ MATRIX

example command>

Input:

param _array cnt
param_array[0]

Return Values:

query TRANSFORMATION ROTATE MATRIX 1

On Success -> (1)

1

Viewport number for the desired viewport

On Failure ->

ret float cnt

ret float arrayl[O0
ret float arrayll
ret float arrayl[2
ret float arrayl[3
ret float arrayl[4
ret float arrayl[5
ret float arrayl[6
ret float arrayl[7

]
]
]
]
]
]
]
]

(-1)

16

all
al2
alz
ald
a2l
az2
az2
a24

(4 x 4 matrix

ret float array[8]

ret float arrayl[9]

ret float array[10]
ret float array[1l1]
ret float array[12]
ret float array[1l3]
ret float array[1l4]
ret float array[15]

ret error buf contains the error message string

a3l
a32
a32
a34
adl
ad2
aa2
ad4

(zero based)

The Scale Transformation matrix

Keyword:

TRANSFORMATION_ SCALE MATRIX

example command>

Input:

param array cnt
param array[0]

Return Values:

query TRANSFORMATION SCALE MATRIX 1

On Success -> (1)

1

Viewport number for the desired viewport

On Failure ->

ret float cnt

ret float arrayl[0
ret float array([l
ret float array([2
ret float arrayl[3
ret float arrayl[4
ret float array[5
ret float arrayl[6
ret float arrayl[7

]
]
]
]
]
]
]
]

(-1)

16

all
alz
al2
ald
azl
a22
az2
az4

(4 x 4 matrix

ret float array[8]

ret float array[9]

ret float array[10]
ret float array[ll]
ret float array[l2]
ret float array[13]
ret float array[l4]
ret float array[15]

ret error buf contains the error message string

a3l
a32
a32
a34
a4l
a4z
a4z
ad4

(zero based)

EnSight 8 Interface Manual

5.1 Query Keyword Details

The Translate Transformation matrix

Keyword:
TRANSFORMATION TRANSLATE MATRIX

example command> query TRANSFORMATION TRANSLATE MATRIX 1

Input:

param _array cnt
param_array[0]

1
Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret float cnt =16 (4 x 4 matrix)

ret float array[0] = all ret float array[8] = a3l
ret float array[l] = al2 ret float array[9] = a32
ret float array[2] = al2 ret float array[l10] = a32
ret float array[3] = al4 ret float array[ll] = a34
ret float array[4] = a2l ret float array[l2] = a4l
ret float array[5] = a22 ret float array[1l3] = a42
ret float array[6] = a22 ret float array[l4] = a42
ret float arrayl[7] = a24 ret float array([15] = a44

On Failure -> (-1)
ret error buf contains the error message string

Zclip locations

Keyword:
TRANSFORMATION ZCLIP_LOCATIONS

example command> query TRANSFORMATION ZCLIP_ LOCATIONS

Input:

param _array cnt
param_array[0]

1
Viewport number (zero based)

Return Values:

On Success -> (1)
ret float cnt
ret float array[0]
ret float array[1l]

2
near zplane z location
far zplane z location

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual 5-23

5.1 Query Keyword Details

5-24

Variable information - such as the active/inactive flag,

expression for computed vars, etc.

Keyword:
VARIABLE INFORMATION

example command> query VARIABLE INFORMATION 1

Input:
ret param cnt = 1
ret params[0] = variable number starting with 0 as

from “query VARIABLE OBJECTS”.

Return Values:

On Success -> (1)
ret int cnt
ret int array[0]

1
active flag (0 if inactive,

If Computed
ret int count
ret int array[O0
ret int array[l
ret int array[2
ret _int arrayl[3

2 + number of parts used to
active flag (0 if inactive,

lst part used to compute it.
2nd part used to compute it.

]
]
]
]

ret_inﬁ_érfay[2+n] nth part used to compute it.
If Scalar:
ret float cnt
ret float array(0]
ret float array([1l]

2
min value
max value

If Vector:
ret float cnt
ret float array
ret float array
ret float array
ret float array

[comp min value
[
[
_ _ [
ret float array|
[
[
[

comp max value
comp min value
comp max value
comp min value
compmax value
magnitude min value
magnitude max value

N N X X ©

ret float array
ret float array
ret float array

If Computed:
ret charstr cnt
ret char str[0]

1

On Failure -> (-1)
ret error buf contains the error message string

returned

1 if active)

compute 1it.
1 1if active)

count of parts used to compute it

command for calculator expression

current min and max values,

EnSight 8 Interface Manual

5.1 Query Keyword Details

Variable general existence information

Keyword:
VARIABLE_OBJECTS

example command> query VARIABLE OBJECTS

Input:
param array cnt = 0

Return Values:

On Success -> (1)
ret int cnt

number of vars + 1
ret int array([1]
ret int array([2]
ret int array([3]

type for variable 1
type for variable 2
type for variable 3

ret_iné_array[number of vars] = type for last variable

ret int array[l + number of vars] = order for variable 1
ret int array[2 + number of vars] = order for variable 2
ret int array[3 + number of vars] = order for variable 3
ret_inﬁ_array[Z * number of vars] = order for last variable

number of variables
name of varl NULL name of varZ2 NULL

ret charstr cnt
ret char str

On Failure -> (-1)
ret error buf contains the error message string

Map of variable types:

name of lastvar NULL

0 = Scalar
1 = Vector
2 = Tensor
3 = Scalar Complex
4 = Vector Complex
Map of variable orders:
0 = Per Case (constant)
1 = Per Elem
2 = Per Node
Description
Keyword:
VIEW_MODE

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

EnSight 8 Interface Manual

5-25

5.1 Query Keyword Details

Number of viewports

Keyword:
VIEWPORT COUNT

example command> query VIEWPORT COUNT

Input:
param_cnt =0

Return Values:

On Success -> (1)
ret _int cnt
ret int array([0]

number of viewports

On Failure -> (-1)
ret error buf contains the error message string

Viewport’s display attributes

Keyword:
VIEWPORT DISPLAY ATTRIBUTES

example command> query VIEWPORT DISPLAY ATTRIBUTES 1
Input:

param cnt =1
param array[0] viewport’s id (0-based)

Return Values:

On Success -> (1)
ret char cnt
ret char array[0]

number of attributes
attribute commands with values
commandl NULL command?2 NULL ... lastcommand NULL

On Failure -> (-1)
ret error buf contains the error message string

The Location of bottom left of Viewport - returned both as screen and as normalized coords

Keyword:
VIEWPORT LOCATION

example command> query VIEWPORT LOCATION 1

Input:

param_array cnt
param array[0]

1
Viewport number for the desired viewport (zero based)

Return Values:

On Success -> (1)
ret float cnt
ret float array([0]
ret float array[1l]
ret int cnt
ret int array[O0]
ret _int array([1]

2
normalized window x coordinate of bottom left of viewport (0. to 1.)
normalized window y coordinate of bottom left of viewport (0. to 1.)

screen x coordinate of bottom left of viewport
screen y coordinate of bottom left of viewport

On Failure -> (-1)
ret error buf contains the error message string

5-26 EnSight 8 Interface Manual

5.1 Query Keyword Details

Description

Keyword:
VIEWPORT PICKED

example command> query
Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

The Size of the Viewport, width and helght - returned both as screen and as normalized values

Keyword:
VIEWPORT SIZE

example command> query VIEWPORT SIZE 1

Input:

param_array cnt
param array[0]

1
Viewport number for the desired viewport (zero based)

Return Values:

On Success -> (1)
ret float cnt
ret float array([0]
ret float array[l]
ret int cnt
ret int array[O0]
ret _int array([1]

2
normalized window x size of viewport (0. to 1.)
normalized window y size of viewport (0
3

screen x size of viewport
screen y size of viewport

On Failure -> (-1)
ret error buf contains the error message string

Window depth wvalues

Keyword:
WINDOW_DEPTH_ VALUES

example command> query WINDOW DEPTH VALUES

Input:
param_cnt =0

Return Values:

On Success -> (1)
ret float cnt
ret float array[n]

xSize * ySize

depth pixel interlaced values

if stereo, then the array is xSize * ySize * 2 and the
two stereo pairs are back to back

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual 5-27

5.1 Query Keyword Details

5-28

Description

Keyword:
WINDOW_MOUSECURRENT INFO

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Description

Keyword:
WINDOW_MOUSELASTPRESS INFO

example command> query

Input:

Return Values:
On Success -> (1)

On Failure -> (-1)

Window RGBA values

Keyword:
WINDOW_RGBA VALUES

example command> query WINDOW RGBA VALUES

Input:
param_cnt =0

Return Values:

On Success -> (1)
ret char cnt
ret char array[n]

xSize * ySize * 4
rgba pixel interlaced values

if stereo, then the array is xSize * ySize * 4 * 2 and the
two stereo pairs are back to back

On Failure -> (-1)
ret error buf contains the error message string

EnSight 8 Interface Manual

5.1 Query Keyword Details

Window size

Keyword:
WINDOW_SIZE

example command> query WINDOW SIZE

Input:
param_cnt =0

Return Values:

On Success -> (1)
ret int cnt
ret int array[O0]
ret int array[l]
ret _int array[2]

3

X size (pixels)

y size (pixels)
isStereo (boolean)

On Failure -> (-1)
ret error buf contains the error message string

The supplied sample external routine (enscmddriver.c) contains an example of the use of this routine.

Please see the Routine Description section for an explanation of the other arguments to the
enscmddriver query routine.

EnSight 8 Interface Manual

5-29

5.2 Routine Descriptions

5.2 Routine Descriptions

enscmddriver_connect

/***

* Starts up connection to the EnSight client to drive it via commands.

* Parameters:

* host toconnectto - Character buffer containing hostname

* where EnSight is running.

* sockport - Port number to use for socket(> 1024).

* print error - if (1) will print errors to stderr when

* they occur.

* Return Values:

* On Success - Socket file descriptor to communicate with

* EnSight, if success.

* On Failure

* ENS SOCKRANGE - Port number out of range. Must be > 1024.

* ENS CONNECT - Connection to EnSight failed. EnSight must

* be ready for the external command connection.

* ENS HANDSHAKE - The call to receive the handshake string

* from the EnSight client failed.

* ENS HOSTTOOLONG - The hostname specified is too large.

**/
int
enscmddriver connect (char *host toconnectto,

int sockport,
int print error)

5-30 EnSight 8 Interface Manual

5.2 enscmddriver_sendmesg

enscmddriver_sendmesg

/***

* This routine sends the EnSight client a command and waits for an ok (or ERROR).

* Parameters:
* comm_socket - Socket to communicate on.
* cmd - command string being sent
* print error - if (1) will print errors to stderr when
* they occur.
* Return Values:
* 1 - upon success
* -1 - upon failure
**/
int
enscmddriver sendmesg (int comm socket,
char *cmd,
int print error)

EnSight 8 Interface Manual 5-31

5.2 enscmddriver_query

enscmddriver_query

/***

* This routine sends the EnSight client a query command and waits for the results.

* Parameters:
* comm_socket - Socket to communicate on.
* query keyword - Query keyword
* param_array cnt - Count of parameters in array below.
* param array - Floating point array containing any parameters
* for the query operation. The count above helps
* to clarify any changes that might be made to
* a particular query in the future. This will
* help to allow forward/backward compatibility
* and prevent users from always having to use
* the latest library.
*
* ***NOTE: the next 6 need to be passed in by address(ex. &ret int cnt)
* because return values will be placed in the ...cnt variables
* and space will be allocated for the others and return
* information will be placed in this space.
* ret charstr cnt - Count of strings concatenated into string return
* ret char str - String(s) returned from query and separated
* by NULLs. When the user finishes with the
* information they must use free() to deallocate.
* ret int cnt - Count of integers in return int array.
* ret int array - Array of integer return values. When the user
* finishes with the information they must use
* free() to deallocate.
* ret float cnt - Count of floats in return float array.
* ret float array - Array of float return values. When the user
* finishes with the information they must use
* free() to deallocate.
*
* ret error buf - Buffer for error return string. This buffer
* should be preallocated to 500 characters by
* the caller. It will contain a NULL terminated
* error string when the return value is -1.
*
* Return Values:
* On Success - (1)
* On Failure - (-1) (See error buffer above)
*
**/
int
enscmddriver query (int comm_socket,
char *query keyword,
int param array cnt,
float *param array,
int *ret charstr cnt,
char **ret char str,
int *ret int cnt,
int **ret int array,
int *ret float cnt,
float **ret float array,
char ret error buf[500])

5-32 EnSight 8 Interface Manual

5.2 enscmddriver_disconnect

enscmddriver_disconnect

/***

*

*
*
*
*
*
*
*
*
*
*
*

This routine cleans up the connection to EnSight. This must

be done before you exit, especially if your application is dieing
because it received a signal. If the socket is not closed properly
your port may become hung and you won’t be able to use it until

it is cleared out by a reboot of your system or some other event.

Parameters:
comm_socket - Socket to communicate on.

Return Values:
None

***/

void
enscmddriver disconnect (int comm socket)

EnSight 8 Interface Manual 5-33

5.2 enscmddriver_disconnect

5-34 EnSight 8 Interface Manual

Overview

6 EnSight Python Interpreter

Overview

EnSight includes a built-in interpreter for the Python programming language (www.python.org). The
system allows Python code to be executed within the EnSight program, not unlike the command language
allows. Python is a more fully featured programming language with formal flow control, classes and
complex variable types. It is also intrinsically extensible. EnVe 2.0 is an example of a Python extension.
The popularity of the Python language means that there are a large number of available extensions (e.g.
xml, SQL, COM, etc). The Python built into EnSight includes the core classes and libraries as well as the
EnSight, EnVe and PyQt (Python interface to the Qt GUI library) modules. The PyQt module allows
Python code running inside of EnSight to create cross-platform custom GUIs that can interact with
EnSight. Unlike the command language, EnSight Python code is not journaled during execution. Python
commands will not show up in any saved EnSight command stream.

Starting with 8.2, EnSight will accept Python scripts in most situations where it is expecting a command
script. For example, in the 'Load:' prompt in the command dialog, as the name of a keyboard or HUM
macro and on the command line (-p), the user may specify the name of a Python script to be executed. This
would allow things like GUISs to be popped up when keys are pressed, etc. The command language 'play:
filename' command will accept a Python filename, allowing the execution of Python code from any
command file. EnSight differentiates between command language files and Python files based on filename
suffix. Python files are assumed to end in ".py' or ".pyc'. All other files are assumed to contain EnSight
command language instructions.

The core interface to the Python interpreter is accessed via the "Python" tab in the command dialog GUI

Executian] Macroz | Python ‘

File "<string>", limne 1
print this i= amn error
SyntaxError: unexpected EOF while parsing
He=llo 15_45

Cmd: |print "Hello", 1.5*10.3

Clear lng | Edit Python file. . | Mew Python file. .. ‘

Cloze Help

EnSight 8 Interface Manual 6-1

Limitations of the EnSight Python Interface

6-2

The 'Cmd:' edit field allows the user to interactively type in Python commands. The output of those commands is
captured in the pane above the prompt. Normal output from Python is in black text, while error output is
displayed as red text. Simple, one-line commands can be entered and executed when the user presses 'enter'. The
command prompt allows for command recall as well. The up and down arrow keys walk though the most
recently entered commands, facilitating rapid editing and re-issuing of commands. A button is provided to clear
the current log text at any time.

EnSight provides a built-in editor for Python code that includes Python aware syntax highlighting. Buttons are
provided to create a new Python script file or edit an existing one. The editor window looks like this:

M C:/Documents and Settings/rjfrank.CEI-OSWW1MR7 1 50/My Documentsfexample. py
File Edit

1
2
3
4
5
g
7
8

l:i.mpnrt as |
import o=.path

import string

from ct import *

Zielass simple example(QWidget):
u

Set up a simple PyQt 5UI

e

= def init (self, parent=Hone, name=Hone}):

Y
— o w

OWidget. init (self, parent, name) —
self.secCaption "Simple Python EnSight Demo™)

engight.addeal lback{sels, "postemdlE" ,ensight . ENS_EVENT POSTCOMNMAND)
ensight.addcallback{self, "partselCE" ,ensight .ENS_EVENT FPARTIELECT)
self.vhox = OVBoxLayout{self)

self.hbox UHEoxXLayout{self.vbox)

gelf.load = QPushButton{"Load AMI data",self)
self.hbox.addWidget{self. load)

self.connect{self.load, SIGNAL{"zlicked(]™), =self.loadCE)

gelf.pre = QPushButton{"Pressure palette™ ,zelf)
self.hbox.addidget{self.pre})

self.connect{self.pre, SIGNAL{"clicked()™), self.preCE)

gelf.wvel = QPushButton{"™Velocity palecte™ ,self)
gelf.hbox.addlidget{zelf.vel})

self.connect{self.vel, SIGNAL{"clicked()™), =self.welCE)

self.text = QTextEdit{self)

self.text.setReadonly{l)

self.vhox.addWidget{self.text)

ensight.reparent{self})

self.lpal = "

= gelf.updateText{):

kg

Change the palette of the currently zelected parts

s

def colorallby{self ,pal): -
3

L T T T T B B e e S s Y
[e = R e & B S P T I e T e ST PR NPT
]

L0 L) LD L
= L R

{a

{

The line numbers are down the left side and a column is provided to allow the user to hide/show blocks of text.
This also makes it easier to see how the block indented structure of Python denotes scope. The menu options
allow for basic file I/O and cut/copy/paste editing. The file menu also provides a menu to execute the current file
in the EnSight Python interpreter. This will check the syntax of the current file and allows for rapid prototyping.

Limitations of the EnSight Python Interface

Python is a complex and broad-ranging programming language. There are a few features of the language that
can cause problems if called from within EnSight. The features should not be used by Python code running
inside of EnSight.

EnSight 8 Interface Manual

Limitations of the EnSight Python Interface

Re-entrant interfaces to the command language are not allowed. For example, a Python script may use
ensight.sendmesg() to 'play:' a command language file. If that file in turn tries to execute a Python script,
EnSight will fail. The reverse is also true. If a command language script calls a Python script which then
calls a command language script, EnSight will fail. In general, avoid nesting 'play:' commands that change
interpreters.

Python supports threads and you can use these, except there are two problems. Python threads require the
interpreter be running at all times to execute. In EnSight, the interpreter is dormant unless Python code is
being executed, so the threads may not always be executed. Second, threads that explicitly or implicitly
modify GUI elements can cause issues. In EnSight, it is critical that only the main thread of execution
make GUI changes. Note that even simple things like 'print' in EnSight Python cause GUI elements to
change (the output is logged to a Qt widget). The best advice is not to use Python threads in EnSight.

The PyQt module provides a socket interface. This interface is based on asynchronous socket calls. While
the interface is quite nice, it has the side effect of making all the other socket calls in EnSight under
Windows asynchronous. This will cause EnSight's socket communication library to fail. If you need a
socket connection in Python, use the provided Python module instead of the PyQt module.

EnSight balances the X11 Motif widgets with those provided by PyQt, allowing both to exist and co-
operate. One exception to this rule is the issue of modal widgets. The current event handling system cannot
properly handle the case of both widget systems having a modal widget. Thus, this case must be avoided.
The most common situation occurs when a modal PyQt widget is active and a callback function on that
widget uses ensight.sendmesg() and the resulting command causes EnSight to pop up a modal X11 dialog.
This will cause EnSight to hang. The work-around is to avoid calling sendmesg() when there is a modal
PyQt widget (note that Qt popup menus are modal widgets). Always allow the modal operation to
complete before making the sendmesg() calls.

EnSight 8 Interface Manual 6-3

6.1 Python EnSight module interface

6-4

6.1 Python EnSight module interface

Key to interacting with EnSight from within Python is the 'ensight' module. This module is pre-loaded into the
environment and provides a number of methods that can be used to communicate directly with EnSight. The
form of these methods closely follows that of the EnSight command driver interface.
(Forsonu:exanqﬂes,sem $CEI_HOME/ensight82/unsupported/user_gui_examples)

When the EnSight Python interpreter is initialized, it automatically runs the following Python commands:
import ensight

import sys

from gt import *

Ensight Module Code Methods

ensight.sendmesqg (cmd| (cmdlist) [, record=1])

This function executes one or more command language commands. The function can be passed
a single string or a tuple of strings. In the latter case, all the strings in the tuple will be executed.
Forexanqﬂe:ensight.sendmesg((“shell: echo A”, “shell: echo B”)) executes two
command language commands. By default, these commands are not included in the session
command log. The optional keyword ‘record=1" will cause the commands to be recorded in
thesesﬁonlog.ForeX&nﬂﬂc:ensight.sendmesg(“shell: echo hello”, record=1) will
execute the command and cause it to be recorded.

(value, type, scope) = ensight.ensvariable (varname)

This method will query EnSight command language variable values and returns a tuple
containing the value, its type and the scope it was found in. It returns None if the variable
cannot be found.

ensight.reparent (QWidget object)

This method is useful on X11 platforms and harmless under Windows. It causes any PyQt
widgets one might create in the EnSight Python interpreter to properly layer with the EnSight
windows (keeping them above the main EnSight window). Note, calling this function with the
wrong argument type can cause EnSight to crash.

(err, value, ...) = ensight.query(param[,which])

This method allows the caller to query various attributes in EnSight. The returned value is
always a list that starts with an error code. The list will include one or more returned values
(specific to the param). See the command driver documentation for details.

Valid "param" values include the following. Note that an "*" means the "which" argument is
required:

ensight.FRAME COUNT

ensight.FRAME LOCATION*
ensight.LEGEND COUNT
ensight.LEGEND_DISPLAY_ATTRIBUTES *
ensight.LEGEND_SELECTED_OBJECTS
ensight.LINE COUNT
ensight.LINE DISPLAY ATTRIBUTES *
ensight.LINE SELECTED OBJECTS
ensight.LOGO COUNT
ensight.LOGO_DISPLAY_ATTRIBUTES *

EnSight 8 Interface Manual

6.1 Python EnSight module interface

ensight
ensight
ensight
ensight

ensight

ensight
ensight
ensight
ensight
ensight
ensight
ensight

ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
.ARROW_COUNT

.ARROW DISPLAY ATTRIBUTES *
.ARROW_ SELECTED OBJECTS
.ARROW LABEL TEXT

ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
ensight.
.VARIABLE OBJECTS
ensight.
.VIEWPORT COUNT

.VIEWPORT DISPLAY ATTRIBUTES *
.VIEWPORT LOCATION *

.VIEWPORT SIZE *

.WINDOW SIZE

.WINDOW DEPTH VALUES
.WINDOW RGBA VALUES f*

LOGO SELECTED_OBJECTS

DIAL COUNT

DIAL DISPLAY ATTRIBUTES *
DIAL SELECTED OBJECTS
FLIPBOOK INFORMATION
FLIPBOOK LOADED

FLIPBOOK RUNNING
GAUGE_COUNT

GAUGE DISPLAY ATTRIBUTES *
GAUGE SELECTED OBJECTS
SHAPE COUNT

SHAPE DISPLAY ATTRIBUTES *
SHAPE SELECTED OBJECTS

MESSAGES
PART DISPLAY ATTRIBUTES *

PART ELEMENT PICKEDBYWINXY * *
PART ELEMENT PICKEDBYEWORLDXYZ * * * *
PART NODE PICKEDBYWINXY * *

PART NODE PICKEDBYWORLDXYZ * * * *
PART OBJECTS

PART PICKED * *

PART SELECTED OBJECTS

PLOT_COUNT

PLOT DISPLAY ATTRIBUTES *

PLOT PICKED * *

QUERY COUNT

QUERY DISPLAY ATTRIBUTES

QUERY PICKED * *

QUERY PROBE OUTPUT *

QUERY PROBE ATTRIBUTES

TEXT_ COUNT

TEXT DISPLAY TEXT *

TEXT DISPLAY ATTRIBUTES *

TEXT SELECTED OBJECTS
TRANSFORMATION PERANG *
TRANSFORMATION PROJ MATRIX *
TRANSFORMATION CENTER OF *
TRANSFORMATION COMPOSITE MATRIX *
TRANSFORMATION LOOKAT POSITION *
TRANSFORMATION LOOKFROM POSITION *
TRANSFORMATION ROTATE MATRIX *
TRANSFORMATION SCALE MATRIX *
TRANSFORMATION TRANSLATE MATRIX *
TRANSFORMATION ZCLIP LOCATIONS *

VARIABLE INFORMATION *

EnSight 8 Interface Manual

6-5

6.1 Python EnSight module interface

6-6

1 The ensight .WINDOW RGBA VALUES is a special case. The second argument value picks the
format of the returned data. A 0 returns the image as a list of integers, 1 returns the image as an
ASCII string (which happens to be a valid PPM file) and 2 returns the image as an enve image
object

The following query param() options are specific to the Python interface and are not
supported by the command driver interface:

ensight.TEXTURE COUNT

Returns the number of textures EnSight supports.

ensight.TEXTURE IMAGE *

Returns the texture selected by param1 as an EnVe image object (see the EnVe module
description of the image object)

ensight.TEXTURE BORDER COLOR *

Returns the texture border color [R,G,B,A] selected by paraml.

ensight.VARIABLE PALETTE * [*]

Returns the current palette for the variable index (see ensight .VARIABLE OBJECTS)
selected by paraml. If the variable is a vector, param?2 selects the palette for the
magnitude (0), x (1), y (2) or z (3) components (it defaults to 0). Each palette entry is
four values in the floating point array. The first is the value and the next three are the
R, G, B color for that value.

ensight.VARIABLE HISTOGRAM *

Returns the min, max and current histogram for the variable index (see

ensight. VARIABLE OBJECTYS) selected by paraml. For a scalar variable, 102
floating point values are returned. The first two are the variable min and max
respectively. The subsequent 100 values are the counts for 100 bins between the min
and max values. For vector variables, four times the number of values are returned.
Values for the magnitude and X, y, and z components are included.

ensight.QUERY DATA *

For the query selected by param1 (see ensight.QUERY COUNT), this values returns the
actual point data for that query. The routine returns integer, string and float values. The
integers start with the number of columns. These will be 2 or 5 depending on the type
of query (e.g. over time or over distance). The remaining integers define the number of
point that go into each segment. The (2 or 5) strings are the labels for the columns. The
floating point values will be either 2 or 5 per point and there will be as many points as
the sum of the integers following the number of columns.

ensight.TOOL PARAMS *

EnSight 8 Interface Manual

6.1 Python EnSight module interface

tools.

This value allows the user to query the current setting for the various EnSight data

The paraml value should be one of the following:

ensight.

TOOL_CURSOR

Value is three floats: [X,y,z] the point

ensight.

TOOL_LINE

Value is six floats: [x0,y0,z0,x1,y1,z1] two points

ensight.

TOOL_PLANE

Value is twelve floats:
[x0,y0,20,x1,y1,z1,x2,y2,72,x3,y3,z3] four points
(must be rectangular and co-planar)

ensight.

TOOL_BOX

Value is fifteen floats:
[0X,0Y,0Z,XX,XY,XZ,YX,VY,YZ,ZX,ZY,ZZ,SX,8Y,SZ] an
origin point, three normal vectors (must be
orthogonal) for the axis and three length values

ensight.

TOOL_CYLINDER

Value is seven floats: [x0,y0,z0,x1,y1,z1,rad] two
points at the ends of the cylinder and the radius

ensight.

TOOL SPHERE

Value is six floats: [x0,y0,z0,x1,y1,z1] two points that
define the diameter (and major axis) of the sphere.

ensight.TOOL_CONE Value is seven floats:
[x0,y0,z0,x1,y1,z1,cone ang] two points at the ends
of the cone and the angle at the apex.
ensight.TOOL REVOLUTION |Value is six + 2*N floats:

[x0,y0,z0,x1.y1.z1,d0,r0,d1,r1,...] two point, one at
the end and the other that defines the axis followed by
a variable number of distance, radius pairs that define
the profile

err = ensight.modify (param, (value))

This method is used to set various EnSight global parameters.

At present, the only valid values for "param' are:

ensight.TEXTURE IMAGE

In this case, value should be a tuple of the form (texure index, image). Texture index
is an integer from 0 to 7 and image is an EnVe module image object.

ensight.TEXTURE BORDER COLOR

In this case, value should be a tuple of the form (texure index, (r,g,b,a)).
Texture index is an integer from 0 to 7, while (r,g,b,a) is a four valued float tuple that
specifies a color+alpha value (all values are in the range [0,1]).

ensight

.refresh ()

This method causes EnSight to redraw its graphics displays.

EnSight 8 Interface Manual

6-7

6.1 EnSight Python events

6-8

EnSight Python events

EnSight has a mechanism to execute Python code when various events occur in the main program. The module
provides methods to add a callback and remove one. Each callback consists of a Python object, the name of a
method on the object and a reason to be called back. An example Python class that registers itself for one
rendering callback and then removes itself would be:

class cb _class:
def register(self):
self.ID = ensight.addcallback(self,"callback",ensight.ENS EVENT PRERENDER)
def callback(self,value):
print "Called back from EnSight", wvalue

ensight.removecallback(self.ID)

example = cb class()

example.register ()

Note that "callback" in the addcallback() method specifies the name of the function in the object to call. The
value in the callback "value" argument vary depending on the specific event it is tied to, but it will always be a
tuple that starts with the original event name passed in addcallback().

EnSight Python Code Methods

ID = ensight.addcallback(object, "methodname", event typel[, timeout])

This method registers the specified method name will be called on the passed object when the
specified event type occurs in EnSight. The function returns an ID number that can be passed
to removecallback() to unregister the callback.

Currently defined values for event_type:

ensight.ENS_EVENT_ALL The method will be called for all EnSight events. The
callback function value will reflect the actual event
type for which the callback was invoked.

ensight.ENS_EVENT_QUIT EnSight is about to exit.

ensight.ENS_EVENT SOLUTION_TIME |The current solution time has changed. The new time
is passed as the value.

ensight.ENS_EVENT PRERENDER EnSight is about to redraw its current displays.
ensight.ENS_EVENT_ POSTRENDER EnSight has just redrawn its current displays.
ensight.ENS_EVENT_ PRECOMMAND EnSight is about to execute the command language

string passed as the value.

ensight.ENS_EVENT POSTCOMMAND EnSight has just executed the command language
string passed as the value.

ensight.ENS_EVENT_TIMEOUT A periodic time has occurred (see below).

ensight.ENS_EVENT_ PARTSELECT The current part selection has changed to the tuple of
part numbers passed as value.

ensight.ENS_EVENT_PART A part has either been created or destroyed. A value
of 0 is passed on construction and 1 is passed on
destruction.

EnSight 8 Interface Manual

6.1 EnSight Python events

Special event Types:

These events come from different sources and the callback functions may have slightly
different behavior from the basic event types.

Python events:

ensight.ENS_EVENT_PYTHON This event allows multiple Python objects running
inside of the EnSight Python interpreter to pass
information to each other. A callback function that is
associated with this event type will be passed a
Python object as its value (see: the method
ensight.sendevent()). The return value of this callback
function is important. If it has the integer value 1, no
additional ENs EVENT pYTHON callbacks will be
called with the value. If the callback returns the value
0, any remaining ENS_EVENT_PYTHON callbacks will
also be called with the same value.

Low Level CVF (device) events:

EnSight’s rendering windows are based on a framework called CVF. This framework provides
an abstraction for all user input events. These event types give a Python callback the
opportunity to see these low-level device events. It also gives the callback the opportunity to
suppress the handling of these events by the normal EnSight handlers. This can be useful for
applications that decide they want specify control over user input in the graphics windows or
want to override the default EnSight behavior for types of interaction. If the callback for one of
these events returns the integer value 1, the event will not be passed on to EnSight. A return
value of 0 will allow normal EnSight event processing to occur.

ensight.ENS EVENT MOUSE_ BUTTON DOWN

The passed value will be the list: [ENS_EVENT MOUSE BUTTON_DOWN, button, buttonstate,
modifiers, x, y]

ensight.ENS_EVENT MOUSE BUTTON UP
The passed value will be the list: [ENS EVENT MOUSE BUTTON_UP, button, buttonstate, modifiers,
X, Y]

ensight.ENS_EVENT MOUSE DOUBLE CLICK

The passed value will be the list: [ENS_EVENT _MOUSE_DOUBLE_CLICK, button, buttonstate,
modifiers, X, y]

ensight.ENS EVENT MOUSE MOTION
The passed value will be the list: [ENS_EVENT _MOUSE_MOTION, buttonstate, modifiers, x, y]

ensight.ENS EVENT WHEEL MOTION
The passed value will be the list: [ENS_EVENT WHEEL MOTION, val, dir, modifiers, X, y]

ensight.ENS_EVENT KEY DOWN
The passed value will be the list: [ENS_EVENT_KEY DOWN, key, modifiers, x, y]

ensight.ENS EVENT KEY UP
The passed value will be the list: [ENS EVENT KEY UP, key, modifiers, x, y]

ensight.ENS EVENT 6D MOTION
The passed value will be the list: [ENS EVENT 6D MOTION, tracker]

EnSight 8 Interface Manual

6-9

6.1 EnSight Python events

ensight.ENS_EVENT 6D BUTTON DOWN
The passed value will be the list: [ENS_EVENT_6D BUTTON_DOWN, tracker]

ensight.ENS EVENT 6D BUTTON UP
The passed value will be the list: [ENS EVENT 6D BUTTON_UP, tracker]

ensight.ENS_EVENT 6D VALUATOR
The passed value will be the list: [ENS_EVENT 6D VALUATOR, valuator, value]

ensight.ENS EVENT DRAWABLE RESIZE
The passed value will be the list: [ENS EVENT DRAWABLE RESIZE]

ensight.ENS_EVENT DRAWABLE EXPOSE
The passed value will be the list: [ENS_EVENT _DRAWABLE EXPOSE

ensight.ENS EVENT DRAWABLE SHOW
The passed value will be the list: [ENS_EVENT _DRAWABLE SHOW]

ensight.ENS EVENT DRAWABLE HIDE
The passed value will be the list: [ENS_EVENT_DRAWABLE HIDE]

ensight.ENS EVENT DRAWABLE FOCUSIN
The passed value will be the list: [ENS EVENT DRAWABLE FOCUSIN]

ensight.ENS EVENT DRAWABLE FOCUSOUT
The passed value will be the list: [ENS _EVENT DRAWABLE FOCUSOUT]

ensight.ENS EVENT DRAWABLE ENTER
The passed value will be the list: [ENS_EVENT_DRAWABLE ENTER]

ensight.ENS EVENT DRAWABLE LEAVE
The passed value will be the list: [ENS EVENT DRAWABLE LEAVE]

ensight.ENS EVENT DRAWABLE SAVE
The passed value will be the list: [ENS_EVENT _DRAWABLE SAVE]

ensight.ENS EVENT DRAWABLE RESTORE
The passed value will be the list: [ENS EVENT DRAWABLE RESTORE]

The x and y values are the location of the cursor at the time of the event. Generally, the button
value will be one of (ensight.ENS BUTTON LEFT, ensight.ENS BUTTON RIGHT,

ensight.ENS BUTTON MIDDLE, ensight.ENS BUTTON WHEEL), while buttonstate is the
arithmetic or of these values together for the current state of all the buttons. The modifiers
values will be the arithmetic or of none or some of the following values:

ensight.MODIFIER CTRL, ensight.MODIFTIER SHIFT, ensight.MODIFIER ALT.

Timer events

ensight.ENS EVENT TIMEOUT

This is a special case in that it requires an extra "timeout" argument to addcallback().
Registering for this event type schedules a periodic callback to the Python code from EnSight
every "timeout" seconds (timeout is a float). ENS EVENT ALL callbacks are not called for
ENS EVENT TIMEOUT events.

6-10 EnSight 8 Interface Manual

6.1 EnSight Python events

err = ensight.removecallback (ID)

This method removes the previously registered callback function.

suppressed = ensight.sendevent (python object)

This method works in conjunction with ensight. ENS EVENT PYTHON. When this function
is called from the EnSight Python interpreter, all of the callback functions that were associated
with ENS EVENT PYTHON are called with the Python object passed to this function as a
parameter. If a callback returns the value of 1, then the object is not passed to any additional
callback functions of this type and sendevent() returns 1. This mechanism is used to allow
multiple objects running within the EnSight Python interpreter to communicate with each other
and pass data, messages, etc back and forth within EnSight. This is a synchronous call, so
callback functions that themselves call sendevent() must take care to ensure that their callback
function is reentrant.

EnSight 8 Interface Manual 6-11

6.2 Python EnVe module interface

6.2 Python EnVe module interface

The EnSight Python interpreter includes the EnVe 2.0 module as well and can be imported as:
import enve

EnSight uses this module internally and in some cases it may have imported it already. The 'enve' module
defines a pair of Python objects that encapsulate a movie and an image as well as a few helpful secondary
functions for things like listing the system installed UDILs.

The EnVe Movie object

The movie object is created in READ or WRITE mode. In normal operation, the various movie attributes are set
after creation and then the object is 'open()'ed to begin the 1/O process. Once the file is open, some attribute
values will change to match the actual values in the files and some attributes will become readonly until the file
is closed. Movie objects are associated with a filename. They contain a number of images that can be read as
well as attributes like dimensions, frames per second and stereo.

The movie object is used to open and read from or write to animation files. A simple example of reading a movie
in one format and writing it to an EVO file (note: no error checking is done in the example) is shown here:

mov = enve.movie (enve.MOVIE READ)
mov.filename = "filetoread.mpg"
mov.open ()

evo = enve.movie (enve.MOVIE WRITE)

evo.filename = "myoutputfile"
evo.format = "EVO"
evo.options = "Compression RLE"

evo.addcount (mov) # how many frames will be added
evo.open ()

evo.append (mov)

evo.close ()

mov.close ()

EnVe Module Code Methods

x = enve.movie (enve.MOVIE READ|enve.MOVIE WRITE)

Creates an empty movie object in read or write mode.

err = x.addcount (N|image |movie)

Write movies must know in advance how many frames will be added before the file is open()ed.
This function is used to add frame counts to the movie. The input parameter can be an integer
(number of frames) an image object (adds one frame) or another movie (open() and in READ
mode, which adds the number of frames in the movie). In the latter two cases, the target movie
may change its dimensions or frame rate to match the added objects. This will happen if the
current dimensions or fps are <= (. The return value is the number of frames, or -1 on error.
x.nframes is updated to reflect this as well.

6-12 EnSight 8 Interface Manual

6.2 The EnVe Movie object

err = x.resetcount ()
This function resets the current nframes count on a WRITE movie to 0. This can be called if the
movie is not currently open.

err = x.open/()
This method opens the physical movie file. In the case of a WRITE file, it will begin the
encoding process.

err = x.append(image|movie)

err = x.append(image|movie,object,method)
If a WRITE movie is open(), this method is used to physically add an image or the frames in a
movie to the current movie. The input frames will be scaled to match the dimensions of the
target. In the second form, this function will periodically call 'object.method(n)' where n is the
number of the frame currently being worked on. This method should return 1 if the operation is
to be aborted or 0 if processing should continue.

image = x.getframe (framenum)
This method extracts a frame from a movie and returns an array of image objects. There may be
one or two images returned (two in the case of a hardware stereo source). The framenum is
[0,x.nframes-1]. The returned frame is intensity and repeat adjusted as specified by those
attributes. This method can only be used on a READ movie.

err = x.close ()
This method completes all I/O operations with a given movie. The physical file on disk will be
valid after this method is called.

str = x.errstr()
If any of the methods return an error (-1), a string describing the error will be stored in the
movie object. These error strings can be accessed via this method.

print x
Prints basic information about the movie x.

EnSight 8 Interface Manual

6-13

6.2 The EnVe Movie object

xX.attr
x.attr = y

Movie attributes (r=read, w=write):

These get and set any of the various movie object attributes.

members

(R)

Returns a list of the attributes this object supports.

__methods

(R)

Returns a list of the methods this object supports.

filename

(RwW)

string

The filename to use.

stereo (RW)

int

This attribute is non-zero if the movie supports HW
stereo (on read) or if the movie has been set to output
HW or anaglyph stereo (on write).

fps (RW)

float

The framerate for movie playback in frames per second.

dims (RW)

(int, int)

The dimensions of the movie frames in pixels.

tiling (RW)

(int, int)

If the output movie should be written as an MTM file,
this attribute specifies the number of tiles in the X and Y
axis.

format (RW)

(string)

This attribute specifies the format for the movie. See:
enve.codes() for a list of formats.

framerange

(RW) (int,int)

For a read movie, this attribute allows one to select a
subset of the input frames to read. For example, (10,20)
will cause the movie to only output frames 10 through 20
inclusive (11 frames). Note that framerange numbers
start at 0 and run through x.realframes-1.

nframes (R)

int

For a read movie, this is the effective number of frames
in the file (and the valid range for getframe(X)). It is
equal to: frameend-framestart+repeatstart+repeatend

realframes

(R) int

The number of actual physical images in a movie file.

options

(Rw)

string

Format specific options in the form: "op1 value op2
value ..."

intensity

(RW) (float, float)

When reading from a file, the frames may have their
intensity scaled linearly from the first to the last frame.
This attribute allows this scaling to be set. The default is
(1.0,1.0) or no intensity changes.

repeat (RW)

(int, int)

When reading from a file, the first and last frames may
be repeated a number of times. This attribute allows the
number of additional times those frames appear. For
example, (5,3) will cause the first frame to be repeated 5
additional times (6 total) and the last frame 3 times (4
total). As a result, nframes will report 8 more frames in
the movie. Note that the intensity interpolation includes
these repeated frames.

6-14

EnSight 8 Interface Manual

6.2 The EnVe Image object

anaglyph (RW) int If an output movie has stereo set, this attribute allows
that stereo to be in anaglyph form. Valid values include:

enve .MOVIE ANAGLYPH NONE - use HW stereo
(shutter glasses)

enve.MOVIE ANAGLYPH REDBLUE
enve.MOVIE ANAGLYPH BLUERED
enve.MOVIE ANAGLYPH REDCYAN
enve.MOVIE ANAGLYPH CYANRED

flip (RW) int When reading from a file, flip the frames over the X or Y
axis. Valid values are formed by oring:
enve.CVF_FLIP XAXIS and/or enve.CVF FLIP YAXIS

The EnVe Image object

The image object is a simple 2D array of pixels. An image can be in a number of formats:
enve.CVF IMG FMT A - alpha only image

enve.CVF IMG FMT L - luminance only image (grayscale)

enve.CVF IMG FMT LA - luminance+alpha image

enve.CVF IMG FMT RGB - red,green,blue three channel image

enve.CVF IMG FMT RGBA - red,green,blue,alpha four channel image

EnVe image object processing operations

x = enve.image ()

Create a new image object. The default image is 100 by 100 in size and in RGB mode.

str = x.ppm()

This method returns a string that is the representation of the image as an ASCII PPM file. This
can be useful in interfacing to systems like Qt.

image = x.subrect((int,int), (int,int))
image = x.subrect()

This method extracts a rectangle of pixels from the image and returns a new image. The first
tuple is the offset into the image and the last specifies the dx,dy in pixels. In the second form, the
method simply clones the source image.

x.chromakey (incolor, tolerance, alpha)

This method scans the input image and compares the color of each pixel to the input pixel color.
If every channel is within 'tolerance' of the target pixel, the alpha channel for that pixel is
replaced by the input alpha value. incolor is a tuple of 3 integers (R,G,B). tolerance is a tuple of
3 integers that are the tolerance in R,G,B.

EnSight 8 Interface Manual 6-15

6.2 The EnVe Image object

6-16

x.flip (int)

This method will flip an image over one or more axis. The int parameter formed by oring
together the following: enve.CVF_FLIP_XAXIS and enve.CVF_FLIP_YAXIS, selects the
operation.

X.swizzle (swiz,mask)

This method allows the value of any channel of the image to come from any other channel
channel of the image. The array swiz selects the input channel for each output channel. For
example, a swiz of (0,1,2,3) will result in no image change. A swiz of (2,1,0,0) will swap the red
and blue channels and place the input red channel in the output alpha channel as well. The mask
array allows individual output channels to be enabled or disabled for writing. The value in the
mask array must be non-zero for the output channel to be writable. swiz and mask are both
tuples of four integers. With some formats, not all values are used.

x.colormath (rw, gw,bw, aw)

This method performs simple linear algebra on an image. The math is performed at floating
point resolution and the results clamped to the range [0,255] before being output. rw,gw,bw and
aw are each tuples of 5 floats and each represent the coefficients of the linear transform for a
given output component.

The math implemented is as follows:

R' = R*rw[0]4+G*rw[1]+B*rw[2]+A*rw[3]+rw[4]
G' = R*gw[0]+G*gw[l]+B*gw[2]+A*gw [3]+gw[4]
B' = R*bw[0]+G*bw[1l]+B*bw[2] +A*bw[3]+bw[4]
A' = R*aw[0]+G*aw[l]+B*aw[2]+A*aw[3]+aw[4]

x.bitblt (src, spos,ssize,pos,size,mode,backpixel)

This method copies a rectangle of pixels from one image to the target. The two images must
have the same pixel format. The rectangles may lie outside of the source or destination images.
For source pixels that lie outside of the source image, the backpixel value is used. The source
pixels will be scaled as needed (nearest neighbor sampling) to fill the destination rectangle. The
operation mode can be a simple copy (enve.CVF _BITBLT COPY), where source pixels replace
destination pixels or it can be a masked copy (enve.CVF BITBLT ALPHAMASK) Where source
pixels only replace destination pixels if they have a non-zero alpha channel. backpixel is a tuple
of 4 integers (Red,Green,Blue,Alpha). src is an enve.image() object to use as the pixel source.
spos is the location of the pixels in the source image (a tuple of two ints). ssize is the rectangle
(dx,dy) of the pixels in the source image (a tuple of two ints). pos is the location of the pixels in
the destination image (a tuple of two ints). size is the rectangle (dx,dy) of the pixels to paint in
the destination (a tuple of two ints).

EnSight 8 Interface Manual

6.2 The EnVe Image object

x.blend(src, srcCM, srcAM,dstCM, dstAM, fixedcolor, fixedalpha)

This method blends the pixels of two images together according to four blending mode
functions (a color and alpha for each of the source and destination images). Blending is
performed by weighting each component of the source and destination by a particular function
and then summing the results. The results are then clamped to the range [0,255] and stored in the
destination image. In addition to the images, a fixed color and alpha value are supplied. These
are used by some of the various expression combinations. fixedcolor is a tuple of four integers
(RGBA) and fixedalpha is a single integer.

The formula take the following form:
dst' (RGB) = (dst (RGB) *dstCModeWeight) /255+ (src (RGB) *srcCModeWeight) /255
dst' (A) =(dst(A) *dstAModeWeight)/255+(src(A) *srcAModeWeight) /255

srccM selects the function for determining srcCModeWeight
srcaM selects the function for determining srcaAModeWeight
dstcM selects the function for determining dstCModeWeight
dstaM selects the function for determining dstAModeWeight

The available weight functions include:

enve.CVEF BLEND ZERO The value 0
enve.CVEF BLEND ONE The value 255
enve.CVF BLEND SCOLOR The value of the source color
enve.CVF BLEND SALPHA The value of the source alpha
enve.CVF BLEND DCOLOR The value of the destination color
enve.CVF BLEND DALPHA The value of the destination alpha
enve.CVF BLEND CCOLOR The value of the "fixed" color
enve.CVF BLEND CALPHA The value of the "fixed" alpha
enve.CVF BLEND MSCOLOR 255 - CVF BLEND SCOLOR
enve.CVF BLEND MSALPHA 255 - CVF BLEND SALPHA
enve.CVF BLEND MDCOLOR 255 - CVF_BLEND DCOLOR
enve.CVF BLEND MDALPHA 255 - CVF_BLEND DALPHA
enve.CVF BLEND MCCOLOR 255 - CVF_BLEND CCOLOR
enve.CVF BLEND MCALPHA 255 - CVF_BLEND CALPHA
str = xX.errstr ()
If any of the methods return an error (-1), a string describing the error will be stored in the image
object. These error strings can be accessed via this method.
print x

Prints basic information about the image x.

X ==

The object supports the comparison of two images for pixel by pixel equality

EnSight 8 Interface Manual

6.2 The EnVe Image object

6-18

xX.attr
xX.attr = vy

Image attributes (R=read, w=write):

These get and set any of the various image object attributes.

__members (R)

Returns a list of the attributes this object supports.

__methods (R)

Returns a list of the methods this object supports.

dims (RW) (int,int)

Returns the size of the image in the x and y dimensions. If
set, it will resize the image to the new x and y values.

format (RW) int

Returns the format of the image. If set, will change the
image format to the new value (interpreting all pixel

values).

Valid values:

enve

enve.

enve
enve

.CVF_IMG FMT A

CVF_IMG FMT L

.CVF_IMG FMT LA
.CVF_IMG FMT RGB
enve.

CVF_IMG FMT RGBA

EnSight 8 Interface Manual

6.2 Additional EnVe API

Additional EnVe API

list=enve.codecs ()

This function queries the installed UDILs and returns a list of supported file formats and
associated options. It returns a list structure in the following form:

[
["name", "desc", [".ext",...],stereo,multi,

[["optname", opttype, <optvalue>,<optdefault>],...]11,

]

"name" is the name of the UDIL, this is used as the movie.format attribute.
"desc" is an ASCII description of the UDIL in more detail.

The next list is a list of the filename extensions used by this format.

stereo is an integer that is non-zero if the file supports HW stereo movies.
multi is an integer that is non-zero if the format is an animation file that places all frames in
a single file.

The final list is a list of custom options that can be set for the format.

Each option has a name ("optname") and a type. The types can be:

enve.CVF UDIL BOOLEAN
enve.CVF UDIL INT
enve.CVF UDIL FLOAT
enve.CVF UDIL CHOICE.

<optvalue> and <optdefault> are different for each type:

Type Value Default

enve.CVF UDIL BOOLEAN "O|1" int

enve.CVF UDIL INT [int min, int max] int

enve.CVF UDIL FLOAT [fltimin,fltimaxl float

enve.CVF UDIL CHOICE ["optO","optl",...] int (index into list)
["ver",ver] = enve.version|()

This function returns the version of the enve API as a text string and a floating point number.

EnSight 8 Interface Manual 6-19

6.2 Additional EnVe API

6-20 EnSight 8 Interface Manual

Index

C

Command Driver
overview 5-1
Query keyword details 5-5
ARROW_COUNT 5-5
ARROW_DISPLAY_ATTRIBUTES 5-5
ARROW_SELECTED_OBJECTS 5-5
DIAL_COUNT 5-5
DIAL_DISPLAY_ATTRIBUTES 5-6
DIAL_SELECTED OBJECTS 5-6
FLIPBOOK_INFORMATION 5-6
FLIPBOOK_LOADED 5-6
FLIPBOOK_RUNNING 5-7
FRAME_COUNT 5-7
FRAME_LOCATION 5-7
GAUGE_COUNT 5-8
GAUGE_DISPLAY_ATTRIBUTES 5-8
GAUGE_SELECTED_OBJECTS 5-8
LEGEND_COUNT 5-8
LEGEND_DISPLAY_ATTRIBUTES 5-9
LEGEND_SELECTED_OBJECTS 5-9
LINE_COUNT 5-9
LINE_DISPLAY_ATTRIBUTES 5-10
LINE_SELECTED_OBJECTS 5-10
LOGO_COUNT 5-10
LOGO_DISPLAY_ATTRIBUTES 5-11
LOGO_SELECTED_OBJECTS 5-11
MESSAGES 5-11
PART_DISPLAY_ATTRIBUTES 5-12
PART_ELEMENT_PICKEDBYWINXY 5-12
PART_ELEMENT_PICKEDBYWORLDXYZ 5-12
PART_NODE_PICKEDBYWINXY 5-12
PART_NODE_PICKEDBYWORLDXYZ 5-13
PART_OBJECTS 5-13
PART_PICKED 5-13
PART_SELECTED_OBJECTS 5-14
PLOT_COUNT 5-14
PLOT_DISPLAY_ATTRIBUTES 5-14
PLOT_PICKED 5-15
QUERY_COUNT 5-15
QUERY_DISPLAY_ATTRIBUTES 5-15
QUERY_PICKED 5-16
QUERY_PROBE_ATTRIBUTES 5-16
QUERY_PROBE_OUTPUT 5-16
SHAPE_COUNT 5-16
SHAPE_DISPLAY_ATTRIBUTES 5-17
SHAPE_SELECTED_OBJECTS 5-17
TEXT_COUNT 5-17
TEXT_DISPLAY_ATTRIBUTES 5-18
TEXT_DISPLAY_TEXT 5-18
TEXT_SELECTED_OBJECTS 5-18
TRANSFORMATION_CENTER_OF 5-19
TRANSFORMATION_COMPOSITE_MATRIX 5-19
TRANSFORMATION_LOOKAT_POSITION 5-19
TRANSFORMATION_LOOKFROM_POSITION
5-20

EnSight 8 Interface Manual

Index

TRANSFORMATION_PERANG 5-20
TRANSFORMATION_PROJ_MATRIX 5-21
TRANSFORMATION_ROTATE_MATRIX 5-22
TRANSFORMATION_SCALE_MATRIX 5-22
TRANSFORMATION_TRANSLATE_MATRIX 5-23
TRANSFORMATION_ZCLIP_LOCATIONS 5-23
VARIABLE_INFORMATION 5-24
VARIABLE_OBJECTS 5-25
VIEW_MODE 5-25
VIEWPORT_COUNT 5-26
VIEWPORT_DISPLAY_ATTRIBUTES 5-26
VIEWPORT_LOCATION 5-26
VIEWPORT_SIZE 5-27
WINDOW_DEPTH_VALUES 5-27
WINDOW_MOUSECURRENT_INFO 5-28
WINDOW_MOUSELASTPRESS_INFO 5-28
WINDOW_RGBA_VALUES 5-28
WINDOW_SIZE 5-29

Query keywords 5-4

Routine Descriptions 5-30
enscmddriver_connect 5-30
enscmddriver_disconnect 5-33
enscmddriver_query 5-32
enscmddriver_sendmesg 5-31

sample usage 5-3

steps for producing 5-1

Converting 1.0 reader to 2.0 reader 2-142

D

Debugging a reader 0-5

E

EnSight Python Code Methods 6-8
EnSight Python events 6-8
EnVe python module interface 6-12

H

How to produce a reader 0-3

P

Python 6-1
Additional EnVe API 6-19
Command Dialog Tab 6-1
editor 6-2
EnSight Code Methods 6-8
EnSight events 6-8
EnSight module code methods 6-4
EnSight module interface 6-4
EnVe image object 6-15
EnVe image object processing operations 6-15
EnVe Module Code Methods 6-12
EnVe module interface 6-12
EnVe movie object 6-12

Index-1

Index

Index-2

interface limitations 6-2
overview 6-1

R

Reader API1 1.0
basis of arrrays 1-6
detailed specifications 1-6
dummy routines 1-6
global variables 1-6
include files 1-6
order routines are called 1-4
quick index of routines 1-2
underlying philosophy 0-1
USERD_bkup 1-7
USERD_get_block_coords_by component 1-9
USERD_get_block_iblanking 1-10
USERD_get_block_scalar_values 1-11
USERD_get_block_vector_values_by component

1-12

USERD_get_changing_geometry_status 1-14
USERD_get_constant_value 1-15
USERD_get_dataset_query_file_info 1-16
USERD_get_description_lines 1-17
USERD_get_element_connectiviies_for_part 1-18
USERD_get_element_ids_for_part 1-20
USERD_get_element_label_status 1-21
USERD_get_extra_gui_defaults 1-22
USERD_get_global_coords 1-25
USERD_get_global_node_ids 1-27
USERD_get_name_of reader 1-28
USERD_get_node_label_status 1-29
USERD_get_num_xy_queries 1-30
USERD_get_number_of_files_in_dataset 1-31
USERD_get_number_of_global_nodes 1-32
USERD_get_number_of model_parts 1-33
USERD_get_number_of time_steps 1-34
USERD_get_number_of_variables 1-35
USERD_get_part_build_info 1-36
USERD_get_reader_descrip 1-39
USERD_get_reader_release 1-40
USERD_get_scalar_values 1-41
USERD_get_solution_times 1-43
USERD_get _var_extract_gui_defaults 1-44
USERD_get_var_extract_gui_numbers 1-45
USERD_get_variable_info 1-47
USERD_get_variable_value_at_specific 1-48
USERD_get_vector_values 1-50
USERD_get_xy query_data 1-52
USERD_get_xy _query_info 1-53
USERD_prefer_auto_distribute 1-54
USERD_set_extra_gui_data 1-55
USERD_set_filename_button_labels 1-56
USERD_set_filenames 1-57
USERD_set_time_step 1-58
USERD_set_var_extract_gui_data 1-59
USERD_stop_part_building 1-60

Reader API 2.0
autodistribute oprional routines 2-14
basis of arrays 2-16
detailed specifications 2-16

dummy routines 2-16
global variables 2-16
include files 2-16
new features 0-2
order routines are called 2-5
quick index of routines 2-2
routine history 2-9

at version 2.00 2-12

at version 2.01 2-12

at version 2.03 2-13

at version 2.05 2-13

at version 2.06 2-14

at version 2.07 2-14

at version 2.08 2-14

at verson 2.04 2-13
underlying philosophy 0-2
USERD_bkup 2-17
USERD_exit_routine 2-19
USERD_get_block_coords_by component 2-20
USERD_get block_ghost_flags 2-22
USERD_get_block_iblanking 2-21
USERD_get_border_availability 2-23
USERD_get_border_elements_by_type 2-24
USERD_get_changing_geometry_status 2-26
USERD_get_constant_val 2-27
USERD_get dataset_query_file_info 2-28
USERD_get descrip_lines 2-29
USERD_get_element_label_status 2-30
USERD_get_extra_gui_defaults 2-31
USERD_get_extra_gui_numbers 2-32
USERD_get_geom_timeset_number 2-34
USERD_get _ghost_in_model_flag 2-44
USERD_get _ghosts_in_block_flag 2-43
USERD_get_gold_part_build_info 2-35
USERD_get_gold_variable_info 2-41
USERD_get_matf_set_info 2-45
USERD_get_matf_var_info 2-46
USERD_get_matsp_info 2-47
USERD_get _maxsize_info 2-48
USERD_get_model_extents 2-50
USERD_get_name_of_reader 2-51
USERD_get_nfaced_conn 2-52
USERD_get_nfaced_conn_in_buffers 2-55
USERD_get nfaced_nodes_per_face 2-60
USERD_get node_label_status 2-63
USERD_get_nsided_conn 2-64
USERD_get_nsided_conn_in_buffers 2-66
USERD_get_num_of_time_steps 2-70
USERD_get_num_xy_queries 2-71
USERD_get _number_of files_in_dataset 2-72
USERD_get _number_of material_sets 2-73
USERD_get_number_of_materials 2-76
USERD_get_number_of_model_parts 2-77
USERD_get_number_of_species 2-78
USERD_get_number_of_timesets 2-79
USERD_get_number_of_variables 2-80
USERD_get part_coords 2-81
USERD_get_part_coords_in_buffers 2-82
USERD_get_part_element_ids_by_type 2-85
USERD_get_part_element_ids_by_type_in_buffers

2-87

EnSight 8 Interface Manual

Index

USERD_get_part_elements_by_type 2-91 include files 3-7
USERD_get_part_elements_by type_in_buffers 2-93 routine detail specifications 3-7
USERD_get_part_node_ids 2-97 USERD_writer_get_name 3-8
USERD_get_part_node_ids_in_buffers 2-98 USERD_writer_get_writer_version 3-9
USERD_get_reader_descrip 2-101 USERD_writer_write_geom 3-10
USERD_get_reader_release 2-102 Topical list of methods for 3-4
USERD_get_reader_version 2-103 using -writerdbg 3-4
USERD_get_sol_times 2-104 what information can be provided 3-1

USERD_get_structured_reader_cinching 2-105
USERD_get_timeset_description 2-106
USERD_get_uns_failed_params 2-107
USERD_get_var_by _component 2-109
USERD_get_var_by_component_in_buffers 2-112
USERD_get_var_extract_gui_defaults 2-118
USERD_get_var_extract_gui_numbers 2-119
USERD_get_var_value_at_specific 2-121
USERD_get_xy _query_data 2-123
USERD_get_xy_query_info 2-124
USERD_load_matf_data 2-125
USERD_prefer_auto_distribute 2-127

USERD _rigidbody_existence 2-128

USERD _rigidbody_values 2-129
USERD_set_block_range_and_stride 2-131
USERD_set_extra_gui_data 2-132
USERD_set_filename_button_labels 2-133
USERD_set_filenames 2-134
USERD_set_right_side 2-135
USERD_set_server_number 2-136
USERD_set_time_set_and_step 2-137
USERD_set_var_extract_gui_data 2-138
USERD_size_matf_data 2-139
USERD_stop_part_building 2-141

U

udr_checker 0-5
Upgrading 1.0 reader to 2.0 reader 2-142

User Defined Math Functions
current limitations 4-1
detailed routine specifications 4-2
example 4-7
how routines are invoked 4-1
include files 4-2
USERD_evaluate 4-6
USERD_get_meta_data 4-5
USERD_get_mf_version 4-3
USERD_get_name_of mf 4-2
USERD_get_nargs 4-4
where ensight looks for libraries 4-1

USERD_WRITER_GLOBALS 3-7

w

Writer API

directions for writing 3-3

example writers 3-1
Case (Gold) Lite 3-1
Flatfile 3-1
HDF 5.0 3-1
STL 3-1

global define 3-7

EnSight 8 Interface Manual Index-3

Index

Index-4 EnSight 8 Interface Manual

	EnSight
	Interface Manual
	Table of Contents
	Overview
	User Defined Reader APIs
	How To Produce A User Defined Reader
	User Defined Writers
	User Defined Math Functions

	1 User Defined Reader Version 1.0 API
	1.1 Quick Index of Library Routines
	1.2 Order Routines are Called
	1.3 Detailed Specifications
	USERD_bkup
	USERD_get_block_coords_by_component
	USERD_get_block_iblanking
	USERD_get_block_scalar_values
	USERD_get_block_vector_values_by_component
	USERD_get_changing_geometry_status
	USERD_get_constant_value
	USERD_get_dataset_query_file_info
	USERD_get_description_lines
	USERD_get_element_connectivities_for_part
	USERD_get_element_ids_for_part
	USERD_get_element_label_status
	USERD_get_extra_gui_defaults
	USERD_get_extra_gui_numbers
	USERD_get_global_coords
	USERD_get_global_node_ids
	USERD_get_name_of_reader
	USERD_get_node_label_status
	USERD_get_num_xy_queries
	USERD_get_number_of_files_in_dataset
	USERD_get_number_of_global_nodes
	USERD_get_number_of_model_parts
	USERD_get_number_of_time_steps
	USERD_get_number_of_variables
	USERD_get_part_build_info
	USERD_get_reader_descrip
	USERD_get_reader_release
	USERD_get_scalar_values
	USERD_get_solution_times
	USERD_get_var_extract_gui_defaults
	USERD_get_var_extract_gui_numbers
	USERD_get_variable_info
	USERD_get_variable_value_at_specific
	USERD_get_vector_values
	USERD_get_xy_query_data
	USERD_get_xy_query_info
	USERD_prefer_auto_distribute
	USERD_set_extra_gui_data
	USERD_set_filename_button_labels
	USERD_set_filenames
	USERD_set_time_step
	USERD_set_var_extract_gui_data
	USERD_stop_part_building

	2 User Defined Reader Version 2.0 API
	2.1 Quick Index of 2.0 Library Routines
	2.2 Order Routines are Called
	2.3 Routine History
	At Version 2.00
	At Version 2.01
	At Version 2.03
	At Version 2.04
	At Version 2.05
	At Version 2.06
	At Version 2.07
	At Version 2.08

	2.4 Detailed Specifications
	USERD_bkup
	USERD_exit_routine
	USERD_get_block_coords_by_component
	USERD_get_block_iblanking
	USERD_get_block_ghost_flags
	USERD_get_border_availability
	USERD_get_border_elements_by_type
	USERD_get_changing_geometry_status
	USERD_get_constant_val
	USERD_get_dataset_query_file_info
	USERD_get_descrip_lines
	USERD_get_element_label_status
	USERD_get_extra_gui_defaults
	USERD_get_extra_gui_numbers
	USERD_get_geom_timeset_number
	USERD_get_gold_part_build_info
	USERD_get_gold_variable_info
	USERD_get_ghosts_in_block_flag
	USERD_get_ghosts_in_model_flag
	USERD_get_matf_set_info
	USERD_get_matf_var_info
	USERD_get_matsp_info
	USERD_get_maxsize_info
	USERD_get_model_extents
	USERD_get_name_of_reader
	USERD_get_nfaced_conn
	USERD_get_nfaced_conn_in_buffers
	USERD_get_nfaced_nodes_per_face
	USERD_get_node_label_status
	USERD_get_nsided_conn
	USERD_get_nsided_conn_in_buffers
	USERD_get_num_of_time_steps
	USERD_get_num_xy_queries
	USERD_get_number_of_files_in_dataset
	USERD_get_number_of_material_sets
	USERD_get_number_of_materials
	USERD_get_number_of_model_parts
	USERD_get_number_of_species
	USERD_get_number_of_timesets
	USERD_get_number_of_variables
	USERD_get_part_coords
	USERD_get_part_coords_in_buffers
	USERD_get_part_element_ids_by_type
	USERD_get_part_element_ids_by_type_in_buffers
	USERD_get_part_elements_by_type
	USERD_get_part_elements_by_type_in_buffers
	USERD_get_part_node_ids
	USERD_get_part_node_ids_in_buffers
	USERD_get_reader_descrip
	USERD_get_reader_release
	USERD_get_reader_version
	USERD_get_sol_times
	USERD_get_structured_reader_cinching
	USERD_get_timeset_description
	USERD_get_uns_failed_params
	USERD_get_var_by_component
	USERD_get_var_by_component_in_buffers
	USERD_get_var_extract_gui_defaults
	USERD_get_var_extract_gui_numbers
	USERD_get_var_value_at_specific
	USERD_get_xy_query_data
	USERD_get_xy_query_info
	USERD_load_matf_data
	USERD_prefer_auto_distribute
	USERD_rigidbody_existence
	USERD_rigidbody_values
	USERD_set_block_range_and_stride
	USERD_set_extra_gui_data
	USERD_set_filename_button_labels
	USERD_set_filenames
	USERD_set_right_side
	USERD_set_server_number
	USERD_set_time_set_and_step
	USERD_set_var_extract_gui_data
	USERD_size_matf_data
	USERD_stop_part_building

	2.5 Converting a 1.0 API Reader to a 2.0 API READER

	3 User Defined Writer API
	What Information Can Be Provided By The API?
	Example Writers
	3.1 Directions For Writing Your Own UDW
	Topical List Of User-Defined Writer API Methods

	3.2 Routine Detail Specifications
	USERD_writer_get_name
	USERD_writer_get_writer_version
	USERD_writer_write_geom

	4 User Defined Math Functions
	How the routines are invoked
	Current Limitation
	4.1 Detailed Routine Specifications
	USERD_get_name_of_mf
	USERD_get_mf_version
	USERD_get_nargs
	USERD_get_meta_data
	USERD_evaluate

	4.2 Example

	5 EnSight Command Driver
	Overview
	5.1 Query Capability
	Alphabetical List of Query Keywords:
	Query Keyword Details

	5.2 Routine Descriptions
	enscmddriver_connect
	enscmddriver_sendmesg
	enscmddriver_query
	enscmddriver_disconnect

	6 EnSight Python Interpreter
	Overview
	Limitations of the EnSight Python Interface
	6.1 Python EnSight module interface
	EnSight Python events

	6.2 Python EnVe module interface
	The EnVe Movie object
	The EnVe Image object
	Additional EnVe API

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

